Science.gov

Sample records for 2d cross-sectional images

  1. Visualizing 3D Objects from 2D Cross Sectional Images Displayed "In-Situ" versus "Ex-Situ"

    ERIC Educational Resources Information Center

    Wu, Bing; Klatzky, Roberta L.; Stetten, George

    2010-01-01

    The present research investigates how mental visualization of a 3D object from 2D cross sectional images is influenced by displacing the images from the source object, as is customary in medical imaging. Three experiments were conducted to assess people's ability to integrate spatial information over a series of cross sectional images in order to…

  2. Mental Visualization of Objects from Cross-Sectional Images

    ERIC Educational Resources Information Center

    Wu, Bing; Klatzky, Roberta L.; Stetten, George D.

    2012-01-01

    We extended the classic anorthoscopic viewing procedure to test a model of visualization of 3D structures from 2D cross-sections. Four experiments were conducted to examine key processes described in the model, localizing cross-sections within a common frame of reference and spatiotemporal integration of cross sections into a hierarchical object…

  3. BOXER: Fine-flux Cross Section Condensation, 2D Few Group Diffusion and Transport Burnup Calculations

    2010-02-01

    Neutron transport, calculation of multiplication factor and neutron fluxes in 2-D configurations: cell calculations, 2-D diffusion and transport, and burnup. Preparation of a cross section library for the code BOXER from a basic library in ENDF/B format (ETOBOX).

  4. Abdominal sarcoidosis: cross-sectional imaging findings

    PubMed Central

    Gezer, Naciye Sinem; Başara, Işıl; Altay, Canan; Harman, Mustafa; Rocher, Laurence; Karabulut, Nevzat; Seçil, Mustafa

    2015-01-01

    Sarcoidosis is a multisystem inflammatory disease of unknown etiology. The lungs and the lymphoid system are the most commonly involved organs. Extrapulmonary involvement is reported in 30% of patients, and the abdomen is the most common extrapulmonary site with a frequency of 50%–70%. Although intra-abdominal sarcoidosis is usually asymptomatic, its presence may affect the prognosis and treatment options. The lesions are less characteristic and may mimick neoplastic or infectious diseases such as lymphoma, diffuse metastasis, and granulomatous inflammation. The liver and spleen are the most common abdominal sites of involvement. Sarcoidosis of the gastrointestinal system, pancreas, and kidneys are extremely rare. Adenopathy which is most commonly found in the porta hepatis, exudative ascites, and multiple granulomatous nodules studding the peritoneum are the reported manifestations of abdominal sarcoidosis. Since abdominal sarcoidosis is less common and long-standing, unrecognized disease can result in significant morbidity and mortality. Imaging contributes to diagnosis and management of intra-abdominal sarcoidosis. In this report we reviewed the cross-sectional imaging findings of hepatobiliary, gastrointestinal, and genitourinary sarcoidosis. PMID:25512071

  5. Amyloidosis: Modern Cross-sectional Imaging.

    PubMed

    Czeyda-Pommersheim, Ferenc; Hwang, Misun; Chen, Sue Si; Strollo, Diane; Fuhrman, Carl; Bhalla, Sanjeev

    2015-01-01

    Amyloidosis is a rare diverse condition caused by the pathologic extracellular deposition of abnormal insoluble proteins throughout the body. It may exist as a primary disease or, more commonly, may be secondary to a wide variety of pathologic processes ranging from chronic infection or inflammation to malignancy. Hereditary forms also exist. On the basis of the structure of the protein deposits, more than two dozen subtypes of amyloidosis have been described. A single organ or multiple organ systems may be affected. The radiologic manifestations of amyloidosis are varied and often nonspecific, making amyloidosis a diagnostic challenge for the radiologist. In the chest, the lungs, mediastinum, pleura, and heart may be involved. Lung involvement may manifest as diffuse reticulonodular interstitial thickening, consolidations, or solitary or multiple parenchymal nodules that may calcify, cavitate, and slowly enlarge. Pleural involvement most commonly manifests as pleural effusions. Tracheobronchial involvement may exhibit concentric airway thickening, mural and intraluminal nodules, submucosal calcification, and airway obstruction. Mediastinal and hilar lymph nodes may enlarge and frequently calcify. At cardiac magnetic resonance (MR) imaging, the left ventricular wall is typically thickened, with associated diastolic dysfunction. Delayed contrast material-enhanced cardiac MR imaging typically shows global transmural or subendocardial enhancement. The pathophysiology, classification, treatment, and prognosis of amyloidosis are reviewed, followed by case examples of the appearance of thoracic and cardiac amyloidosis on chest radiographs, computed tomographic (CT) images, and cardiac MR images. PMID:26230754

  6. Lactiferous vessel detection from microscopic cross-sectional images

    NASA Astrophysics Data System (ADS)

    Jariyawatthananon, Jirapath; Cooharojananone, Nagul; Lipikorn, Rajalida

    2014-04-01

    This paper presents the methods to detect and segment lactiferous vessels or rubber latex vessels from gray scale microscopic cross-sectional images using polynomial curve-fitting with maximum and minimum stationary points. Polynomial curve-fitting is used to detect the location of lactiferous vessels from an image of a non-dyed cross-sectional slice which was taken by a digital camera through microscope lens. The lactiferous vessels are then segmented from an image using maximum and minimum stationary points with morphological closing operation. Two species of rubber trees of age between one to two years old are sampled namely, RRIM600 and RRIT251. Two data sets contain 30 microscopic cross-sectional images of one-year old rubber tree's stems from each species are used in the experiments and the results reveal that most of the lactiferous vessel areas can be segmented correctly.

  7. Trench doping process for 3D transistors - 2D cross-sectional doping profiling study

    NASA Astrophysics Data System (ADS)

    Qin, Shu; Wang, Zhouguang; Hu, Y. Jeff; McTeer, Allen

    2012-11-01

    Comparison study of doping a 3D trench transistor structure was carried out by beam-line (BL) implant and plasma doping (PLAD) methods. Electron holography (EH) was used as a powerful characterization method to study 2D cross-sectional doping profiles of boron-based doping processes. Quantitative definitions of junction depths xj in both vertical and lateral directions can be obtained. Good correlations of 2D electron holography dopant profiles, 2D dopant profile simulations, and 1D SIMS/ARXPS impurity profiles are demonstrated. The results reveal an advantage of PLAD over BL implant: a much larger effective implant area for 3D trench bottom. It leads to a larger lateral junction depth xj(L) with a comparable vertical junction depth xj(V). It is attributed to the PLAD technology with no line of sight shadowing effect and less angle variation issues. Enhancing the dopant lateral straggle by PLAD at the trench bottom is particularly useful for non-planar device structures with low resistance buried dopant layers.

  8. Cross-Sectional Transport Imaging in a Multijunction Solar Cell

    SciTech Connect

    Haegel, Nancy M.; Ke, Chi-Wen; Taha, Hesham; Guthrey, Harvey; Fetzer, C. M.; King, Richard

    2015-06-14

    Combining highly localized electron-beam excitation at a point with the spatial resolution capability of optical near-field imaging, we have imaged carrier transport in a cross-sectioned multijunction (GaInP/GaInAs/Ge) solar cell. We image energy transport associated with carrier diffusion throughout the full width of the middle (GaInAs) cell and luminescent coupling from point excitation in the top cell GaInP to the middle cell. Supporting cathodoluminescence and near-field photoluminescence measurements demonstrate excitation-dependent Fermi level splitting effects that influence cross-sectioned spectroscopy results as well as transport limitations on the spatial resolution of cross-sectional measurements.

  9. Evolving roles of cross-sectional imaging in Crohn's disease.

    PubMed

    Magarotto, Andrea; Orlando, Stefania; Coletta, Marina; Conte, Dario; Fraquelli, Mirella; Caprioli, Flavio

    2016-09-01

    The implementation of cross-sectional imaging techniques for the clinical management of Crohn's disease patients has steadily grown over the recent years, thanks to a series of technological advances, including the evolution of contrast media for magnetic resonance, computed tomography and bowel ultrasound. This has resulted in a continuous improvement of diagnostic accuracy and capability to detect Crohn's disease-related complications. Additionally, a progressive widening of indications for cross-sectional imaging in Crohn's disease has been put forward, thus leading to hypothesize that in the near future imaging techniques can increasingly complement endoscopy in most clinical settings, including the grading of disease activity and the assessment of mucosal healing or Crohn's disease post-surgical recurrence.

  10. Peripheral nerve imaging: Not only cross-sectional area.

    PubMed

    Tagliafico, Alberto Stefano

    2016-08-28

    Peripheral nerve imaging is recognized as a complement to clinical and neurophysiological assessment in the evaluation of peripheral nerves with the ability to impact patient management, even for small and difficult nerves. The European Society of Musculoskeletal Radiology, suggest to use ultrasound (US) for nerve evaluation due to the fact that, in sever anatomical area, magnetic resonance imaging is not able to give additional informations. US could be considered the first-choice approach for the assessment of peripheral nerves. The relative drawback of peripheral nerve US is the long learning curve and the deep anatomic competence to evaluate even small nerves. In the recent years, the role of US in peripheral nerve evaluation has been widened. In the past, nerve US was mainly used to assess nerve-cross sectional area, but now more advanced measurements and considerations are desirable and can boost the role of peripheral nerve US. Nerve echotexture evaluation was defined in 2010: The ratio between the hypoechoic and hyperechoic areas of peripheral nerves on US was called "nerve density". For evaluation of patients who have peripheral neuropathies, the role of peripheral nerve is US wider than simple cross-sectional area evaluation. Quantitative measurements describing the internal fascicular echotexture of peripheral nerves introduce the concept of considering US as a possible quantitative imaging biomarker technique. The potential of nerve US has started to be uncovered. It seems clear that only cross-sectional area measurement is no more sufficient for a comprehensive US evaluation of peripheral nerves.

  11. Peripheral nerve imaging: Not only cross-sectional area

    PubMed Central

    Tagliafico, Alberto Stefano

    2016-01-01

    Peripheral nerve imaging is recognized as a complement to clinical and neurophysiological assessment in the evaluation of peripheral nerves with the ability to impact patient management, even for small and difficult nerves. The European Society of Musculoskeletal Radiology, suggest to use ultrasound (US) for nerve evaluation due to the fact that, in sever anatomical area, magnetic resonance imaging is not able to give additional informations. US could be considered the first-choice approach for the assessment of peripheral nerves. The relative drawback of peripheral nerve US is the long learning curve and the deep anatomic competence to evaluate even small nerves. In the recent years, the role of US in peripheral nerve evaluation has been widened. In the past, nerve US was mainly used to assess nerve-cross sectional area, but now more advanced measurements and considerations are desirable and can boost the role of peripheral nerve US. Nerve echotexture evaluation was defined in 2010: The ratio between the hypoechoic and hyperechoic areas of peripheral nerves on US was called “nerve density”. For evaluation of patients who have peripheral neuropathies, the role of peripheral nerve is US wider than simple cross-sectional area evaluation. Quantitative measurements describing the internal fascicular echotexture of peripheral nerves introduce the concept of considering US as a possible quantitative imaging biomarker technique. The potential of nerve US has started to be uncovered. It seems clear that only cross-sectional area measurement is no more sufficient for a comprehensive US evaluation of peripheral nerves.

  12. Peripheral nerve imaging: Not only cross-sectional area.

    PubMed

    Tagliafico, Alberto Stefano

    2016-08-28

    Peripheral nerve imaging is recognized as a complement to clinical and neurophysiological assessment in the evaluation of peripheral nerves with the ability to impact patient management, even for small and difficult nerves. The European Society of Musculoskeletal Radiology, suggest to use ultrasound (US) for nerve evaluation due to the fact that, in sever anatomical area, magnetic resonance imaging is not able to give additional informations. US could be considered the first-choice approach for the assessment of peripheral nerves. The relative drawback of peripheral nerve US is the long learning curve and the deep anatomic competence to evaluate even small nerves. In the recent years, the role of US in peripheral nerve evaluation has been widened. In the past, nerve US was mainly used to assess nerve-cross sectional area, but now more advanced measurements and considerations are desirable and can boost the role of peripheral nerve US. Nerve echotexture evaluation was defined in 2010: The ratio between the hypoechoic and hyperechoic areas of peripheral nerves on US was called "nerve density". For evaluation of patients who have peripheral neuropathies, the role of peripheral nerve is US wider than simple cross-sectional area evaluation. Quantitative measurements describing the internal fascicular echotexture of peripheral nerves introduce the concept of considering US as a possible quantitative imaging biomarker technique. The potential of nerve US has started to be uncovered. It seems clear that only cross-sectional area measurement is no more sufficient for a comprehensive US evaluation of peripheral nerves. PMID:27648165

  13. Peripheral nerve imaging: Not only cross-sectional area

    PubMed Central

    Tagliafico, Alberto Stefano

    2016-01-01

    Peripheral nerve imaging is recognized as a complement to clinical and neurophysiological assessment in the evaluation of peripheral nerves with the ability to impact patient management, even for small and difficult nerves. The European Society of Musculoskeletal Radiology, suggest to use ultrasound (US) for nerve evaluation due to the fact that, in sever anatomical area, magnetic resonance imaging is not able to give additional informations. US could be considered the first-choice approach for the assessment of peripheral nerves. The relative drawback of peripheral nerve US is the long learning curve and the deep anatomic competence to evaluate even small nerves. In the recent years, the role of US in peripheral nerve evaluation has been widened. In the past, nerve US was mainly used to assess nerve-cross sectional area, but now more advanced measurements and considerations are desirable and can boost the role of peripheral nerve US. Nerve echotexture evaluation was defined in 2010: The ratio between the hypoechoic and hyperechoic areas of peripheral nerves on US was called “nerve density”. For evaluation of patients who have peripheral neuropathies, the role of peripheral nerve is US wider than simple cross-sectional area evaluation. Quantitative measurements describing the internal fascicular echotexture of peripheral nerves introduce the concept of considering US as a possible quantitative imaging biomarker technique. The potential of nerve US has started to be uncovered. It seems clear that only cross-sectional area measurement is no more sufficient for a comprehensive US evaluation of peripheral nerves. PMID:27648165

  14. PET/CT and cross sectional imaging of gynecologic malignancy.

    PubMed

    Iyer, Revathy B; Balachandran, Aparna; Devine, Catherine E

    2007-10-01

    Gynecologic cancers are a common cause of morbidity and mortality in women of all ages. While many gynecologic cancers are staged clinically using the International Federation of Gynecology and Obstetrics (FIGO) staging system, imaging can be a useful adjunct to clinical staging. Cross sectional imaging techniques such as ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI) have been used to detect and follow patients with gynecologic cancer. These imaging modalities can show anatomic detail and morphologic changes in the female genitourinary tract to good advantage. Positron emission tomography (PET) differs in that it shows functional information that is not easily obtained by the other cross sectional imaging techniques. The fusion of PET with CT allows anatomic localization of functional abnormalities in the female genital tract and thereby allows the detection of gross disease in many malignant conditions both within and outside the confines of the female pelvis. The utility and limitations of imaging common gynecologic tumors such as cervical, ovarian and endometrial cancer are discussed with particular emphasis on PET/CT imaging.

  15. Enhanced Optical Cross Section via Collective Coupling of Atomic Dipoles in a 2D Array

    NASA Astrophysics Data System (ADS)

    Bettles, Robert J.; Gardiner, Simon A.; Adams, Charles S.

    2016-03-01

    Enhancing the optical cross section is an enticing goal in light-matter interactions, due to its fundamental role in quantum and nonlinear optics. Here, we show how dipolar interactions can suppress off-axis scattering in a two-dimensional atomic array, leading to a subradiant collective mode where the optical cross section is enhanced by almost an order of magnitude. As a consequence, it is possible to attain an optical depth which implies high-fidelity extinction, from a monolayer. Using realistic experimental parameters, we also model how lattice vacancies and the atomic trapping depth affect the transmission, concluding that such high extinction should be possible, using current experimental techniques.

  16. Cross-sectional imaging of adult crystal and inflammatory arthropathies.

    PubMed

    Soldatos, Theodoros; Pezeshk, Parham; Ezzati, Fatemeh; Karp, David R; Taurog, Joel D; Chhabra, Avneesh

    2016-09-01

    This article highlights the key aspects and current perspectives of the role of cross-sectional imaging in adult crystal and inflammatory arthropathies in adults, briefly discussing CT, and particularly focusing on MRI and US imaging as it supplements the conventional radiography. The role of conventional and advanced MR imaging techniques and imaging findings in this domain is discussed and illustrated with case examples. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article contains images and data, which were collected from patients as a part of a retrospective IRB from the institutional teaching files and informed consent was waived. PMID:27209200

  17. Enhanced Optical Cross Section via Collective Coupling of Atomic Dipoles in a 2D Array.

    PubMed

    Bettles, Robert J; Gardiner, Simon A; Adams, Charles S

    2016-03-11

    Enhancing the optical cross section is an enticing goal in light-matter interactions, due to its fundamental role in quantum and nonlinear optics. Here, we show how dipolar interactions can suppress off-axis scattering in a two-dimensional atomic array, leading to a subradiant collective mode where the optical cross section is enhanced by almost an order of magnitude. As a consequence, it is possible to attain an optical depth which implies high-fidelity extinction, from a monolayer. Using realistic experimental parameters, we also model how lattice vacancies and the atomic trapping depth affect the transmission, concluding that such high extinction should be possible, using current experimental techniques. PMID:27015480

  18. Cross-sectional imaging of nontraumatic emergencies of the spleen.

    PubMed

    Alabousi, Abdullah; Patlas, Michael N; Scaglione, Mariano; Romano, Luigia; Soto, Jorge A

    2014-01-01

    Multiple nontraumatic splenic emergencies are encountered during the imaging of patients in emergency room. Occasionally, patients are investigated for symptoms of suspected splenic pathology, such as abscess, infarct, symptomatic splenic artery aneurysm and pseudoaneurysm, splenic torsion, or rupture. More often, however, splenic emergencies, such as splenic masses and splenic vein thrombosis, are detected in patients in the emergency room during the evaluation of nonspecific abdominal pain. It is essential for radiologists to be vigilant in the identification of nontraumatic splenic emergencies and to be familiar with interventional radiology management options for these pathologies. Our aim is to highlight factors affecting lesion detection on multiple imaging modalities and to discuss the advantages of different cross-sectional modalities for the diagnosis of splenic abnormalities. Finally, we review the management options with emphasis on interventional radiology where applicable.

  19. Experimental investigation of photoionization cross section for the 3d 2D excited states of lithium and sodium

    NASA Astrophysics Data System (ADS)

    Nadeem, Ali; Shah, Mehmood; Shahzada, Shaista; Ahmed, Mushtaq; Haq, Sami-ul-

    2013-09-01

    We report experimentally measured photoionization cross sections for the 3 d 2D excited states of lithium and sodium at first ionization threshold. The experiments were performed using two dye lasers simultaneously pumped by the second harmonic of a Nd:YAG laser. The vapor contentment and the detection system was a thermionic diode ion detector operating in a space charge limited mode. Photoionization cross sections of the excited states were deduced from the dependence of ion signal intensity on the ionizing laser energies as 19 ± 3 Mb and 21.5 ± 3.5 Mb for lithium and sodium respectively, which are in good agreement with the previously computed theoretical results.

  20. Mass transfer through laminar boundary layer in 2-d microchannels with nonuniform cross section: the effect of wall curvature

    NASA Astrophysics Data System (ADS)

    Pedacchia, Augusta; Adrover, Alessandra

    2012-11-01

    We provide an analytical solution for the combined diffusive and convective 2-d mass transport from a surface film (of arbitrary shape at a given uniform concentration) to a pure solvent flowing in creeping flow conditions into a microchannel, delimited by a flat no-slip surface and by the releasing film itself. Such a problem arises in the study of swelling and dissolution of polimeric thin films under the action of a solvent tangential flow simulating the oral thin film dissolution for drug relase towards the buccal mucosa or oral cavity. We present a similarity solution for laminar forced convection mass (or heat) transfer that generalizes the classical boundary layer solution of the Graetz-Nusselt problem (valid for straight channels or pipes) to a solvent flowing in creeping flow conditions into a 2-d channel with cross-section continuously varying along the axial coordinate x. Close to the releasing boundary, parametrized by a curvilinear abscissa s, both tangential and normal velocity components play a role and their scaling behavior, as a function of wall distance r, should be taken into account in order to have an accurate description of the concentration profile in the boundary layer and of the dependence of the Sherwood number on the curvilinear abscissa s.

  1. geomIO: A tool for geodynamicists to turn 2D cross-sections into 3D geometries

    NASA Astrophysics Data System (ADS)

    Baumann, Tobias; Bauville, Arthur

    2016-04-01

    In numerical deformation models, material properties are usually defined on elements (e.g., in body-fitted finite elements), or on a set of Lagrangian markers (Eulerian, ALE or mesh-free methods). In any case, geometrical constraints are needed to assign different material properties to the model domain. Whereas simple geometries such as spheres, layers or cuboids can easily be programmed, it quickly gets complex and time-consuming to create more complicated geometries for numerical model setups, especially in three dimensions. geomIO (geometry I/O, http://geomio.bitbucket.org/) is a MATLAB-based library that has two main functionalities. First, it can be used to create 3D volumes based on series of 2D vector drawings similar to a CAD program; and second, it uses these 3D volumes to assign material properties to the numerical model domain. The drawings can conveniently be created using the open-source vector graphics software Inkscape. Adobe Illustrator is also partially supported. The drawings represent a series of cross-sections in the 3D model domain, for example, cross-sectional interpretations of seismic tomography. geomIO is then used to read the drawings and to create 3D volumes by interpolating between the cross-sections. In the second part, the volumes are used to assign material phases to markers inside the volumes. Multiple volumes can be created at the same time and, depending on the order of assignment, unions or intersections can be built to assign additional material phases. geomIO also offers the possibility to create 3D temperature structures for geodynamic models based on depth dependent parameterisations, for example the half space cooling model. In particular, this can be applied to geometries of subducting slabs of arbitrary shape. Yet, geomIO is held very general, and can be used for a variety of applications. We present examples of setup generation from pictures of micro-scale tectonics and lithospheric scale setups of 3D present-day model

  2. 2D Cross Sectional Analysis and Associated Electrochemistry of Composite Electrodes Containing Dispersed Agglomerates of Nanocrystalline Magnetite, Fe₃O₄.

    PubMed

    Bock, David C; Kirshenbaum, Kevin C; Wang, Jiajun; Zhang, Wei; Wang, Feng; Wang, Jun; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2015-06-24

    When electroactive nanomaterials are fully incorporated into an electrode structure, characterization of the crystallite sizes, agglomerate sizes, and dispersion of the electroactive materials can lend insight into the complex electrochemistry associated with composite electrodes. In this study, composite magnetite electrodes were sectioned using ultramicrotome techniques, which facilitated the direct observation of crystallites and agglomerates of magnetite (Fe3O4) as well as their dispersal patterns in large representative sections of electrode, via 2D cross sectional analysis by Transmission Electron Microscopy (TEM). Further, the electrochemistry of these electrodes were recorded, and Transmission X-ray Microscopy (TXM) was used to determine the distribution of oxidation states of the reduced magnetite. Unexpectedly, while two crystallite sizes of magnetite were employed in the production of the composite electrodes, the magnetite agglomerate sizes and degrees of dispersion in the two composite electrodes were similar to each other. This observation illustrates the necessity for careful characterization of composite electrodes, in order to understand the effects of crystallite size, agglomerate size, and level of dispersion on electrochemistry. PMID:26024206

  3. [Role of modern cross-sectional imaging in thanatology: a pictorial essay].

    PubMed

    Dedouit, F; Otal, P; Costagliola, R; Loubes Lacroix, F; Telmon, N; Rouge, D; Joffre, F

    2006-06-01

    The development of new imaging modalities such as computed tomography and magnetic resonance imaging is a new phenomenon in thanatology. The growing accessibility to these technologies allows, under some conditions, the acquisition of cross-sectional images on cadavers. The authors present a practical pictorial review of post-mortem changes and deadly injuries, illustrating the contributions of modern cross-sectional imaging techniques in thanatology.

  4. [Recommendations for training in cross-sectional cardiac imaging].

    PubMed

    Joffre, F; Boyer, L; Dacher, J-N; Gilard, M; Douek, P; Gueret, P

    2009-09-01

    The recent and future advancements that are known in the field of cardiac imaging imply an optimal training of the operators. This training concerns medical specialists whether originating from radiology or cardiology. The training of the medical specialists in cardiac imaging entitles 3 main essential steps: The basic training taking place within each specialty, allowing the fellow to get acquainted with the clinical and technical basics. The specialized training, delivered principally in post-residency. This training must include an upgrading of each specialty in the domain that does not concern it (a technical base for the cardiologist, a physio-pathological and clinical base for the radiologist). It must include a specific theoretical training covering all aspects of cardiac imaging as well as practical training in a certified training centre. The continuous medical training and maintenance of skills that allow a sustained activity in the field and the obligation to regularly participate in the actions of specific validated training. The different aspects of these rules are exposed in this chapter.

  5. Photoionization cross section of image potential states around nanotubes

    NASA Astrophysics Data System (ADS)

    Bocan, G. A.; Segui, S.; Gervasoni, J. L.; Arista, N. R.

    2013-06-01

    In this paper, we theoretically address the photoemission from image potential states (IPS) around nanotubes. The relevance of this process is related to the fact that this particular kind of IPS has been experimentally detected for carbon nanotubes by means of femtosecond-resolved two-photon photoemission (Zamkov et al 2004 Phys. Rev. Lett. 93 156803). The quantum interaction between the bound electron and the incident radiation field is considered within the dipolar approximation, and the transition matrix for the process is obtained using a first-order Born expansion. For a linearly polarized photon with the polarization vector perpendicular to the nanotube's axis, electrons are found to be emitted with a polar angle that is determined by the initial parallel momentum of the bound electron.

  6. Metric reconstruction of straight homogeneous generalized cylinders with elliptical cross-section from a single image

    NASA Astrophysics Data System (ADS)

    Liu, Richen; Wu, Zhihong; Guo, Dequan

    2015-11-01

    A new three-dimensional metric reconstruction method for straight homogeneous generalized cylinders with elliptical cross-section (SHGC-E) from a single image is addressed. By using an elliptical truncated cone shape, the elliptical cross-section is computed by back-projection. The conditions under which the imaged limb can be considered an imaged meridian under perspective projection are discussed and proved. Furthermore, the imaged meridian of SHGC-E is identified and recovered by some of the proposed special properties of SHGC-E.

  7. Laser radar cross-section estimation from high-resolution image data.

    PubMed

    Osche, G R; Seeber, K N; Lok, Y F; Young, D S

    1992-05-10

    A methodology for the estimation of ladar cross sections from high-resolution image data of geometrically complex targets is presented. Coherent CO(2) laser radar was used to generate high-resolution amplitude imagery of a UC-8 Buffalo test aircraft at a range of 1.3 km at nine different aspect angles. The average target ladar cross section was synthesized from these data and calculated to be sigma(T) = 15.4 dBsm, which is similar to the expected microwave radar cross sections. The aspect angle dependence of the cross section shows pronounced peaks at nose on and broadside, which are also in agreement with radar results. Strong variations in both the mean amplitude and the statistical distributions of amplitude with the aspect angle have also been observed. The relative mix of diffuse and specular returns causes significant deviations from a simple Lambertian or Swerling II target, especially at broadside where large normal surfaces are present.

  8. Mechanical design and analysis of the 2D cross-section of the SSC collider dipole magnet

    SciTech Connect

    Strait, J.; Kerby, J.; Bossert, R.; Carson, J.

    1991-05-01

    This paper describes the mechanical design of the two dimensional cross-section of the base-line collider dipole magnet for the Superconducting Super Collider. The components described here are the collar laminations, the tapered keys that lock the upper and lower collars, the yoke laminations, the cold mass shell. We describe in detail the shape of the outer surface of the collars which defines the yoke-collar interface, and the shape of the collar interior, which defines the conductor placement. Other features of the collar and yoke will be described in somewhat less detail. 20 refs., 12 figs. , 6 tabs.

  9. Experimental determination of single CdSe nanowire absorption cross sections through photothermal imaging.

    PubMed

    Giblin, Jay; Syed, Muhammad; Banning, Michael T; Kuno, Masaru; Hartland, Greg

    2010-01-26

    Absorption cross sections ((sigma)abs) of single branched CdSe nanowires (NWs) have been measured by photothermal heterodyne imaging (PHI). Specifically, PHI signals from isolated gold nanoparticles (NPs) with known cross sections were compared to those of individual CdSe NWs excited at 532 nm. This allowed us to determine average NW absorption cross sections at 532 nm of (sigma)abs = (3.17 +/- 0.44) x 10(-11) cm2/microm (standard error reported). This agrees well with a theoretical value obtained using a classical electromagnetic analysis ((sigma)abs = 5.00 x 10(-11) cm2/microm) and also with prior ensemble estimates. Furthermore, NWs exhibit significant absorption polarization sensitivities consistent with prior NW excitation polarization anisotropy measurements. This has enabled additional estimates of the absorption cross section parallel ((sigma)abs) and perpendicular ((sigma)abs(perpendicular) to the NW growth axis, as well as the corresponding NW absorption anisotropy ((rho)abs). Resulting values of (sigma)abs = (5.6 +/- 1.1) x 10(-11) cm2/microm, (sigma)abs(perpendicular) = (1.26 +/- 0.21) x 10(-11) cm2/microm, and (rho)abs = 0.63+/- 0.04 (standard errors reported) are again in good agreement with theoretical predictions. These measurements all indicate sizable NW absorption cross sections and ultimately suggest the possibility of future direct single NW absorption studies.

  10. Automated image analysis of skeletal muscle fiber cross-sectional area

    PubMed Central

    Mula, Jyothi; Lee, Jonah D.; Liu, Fujun; Yang, Lin

    2013-01-01

    Morphological characteristics of muscle fibers, such as fiber size, are critical factors that determine the health and function of the muscle. However, at this time, quantification of muscle fiber cross-sectional area is still a manual or, at best, a semiautomated process. This process is labor intensive, time consuming, and prone to errors, leading to high interobserver variability. We have developed and validated an automatic image segmentation algorithm and compared it directly with commercially available semiautomatic software currently considered state of the art. The proposed automatic segmentation algorithm was evaluated against a semiautomatic method with manual annotation using 35 randomly selected cross-sectional muscle histochemical images. The proposed algorithm begins with ridge detection to enhance the muscle fiber boundaries, followed by robust seed detection based on concave area identification to find initial seeds for muscle fibers. The final muscle fiber boundaries are automatically delineated using a gradient vector flow deformable model. Our automatic approach is accurate and represents a significant advancement in efficiency; quantification of fiber area in muscle cross sections was reduced from 25–40 min/image to 15 s/image, while accommodating common quantification obstacles including morphological variation (e.g., heterogeneity in fiber size and fibrosis) and technical artifacts (e.g., processing defects and poor staining quality). Automatic quantification of muscle fiber cross-sectional area using the proposed method is a powerful tool that will increase sensitivity, objectivity, and efficiency in measuring muscle adaptation. PMID:23139362

  11. Cross-sectional imaging of functional activation in the rat somatosensory cortex with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Aguirre, A. D.; Chen, Y.; Ruvinskaya, L.; Devor, A.; Boas, D. A.; Fujimoto, J. G.

    2005-08-01

    Simultaneous optical coherence tomography (OCT) and video microscopy were performed on the rat somatosensory cortex through a thinned skull during forepaw stimulation. Fractional change measurements in OCT images reveal a functional signal timecourse similar to well understood hemodynamic signal timecourses measured with video microscopy. The precise etiology of the observed OCT functional signal is still under investigation, but these results suggest that OCT can provide high-resolution cross-sectional images of functional neuro-vascular activation.

  12. Automated image segmentation of haematoxylin and eosin stained skeletal muscle cross-sections

    PubMed Central

    LIU, F.; MACKEY, A.L.; SRIKUEA, R.; ESSER, K.A.; YANG, L.

    2014-01-01

    Summary The ability to accurately and efficiently quantify muscle morphology is essential to determine the physiological relevance of a variety of muscle conditions including growth, atrophy and repair. There is agreement across the muscle biology community that important morphological of characteristics of muscle fibres, such as cross-sectional area, are critical factors that determine the health and function (e.g. quality) of the muscle. However, at this time, quantification of muscle characteristics, especially from haematoxylin and eosin stained slides, is still a manual or semi-automatic process. This procedure is labour-intensive and time-consuming. In this paper, we have developed and validated an automatic image segmentation algorithm that is not only efficient but also accurate. Our proposed automatic segmentation algorithm for haematoxylin and eosin stained skeletal muscle cross-sections consists of two major steps: (1) A learning-based seed detection method to find the geometric centres of the muscle fibres, and (2) a colour gradient repulsive balloon snake deformable model that adopts colour gradient in Luv colour space. Automatic quantification of muscle fibre cross-sectional areas using the proposed method is accurate and efficient, providing a powerful automatic quantification tool that can increase sensitivity, objectivity and efficiency in measuring the morphometric features of the haematoxylin and eosin stained muscle cross-sections. PMID:24118017

  13. Cross-Sectional Nakagami Images in Passive Stretches Reveal Damage of Injured Muscles.

    PubMed

    Lin, Shih-Ping; Lin, Yi-Hsun; Fan, Shih-Chen; Huang, Bu-Miin; Lin, Wei-Yin; Wang, Shyh-Hau; Shung, K Kirk; Su, Fong-Chin; Wu, Chia-Ching

    2016-01-01

    Muscle strain is still awanting a noninvasive quantitatively diagnosis tool. High frequency ultrasound (HFU) improves image resolution for monitoring changes of tissue structures, but the biomechanical factors may influence ultrasonography during injury detection. We aim to illustrate the ultrasonic parameters to present the histological damage of overstretched muscle with the consideration of biomechanical factors. Gastrocnemius muscles from mice were assembled and ex vivo passive stretching was performed before or after injury. After injury, the muscle significantly decreased mechanical strength. Ultrasonic images were obtained by HFU at different deformations to scan in cross and longitudinal orientations of muscle. The ultrasonography was quantified by echogenicity and Nakagami parameters (NP) for structural evaluation and correlated with histological results. The injured muscle at its original length exhibited decreased echogenicity and NP from HFU images. Cross-sectional ultrasonography revealed a loss of correlation between NP and passive muscle stretching that suggested a special scatterer pattern in the cross section of injured muscle. The independence of NP during passive stretching of injured muscle was confirmed by histological findings in ruptured collagen fibers, decreased muscle density, and increased intermuscular fiber space. Thus, HFU analysis of NP in cross section represents muscle injury that may benefit the clinical diagnosis. PMID:27034946

  14. Cross-Sectional Nakagami Images in Passive Stretches Reveal Damage of Injured Muscles

    PubMed Central

    Lin, Shih-Ping; Lin, Yi-Hsun; Fan, Shih-Chen; Huang, Bu-Miin; Lin, Wei-Yin; Wang, Shyh-Hau; Shung, K. Kirk; Su, Fong-Chin; Wu, Chia-Ching

    2016-01-01

    Muscle strain is still awanting a noninvasive quantitatively diagnosis tool. High frequency ultrasound (HFU) improves image resolution for monitoring changes of tissue structures, but the biomechanical factors may influence ultrasonography during injury detection. We aim to illustrate the ultrasonic parameters to present the histological damage of overstretched muscle with the consideration of biomechanical factors. Gastrocnemius muscles from mice were assembled and ex vivo passive stretching was performed before or after injury. After injury, the muscle significantly decreased mechanical strength. Ultrasonic images were obtained by HFU at different deformations to scan in cross and longitudinal orientations of muscle. The ultrasonography was quantified by echogenicity and Nakagami parameters (NP) for structural evaluation and correlated with histological results. The injured muscle at its original length exhibited decreased echogenicity and NP from HFU images. Cross-sectional ultrasonography revealed a loss of correlation between NP and passive muscle stretching that suggested a special scatterer pattern in the cross section of injured muscle. The independence of NP during passive stretching of injured muscle was confirmed by histological findings in ruptured collagen fibers, decreased muscle density, and increased intermuscular fiber space. Thus, HFU analysis of NP in cross section represents muscle injury that may benefit the clinical diagnosis. PMID:27034946

  15. Geometric and topological feature extraction of linear segments from 2D cross-section data of 3D point clouds

    NASA Astrophysics Data System (ADS)

    Ramamurthy, Rajesh; Harding, Kevin; Du, Xiaoming; Lucas, Vincent; Liao, Yi; Paul, Ratnadeep; Jia, Tao

    2015-05-01

    Optical measurement techniques are often employed to digitally capture three dimensional shapes of components. The digital data density output from these probes range from a few discrete points to exceeding millions of points in the point cloud. The point cloud taken as a whole represents a discretized measurement of the actual 3D shape of the surface of the component inspected to the measurement resolution of the sensor. Embedded within the measurement are the various features of the part that make up its overall shape. Part designers are often interested in the feature information since those relate directly to part function and to the analytical models used to develop the part design. Furthermore, tolerances are added to these dimensional features, making their extraction a requirement for the manufacturing quality plan of the product. The task of "extracting" these design features from the point cloud is a post processing task. Due to measurement repeatability and cycle time requirements often automated feature extraction from measurement data is required. The presence of non-ideal features such as high frequency optical noise and surface roughness can significantly complicate this feature extraction process. This research describes a robust process for extracting linear and arc segments from general 2D point clouds, to a prescribed tolerance. The feature extraction process generates the topology, specifically the number of linear and arc segments, and the geometry equations of the linear and arc segments automatically from the input 2D point clouds. This general feature extraction methodology has been employed as an integral part of the automated post processing algorithms of 3D data of fine features.

  16. New caged coumarin fluorophores with extraordinary uncaging cross sections suitable for biological imaging applications.

    PubMed

    Zhao, YuRui; Zheng, Quan; Dakin, Kenneth; Xu, Ke; Martinez, Manuel L; Li, Wen-Hong

    2004-04-14

    Photocaged fluorescent molecules are important research tools for tracking molecular dynamics with high spatiotemporal resolution in biological systems. We have designed and synthesized a new class of caged coumarin fluorophores. These coumarin cages displayed more than 200-fold fluorescence enhancement after UV photolysis. Remarkably, the uncaging cross section of a 1-(2-nitrophenyl)ethyl (NPE)-caged coumarin is 6600 at wavelength of 365 nm, about 2 orders of magnitude higher than previously described caged fluorophores. Product analysis of the photolytic reaction showed clean conversion of NPE-caged coumarin to 2-nitrosoacetophenone and the parent coumarin, suggesting that the mechanism of the photolysis follows the known photochemical reaction pathway of the 2-nitrobenzyl group. We have also measured the two-photon uncaging cross sections of NPE-caged coumarins 2a and 5 at 740 nm to be near 1 Goeppert-Mayer (GM). The mechanistic study, together with the two-photon uncaging data, suggested that the coumarin moiety serves as an antenna to enhance the light harvesting efficiency of the coumarin cage and that the photonic energy absorbed by coumarin was utilized efficiently to photolyze the NPE group. Future explorations of this type of "substrate-assisted photolysis" may yield other cages of high uncaging cross sections. For cellular imaging applications, we prepared a cell permeable and caged coumarin fluorophore, NPE-HCCC2/AM (10), which can be loaded into fully intact cells to high concentrations. Initial tests of this probe in a number of cultured mammalian cells showed desired properties for the in vivo imaging applications. The combined advantages of robust fluorescence contrast enhancement, remarkably high uncaging cross sections, noninvasive cellular delivery, and flexible chemistry for bioconjugations should generate broad applications of these caged coumarins in biochemical and biological research.

  17. New caged coumarin fluorophores with extraordinary uncaging cross sections suitable for biological imaging applications.

    PubMed

    Zhao, YuRui; Zheng, Quan; Dakin, Kenneth; Xu, Ke; Martinez, Manuel L; Li, Wen-Hong

    2004-04-14

    Photocaged fluorescent molecules are important research tools for tracking molecular dynamics with high spatiotemporal resolution in biological systems. We have designed and synthesized a new class of caged coumarin fluorophores. These coumarin cages displayed more than 200-fold fluorescence enhancement after UV photolysis. Remarkably, the uncaging cross section of a 1-(2-nitrophenyl)ethyl (NPE)-caged coumarin is 6600 at wavelength of 365 nm, about 2 orders of magnitude higher than previously described caged fluorophores. Product analysis of the photolytic reaction showed clean conversion of NPE-caged coumarin to 2-nitrosoacetophenone and the parent coumarin, suggesting that the mechanism of the photolysis follows the known photochemical reaction pathway of the 2-nitrobenzyl group. We have also measured the two-photon uncaging cross sections of NPE-caged coumarins 2a and 5 at 740 nm to be near 1 Goeppert-Mayer (GM). The mechanistic study, together with the two-photon uncaging data, suggested that the coumarin moiety serves as an antenna to enhance the light harvesting efficiency of the coumarin cage and that the photonic energy absorbed by coumarin was utilized efficiently to photolyze the NPE group. Future explorations of this type of "substrate-assisted photolysis" may yield other cages of high uncaging cross sections. For cellular imaging applications, we prepared a cell permeable and caged coumarin fluorophore, NPE-HCCC2/AM (10), which can be loaded into fully intact cells to high concentrations. Initial tests of this probe in a number of cultured mammalian cells showed desired properties for the in vivo imaging applications. The combined advantages of robust fluorescence contrast enhancement, remarkably high uncaging cross sections, noninvasive cellular delivery, and flexible chemistry for bioconjugations should generate broad applications of these caged coumarins in biochemical and biological research. PMID:15070382

  18. WIDEBAND ULTRASONIC TIME OF FLIGHT DIFFRACTION COMBINING B-SCANS AND CROSS-SECTIONAL IMAGING

    SciTech Connect

    Petcher, P. A.; Dixon, S.

    2009-03-03

    Time of Flight Diffraction and Imaging (ToFDI) is a new technique utilizing a sparse array of transducers and signal processing to improve B-Scan output and create a cross-sectional image of a sample. This paper describes preliminary work demonstrating the concept, including; Finite Element Modelling (FEM), basic processing, likely applications. The eventual aim is for fast and automated detection, identification, positioning and sizing for all defects in a sample with known basic characteristics, such as bulk and shear elastic moduli.

  19. Cross-sectional imaging of extracted jawbone of a pig by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tachikawa, Noriko; Yoshimura, Reiko; Ohbayashi, Kohji

    2011-03-01

    Dental implantation has become popular in dental treatments. Although careful planning is made to identify vital structures such as the inferior alveolar nerve or the sinus, as well as dimensions of the bone, prior to commencement of surgery, dental implantation is not fully free from risks. If a diagnostic tool is available to objectively measure bone feature before surgery and dimensions during surgery, considerable fraction of the risks may be avoided. Optical coherence tomography (OCT) is a candidate for the purpose, which enables cross-sectional imaging of bone. In this work, we performed in vitro cross-sectional imaging of extracted pig's jawbone with swept source OCT using superstructure-grating distributed Bragg reflector (SSG-DBR) laser as the source. The relatively long wavelength range of 1600nm of the laser is suitable for deeper bone imaging. We confirmed an image penetration depth of about 3 mm in physical length, which satisfies one of the criterions to apply OCT for in vivo diagnosis of bone during surgery.

  20. Complications of sporadic, hereditary, and acquired renal cysts: cross-sectional imaging findings.

    PubMed

    Tonolini, Massimo; Rigiroli, Francesca; Villa, Federica; Bianco, Roberto

    2014-01-01

    Commonly encountered in the general adult and elderly population, in most cases simple renal cysts are confidently diagnosed on imaging studies and do not require further workup or treatment. However, large or growing renal cysts sometimes cause symptoms or signs such as hypertension, palpable mass, flank or abdominal pain, obstructive uropathy, and hematuria, which may indicate the need for minimally invasive percutaneous or laparoscopic treatment. Furthermore, severe complications such as cystic hemorrhage, rupture, or superinfection may occur, particularly in patients with polycystic renal disorders, either hereditary (namely adult polycystic kidney diseases) or acquired in chronic renal failure. This pictorial essay reviews and discusses the cross-sectional imaging appearances of symptomatic and complicated sporadic, hereditary, and acquired renal cysts. Early cross-sectional imaging with multidetector computed tomography or magnetic resonance imaging or both, including contrast enhancement unless contraindicated by renal dysfunction, is warranted to investigate clinical and laboratory signs suggesting retroperitoneal hemorrhage or infection in patients with pre-existent renal cysts, particularly if large, multiple, or hereditary.

  1. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra

    SciTech Connect

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-09-07

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H{sub 2}, H{sub 2}O, NH{sub 3}, HF, CO, and CO{sub 2}.

  2. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra.

    PubMed

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-09-01

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H2, H2O, NH3, HF, CO, and CO2. PMID:24028098

  3. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  4. Focus detection in digital holography by cross-sectional images of propagating waves

    NASA Astrophysics Data System (ADS)

    Özcan, Meriç

    2014-02-01

    In digital holography, computing a focused image of an object requires a prior knowledge of the distance of the object from the camera. When this distance is not known, it is necessary to repeat the image reconstruction at a range of distances followed by evaluation of each image with a sharpness metric to determine the in-focus distance of the object. Here, we present a method to nd the focus distance by processing the image transverse to the object plane instead of the processing in the image plane as it is usually done. Since the reconstructed hologram image is spatially symmetric around the focus point along the propagation axis, simply nding the symmetry points in the image cross-section speci es the focus location, and no other sharpness metrics are necessary to use. Also with this method, it is possible to nd the focus distances of multiple objects simultaneously, including the phase only objects without any staining. We will present the simulations and the experimental results obtained by a digital holographic microscope.

  5. Plant Identification Based on Leaf Midrib Cross-Section Images Using Fractal Descriptors

    PubMed Central

    da Silva, Núbia Rosa; Florindo, João Batista; Gómez, María Cecilia; Rossatto, Davi Rodrigo; Kolb, Rosana Marta; Bruno, Odemir Martinez

    2015-01-01

    The correct identification of plants is a common necessity not only to researchers but also to the lay public. Recently, computational methods have been employed to facilitate this task, however, there are few studies front of the wide diversity of plants occurring in the world. This study proposes to analyse images obtained from cross-sections of leaf midrib using fractal descriptors. These descriptors are obtained from the fractal dimension of the object computed at a range of scales. In this way, they provide rich information regarding the spatial distribution of the analysed structure and, as a consequence, they measure the multiscale morphology of the object of interest. In Biology, such morphology is of great importance because it is related to evolutionary aspects and is successfully employed to characterize and discriminate among different biological structures. Here, the fractal descriptors are used to identify the species of plants based on the image of their leaves. A large number of samples are examined, being 606 leaf samples of 50 species from Brazilian flora. The results are compared to other imaging methods in the literature and demonstrate that fractal descriptors are precise and reliable in the taxonomic process of plant species identification. PMID:26091501

  6. Graft complications following orthotopic liver transplantation: Role of non-invasive cross-sectional imaging techniques.

    PubMed

    Boraschi, Piero; Della Pina, Maria Clotilde; Donati, Francescamaria

    2016-07-01

    Orthotopic liver transplantation is the treatment of choice in adult patients with endstage liver disease. Survival of both graft and patient has progressively improved over time due to improvements in surgical and medical treatment. However, post-transplant complications still have a significant impact on morbidity and mortality associated with transplant surgery. The most common adverse events of the graft include vascular (arterial and venous stenosis and thrombosis), biliary (leakage, strictures, stones) and parenchymal complications (hepatitis virus C infection, HCC recurrence, liver abscesses). The diagnosis of these adverse events is often challenging because of the low specificity of clinical and biologic findings. Different diagnostic algorithms have been proposed for the detection of graft complications and, in this setting, radiological evaluation plays a key role in differential diagnosis of graft complications and the exclusion of other adverse events. Ultrasound examination is established the first-line method of identifying adverse events in liver transplant recipients but a normal or a technically unsatisfactory study cannot exclude the presence of biliary, vascular and/or parenchymal complications. In these circumstances, before planning any treatment, multi-detector CT and/or MR imaging and MR cholangiography should be performed for the evaluation of vascular structures, biliary system, liver parenchyma and fluid collections. The aim of this review is to illustrate the role and state-of-the-art of non-invasive cross-sectional imaging techniques in the diagnosis and management of complications which primarily affect the graft in patients after liver transplantation. PMID:27235874

  7. Combination of cross-sectional and molecular imaging studies in the localization of gastroenteropancreatic neuroendocrine tumors.

    PubMed

    Toumpanakis, Christos; Kim, Michelle K; Rinke, Anja; Bergestuen, Deidi S; Thirlwell, Christina; Khan, Mohid S; Salazar, Ramon; Oberg, Kjell

    2014-01-01

    aggressive disease course. When a secondary malignancy has already been established or is strongly suspected, combining molecular imaging techniques (e.g. (18)F-FDG PET and (68)Ga-DOTA PET) takes advantage of the diverse avidities of different tumor types to differentiate lesions of different origins. All the above-mentioned molecular imaging studies should always be reviewed and interpreted in a multidisciplinary (tumor board) meeting in combination with the conventional cross-sectional imaging, as the latter remains the imaging of choice for the evaluation of treatment response and disease follow-up.

  8. Acute ischaemic brain lesions in intracerebral haemorrhage: multicentre cross-sectional magnetic resonance imaging study.

    PubMed

    Gregoire, Simone M; Charidimou, Andreas; Gadapa, Naveen; Dolan, Eamon; Antoun, Nagui; Peeters, Andre; Vandermeeren, Yves; Laloux, Patrice; Baron, Jean-Claude; Jäger, Hans R; Werring, David J

    2011-08-01

    Subclinical acute ischaemic lesions on brain magnetic resonance imaging have recently been described in spontaneous intracerebral haemorrhage, and may be important to understand pathophysiology and guide treatment. The underlying mechanisms are uncertain. We tested the hypothesis that ischaemic lesions are related to magnetic resonance imaging markers of the severity and type of small-vessel disease (hypertensive arteriopathy or cerebral amyloid angiopathy) in a multicentre, cross-sectional study. We studied consecutive patients with intracerebral haemorrhage from four specialist stroke centres, and age-matched stroke service referrals without intracerebral haemorrhage. Acute ischaemic lesions were assessed on magnetic resonance imaging (<3 months after intracerebral haemorrhage) using diffusion-weighted imaging. White matter changes and cerebral microbleeds were rated with validated scales. We investigated associations between diffusion-weighted imaging lesions, clinical and radiological characteristics. We included 114 patients with intracerebral haemorrhage (39 with clinically probable cerebral amyloid angiopathy) and 47 age-matched controls. The prevalence of diffusion-weighted imaging lesions was 9/39 (23%) in probable cerebral amyloid angiopathy-related intracerebral haemorrhage versus 6/75 (8%) in the remaining patients with intracerebral haemorrhage (P = 0.024); no diffusion-weighted imaging lesions were found in controls. Diffusion-weighted imaging lesions were mainly cortical and were associated with mean white matter change score (odds ratio 1.14 per unit increase, 95% confidence interval 1.02-1.28, P = 0.024) and the presence of strictly lobar cerebral microbleeds (odds ratio 3.85, 95% confidence interval 1.15-12.93, P = 0.029). Acute, subclinical ischaemic brain lesions are frequent but previously underestimated after intracerebral haemorrhage, and are three times more common in cerebral amyloid angiopathy-related intracerebral haemorrhage than in

  9. Effects of Instructional Strategies Using Cross Sections on the Recognition of Anatomical Structures in Correlated CT and MR Images

    ERIC Educational Resources Information Center

    Khalil, Mohammed K.; Paas, Fred; Johnson, Tristan E.; Su, Yung K.; Payer, Andrew F.

    2008-01-01

    This research is an effort to best utilize the interactive anatomical images for instructional purposes based on cognitive load theory. Three studies explored the differential effects of three computer-based instructional strategies that use anatomical cross-sections to enhance the interpretation of radiological images. These strategies include:…

  10. How Has Body Image Changed? A Cross-Sectional Investigation of College Women and Men from 1983 to 2001

    ERIC Educational Resources Information Center

    Cash, Thomas F.; Morrow, Jennifer A.; Hrabosky, Joshua I.; Perry, April A.

    2004-01-01

    Body-image dissatisfaction is not uncommon and can adversely affect individuals' psychosocial functioning and quality of life. Various oft-cited surveys and a meta-analysis implicate a worsening of body image over the past several decades, especially among women and possibly among men. The present cross-sectional study examined changes in multiple…

  11. Longitudinal cross sectional mixing images of the pipe flow with periodical branching flow injections

    NASA Astrophysics Data System (ADS)

    Ueda, Toshihisa; Sunho, You; Higuchi, Naotaka

    2008-11-01

    Effect of periodical injection of branching flows on the mixing in a pipe flow is experimentally investigated. Glycerin is used as a working fluid. The glycerin flows in a steady state condition in the main flow pipe while the branching flow is injected periodically from three pipes equipped normal to the main flow pipe. The longitudinal cross sectional image of the mixing of main flow and branching flows is visualized by LIF method, inserting the Rodamine B in the first branching flow. When only one branching flow is periodically injected, the fluid injected from the side flow pipe is stretched and folded by the parabolic laminar flow velocity profile and then the length of the boundary increases linearly. When branching flow is injected from multiple side flow pipe, the mixing pattern becomes more complicated. As a result, the length of the boundary increases more rapidly compared to the linear increase. The results suggest that the multiple branching flow injection enhances the mixing although no element is inserted in the pipe.

  12. Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Fukunaga, T.; Roy, R. R.; Shellock, F. G.; Hodgson, J. A.; Day, M. K.; Lee, P. L.; Kwong-Fu, H.; Edgerton, V. R.

    1992-01-01

    Magnetic resonance imaging techniques were used to determine the physiological cross-sectional areas (PCSAs) of the major muscles or muscle groups of the lower leg. For 12 healthy subjects, the boundaries of each muscle or muscle group were digitized from images taken at 1-cm intervals along the length of the leg. Muscle volumes were calculated from the summation of each anatomical CSA (ACSA) and the distance between each section. Muscle length was determined as the distance between the most proximal and distal images in which the muscle was visible. The PCSA of each muscle was calculated as muscle volume times the cosine of the angle of fiber pinnation divided by fiber length, where published fiber length:muscle length ratios were used to estimate fiber lengths. The mean volumes of the major plantarflexors were 489, 245, and 140 cm3 for the soleus and medial (MG) and lateral (LG) heads of the gastrocnemius. The mean PCSA of the soleus was 230 cm2, about three and eight times larger than the MG (68 cm2) and LG (28 cm2), respectively. These PCSA values were eight (soleus), four (MG), and three (LG) times larger than their respective maximum ACSA. The major dorsiflexor, the tibialis anterior (TA), had a muscle volume of 143 cm2, a PCSA of 19 cm2, and an ACSA of 9 cm2. With the exception of the soleus, the mean fiber length of all subjects was closely related to muscle volume across muscles. The soleus fibers were unusually short relative to the muscle volume, thus potentiating its force potential.(ABSTRACT TRUNCATED AT 250 WORDS).

  13. Patterns of Hepatosplenic Brucella Abscesses on Cross-Sectional Imaging: A Review of Clinical and Imaging Features

    PubMed Central

    Heller, Tom; Bélard, Sabine; Wallrauch, Claudia; Carretto, Edoardo; Lissandrin, Raffaella; Filice, Carlo; Brunetti, Enrico

    2015-01-01

    While diffuse involvement of liver and spleen is frequently seen in brucellosis, suppurative abscesses caused by Brucella are less common but well described. With the increased availability of cross-sectional imaging techniques, reports have become more frequent. Four patients with hepatosplenic abscesses caused by Brucella spp. are described and included in a review of 115 previously published cases. Clinical characteristics and patterns on ultrasound (US) and computed tomography imaging were analyzed. Furthermore, the proportion of patients with brucellosis affected by suppurative hepatosplenic lesions was estimated. Hepatosplenic abscesses were seen in 1.2% of patients with brucellosis and were mostly caused by Brucella melitensis. Imaging analysis revealed two main distinct patterns. Solitary abscesses involving liver more frequently than spleen, and showing characteristic central calcifications, characterize the first pattern. Multiple smaller abscesses, frequent spleen involvement, and absence of calcifications characterize the second pattern. Blood and aspirate cultures were frequently negative, however, the positivity rate increased over the past years. Indirect Coombs test was positive in 96%. Half of the patients were cured by antibiotic treatment; case fatality in this series was 1.9%. Hepatosplenic abscesses due to Brucella infections have characteristic imaging findings. Clinicians should be aware of these and the proactive use of cross-sectional imaging, particularly US, should be encouraged in endemic regions. PMID:26283749

  14. Correlation between ultrasound imaging, cross-sectional anatomy, and histology of the brachial plexus: a review.

    PubMed

    van Geffen, Geert J; Moayeri, Nizar; Bruhn, Jörgen; Scheffer, Gert J; Chan, Vincent W; Groen, Gerbrand J

    2009-01-01

    The anatomy of the brachial plexus is complex. To facilitate the understanding of the ultrasound appearance of the brachial plexus, we present a review of important anatomic considerations. A detailed correlation of reconstructed, cross-sectional gross anatomy and histology with ultrasound sonoanatomy is provided.

  15. A double fluorescence staining protocol to determine the cross-sectional area of myofibers using image analysis

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Fassel, T. A.; Schultz, E.; Greaser, M. L.; Cassens, R. G.

    1996-01-01

    A double fluorescence staining protocol was developed to facilitate computer based image analysis. Myofibers from experimentally treated (irradiated) and control growing turkey skeletal muscle were labeled with the anti-myosin antibody MF-20 and detected using fluorescein-5-isothiocyanate (FITC). Extracellular material was stained with concanavalin A (ConA)-Texas red. The cross-sectional area of the myofibers was determined by calculating the number of pixels (0.83 mu m(2)) overlying each myofiber after subtracting the ConA-Texas red image from the MF-20-FITC image for each region of interest. As expected, myofibers in the irradiated muscle were smaller (P < 0.05) than those in the non-irradiated muscle. This double fluorescence staining protocol combined with image analysis is accurate and less labor-intensive than classical procedures for determining the cross-sectional area of myofibers.

  16. Imaging of Hip Pain: From Radiography to Cross-Sectional Imaging Techniques

    PubMed Central

    Ruiz Santiago, Fernando; Santiago Chinchilla, Alicia; Ansari, Afshin; Guzmán Álvarez, Luis; Castellano García, Maria del Mar; Martínez Martínez, Alberto; Tercedor Sánchez, Juan

    2016-01-01

    Hip pain can have multiple causes, including intra-articular, juxta-articular, and referred pain, mainly from spine or sacroiliac joints. In this review, we discuss the causes of intra-articular hip pain from childhood to adulthood and the role of the appropriate imaging techniques according to clinical suspicion and age of the patient. Stress is put on the findings of radiographs, currently considered the first imaging technique, not only in older people with degenerative disease but also in young people without osteoarthritis. In this case plain radiography allows categorization of the hip as normal or dysplastic or with impingement signs, pincer, cam, or a combination of both. PMID:26885391

  17. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  18. Single and multiplexed immunoassays for the chemiluminescent imaging detection of animal glues in historical paint cross-sections.

    PubMed

    Sciutto, G; Dolci, L S; Guardigli, M; Zangheri, M; Prati, S; Mazzeo, R; Roda, A

    2013-01-01

    The characterization of the organic components in a complex, multilayered paint structure is fundamental for studying painting techniques and for authentication and restoration purposes. Proteinaceous materials, such as animal glue, are of particular importance since they are widely used as binders, adhesives and for gilding. Even though proteins are usually detected by chromatographic and proteomic techniques, immunological methods represent an alternative powerful approach to protein analysis thanks to the high specificity of antigen-antibody reactions. Our previous studies demonstrated that ovalbumin and casein could be localized in paint cross-sections with high sensitivity and good spatial resolution (i.e. within the single painting layers) by using chemiluminescent (CL) immunochemical microscope imaging. In the present research work, we describe for the first time the immunolocalization of collagen (the main protein of animal glue) in paint cross-sections by CL imaging microscopy. Two different analytical protocols have been developed, allowing either the detection of collagen or the simultaneous detection of collagen and ovalbumin in the same paint sample. The assays were used to detect collagen and ovalbumin in cross-sections from model samples and historical paintings (a wall painting dated to 1773-1774 and a painted wood panel of the Renaissance period) in order to achieve information on paint techniques and past restoration interventions.

  19. Computer image analysis for measuring lean and fatty areas in cross-sectioned dry-cured hams.

    PubMed

    Carnier, P; Gallo, L; Romani, C; Sturaro, E; Bondesan, V

    2004-03-01

    The aims of this study were 1) to apply computer image analysis to obtain measures of lean and fatty areas on the cross section of dry-cured hams, 2) to investigate variation of these measures, and 3) to evaluate reproducibility and repeatability of these techniques. Traits of concern were the cross-sectional area (SA), lean, or muscles, area (LA), and the fatty area (FA) centered on the cross section and surrounded by biceps femoris, semimembranosus, semitendinosus, and quadriceps femoris, as well as the FA-to-SA ratio (FESR). Hams were obtained from crossbred pigs (n = 279) slaughtered at 9 mo of age (mean BW of 169 +/- 17 kg). Digital images of the cross section of dry-cured hams were captured using standardized procedures. Three replicated measures of areas were collected by three operators using three image analysis techniques (automatic, automatic-assisted, and manual). Variance components were estimated using a linear model that included slaughter group, gender, and gender x slaughter group as fixed effects and operators, pig, and operator x pig as random effects. Statistical analyses considered all measures (n = 7,533) or measures collected after reinstruction of all operators for spatial calibration of the analysis system (n = 4,428). Average SA, LA, FA, and FESR were 350 cm2, 220 cm2, 8.7 cm2, and 2.5%, respectively. Variability of FA (CV = 42%) and of FESR (CV = 39%) was four times greater than that of SA and LA. Slaughter group, pig, operator, and operator x pig effects were the most (P < 0.01) important sources of variation of measures. Correlations between measures obtained with different techniques were greater (P < 0.01) than 0.90, with the exception of LA measures. Coefficients of reproducibility for SA and LA ranged from 87 to 94%, whereas those for FA and FESR ranged from 88 to 98%. Coefficients of repeatability ranged from 92 to 99%. Automatic-assisted and manual methods provided more reproducible and repeatable measures than the automatic

  20. RootAnalyzer: A Cross-Section Image Analysis Tool for Automated Characterization of Root Cells and Tissues.

    PubMed

    Chopin, Joshua; Laga, Hamid; Huang, Chun Yuan; Heuer, Sigrid; Miklavcic, Stanley J

    2015-01-01

    The morphology of plant root anatomical features is a key factor in effective water and nutrient uptake. Existing techniques for phenotyping root anatomical traits are often based on manual or semi-automatic segmentation and annotation of microscopic images of root cross sections. In this article, we propose a fully automated tool, hereinafter referred to as RootAnalyzer, for efficiently extracting and analyzing anatomical traits from root-cross section images. Using a range of image processing techniques such as local thresholding and nearest neighbor identification, RootAnalyzer segments the plant root from the image's background, classifies and characterizes the cortex, stele, endodermis and epidermis, and subsequently produces statistics about the morphological properties of the root cells and tissues. We use RootAnalyzer to analyze 15 images of wheat plants and one maize plant image and evaluate its performance against manually-obtained ground truth data. The comparison shows that RootAnalyzer can fully characterize most root tissue regions with over 90% accuracy.

  1. Measuring the Optical Absorption Cross-sections of Au-Ag Nanocages and Au Nanorods by Photoacoustic Imaging

    PubMed Central

    Cho, Eun Chul; Kim, Chulhong; Zhou, Fei; Cobley, Claire M.; Song, Kwang Hyun; Chen, Jingyi; Li, Zhi-Yuhan; Wang, Lihong V.; Xia, Younan

    2009-01-01

    This paper presents a method for measuring the optical absorption cross-sections (σa) of Au-Ag nanocages and Au nanorods. The method is based on photoacoustic (PA) imaging, where the detected signal is directly proportional to the absorption coefficient (μa) of the nanostructure. For each type of nanostructure, we firstly obtained μa from the PA signal by benchmarking against a linear calibration curve (PA signal vs. μa) derived from a set of methylene blue solutions with different concentrations. We then calculated σa by dividing the μa by the corresponding concentration of the Au nanostructure. Additonally, we obtained the extinction cross-section (σe, sum of absorption and scattering) from the extinction spectrum recorded using a conventional UV-vis-NIR spectrometer. From the measurements of σa and σe, we were able to easily derive both the absorption and scattering cross-sections for each type of gold nanostructure. The ratios of absorption to extinction obtained from experimental and theoretical approaches agreed well, demonstrating the potential use of this method in determining the optical absorption and scattering properties of gold nanostructures and other types of nanomaterials. PMID:19680423

  2. Active voltage contrast imaging of cross-sectional surface of multilayer ceramic capacitor using helium ion microscopy

    NASA Astrophysics Data System (ADS)

    Sakai, C.; Ishida, N.; Masuda, H.; Nagano, S.; Kitahara, M.; Ogata, Y.; Fujita, D.

    2016-08-01

    We studied active voltage contrast (AVC) imaging using helium ion microscopy (HIM). We observed secondary electron (SE) images of the cross-sectional surface of multilayer ceramic capacitors (MLCCs) with and without a voltage applied to the internal electrodes. When no voltage was applied, we obtained an image reflecting the material contrast between the Ni internal electrode region and the BaTiO3 dielectric region of the cross-sectional surface of the MLCC. When a voltage was applied, the electrical potential difference between the grounded and the positively biased internal electrodes affected the contrast (voltage contrast). Moreover, attenuation of the SE intensity from the grounded to the positively biased internal electrodes was observed in the dielectric region. Kelvin probe force microscopy (KPFM) measurements of the contact potential difference (CPD) were performed on the same sample. By using the AVC image from the HIM observation and the CPD image from the KPFM measurement, we could quantitatively evaluate the electrical potential. We think that the results of this study will lead to an expansion in the number of applications of HIM.

  3. RootAnalyzer: A Cross-Section Image Analysis Tool for Automated Characterization of Root Cells and Tissues

    PubMed Central

    Chopin, Joshua; Laga, Hamid; Huang, Chun Yuan; Heuer, Sigrid; Miklavcic, Stanley J.

    2015-01-01

    The morphology of plant root anatomical features is a key factor in effective water and nutrient uptake. Existing techniques for phenotyping root anatomical traits are often based on manual or semi-automatic segmentation and annotation of microscopic images of root cross sections. In this article, we propose a fully automated tool, hereinafter referred to as RootAnalyzer, for efficiently extracting and analyzing anatomical traits from root-cross section images. Using a range of image processing techniques such as local thresholding and nearest neighbor identification, RootAnalyzer segments the plant root from the image’s background, classifies and characterizes the cortex, stele, endodermis and epidermis, and subsequently produces statistics about the morphological properties of the root cells and tissues. We use RootAnalyzer to analyze 15 images of wheat plants and one maize plant image and evaluate its performance against manually-obtained ground truth data. The comparison shows that RootAnalyzer can fully characterize most root tissue regions with over 90% accuracy. PMID:26398501

  4. Biomolecular imaging based on far-red fluorescent protein with a high two-photon excitation action cross section

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han; Lin, Cheng-Yung; Tsai, Huai-Jen; Chen, Szu-Yu; Tai, Shih-Peng; Lin, Kung-Hsuan; Sun, Chi-Kuang

    2006-04-01

    The two-photon excitation action cross section of Hc-Red fluorescent proteins (Hc-RFPs) is measured and found to be of the same order as that of enhanced green fluorescent proteins. With a 618 nm emission wavelength in the far-red region and with an excitation wavelength around 1200 nm, Hc-RPF-based two-photon fluorescence microscopy (2PFM) can offer deep penetration capability inside live samples and is ideal for in vivo gene expression study and biomolecular imaging in live objects. In vivo 2PFM of the developing heart deep inside a transgenic zebrafish embryo tagged by Hc-RFP is also successfully demonstrated.

  5. SU-E-U-02: The Development of a Practical Ultrasonic System for Cross-Sectional Imaging of Small Animals

    SciTech Connect

    Kamp, J; Malyarenko, E; Chen, D; Wydra, A; Maev, R

    2015-06-15

    Purpose: To test the feasibility of developing a practical medium frequency ultrasound tomography method for small animal imaging. The ability to produce cross-sectional or full body images of a live small animal using a low-cost tabletop ultrasound scanner without any special license would be very beneficial to long term biological studies, where repeated scanning is often required over an extended period of time. Methods: The cross sectional images were produced by compounding multiple B-scans of a laboratory phantom or an animal acquired at different projection angles. Two imaging systems were used to test the concept. The first system included a programmable 64-channel phased array controller driving a 128-channel, 5–10 MHz linear probe to produce 143 B-Mode projections of the spinning object. The second system designed and manufactured in house, produced 64 or 128 B-Mode projections with a single unfocused 8 MHz transducer scanning with a 0.116 mm step size. Results: The phased array system provided good penetration through the phantoms/mice (with the exception of the lungs) and allowed to acquire data in a very short time. The cross-sectional images have enough resolution and dynamic range to detect both high- and low-contrast organs. The single transducer system takes longer to scan, and the data require more sophisticated processing. To date, our images allow seeing details as small as 1–2 mm in the phantoms and in small animals, with the contrast mostly due to highly reflecting bones and air inclusions. Conclusion: The work indicates that very detailed and anatomically correct images can be created by relatively simple and inexpensive means. With more advanced algorithms and improved system design, scan time can be reduced considerably, enabling high-resolution full 3D imaging. This will allow for quick and easy scans that can help monitor tumor growth and/or regression without contributing any dose to the animal. The authors would like to acknowledge

  6. Cross-sectional imaging of the female urethra: technique and results.

    PubMed

    Prasad, Srinivasa R; Menias, Christine O; Narra, Vamsi R; Middleton, William D; Mukundan, Govind; Samadi, Nayer; Heiken, Jay P; Siegel, Cary L

    2005-01-01

    Clinical assessment of women with urethral symptoms is difficult, necessitating further evaluation with imaging. Urethrography provides limited information on luminal abnormalities of the urethra. Recent advances in ultrasound (US) and magnetic resonance (MR) imaging have dramatically improved evaluation of the female urethra, clarifying findings at physical examination and providing accurate road maps for surgeons. High-resolution transvaginal US, transperineal US, and transurethral US are reliable techniques for diagnosis and characterization of urethral abnormalities. High-resolution multiplanar MR imaging with phased-array pelvic and endovaginal coils demonstrates the urethral anatomy in greater detail. In women with urethral diverticula, US and MR imaging demonstrate the number of diverticula and the location, size, configuration, and possible contents of the sac. Most important, the position of the neck of the diverticulum may be identified for the surgeon. Imaging features do not allow differentiation between histologic subtypes of urethral carcinoma; the diagnosis is established with histopathologic examination. Periurethral cysts do not communicate with the urethra and therefore can often be differentiated from urethral diverticula at endocavitary MR imaging. High-resolution multiplanar US and MR imaging allow comprehensive evaluation of abnormalities of the female urethra.

  7. Miscellaneous tumour-like lesions of the ovary: cross-sectional imaging review

    PubMed Central

    Lalwani, N; Patel, S; Ha, K Y; Shanbhogue, A K; Nagar, A M; Chintapalli, K N; Prasad, S R

    2012-01-01

    Miscellaneous tumour-like ovarian lesions are histobiologically diverse, and are often mistaken for the more common ovarian cancers, leading to aggressive management. Knowledge of characteristic clinical, laboratory and imaging findings of these select non-neoplastic ovarian entities allows correct diagnoses and permits optimal management. PMID:22253351

  8. [The role of cross-sectional imaging in staging of rectal cancer].

    PubMed

    Schäfer, A O; Langer, M; Baumann, T

    2012-05-01

    The ongoing diversification of treatment strategies for rectal cancer justifies the demand for highly specialized radiological imaging. Currently, numerous studies have underlined the ability of magnetic resonance imaging (MRI) to determine those parameters that are critical for therapeutic decision-making and prognosis in rectal cancer. Computed tomography (CT) does not meet the criteria of a first line diagnostic procedure with regard to local staging but will remain the workhorse in the search for distant metastases. The increasing acceptance of extended MRI-based concepts will, however, improve cost-effectiveness and simplify patient management. Response evaluation and detection of recurrent disease are the major indications for positron emission tomography (PET)/CT, which is currently not routinely recommended.

  9. Cross-sectional Imaging Features of Primary Retroperitoneal Tumors and Their Subsequent Treatment.

    PubMed

    Acar, Turker; Harman, Mustafa; Guneyli, Serkan; Gemici, Kazim; Efe, Duran; Guler, Ibrahim; Yildiz, Melda

    2015-01-01

    Basically malignant tumors in the retroperitoneal region arise from a heterogeneous group of tissues: mesodermal, neurogenic, germ cell, and lymphoid. Although rare, benign tumors and cystic masses can be also encountered in retroperitoneal space. Developments in computed tomography (CT) and magnetic resonance imaging (MRI) have contributed to both diagnosis and staging of the retroperitoneal tumors. High spatial resolution and superiority in calcification make CT indispensable; on the other hand, MRI has a better soft-tissue contrast resolution which is essential for the assessment of vascular invasion and tissue characterization. The aim of this article is to review the CT and MRI features of retroperitoneal tumors and their subsequent management. PMID:25973288

  10. Catheter ultrasound for cross-sectional imaging and drug delivery to vessel wall

    NASA Astrophysics Data System (ADS)

    Hossack, John A.

    2015-05-01

    Current methods for delivery of an anti-restenosis drug to an arterial vessel wall post-percutaneous transluminal angioplasty and stent placement are limited in terms of drug choice, dosing level, and ability to assure drug coverage between the struts of a drug eluting stent. Intravascular ultrasound (IVUS) provides real-time, radiation-free, imaging and assessment of atherosclerotic disease in terms of anatomical, functional and molecular information. In this presentation, the design of a dual imaging / therapy IVUS catheter is described and results documenting gene and drug delivery reported. Microbubbles and drug / gene (shell associated or co-injected) are dispensed from the catheter tip. Using this approach, it becomes possible to address the need for complete vessel wall coverage and achieve delivery in regions poorly addressed using conventional stent-based approaches. A range of in vitro, ex vivo and in vivo results are presented. Our most recent results involve a demonstration in a pig model of coronary balloon angioplasty that produced a 33% reduction in neointima formation versus a drug plus microbubble, but no ultrasound, control.

  11. Integrated monolithic 3D MEMS scanner for switchable real time vertical/horizontal cross-sectional imaging.

    PubMed

    Li, Haijun; Duan, Xiyu; Qiu, Zhen; Zhou, Quan; Kurabayashi, Katsuo; Oldham, Kenn R; Wang, Thomas D

    2016-02-01

    We present an integrated monolithic, electrostatic 3D MEMS scanner with a compact chip size of 3.2 × 2.9 mm(2). Use of parametric excitation near resonance frequencies produced large optical deflection angles up to ± 27° and ± 28.5° in the X- and Y-axes and displacements up to 510 μm in the Z-axis with low drive voltages at atmospheric pressure. When packaged in a dual axes confocal endomicroscope, horizontal and vertical cross-sectional images can be collected seamlessly in tissue with a large field-of-view of >1 × 1 mm(2) and 1 × 0.41 mm(2), respectively, at 5 frames/sec.

  12. CORONAL LOOP OSCILLATIONS OBSERVED WITH ATMOSPHERIC IMAGING ASSEMBLY-KINK MODE WITH CROSS-SECTIONAL AND DENSITY OSCILLATIONS

    SciTech Connect

    Aschwanden, Markus J.; Schrijver, Carolus J.

    2011-08-01

    A detailed analysis of a coronal loop oscillation event is presented, using data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO) for the first time. The loop oscillation event occurred on 2010 October 16, 19:05-19:35 UT and was triggered by an M2.9 GOES-class flare, located inside a highly inclined cone of a narrow-angle coronal mass ejection. This oscillation event had a number of unusual features: (1) excitation of kink-mode oscillations in vertical polarization (in the loop plane), (2) coupled cross-sectional and density oscillations with identical periods, (3) no detectable kink amplitude damping over the observed duration of four kink-mode periods (P=6.3 minutes), (4) multi-loop oscillations with slightly ({approx}10%) different periods, and (5) a relatively cool loop temperature of T {approx} 0.5 MK. We employ a novel method of deriving the electron density ratio external and internal to the oscillating loop from the ratio of Alfvenic speeds deduced from the flare trigger delay and the kink-mode period, i.e., n{sub e} /n{sub i} = (v{sub A} /v{sub Ae}){sup 2} = 0.08 {+-} 0.01. The coupling of the kink mode and cross-sectional oscillations can be explained as a consequence of the loop length variation in the vertical polarization mode. We determine the exact footpoint locations and loop length with stereoscopic triangulation using STEREO/EUVI/A data. We model the magnetic field in the oscillating loop using Helioseismic and Magnetic Imager/SDO magnetogram data and a potential-field model and find agreement with the seismological value of the magnetic field, B{sub kink} = 4.0 {+-} 0.7 G, within a factor of two.

  13. In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Coughlan, Carolyn A.; Chou, Li-Dek; Jing, Joseph C.; Chen, Jason J.; Rangarajan, Swathi; Chang, Theodore H.; Sharma, Giriraj K.; Cho, Kyoungrai; Lee, Donghoon; Goddard, Julie A.; Chen, Zhongping; Wong, Brian J. F.

    2016-03-01

    Diagnosis and treatment of vocal fold lesions has been a long-evolving science for the otolaryngologist. Contemporary practice requires biopsy of a glottal lesion in the operating room under general anesthesia for diagnosis. Current in-office technology is limited to visualizing the surface of the vocal folds with fiber-optic or rigid endoscopy and using stroboscopic or high-speed video to infer information about submucosal processes. Previous efforts using optical coherence tomography (OCT) have been limited by small working distances and imaging ranges. Here we report the first full field, high-speed, and long-range OCT images of awake patients’ vocal folds as well as cross-sectional video and Doppler analysis of their vocal fold motions during phonation. These vertical-cavity surface-emitting laser source (VCSEL) OCT images offer depth resolved, high-resolution, high-speed, and panoramic images of both the true and false vocal folds. This technology has the potential to revolutionize in-office imaging of the larynx.

  14. In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography

    PubMed Central

    Coughlan, Carolyn A.; Chou, Li-dek; Jing, Joseph C.; Chen, Jason J.; Rangarajan, Swathi; Chang, Theodore H.; Sharma, Giriraj K.; Cho, Kyoungrai; Lee, Donghoon; Goddard, Julie A.; Chen, Zhongping; Wong, Brian J. F.

    2016-01-01

    Diagnosis and treatment of vocal fold lesions has been a long-evolving science for the otolaryngologist. Contemporary practice requires biopsy of a glottal lesion in the operating room under general anesthesia for diagnosis. Current in-office technology is limited to visualizing the surface of the vocal folds with fiber-optic or rigid endoscopy and using stroboscopic or high-speed video to infer information about submucosal processes. Previous efforts using optical coherence tomography (OCT) have been limited by small working distances and imaging ranges. Here we report the first full field, high-speed, and long-range OCT images of awake patients’ vocal folds as well as cross-sectional video and Doppler analysis of their vocal fold motions during phonation. These vertical-cavity surface-emitting laser source (VCSEL) OCT images offer depth resolved, high-resolution, high-speed, and panoramic images of both the true and false vocal folds. This technology has the potential to revolutionize in-office imaging of the larynx. PMID:26960250

  15. Cross-sectional imaging of metal-on-metal hip arthroplasties

    PubMed Central

    Robinson, Elizabeth; Henckel, Johann; Sabah, Shiraz; Satchithananda, Keshthra; Skinner, John; Hart, Alister

    2014-01-01

    Background and purpose — Metal artifact reduction sequence (MARS) MRI is widely advocated for surveillance of metal-on-metal hip arthroplasties (MOM-HAs). However, its use is limited by susceptibility artifact at the prosthesis-bone interface, local availability, patient compliance, and cost (Hayter et al. 2011a). We wanted to determine whether CT is a suitable substitute for MARS MRI in evaluation of the painful MOM-HA. Patients and methods — 50 MOM-HA patients (30 female) with unexplained painful prostheses underwent MARS MRI and CT imaging. 2 observers who were blind regarding the clinical data objectively reported the following outcomes: soft tissue lesions (pseudotumors), muscle atrophy, and acetabular and femoral osteolysis. Diagnostic test characteristics were calculated. Results — Pseudotumor was diagnosed in 25 of 50 hips by MARS MRI and in 11 of 50 by CT. Pseudotumors were classified as type 1 (n = 2), type 2A (n = 17), type 2B (n = 4), and type 3 (n = 2) by MARS MRI. CT did not permit pseudotumor classification. The sensitivity of CT for diagnosis of pseudotumor was 44% (95% CI: 25–65). CT had “slight” agreement with MARS MRI for quantification of muscle atrophy (κ = 0.23, CI: 0.16–0.29; p < 0.01). Osteolysis was identified in 15 of 50 patients by CT. 4 of these lesions were identified by MARS MRI. Interpretation — CT was found to be superior to MRI for detection of osteolysis adjacent to MOM-HA, and should be incorporated into diagnostic algorithms. CT was unable to classify and failed to detect many pseudotumors, and it was unreliable for assessment of muscle atrophy. Where MARS MRI is contraindicated or unavailable, CT would be an unsuitable substitute and other modalities such as ultrasound should be considered PMID:25267500

  16. Factors impacting echocardiographic imaging after the Fontan procedure: a report from the pediatric heart network fontan cross-sectional study.

    PubMed

    Williams, Richard V; Margossian, Renee; Lu, Minmin; Atz, Andrew M; Bradley, Timothy J; Jay Campbell, Michael; Colan, Steven D; Gallagher, Dianne; Lai, Wyman W; Pearson, Gail D; Prakash, Ashwin; Shirali, Girish; Cohen, Meryl S

    2013-10-01

    Echocardiographic image quality in Fontan survivors may be limited by a variety of factors. We sought to describe echocardiographic quality and factors associated with study quality in subjects participating in the Pediatric Heart Network Fontan Cross-Sectional Study. Echocardiograms were obtained at 7 clinical sites using a standard protocol. Quality grading and analysis were performed by a core laboratory. Univariate and multivariable modeling were performed to assess factors associated with quality and ability to obtain images sufficient for prespecified quantitative analysis. A total of 543 echocardiograms were obtained. The quality of echocardiograms improved over the duration of the study. The great arteries, systemic veins, and pulmonary veins were less likely to be adequately imaged than other cardiac structures. Quantitative analysis of ventricular volume was possible in 76% overall, but only 41% of those with mixed ventricular morphology. Factors independently associated with better quality included younger age, levocardia, acquisition of the echocardiogram at a longer time since the beginning of enrollment, absence of a pulmonary artery stent, and clinical site. Patient and center-specific factors are associated with echocardiographic quality after the Fontan procedure. Increased familiarity and experience with a standard imaging protocol is likely to result in improved quality.

  17. THE ASSOCIATION BETWEEN MENSTRUAL CYCLE CHARACTERISTICS AND PERCEIVED BODY IMAGE: A CROSS-SECTIONAL SURVEY OF POLISH FEMALE ADOLESCENTS.

    PubMed

    Kaczmarek, Maria; Trambacz-Oleszak, Sylwia

    2016-05-01

    The increasing prevalence of negative body perceptions among adolescent girls and the tendency towards wishing to be thinner have become a cultural norm in Western culture. Adolescent girls are particularly vulnerable to developing a negative body image due to physical and sexual changes occurring during puberty. This study aimed to evaluate the association between different measures of body image perceptions and different phases of the menstrual cycle after controlling for weight status and other potential confounders in Polish adolescent girls aged 12-18 years. Three-hundred and thirty participants of a cross-sectional survey conducted in 2009, normally cycling and with no eating disorders, completed a background questionnaire and the Stunkard Figure Rating Scale, and their anthropometric measurements were collected. The dependent outcome variables were measures of body image (actual body image, ideal body image and ideal-self discrepancy) and dichotomous body image perception (satisfied versus dissatisfied) adjusted for other predictor factors: socio-demographic variables, menstrual history and cycle phases, and weight status. One-way ANOVA indicated that weight status, age at menarche and menstrual cycle phase were associated with actual body image and rate of ideal-self discrepancy. Ideal body image was associated with weight status and menstrual cycle phase. General logistic regression models were constructed to evaluate associations of body dissatisfaction and all potential predictor variables. The final selected model of the multiple logistic regression analysis using the backward elimination procedure revealed that adjusted for other factors, negative body image was significantly associated with different phases of the menstrual cycle (p trend=0.033) and increasing body weight status (p trend=0.0007). The likelihood of body dissatisfaction was greatest during the premenstrual phase of the menstrual cycle (OR=2.38; 95% CI 1.06, 5.32) and among girls in

  18. THE ASSOCIATION BETWEEN MENSTRUAL CYCLE CHARACTERISTICS AND PERCEIVED BODY IMAGE: A CROSS-SECTIONAL SURVEY OF POLISH FEMALE ADOLESCENTS.

    PubMed

    Kaczmarek, Maria; Trambacz-Oleszak, Sylwia

    2016-05-01

    The increasing prevalence of negative body perceptions among adolescent girls and the tendency towards wishing to be thinner have become a cultural norm in Western culture. Adolescent girls are particularly vulnerable to developing a negative body image due to physical and sexual changes occurring during puberty. This study aimed to evaluate the association between different measures of body image perceptions and different phases of the menstrual cycle after controlling for weight status and other potential confounders in Polish adolescent girls aged 12-18 years. Three-hundred and thirty participants of a cross-sectional survey conducted in 2009, normally cycling and with no eating disorders, completed a background questionnaire and the Stunkard Figure Rating Scale, and their anthropometric measurements were collected. The dependent outcome variables were measures of body image (actual body image, ideal body image and ideal-self discrepancy) and dichotomous body image perception (satisfied versus dissatisfied) adjusted for other predictor factors: socio-demographic variables, menstrual history and cycle phases, and weight status. One-way ANOVA indicated that weight status, age at menarche and menstrual cycle phase were associated with actual body image and rate of ideal-self discrepancy. Ideal body image was associated with weight status and menstrual cycle phase. General logistic regression models were constructed to evaluate associations of body dissatisfaction and all potential predictor variables. The final selected model of the multiple logistic regression analysis using the backward elimination procedure revealed that adjusted for other factors, negative body image was significantly associated with different phases of the menstrual cycle (p trend=0.033) and increasing body weight status (p trend=0.0007). The likelihood of body dissatisfaction was greatest during the premenstrual phase of the menstrual cycle (OR=2.38; 95% CI 1.06, 5.32) and among girls in

  19. Determination of differential cross sections and kinetic energy release of co-products from central sliced images in photo-initiated dynamic processes.

    PubMed

    Chen, Kuo-mei; Chen, Yu-wei

    2011-04-01

    For photo-initiated inelastic and reactive collisions, dynamic information can be extracted from central sliced images of state-selected Newton spheres of product species. An analysis framework has been established to determine differential cross sections and the kinetic energy release of co-products from experimental images. When one of the reactants exhibits a high recoil speed in a photo-initiated dynamic process, the present theory can be employed to analyze central sliced images from ion imaging or three-dimensional sliced fluorescence imaging experiments. It is demonstrated that the differential cross section of a scattering process can be determined from the central sliced image by a double Legendre moment analysis, for either a fixed or continuously distributed recoil speeds in the center-of-mass reference frame. Simultaneous equations which lead to the determination of the kinetic energy release of co-products can be established from the second-order Legendre moment of the experimental image, as soon as the differential cross section is extracted. The intensity distribution of the central sliced image, along with its outer and inner ring sizes, provide all the clues to decipher the differential cross section and the kinetic energy release of co-products.

  20. Cross-sectional anatomy, computed tomography and magnetic resonance imaging of the head of common dolphin (Delphinus delphis) and striped dolphin (Stenella coeruleoalba).

    PubMed

    Alonso-Farré, J M; Gonzalo-Orden, M; Barreiro-Vázquez, J D; Barreiro-Lois, A; André, M; Morell, M; Llarena-Reino, M; Monreal-Pawlowsky, T; Degollada, E

    2015-02-01

    Computed tomography (CT) and low-field magnetic resonance imaging (MRI) were used to scan seven by-caught dolphin cadavers, belonging to two species: four common dolphins (Delphinus delphis) and three striped dolphins (Stenella coeruleoalba). CT and MRI were obtained with the animals in ventral recumbency. After the imaging procedures, six dolphins were frozen at -20°C and sliced in the same position they were examined. Not only CT and MRI scans, but also cross sections of the heads were obtained in three body planes: transverse (slices of 1 cm thickness) in three dolphins, sagittal (5 cm thickness) in two dolphins and dorsal (5 cm thickness) in two dolphins. Relevant anatomical structures were identified and labelled on each cross section, obtaining a comprehensive bi-dimensional topographical anatomy guide of the main features of the common and the striped dolphin head. Furthermore, the anatomical cross sections were compared with their corresponding CT and MRI images, allowing an imaging identification of most of the anatomical features. CT scans produced an excellent definition of the bony and air-filled structures, while MRI allowed us to successfully identify most of the soft tissue structures in the dolphin's head. This paper provides a detailed anatomical description of the head structures of common and striped dolphins and compares anatomical cross sections with CT and MRI scans, becoming a reference guide for the interpretation of imaging studies.

  1. Conventional radiography and cross-sectional imaging when planning dental implants in the anterior edentulous mandible to support an overdenture: a systematic review.

    PubMed

    Shelley, A M; Glenny, A-M; Goodwin, M; Brunton, P; Horner, K

    2014-01-01

    The objectives for this systematic review were to determine if the pre-operative availability of cross-sectional imaging, such as cone beam CT, has a diagnostic impact, therapeutic impact or impact on patients' outcome when placing two dental implants in the anterior mandible to support an overdenture. The Cochrane Oral Health Group's Trials Register (CENTRAL), MEDLINE® and Embase were searched up to, and including, February 2013. Studies were considered eligible for inclusion if they compared the impact of conventional and cross-sectional imaging when placing dental implants in sites including the anterior mandible. An adapted quality assessment tool was used for the assessment of the risk of bias in included studies. Pooled quantitative analysis was not possible and, therefore, synthesis was qualitative. Of 2374 potentially eligible papers, 5 studies were included. Little can be determined from a synthesis of these studies because of their small number, clinical diversity and high risks of bias. Notwithstanding, it may be tentatively inferred that cross-sectional imaging has a therapeutic impact in the more challenging cases. In terms of impact, this review has found no evidence to support any specific imaging modality when planning dental implant placement in any region of the mouth. Therefore, those who argue that cross-sectional imaging should be used for the assessment of all dental implant sites are unsupported by evidence.

  2. Brain imaging and blood biomarker abnormalities in children with autosomal-dominant Alzheimer's disease: A cross-sectional Study

    PubMed Central

    Quiroz, Y.T.; Schultz, A.; Chen, K.; Protas, H.; Brickhouse, M.; Fleisher, A.S.; Langbaum, J.B.; Thiyyagura, P.; Fagan, A.M.; Shah, A.R.; Muniz, M.; Arboleda-Velasquez, JF; Munoz, C.; Garcia, G.; Acosta-Baena, N.; Giraldo, M.; Tirado, V.; Ramirez, D.; Tariot, PN; Dickerson, B.C.; Sperling, R.A.; Lopera, F.; Reiman, E.M.

    2015-01-01

    IMPORTANCE Brain imaging and fluid biomarkers are characterized in children at risk for autosomal dominant Alzheimer disease (ADAD). OBJECTIVE To characterize and compare structural magnetic resonance imaging (MRI), resting-state and task-dependent functional MRI, and plasma amyloid-β (Aβ) measurements in presenilin 1 (PSEN1) E280A mutation–carrying and noncarrying children with ADAD. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional measures of structural and functional MRI and plasma Aβ assays were assessed in 18 PSEN1 E280A carriers and 19 noncarriers aged 9 to 17 years from a Colombian kindred with ADAD. Recruitment and data collection for this study were conducted at the University of Antioquia and the Hospital Pablo Tobon Uribe in Medellin, Colombia, between August 2011 and June 2012. MAIN OUTCOMES AND MEASURES All participants had blood sampling, structural MRI, and functional MRI during associative memory encoding and resting-state and cognitive assessments. Outcome measures included plasma Aβ1-42 concentrations and Aβ1-42:Aβ1-40 ratios, memory encoding–dependent activation changes, resting-state connectivity, and regional gray matter volumes. Structural and functional MRI data were compared using automated brain mapping algorithms and search regions related to AD. RESULTS Similar to findings in adult mutation carriers, in the later preclinical and clinical stages of ADAD, mutation-carrying children were distinguished from control individuals by significantly higher plasma Aβ1-42 levels (mean [SD]: carriers, 18.8 [5.1] pg/mL and noncarriers, 13.1 [3.2] pg/mL; P < .001) and Aβ1-42:Aβ1-40 ratios (mean [SD]: carriers, 0.32 [0.06] and noncarriers, 0.21 [0.03]; P < .001), as well as less memory encoding task–related deactivation in parietal regions (eg, mean [SD] parameter estimates for the right precuneus were −0.590 [0.50] for noncarriers and −0.087 [0.38] for carriers; P < .005 uncorrected). Unlike carriers in the later stages, mutation

  3. Learning algorithms for both real-time detection of solder shorts and for SPC measurement correction using cross-sectional x-ray images of PCBA solder joints

    NASA Astrophysics Data System (ADS)

    Roder, Paul A.

    1994-03-01

    Learning algorithms are introduced for use in the inspection of cross-sectional X-ray images of solder joints. These learning algorithms improve measurement accuracy by accounting for localized shading effects that can occur when inspecting double- sided printed circuit board assemblies. Two specific examples are discussed. The first is an algorithm for detection of solder short defects. The second algorithm utilizes learning to generate more accurate statistical process control measurements.

  4. 3D reconstruction of a carotid bifurcation from 2D transversal ultrasound images.

    PubMed

    Yeom, Eunseop; Nam, Kweon-Ho; Jin, Changzhu; Paeng, Dong-Guk; Lee, Sang-Joon

    2014-12-01

    Visualizing and analyzing the morphological structure of carotid bifurcations are important for understanding the etiology of carotid atherosclerosis, which is a major cause of stroke and transient ischemic attack. For delineation of vasculatures in the carotid artery, ultrasound examinations have been widely employed because of a noninvasive procedure without ionizing radiation. However, conventional 2D ultrasound imaging has technical limitations in observing the complicated 3D shapes and asymmetric vasodilation of bifurcations. This study aims to propose image-processing techniques for better 3D reconstruction of a carotid bifurcation in a rat by using 2D cross-sectional ultrasound images. A high-resolution ultrasound imaging system with a probe centered at 40MHz was employed to obtain 2D transversal images. The lumen boundaries in each transverse ultrasound image were detected by using three different techniques; an ellipse-fitting, a correlation mapping to visualize the decorrelation of blood flow, and the ellipse-fitting on the correlation map. When the results are compared, the third technique provides relatively good boundary extraction. The incomplete boundaries of arterial lumen caused by acoustic artifacts are somewhat resolved by adopting the correlation mapping and the distortion in the boundary detection near the bifurcation apex was largely reduced by using the ellipse-fitting technique. The 3D lumen geometry of a carotid artery was obtained by volumetric rendering of several 2D slices. For the 3D vasodilatation of the carotid bifurcation, lumen geometries at the contraction and expansion states were simultaneously depicted at various view angles. The present 3D reconstruction methods would be useful for efficient extraction and construction of the 3D lumen geometries of carotid bifurcations from 2D ultrasound images.

  5. Comparative Evaluation of Ultrasonography and Cross-sectional Imaging in Determining Gall Bladder Perforation in Accordance to Niemeier’s Classification

    PubMed Central

    Sanyal, Shantiranjan; Sharma, Barun Kumar; Boruah, D.R.

    2016-01-01

    Introduction Gall Bladder (GB) perforation, a rare but dreaded complication of acute cholecystitis and is associated with high mortality rate. Early detection of acute cases of GB perforation reduces the risk of biliary peritonitis and hence the associated mortality and morbidity. Aim The purpose of the study was to make a comparative evaluation of the role of Cross-sectional imaging in GB perforation with base line investigation like sonography. Finally both modalities were compared in determining the type of perforation according to Niemeier’s classification. Materials and Methods We retrospectively evaluated the Ultrasonography (USG), Computed Tomography (CT) and Magnetic Resonance Imagings (MRI) findings in patients of GB perforation with surgical correlation. Results We evaluated 17 patients of GB perforations over a time period of one year. USG was done in all patients. As cross-sectional modality only CT scan was done in 14 patients and MRI scan was done in four patients. Both CT and MRI scans were done in one patient. Conclusion Cross-sectional imaging must not be delayed in suspected cases of GB perforations because it helps in establishing a quicker diagnosis, detecting complications and also helps in decision making related to management thereby reducing the morbidity and mortality associated with this condition. PMID:27656526

  6. 2D and 3D modelling of the Linking Zone between the Iberian and the Catalan Coastal Ranges (NE Spain): Characterizing basement and cover deformation from geological and geophysical cross sections

    NASA Astrophysics Data System (ADS)

    Izquierdo-Llavall, Esther; Ayala, Concepción; Rubio, Félix Manuel; Pueyo, Emilio; Casas, Antonio; Oliva-Urcia, Belén; Rodríguez-Pintó, Adriana; Rey-Moral, Carmen

    2015-04-01

    New geological, geophysical and petrophysical information is presented in this work in order to improve the understanding of the Linking Zone, an E-W-trending fold and thrust system that connects the northeastern part of the Iberian Range (WNW-ESE-striking) and the Catalan Coastal Ranges (NNE-SSW-striking). It was formed during the Alpine Orogeny and it is characterized by (1) thick-skinned tectonics, partly controlled by reactivation of faults inherited from Mesozoic times and (2) thin-skinned tectonics, affecting the cover sequences above the regional detachment levels (Triassic gypsum and shales). The present study aims to obtain a 3D image of the structure of this area through the construction of balanced geological and geophysical cross sections. In the Linking Zone scarce subsurface information is available. Therefore, we have conducted data acquisition campaigns to improve this knowledge: A) about 3000 gravity stations distributed along 8 main profiles were measured, and these new stations were complemented with gravity data from IGME databases. These data were analyzed and processed to obtain a Bouguer anomaly map and a residual gravity map with reasonably good coverage; B) a petrophysical survey was also carried out; rock samples were acquired and analyzed obtaining density and susceptibility values of the main lithologies. The statistics of these physical properties is of key importance during the combined geophysical/geological modelling. Petrophysical data indicate a weak, progressive increase of density mean values from the top to the base of the stratigraphic pile with the exception of Triassic gypsum and shales, where the lowest density was obtained. The modelling has been made in three steps: First, a set of eight geological cross-sections based on surface geology and structural information were built, controlled and improved through gravity modelling and balanced to make them geometrically correct, consistent throughout the sections and closer to

  7. Photorealistic image synthesis and camera validation from 2D images

    NASA Astrophysics Data System (ADS)

    Santos Ferrer, Juan C.; González Chévere, David; Manian, Vidya

    2014-06-01

    This paper presents a new 3D scene reconstruction technique using the Unity 3D game engine. The method presented here allow us to reconstruct the shape of simple objects and more complex ones from multiple 2D images, including infrared and digital images from indoor scenes and only digital images from outdoor scenes and then add the reconstructed object to the simulated scene created in Unity 3D, these scenes are then validated with real world scenes. The method used different cameras settings and explores different properties in the reconstructions of the scenes including light, color, texture, shapes and different views. To achieve the highest possible resolution, it was necessary the extraction of partial textures from visible surfaces. To recover the 3D shapes and the depth of simple objects that can be represented by the geometric bodies, there geometric characteristics were used. To estimate the depth of more complex objects the triangulation method was used, for this the intrinsic and extrinsic parameters were calculated using geometric camera calibration. To implement the methods mentioned above the Matlab tool was used. The technique presented here also let's us to simulate small simple videos, by reconstructing a sequence of multiple scenes of the video separated by small margins of time. To measure the quality of the reconstructed images and video scenes the Fast Low Band Model (FLBM) metric from the Video Quality Measurement (VQM) software was used. Low bandwidth perception based features include edges and motion.

  8. Electron Excitation Cross Sections for the S// Transitions 3s(sup 2)3p(sup 3) (sup 4)s(deg) (leads to)3s(sup 2)3p(sup 3) (sup 2)D(deg), (sup 2)p(deg) and 3s3p(sup 4) (sup 4)p

    NASA Technical Reports Server (NTRS)

    Liao, C.; Smith, S. J.; Hitz, D.; Chutjian, A.; Tayal, S. S.

    1996-01-01

    Experimental and theoretical collisional excitation cross sections are reported for the transitions 3s(sup 2)3p(sup 3) (sup 4)s(deg) (leads to)3s(sup 2)3p(sup 3)(sup 2)D(deg), (sup 2)p(deg) and 3s3p(sup 4) (sup 4)p in s//.

  9. In vivo imaging flow cytometry based on laser scanning two-photon microscopy at kHz cross-sectional frame rate

    NASA Astrophysics Data System (ADS)

    Kong, Lingjie; Tang, Jianyong; Cui, Meng

    2016-03-01

    In vivo flow cytometry has found numerous applications in biology and pharmacology. However, conventional cytometry does not provide the detailed morphological information that is needed to fully determine the phenotype of individual circulating cells. Imaging cytometry, capable of visualizing the morphology and dynamics of the circulating cells at high spatiotemporal resolution, is highly desired. Current wide-field based image cytometers are limited in the imaging depth and provide only two-dimensional resolution. For deep tissue imaging, laser scanning two-photon fluorescence microscopy (TPM) is widely adopted. However, for applications in flow cytometry, the axial scanning speed of current TPMs is inadequate to provide high-speed cross-sectional imaging of vasculature. We have integrated an optical phase-locked ultrasound lens into a standard TPM and achieved microsecond-scale axial scanning. With a galvo scanner for transverse scanning, we achieved kHz cross-sectional frame rate. Here we report its applications for in vivo deformability cytometry and in vivo imaging flow cytometry, and demonstrate the capability of imaging dynamical morphologies of flowing cells, distinguishing cells and cellular clusters, and simultaneously quantifying different cell populations based on their fluorescent labels.

  10. Computed tomographic, magnetic resonance imaging, and cross-sectional anatomic features of the manus in a normal American black bear (Ursus americanus).

    PubMed

    Ober, C P; Freeman, L E

    2010-06-01

    The purpose of this study was to provide a detailed description of cross-sectional anatomic structures of the manus of a black bear cadaver and correlate anatomic findings with corresponding features in computed tomographic (CT) and magnetic resonance (MR) images. CT, MR imaging, and transverse sectioning were performed on the thoracic limb of a cadaver female black bear which had no evidence of lameness or thoracic limb abnormality prior to death. Features in CT and MR images corresponding to clinically important anatomic structures in anatomic sections were identified. Most of the structures identified in transverse anatomic sections were also identified using CT and MR imaging. Bones, muscles and tendons were generally easily identified with both imaging modalities, although divisions between adjacent muscles were rarely visible with CT and only visible sometimes with MR imaging. Vascular structures could not be identified with either imaging modality. PMID:20500743

  11. Benchmark experiment for electron-impact ionization of argon: Absolute triple-differential cross sections via three-dimensional electron emission images

    SciTech Connect

    Ren Xueguang; Senftleben, Arne; Pflueger, Thomas; Dorn, Alexander; Ullrich, Joachim; Bartschat, Klaus

    2011-05-15

    Single ionization of argon by 195-eV electron impact is studied in an experiment, where the absolute triple-differential cross sections are presented as three-dimensional electron emission images for a series of kinematic conditions. Thereby a comprehensive set of experimental data for electron-impact ionization of a many-electron system is produced to provide a benchmark for comparison with theoretical predictions. Theoretical models using a hybrid first-order and second-order distorted-wave Born plus R-matrix approach are employed to compare their predictions with the experimental data. While the relative shape of the calculated cross section is generally in reasonable agreement with experiment, the magnitude appears to be the most significant problem with the theoretical treatment for the conditions studied in the present work. This suggests that the most significant challenge in the further development of theory for this process may lie in the reproduction of the absolute scale rather than the angular dependence of the cross section.

  12. Comparison of magnetic resonance imaging with cross-sectional echocardiography in the assessment of left ventricular mass in children without heart disease and in aortic isthmic coarctation.

    PubMed

    Vogel, M; Stern, H; Bauer, R; Bühlmeyer, K

    1992-04-01

    Although left ventricular (LV) mass may be important to judge effects of left-sided cardiac obstruction or hypertension, reproducible noninvasively determined normal data in the pediatric age group are scarce. To validate cross-sectional echocardiographic LV mass determination, our data were compared with LV mass assessed by magnetic resonance imaging (MRI). MRI was considered to be a good reference method because there is usually no problem in defining endo- and epicardial borders with MRI. LV mass was assessed in 14 children aged 5.3 years (10 days to 14.7 years) with a mean body surface area of 0.78 m2 (range 0.25 to 1.61). With cross-sectional echocardiography the epicardial and endocardial volumes were calculated using a Simpsons rule algorithm in the apical 2- and 4-chamber view. The difference between epi- and endocardial volumes was multiplied by 1.05 to yield the mass. Mass was assessed with MRI using a multislice technique; the area of each myocardial slice was calculated and multiplied with the slice thickness, and the resultant slice volumes were added to obtain the myocardial volume. On cross-sectional echocardiography, the mass was 55 g (range 12 to 126) or 64 g/m2 (range 46 to 79); on MRI it was 60 g (range 33 to 87) or 69 g/m2 (range 46 to 89). Regression analysis yielded an r value of 0.98 with a standard error of the estimate of 5.7 g or a 10% difference. In older children, LV mass determined by MRI was bigger than the one derived by echocardiography. It is concluded that cross-sectional echocardiography can reliably assess LV myocardial mass in pediatric patients. PMID:1550025

  13. On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian

    2015-07-01

    In a previous report, we demonstrated master-slave optical coherence tomography (MS-OCT), an OCT method that does not need resampling of data and can be used to deliver en face images from several depths simultaneously. In a separate report, we have also demonstrated MS-OCT's capability of producing cross-sectional images of a quality similar to those provided by the traditional Fourier domain (FD) OCT technique, but at a much slower rate. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real time. We analyze the conditions that ensure a true real-time B-scan imaging operation and demonstrate in vivo real-time images from human fovea and the optic nerve, with resolution and sensitivity comparable to those produced using the traditional FD-based method, however, without the need of data resampling.

  14. In-vivo, real-time cross-sectional images of retina using a GPU enhanced master slave optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian

    2016-03-01

    In our previous reports we demonstrated a novel Fourier domain optical coherence tomography method, Master Slave optical coherence tomography (MS-OCT), that does not require resampling of data and can deliver en-face images from several depths simultaneously. While ideally suited for delivering information from a selected depth, the MS-OCT has been so far inferior to the conventional FFT based OCT in terms of time of producing cross section images. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real-time by assembling several T-scans from different depths. We analyze the conditions that ensure a real-time B-scan imaging operation, and demonstrate in-vivo real-time images from human fovea and the optic nerve, of comparable resolution and sensitivity to those produced using the traditional Fourier domain based method.

  15. On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system.

    PubMed

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian

    2015-07-01

    In a previous report, we demonstrated master-slave optical coherence tomography (MS-OCT), an OCT method that does not need resampling of data and can be used to deliver en face images from several depths simultaneously. In a separate report, we have also demonstrated MS-OCT's capability of producing cross-sectional images of a quality similar to those provided by the traditional Fourier domain (FD) OCT technique, but at a much slower rate. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real time. We analyze the conditions that ensure a true real-time B-scan imaging operation and demonstrate in vivo real-time images from human fovea and the optic nerve, with resolution and sensitivity comparable to those produced using the traditional FD-based method, however, without the need of data resampling.

  16. 2D hexagonal quaternion Fourier transform in color image processing

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.

    2016-05-01

    In this paper, we present a novel concept of the quaternion discrete Fourier transform on the two-dimensional hexagonal lattice, which we call the two-dimensional hexagonal quaternion discrete Fourier transform (2-D HQDFT). The concept of the right-side 2D HQDFT is described and the left-side 2-D HQDFT is similarly considered. To calculate the transform, the image on the hexagonal lattice is described in the tensor representation when the image is presented by a set of 1-D signals, or splitting-signals which can be separately processed in the frequency domain. The 2-D HQDFT can be calculated by a set of 1-D quaternion discrete Fourier transforms (QDFT) of the splitting-signals.

  17. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    SciTech Connect

    T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-07-08

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.

  18. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)

    SciTech Connect

    Classen, I. G. J.; Boom, J. E.; Vries, P. C. de; Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A.; Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr.; Donne, A. J. H.; Jaspers, R. J. E.; Park, H. K.; Munsat, T.

    2010-10-15

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  19. Sparse radar imaging using 2D compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

  20. Focusing surface wave imaging with flexible 2D array

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyuan; Fu, Junqiang; Li, Zhe; Xu, Chunguang; Xiao, Dingguo; Wang, Shaohan

    2016-04-01

    Curved surface is widely exist in key parts of energy and power equipment, such as, turbine blade cylinder block and so on. Cycling loading and harsh working condition of enable fatigue cracks appear on the surface. The crack should be found in time to avoid catastrophic damage to the equipment. A flexible 2D array transducer was developed. 2D Phased Array focusing method (2DPA), Mode-Spatial Double Phased focusing method (MSDPF) and the imaging method using the flexible 2D array probe are studied. Experiments using these focusing and imaging method are carried out. Surface crack image is obtained with both 2DPA and MSDPF focusing method. It have been proved that MSDPF can be more adaptable for curved surface and more calculate efficient than 2DPA.

  1. Recent advances in cross-sectional renal imaging-an oncologic perspective: the current concepts and the future challenges.

    PubMed

    Ganeshan, Dhakshinamoorthy; Notohamiprodjo, Mike; Nikolaidis, Paul; Sanyal, Rupan; Bhosale, Priya

    2013-01-01

    Renal imaging remains a critical tool to differentiate and manage benign from malignant renal disorders. Conventional multidetector computed tomography (CT) and magnetic resonance (MR) provide great anatomical details, although lack functional information and specificity. The lack of resolution undermines the functional capabilities of nuclear medicine imaging. Functional MR imaging has shown strong utility in imaging of renal masses, with evolving techniques such as diffusion, perfusion, and blood oxygen level-dependent sequences. At the same time, newer techniques like dual-energy CT and CT perfusion are also showing promise in renal oncologic imaging.This article will discuss the recent advances in MR imaging and CT techniques pertaining to renal oncological applications.

  2. Diagnostic value of 2D and 3D imaging in odontogenic maxillary sinusitis: a review of literature.

    PubMed

    Shahbazian, M; Jacobs, R

    2012-04-01

    This review aims to explore whether 3D imaging offers an added value in diagnosis of odontogenic sinusitis. Odontogenic maxillary sinusitis accounts for approximately 10-12% of maxillary sinusitis cases. Proper diagnosis of odontogenic sinusitis is based on a thorough dental and medical examination and crucial to ensure therapeutic efficacy. To establish the odontogenic cause of maxillary sinusitis, 2D and 3D imaging modalities may be considered, each presenting distinct advantages and drawbacks. The available research indicates that 2D imaging modalities may often mask the origin of odontogenic maxillary sinusitis. This limitation is particularly evident in the maxillary molar region, stressing the need for 3D cross-sectional imaging. The advent of low-dose cone beam computed tomography in dentistry may be particularly useful when odontogenic maxillary sinusitis is not responsive to therapy. Yet, it seems that more research is needed to validate its use in odontogenic maxillary sinusitis.

  3. Biocompatible Green and Red Fluorescent Organic Dots with Remarkably Large Two-Photon Action Cross Sections for Targeted Cellular Imaging and Real-Time Intravital Blood Vascular Visualization.

    PubMed

    Xiang, Jiayun; Cai, Xiaolei; Lou, Xiaoding; Feng, Guangxue; Min, Xuehong; Luo, Wenwen; He, Bairong; Goh, Chi Ching; Ng, Lai Guan; Zhou, Jian; Zhao, Zujin; Liu, Bin; Tang, Ben Zhong

    2015-07-15

    Fluorescent organic dots are emerging as promising bioimaging reagents because of their high brightness, good photostability, excellent biocompatibility, and facile surface functionalization. Organic dots with large two-photon absorption (TPA) cross sections are highly desired for two-photon fluorescence microscopy. In this work, we report two biocompatible and photostable organic dots fabricated by encapsulating tetraphenylethene derivatives within DSPE-PEG matrix. The two organic dots show absorption maxima at 425 and 483 nm and emit green and red fluorescence at 560 and 645 nm, with high fluorescence quantum yields of 64% and 22%, respectively. Both organic dots exhibit excellent TPA property in the range of 800-960 nm, affording upon excitation at 820 nm remarkably large TPA cross sections of 1.2×10(6) and 2.5×10(6) GM on the basis of dot concentration. The bare fluorophores and their organic dots are biocompatible and have been used to stain living cells for one- and two-photon fluorescence bioimagings. The cRGD-modified organic dots can selectively target integrin αvβ3 overexpressing breast cancer cells for targeted imaging. The organic dots are also applied for real-time two-photon fluorescence in vivo visualization of the blood vasculature of mouse ear, providing the spatiotemporal information about the whole blood vascular network. These results demonstrate that the present fluorescent organic dots are promising candidates for living cell and tissue imaging.

  4. Improving VERITAS sensitivity by fitting 2D Gaussian image parameters

    NASA Astrophysics Data System (ADS)

    Christiansen, Jodi; VERITAS Collaboration

    2012-12-01

    Our goal is to improve the acceptance and angular resolution of VERITAS by implementing a camera image-fitting algorithm. Elliptical image parameters are extracted from 2D Gaussian distribution fits using a χ2 minimization instead of the standard technique based on the principle moments of an island of pixels above threshold. We optimize the analysis cuts and then characterize the improvements using simulations. We find an improvement of 20% less observing time to reach 5-sigma for weak point sources.

  5. Topology-Preserving Rigid Transformation of 2D Digital Images.

    PubMed

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues

    2014-02-01

    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.

  6. Topology-Preserving Rigid Transformation of 2D Digital Images.

    PubMed

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues

    2014-02-01

    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping. PMID:26270925

  7. A 2-D ECE Imaging Diagnostic for TEXTOR

    NASA Astrophysics Data System (ADS)

    Wang, J.; Deng, B. H.; Domier, C. W.; Luhmann, H. Lu, Jr.

    2002-11-01

    A true 2-D extension to the UC Davis ECE Imaging (ECEI) concept is under development for installation on the TEXTOR tokamak in 2003. This combines the use of linear arrays with multichannel conventional wideband heterodyne ECE radiometers to provide a true 2-D imaging system. This is in contrast to current 1-D ECEI systems in which 2-D images are obtained through the use of multiple plasma discharges (varying the scanned emission frequency each discharge). Here, each array element of the 20 channel mixer array measures plasma emission at 16 simultaneous frequencies to form a 16x20 image of the plasma electron temperature Te. Correlation techniques can then be applied to any pair of the 320 image elements to study both radial and poloidal characteristics of turbulent Te fluctuations. The system relies strongly on the development of low cost, wideband (2-18 GHz) IF detection electronics for use in both ECE Imaging as well as conventional heterodyne ECE radiometry. System details, with a strong focus on the wideband IF electronics development, will be presented. *Supported by U.S. DoE Contracts DE-FG03-95ER54295 and DE-FG03-99ER54531.

  8. A cross-sectional study of the radiation dose and image quality of X-ray equipment used in IVR.

    PubMed

    Inaba, Yohei; Chida, Koichi; Kobayashi, Ryota; Zuguchi, Masayuki

    2016-07-08

    There are case reports of injuries caused by the radiation from interventional radiology (IVR) X-ray systems. Therefore, the management of radiation doses in IVR is important. However, no detailed report has evaluated image quality for a large number of IVR X-ray systems. As a result, it is unclear whether the image quality of the X-ray equipment currently used in IVR procedures is optimal. We compared the entrance surface doses and image quality of multiple IVR X-ray systems. This study was conducted in 2014 at 13 medical facilities using 18 IVR X-ray systems. We evaluated image quality and simultaneously measured the radiation dose. Entrance surface doses for fluoroscopy (duration, 1 min) and cineradiography (duration, 10 s) are measured using a 20-cm-thick acrylic plate and skin dose monitor. The image quality (such as spatial resolution and low-contrast detectability) of both fluoroscopy and cineradiography was evaluated using a QC phantom. For fluoroscopy, the average entrance surface dose using the 20-cm-thick acrylic plate was 13.9 (range 2.1-28.2) mGy/min. For cineradiography, the average entrance surface dose was 24.6 (range 5.1-49.3) mGy/10 s. We found positive correlations between radiation doses and image quality scores, in general, especially for fluoroscopy. The differences in surface dose among the 18 IVR X-ray systems were high (max/min, 9.7-fold for cineradiography; 13.4-fold for fluoroscopy). The differences in image quality scores (spatial resolution, low-contrast detectability, and dynamic range) were also very large. In general, there tended to be a correlation between radiation dose and image quality. Periodical measurements of the radiation dose and image quality of the X-ray equipment used for cineradiography and fluoroscopy in IVR are necessary. The need to minimize patient exposure requires that the dose be reduced to the minimum level that will generate an image with an acceptable degree of noise.

  9. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  10. Interpreting sea surface slicks on the basis of the normalized radar cross-section model using RADARSAT-2 copolarization dual-channel SAR images

    NASA Astrophysics Data System (ADS)

    Ivonin, D. V.; Skrunes, S.; Brekke, C.; Ivanov, A. Yu.

    2016-03-01

    A simple automatic multipolarization technique for discrimination of main types of thin oil films (of thickness less than the radio wave skin depth) from natural ones is proposed. It is based on a new multipolarization parameter related to the ratio between the damping in the slick of specially normalized resonant and nonresonant signals calculated using the normalized radar cross-section model proposed by Kudryavtsev et al. (2003a). The technique is tested on RADARSAT-2 copolarization (VV/HH) synthetic aperture radar images of slicks of a priori known provenance (mineral oils, e.g., emulsion and crude oil, and plant oil served to model a natural slick) released during annual oil-on-water exercises in the North Sea in 2011 and 2012. It has been shown that the suggested multipolarization parameter gives new capabilities in interpreting slicks visible on synthetic aperture radar images while allowing discrimination between mineral oil and plant oil slicks.

  11. Body image flexibility moderates the association between disordered eating cognition and disordered eating behavior in a non-clinical sample of women: a cross-sectional investigation.

    PubMed

    Moore, Makeda; Masuda, Akihiko; Hill, Mary L; Goodnight, Bradley L

    2014-12-01

    Body image flexibility, a regulation process of openly and freely experiencing disordered eating thoughts and body dissatisfaction, has been found to be a buffering factor against disordered eating symptomatology. The present cross-sectional study investigates whether body image flexibility accounts for disordered eating behavior above and beyond disordered eating cognition, mindfulness, and psychological inflexibility in a sample of nonclinical women, and whether body image flexibility moderates the associations between these correlates and disordered eating behavior. Participants were 421 women, age 21±5.3 years old on average, who completed a web-based survey that included the self-report measures of interest. Results demonstrate the incremental effects of body image flexibility on disordered eating behavior above and beyond disordered eating cognition, mindfulness, and psychological inflexibility. Women with greater body image flexibility endorse disordered eating behavior less so than those with lower body image flexibility. Body image flexibility moderates the association between disordered eating cognition and disordered eating behavior; for women with greater body image flexibility, disordered eating cognition is not positively associated with disordered eating behavior.

  12. Interactive 2D to 3D stereoscopic image synthesis

    NASA Astrophysics Data System (ADS)

    Feldman, Mark H.; Lipton, Lenny

    2005-03-01

    Advances in stereoscopic display technologies, graphic card devices, and digital imaging algorithms have opened up new possibilities in synthesizing stereoscopic images. The power of today"s DirectX/OpenGL optimized graphics cards together with adapting new and creative imaging tools found in software products such as Adobe Photoshop, provide a powerful environment for converting planar drawings and photographs into stereoscopic images. The basis for such a creative process is the focus of this paper. This article presents a novel technique, which uses advanced imaging features and custom Windows-based software that utilizes the Direct X 9 API to provide the user with an interactive stereo image synthesizer. By creating an accurate and interactive world scene with moveable and flexible depth map altered textured surfaces, perspective stereoscopic cameras with both visible frustums and zero parallax planes, a user can precisely model a virtual three-dimensional representation of a real-world scene. Current versions of Adobe Photoshop provide a creative user with a rich assortment of tools needed to highlight elements of a 2D image, simulate hidden areas, and creatively shape them for a 3D scene representation. The technique described has been implemented as a Photoshop plug-in and thus allows for a seamless transition of these 2D image elements into 3D surfaces, which are subsequently rendered to create stereoscopic views.

  13. Illustrating the body: Cross-sectional and prospective investigations of the impact of life drawing sessions on body image.

    PubMed

    Swami, Viren

    2016-01-30

    Life drawing sessions, where individuals produce drawings of the human figure from observations of a live model, may contain embodying elements that promote healthier body image. Two pilot studies were conducted to test this hypothesis. In Study 1, 138 individuals recruited from life drawing sessions in London, UK, estimated how many sessions they had attended in their lifetime and completed measures of negative and positive body image. In women, greater attendance was significantly associated with higher body appreciation and lower drive for thinness and social physique anxiety. In men, greater attendance was significantly associated with higher body appreciation, but not drive for muscularity or social physique anxiety. In Study 2, 37 women took part in a life drawing session for the first time. Compared to pre-session scores, participants had significantly more positive state body image and appearance satisfaction after the session. The findings of these studies suggest that life drawing may promote healthier body image, particularly among women, but further research is needed.

  14. Illustrating the body: Cross-sectional and prospective investigations of the impact of life drawing sessions on body image.

    PubMed

    Swami, Viren

    2016-01-30

    Life drawing sessions, where individuals produce drawings of the human figure from observations of a live model, may contain embodying elements that promote healthier body image. Two pilot studies were conducted to test this hypothesis. In Study 1, 138 individuals recruited from life drawing sessions in London, UK, estimated how many sessions they had attended in their lifetime and completed measures of negative and positive body image. In women, greater attendance was significantly associated with higher body appreciation and lower drive for thinness and social physique anxiety. In men, greater attendance was significantly associated with higher body appreciation, but not drive for muscularity or social physique anxiety. In Study 2, 37 women took part in a life drawing session for the first time. Compared to pre-session scores, participants had significantly more positive state body image and appearance satisfaction after the session. The findings of these studies suggest that life drawing may promote healthier body image, particularly among women, but further research is needed. PMID:26657309

  15. The role of cross sectional imaging in the management of acute pyogenic inguinal abscess - extrapelvic versus intrapelvic origin

    PubMed Central

    2013-01-01

    Background Abscesses involving the inguinal region as manifestations of complex soft-tissue infections are rare, and the infectious route is usually unclear. The purpose of this study was to ascertain the importance of imaging study and whether the clinical presentations differ between the extrapelvic and intrapelvic origin. Methods Patients who presented with inguinal abscess between January 2003 and December 2010 were evaluated retrospectively. All patients received broad-spectrum antibiotic therapy and debridement. Imaging studies, including computed tomography or magnetic resonance imaging, were performed in all patients to elucidate the origin and extent of infectious disease, and the results were reviewed. Clinical data, laboratory examination findings, and culture results were analyzed. Results Twenty-eight patients were enrolled in the study: 13 patients whose infections were of extrapelvic origin (Group 1) and 15 patients of intrapelvic origin (Group 2). Imaging studies yielded information that helped guiding the treatment. Gram-positive coccus infection was more frequent in Group 1 (p < 0.001), while mixed pathogen and anaerobic bacterial infection were more frequent in Group 2 (p = 0.002 and p = 0.006, respectively). Group 2 had a higher incidence of history of malignancy and chronic renal failure (p = 0.044 and p = 0.038, respectively). Conclusions Computed tomography and magnetic resonance imaging are helpful in diagnosing cases of inguinal abscess and determining the extent of infection. In patients presenting with acute pyogenic inguinal abscess, a higher prevalence of chronic renal failure and history of malignancy were found in those with an intrapelvic, as compared with an extrapelvic, origin of infection. PMID:23537455

  16. Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.

    2009-01-01

    VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.

  17. SAR imaging via modern 2-D spectral estimation methods.

    PubMed

    DeGraaf, S R

    1998-01-01

    This paper discusses the use of modern 2D spectral estimation algorithms for synthetic aperture radar (SAR) imaging. The motivation for applying power spectrum estimation methods to SAR imaging is to improve resolution, remove sidelobe artifacts, and reduce speckle compared to what is possible with conventional Fourier transform SAR imaging techniques. This paper makes two principal contributions to the field of adaptive SAR imaging. First, it is a comprehensive comparison of 2D spectral estimation methods for SAR imaging. It provides a synopsis of the algorithms available, discusses their relative merits for SAR imaging, and illustrates their performance on simulated and collected SAR imagery. Some of the algorithms presented or their derivations are new, as are some of the insights into or analyses of the algorithms. Second, this work develops multichannel variants of four related algorithms, minimum variance method (MVM), reduced-rank MVM (RRMVM), adaptive sidelobe reduction (ASR) and space variant apodization (SVA) to estimate both reflectivity intensity and interferometric height from polarimetric displaced-aperture interferometric data. All of these interferometric variants are new. In the interferometric contest, adaptive spectral estimation can improve the height estimates through a combination of adaptive nulling and averaging. Examples illustrate that MVM, ASR, and SVA offer significant advantages over Fourier methods for estimating both scattering intensity and interferometric height, and allow empirical comparison of the accuracies of Fourier, MVM, ASR, and SVA interferometric height estimates.

  18. 2D/3D image (facial) comparison using camera matching.

    PubMed

    Goos, Mirelle I M; Alberink, Ivo B; Ruifrok, Arnout C C

    2006-11-10

    A problem in forensic facial comparison of images of perpetrators and suspects is that distances between fixed anatomical points in the face, which form a good starting point for objective, anthropometric comparison, vary strongly according to the position and orientation of the camera. In case of a cooperating suspect, a 3D image may be taken using e.g. a laser scanning device. By projecting the 3D image onto a 2D image with the suspect's head in the same pose as that of the perpetrator, using the same focal length and pixel aspect ratio, numerical comparison of (ratios of) distances between fixed points becomes feasible. An experiment was performed in which, starting from two 3D scans and one 2D image of two colleagues, male and female, and using seven fixed anatomical locations in the face, comparisons were made for the matching and non-matching case. Using this method, the non-matching pair cannot be distinguished from the matching pair of faces. Facial expression and resolution of images were all more or less optimal, and the results of the study are not encouraging for the use of anthropometric arguments in the identification process. More research needs to be done though on larger sets of facial comparisons. PMID:16337353

  19. Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo.

    PubMed

    Shimada, Yasushi; Nakagawa, Hisaichi; Sadr, Alireza; Wada, Ikumi; Nakajima, Masatoshi; Nikaido, Toru; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori

    2014-07-01

    The aim of this study was to determine the diagnostic accuracy of swept-source optical coherent tomography (SS-OCT) in detecting and estimating the depth of proximal caries in posterior teeth in vivo. SS-OCT images and bitewing radiographs were obtained from 86 proximal surfaces of 53 patients. Six examiners scored the locations according to a caries lesion depth scale (0-4) using SS-OCT and the radiographs. The results were compared with clinical observations obtained after the treatment. SS-OCT could detect the presence of proximal caries in tomograms that were synthesized based on the backscatter signal obtained from the proximal carious lesion through occlusal enamel. SS-OCT showed significantly higher sensitivity and larger area under the receiver operating characteristic curve than radiographs for the detection of cavitated enamel lesions and dentin caries (Student's t -test, p < 0.05). SS-OCT appears to be a more reliable and accurate method than bitewing radiographs for the detection and estimation of the depth of proximal lesions in the clinical environment.

  20. Radar cross section of insects

    NASA Astrophysics Data System (ADS)

    Riley, J. R.

    1985-02-01

    X-band measurements of radar cross section as a function of the angle between insect body axis and the plane of polarization are presented. A finding of particular interest is that in larger insects, maximum cross section occurs when the E-vector is perpendicular to the body axis. A new range of measurements on small insects (aphids, and planthoppers) is also described, and a comprehensive summary of insect cross-section data at X-band is given.

  1. Recovery of optical cross-section perturbations in dense-scattering media by transport-theory-based imaging operators and steady-state simulated data.

    PubMed

    Chang, J; Graber, H L; Barbour, R L; Aronson, R

    1996-07-10

    We present a useful strategy for imaging perturbations of the macroscopic absorption cross section of dense-scattering media using steady-state light sources. A perturbation model based on transport theory is derived, and the inverse problem is simplified to a system of linear equations, WΔμ = ΔR, where W is the weight matrix, Δμ is a vector of the unknown perturbations, and ΔR is the vector of detector readings. Monte Carlo simulations compute the photon flux across the surfaces of phantoms containing simple or complex inhomogeneities. Calculation of the weight matrix is also based on the results of Monte Carlo simulations. Three reconstruction algorithms-conjugate gradient descent, projection onto convex sets, and the simultaneous algebraic reconstruction technique, with or without imposed positivity constraints-are used for image reconstruction. A rescaling technique that improves the conditioning of the weight matrix is also developed. Results show that the analysis of time-independent data by a perturbation model is capable of resolving the internal structure of a dense-scattering medium. Imposition of positivity constraints improves image quality at the cost of a reduced convergence rate. Use of the rescaling technique increases the initial rate of convergence, resulting in accurate images in a smaller number of iterations.

  2. Iterative 2D deconvolution of portal imaging radiographs.

    PubMed

    Looe, Hui Khee; Harder, Dietrich; Willborn, Kay C; Poppe, Björn

    2011-01-01

    Portal imaging has become an integral part of modern radiotherapy techniques such as IMRT and IGRT. It serves to verify the accuracy of day-to-day patient positioning, a prerequisite for treatment success. However, image blurring attributable to different physical and geometrical effects, analysed in this work, impairs the image quality of the portal images, and anatomical structures cannot always be clearly outlined. A 2D iterative deconvolution method was developed to reduce this image blurring. The affiliated data basis was generated by the separate measurement of the components contributing to image blurring. Secondary electron transport and pixel size within the EPID, as well as geometrical penumbra due to the finite photon source size were found to be the major contributors, whereas photon scattering in the patient is less important. The underlying line-spread kernels of these components were shown to be Lorentz functions. This implies that each of these convolution kernels and also their combination can be characterized by a single characteristic, the width parameter λ of the Lorentz function. The overall resulting λ values were 0.5mm for 6 MV and 0.65 mm for 15 MV. Portal images were deconvolved using the point-spread function derived from the Lorentz function together with the experimentally determined λ values. The improvement of the portal images was quantified in terms of the modulation transfer function of a bar pattern. The resulting clinical images show a clear enhancement of sharpness and contrast.

  3. Imaging secondary ion mass spectrometry of a paint cross section taken from an early Netherlandish painting by Rogier van der Weyden.

    PubMed

    Keune, Katrien; Boon, Jaap J

    2004-03-01

    Static secondary ion mass spectrometry (SIMS) is introduced as an analytical technique for the examination of paint cross sections to obtain simultaneous information about the nature and distribution of pigments and the binding medium from a single sample. A sample taken from the virgin's blue robe in the panel painting The Descent from the Cross (Museo del Prado, Madrid) of the Early Netherlandish painter Rogier van der Weyden (1399/1400-1464) was selected for investigation. Data were compared with reference compounds and reference lead white linseed oil paint and egg tempera paint. The static SIMS technique gave position-sensitive mass spectra that were used to image the elemental distribution of pigments and the molecular signature of components of the oleaginous binding medium. SIMS ion images of sodium and aluminum superimposed with the blue pigment ultramarine and those of copper, lead, and calcium with the position of the mineral pigments of azurite, lead white, and chalk, respectively. Preserved monocarboxylic acids of palmitic and stearic acids present as fatty acids and fatty acid lead soaps pointed to the use of linseed oil as a binding medium. Images from the oleaginous binding medium fatty acids show a correlation with the three main paint layers. The observed palmitic/stearic acid ratios for the two ultramarine layers and azurite layers are 1.3, 1.4, and 1.8, respectively. Fatty acids and fatty acid soaps show highest ion yields near lead white, a mineral pigment that serves as a natural chemical drier and is proposed to act as a template for the initial grafting of the polyunsaturated triglycerides of the linseed oil. Almost no fatty acids were detected in other layers visible by light microscopy. The fatty acid lead soaps point toward a mature ionomeric oil paint system that developed over centuries. SIMS evidence for egg tempera, still used in the 15th century, is not detected in the paint cross section. SIMS images correlate well with SEM/EDX, FT

  4. Imaging secondary ion mass spectrometry of a paint cross section taken from an early Netherlandish painting by Rogier van der Weyden.

    PubMed

    Keune, Katrien; Boon, Jaap J

    2004-03-01

    Static secondary ion mass spectrometry (SIMS) is introduced as an analytical technique for the examination of paint cross sections to obtain simultaneous information about the nature and distribution of pigments and the binding medium from a single sample. A sample taken from the virgin's blue robe in the panel painting The Descent from the Cross (Museo del Prado, Madrid) of the Early Netherlandish painter Rogier van der Weyden (1399/1400-1464) was selected for investigation. Data were compared with reference compounds and reference lead white linseed oil paint and egg tempera paint. The static SIMS technique gave position-sensitive mass spectra that were used to image the elemental distribution of pigments and the molecular signature of components of the oleaginous binding medium. SIMS ion images of sodium and aluminum superimposed with the blue pigment ultramarine and those of copper, lead, and calcium with the position of the mineral pigments of azurite, lead white, and chalk, respectively. Preserved monocarboxylic acids of palmitic and stearic acids present as fatty acids and fatty acid lead soaps pointed to the use of linseed oil as a binding medium. Images from the oleaginous binding medium fatty acids show a correlation with the three main paint layers. The observed palmitic/stearic acid ratios for the two ultramarine layers and azurite layers are 1.3, 1.4, and 1.8, respectively. Fatty acids and fatty acid soaps show highest ion yields near lead white, a mineral pigment that serves as a natural chemical drier and is proposed to act as a template for the initial grafting of the polyunsaturated triglycerides of the linseed oil. Almost no fatty acids were detected in other layers visible by light microscopy. The fatty acid lead soaps point toward a mature ionomeric oil paint system that developed over centuries. SIMS evidence for egg tempera, still used in the 15th century, is not detected in the paint cross section. SIMS images correlate well with SEM/EDX, FT

  5. Attenuation-based estimation of patient size for the purpose of size specific dose estimation in CT. Part II. Implementation on abdomen and thorax phantoms using cross sectional CT images and scanned projection radiograph images

    SciTech Connect

    Wang Jia; Christner, Jodie A.; Duan Xinhui; Leng Shuai; Yu Lifeng; McCollough, Cynthia H.

    2012-11-15

    Purpose: To estimate attenuation using cross sectional CT images and scanned projection radiograph (SPR) images in a series of thorax and abdomen phantoms. Methods: Attenuation was quantified in terms of a water cylinder with cross sectional area of A{sub w} from both the CT and SPR images of abdomen and thorax phantoms, where A{sub w} is the area of a water cylinder that would absorb the same dose as the specified phantom. SPR and axial CT images were acquired using a dual-source CT scanner operated at 120 kV in single-source mode. To use the SPR image for estimating A{sub w}, the pixel values of a SPR image were calibrated to physical water attenuation using a series of water phantoms. A{sub w} and the corresponding diameter D{sub w} were calculated using the derived attenuation-based methods (from either CT or SPR image). A{sub w} was also calculated using only geometrical dimensions of the phantoms (anterior-posterior and lateral dimensions or cross sectional area). Results: For abdomen phantoms, the geometry-based and attenuation-based methods gave similar results for D{sub w}. Using only geometric parameters, an overestimation of D{sub w} ranging from 4.3% to 21.5% was found for thorax phantoms. Results for D{sub w} using the CT image and SPR based methods agreed with each other within 4% on average in both thorax and abdomen phantoms. Conclusions: Either the cross sectional CT or SPR images can be used to estimate patient attenuation in CT. Both are more accurate than use of only geometrical information for the task of quantifying patient attenuation. The SPR based method requires calibration of SPR pixel values to physical water attenuation and this calibration would be best performed by the scanner manufacturer.

  6. XCOM: Photon Cross Sections Database

    National Institute of Standards and Technology Data Gateway

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  7. 2D optoacoustic array for high resolution imaging

    NASA Astrophysics Data System (ADS)

    Ashkenazi, S.; Witte, R. S.; Kim, K.; Huang, S.-W.; Hou, Y.; O'Donnell, M.

    2006-02-01

    An optoacoustic detector denotes the detection of acoustic signals by optical devices. Recent advances in fabrication techniques and the availability of high power tunable laser sources have greatly accelerated the development of efficient optoacoustic detectors. The unique advantages of optoacoustic technology are of special interest in applications that require high resolution imaging. For these applications optoacoustic technology enables high frequency transducer arrays with element size on the order of 10 μm. Laser generated ultrasound (photoacoustic effect) has been studied since the early observations of A.G. Bell (1880) of audible sound generated by light absorption . Modern studies have demonstrated the use of the photoacoustic effect to form a versatile imaging modality for medical and biological applications. A short laser pulse illuminates a tissue creating rapid thermal expansion and acoustic emission. Detection of the resulting acoustic field by an array enables the imaging of the tissue optical absorption using ultrasonic imaging methods. We present an integrated imaging system that employs photoacoustic sound generation and 2D optoacoustic reception. The optoacoustic receiver consists of a thin polymer Fabry-Perot etalon. The etalon is an optical resonator of a high quality factor (Q = 750). The relatively low elasticity modulus of the polymer and the high Q-factor of the resonator combine to yield high ultrasound sensitivity. The etalon thickness (10 μm) was optimized for wide bandwidth (typically above 50 MHz). An optical scanning and focusing system is used to create a large aperture and high density 2D ultrasonic receiver array. High resolution 3D images of phantom targets and biological tissue samples were obtained.

  8. Genetic parameters for image analysis traits on M. longissimus thoracis and M. trapezius of carcass cross section in Japanese Black steers.

    PubMed

    Osawa, T; Kuchida, K; Hidaka, S; Kato, T

    2008-01-01

    In Japan, the degree of marbling in ribeye (M. longissimus thoracis) is evaluated in the beef meat grading process. However, other muscles (e.g., M. trapezius) are also important in determining the meat quality and carcass market prices. The purpose of this study was to estimate genetic parameters for M. longissimus thoracis (M-LONG) and M. trapezius (M-TRAP) of carcass cross section of Japanese Black steers by computer image analysis. The number of records of Japanese Black steers and the number of pedigree records were 2,925 and 10,889, respectively. Digital images of the carcass cross section were taken between the sixth and seventh ribs by photographing equipment. Muscle area (MA), fat area ratio (FAR), overall coarseness of marbling particles (OCM), and coarseness of maximum marbling particle (MMC) in M-LONG and M-TRAP were calculated by image analysis. Genetic parameters for these traits were estimated using the AIREMLF90 program with an animal model. Fixed effects that were included in the model were dates of arrival at the carcass market and slaughter age (mo), and random effects of fattening farms, additive genetic effects and residuals were included in the model. For M-LONG, heritability estimates (+/-SE) were 0.46 +/- 0.06, 0.59 +/- 0.06, 0.47 +/- 0.06, and 0.20 +/- 0.05 for MA, FAR, OCM, and MMC, respectively. Heritability estimates (+/-SE) in M-TRAP were 0.47 +/- 0.06, 0.57 +/- 0.07, 0.49 +/- 0.07, and 0.13 +/- 0.04 for the same traits. Genetic correlations between subcutaneous fat thickness and FAR for M-LONG and M-TRAP were negative (-0.21 and -0.19, respectively). Those correlations between M-LONG and M-TRAP were moderate to high for MA, FAR, OCM, and MMC (0.38, 0.52, 0.39, and 0.60, respectively). These results indicate that other muscles including M-LONG should be evaluated for more efficient genetic improvement.

  9. 2-D Drift Velocities from the IMAGE EUV Plasmaspheric Imager

    NASA Technical Reports Server (NTRS)

    Gallagher, D.; Adrian, M.

    2007-01-01

    The IMAGE Mission extreme ultraviolet imager (EUY) observes He+ plasmaspheric ions throughout the inner magnetosphere. Limited by ionizing radiation and viewing close to the Sun, images of the He+ distribution are available every 10 minutes for many hours as the spacecraft passes through apogee in its highly elliptical orbit. As a consistent constituent at about 15%, He+ is an excellent surrogate for monitoring all of the processes that control the dynamics of plasmaspheric plasma. In particular, the motion ofHe+ transverse to the ambient magnetic field is a direct indication of convective electric fields. The analysis of boundary motions has already achieved new insights into the electrodynamic coupling processes taking place between energetic magnetospheric plasmas and the ionosphere. Yet to be fulfilled, however, is the original promise that global EUY images of the plasmasphere might yield two-dimensional pictures of meso-scale to macro-scale electric fields in the inner magnetosphere. This work details the technique and initial application of an IMAGE EUY analysis that appears capable of following thermal plasma motion on a global basis.

  10. 2-D Drift Velocities from the IMAGE EUV Plasmaspheric Imager

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    2006-01-01

    The IMAGE Mission extreme ultraviolet imager (EW) observes He(+) plasmaspheric ions throughout the inner magnetosphere. Limited by ionizing radiation and viewing close to the Sun, images of the He(+) distribution are available every 10 minutes for many hours as the spacecraft passes through apogee in its highly elliptical orbit. As a consistent constituent at about 15%, He(+) is an excellent surrogate for monitoring all of the processes that control the dynamics of plasmaspheric plasma. In particular, the motion of He' transverse to the ambient magnetic field is a direct indication of convective electric fields. The analysis of boundary motions has already achieved new insights into the electrodynamic coupling processes taking place between energetic magnetospheric plasmas and the ionosphere. Yet to be fulfilled, however, is the original promise that global E W images of the plasmasphere might yield two-dimensional pictures of mesoscale to macro-scale electric fields in the inner magnetosphere. This work details the technique and initial application of an IMAGE EUV analysis that appears capable of following thermal plasma motion on a global basis.

  11. A Cross-sectional Study of the Pattern of Body Image Perception among Female Students of BBM College in Vijayapur, North Karnataka

    PubMed Central

    Patil, Shailaja S.; Angadi, Mahabaleshwar Mahantappa; Pattankar, Tanuja P.

    2016-01-01

    Introduction Body image is an essential aspect of young girls’ self-definition and individual identity which is influenced by various biological, psychological and social factors. Excessive concern about body image, body image misconception are leading to dissatisfaction, disturbed eating patterns, affecting the nutritional status and also leading to depression and anxiety disorders. This concept of body image has been less explored in Indian context, especially among young girls. Aims The objectives of the study were to assess the body image perception among young college going girls, using a visual analog scale and to compare body image perception and satisfaction with their BMI levels and weight changing methods adopted. Materials and Methods An exploratory cross-sectional study was conducted among 63 female students studying BBM course at a private commerce institution in Vijayapur city. Data was collected using a self administered questionnaire containing details of basic socio-demographic information and a validated visual analogue scale. Height was measured by Seca Stadiometer, weight was measured using Digital weighing machine and Body Mass Index levels were calculated. Percentages were calculated for descriptive variables. Chi-square test was applied for analysing categorical variables. Spearman Rank correlation test was applied for analysing ordinal data. Results A 39.7% of participants were underweight and 15.9% were overweight/obese. Majority of underweight and overweight girls (72% and 89%, respectively) perceived themselves as normal weight. Body image satisfaction of participants was found to be significantly associated with their body image perception, mothers’ educational status and also with relatives’ and peer group’s opinions about their body weight. Unhealthy weight changing patterns like skipping meals (13%), increasing quantity and frequency of meals (17%) were reported among study participants Conclusion This exploratory study

  12. A Cross-sectional Study of the Pattern of Body Image Perception among Female Students of BBM College in Vijayapur, North Karnataka

    PubMed Central

    Patil, Shailaja S.; Angadi, Mahabaleshwar Mahantappa; Pattankar, Tanuja P.

    2016-01-01

    Introduction Body image is an essential aspect of young girls’ self-definition and individual identity which is influenced by various biological, psychological and social factors. Excessive concern about body image, body image misconception are leading to dissatisfaction, disturbed eating patterns, affecting the nutritional status and also leading to depression and anxiety disorders. This concept of body image has been less explored in Indian context, especially among young girls. Aims The objectives of the study were to assess the body image perception among young college going girls, using a visual analog scale and to compare body image perception and satisfaction with their BMI levels and weight changing methods adopted. Materials and Methods An exploratory cross-sectional study was conducted among 63 female students studying BBM course at a private commerce institution in Vijayapur city. Data was collected using a self administered questionnaire containing details of basic socio-demographic information and a validated visual analogue scale. Height was measured by Seca Stadiometer, weight was measured using Digital weighing machine and Body Mass Index levels were calculated. Percentages were calculated for descriptive variables. Chi-square test was applied for analysing categorical variables. Spearman Rank correlation test was applied for analysing ordinal data. Results A 39.7% of participants were underweight and 15.9% were overweight/obese. Majority of underweight and overweight girls (72% and 89%, respectively) perceived themselves as normal weight. Body image satisfaction of participants was found to be significantly associated with their body image perception, mothers’ educational status and also with relatives’ and peer group’s opinions about their body weight. Unhealthy weight changing patterns like skipping meals (13%), increasing quantity and frequency of meals (17%) were reported among study participants Conclusion This exploratory study

  13. Estimation of 3-D pore network coordination number of rocks from watershed segmentation of a single 2-D image

    NASA Astrophysics Data System (ADS)

    Rabbani, Arash; Ayatollahi, Shahab; Kharrat, Riyaz; Dashti, Nader

    2016-08-01

    In this study, we have utilized 3-D micro-tomography images of real and synthetic rocks to introduce two mathematical correlations which estimate the distribution parameters of 3-D coordination number using a single 2-D cross-sectional image. By applying a watershed segmentation algorithm, it is found that the distribution of 3-D coordination number is acceptably predictable by statistical analysis of the network extracted from 2-D images. In this study, we have utilized 25 volumetric images of rocks in order to propose two mathematical formulas. These formulas aim to approximate the average and standard deviation of coordination number in 3-D pore networks. Then, the formulas are applied for five independent test samples to evaluate the reliability. Finally, pore network flow modeling is used to find the error of absolute permeability prediction using estimated and measured coordination numbers. Results show that the 2-D images are considerably informative about the 3-D network of the rocks and can be utilized to approximate the 3-D connectivity of the porous spaces with determination coefficient of about 0.85 that seems to be acceptable considering the variety of the studied samples.

  14. Association between genetic taste sensitivity, 2D:4D ratio, dental caries prevalence, and salivary flow rate in 6-14-year-old children: a cross-sectional study

    PubMed Central

    Lakshmi, Chintamaneni Raja; Radhika, Doppalapudi; Prabhat, Mpv; Bhavana, Sujana mulk; Sai Madhavi, Nallamilli

    2016-01-01

    Background. The aim of this study was to assess the relationship between genetic taste sensitivity, dietary preferences and salivary flow rate in 6‒14-year-old children for identification of individuals at higher risk of developing dental caries. Methods. A total of 500 children 6‒14 years of age, of both genders, who reported to the Department of Oral Medicine and Radiology, were included. Propylthiouracil (PROP) sensitivity test was carried out and the subjects whose perception was bitter were grouped as tasters, whereas those who were unable to perceive any taste were grouped as non-tasters. The 2D:4D ratio was obtained by measuring the length ratio of index finger to ring finger with the help of a digital Vernier caliper. Evaluation of dietary preferences was carried out using a 24-hour dietary recall and accordingly they were categorized as sweet likers and dislikers. The salivary flow rate was estimated by collecting unstimulated saliva by spitting method. Data were analyzed with Student’s t-test and chi-squared test. Results. The results suggested a positive relation between low digit ratio (2D:4D), non-tasters, sweet likers and high caries index among the participants with a highly significant statistical difference (P ≤ 0.000). Tasters had high mean of USSR (0.48) than non-tasters (0.29), which was statistically significant. Conclusion. The present research revealed a positive correlation between all the parameters evaluated. Therefore an individual considered as non-taster by PROP was a sweet liker with low 2D:4D ratio, reduced salivary flow rate and high caries index.

  15. Association between genetic taste sensitivity, 2D:4D ratio, dental caries prevalence, and salivary flow rate in 6-14-year-old children: a cross-sectional study

    PubMed Central

    Lakshmi, Chintamaneni Raja; Radhika, Doppalapudi; Prabhat, Mpv; Bhavana, Sujana mulk; Sai Madhavi, Nallamilli

    2016-01-01

    Background. The aim of this study was to assess the relationship between genetic taste sensitivity, dietary preferences and salivary flow rate in 6‒14-year-old children for identification of individuals at higher risk of developing dental caries. Methods. A total of 500 children 6‒14 years of age, of both genders, who reported to the Department of Oral Medicine and Radiology, were included. Propylthiouracil (PROP) sensitivity test was carried out and the subjects whose perception was bitter were grouped as tasters, whereas those who were unable to perceive any taste were grouped as non-tasters. The 2D:4D ratio was obtained by measuring the length ratio of index finger to ring finger with the help of a digital Vernier caliper. Evaluation of dietary preferences was carried out using a 24-hour dietary recall and accordingly they were categorized as sweet likers and dislikers. The salivary flow rate was estimated by collecting unstimulated saliva by spitting method. Data were analyzed with Student’s t-test and chi-squared test. Results. The results suggested a positive relation between low digit ratio (2D:4D), non-tasters, sweet likers and high caries index among the participants with a highly significant statistical difference (P ≤ 0.000). Tasters had high mean of USSR (0.48) than non-tasters (0.29), which was statistically significant. Conclusion. The present research revealed a positive correlation between all the parameters evaluated. Therefore an individual considered as non-taster by PROP was a sweet liker with low 2D:4D ratio, reduced salivary flow rate and high caries index. PMID:27651879

  16. Association between genetic taste sensitivity, 2D:4D ratio, dental caries prevalence, and salivary flow rate in 6-14-year-old children: a cross-sectional study.

    PubMed

    Lakshmi, Chintamaneni Raja; Radhika, Doppalapudi; Prabhat, Mpv; Bhavana, Sujana Mulk; Sai Madhavi, Nallamilli

    2016-01-01

    Background. The aim of this study was to assess the relationship between genetic taste sensitivity, dietary preferences and salivary flow rate in 6‒14-year-old children for identification of individuals at higher risk of developing dental caries. Methods. A total of 500 children 6‒14 years of age, of both genders, who reported to the Department of Oral Medicine and Radiology, were included. Propylthiouracil (PROP) sensitivity test was carried out and the subjects whose perception was bitter were grouped as tasters, whereas those who were unable to perceive any taste were grouped as non-tasters. The 2D:4D ratio was obtained by measuring the length ratio of index finger to ring finger with the help of a digital Vernier caliper. Evaluation of dietary preferences was carried out using a 24-hour dietary recall and accordingly they were categorized as sweet likers and dislikers. The salivary flow rate was estimated by collecting unstimulated saliva by spitting method. Data were analyzed with Student's t-test and chi-squared test. Results. The results suggested a positive relation between low digit ratio (2D:4D), non-tasters, sweet likers and high caries index among the participants with a highly significant statistical difference (P ≤ 0.000). Tasters had high mean of USSR (0.48) than non-tasters (0.29), which was statistically significant. Conclusion. The present research revealed a positive correlation between all the parameters evaluated. Therefore an individual considered as non-taster by PROP was a sweet liker with low 2D:4D ratio, reduced salivary flow rate and high caries index. PMID:27651879

  17. Thermoelastic damping in microrings with circular cross-section

    NASA Astrophysics Data System (ADS)

    Li, Pu; Fang, Yuming; Zhang, Jianrun

    2016-01-01

    Predicting thermoelastic damping (TED) is crucial in the design of high Q micro-resonators. Microrings are often critical components in many micro-resonators. Some analytical models for TED in microrings have already been developed in the past. However, the previous works are limited to the microrings with rectangular cross-section. The temperature field in the rectangular cross-section is one-dimensional. This paper deals with TED in the microrings with circular cross-section. The temperature field in the circular cross-section is two-dimensional. This paper first presents a 2-D analytical model for TED in the microrings with circular cross-section. Only the two-dimensional heat conduction in the circular cross-section is considered. The heat conduction along the circumferential direction of the microring is neglected in the 2-D model. Then the 2-D model has been extended to cover the circumferential heat conduction, and a 3-D analytical model for TED has been developed. The analytical results from the present 2-D and 3-D models show good agreement with the numerical results of FEM model. The limitations of the present 2-D analytical model are assessed.

  18. Imaging More Imagining less: An Insight into Knowledge, Attitude and Practice Regarding Radiation Risk on Pregnant Women among Dentists of Ghaziabad – A Cross Sectional Study

    PubMed Central

    Gupta, Ritu; Patthi, Basavaraj; Singla, Ashish; Pandita, Venisha; Kumar, Jishnu Krishna; Malhi, Ravneet; Vashishtha, Vaibhav

    2016-01-01

    Introduction The safety of diagnostic imaging during pregnancy is an important aspect for all clinicians. Pregnant women often do not receive proper dental care as the dentists are not aware of low diagnostic radiation doses involved in dental radiation. Aim To assess awareness of radiation risks on pregnant women among dentists of Ghaziabad city. Materials and Methods A total of 268 practicing dentists in Ghaziabad were selected for a questionnaire based cross-sectional study. Data consisted of 18 questions which assessed the knowledge, attitude and practice of dental professionals regarding radiation risks on pregnant women. The questionnaire was distributed and collected personally by the principal investigator. Data was analyzed by Mann Whitney U test and chi-square test. The level of significance was set at p ≤ 0.05. Results The results showed that the dentists who had attended continuing dental education program had increased level of knowledge regarding radiation effects among pregnant women as compared to the dentists who had not attended continuing dental education programs (p<0.05). Among them who had attended continuing dental education programs 93.3% were aware of the safe dose of radiation and 62% were aware of threshold radiation doses of pregnancy termination. On the contrary there was no significant difference in the knowledge, attitude and practice scores regarding radiation risks on pregnant women based on their academic qualification (p≥0.05). Conclusion The level of knowledge among dentists was found to be satisfactory, this outcome shows that continuing dental education regarding radiation protection principles and its risks on pregnant women is required to ensure maximum safety both for clinician as well as pregnant women. PMID:27630947

  19. Learning of Cross-Sectional Anatomy Using Clay Models

    ERIC Educational Resources Information Center

    Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon

    2009-01-01

    We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…

  20. Accurate Cross Sections for Microanalysis

    PubMed Central

    Rez, Peter

    2002-01-01

    To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a few elements. Results of systematic plane wave Born approximation calculations with exchange for K, L, and M shell ionization cross sections over the range of electron energies used in microanalysis are presented. Comparisons are made with experimental measurement for selected K shells and it is shown that the plane wave theory is not appropriate for overvoltages less than 2.5 V. PMID:27446747

  1. Average Cross-Sectional Area of DebriSat Fragments Using Volumetrically Constructed 3D Representations

    NASA Technical Reports Server (NTRS)

    Scruggs, T.; Moraguez, M.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.

    2016-01-01

    Debris fragments from the hypervelocity impact testing of DebriSat are being collected and characterized for use in updating existing satellite breakup models. One of the key parameters utilized in these models is the ballistic coefficient of the fragment which is directly related to its area-to-mass ratio. However, since the attitude of fragments varies during their orbital lifetime, it is customary to use the average cross-sectional area in the calculation of the area-to-mass ratio. The average cross-sectional area is defined as the average of the projected surface areas perpendicular to the direction of motion and has been shown to be equal to one-fourth of the total surface area of a convex object. Unfortunately, numerous fragments obtained from the DebriSat experiment show significant concavity (i.e., shadowing) and thus we have explored alternate methods for computing the average cross-sectional area of the fragments. An imaging system based on the volumetric reconstruction of a 3D object from multiple 2D photographs of the object was developed for use in determining the size characteristic (i.e., characteristics length) of the DebriSat fragments. For each fragment, the imaging system generates N number of images from varied azimuth and elevation angles and processes them using a space-carving algorithm to construct a 3D point cloud of the fragment. This paper describes two approaches for calculating the average cross-sectional area of debris fragments based on the 3D imager. Approach A utilizes the constructed 3D object to generate equally distributed cross-sectional area projections and then averages them to determine the average cross-sectional area. Approach B utilizes a weighted average of the area of the 2D photographs to directly compute the average cross-sectional area. A comparison of the accuracy and computational needs of each approach is described as well as preliminary results of an analysis to determine the "optimal" number of images needed for

  2. Neutrino cross-sections: Experiments

    SciTech Connect

    Sánchez, F.

    2015-07-15

    Neutrino-nucleus cross-sections are as of today the main source of systematic errors for oscillation experiments together with neutrino flux uncertainties. Despite recent experimental and theoretical developments, future experiments require even higher precisions in their search of CP violation. We will review the experimental status and explore possible future developments required by next generation of experiments.

  3. The Value of Neurosurgical and Intraoperative Magnetic Resonance Imaging and Diffusion Tensor Imaging Tractography in Clinically Integrated Neuroanatomy Modules: A Cross-Sectional Study

    ERIC Educational Resources Information Center

    Familiari, Giuseppe; Relucenti, Michela; Heyn, Rosemarie; Baldini, Rossella; D'Andrea, Giancarlo; Familiari, Pietro; Bozzao, Alessandro; Raco, Antonino

    2013-01-01

    Neuroanatomy is considered to be one of the most difficult anatomical subjects for students. To provide motivation and improve learning outcomes in this area, clinical cases and neurosurgical images from diffusion tensor imaging (DTI) tractographies produced using an intraoperative magnetic resonance imaging apparatus (MRI/DTI) were presented and…

  4. Measuring Abdominal Circumference and Skeletal Muscle From a Single Cross-Sectional Computed Tomography Image: A Step-by-Step Guide for Clinicians Using National Institutes of Health ImageJ.

    PubMed

    Gomez-Perez, Sandra L; Haus, Jacob M; Sheean, Patricia; Patel, Bimal; Mar, Winnie; Chaudhry, Vivek; McKeever, Liam; Braunschweig, Carol

    2016-03-01

    Diagnostic computed tomography (CT) scans provide numerous opportunities for body composition analysis, including quantification of abdominal circumference, abdominal adipose tissues (subcutaneous, visceral, and intermuscular), and skeletal muscle (SM). CT scans are commonly performed for diagnostic purposes in clinical settings, and methods for estimating abdominal circumference and whole-body SM mass from them have been reported. A supine abdominal circumference is a valid measure of waist circumference (WC). The valid correlation between a single cross-sectional CT image (slice) at third lumbar (L3) for abdominal SM and whole-body SM is also well established. Sarcopenia refers to the age-associated decreased in muscle mass and function. A single dimensional definition of sarcopenia using CT images that includes only assessment of low whole-body SM has been validated in clinical populations and significantly associated with negative outcomes. However, despite the availability and precision of SM data from CT scans and the relationship between these measurements and clinical outcomes, they have not become a routine component of clinical nutrition assessment. Lack of time, training, and expense are potential barriers that prevent clinicians from fully embracing this technique. This tutorial presents a systematic, step-by-step guide to quickly quantify abdominal circumference as a proxy for WC and SM using a cross-sectional CT image from a regional diagnostic CT scan for clinical identification of sarcopenia. Multiple software options are available, but this tutorial uses ImageJ, a free public-domain software developed by the National Institutes of Health.

  5. High resolution imaging in cross-section of a metal-oxide-semiconductor field-effect-transistor using super-higher-order nonlinear dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Chinone, N.; Yamasue, K.; Honda, K.; Cho, Y.

    2013-11-01

    Scanning nonlinear dielectric microscopy (SNDM) can evaluate carrier or charge distribution in semiconductor devices. High sensitivity to capacitance variation enables SNDM to measure the super-high-order (higher than 3rd) derivative of local capacitance-voltage (C-V) characteristics directly under the tip (dnC/dVn,n = 3, 4, ...). We demonstrate improvement of carrier density resolution by measurement of dnC/dVn,n = 1, 2, 3, 4 (super-higher-order method) in the cross-sectional observation of metal-oxide-semiconductor field-effect-transistor.

  6. Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration.

    PubMed

    de Bruin, P W; Kaptein, B L; Stoel, B C; Reiber, J H C; Rozing, P M; Valstar, E R

    2008-01-01

    Image-based Roentgen stereophotogrammetric analysis (IBRSA) integrates 2D-3D image registration and conventional RSA. Instead of radiopaque RSA bone markers, IBRSA uses 3D CT data, from which digitally reconstructed radiographs (DRRs) are generated. Using 2D-3D image registration, the 3D pose of the CT is iteratively adjusted such that the generated DRRs resemble the 2D RSA images as closely as possible, according to an image matching metric. Effectively, by registering all 2D follow-up moments to the same 3D CT, the CT volume functions as common ground. In two experiments, using RSA and using a micromanipulator as gold standard, IBRSA has been validated on cadaveric and sawbone scapula radiographs, and good matching results have been achieved. The accuracy was: |mu |< 0.083 mm for translations and |mu| < 0.023 degrees for rotations. The precision sigma in x-, y-, and z-direction was 0.090, 0.077, and 0.220 mm for translations and 0.155 degrees , 0.243 degrees , and 0.074 degrees for rotations. Our results show that the accuracy and precision of in vitro IBRSA, performed under ideal laboratory conditions, are lower than in vitro standard RSA but higher than in vivo standard RSA. Because IBRSA does not require radiopaque markers, it adds functionality to the RSA method by opening new directions and possibilities for research, such as dynamic analyses using fluoroscopy on subjects without markers and computer navigation applications.

  7. Recommended Dosimetry Cross Section Compendium.

    1994-07-11

    Version 00 The data is recommended for spectrum determination applications and for the prediction of neutron activation of typical radiation sensor materials. The library has been tested for consistency of the cross sections in a wide variety of neutron environments. The results and cautions from this testing have been documented. The data has been interfaced with radiation transport codes, such as TWODANT-SYS (CCC-547) and MCNP (CCC-200), in order to compare calculated and measured activities formore » benchmark reactor experiments.« less

  8. Arbitrary cross-section SEM-cathodoluminescence imaging of growth sectors and local carrier concentrations within micro-sampled semiconductor nanorods

    PubMed Central

    Watanabe, Kentaro; Nagata, Takahiro; Oh, Seungjun; Wakayama, Yutaka; Sekiguchi, Takashi; Volk, János; Nakamura, Yoshiaki

    2016-01-01

    Future one-dimensional electronics require single-crystalline semiconductor free-standing nanorods grown with uniform electrical properties. However, this is currently unrealistic as each crystallographic plane of a nanorod grows at unique incorporation rates of environmental dopants, which forms axial and lateral growth sectors with different carrier concentrations. Here we propose a series of techniques that micro-sample a free-standing nanorod of interest, fabricate its arbitrary cross-sections by controlling focused ion beam incidence orientation, and visualize its internal carrier concentration map. ZnO nanorods are grown by selective area homoepitaxy in precursor aqueous solution, each of which has a (0001):+c top-plane and six {1–100}:m side-planes. Near-band-edge cathodoluminescence nanospectroscopy evaluates carrier concentration map within a nanorod at high spatial resolution (60 nm) and high sensitivity. It also visualizes +c and m growth sectors at arbitrary nanorod cross-section and history of local transient growth events within each growth sector. Our technique paves the way for well-defined bottom-up nanoelectronics. PMID:26881966

  9. Arbitrary cross-section SEM-cathodoluminescence imaging of growth sectors and local carrier concentrations within micro-sampled semiconductor nanorods

    NASA Astrophysics Data System (ADS)

    Watanabe, Kentaro; Nagata, Takahiro; Oh, Seungjun; Wakayama, Yutaka; Sekiguchi, Takashi; Volk, János; Nakamura, Yoshiaki

    2016-02-01

    Future one-dimensional electronics require single-crystalline semiconductor free-standing nanorods grown with uniform electrical properties. However, this is currently unrealistic as each crystallographic plane of a nanorod grows at unique incorporation rates of environmental dopants, which forms axial and lateral growth sectors with different carrier concentrations. Here we propose a series of techniques that micro-sample a free-standing nanorod of interest, fabricate its arbitrary cross-sections by controlling focused ion beam incidence orientation, and visualize its internal carrier concentration map. ZnO nanorods are grown by selective area homoepitaxy in precursor aqueous solution, each of which has a (0001):+c top-plane and six {1-100}:m side-planes. Near-band-edge cathodoluminescence nanospectroscopy evaluates carrier concentration map within a nanorod at high spatial resolution (60 nm) and high sensitivity. It also visualizes +c and m growth sectors at arbitrary nanorod cross-section and history of local transient growth events within each growth sector. Our technique paves the way for well-defined bottom-up nanoelectronics.

  10. Measuring Abdominal Circumference and Skeletal Muscle From a Single Cross-Sectional Computed Tomography Image: A Step-by-Step Guide for Clinicians Using National Institutes of Health ImageJ.

    PubMed

    Gomez-Perez, Sandra L; Haus, Jacob M; Sheean, Patricia; Patel, Bimal; Mar, Winnie; Chaudhry, Vivek; McKeever, Liam; Braunschweig, Carol

    2016-03-01

    Diagnostic computed tomography (CT) scans provide numerous opportunities for body composition analysis, including quantification of abdominal circumference, abdominal adipose tissues (subcutaneous, visceral, and intermuscular), and skeletal muscle (SM). CT scans are commonly performed for diagnostic purposes in clinical settings, and methods for estimating abdominal circumference and whole-body SM mass from them have been reported. A supine abdominal circumference is a valid measure of waist circumference (WC). The valid correlation between a single cross-sectional CT image (slice) at third lumbar (L3) for abdominal SM and whole-body SM is also well established. Sarcopenia refers to the age-associated decreased in muscle mass and function. A single dimensional definition of sarcopenia using CT images that includes only assessment of low whole-body SM has been validated in clinical populations and significantly associated with negative outcomes. However, despite the availability and precision of SM data from CT scans and the relationship between these measurements and clinical outcomes, they have not become a routine component of clinical nutrition assessment. Lack of time, training, and expense are potential barriers that prevent clinicians from fully embracing this technique. This tutorial presents a systematic, step-by-step guide to quickly quantify abdominal circumference as a proxy for WC and SM using a cross-sectional CT image from a regional diagnostic CT scan for clinical identification of sarcopenia. Multiple software options are available, but this tutorial uses ImageJ, a free public-domain software developed by the National Institutes of Health. PMID:26392166

  11. Review of electron impact excitation cross sections for copper atom

    SciTech Connect

    Winter, N.W.; Hazi, A.U.

    1982-02-01

    Excitation of atomic copper by electron impact plays an important role in the copper vapor laser and accurate cross sections are needed for understanding and modeling laser performance. During the past seven years, there have been several attempts to normalize the relative elastic and inelastic cross sections measured by Trajmar and coworkers. However, each of these efforts have yielded different cross sections, and the uncertainty in the correct normalization of the data has been a source of confusion and concern for the kinetic modeling efforts. This difficulty has motivated us to review previous work on the electron impact excitation of copper atom and to perform new calculations of the inelastic cross sections using the impact parameter method. In this memorandum we review the previous attempts to normalize the experimental data and provide a critical assessment of the accuracy of the resulting cross sections. We also present new theoretical cross sections for the electron impact excitation of the /sup 2/S ..-->.. /sup 2/P/sup 0/ and /sup 2/S ..-->.. /sup 2/D transitions in copper. When the experimental cross sections are renormalized to the results of the impact parameter calculations, they are a factor of three smaller than those published in the latest paper of Trajmar et. al. At impact energies above 60 eV the excitation cross sections obtained with the impact parameter method agree well with the results of the very recent, unpublished, close-coupling calculations of Henry. This agreement suggests that the present normalization of the experimental cross sections is probably the most reliable one obtained to date.

  12. Electron-Impact Ionization Cross Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access)   This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.

  13. Terahertz radar cross section measurements.

    PubMed

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

  14. Ultra-slim 2D- and depth-imaging camera modules for mobile imaging

    NASA Astrophysics Data System (ADS)

    Brückner, Andreas; Oberdörster, Alexander; Dunkel, Jens; Reimann, Andreas; Wippermann, Frank

    2016-03-01

    In this contribution, a microoptical imaging system is demonstrated that is inspired by the insect compound eye. The array camera module achieves HD resolution with a z-height of 2.0 mm, which is about 50% compared to traditional cameras with comparable parameters. The FOV is segmented by multiple optical channels imaging in parallel. The partial images are stitched together to form a final image of the whole FOV by image processing software. The system is able to acquire depth maps along with the 2D video and it includes light field imaging features such as software refocusing. The microlens arrays are realized by microoptical technologies on wafer-level which are suitable for a potential fabrication in high volume.

  15. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate

    PubMed Central

    Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-01-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values. PMID:26693303

  16. Comparison of right ventricular contractile abnormalities in hypertrophic cardiomyopathy versus hypertensive heart disease using two dimensional strain imaging: a cross-sectional study.

    PubMed

    Afonso, Luis; Briasoulis, Alex; Mahajan, Nitin; Kondur, Ashok; Siddiqui, Fayez; Siddiqui, Sabeeh; Alesh, Issa; Cardozo, Shaun; Kottam, Anupama

    2015-12-01

    Hypertrophic cardiomyopathy (HCM) affects the right ventricle (RV) because of the anatomically hypertrophied septum and plausibly by extension of the myopathic process to the RV. We sought to investigate RV strain in patients with left ventricular hypertrophy secondary to either HCM or hypertension (H-LVH). Our cross-sectional study included 32 patients with HCM, 21 patients with H-LVH, and 11 healthy subjects, who were evaluated with transthoracic echocardiography. Using a dedicated software package, bi-dimensional acquisitions were analyzed to measure segmental longitudinal strain in apical views. Right ventricular global longitudinal strain (GLS) was calculated by averaging septal and right free wall strains. The HCM and H-LVH groups were comparable for age and demographic characteristics. Right ventricular tricuspid annular plane systolic excursion was not significantly different between HCM and H-LVH subjects. Moreover, RV GLS, septal and lateral RV myocardial strain were significantly impaired in patients with HCM (all p < 0.001). Regional and global RV strain parameters were not significantly impaired in H-LVH compared to healthy controls An RV GLS cut-off value of >14.9% differentiated HCM and H-LVH with a 90% sensitivity and a 95% specificity (p < 0.001). RV strain parameters are impaired in patients with HCM. Assessment of two-dimensional RV strain parameters could help differentiate between HCM and H-LVH.

  17. Multiple 2D video/3D medical image registration algorithm

    NASA Astrophysics Data System (ADS)

    Clarkson, Matthew J.; Rueckert, Daniel; Hill, Derek L.; Hawkes, David J.

    2000-06-01

    In this paper we propose a novel method to register at least two vide images to a 3D surface model. The potential applications of such a registration method could be in image guided surgery, high precision radiotherapy, robotics or computer vision. Registration is performed by optimizing a similarity measure with respect to the pose parameters. The similarity measure is based on 'photo-consistency' and computes for each surface point, how consistent the corresponding video image information in each view is with a lighting model. We took four video views of a volunteer's face, and used an independent method to reconstruct a surface that was intrinsically registered to the four views. In addition, we extracted a skin surface from the volunteer's MR scan. The surfaces were misregistered from a gold standard pose and our algorithm was used to register both types of surfaces to the video images. For the reconstructed surface, the mean 3D error was 1.53 mm. For the MR surface, the standard deviation of the pose parameters after registration ranged from 0.12 to 0.70 mm and degrees. The performance of the algorithm is accurate, precise and robust.

  18. Multifractal analysis of 2D gray soil images

    NASA Astrophysics Data System (ADS)

    González-Torres, Ivan; Losada, Juan Carlos; Heck, Richard; Tarquis, Ana M.

    2015-04-01

    Soil structure, understood as the spatial arrangement of soil pores, is one of the key factors in soil modelling processes. Geometric properties of individual and interpretation of the morphological parameters of pores can be estimated from thin sections or 3D Computed Tomography images (Tarquis et al., 2003), but there is no satisfactory method to binarized these images and quantify the complexity of their spatial arrangement (Tarquis et al., 2008, Tarquis et al., 2009; Baveye et al., 2010). The objective of this work was to apply a multifractal technique, their singularities (α) and f(α) spectra, to quantify it without applying any threshold (Gónzalez-Torres, 2014). Intact soil samples were collected from four horizons of an Argisol, formed on the Tertiary Barreiras group of formations in Pernambuco state, Brazil (Itapirema Experimental Station). The natural vegetation of the region is tropical, coastal rainforest. From each horizon, showing different porosities and spatial arrangements, three adjacent samples were taken having a set of twelve samples. The intact soil samples were imaged using an EVS (now GE Medical. London, Canada) MS-8 MicroCT scanner with 45 μm pixel-1 resolution (256x256 pixels). Though some samples required paring to fit the 64 mm diameter imaging tubes, field orientation was maintained. References Baveye, P.C., M. Laba, W. Otten, L. Bouckaert, P. Dello, R.R. Goswami, D. Grinev, A. Houston, Yaoping Hu, Jianli Liu, S. Mooney, R. Pajor, S. Sleutel, A. Tarquis, Wei Wang, Qiao Wei, Mehmet Sezgin. Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data. Geoderma, 157, 51-63, 2010. González-Torres, Iván. Theory and application of multifractal analysis methods in images for the study of soil structure. Master thesis, UPM, 2014. Tarquis, A.M., R.J. Heck, J.B. Grau; J. Fabregat, M.E. Sanchez and J.M. Antón. Influence of Thresholding in Mass and Entropy Dimension of 3-D

  19. Electron Photon Interaction Cross Sections

    2014-11-01

    Version 00 The Electron Photon Interaction Cross Sections, EPICS, provides the atomic data needed to perform coupled Electron-Photon transport calculations, to produce accurate macroscopic results, such as energy deposit and dose. Atomic data is provided for elements, Z = 1 to 100, over the energy range 10 eV to 100 GeV; note that nuclear data, such as photo-nuclear, and data for compounds, are not included. All data is in a simple computer independent text formatmore » that is standard and presented to a high precision that can be easily read by computer codes written in any computer language, e.g., C, C++, and FORTRAN. EPICS includes four separate data bases that are designed to be used in combination, these include, • The Evaluated Electron Data Library (EEDL), to describe the interaction of electrons with matter. • The Evaluated Photon Data Library (EPDL), to describe the interaction of photons with matter. • The Evaluated Atomic Data Library (EADL), to describe the emission of electrons and photons back to neutrality following an ionizing event, caused by either electron or photon interactions. • The Evaluated Excitation Data Library (EXDL), to describe the excitation of atoms due to photon interaction. All of these are available in the Extended ENDL format (ENDLX) in which the evaluations were originally performed. The first three are also available in the ENDF format; as yet ENDF does not include formats to handle excitation data (EXDL).« less

  20. Electron Photon Interaction Cross Sections

    SciTech Connect

    Cullen, D. E.

    2014-11-01

    Version 00 The Electron Photon Interaction Cross Sections, EPICS, provides the atomic data needed to perform coupled Electron-Photon transport calculations, to produce accurate macroscopic results, such as energy deposit and dose. Atomic data is provided for elements, Z = 1 to 100, over the energy range 10 eV to 100 GeV; note that nuclear data, such as photo-nuclear, and data for compounds, are not included. All data is in a simple computer independent text format that is standard and presented to a high precision that can be easily read by computer codes written in any computer language, e.g., C, C++, and FORTRAN. EPICS includes four separate data bases that are designed to be used in combination, these include, • The Evaluated Electron Data Library (EEDL), to describe the interaction of electrons with matter. • The Evaluated Photon Data Library (EPDL), to describe the interaction of photons with matter. • The Evaluated Atomic Data Library (EADL), to describe the emission of electrons and photons back to neutrality following an ionizing event, caused by either electron or photon interactions. • The Evaluated Excitation Data Library (EXDL), to describe the excitation of atoms due to photon interaction. All of these are available in the Extended ENDL format (ENDLX) in which the evaluations were originally performed. The first three are also available in the ENDF format; as yet ENDF does not include formats to handle excitation data (EXDL).

  1. [Fast neutron cross section measurements

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its data production'' phase.

  2. A 2-D imaging heat-flux gauge

    SciTech Connect

    Noel, B.W.; Borella, H.M. ); Beshears, D.L.; Sartory, W.K.; Tobin, K.W.; Williams, R.K. ); Turley, W.D. . Santa Barbara Operations)

    1991-07-01

    This report describes a new leadless two-dimensional imaging optical heat-flux gauge. The gauge is made by depositing arrays of thermorgraphic-phosphor (TP) spots onto the faces of a polymethylpentene is insulator. In the first section of the report, we describe several gauge configurations and their prototype realizations. A satisfactory configuration is an array of right triangles on each face that overlay to form squares when the gauge is viewed normal to the surface. The next section of the report treats the thermal conductivity of TPs. We set up an experiment using a comparative longitudinal heat-flow apparatus to measure the previously unknown thermal conductivity of these materials. The thermal conductivity of one TP, Y{sub 2}O{sub 3}:Eu, is 0.0137 W/cm{center dot}K over the temperature range from about 300 to 360 K. The theories underlying the time response of TP gauges and the imaging characteristics are discussed in the next section. Then we discuss several laboratory experiments to (1) demonstrate that the TP heat-flux gauge can be used in imaging applications; (2) obtain a quantum yield that enumerates what typical optical output signal amplitudes can be obtained from TP heat-flux gauges; and (3) determine whether LANL-designed intensified video cameras have sufficient sensitivity to acquire images from the heat-flux gauges. We obtained positive results from all the measurements. Throughout the text, we note limitations, areas where improvements are needed, and where further research is necessary. 12 refs., 25 figs., 4 tabs.

  3. Recent fission cross section standards measurements

    SciTech Connect

    Wasson, O.A.

    1985-01-01

    The /sup 235/U(n,f) reaction is the standard by which most neutron induced fission cross sections are determined. Most of these cross sections are derived from relatively easy ratio measurements to /sup 235/U. However, the more difficult /sup 235/U(n,f) cross section measurements require the use of advanced neutron detectors for the determination of the incident neutron fluence. Examples of recent standard cross section measurements are discussed, various neutron detectors are described, and the status of the /sup 235/U(n,f) cross section standard is assessed. 23 refs., 8 figs., 4 tabs.

  4. 3D/2D convertible projection-type integral imaging using concave half mirror array.

    PubMed

    Hong, Jisoo; Kim, Youngmin; Park, Soon-gi; Hong, Jong-Ho; Min, Sung-Wook; Lee, Sin-Doo; Lee, Byoungho

    2010-09-27

    We propose a new method for implementing 3D/2D convertible feature in the projection-type integral imaging by using concave half mirror array. The concave half mirror array has the partially reflective characteristic to the incident light. And the reflected term is modulated by the concave mirror array structure, while the transmitted term is unaffected. With such unique characteristic, 3D/2D conversion or even the simultaneous display of 3D and 2D images is also possible. The prototype was fabricated by the aluminum coating and the polydimethylsiloxane molding process. We could experimentally verify the 3D/2D conversion and the display of 3D image on 2D background with the fabricated prototype.

  5. Microsecond time-resolved 2D X-ray imaging

    NASA Astrophysics Data System (ADS)

    Sarvestani, A.; Sauer, N.; Strietzel, C.; Besch, H. J.; Orthen, A.; Pavel, N.; Walenta, A. H.; Menk, R. H.

    2001-06-01

    A method is presented which allows to take two-dimensional X-ray images of repetitive processes with recording times in the sub-microsecond range. Various measurements have been performed with a recently introduced novel two-dimensional single photon counter which has been slightly modified in order to determine the exact arrival time of each detected photon. For this purpose a special clock signal is synchronized with the process and is digitized contemporaneously with each event. This technique can be applied even with rate limited detectors and low flux sources, since—unlike in conventional methods, where chopped beams or gated read out electronics are used—all photons are used for the image formation. For the measurements, rapidly moving mechanical systems and conventional X-ray sources have been used, reaching time resolutions of some 10 μs. The technique presented here opens a variety of new biological, medical and industrial applications which will be discussed. As a first application example, three dimensional tomographic reconstructions of rapidly rotating objects (4000 turns/min) are presented.

  6. Advanced 2D-3D registration for endovascular aortic interventions: addressing dissimilarity in images

    NASA Astrophysics Data System (ADS)

    Demirci, Stefanie; Kutter, Oliver; Manstad-Hulaas, Frode; Bauernschmitt, Robert; Navab, Nassir

    2008-03-01

    In the current clinical workflow of minimally invasive aortic procedures navigation tasks are performed under 2D or 3D angiographic imaging. Many solutions for navigation enhancement suggest an integration of the preoperatively acquired computed tomography angiography (CTA) in order to provide the physician with more image information and reduce contrast injection and radiation exposure. This requires exact registration algorithms that align the CTA volume to the intraoperative 2D or 3D images. Additional to the real-time constraint, the registration accuracy should be independent of image dissimilarities due to varying presence of medical instruments and contrast agent. In this paper, we propose efficient solutions for image-based 2D-3D and 3D-3D registration that reduce the dissimilarities by image preprocessing, e.g. implicit detection and segmentation, and adaptive weights introduced into the registration procedure. Experiments and evaluations are conducted on real patient data.

  7. Automatic Masking for Robust 3D-2D Image Registration in Image-Guided Spine Surgery

    PubMed Central

    Ketcha, M. D.; De Silva, T.; Uneri, A.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2016-01-01

    During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies. PMID:27335531

  8. Automatic masking for robust 3D-2D image registration in image-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Ketcha, M. D.; De Silva, T.; Uneri, A.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2016-03-01

    During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies.

  9. Vertically stabilized elongated cross-section tokamak

    DOEpatents

    Sheffield, George V.

    1977-01-01

    This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.

  10. Annular-Cross-Section CFE Chamber

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.

  11. Theoretical antideuteron-nucleus absorptive cross sections

    NASA Technical Reports Server (NTRS)

    Buck, W. W.; Norbury, J. W.; Townsend, L. W.; Wilson, J. W.

    1993-01-01

    Antideuteron-nucleus absorptive cross sections for intermediate to high energies are calculated using an ion-ion optical model. Good agreement with experiment (within 15 percent) is obtained in this same model for (bar p)-nucleus cross sections at laboratory energies up to 15 GeV. We describe a technique for estimating antinucleus-nucleus cross sections from NN data and suggest that further cosmic ray studies to search for antideuterons and other antinuclei be undertaken.

  12. Cross Sections for Electron Collisions with Methane

    SciTech Connect

    Song, Mi-Young Yoon, Jung-Sik; Cho, Hyuck; Itikawa, Yukikazu; Karwasz, Grzegorz P.; Kokoouline, Viatcheslav; Nakamura, Yoshiharu; Tennyson, Jonathan

    2015-06-15

    Cross section data are compiled from the literature for electron collisions with methane (CH{sub 4}) molecules. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, excitations of rotational and vibrational states, dissociation, ionization, and dissociative attachment. The data derived from swarm experiments are also considered. For each of these processes, the recommended values of the cross sections are presented. The literature has been surveyed through early 2014.

  13. 3-D Reconstruction From 2-D Radiographic Images and Its Application to Clinical Veterinary Medicine

    NASA Astrophysics Data System (ADS)

    Hamamoto, Kazuhiko; Sato, Motoyoshi

    3D imaging technique is very important and indispensable in diagnosis. The main stream of the technique is one in which 3D image is reconstructed from a set of slice images, such as X-ray CT and MRI. However, these systems require large space and high costs. On the other hand, a low cost and small size 3D imaging system is needed in clinical veterinary medicine, for example, in the case of diagnosis in X-ray car or pasture area. We propose a novel 3D imaging technique using 2-D X-ray radiographic images. This system can be realized by cheaper system than X-ray CT and enables to get 3D image in X-ray car or portable X-ray equipment. In this paper, a 3D visualization technique from 2-D radiographic images is proposed and several reconstructions are shown. These reconstructions are evaluated by veterinarians.

  14. Recovering 3D tumor locations from 2D bioluminescence images and registration with CT images

    NASA Astrophysics Data System (ADS)

    Huang, Xiaolei; Metaxas, Dimitris N.; Menon, Lata G.; Mayer-Kuckuk, Philipp; Bertino, Joseph R.; Banerjee, Debabrata

    2006-02-01

    In this paper, we introduce a novel and efficient algorithm for reconstructing the 3D locations of tumor sites from a set of 2D bioluminescence images which are taken by a same camera but after continually rotating the object by a small angle. Our approach requires a much simpler set up than those using multiple cameras, and the algorithmic steps in our framework are efficient and robust enough to facilitate its use in analyzing the repeated imaging of a same animal transplanted with gene marked cells. In order to visualize in 3D the structure of the tumor, we also co-register the BLI-reconstructed crude structure with detailed anatomical structure extracted from high-resolution microCT on a single platform. We present our method using both phantom studies and real studies on small animals.

  15. Digital retrospective motion-mode display and processing of electron beam cine-computed tomography and other cross-sectional cardiac imaging techniques

    NASA Astrophysics Data System (ADS)

    Reed, Judd E.; Rumberger, John A.; Buithieu, Jean; Behrenbeck, Thomas; Breen, Jerome F.; Sheedy, Patrick F., II

    1995-05-01

    Electron beam computed tomography is unparalleled in its ability to consistently produce high quality dynamic images of the human heart. Its use in quantification of left ventricular dynamics is well established in both clinical and research applications. However, the image analysis tools supplied with the scanners offer a limited number of analysis options. They are based on embedded computer systems which have not been significantly upgraded since the scanner was introduced over a decade ago in spite of the explosive improvements in available computer power which have occured during this period. To address these shortcomings, a workstation-based ventricular analysis system has been developed at our institution. This system, which has been in use for over five years, is based on current workstation technology and therefore has benefited from the periodic upgrades in processor performance available to these systems. The dynamic image segmentation component of this system is an interactively supervised, semi-automatic surface identification and tracking system. It characterizes the endocardial and epicardial surfaces of the left ventricle as two concentric 4D hyper-space polyhedrons. Each of these polyhedrons have nearly ten thousand vertices which are deposited into a relational database. The right ventricle is also processed in a similar manner. This database is queried by other custom components which extract ventricular function parameters such as regional ejection fraction and wall stress. The interactive tool which supervises dynamic image segmentation has been enhanced with a temporal domain display. The operator interactively chooses the spatial location of the endpoints of a line segment while the corresponding space/time image is displayed. These images, with content resembling M-Mode echocardiography, benefit form electron beam computed tomography's high spatial and contrast resolution. The segmented surfaces are displayed along with the imagery. These

  16. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)a)

    NASA Astrophysics Data System (ADS)

    Classen, I. G. J.; Boom, J. E.; Suttrop, W.; Schmid, E.; Tobias, B.; Domier, C. W.; Luhmann, N. C.; Donné, A. J. H.; Jaspers, R. J. E.; de Vries, P. C.; Park, H. K.; Munsat, T.; García-Muñoz, M.; Schneider, P. A.

    2010-10-01

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfvén eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  17. Absolute partial photoionization cross sections of ozone.

    SciTech Connect

    Berkowitz, J.; Chemistry

    2008-04-01

    Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

  18. A Cross-sectional Study of Correlation of Body Image Anxiety with Social Phobia and Their Association with Depression in the Adolescents from a Rural Area of Sangli District in India

    PubMed Central

    Waghachavare, Vivek Baliram; Quraishi, Sanjay R.; Dhumale, Girish B.; Gore, Alka D.

    2014-01-01

    Background: Prevailing socio-cultural influences lead females to desire a thin body and males a muscular body, especially in adolescents. This results in body image anxiety which may lead to social phobia. Together they can develop depression. The aim was to study the correlation of body image anxiety with social phobia and their association with depression, among adolescents. Methods: This was a cross-sectional study conducted in randomly selected colleges from a rural area of Sangli district Maharashtra, India. Stratified random sampling technique used with sample size 805. Pretested self-administered questionnaire used. Percentage, Chi-square test, binary logistic regression model was used to estimate odds ratio (OR) and its 95% confidence intervals. Results: Of 997 study subjects body image anxiety, social phobia and depression were observed in 232 (23.3%), 193 (19.4%) and 326 (32.7%) participants, respectively. Binary logistic regression showed that body image anxiety (OR = 1.849 [1.22, 2.804]; P = 0.004) and social phobia (OR = 4.575 [2.952-7.09]; P < 0.001) were significant predictors for depression. Conclusions: Body image anxiety and social phobia are linked with the development of depression. This impresses the need for timely counseling and education among adolescents. PMID:25709801

  19. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes.

    PubMed

    Zhong, Zichun; Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun; Mao, Weihua

    2016-01-01

    By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes. PMID:27019849

  20. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes

    PubMed Central

    Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun

    2016-01-01

    By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes. PMID:27019849

  1. Cross-section imaging and p-type doping assessment of ZnO/ZnO:Sb core-shell nanowires by scanning capacitance microscopy and scanning spreading resistance microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Sallet, Vincent; Sartel, Corinne; Brémond, Georges

    2016-08-01

    ZnO/ZnO:Sb core-shell structured nanowires (NWs) were grown by the metal organic chemical vapor deposition method where the shell was doped with antimony (Sb) in an attempt to achieve ZnO p-type conduction. To directly investigate the Sb doping effect in ZnO, scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) were performed on the NWs' cross-sections mapping their two dimensional (2D) local electrical properties. Although no direct p-type inversion in ZnO was revealed, a lower net electron concentration was pointed out for the Sb-doped ZnO shell layer with respect to the non-intentionally doped ZnO core, indicating an evident compensating effect as a result of the Sb incorporation, which can be ascribed to the formation of Sb-related acceptors. The results demonstrate SCM/SSRM investigation being a direct and effective approach for characterizing radial semiconductor one-dimensional (1D) structures and, particularly, for the doping study on the ZnO nanomaterial towards its p-type realization.

  2. Spontaneous neural activity alterations in temporomandibular disorders: a cross-sectional and longitudinal resting-state functional magnetic resonance imaging study.

    PubMed

    He, S-S; Li, F; Song, F; Wu, S; Chen, J-Y; He, N; Zou, S-J; Huang, X-Q; Lui, S; Gong, Q-Y; Chen, S

    2014-10-10

    The involvement of the central nervous system in the pathophysiology of temporomandibular disorders (TMD) has been noticed. TMD patients have been shown dysfunction of motor performance and reduced cognitive ability in neuropsychological tests. The aim of this study is to explore the spontaneous neural activity in TMD patients with centric relation (CR)-maximum intercuspation (MI) discrepancy before and after stabilization splint treatment. Twenty-three patients and twenty controls underwent clinical evaluations, including CR-MI discrepancy, Helkimo indices and chronic pain, and resting state functional magnetic resonance imaging scans at baseline. Eleven patients repeated the evaluations and scanning after the initial wearing (T1) and 3months of wearing (T2) of the stabilization splint. The fractional amplitude of low-frequency fluctuation (fALFF) was calculated to compare the neural functions. At baseline, the patients showed decreased fALFF in the left precentral gyrus, supplementary motor area, middle frontal gyrus and right orbitofrontal cortex compared with the controls (P<0.05, AlphaSim corrected). Negative correlations were found between the fALFF in the left precentral gyrus and vertical CR-MI discrepancy of bilateral temporomandibular joints of patients (P<0.05, two-tailed). At T2, the symptoms and signs of the patients were improved, and a stable condylar position on the CR was recovered, with increased fALFF in the left precentral gyrus and left posterior insula compared with pretreatment. The fALFF decrease in the patients before treatment was no longer evident at T2 compared with the controls. The results suggested that TMD patients with CR-MI discrepancy showed significantly decreased brain activity in their frontal cortexes. The stabilization splint elicited functional recovery in these cortical areas. These findings provided insight into the cortical neuroplastic processes underlying TMD with CR-MI discrepancy and the therapeutic mechanisms of

  3. Silicon Detector System for Cross Section Measurements

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In order to estimate the radiation shielding effectiveness of materials it is necessary to know cosmic ray particles are broken up as they pass though these materials. The breakup of cosmic ray particles is characterized by the nuclear fragmentation cross sections, i.e. an effective geometrical cross section assigned to each target nucleus that represents its apparent size for fragmenting the incident particle. The values of these cross sections depend on the details of nuclear physics and cannot be calculated from first principles owing to the many-body nature of the interactions. The only way to determine them is to measure them. Once a sufficient number of cross sections have been measured, the systematic nature of the interactions allows other cross-sections to be estimated. The number of cross sections that contribute to the estimation of shielding effectiveness is very large 10,000. Fortunately most make minor contributions. These can be estimated from nuclear systematics. Only those who's uncertainties make significant contributions to the error in the shielding effectiveness estimations need to be measured. In the past it has proven difficult to measure light fragment production cross sections from the interactions of heavy cosmic rays owing to the size of the detectors used. We have developed a highly pixilated silicon (Si) detector system that can individually identify these light fragments while making efficient use of costly accelerator time. This system is an outgrowth of detector technology developed under a CDDF and a Code S sponsored cosmic ray experiment.

  4. Geometric uncertainty of 2D projection imaging in monitoring 3D tumor motion

    NASA Astrophysics Data System (ADS)

    Suh, Yelin; Dieterich, Sonja; Keall, Paul J.

    2007-07-01

    The purpose of this study was to investigate the accuracy of two-dimensional (2D) projection imaging methods in three-dimensional (3D) tumor motion monitoring. Many commercial linear accelerator types have projection imaging capabilities, and tumor motion monitoring is useful for motion inclusive, respiratory gated or tumor tracking strategies. Since 2D projection imaging is limited in its ability to resolve the motion along the imaging beam axis, there is unresolved motion when monitoring 3D tumor motion. From the 3D tumor motion data of 160 treatment fractions for 46 thoracic and abdominal cancer patients, the unresolved motion due to the geometric limitation of 2D projection imaging was calculated as displacement in the imaging beam axis for different beam angles and time intervals. The geometric uncertainty to monitor 3D motion caused by the unresolved motion of 2D imaging was quantified using the root-mean-square (rms) metric. Geometric uncertainty showed interfractional and intrafractional variation. Patient-to-patient variation was much more significant than variation for different time intervals. For the patient cohort studied, as the time intervals increase, the rms, minimum and maximum values of the rms uncertainty show decreasing tendencies for the lung patients but increasing for the liver and retroperitoneal patients, which could be attributed to patient relaxation. Geometric uncertainty was smaller for coplanar treatments than non-coplanar treatments, as superior-inferior (SI) tumor motion, the predominant motion from patient respiration, could be always resolved for coplanar treatments. Overall rms of the rms uncertainty was 0.13 cm for all treatment fractions and 0.18 cm for the treatment fractions whose average breathing peak-trough ranges were more than 0.5 cm. The geometric uncertainty for 2D imaging varies depending on the tumor site, tumor motion range, time interval and beam angle as well as between patients, between fractions and within a

  5. Photoionization cross sections and oscillator strengths of neutral cesium

    NASA Astrophysics Data System (ADS)

    Haq, S. U.; Nadeem, Ali; Nawaz, M.

    2012-11-01

    The absolute photoionization cross sections from the 6p 2P1/2 excited state of cesium at threshold and above the threshold region have been measured using the saturation absorption technique. The photoionization cross section at the ionization threshold is determined as 22.6±3.6 Mb, whereas in the region above threshold its value ranges from 22 to 20 Mb for photoelectron energies up to 0.1 eV. A comparison of the photoionization cross sections with earlier reported theoretical and experimental data have been presented and are in good agreement within the uncertainty. In addition, the oscillator strengths of the 6p 2P1/2→n d 2D3/2 (21≤n≤60) Rydberg transitions of cesium have been calibrated using the threshold value of the photoionization cross section. A complete picture of the oscillator strengths from the present work and previously reported data from n=5-60 is presented.

  6. Cross Section Evaluations for Arsenic Isotopes

    SciTech Connect

    Pruet, J; McNabb, D P; Ormand, W E

    2005-03-10

    The authors present an evaluation of cross sections describing reactions with neutrons incident on the arsenic isotopes with mass numbers 75 and 74. Particular attention is paid to (n,2n) reactions. The evaluation for {sup 75}As, the only stable As isotope, is guided largely by experimental data. Evaluation for {sup 74}As is made through calculations with the EMPIRE statistical-model reaction code. Cross sections describing the production and destruction of the 26.8 ns isomer in {sup 74}As are explicitly considered. Uncertainties and covariances in some evaluated cross sections are also estimated.

  7. Differential cross-sections with hard targets

    NASA Astrophysics Data System (ADS)

    Brun, J. L.; Pacheco, A. F.

    2005-09-01

    When the concept of scattering differential cross-section is introduced in classical mechanics textbooks, usually it is first supposed that the target is a fixed, hard sphere. In this paper we calculate the scattering differential cross-section in the case of the hard target being a fixed figure of revolution of any shape. When the target is a paraboloid of revolution, we find the well-known formula corresponding to Rutherford's scattering. In addition, we analyse the inverse problem, i.e. given a differential cross-section, what is the profile of the corresponding hard target?

  8. Nanohole-array-based device for 2D snapshot multispectral imaging

    PubMed Central

    Najiminaini, Mohamadreza; Vasefi, Fartash; Kaminska, Bozena; Carson, Jeffrey J. L.

    2013-01-01

    We present a two-dimensional (2D) snapshot multispectral imager that utilizes the optical transmission characteristics of nanohole arrays (NHAs) in a gold film to resolve a mixture of input colors into multiple spectral bands. The multispectral device consists of blocks of NHAs, wherein each NHA has a unique periodicity that results in transmission resonances and minima in the visible and near-infrared regions. The multispectral device was illuminated over a wide spectral range, and the transmission was spectrally unmixed using a least-squares estimation algorithm. A NHA-based multispectral imaging system was built and tested in both reflection and transmission modes. The NHA-based multispectral imager was capable of extracting 2D multispectral images representative of four independent bands within the spectral range of 662 nm to 832 nm for a variety of targets. The multispectral device can potentially be integrated into a variety of imaging sensor systems. PMID:24005065

  9. Air Pollution and the Microvasculature: A Cross-Sectional Assessment of In Vivo Retinal Images in the Population-Based Multi-Ethnic Study of Atherosclerosis (MESA)

    PubMed Central

    Adar, Sara D.; Klein, Ronald; Klein, Barbara E. K.; Szpiro, Adam A.; Cotch, Mary Frances; Wong, Tien Y.; O'Neill, Marie S.; Shrager, Sandi; Barr, R. Graham; Siscovick, David S.; Daviglus, Martha L.; Sampson, Paul D.; Kaufman, Joel D.

    2010-01-01

    Background Long- and short-term exposures to air pollution, especially fine particulate matter (PM2.5), have been linked to cardiovascular morbidity and mortality. One hypothesized mechanism for these associations involves microvascular effects. Retinal photography provides a novel, in vivo approach to examine the association of air pollution with changes in the human microvasculature. Methods and Findings Chronic and acute associations between residential air pollution concentrations and retinal vessel diameters, expressed as central retinal arteriolar equivalents (CRAE) and central retinal venular equivalents (CRVE), were examined using digital retinal images taken in Multi-Ethnic Study of Atherosclerosis (MESA) participants between 2002 and 2003. Study participants (46 to 87 years of age) were without clinical cardiovascular disease at the baseline examination (2000–2002). Long-term outdoor concentrations of PM2.5 were estimated at each participant's home for the 2 years preceding the clinical exam using a spatio-temporal model. Short-term concentrations were assigned using outdoor measurements on the day preceding the clinical exam. Residential proximity to roadways was also used as an indicator of long-term traffic exposures. All associations were examined using linear regression models adjusted for subject-specific age, sex, race/ethnicity, education, income, smoking status, alcohol use, physical activity, body mass index, family history of cardiovascular disease, diabetes status, serum cholesterol, glucose, blood pressure, emphysema, C-reactive protein, medication use, and fellow vessel diameter. Short-term associations were further controlled for weather and seasonality. Among the 4,607 participants with complete data, CRAE were found to be narrower among persons residing in regions with increased long- and short-term levels of PM2.5. These relationships were observed in a joint exposure model with −0.8 µm (95% confidence interval [CI] −1.1 to −0

  10. Separation of image parts using 2-D parallel form recursive filters.

    PubMed

    Sivaramakrishna, R

    1996-01-01

    This correspondence deals with a new technique to separate objects or image parts in a composite image. A parallel form extension of a 2-D Steiglitz-McBride method is applied to the discrete cosine transform (DCT) of the image containing the objects that are to be separated. The obtained parallel form is the sum of several filters or systems, where the impulse response of each filter corresponds to the DCT of one object in the original image. Preliminary results on an image with two objects show that the algorithm works well, even in the case where one object occludes another as well as in the case of moderate noise. PMID:18285105

  11. Skin Diseases: Cross-section of human skin

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Cross-section of human skin Past Issues / Fall 2008 Table of Contents For ... Logical Images, Inc. I n the areas of skin health and skin diseases, the NIH's National Institute ...

  12. Tensor representation of color images and fast 2D quaternion discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.

    2015-03-01

    In this paper, a general, efficient, split algorithm to compute the two-dimensional quaternion discrete Fourier transform (2-D QDFT), by using the special partitioning in the frequency domain, is introduced. The partition determines an effective transformation, or color image representation in the form of 1-D quaternion signals which allow for splitting the N × M-point 2-D QDFT into a set of 1-D QDFTs. Comparative estimates revealing the efficiency of the proposed algorithms with respect to the known ones are given. In particular, a proposed method of calculating the 2r × 2r -point 2-D QDFT uses 18N2 less multiplications than the well-known column-row method and method of calculation based on the symplectic decomposition. The proposed algorithm is simple to apply and design, which makes it very practical in color image processing in the frequency domain.

  13. Terahertz wavefront assessment based on 2D electro-optic imaging

    NASA Astrophysics Data System (ADS)

    Cahyadi, Harsono; Ichikawa, Ryuji; Degert, Jérôme; Freysz, Eric; Yasui, Takeshi; Abraham, Emmanuel

    2015-03-01

    Complete characterization of terahertz (THz) radiation becomes an interesting yet challenging study for many years. In visible optical region, the wavefront assessment has been proved as a powerful tool for the beam profiling and characterization, which consequently requires 2-dimension (2D) single-shot acquisition of the beam cross-section to provide the spatial profile in time- and frequency-domain. In THz region, the main problem is the lack of effective THz cameras to satisfy this need. In this communication, we propose a simple setup based on free-space collinear 2D electrooptic sampling in a ZnTe crystal for the characterization of THz wavefronts. In principle, we map the optically converted, time-resolved data of the THz pulse by changing the time delay between the probe pulse and the generated THz pulse. The temporal waveforms from different lens-ZnTe distances can clearly indicate the evolution of THz beam as it is converged, focused, or diverged. From the Fourier transform of the temporal waveforms, we can obtain the spectral profile of a broadband THz wave, which in this case within the 0.1-2 THz range. The spectral profile also provides the frequency dependency of the THz pulse amplitude. The comparison between experimental and theoretical results at certain frequencies (here we choose 0.285 and 1.035 THz) is in a good agreement suggesting that our system is capable of THz wavefront characterization. Furthermore, the implementation of Hartmann/Shack-Hartmann sensor principle enables the reconstruction of THz wavefront. We demonstrate the reconstruction of THz wavefronts which are changed from planar wave to spherical one due to the insertion of convex THz lens in the THz beam path. We apply and compare two different reconstruction methods: linear integration and Zernike polynomial. Roughly we conclude that the Zernike method provide smoother wavefront shape that can be elaborated later into quantitative-qualitative analysis about the wavefront

  14. Automatic 2D-to-3D image conversion using 3D examples from the internet

    NASA Astrophysics Data System (ADS)

    Konrad, J.; Brown, G.; Wang, M.; Ishwar, P.; Wu, C.; Mukherjee, D.

    2012-03-01

    The availability of 3D hardware has so far outpaced the production of 3D content. Although to date many methods have been proposed to convert 2D images to 3D stereopairs, the most successful ones involve human operators and, therefore, are time-consuming and costly, while the fully-automatic ones have not yet achieved the same level of quality. This subpar performance is due to the fact that automatic methods usually rely on assumptions about the captured 3D scene that are often violated in practice. In this paper, we explore a radically different approach inspired by our work on saliency detection in images. Instead of relying on a deterministic scene model for the input 2D image, we propose to "learn" the model from a large dictionary of stereopairs, such as YouTube 3D. Our new approach is built upon a key observation and an assumption. The key observation is that among millions of stereopairs available on-line, there likely exist many stereopairs whose 3D content matches that of the 2D input (query). We assume that two stereopairs whose left images are photometrically similar are likely to have similar disparity fields. Our approach first finds a number of on-line stereopairs whose left image is a close photometric match to the 2D query and then extracts depth information from these stereopairs. Since disparities for the selected stereopairs differ due to differences in underlying image content, level of noise, distortions, etc., we combine them by using the median. We apply the resulting median disparity field to the 2D query to obtain the corresponding right image, while handling occlusions and newly-exposed areas in the usual way. We have applied our method in two scenarios. First, we used YouTube 3D videos in search of the most similar frames. Then, we repeated the experiments on a small, but carefully-selected, dictionary of stereopairs closely matching the query. This, to a degree, emulates the results one would expect from the use of an extremely large 3D

  15. Bibliography of photoabsorption cross-section data

    NASA Technical Reports Server (NTRS)

    Hudson, R. D.; Kieffer, L. J.

    1970-01-01

    This bibliography contains only references which report a measured or calculated photoabsorption cross section (relative or normalized) in regions of continuous absorption. The bibliography is current as of January 1, 1970.

  16. Absorption cross section of canonical acoustic holes

    SciTech Connect

    Crispino, Luis C. B.; Oliveira, Ednilton S.; Matsas, George E. A.

    2007-11-15

    We compute numerically the absorption cross section of a canonical acoustic hole for sound waves with arbitrary frequencies. Our outputs are in full agreement with the expected low- and high-frequency limits.

  17. MODELING AND FISSION CROSS SECTIONS FOR AMERICIUM.

    SciTech Connect

    ROCHMAN, D.; HERMAN, M.; OBLOZINSKY, P.

    2005-05-01

    This is the final report of the work performed under the LANL contract on the modeling and fission cross section for americium isotopes (May 2004-June 2005). The purpose of the contract was to provide fission cross sections for americium isotopes with the nuclear reaction model code EMPIRE 2.19. The following work was performed: (1) Fission calculations capability suitable for americium was implemented to the EMPIRE-2.19 code. (2) Calculations of neutron-induced fission cross sections for {sup 239}Am to {sup 244g}Am were performed with EMPIRE-2.19 for energies up to 20 MeV. For the neutron-induced reaction of {sup 240}Am, fission cross sections were predicted and uncertainties were assessed. (3) Set of fission barrier heights for each americium isotopes was chosen so that the new calculations fit the experimental data and follow the systematics found in the literature.

  18. The radar cross section of dielectric disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1982-01-01

    A solution is presented for the backscatter (nonstatic) radar cross section of dielectric disks of arbitrary shape, thickness and dielectric constant. The result is obtained by employing a Kirchhoff type approximation to obtain the fields inside the disk. The internal fields induce polarization and conduction currents from which the scattered fields and the radar cross section can be computed. The solution for the radar cross section obtained in this manner is shown to agree with known results in the special cases of normal incidence, thin disks and perfect conductivity. The solution can also be written as a product of the reflection coefficient of an identically oriented slab times the physical optics solution for the backscatter cross section of a perfectly conducting disk of the same shape. This result follows directly from the Kirchhoff type approximation without additional assumptions.

  19. International Evaluation of Neutron Cross Section Standards

    NASA Astrophysics Data System (ADS)

    Carlson, A. D.; Pronyaev, V. G.; Smith, D. L.; Larson, N. M.; Chen, Zhenpeng; Hale, G. M.; Hambsch, F.-J.; Gai, E. V.; Oh, Soo-Youl; Badikov, S. A.; Kawano, T.; Hofmann, H. M.; Vonach, H.; Tagesen, S.

    2009-12-01

    Neutron cross section standards are the basis for the determination of most neutron cross sections. They are used for both measurements and evaluations of neutron cross sections. Not many cross sections can be obtained absolutely - most cross sections are measured relative to the cross section standards and converted using evaluations of the standards. The previous complete evaluation of the neutron cross section standards was finished in 1987 and disseminated as the NEANDC/INDC and ENDF/B-VI standards. R-matrix model fits for the light elements and non-model least-squares fits for all the cross sections in the evaluation were the basis of the combined fits for all of the data. Some important reactions and constants are not standards, but they assist greatly in the determination of the standard cross sections and reduce their uncertainties - these data were also included in the combined fits. The largest experimental database used in the evaluation was prepared by Poenitz and included about 400 sets of experimental data with covariance matrices of uncertainties that account for all cross-energy, cross-reaction and cross-material correlations. For the evaluation GMA, a least-squares code developed by Poenitz, was used to fit all types of cross sections (absolute and shape), their ratios, spectrum-averaged cross sections and thermal constants in one full analysis. But, the uncertainties derived in this manner, and especially those obtained in the R-matrix model fits, have been judged to be too low and unrealistic. These uncertainties were substantially increased prior to their release in the recommended data files of 1987. Modified percentage uncertainties were reassigned by the United States Cross Section Evaluation Working Group's Standards Subcommittee for a wide range of energies, and no covariance (or correlation) matrices were supplied at that time. The need to re-evaluate the cross section standards is based on the appearance of a significant amount of precise

  20. A nuclear cross section data handbook

    SciTech Connect

    Fisher, H.O.M.

    1989-12-01

    Isotopic information, reaction data, data availability, heating numbers, and evaluation information are given for 129 neutron cross-section evaluations, which are the source of the default cross sections for the Monte Carlo code MCNP. Additionally, pie diagrams for each nuclide displaying the percent contribution of a given reaction to the total cross section are given at 14 MeV, 1 MeV, and thermal energy. Other information about the evaluations and their availability in continuous-energy, discrete-reaction, and multigroup forms is provided. The evaluations come from ENDF/B-V, ENDL85, and the Los Alamos Applied Nuclear Science Group T-2. Graphs of all neutron and photon production cross-section reactions for these nuclides have been categorized and plotted. 21 refs., 5 tabs.

  1. Parameterising root system growth models using 2D neutron radiography images

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Felderer, Bernd; Vontobel, Peter; Leitner, Daniel

    2013-04-01

    Root architecture is a key factor for plant acquisition of water and nutrients from soil. In particular in view of a second green revolution where the below ground parts of agricultural crops are important, it is essential to characterise and quantify root architecture and its effect on plant resource acquisition. Mathematical models can help to understand the processes occurring in the soil-plant system, they can be used to quantify the effect of root and rhizosphere traits on resource acquisition and the response to environmental conditions. In order to do so, root architectural models are coupled with a model of water and solute transport in soil. However, dynamic root architectural models are difficult to parameterise. Novel imaging techniques such as x-ray computed tomography, neutron radiography and magnetic resonance imaging enable the in situ visualisation of plant root systems. Therefore, these images facilitate the parameterisation of dynamic root architecture models. These imaging techniques are capable of producing 3D or 2D images. Moreover, 2D images are also available in the form of hand drawings or from images of standard cameras. While full 3D imaging tools are still limited in resolutions, 2D techniques are a more accurate and less expensive option for observing roots in their environment. However, analysis of 2D images has additional difficulties compared to the 3D case, because of overlapping roots. We present a novel algorithm for the parameterisation of root system growth models based on 2D images of root system. The algorithm analyses dynamic image data. These are a series of 2D images of the root system at different points in time. Image data has already been adjusted for missing links and artefacts and segmentation was performed by applying a matched filter response. From this time series of binary 2D images, we parameterise the dynamic root architecture model in the following way: First, a morphological skeleton is derived from the binary

  2. Single particle 3D reconstruction for 2D crystal images of membrane proteins.

    PubMed

    Scherer, Sebastian; Arheit, Marcel; Kowal, Julia; Zeng, Xiangyan; Stahlberg, Henning

    2014-03-01

    In cases where ultra-flat cryo-preparations of well-ordered two-dimensional (2D) crystals are available, electron crystallography is a powerful method for the determination of the high-resolution structures of membrane and soluble proteins. However, crystal unbending and Fourier-filtering methods in electron crystallography three-dimensional (3D) image processing are generally limited in their performance for 2D crystals that are badly ordered or non-flat. Here we present a single particle image processing approach, which is implemented as an extension of the 2D crystallographic pipeline realized in the 2dx software package, for the determination of high-resolution 3D structures of membrane proteins. The algorithm presented, addresses the low single-to-noise ratio (SNR) of 2D crystal images by exploiting neighborhood correlation between adjacent proteins in the 2D crystal. Compared with conventional single particle processing for randomly oriented particles, the computational costs are greatly reduced due to the crystal-induced limited search space, which allows a much finer search space compared to classical single particle processing. To reduce the considerable computational costs, our software features a hybrid parallelization scheme for multi-CPU clusters and computer with high-end graphic processing units (GPUs). We successfully apply the new refinement method to the structure of the potassium channel MloK1. The calculated 3D reconstruction shows more structural details and contains less noise than the map obtained by conventional Fourier-filtering based processing of the same 2D crystal images.

  3. Ultraviolet absorption cross sections of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Rohatgi, N. K.; Demore, W. B.

    1978-01-01

    Absorption cross-sections of hydrogen peroxide vapor and of neutral aqueous solutions of hydrogen peroxide were measured in the wavelength range from 195 to 350 nm at 296 K. The spectrophotometric procedure is described, and the reported cross-sections are compared with values obtained by other researchers. Photodissociation coefficients of atmospheric H2O2 were calculated for direct absorption of unscattered solar radiation, and the vertical distributions of these coefficients are shown for various solar zenith angles.

  4. Detection of Leptomeningeal Metastasis by Contrast-Enhanced 3D T1-SPACE: Comparison with 2D FLAIR and Contrast-Enhanced 2D T1-Weighted Images

    PubMed Central

    Gil, Bomi; Hwang, Eo-Jin; Lee, Song; Jang, Jinhee; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-soo

    2016-01-01

    Introduction To compare the diagnostic accuracy of contrast-enhanced 3D(dimensional) T1-weighted sampling perfection with application-optimized contrasts by using different flip angle evolutions (T1-SPACE), 2D fluid attenuated inversion recovery (FLAIR) images and 2D contrast-enhanced T1-weighted image in detection of leptomeningeal metastasis except for invasive procedures such as a CSF tapping. Materials and Methods Three groups of patients were included retrospectively for 9 months (from 2013-04-01 to 2013-12-31). Group 1 patients with positive malignant cells in CSF cytology (n = 22); group 2, stroke patients with steno-occlusion in ICA or MCA (n = 16); and group 3, patients with negative results on MRI, whose symptom were dizziness or headache (n = 25). A total of 63 sets of MR images are separately collected and randomly arranged: (1) CE 3D T1-SPACE; (2) 2D FLAIR; and (3) CE T1-GRE using a 3-Tesla MR system. A faculty neuroradiologist with 8-year-experience and another 2nd grade trainee in radiology reviewed each MR image- blinded by the results of CSF cytology and coded their observations as positives or negatives of leptomeningeal metastasis. The CSF cytology result was considered as a gold standard. Sensitivity and specificity of each MR images were calculated. Diagnostic accuracy was compared using a McNemar’s test. A Cohen's kappa analysis was performed to assess inter-observer agreements. Results Diagnostic accuracy was not different between 3D T1-SPACE and CSF cytology by both raters. However, the accuracy test of 2D FLAIR and 2D contrast-enhanced T1-weighted GRE was inconsistent by the two raters. The Kappa statistic results were 0.657 (3D T1-SPACE), 0.420 (2D FLAIR), and 0.160 (2D contrast-enhanced T1-weighted GRE). The 3D T1-SPACE images showed the highest inter-observer agreements between the raters. Conclusions Compared to 2D FLAIR and 2D contrast-enhanced T1-weighted GRE, contrast-enhanced 3D T1 SPACE showed a better detection rate of

  5. 2D electron temperature diagnostic using soft x-ray imaging technique

    SciTech Connect

    Nishimura, K. Sanpei, A. Tanaka, H.; Ishii, G.; Kodera, R.; Ueba, R.; Himura, H.; Masamune, S.; Ohdachi, S.; Mizuguchi, N.

    2014-03-15

    We have developed a two-dimensional (2D) electron temperature (T{sub e}) diagnostic system for thermal structure studies in a low-aspect-ratio reversed field pinch (RFP). The system consists of a soft x-ray (SXR) camera with two pin holes for two-kinds of absorber foils, combined with a high-speed camera. Two SXR images with almost the same viewing area are formed through different absorber foils on a single micro-channel plate (MCP). A 2D T{sub e} image can then be obtained by calculating the intensity ratio for each element of the images. We have succeeded in distinguishing T{sub e} image in quasi-single helicity (QSH) from that in multi-helicity (MH) RFP states, where the former is characterized by concentrated magnetic fluctuation spectrum and the latter, by broad spectrum of edge magnetic fluctuations.

  6. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2005-01-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  7. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2004-12-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  8. QuickSite Cross Section Processing

    2003-05-27

    This AGEM-developed system produces cross sections by inputting data in both standard and custom file formats and outputting a graphic file that can be printed or further modified in a commercial graphic program. The system has evolved over several years in order to combine and visualize a changing set of field data more rapidly than was possible with commercially available cross section software packages. It uses some commercial packages to produce the input and tomore » modify the output files. Flexibility is provided by a dynamic set of programs that are customized to accept varying input and accomodate varying output requirements. There are two basic types of routines: conversion routines and cross section generation routines. The conversion routines convery various data files to logger file format which is compatible with a standard file format for LogPlot 98, a commonly used commercial log plotting program. The cross section routines generate cross sections and apply topography to these cross sections. All of the generation routines produce a standard graphic DXF file, which is the format used in AutoCAD and can then be modified in a number of available graphics programs.« less

  9. Error Assessment of Homogenized Cross Sections Generation for Whole Core Neutronic Calculation

    NASA Astrophysics Data System (ADS)

    Hursin, Mathieu; Kochunas, Brendan; Downar, Thomas J.

    2007-10-01

    The objective of the work here was to assess the errors introduced by using 2D, few group homogenized cross sections to perform neutronic analysis of BWR problems with significant axial heterogeneities. The 3D method of characteristics code DeCART is used to generate 2-group assembly homogenized cross sections first using a conventional 2D lattice model and then using a full 3D solution of the assembly. A single BWR fuel assembly model based on an advanced BWR lattice design is used with a typical void distribution applied to the fuel channel coolant. This model is validated against an MCNP model. A comparison of the cross sections is performed for the assembly homogenized planar cross sections from the DeCART 3D and DeCART 2D solutions.

  10. Error Assessment of Homogenized Cross Sections Generation for Whole Core Neutronic Calculation

    SciTech Connect

    Hursin, Mathieu; Kochunas, Brendan; Downar, Thomas J.

    2007-10-26

    The objective of the work here was to assess the errors introduced by using 2D, few group homogenized cross sections to perform neutronic analysis of BWR problems with significant axial heterogeneities. The 3D method of characteristics code DeCART is used to generate 2-group assembly homogenized cross sections first using a conventional 2D lattice model and then using a full 3D solution of the assembly. A single BWR fuel assembly model based on an advanced BWR lattice design is used with a typical void distribution applied to the fuel channel coolant. This model is validated against an MCNP model. A comparison of the cross sections is performed for the assembly homogenized planar cross sections from the DeCART 3D and DeCART 2D solutions.

  11. Combining 2D synchrosqueezed wave packet transform with optimization for crystal image analysis

    NASA Astrophysics Data System (ADS)

    Lu, Jianfeng; Wirth, Benedikt; Yang, Haizhao

    2016-04-01

    We develop a variational optimization method for crystal analysis in atomic resolution images, which uses information from a 2D synchrosqueezed transform (SST) as input. The synchrosqueezed transform is applied to extract initial information from atomic crystal images: crystal defects, rotations and the gradient of elastic deformation. The deformation gradient estimate is then improved outside the identified defect region via a variational approach, to obtain more robust results agreeing better with the physical constraints. The variational model is optimized by a nonlinear projected conjugate gradient method. Both examples of images from computer simulations and imaging experiments are analyzed, with results demonstrating the effectiveness of the proposed method.

  12. Robust 2D phase correction for echo planar imaging under a tight field-of-view.

    PubMed

    Xu, Dan; King, Kevin F; Zur, Yuval; Hinks, R Scott

    2010-12-01

    Nyquist ghost artifacts are a serious issue in echo planar imaging. These artifacts primarily originate from phase difference between even and odd echo images and can be removed or reduced using phase correction methods. The commonly used 1D phase correction can only correct phase difference along readout axis. 2D correction is, therefore, necessary when phase difference presents along both readout and phase encoding axes. However, existing 2D methods have several unaddressed issues that affect their practicality. These issues include uncharacterized noise behavior, image artifact due to unoptimized phase estimation, Gibbs ringing artifact when directly applying to partial k(y) data, and most seriously a new image artifact under tight field-of-view (i.e., field-of-view slightly smaller than object size). All these issues are addressed in this article. Specifically, theoretical analysis of noise amplification and effect of phase estimation error is provided, and tradeoff between noise and ghost is studied. A new 2D phase correction method with improved polynomial fitting, joint homodyne processing and phase correction, compatibility with tight field-of-view is then proposed. Various results show that the proposed method can robustly generate images free of Nyquist ghosts and other image artifacts even in oblique scans or when cross-term eddy current terms are significant. PMID:20806354

  13. 2D ESR image reconstruction from 1D projections using the modulated field gradient method

    NASA Astrophysics Data System (ADS)

    Páli, T.; Sass, L.; Horvat, L. I.; Ebert, B.

    A method for the reconstruction of 2D ESR images from 1 D projections which is based on the modulated field gradient method has been explored. The 2D distribution of spin-labeled stearic acid in oriented and unoriented dimyristoyl phosphatidylcholine multilayers on a flat quartz support was determined. Such samples are potentially useful for the determination of lipid lateral diffusion in oriented multilayers by monitoring the spreading of a sharp concentration profile in one or two dimensions. The limitations of the method are discussed and the improvements which are needed for dynamic measurements are outlined.

  14. Research on 2D representation method of wireless Micro-Ball endoscopic images.

    PubMed

    Wang, Dan; Xie, Xiang; Li, Guolin; Gu, Yingke; Yin, Zheng; Wang, Zhihua

    2012-01-01

    Nowadays the interpretation of the images acquired by wireless endoscopy system is a tedious job for doctors. A viable solution is to construct a map, which is the 2D representation of gastrointestinal (GI) tract to reduce the redundancy of images and improve the understandability of them. The work reported in this paper addresses the problem of the 2D representation of GI tract based on a new wireless Micro-Ball endoscopy system with multiple image sensors. This paper firstly models the problem of constructing the map, and then discusses mainly on the issues of perspective distortion correction, image preprocessing and image registration, which lie in the whole problem. The perspective distortion correction algorithm is realized based on attitude angles, while the image registration is based on phase correlation method (PCM) and scale invariant feature transform (SIFT) combined with particular image preprocessing methods. Based on R channels of images, the algorithm can deal with 26.3% to 100% of image registration when the ratio of overlap varies from 25% to 80%. The performance and effectiveness of the algorithms are verified by experiments.

  15. 2D Doppler backscattering using synthetic aperture microwave imaging of MAST edge plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, D. A.; Brunner, K. J.; Freethy, S. J.; Huang, B. K.; Shevchenko, V. F.; Vann, R. G. L.

    2016-02-01

    Doppler backscattering (DBS) is already established as a powerful diagnostic; its extension to 2D enables imaging of turbulence characteristics from an extended region of the cut-off surface. The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D DBS experiments of MAST edge plasma. SAMI actively probes the plasma edge using a wide (±40° vertical and horizontal) and tuneable (10-34.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24° FWHM at 10-34.5 GHz. This capability is unique to SAMI and is a novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial observations of phenomena previously measured by conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch angle to be made; preliminary results are presented. Capabilities gained through steering a beam using a phased array and the limitations of this technique are discussed.

  16. Actinide cross section program at ORELA

    SciTech Connect

    Dabbs, J. W.T.

    1980-01-01

    The actinide cross section program at ORELA, the Oak Ridge Electron Linear Accelerator, is aimed at obtaining accurate neutron cross sections (primarily fission, capture, and total) for actinide nuclides which occur in fission reactors. Such cross sections, measured as a function of neutron energy over as wide a range of energies as feasible, comprise a data base that permits calculated predictions of the formation and removal of these nuclides in reactors. The present program is funded by the Division of Basic Energy Sciences of DOE, and has components in several divisions at ORNL. For intensively ..cap alpha..-active nuclides, many of the existing fission cross section data have been provided by underground explosions. New measurement techniques, developed at ORELA, now permit linac measurements on fissionable nuclides with alpha half-lives as short as 28 years. Capture and capture-plus-fission measurements utilize scintillation detectors (of capture ..gamma.. rays and fission neutrons) in which pulse shape discrimination plays an important role. Total cross sections can be measured at ORELA on samples of only a few milligrams. A simultaneous program of chemical and isotopic analyses of samples irradiated in EBR-II is in progress to provide benchmarks for the existing differential measurements. These analyses are being studied with updated versions of ORIGEN and with sensitivity determinations. Calculations of the sensitivity to cross section changes of various aspects of the nuclear fuel cycle are also being made. Even in this relatively mature field, many cross sections still require improvements to provide an adequate data base. Examples of recent techniques and measurements are presented. 12 figures, 3 tables.

  17. A quantitative damage imaging technique based on enhanced CCRTM for composite plates using 2D scan

    NASA Astrophysics Data System (ADS)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-10-01

    A two-dimensional (2D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric wafer mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region in the vicinity of the PZT to capture the scattered wavefield. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, a reflectivity coefficients of the delamination is calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2D areal scans and 1D line scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  18. Comparison of Echocardiographic and Cardiac Magnetic Resonance Imaging Measurements of Functional Single Ventricular Volumes, Mass, and Ejection Fraction (From the Pediatric Heart Network Multicenter Fontan Cross-Sectional Study)

    PubMed Central

    Margossian, Renee; Schwartz, Marcy L.; Prakash, Ashwin; Wruck, Lisa; Colan, Steven D.; Atz, Andrew M.; Bradley, Timothy J.; Fogel, Mark A.; Hurwitz, Lynne M.; Marcus, Edward; Powell, Andrew J.; Printz, Beth F.; Puchalski, Michael D.; Rychik, Jack; Shirali, Girish; Williams, Richard; Yoo, Shi-Joon; Geva, Tal

    2009-01-01

    Assessment of the size and function of the functional single ventricle (FSV) is a key element in the management of patients following the Fontan procedure. Measurement variability of ventricular mass, volume and ejection fraction between observers by echocardiography and CMR and their reproducibility between readers in these patients has not been described. From the 546 patients enrolled in the Pediatric Heart Network Fontan Cross-Sectional Study (mean age 11.9±3.4 years), 100 echocardiograms and 50 CMR studies were assessed for measurement reproducibility; 124 subjects with paired studies were selected for comparison between modalities. Inter-observer agreement for qualitative grading of ventricular function by echocardiography was modest for left ventricular (LV) morphology (kappa= 0.42) and weak for right ventricular (RV) morphology (kappa= 0.12). For quantitative assessment, high intra-class correlation coefficients (ICC) were found for echocardiographic inter-observer (LV= 0.87–0.92; RV= 0.82–0.85) agreement of systolic and diastolic volumes, respectively. In contrast, ICCs for LV and RV mass were moderate (LV= 0.78; RV= 0.72). The corresponding ICCs by CMR were high (LV= 0.96; RV= 0.85). Volumes by echocardiography averaged 70% of CMR values. Interobserver reproducibility of EF was similar for both modalities. Although the absolute mean difference between modalities for ejection fraction was small (<2%), 95% limits of agreement were wide. In conclusion, agreement between observers of qualitative FSV function by echocardiography is modest. Measurements of FSV volume by 2D echocardiography underestimate CMR measurements but their reproducibility is high. Echocardiographic and CMR measurements of FSV EF demonstrate similar interobserver reproducibility whereas measurements of FSV mass and LV diastolic volume are more reproducible by CMR. PMID:19616678

  19. Differential collision cross-sections for atomic oxygen

    NASA Technical Reports Server (NTRS)

    Torr, Douglas G.

    1991-01-01

    Differential collision cross-sections of O on N2 and other gases were measured to understand vehicle-environmental contamination effects in orbit. The following subject areas are also covered: groundbased scientific observations of rocket releases during NICARE-1; data compression study for the UVI; science priorities for UV imaging in the mid-1990's; and assessment of optimizations possible in UV imaging systems.

  20. An Accurate Method for Measuring Airplane-Borne Conformal Antenna's Radar Cross Section

    NASA Astrophysics Data System (ADS)

    Guo, Shuxia; Zhang, Lei; Wang, Yafeng; Hu, Chufeng

    2016-09-01

    The airplane-borne conformal antenna attaches itself tightly with the airplane skin, so the conventional measurement method cannot determine the contribution of the airplane-borne conformal antenna to its radar cross section (RCS). This paper uses the 2D microwave imaging to isolate and extract the distribution of the reflectivity of the airplane-borne conformal antenna. It obtains the 2D spatial spectra of the conformal antenna through the wave spectral transform between the 2D spatial image and the 2D spatial spectrum. After the interpolation from the rectangular coordinate domain to the polar coordinate domain, the spectral domain data for the variation of the scatter of the conformal antenna with frequency and angle is obtained. The experimental results show that the measurement method proposed in this paper greatly enhances the airplane-borne conformal antenna's RCS measurement accuracy, essentially eliminates the influences caused by the airplane skin and more accurately reveals the airplane-borne conformal antenna's RCS scatter properties.

  1. Simultaneous 3D–2D image registration and C-arm calibration: Application to endovascular image-guided interventions

    SciTech Connect

    Mitrović, Uroš; Pernuš, Franjo; Likar, Boštjan; Špiclin, Žiga

    2015-11-15

    Purpose: Three-dimensional to two-dimensional (3D–2D) image registration is a key to fusion and simultaneous visualization of valuable information contained in 3D pre-interventional and 2D intra-interventional images with the final goal of image guidance of a procedure. In this paper, the authors focus on 3D–2D image registration within the context of intracranial endovascular image-guided interventions (EIGIs), where the 3D and 2D images are generally acquired with the same C-arm system. The accuracy and robustness of any 3D–2D registration method, to be used in a clinical setting, is influenced by (1) the method itself, (2) uncertainty of initial pose of the 3D image from which registration starts, (3) uncertainty of C-arm’s geometry and pose, and (4) the number of 2D intra-interventional images used for registration, which is generally one and at most two. The study of these influences requires rigorous and objective validation of any 3D–2D registration method against a highly accurate reference or “gold standard” registration, performed on clinical image datasets acquired in the context of the intervention. Methods: The registration process is split into two sequential, i.e., initial and final, registration stages. The initial stage is either machine-based or template matching. The latter aims to reduce possibly large in-plane translation errors by matching a projection of the 3D vessel model and 2D image. In the final registration stage, four state-of-the-art intrinsic image-based 3D–2D registration methods, which involve simultaneous refinement of rigid-body and C-arm parameters, are evaluated. For objective validation, the authors acquired an image database of 15 patients undergoing cerebral EIGI, for which accurate gold standard registrations were established by fiducial marker coregistration. Results: Based on target registration error, the obtained success rates of 3D to a single 2D image registration after initial machine-based and

  2. Occluded target viewing and identification high-resolution 2D imaging laser radar

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Dippel, George F.; Cecchetti, Kristen D.; Wikman, John C.; Drouin, David P.; Egbert, Paul I.

    2007-09-01

    BAE SYSTEMS has developed a high-resolution 2D imaging laser radar (LADAR) system that has proven its ability to detect and identify hard targets in occluded environments, through battlefield obscurants, and through naturally occurring image-degrading atmospheres. Limitations of passive infrared imaging for target identification using medium wavelength infrared (MWIR) and long wavelength infrared (LWIR) atmospheric windows are well known. Of particular concern is that as wavelength is increased the aperture must be increased to maintain resolution, hence, driving apertures to be very larger for long-range identification; impractical because of size, weight, and optics cost. Conversely, at smaller apertures and with large f-numbers images may become photon starved with long integration times. Here, images are most susceptible to distortion from atmospheric turbulence, platform vibration, or both. Additionally, long-range identification using passive thermal imaging is clutter limited arising from objects in close proximity to the target object.

  3. Reconfigurable 2D cMUT-ASIC arrays for 3D ultrasound image

    NASA Astrophysics Data System (ADS)

    Song, Jongkeun; Jung, Sungjin; Kim, Youngil; Cho, Kyungil; Kim, Baehyung; Lee, Seunghun; Na, Junseok; Yang, Ikseok; Kwon, Oh-kyong; Kim, Dongwook

    2012-03-01

    This paper describes the design and implementations of the complete 2D capacitive micromachined ultrasound transducer electronics and its analog front-end module for transmitting high voltage ultrasound pulses and receiving its echo signals to realize 3D ultrasound image. In order to minimize parasitic capacitances and ultimately improve signal-to- noise ratio (SNR), cMUT has to be integrate with Tx/Rx electronics. Additionally, in order to integrate 2D cMUT array module, significant optimized high voltage pulser circuitry, low voltage analog/digital circuit design and packaging challenges are required due to high density of elements and small pitch of each element. We designed 256(16x16)- element cMUT and reconfigurable driving ASIC composed of 120V high voltage pulser, T/R switch, low noise preamplifier and digital control block to set Tx frequency of ultrasound and pulse train in each element. Designed high voltage analog ASIC was successfully bonded with 2D cMUT array by flip-chip bonding process and it connected with analog front-end board to transmit pulse-echo signals. This implementation of reconfigurable cMUT-ASIC-AFE board enables us to produce large aperture 2D transducer array and acquire high quality of 3D ultrasound image.

  4. Photodisintegration Cross Section of 241Am

    NASA Astrophysics Data System (ADS)

    Tonchev, A. P.; Hammond, S.; Howell, C. R.; Huibregtse, C.; Hutcheson, A.; Karwowski, H. J.; Kelley, J. H.; Kwan, E.; Rusev, G.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2009-03-01

    The photodisintegration cross section of radioactive 241Am has been obtained for the first time using monoenergetic γ-ray beams from the HIγS facility. The induced activity of 240Am produced via the 241Am(γ,n) reaction in the γ-ray energy range from 9.5 to 16 MeV was measured by the activation technique utilizing high resolution HPGe detectors. The 241Am(γ,n) cross section was determined both by measuring the absolute γ-ray flux and by comparison to the 197Au(γ,n) and 58Ni(γ,n) cross section standards. The experimental data for the 241Am(γ,n) reaction in the giant dipole resonance energy region is compared with statistical nuclear-model calculations.

  5. Top differential cross section measurements (Tevatron)

    SciTech Connect

    Jung, Andreas W.

    2012-01-01

    Differential cross sections in the top quark sector measured at the Fermilab Tevatron collider are presented. CDF used 2.7 fb{sup -1} of data and measured the differential cross section as a function of the invariant mass of the t{bar t} system. The measurement shows good agreement with the standard model and furthermore is used to derive limits on the ratio {kappa}/M{sub Pl} for gravitons which decay to top quarks in the Randall-Sundrum model. D0 used 1.0 fb{sup -1} of data to measure the differential cross section as a function of the transverse momentum of the top-quark. The measurement shows a good agreement to the next-to-leading order perturbative QCD prediction and various other standard model predictions.

  6. Algorithmic analysis of quantum radar cross sections

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco; Venegas-Andraca, Salvador

    2015-05-01

    Sidelobe structures on classical radar cross section graphs are a consequence of discontinuities in the surface currents. In contrast, quantum radar theory states that sidelobe structures on quantum radar cross section graphs are due to quantum interference. Moreover, it is conjectured that quantum sidelobe structures may be used to detect targets oriented off the specular direction. Because of the high data bandwidth expected from quantum radar, it may be necessary to use sophisticated quantum signal analysis algorithms to determine the presence of stealth targets through the sidelobe structures. In this paper we introduce three potential quantum algorithmic techniques to compute classical and quantum radar cross sections. It is our purpose to develop a computer science-oriented tool for further physical analysis of quantum radar models as well as applications of quantum radar technology in various fields.

  7. The cross section for double Compton scattering

    NASA Technical Reports Server (NTRS)

    Gould, R. J.

    1984-01-01

    Employing elementary methods in nonrelativistic quantum electrodynamics, the cross section for gamma sub 0 + e yields e + gamma + gamma is computed for arbitrary energy in the spectrum of the outgoing photons. The final result is given, differential in the energy of one of these photons, for the case where the incident photon is unpolarized and has energy E sub 0 much less than mc-squared, a polarization sum and angular integration being performed for the final-state photons. The cross section has a simple algebraic form resulting from contributions from the sum of squared direct and exchange amplitudes; interference terms from these amplitudes do not contribute to the angular-integrated cross section.

  8. Total quadruple photoionization cross section of beryllium

    SciTech Connect

    Emmanouilidou, Agapi

    2007-11-15

    In a quasiclassical framework, we formulate the quadruple ionization by single-photon absorption of the Coulomb five-body problem. We present the quadruple photoionization total cross section of the ground state of beryllium for energies up to 620 eV. Our results for energies close to threshold are in agreement with the Wannier threshold law for four-electron escape. In addition, the agreement of our results with a shape formula provides support for the overall shape of our total quadruple cross section. Finally, we find that the photon energy where the maximum of the total photoionization cross section occurs for single, double, triple, and quadruple photoionization of H, He, Li, and Be, respectively, seems to follow a linear relation with the threshold energy for complete breakup of the respective element.

  9. Differential cross sections for positron scattering from alkali atoms

    SciTech Connect

    DeVries, K.M.; Bartschat, K.; McEachran, R.P.

    1993-05-01

    Close-coupling calculations for differential cross sections for elastic and inelastic positron-alkali scattering at incident energies between 1 eV and 100 eV will be presented. Particular emphasis is placed on excitation of the resonant (ns){sup 2}S {yields} (np){sup 2}P{sup o} and the optically forbidden (ns){sup 2}S {yields} (n{prime}d){sup 2}D transitions. The results will be compared with first order DWBA calculations to assess the importance of channel coupling in the theoretical description of these collision processes.

  10. Effect of changes in intra-abdominal pressure on diameter, cross-sectional area, and distensibility of the lower esophageal sphincter of healthy dogs as determined by use of an endoscopic functional luminal imaging probe.

    PubMed

    Mayhew, Philipp D; Pitt, Kathryn A; Steffey, Michele A; Culp, William T N; Kass, Philip H; Marks, Stanley L

    2016-08-01

    OBJECTIVE To evaluate the effect of intra-abdominal pressure (IAP) on morphology and compliance of the lower esophageal sphincter (LES) by use of impedance planimetry in healthy dogs and to quantify the effect of changes in IAP. ANIMALS 7 healthy, purpose-bred sexually intact male hound-cross dogs. PROCEDURES Dogs were anesthetized, and cross-sectional area (CSA), minimal diameter (MD), LES length, LES volume, and distensibility index (DI) of the LES were evaluated by use of an endoscopic functional luminal imaging probe. For each dog, measurements were obtained before (baseline) and after creation of a pneumoperitoneum at an IAP of 4, 8, and 15 mm Hg. Order of the IAPs was determined by use of a randomization software program. RESULTS CSA and MD at 4 and 8 mm Hg were not significantly different from baseline measurements; however, CSA and MD at 15 mm Hg were both significantly greater than baseline measurements. The LES length and LES volume did not differ significantly from baseline measurements at any IAP. The DI differed inconsistently from the baseline measurement but was not substantially affected by IAP. CONCLUSIONS AND CLINICAL RELEVANCE Pneumoperitoneum created with an IAP of 4 or 8 mm Hg did not significantly alter LES morphology in healthy dogs. Pneumoperitoneum at an IAP of 15 mm Hg caused a significant increase in CSA and MD of the LES. Compliance of the LES as measured by the DI was not greatly altered by pneumoperitoneum at an IAP of up to 15 mm Hg. PMID:27463542

  11. Neutron capture cross section of 136 Xe

    NASA Astrophysics Data System (ADS)

    Daugherty, Sean; Albert, Joshua; Johnson, Tessa; O'Conner, Thomasina; Kaufman, Lisa

    2015-04-01

    136 Xe is an important 0 νββ candidate, studied in experiments such as EXO-200 and, in the future, nEXO. These experiments require a precise study of neutron capture for their background models. The neutron capture cross section of 136 Xe has been measured at the Detector for Advanced Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. A neutron beam ranging from thermal energy to 100 keV was incident on a gas cell filled with isotopically pure 136 Xe . We will discuss the measurement of partial neutron capture cross sections at thermal and first neutron resonance energies along with corresponding capture gamma cascades.

  12. Infrared absorption cross sections of alternative CFCs

    NASA Technical Reports Server (NTRS)

    Clerbaux, Cathy; Colin, Reginald; Simon, Paul C.

    1994-01-01

    Absorption cross sections have obtained in the infrared atmospheric window, between 600 and 1500 cm(exp -1), for 10 alternative hydrohalocarbons: HCFC-22, HCFC-123, HCFC-124, HCFC-141b, HCFC-142b, HCFC-225ca, HCFC-225cb, HFC-125, HFC-134a, and HFC-152a. The measurements were made at three temperatures (287K, 270K and 253K) with a Fourier transform spectrometer operating at 0.03 cm(exp -1) apodized resolution. Integrated cross sections are also derived for use in radiative models to calculate the global warming potentials.

  13. Covariance Evaluation Methodology for Neutron Cross Sections

    SciTech Connect

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  14. The start-to-end chemometric image processing of 2D thin-layer videoscans.

    PubMed

    Komsta, Łukasz; Cieśla, Łukasz; Bogucka-Kocka, Anna; Józefczyk, Aleksandra; Kryszeń, Jakub; Waksmundzka-Hajnos, Monika

    2011-05-13

    The purpose of the research was to recommend a unified procedure of image preprocessing of 2D thin layer videoscans for further supervised or unsupervised chemometric analysis. All work was done with open source software. The videoscans saved as JPG files underwent the following procedures: denoising using a median filter, baseline removal with the rollerball algorithm and nonlinear warping using spline functions. The application of the proposed procedure enabled filtration of random difference between images (background intensity changes and spatial differences of the spots location). After the preprocessing only spot intensities have an influence on the performed PCA or other techniques. The proposed technique was successfully applied to recognize the differences between three Carex species from the 2D videoscans of the extracts. The proposed solution may be of value for the any chemometric task--both unsupervised and supervised.

  15. On 2-D recursive LMS algorithms using ARMA prediction for ADPCM encoding of images.

    PubMed

    Chung, Y S; Kanefsky, M

    1992-01-01

    A two-dimensional (2D) linear predictor which has an autoregressive moving average (ARMA) representation well as a bias term is adapted for adaptive differential pulse code modulation (ADPCM) encoding of nonnegative images. The predictor coefficients are updated by using a 2D recursive LMS (TRLMS) algorithm. A constraint on optimum values for the convergence factors and an updating algorithm based on the constraint are developed. The coefficient updating algorithm can be modified with a stability control factor. This realization can operate in real time and in the spatial domain. A comparison of three different types of predictors is made for real images. ARMA predictors show improved performance relative to an AR algorithm. PMID:18296174

  16. Preliminary work of real-time ultrasound imaging system for 2-D array transducer.

    PubMed

    Li, Xu; Yang, Jiali; Ding, Mingyue; Yuchi, Ming

    2015-01-01

    Ultrasound (US) has emerged as a non-invasive imaging modality that can provide anatomical structure information in real time. To enable the experimental analysis of new 2-D array ultrasound beamforming methods, a pre-beamformed parallel raw data acquisition system was developed for 3-D data capture of 2D array transducer. The transducer interconnection adopted the row-column addressing (RCA) scheme, where the columns and rows were active in sequential for transmit and receive events, respectively. The DAQ system captured the raw data in parallel and the digitized data were fed through the field programmable gate array (FPGA) to implement the pre-beamforming. Finally, 3-D images were reconstructed through the devised platform in real-time. PMID:26405923

  17. Image Pretreatment Tools II: Normalization Techniques for 2-DE and 2-D DIGE.

    PubMed

    Robotti, Elisa; Marengo, Emilio; Quasso, Fabio

    2016-01-01

    Gel electrophoresis is usually applied to identify different protein expression profiles in biological samples (e.g., control vs. pathological, control vs. treated). Information about the effect to be investigated (a pathology, a drug, a ripening effect, etc.) is however generally confounded with experimental variability that is quite large in 2-DE and may arise from small variations in the sample preparation, reagents, sample loading, electrophoretic conditions, staining and image acquisition. Obtaining valid quantitative estimates of protein abundances in each map, before the differential analysis, is therefore fundamental to provide robust candidate biomarkers. Normalization procedures are applied to reduce experimental noise and make the images comparable, improving the accuracy of differential analysis. Certainly, they may deeply influence the final results, and to this respect they have to be applied with care. Here, the most widespread normalization procedures are described both for what regards the applications to 2-DE and 2D Difference Gel-electrophoresis (2-D DIGE) maps.

  18. Interpretation of Line-Integrated Signals from 2-D Phase Contrast Imaging on LHD

    NASA Astrophysics Data System (ADS)

    Michael, Clive; Tanaka, Kenji; Vyacheslavov, Leonid; Sanin, Andrei; Kawahata, Kazuo; Okajima, S.

    Two dimensional (2D) phase contrast imaging (PCI) is an excellent method to measure core and edge turbulence with good spatial resolution (Δρ ˜ 0.1). General analytical consideration is given to the signal interpretation of the line-integrated signals, with specific application to images from 2D PCI. It is shown that the Fourier components of fluctuations having any non-zero component propagating along the line of sight are not detected. The ramifications of this constraint are discussed, including consideration of the angle between the sight line and flux surface normal. In the experimental geometry, at the point where the flux surfaces are tangent to the sight line, it is shown that it may be possible to detect large poloidally extended (though with small radial wavelength) structures, such as GAMS. The spatial localization technique of this diagnostic is illustrated with experimental data.

  19. Gender and ethnicity specific generic elastic models from a single 2D image for novel 2D pose face synthesis and recognition.

    PubMed

    Heo, Jingu; Savvides, Marios

    2012-12-01

    In this paper, we propose a novel method for generating a realistic 3D human face from a single 2D face image for the purpose of synthesizing new 2D face images at arbitrary poses using gender and ethnicity specific models. We employ the Generic Elastic Model (GEM) approach, which elastically deforms a generic 3D depth-map based on the sparse observations of an input face image in order to estimate the depth of the face image. Particularly, we show that Gender and Ethnicity specific GEMs (GE-GEMs) can approximate the 3D shape of the input face image more accurately, achieving a better generalization of 3D face modeling and reconstruction compared to the original GEM approach. We qualitatively validate our method using publicly available databases by showing each reconstructed 3D shape generated from a single image and new synthesized poses of the same person at arbitrary angles. For quantitative comparisons, we compare our synthesized results against 3D scanned data and also perform face recognition using synthesized images generated from a single enrollment frontal image. We obtain promising results for handling pose and expression changes based on the proposed method. PMID:22201062

  20. Image quality of up-converted 2D video from frame-compatible 3D video

    NASA Astrophysics Data System (ADS)

    Speranza, Filippo; Tam, Wa James; Vázquez, Carlos; Renaud, Ronald; Blanchfield, Phil

    2011-03-01

    In the stereoscopic frame-compatible format, the separate high-definition left and high-definition right views are reduced in resolution and packed to fit within the same video frame as a conventional two-dimensional high-definition signal. This format has been suggested for 3DTV since it does not require additional transmission bandwidth and entails only small changes to the existing broadcasting infrastructure. In some instances, the frame-compatible format might be used to deliver both 2D and 3D services, e.g., for over-the-air television services. In those cases, the video quality of the 2D service is bound to decrease since the 2D signal will have to be generated by up-converting one of the two views. In this study, we investigated such loss by measuring the perceptual image quality of 1080i and 720p up-converted video as compared to that of full resolution original 2D video. The video was encoded with either a MPEG-2 or a H.264/AVC codec at different bit rates and presented for viewing with either no polarized glasses (2D viewing mode) or with polarized glasses (3D viewing mode). The results confirmed a loss of video quality of the 2D video up-converted material. The loss due to the sampling processes inherent to the frame-compatible format was rather small for both 1080i and 720p video formats; the loss became more substantial with encoding, particularly for MPEG-2 encoding. The 3D viewing mode provided higher quality ratings, possibly because the visibility of the degradations was reduced.

  1. Fully automatic detection of the vertebrae in 2D CT images

    NASA Astrophysics Data System (ADS)

    Graf, Franz; Kriegel, Hans-Peter; Schubert, Matthias; Strukelj, Michael; Cavallaro, Alexander

    2011-03-01

    Knowledge about the vertebrae is a valuable source of information for several annotation tasks. In recent years, the research community spent a considerable effort for detecting, segmenting and analyzing the vertebrae and the spine in various image modalities like CT or MR. Most of these methods rely on prior knowledge like the location of the vertebrae or other initial information like the manual detection of the spine. Furthermore, the majority of these methods require a complete volume scan. With the existence of use cases where only a single slice is available, there arises a demand for methods allowing the detection of the vertebrae in 2D images. In this paper, we propose a fully automatic and parameterless algorithm for detecting the vertebrae in 2D CT images. Our algorithm starts with detecting candidate locations by taking the density of bone-like structures into account. Afterwards, the candidate locations are extended into candidate regions for which certain image features are extracted. The resulting feature vectors are compared to a sample set of previously annotated and processed images in order to determine the best candidate region. In a final step, the result region is readjusted until convergence to a locally optimal position. Our new method is validated on a real world data set of more than 9 329 images of 34 patients being annotated by a clinician in order to provide a realistic ground truth.

  2. Extraction of Individual Filaments from 2D Confocal Microscopy Images of Flat Cells.

    PubMed

    Basu, Saurav; Chi Liu; Rohde, Gustavo Kunde

    2015-01-01

    A crucial step in understanding the architecture of cells and tissues from microscopy images, and consequently explain important biological events such as wound healing and cancer metastases, is the complete extraction and enumeration of individual filaments from the cellular cytoskeletal network. Current efforts at quantitative estimation of filament length distribution, architecture and orientation from microscopy images are predominantly limited to visual estimation and indirect experimental inference. Here we demonstrate the application of a new algorithm to reliably estimate centerlines of biological filament bundles and extract individual filaments from the centerlines by systematically disambiguating filament intersections. We utilize a filament enhancement step followed by reverse diffusion based filament localization and an integer programming based set combination to systematically extract accurate filaments automatically from microscopy images. Experiments on simulated and real confocal microscope images of flat cells (2D images) show efficacy of the new method.

  3. Night vision image fusion for target detection with improved 2D maximum entropy segmentation

    NASA Astrophysics Data System (ADS)

    Bai, Lian-fa; Liu, Ying-bin; Yue, Jiang; Zhang, Yi

    2013-08-01

    Infrared and LLL image are used for night vision target detection. In allusion to the characteristics of night vision imaging and lack of traditional detection algorithm for segmentation and extraction of targets, we propose a method of infrared and LLL image fusion for target detection with improved 2D maximum entropy segmentation. Firstly, two-dimensional histogram was improved by gray level and maximum gray level in weighted area, weights were selected to calculate the maximum entropy for infrared and LLL image segmentation by using the histogram. Compared with the traditional maximum entropy segmentation, the algorithm had significant effect in target detection, and the functions of background suppression and target extraction. And then, the validity of multi-dimensional characteristics AND operation on the infrared and LLL image feature level fusion for target detection is verified. Experimental results show that detection algorithm has a relatively good effect and application in target detection and multiple targets detection in complex background.

  4. Image restoration using 2D autoregressive texture model and structure curve construction

    NASA Astrophysics Data System (ADS)

    Voronin, V. V.; Marchuk, V. I.; Petrosov, S. P.; Svirin, I.; Agaian, S.; Egiazarian, K.

    2015-05-01

    In this paper an image inpainting approach based on the construction of a composite curve for the restoration of the edges of objects in an image using the concepts of parametric and geometric continuity is presented. It is shown that this approach allows to restore the curved edges and provide more flexibility for curve design in damaged image by interpolating the boundaries of objects by cubic splines. After edge restoration stage, a texture restoration using 2D autoregressive texture model is carried out. The image intensity is locally modeled by a first spatial autoregressive model with support in a strongly causal prediction region on the plane. Model parameters are estimated by Yule-Walker method. Several examples considered in this paper show the effectiveness of the proposed approach for large objects removal as well as recovery of small regions on several test images.

  5. Alternative representations of an image via the 2D wavelet transform: application to character recognition

    NASA Astrophysics Data System (ADS)

    Antoine, Jean-Pierre; Vandergheynst, Pierre; Bouyoucef, Karim; Murenzi, Romain

    1995-06-01

    Both in 1D (signal analysis) and 2D (image processing), the wavelet transform (WT) has become by now a standard tool. Although the discrete version, based on multiresolution analysis, is probably better known, the continous WT (CWT) plays a crucial role for the detection and analysis of particular features in a signal, and we will focus here on the latter. In 2D however, one faces a practical problem. Indeed, the full parameter space of the wavelet transform of an image is 4D. It yields a representation of the image in position parameters (range and perception angle), as well as scale and anisotropy angle. The real challenge is to compute and visualize the full continuous wavelet transform in all four variables--obviously a demanding task. Thus, in order to obtain a manageable tool, some of the variables must be frozen. In other words, one must limit oneself to sections of the parameter space, usually 2D or 3D. For 2D sections, two variables are fixed and the transform is viewed as a function of the two remaing ones, and similarly for 3D sections. Among the six possible 2D sections, two play a privileged role. They yield respectively the position representation, which is the standard one, and the scale-angle representation, which has been proposed and studied systematically by two of us in a number of works. In this paper we will review these results and investigate the four remaining 2D representations. We will also make some comments on possible applications of 3D sections. The most spectacular property of the CWT is its ability at detecting discontinuities in a signal. In an image, this means in particular the sharp boundary between two regions of different luminosity, that is, a contour or an edge. Even more prominent in the transform are the corners of a given contour, for instance the contour of a letter. In a second part, we will exploit this property of the CWT and describe how one may design an algorithm for automatic character recognition (here we

  6. 2D-CELL: image processing software for extraction and analysis of 2-dimensional cellular structures

    NASA Astrophysics Data System (ADS)

    Righetti, F.; Telley, H.; Leibling, Th. M.; Mocellin, A.

    1992-01-01

    2D-CELL is a software package for the processing and analyzing of photographic images of cellular structures in a largely interactive way. Starting from a binary digitized image, the programs extract the line network (skeleton) of the structure and determine the graph representation that best models it. Provision is made for manually correcting defects such as incorrect node positions or dangling bonds. Then a suitable algorithm retrieves polygonal contours which define individual cells — local boundary curvatures are neglected for simplicity. Using elementary analytical geometry relations, a range of metric and topological parameters describing the population are then computed, organized into statistical distributions and graphically displayed.

  7. Testing (Validating?) Cross Sections with ICSBEP Benchmarks

    SciTech Connect

    Kahler, Albert C. III

    2012-06-28

    We discuss how to use critical benchmarks from the International Handbook of Evaluated Criticality Safety Benchmark Experiments to determine the applicability of specific cross sections to the end-user's problem of interest. Particular attention is paid to making sure the selected suite of benchmarks includes the user's range of applicability (ROA).

  8. Neutron capture cross section of Am241

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Kawano, T.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Parker, W. E.; Wu, C. Y.; Becker, J. A.

    2008-09-01

    The neutron capture cross section of Am241 for incident neutrons from 0.02 eV to 320 keV has been measured with the detector for advanced neutron capture experiments (DANCE) at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be 665±33 b. Our result is in good agreement with other recent measurements. Resonance parameters for En<12 eV were obtained using an R-matrix fit to the measured cross section. The results are compared with values from the ENDF/B-VII.0, Mughabghab, JENDL-3.3, and JEFF-3.1 evaluations. Γn neutron widths for the first three resonances are systematically larger by 5-15% than the ENDF/B-VII.0 values. The resonance integral above 0.5 eV was determined to be 1553±7 b. Cross sections in the resolved and unresolved energy regions above 12 eV were calculated using the Hauser-Feshbach theory incorporating the width-fluctuation correction of Moldauer. The calculated results agree well with the measured data, and the extracted averaged resonance parameters in the unresolved resonance region are consistent with those for the resolved resonances.

  9. Cross Sections From Scalar Field Theory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Dick, Frank; Norman, Ryan B.; Nasto, Rachel

    2008-01-01

    A one pion exchange scalar model is used to calculate differential and total cross sections for pion production through nucleon- nucleon collisions. The collisions involve intermediate delta particle production and decay to nucleons and a pion. The model provides the basic theoretical framework for scalar field theory and can be applied to particle production processes where the effects of spin can be neglected.

  10. Cross sections relevant to gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Dyer, P.; Bodansky, D.; Maxson, D. R.

    1978-01-01

    Gamma-ray production cross sections were measured for protons and alpha particles incident on targets consisting of nuclei of high cosmic abundance: C-12, N-14, O-16, Ne-20, Mg-24, Si-28 and Fe-56. Solid or gaseous targets were bombarded by monoenergetic beams of protons and alpha particles, and gamma rays were detected by two Ge(Li) detectors. The proton energy for each target was varied from threshold to about 24 MeV (lab); for alphas the range was from threshold to about 27 MeV. For most transitions, it was possible to measure the total cross section by placing the detectors at 30.5 deg and 109.9 deg where the fourth-order Legendre polynomial is zero. For the case of the 16O (E sub gamma = 6.13 MeV, multipolarity E3) cross sections, yields were measured at four angles. Absolute cross sections were obtained by integrating the beam current and by measuring target thicknesses and detector efficiencies. The Ge(Li) detector resolution was a few keV (although the peak widths were greater, due to Doppler broadening).

  11. Neutron Capture Cross Sections for Radioactive Nuclei

    NASA Astrophysics Data System (ADS)

    Tonchev, Anton; Bedrossian, Peter; Escher, Jutta; Scielzo, Nicholas

    2015-10-01

    Accurate neutron-capture cross sections for radioactive nuclei near or far away from the line of beta stability are crucial for understanding the nucleosynthesis of heavy elements. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining observables that can constrain Hauser-Feshbach statistical model calculations of capture cross sections. Specifically, we will consider photon scattering, transfer reactions, and beta-delayed neutron emission. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes far from stability will be discussed. This work was performed under the auspices of US DOE by LLNL under contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.

  12. Dynamic 2D ultrasound and 3D CT image registration of the beating heart.

    PubMed

    Huang, Xishi; Moore, John; Guiraudon, Gerard; Jones, Douglas L; Bainbridge, Daniel; Ren, Jing; Peters, Terry M

    2009-08-01

    Two-dimensional ultrasound (US) is widely used in minimally invasive cardiac procedures due to its convenience of use and noninvasive nature. However, the low quality of US images often limits their utility as a means for guiding procedures, since it is often difficult to relate the images to their anatomical context. To improve the interpretability of the US images while maintaining US as a flexible anatomical and functional real-time imaging modality, we describe a multimodality image navigation system that integrates 2D US images with their 3D context by registering them to high quality preoperative models based on magnetic resonance imaging (MRI) or computed tomography (CT) images. The mapping from such a model to the patient is completed using spatial and temporal registrations. Spatial registration is performed by a two-step rapid registration method that first approximately aligns the two images as a starting point to an automatic registration procedure. Temporal alignment is performed with the aid of electrocardiograph (ECG) signals and a latency compensation method. Registration accuracy is measured by calculating the TRE. Results show that the error between the US and preoperative images of a beating heart phantom is 1.7 +/-0.4 mm, with a similar performance being observed in in vivo animal experiments.

  13. Breast density measurement: 3D cone beam computed tomography (CBCT) images versus 2D digital mammograms

    NASA Astrophysics Data System (ADS)

    Han, Tao; Lai, Chao-Jen; Chen, Lingyun; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Yang, Wei T.; Shaw, Chris C.

    2009-02-01

    Breast density has been recognized as one of the major risk factors for breast cancer. However, breast density is currently estimated using mammograms which are intrinsically 2D in nature and cannot accurately represent the real breast anatomy. In this study, a novel technique for measuring breast density based on the segmentation of 3D cone beam CT (CBCT) images was developed and the results were compared to those obtained from 2D digital mammograms. 16 mastectomy breast specimens were imaged with a bench top flat-panel based CBCT system. The reconstructed 3D CT images were corrected for the cupping artifacts and then filtered to reduce the noise level, followed by using threshold-based segmentation to separate the dense tissue from the adipose tissue. For each breast specimen, volumes of the dense tissue structures and the entire breast were computed and used to calculate the volumetric breast density. BI-RADS categories were derived from the measured breast densities and compared with those estimated from conventional digital mammograms. The results show that in 10 of 16 cases the BI-RADS categories derived from the CBCT images were lower than those derived from the mammograms by one category. Thus, breasts considered as dense in mammographic examinations may not be considered as dense with the CBCT images. This result indicates that the relation between breast cancer risk and true (volumetric) breast density needs to be further investigated.

  14. 2D image classification for 3D anatomy localization: employing deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    de Vos, Bob D.; Wolterink, Jelmer M.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana

    2016-03-01

    Localization of anatomical regions of interest (ROIs) is a preprocessing step in many medical image analysis tasks. While trivial for humans, it is complex for automatic methods. Classic machine learning approaches require the challenge of hand crafting features to describe differences between ROIs and background. Deep convolutional neural networks (CNNs) alleviate this by automatically finding hierarchical feature representations from raw images. We employ this trait to detect anatomical ROIs in 2D image slices in order to localize them in 3D. In 100 low-dose non-contrast enhanced non-ECG synchronized screening chest CT scans, a reference standard was defined by manually delineating rectangular bounding boxes around three anatomical ROIs -- heart, aortic arch, and descending aorta. Every anatomical ROI was automatically identified using a combination of three CNNs, each analyzing one orthogonal image plane. While single CNNs predicted presence or absence of a specific ROI in the given plane, the combination of their results provided a 3D bounding box around it. Classification performance of each CNN, expressed in area under the receiver operating characteristic curve, was >=0.988. Additionally, the performance of ROI localization was evaluated. Median Dice scores for automatically determined bounding boxes around the heart, aortic arch, and descending aorta were 0.89, 0.70, and 0.85 respectively. The results demonstrate that accurate automatic 3D localization of anatomical structures by CNN-based 2D image classification is feasible.

  15. Non-rigid target tracking in 2D ultrasound images using hierarchical grid interpolation

    NASA Astrophysics Data System (ADS)

    Royer, Lucas; Babel, Marie; Krupa, Alexandre

    2014-03-01

    In this paper, we present a new non-rigid target tracking method within 2D ultrasound (US) image sequence. Due to the poor quality of US images, the motion tracking of a tumor or cyst during needle insertion is considered as an open research issue. Our approach is based on well-known compression algorithm in order to make our method work in real-time which is a necessary condition for many clinical applications. Toward that end, we employed a dedicated hierarchical grid interpolation algorithm (HGI) which can represent a large variety of deformations compared to other motion estimation algorithms such as Overlapped Block Motion Compensation (OBMC), or Block Motion Algorithm (BMA). The sum of squared difference of image intensity is selected as similarity criterion because it provides a good trade-off between computation time and motion estimation quality. Contrary to the others methods proposed in the literature, our approach has the ability to distinguish both rigid and non-rigid motions which are observed in ultrasound image modality. Furthermore, this technique does not take into account any prior knowledge about the target, and limits the user interaction which usually complicates the medical validation process. Finally, a technique aiming at identifying the main phases of a periodic motion (e.g. breathing motion) is introduced. The new approach has been validated from 2D ultrasound images of real human tissues which undergo rigid and non-rigid deformations.

  16. Absolute photoionization cross-section of the methyl radical.

    SciTech Connect

    Taatjes, C. A.; Osborn, D. L.; Selby, T.; Meloni, G.; Fan, H.; Pratt, S. T.; Chemical Sciences and Engineering Division; SNL

    2008-01-01

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH{sub 3} photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; {sigma}{sub CH}(10.2 eV) = (5.7 {+-} 0.9) x 10{sup -18} cm{sup 2} and {sigma}{sub CH{sub 3}}(11.0 eV) = (6.0 {+-} 2.0) x 10{sup -18} cm{sup 2}. The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH{sub 3} and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.460 eV, (5.5 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.466 eV, and (4.9 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  17. Electron Microscopy: From 2D to 3D Images with Special Reference to Muscle

    PubMed Central

    2015-01-01

    This is a brief and necessarily very sketchy presentation of the evolution in electron microscopy (EM) imaging that was driven by the necessity of extracting 3-D views from the essentially 2-D images produced by the electron beam. The lens design of standard transmission electron microscope has not been greatly altered since its inception. However, technical advances in specimen preparation, image collection and analysis gradually induced an astounding progression over a period of about 50 years. From the early images that redefined tissues, cell and cell organelles at the sub-micron level, to the current nano-resolution reconstructions of organelles and proteins the step is very large. The review is written by an investigator who has followed the field for many years, but often from the sidelines, and with great wonder. Her interest in muscle ultrastructure colors the writing. More specific detailed reviews are presented in this issue. PMID:26913146

  18. 2D dose distribution images of a hybrid low field MRI-γ detector

    NASA Astrophysics Data System (ADS)

    Abril, A.; Agulles-Pedrós, L.

    2016-07-01

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the 99mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  19. Electron Microscopy: From 2D to 3D Images with Special Reference to Muscle.

    PubMed

    Franzini-Armstrong, Clara

    2015-01-01

    This is a brief and necessarily very sketchy presentation of the evolution in electron microscopy (EM) imaging that was driven by the necessity of extracting 3-D views from the essentially 2-D images produced by the electron beam. The lens design of standard transmission electron microscope has not been greatly altered since its inception. However, technical advances in specimen preparation, image collection and analysis gradually induced an astounding progression over a period of about 50 years. From the early images that redefined tissues, cell and cell organelles at the sub-micron level, to the current nano-resolution reconstructions of organelles and proteins the step is very large. The review is written by an investigator who has followed the field for many years, but often from the sidelines, and with great wonder. Her interest in muscle ultrastructure colors the writing. More specific detailed reviews are presented in this issue. PMID:26913146

  20. Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong

    2016-08-01

    Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.

  1. Clinical Assessment of 2D/3D Registration Accuracy in 4 Major Anatomic Sites Using On-Board 2D Kilovoltage Images for 6D Patient Setup

    PubMed Central

    Li, Guang; Yang, T. Jonathan; Furtado, Hugo; Birkfellner, Wolfgang; Ballangrud, Åse; Powell, Simon N.; Mechalakos, James

    2015-01-01

    To provide a comprehensive assessment of patient setup accuracy in 6 degrees of freedom (DOFs) using 2-dimensional/3-dimensional (2D/3D) image registration with on-board 2-dimensional kilovoltage (OB-2DkV) radiographic images, we evaluated cranial, head and neck (HN), and thoracic and abdominal sites under clinical conditions. A fast 2D/3D image registration method using graphics processing unit GPU was modified for registration between OB-2DkV and 3D simulation computed tomography (simCT) images, with 3D/3D registration as the gold standard for 6DOF alignment. In 2D/3D registration, body roll rotation was obtained solely by matching orthogonal OB-2DkV images with a series of digitally reconstructed radiographs (DRRs) from simCT with a small rotational increment along the gantry rotation axis. The window/level adjustments for optimal visualization of the bone in OB-2DkV and DRRs were performed prior to registration. Ideal patient alignment at the isocenter was calculated and used as an initial registration position. In 3D/3D registration, cone-beam CT (CBCT) was aligned to simCT on bony structures using a bone density filter in 6DOF. Included in this retrospective study were 37 patients treated in 55 fractions with frameless stereotactic radiosurgery or stereotactic body radiotherapy for cranial and paraspinal cancer. A cranial phantom was used to serve as a control. In all cases, CBCT images were acquired for patient setup with subsequent OB-2DkV verification. It was found that the accuracy of the 2D/3D registration was 0.0 ± 0.5 mm and 0.1° ± 0.4° in phantom. In patient, it is site dependent due to deformation of the anatomy: 0.2 ± 1.6 mm and −0.4° ± 1.2° on average for each dimension for the cranial site, 0.7 ± 1.6 mm and 0.3° ± 1.3° for HN, 0.7 ± 2.0 mm and −0.7° ± 1.1° for the thorax, and 1.1 ± 2.6 mm and −0.5° ± 1.9° for the abdomen. Anatomical deformation and presence of soft tissue in 2D/3D registration affect the consistency with

  2. Imaging Meso-Scale Structures in TEXTOR with 2D-ECE

    NASA Astrophysics Data System (ADS)

    Classen, I. G. J.; Jaspers, R. J. E.; Park, H. K.; Spakman, G. W.; van der Pol, M. J.; Domier, C. W.; Donne, A. J. H.; Luhmann, N. C., Jr.; Westerhof, E.; Jakubowski, M. W.; TEXTOR Team

    The detection and control of instabilities in a tokamak is one of the exciting challenges in fusion research on the way to a reactor. Thanks to a combination of an innovative 2D temperature imaging technique (ECEI), a versatile ECRH/ECCD system and a unique possibility to externally induce tearing modes in the plasma, TEXTOR is able to make pioneering contributions in this field. This paper focuses on two meso-scale phenomena in tokamaks: m = 2 tearing modes and magnetic structures in the stochastic boundary. In these cases the 2D-ECEI diagnostic can resolve features not attainable before. In addition the possibility to use the diagnostic for fluctuation measurements is addressed.

  3. 3D/2D image registration using weighted histogram of gradient directions

    NASA Astrophysics Data System (ADS)

    Ghafurian, Soheil; Hacihaliloglu, Ilker; Metaxas, Dimitris N.; Tan, Virak; Li, Kang

    2015-03-01

    Three dimensional (3D) to two dimensional (2D) image registration is crucial in many medical applications such as image-guided evaluation of musculoskeletal disorders. One of the key problems is to estimate the 3D CT- reconstructed bone model positions (translation and rotation) which maximize the similarity between the digitally reconstructed radiographs (DRRs) and the 2D fluoroscopic images using a registration method. This problem is computational-intensive due to a large search space and the complicated DRR generation process. Also, finding a similarity measure which converges to the global optimum instead of local optima adds to the challenge. To circumvent these issues, most existing registration methods need a manual initialization, which requires user interaction and is prone to human error. In this paper, we introduce a novel feature-based registration method using the weighted histogram of gradient directions of images. This method simplifies the computation by searching the parameter space (rotation and translation) sequentially rather than simultaneously. In our numeric simulation experiments, the proposed registration algorithm was able to achieve sub-millimeter and sub-degree accuracies. Moreover, our method is robust to the initial guess. It can tolerate up to +/-90°rotation offset from the global optimal solution, which minimizes the need for human interaction to initialize the algorithm.

  4. 2D Imaging in a Lightweight Portable MRI Scanner without Gradient Coils

    PubMed Central

    Cooley, Clarissa Zimmerman; Stockmann, Jason P.; Armstrong, Brandon D.; Sarracanie, Mathieu; Lev, Michael H.; Rosen, Matthew S.; Wald, Lawrence L.

    2014-01-01

    Purpose As the premiere modality for brain imaging, MRI could find wider applicability if lightweight, portable systems were available for siting in unconventional locations such as Intensive Care Units, physician offices, surgical suites, ambulances, emergency rooms, sports facilities, or rural healthcare sites. Methods We construct and validate a truly portable (<100kg) and silent proof-of-concept MRI scanner which replaces conventional gradient encoding with a rotating lightweight cryogen-free, low-field magnet. When rotated about the object, the inhomogeneous field pattern is used as a rotating Spatial Encoding Magnetic field (rSEM) to create generalized projections which encode the iteratively reconstructed 2D image. Multiple receive channels are used to disambiguate the non-bijective encoding field. Results The system is validated with experimental images of 2D test phantoms. Similar to other non-linear field encoding schemes, the spatial resolution is position dependent with blurring in the center, but is shown to be likely sufficient for many medical applications. Conclusion The presented MRI scanner demonstrates the potential for portability by simultaneously relaxing the magnet homogeneity criteria and eliminating the gradient coil. This new architecture and encoding scheme shows convincing proof of concept images that are expected to be further improved with refinement of the calibration and methodology. PMID:24668520

  5. Augmented depth perception visualization in 2D/3D image fusion.

    PubMed

    Wang, Jian; Kreiser, Matthias; Wang, Lejing; Navab, Nassir; Fallavollita, Pascal

    2014-12-01

    2D/3D image fusion applications are widely used in endovascular interventions. Complaints from interventionists about existing state-of-art visualization software are usually related to the strong compromise between 2D and 3D visibility or the lack of depth perception. In this paper, we investigate several concepts enabling improvement of current image fusion visualization found in the operating room. First, a contour enhanced visualization is used to circumvent hidden information in the X-ray image. Second, an occlusion and depth color-coding scheme is considered to improve depth perception. To validate our visualization technique both phantom and clinical data are considered. An evaluation is performed in the form of a questionnaire which included 24 participants: ten clinicians and fourteen non-clinicians. Results indicate that the occlusion correction method provides 100% correctness when determining the true position of an aneurysm in X-ray. Further, when integrating an RGB or RB color-depth encoding in the image fusion both perception and intuitiveness are improved.

  6. Designing of sparse 2D arrays for Lamb wave imaging using coarray concept

    NASA Astrophysics Data System (ADS)

    Ambroziński, Łukasz; Stepinski, Tadeusz; Uhl, Tadeusz

    2015-03-01

    2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays' elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.

  7. Adaptive optofluidic lens(es) for switchable 2D and 3D imaging

    NASA Astrophysics Data System (ADS)

    Huang, Hanyang; Wei, Kang; Zhao, Yi

    2016-03-01

    The stereoscopic image is often captured using dual cameras arranged side-by-side and optical path switching systems such as two separate solid lenses or biprism/mirrors. The miniaturization of the overall size of current stereoscopic devices down to several millimeters is at a sacrifice of further device size shrinkage. The limited light entry worsens the final image resolution and brightness. It is known that optofluidics offer good re-configurability for imaging systems. Leveraging this technique, we report a reconfigurable optofluidic system whose optical layout can be swapped between a singlet lens with 10 mm in diameter and a pair of binocular lenses with each lens of 3 mm in diameter for switchable two-dimensional (2D) and three-dimensional (3D) imaging. The singlet and the binoculars share the same optical path and the same imaging sensor. The singlet acquires a 3D image with better resolution and brightness, while the binoculars capture stereoscopic image pairs for 3D vision and depth perception. The focusing power tuning capability of the singlet and the binoculars enable image acquisition at varied object planes by adjusting the hydrostatic pressure across the lens membrane. The vari-focal singlet and binoculars thus work interchangeably and complementarily. The device is thus expected to have applications in robotic vision, stereoscopy, laparoendoscopy and miniaturized zoom lens system.

  8. Absolute np and pp Cross Section Determinations Aimed At Improving The Standard For Cross Section Measurements

    SciTech Connect

    Laptev, A. B.; Haight, R. C.; Tovesson, F.; Arndt, R. A.; Briscoe, W. J.; Paris, M. W.; Strakovsky, I. I.; Workman, R. L.

    2011-06-01

    Purpose of present research is a keeping improvement of the standard for cross section measurements of neutron-induced reactions. The cross sections for np and pp scattering below 1 GeV are determined based on partial-wave analyses (PWAs) of nucleon-nucleon scattering data. These cross sections are compared with the most recent ENDF/B-VII.0 and JENDL-4.0 data files, and the Nijmegen PWA. Also a comparison of evaluated data with recent experimental data was made to check a quality of evaluation. Excellent agreement was found between the new experimental data and our PWA predictions.

  9. Absolute np and pp cross section determinations aimed at improving the standard for cross section measurements

    SciTech Connect

    Laptev, Alexander B; Haight, Robert C; Tovesson, Fredrik; Arndt, Richard A; Briscoe, William J; Paris, Mark W; Strakovsky, Igor I; Workman, Ron L

    2010-01-01

    Purpose of present research is a keeping improvement of the standard for cross section measurements of neutron-induced reactions. The cross sections for np and pp scattering below 1000 MeV are determined based on partial-wave analyses (PW As) of nucleon-nucleon scattering data. These cross sections are compared with the most recent ENDF/B-V11.0 and JENDL-4.0 data files, and the Nijmegen PWA. Also a comparison of evaluated data with recent experimental data was made to check a quality of evaluation. Excellent agreement was found between the new experimental data and our PWA predictions.

  10. Database-guided breast tumor detection and segmentation in 2D ultrasound images

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdan; Zhou, Shaohua K.; Brunke, Shelby; Lowery, Carol; Comaniciu, Dorin

    2010-03-01

    Ultrasonography is a valuable technique for diagnosing breast cancer. Computer-aided tumor detection and segmentation in ultrasound images can reduce labor cost and streamline clinic workflows. In this paper, we propose a fully automatic system to detect and segment breast tumors in 2D ultrasound images. Our system, based on database-guided techniques, learns the knowledge of breast tumor appearance exemplified by expert annotations. For tumor detection, we train a classifier to discriminate between tumors and their background. For tumor segmentation, we propose a discriminative graph cut approach, where both the data fidelity and compatibility functions are learned discriminatively. The performance of the proposed algorithms is demonstrated on a large set of 347 images, achieving a mean contour-to-contour error of 3.75 pixels with about 4.33 seconds.

  11. Inclusive jet cross section at the Tevatron

    SciTech Connect

    1998-01-01

    The authors report preliminary measurements of the central inclusive jet cross section at 1.8 TeV by the D0 and the CDF collaborations at the p{anti p} Fermilab collider. They are based on an integrated luminosity of 92 and 87 pb-1, respectively. The cross sections are measured as a function of jet transverse energy in the pseudorapidity interval 0.1 < 1,711 < 0.7 (CDF), and the two pseudorapidity ranges 1,711 < 0.5 and 0.1 < Inj < 0.7 (D0). D0 reports good agreement with the Next-to-Leading Order QCD predictions currently available. CDF observes an excess above 200 GeV, which can be accommodated with a modification in the gluon distribution function at high x.

  12. Cross sections required for FMIT dosimetry

    SciTech Connect

    Gold, R.; McElroy, W.N.; Lippincott, E.P.; Mann, F.M.; Oberg, D.L.; Roberts, J.H.; Ruddy, F.H.

    1980-05-02

    The Fusion Materials Irradiation Test (FMIT) facility, currently under construction, is designed to produce a high flux of high energy neutrons for irradiation effects experiments on fusion reactor materials. Characterization of the flux-fluence-spectrum in this rapidly varying neutron field requires adaptation and extension of currently available dosimetry techniques. This characterization will be carried out by a combination of active, passive, and calculational dosimetry. The goal is to provide the experimenter with accurate neutron flux-fluence-spectra at all positions in the test cell. Plans have been completed for a number of experimental dosimetry stations and provision for these facilities has been incorporated into the FMIT design. Overall needs of the FMIT irradiation damage program delineate goal accuracies for dosimetry that, in turn, create new requirements for high energy neutron cross section data. Recommendations based on these needs have been derived for required cross section data and accuracies.

  13. Proton Pair Production Cross Sections at BESIII

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaorong

    Using data samples collected with the BESIII detector at the BEPCII collider, the Born cross section of e + e - to pbar{p} at 12 center-of-mass energies from 2232.4 to 3671.0 MeV is provided. The corresponding effective electromagnetic form factor of the proton is deduced under the assumption that the electric and magnetic form factors are equal. In addition, the ratio of electric to magnetic form factors are extracted for the data samples with larger statistics. The measured cross sections are in agreement with recent results from BaBar, improving the overall uncertainty by about 30%. The |GE/GM| ratios are close to unity and consistent with BaBar results in the same q2 region.

  14. Rotational averaging of multiphoton absorption cross sections

    SciTech Connect

    Friese, Daniel H. Beerepoot, Maarten T. P.; Ruud, Kenneth

    2014-11-28

    Rotational averaging of tensors is a crucial step in the calculation of molecular properties in isotropic media. We present a scheme for the rotational averaging of multiphoton absorption cross sections. We extend existing literature on rotational averaging to even-rank tensors of arbitrary order and derive equations that require only the number of photons as input. In particular, we derive the first explicit expressions for the rotational average of five-, six-, and seven-photon absorption cross sections. This work is one of the required steps in making the calculation of these higher-order absorption properties possible. The results can be applied to any even-rank tensor provided linearly polarized light is used.

  15. Electron Excitation Cross Sections for the 2s(sup 2)2p(sup 3) (sup 4)S -> 2s(sup 2)2p(sup 3) (sup 2d) ->2s2p(sup 4) (sup 4p) (Resonance) Transitions in Oil

    NASA Technical Reports Server (NTRS)

    Zuo, M.; Smith, S.; Chutjian, A.; Williams, I.; Tayal, S.; McLaughlin, B.

    1994-01-01

    Experimental and theoretical excitation cross sections are reported for the first forbidden transition xxx and the first allowed (resonance) transition xxx in OII. Use is made of electron-energy loss and merged beams methods. The electron energy range covered is 3.33 eV (threshold) to 15 eV for the S->D transition, and 14.9 eV (threshold) to 40 eV for the S->P transition. Care was taken to assess and minimize the metastable fraction of the OII beam. An electron mirror was designed and tested to reflect inelastically back-scattered electrons into the forward direction to account for the full range of polar scattering angles. Comparisons are made between present experiments and 11-state R-Matrix calculations. Calculations are also presented for the xxx transition.

  16. A preliminary evaluation work on a 3D ultrasound imaging system for 2D array transducer

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoli; Li, Xu; Yang, Jiali; Li, Chunyu; Song, Junjie; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    This paper presents a preliminary evaluation work on a pre-designed 3-D ultrasound imaging system. The system mainly consists of four parts, a 7.5MHz, 24×24 2-D array transducer, the transmit/receive circuit, power supply, data acquisition and real-time imaging module. The row-column addressing scheme is adopted for the transducer fabrication, which greatly reduces the number of active channels . The element area of the transducer is 4.6mm by 4.6mm. Four kinds of tests were carried out to evaluate the imaging performance, including the penetration depth range, axial and lateral resolution, positioning accuracy and 3-D imaging frame rate. Several strong reflection metal objects , fixed in a water tank, were selected for the purpose of imaging due to a low signal-to-noise ratio of the transducer. The distance between the transducer and the tested objects , the thickness of aluminum, and the seam width of the aluminum sheet were measured by a calibrated micrometer to evaluate the penetration depth, the axial and lateral resolution, respectively. The experiment al results showed that the imaging penetration depth range was from 1.0cm to 6.2cm, the axial and lateral resolution were 0.32mm and 1.37mm respectively, the imaging speed was up to 27 frames per second and the positioning accuracy was 9.2%.

  17. Photoacoustic imaging for deep targets in the breast using a multichannel 2D array transducer

    NASA Astrophysics Data System (ADS)

    Xie, Zhixing; Wang, Xueding; Morris, Richard F.; Padilla, Frederic R.; Lecarpentier, Gerald L.; Carson, Paul L.

    2011-03-01

    A photoacoustic (PA) imaging system was developed to achieve high sensitivity for the detection and characterization of vascular anomalies in the breast in the mammographic geometry. Signal detection from deep in the breast was achieved by a broadband 2D PVDF planar array that has a round shape with one side trimmed straight to improve fit near the chest wall. This array has 572 active elements and a -6dB bandwidth of 0.6-1.7 MHz. The low frequency enhances imaging depth and increases the size of vascular collections displayed without edge enhancement. The PA signals from all the elements go through low noise preamplifiers in the probe that are very close to the array elements for optimized noise control. Driven by 20 independent on-probe signal processing channels, imaging with both high sensitivity and good speed was achieved. To evaluate the imaging depth and the spatial resolution of this system,2.38mm I.D. artificial vessels embedded deeply in ex vivo breasts harvested from fresh cadavers and a 3mm I.D. tube in breast mimicking phantoms made of pork loin and fat tissues were imaged. Using near-infrared laser light with incident energy density within the ANSI safety limit, imaging depths of up to 49 mm in human breasts and 52 mm in phantoms were achieved. With a high power tunable laser working on multiple wavelengths, this system might contribute to 3D noninvasive imaging of morphological and physiological tissue features throughout the breast.

  18. Inclusive jet cross section measurement at CDF

    SciTech Connect

    Pagliarone, C.

    1996-08-01

    The CDF Collaboration has measured the inclusive jet cross section using 1992-93 collider data at 1.8 TeV. The CDF measurement is in very good agreement with NLO QCD predictions for transverse energies (E{sub T}) below 200 GeV. However, it is systematically higher than NLO QCD predictions for E{sub T} above 200 GeV.

  19. {sup 231}Pa photofission cross section

    SciTech Connect

    Soldatov, A.S.; Rudnikov, V.E.; Smirenkin, G.N.

    1995-12-01

    The measurements of the {sup 231}Pa yield and cross section photofission in the energy range 7-9 MeV are presented. These measurements are a continuation of similar measurements performed for the {gamma}-ray energy range 4.8-7 MeV. The entire collection of experimental data which combine the results obtained in the present work and in Ref. 1 was analyzed.

  20. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  1. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  2. Fusion cross sections measurements with MUSIC

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Fernández Niello, J. O.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Digiovine, B.; Esbensen, H.; Henderson, D.; Jiang, C. L.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Ugalde, C.; Paul, M.; Alcorta, M.; Bertone, P. F.; Lai, J.; Marley, S. T.

    2014-09-01

    The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. This work is supported by the U.S. DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357 and the Universidad Nacional de San Martin, Argentina, Grant SJ10/39.

  3. How to Calculate Colourful Cross Sections Efficiently

    SciTech Connect

    Gleisberg, Tanju; Hoeche, Stefan; Krauss, Frank

    2008-09-03

    Different methods for the calculation of cross sections with many QCD particles are compared. To this end, CSW vertex rules, Berends-Giele recursion and Feynman-diagram based techniques are implemented as well as various methods for the treatment of colours and phase space integration. We find that typically there is only a small window of jet multiplicities, where the CSW technique has efficiencies comparable or better than both of the other two methods.

  4. Nonperturbative corrections in resummed cross sections

    NASA Astrophysics Data System (ADS)

    Korchemsky, Gregory P.; Sterman, George

    1995-02-01

    We show that the resummation of large perturbative corrections in QCD leads to ambiguities in high energy cross sections that are suppressed by powers of large momentum scales. These ambiguities are caused by infrared renormalons, which are a general feature of resummed hardscattering functions in perturbative QCD, even though these functions are infrared safe order-by-order in perturbation theory. As in the case of the operator product expansion, the contributions of infrared renormalons to coefficient functions may be absorbed into the definition of higher-dimensional operators, which induce nonperturbative corrections that are power-suppressed at high energies. The strength of the suppression is determined by the location of the dominant infrared renormalon, which may be identified explicitly in the resummed series. In contrast to the operator product expansion, however, the relevant operators in factorized hadron-hadron scattering and jet cross sections are generally nonlocal in QCD, although they may be expressed as local operators in an effective theory for eikonalized quarks. In this context, we verify and interpret the presence of 1 / Q corrections to the inclusive Drell-Yan cross section with Q the pair mass. In a similar manner, we find exp (- b2 In Q) corrections in the impact parameter space of the transverse momentum distributions of the Drell-Yan process and e +6 - annihilation. We also show that the dominant nonperturbative corrections to cone-based jet cross sections behave as 1 /( Qδ), with δ the opening angle of the jet and Q the center of mass energy.

  5. KLOE results on hadronic cross section

    NASA Astrophysics Data System (ADS)

    Mandaglio, Giuseppe; Ambrosino, F.; Antonelli, A.; Antonelli, M.; Archilli, F.; Balwierz, I.; Bencivenni, G.; Bini, C.; Bloise, C; . Bocchetta, S.; Bossi, F.; Branchini, P.; Capon, G.; Capussela, T.; Ceradini, F.; Ciambrone, P.; Czerwiński, E.; De Lucia, E.; De Santis, A.; De Simone, P.; De Zorzi, G.; Denig, A.; Di Domenico, A.; Di Donato, C.; Di Micco, B.; Dreucci, M.; Felici, G.; Fiore, S.; Franzini, P.; Gatti, C.; Gauzzi, P.; Giovannella, S.; Graziani, E.; Jacewicz, M.; Kluge, W.; Lee-Franzini, J.; Lukin, P.; Martemianov, M.; Martini, M.; Massarotti, P.; Meola, S.; Miscetti, S.; Morello, G.; Moulson, M.; Müller, S; . Napolitano, M.; Nguyen, F.; Palutan, M.; Passeri, A.; Patera, V.; Prado Longhi, I.; Santangelo, P.; Sciascia, B.; Silarski, M.; Spadaro, T.; Taccini, C.; Tortora, L.; Venanzoni, G.; Versaci, R.; Xu, G.; Zdebik, J.; Babusci, D.; Badoni, D.; Bocci, V.; Budano, A.; Bulychjev, S. A; .; Caldeira Balkeståhl, L.; Campana, P.; Dané, E.; De Robertis, G.; Domenici, D.; Erriquez, O.; Fanizzi, G.; Giardina, G.; Gonnella, F.; Happacher, F.; Höistad, B.; Iafolla, L.; Iarocci, E.; Johansson, T.; Kowalewska, A.; Kulikov, V.; Kupsc, A.; Loddo, F.; Mandaglio, G.; Mascolo, M.; Matsyuk, M.; Messi, R.; Moricciani, D.; Ranieri, A.; Redmer, C. F.; Sarra, I.; Schioppa, M.; Sciubba, A.; Wiślicki, W.; Wolke, M.; KLOE/KLOE-2 Collaborations

    2012-03-01

    The KLOE experiment at the phi - factory DAΦNE is the first to have exploited Initial State Radiation (ISR) to precisely determine the e+e- → π+π-(γ) cross section below 1 GeV, representing the 70% of the leading order contribution to the muon anomaly. The leading order contribution ahloμ is presently the main source of uncertainty in the theoretical evaluation of the muon anomaly, and it can be evaluated by dispersion integral using the experimental measurement of hadronic cross section. A persistent discrepancy of about 3 σ between standard model (SM) prediction and experimental measurements of the muon anomalous magnetic moment has been up to now observed. The KLOE collaboration published two measurements of the π+π- cross section with the photon in the initial state emitted at small polar angle in Phys. Lett. B vol. 606 pg. 12 and vol. 670 pg. 285, and an independent measurement with the photon emitted at large polar angle in Phys. Lett. B vol. 700 pg. 102. These measurements were normalized to the DAΦNE luminosity. Recently, a new analysis deriving the pion form factor directly from measuring the bin-by-bin π+πγ and μ+μγ final states ratio has been performed. In this paper, the preliminary results of this new measurement and the comparison to the previous published ones, the impact on the evaluation of the hadronic contribution to the muon anomaly, the preliminary μ+μγ cross section measurement and the comparison with the PHOKHARA-MC prediction are presented.

  6. GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.

    PubMed

    Dorgham, Osama M; Laycock, Stephen D; Fisher, Mark H

    2012-09-01

    Recent advances in programming languages for graphics processing units (GPUs) provide developers with a convenient way of implementing applications which can be executed on the CPU and GPU interchangeably. GPUs are becoming relatively cheap, powerful, and widely available hardware components, which can be used to perform intensive calculations. The last decade of hardware performance developments shows that GPU-based computation is progressing significantly faster than CPU-based computation, particularly if one considers the execution of highly parallelisable algorithms. Future predictions illustrate that this trend is likely to continue. In this paper, we introduce a way of accelerating 2-D/3-D image registration by developing a hybrid system which executes on the CPU and utilizes the GPU for parallelizing the generation of digitally reconstructed radiographs (DRRs). Based on the advancements of the GPU over the CPU, it is timely to exploit the benefits of many-core GPU technology by developing algorithms for DRR generation. Although some previous work has investigated the rendering of DRRs using the GPU, this paper investigates approximations which reduce the computational overhead while still maintaining a quality consistent with that needed for 2-D/3-D registration with sufficient accuracy to be clinically acceptable in certain applications of radiation oncology. Furthermore, by comparing implementations of 2-D/3-D registration on the CPU and GPU, we investigate current performance and propose an optimal framework for PC implementations addressing the rigid registration problem. Using this framework, we are able to render DRR images from a 256×256×133 CT volume in ~24 ms using an NVidia GeForce 8800 GTX and in ~2 ms using NVidia GeForce GTX 580. In addition to applications requiring fast automatic patient setup, these levels of performance suggest image-guided radiation therapy at video frame rates is technically feasible using relatively low cost PC

  7. Quality Quantification of Evaluated Cross Section Covariances

    SciTech Connect

    Varet, S.; Dossantos-Uzarralde, P.

    2015-01-15

    Presently, several methods are used to estimate the covariance matrix of evaluated nuclear cross sections. Because the resulting covariance matrices can be different according to the method used and according to the assumptions of the method, we propose a general and objective approach to quantify the quality of the covariance estimation for evaluated cross sections. The first step consists in defining an objective criterion. The second step is computation of the criterion. In this paper the Kullback-Leibler distance is proposed for the quality quantification of a covariance matrix estimation and its inverse. It is based on the distance to the true covariance matrix. A method based on the bootstrap is presented for the estimation of this criterion, which can be applied with most methods for covariance matrix estimation and without the knowledge of the true covariance matrix. The full approach is illustrated on the {sup 85}Rb nucleus evaluations and the results are then used for a discussion on scoring and Monte Carlo approaches for covariance matrix estimation of the cross section evaluations.

  8. Development of ultra-fast 2D ion Doppler tomography using image intensified CMOS fast camera

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; Kuwahata, Akihiro; Yamanaka, Haruki; Inomoto, Michiaki; Ono, Yasushi; TS-group Team

    2015-11-01

    The world fastest novel time-resolved 2D ion Doppler tomography diagnostics has been developed using fast camera with high-speed gated image intensifier (frame rate: 200kfps. phosphor decay time: ~ 1 μ s). Time evolution of line-integrated spectra are diffracted from a f=1m, F/8.3 and g=2400L/mm Czerny-Turner polychromator, whose output is intensified and recorded to a high-speed camera with spectral resolution of ~0.005nm/pixel. The system can accommodate up to 36 (9 ×4) spatial points recorded at 5 μs time resolution, tomographic reconstruction is applied for the line-integrated spectra, time-resolved (5 μs/frame) local 2D ion temperature measurement has been achieved without any assumption of shot repeatability. Ion heating during intermittent reconnection event which tends to happen during high guide field merging tokamak was measured around diffusion region in UTST. The measured 2D profile shows ion heating inside the acceleration channel of reconnection outflow jet, stagnation point and downstream region where reconnected field forms thick closed flux surface as in MAST. Achieved maximum ion temperature increases as a function of Brec2 and shows good fit with MAST experiment, demonstrating promising CS-less startup scenario for spherical tokamak. This work is supported by JSPS KAKENHI Grant Number 15H05750 and 15K20921.

  9. 2D aperture synthesis for Lamb wave imaging using co-arrays

    NASA Astrophysics Data System (ADS)

    Ambrozinski, Lukasz; Stepinski, Tadeusz; Uhl, Tadeusz

    2014-03-01

    2D ultrasonic arrays in Lamb wave based SHM systems can operate in the phased array (PA) or synthetic focusing (SF) mode. In the real-time PA approach, multiple electronically delayed signals excite transmitting elements to form the desired wave-front, whereas receiving elements are used to sense scattered waves. Due to that, the PA mode requires multi channeled hardware and multiple excitations at numerous azimuths to scan the inspected region of interest. To the contrary, the SF mode, assumes a single element excitation of subsequent transmitters and off-line processing of the acquired data. In the simplest implementation of the SF technique, a single multiplexed input and output channels are required, which results in significant hardware simplification. Performance of a 2D imaging array depends on many parameters, such as, its topology, number of its transducers and their spacing in terms of wavelength as well as the type of weighting function (apodization). Moreover, it is possible to use sparse arrays, which means that not all array elements are used for transmitting and/ or receiving. In this paper the co-array concept is applied to facilitate the synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum co-array is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual elements' locations in the sub-arrays used for imaging. The coarray framework will be presented here using two different array topologies, aID uniform linear array and a cross-shaped array that will result in a square coarray. The approach will be discussed in terms of array patterns and beam patterns of the resulting imaging systems. Both, theoretical and experimental results will be given.

  10. Enhanced detection of the vertebrae in 2D CT-images

    NASA Astrophysics Data System (ADS)

    Graf, Franz; Greil, Robert; Kriegel, Hans-Peter; Schubert, Matthias; Cavallaro, Alexander

    2012-02-01

    In recent years, a considerable amount of methods have been proposed for detecting and reconstructing the spine and the vertebrae from CT and MR scans. The results are either used for examining the vertebrae or serve as a preprocessing step for further detection and annotation tasks. In this paper, we propose a method for reliably detecting the position of the vertebrae on a single slice of a transversal body CT scan. Thus, our method is not restricted by the available portion of the 3D scan, but even suffices with a single 2D image. A further advantage of our method is that detection does not require adjusting parameters or direct user interaction. Technically, our method is based on an imaging pipeline comprising five steps: The input image is preprocessed. The relevant region of the image is extracted. Then, a set of candidate locations is selected based on bone density. In the next step, image features are extracted from the surrounding of the candidate locations and an instance-based learning approach is used for selecting the best candidate. Finally, a refinement step optimizes the best candidate region. Our proposed method is validated on a large diverse data set of more than 8 000 images and improves the accuracy in terms of area overlap and distance from the true position significantly compared to the only other method being proposed for this task so far.

  11. Diesel combustion and emissions formation using multiple 2-D imaging diagnostics

    SciTech Connect

    Dec, J.E.

    1997-12-31

    Understanding how emissions are formed during diesel combustion is central to developing new engines that can comply with increasingly stringent emission standards while maintaining or improving performance levels. Laser-based planar imaging diagnostics are uniquely capable of providing the temporally and spatially resolved information required for this understanding. Using an optically accessible research engine, a variety of two-dimensional (2-D) imaging diagnostics have been applied to investigators of direct-injection (DI) diesel combustion and emissions formation. These optical measurements have included the following laser-sheet imaging data: Mie scattering to determine liquid-phase fuel distributions, Rayleigh scattering for quantitative vapor-phase-fuel/air mixture images, laser induced incandescence (LII) for relative soot concentrations, simultaneous LII and Rayleigh scattering for relative soot particle-size distributions, planar laser-induced fluorescence (PLIF) to obtain early PAH (polyaromatic hydrocarbon) distributions, PLIF images of the OH radical that show the diffusion flame structure, and PLIF images of the NO radical showing the onset of NO{sub x} production. In addition, natural-emission chemiluminescence images were obtained to investigate autoignition. The experimental setup is described, and the image data showing the most relevant results are presented. Then the conceptual model of diesel combustion is summarized in a series of idealized schematics depicting the temporal and spatial evolution of a reacting diesel fuel jet during the time period investigated. Finally, recent PLIF images of the NO distribution are presented and shown to support the timing and location of NO formation hypothesized from the conceptual model.

  12. Plane-wave transverse oscillation for high-frame-rate 2-D vector flow imaging.

    PubMed

    Lenge, Matteo; Ramalli, Alessandro; Tortoli, Piero; Cachard, Christian; Liebgott, Hervé

    2015-12-01

    Transverse oscillation (TO) methods introduce oscillations in the pulse-echo field (PEF) along the direction transverse to the ultrasound propagation direction. This may be exploited to extend flow investigations toward multidimensional estimates. In this paper, the TOs are coupled with the transmission of plane waves (PWs) to reconstruct high-framerate RF images with bidirectional oscillations in the pulse-echo field. Such RF images are then processed by a 2-D phase-based displacement estimator to produce 2-D vector flow maps at thousands of frames per second. First, the capability of generating TOs after PW transmissions was thoroughly investigated by varying the lateral wavelength, the burst length, and the transmission frequency. Over the entire region of interest, the generated lateral wavelengths, compared with the designed ones, presented bias and standard deviation of -3.3 ± 5.7% and 10.6 ± 7.4% in simulations and experiments, respectively. The performance of the ultrafast vector flow mapping method was also assessed by evaluating the differences between the estimated velocities and the expected ones. Both simulations and experiments show overall biases lower than 20% when varying the beam-to-flow angle, the peak velocity, and the depth of interest. In vivo applications of the method on the common carotid and the brachial arteries are also presented. PMID:26670852

  13. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Pan, X. M.; Yang, Z. J.; Ma, X. D.; Zhu, Y. L.; Luhmann, N. C.; Domier, C. W.; Ruan, B. W.; Zhuang, G.

    2016-11-01

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  14. 2-D array for 3-D Ultrasound Imaging Using Synthetic Aperture Techniques

    PubMed Central

    Daher, Nadim M.; Yen, Jesse T.

    2010-01-01

    A 2-D array of 256 × 256 = 65,536 elements, with total area 4 × 4 = 16 cm2, serves as a flexible platform for developing acquisition schemes for 3-D rectilinear ultrasound imaging at 10 MHz using synthetic aperture techniques. This innovative system combines a simplified interconnect scheme and synthetic aperture techniques with a 2-D array for 3-D imaging. A row-column addressing scheme is used to access different elements for different transmit events. This addressing scheme is achieved through a simple interconnect, consisting of one top, one bottom single layer flex circuits, which, compared to multi-layer flex circuits, are simpler to design, cheaper to manufacture and thinner so their effect on the acoustic response is minimized. We present three designs that prioritize different design objectives: volume acquisiton time, resolution, and sensitivity, while maintaining acceptable figures for the other design objectives. For example, one design overlooks time acquisition requirements, assumes good noise conditions, and optimizes for resolution, achieving −6 dB and −20 dB beamwidths of less than 0.2 and 0.5 millimeters, respectively, for an F/2 aperture. Another design can acquire an entire volume in 256 transmit events, with −6dB and −20 dB beamwidths in the order of 0.4 and 0.8 millimeters, respectively. PMID:16764446

  15. Plane-wave transverse oscillation for high-frame-rate 2-D vector flow imaging.

    PubMed

    Lenge, Matteo; Ramalli, Alessandro; Tortoli, Piero; Cachard, Christian; Liebgott, Hervé

    2015-12-01

    Transverse oscillation (TO) methods introduce oscillations in the pulse-echo field (PEF) along the direction transverse to the ultrasound propagation direction. This may be exploited to extend flow investigations toward multidimensional estimates. In this paper, the TOs are coupled with the transmission of plane waves (PWs) to reconstruct high-framerate RF images with bidirectional oscillations in the pulse-echo field. Such RF images are then processed by a 2-D phase-based displacement estimator to produce 2-D vector flow maps at thousands of frames per second. First, the capability of generating TOs after PW transmissions was thoroughly investigated by varying the lateral wavelength, the burst length, and the transmission frequency. Over the entire region of interest, the generated lateral wavelengths, compared with the designed ones, presented bias and standard deviation of -3.3 ± 5.7% and 10.6 ± 7.4% in simulations and experiments, respectively. The performance of the ultrafast vector flow mapping method was also assessed by evaluating the differences between the estimated velocities and the expected ones. Both simulations and experiments show overall biases lower than 20% when varying the beam-to-flow angle, the peak velocity, and the depth of interest. In vivo applications of the method on the common carotid and the brachial arteries are also presented.

  16. 2D label-free imaging of resonant grating biochips in ultraviolet.

    PubMed

    Bougot-Robin, K; Reverchon, J-L; Fromant, M; Mugherli, L; Plateau, P; Benisty, H

    2010-05-24

    2D images of label-free biochips exploiting resonant waveguide grating (RWG) are presented. They indicate sensitivities on the order of 1 pg/mm2 for proteins in air, and hence 10 pg/mm2 in water can be safely expected. A 320x256 pixels Aluminum-Gallium-Nitride-based sensor array is used, with an intrinsic narrow spectral window centered at 280 nm. The additional role of characteristic biological layer absorption at this wavelength is calculated, and regimes revealing its impact are discussed. Experimentally, the resonance of a chip coated with protein is revealed and the sensitivity evaluated through angular spectroscopy and imaging. In addition to a sensitivity similar to surface plasmon resonance (SPR), the RWGs resonance can be flexibly tailored to gain spatial, biochemical, or spectral sensitivity.

  17. High contrast 2D visualization of edge plasma instabilities by ECE imaging

    NASA Astrophysics Data System (ADS)

    Yun, G. S.; Choi, M. J.; Lee, W.; Park, H. K.; Domier, C. W.; Luhmann, N. C., Jr.

    2012-01-01

    High contrast high resolution 2D images of edge MHD instabilities have been obtained for the KSTAR H-mode plasmas in 2010 using an electron cyclotron emission (ECE) imaging system. A fast structural evolution of the edge instabilities has been identified where the validity of the observed structures, i.e., the local measurement is ensured by the high contrast. On the other hand, the exact interpretation of the ECE intensity (Trad) is not straightforward due to the marginal optical depth ( ~ 1) in the plasma edge region. The effect of the electron temperature (Te) and density (ne) profiles in the edge region on the ECE localization and intensity have been evaluated for typical KSTAR H-mode discharges.

  18. Fast Confocal Raman Imaging Using a 2-D Multifocal Array for Parallel Hyperspectral Detection.

    PubMed

    Kong, Lingbo; Navas-Moreno, Maria; Chan, James W

    2016-01-19

    We present the development of a novel confocal hyperspectral Raman microscope capable of imaging at speeds up to 100 times faster than conventional point-scan Raman microscopy under high noise conditions. The microscope utilizes scanning galvomirrors to generate a two-dimensional (2-D) multifocal array at the sample plane, generating Raman signals simultaneously at each focus of the array pattern. The signals are combined into a single beam and delivered through a confocal pinhole before being focused through the slit of a spectrometer. To separate the signals from each row of the array, a synchronized scan mirror placed in front of the spectrometer slit positions the Raman signals onto different pixel rows of the detector. We devised an approach to deconvolve the superimposed signals and retrieve the individual spectra at each focal position within a given row. The galvomirrors were programmed to scan different focal arrays following Hadamard encoding patterns. A key feature of the Hadamard detection is the reconstruction of individual spectra with improved signal-to-noise ratio. Using polystyrene beads as test samples, we demonstrated not only that our system images faster than a conventional point-scan method but that it is especially advantageous under noisy conditions, such as when the CCD detector operates at fast read-out rates and high temperatures. This is the first demonstration of multifocal confocal Raman imaging in which parallel spectral detection is implemented along both axes of the CCD detector chip. We envision this novel 2-D multifocal spectral detection technique can be used to develop faster imaging spontaneous Raman microscopes with lower cost detectors. PMID:26654100

  19. 2-D Gaussian beam imaging of multicomponent seismic data in anisotropic media

    NASA Astrophysics Data System (ADS)

    Protasov, M. I.

    2015-12-01

    An approach for true-amplitude seismic beam imaging of multicomponent seismic data in 2-D anisotropic elastic media is presented and discussed. Here, the recovered true-amplitude function is a scattering potential. This approach is a migration procedure based on the weighted summation of pre-stack data. The true-amplitude weights are computed by applying Gaussian beams (GBs). We shoot a pair of properly chosen GBs with a fixed dip and opening angles from the current imaging point towards an acquisition system. This pair of beams is used to compute a true-amplitude selective image of a rapid velocity variation. The total true-amplitude image is constructed by superimposing selective images computed for a range of available dip angles. The global regularity of the GBs allows one to disregard whether a ray field is regular or irregular. P- and S-wave GBs can be used to handle raw multicomponent data without separating the waves. The use of anisotropic GBs allows one to take into account the anisotropy of the background model.

  20. Constructing a Database from Multiple 2D Images for Camera Pose Estimation and Robot Localization

    NASA Technical Reports Server (NTRS)

    Wolf, Michael; Ansar, Adnan I.; Brennan, Shane; Clouse, Daniel S.; Padgett, Curtis W.

    2012-01-01

    The LMDB (Landmark Database) Builder software identifies persistent image features (landmarks) in a scene viewed multiple times and precisely estimates the landmarks 3D world positions. The software receives as input multiple 2D images of approximately the same scene, along with an initial guess of the camera poses for each image, and a table of features matched pair-wise in each frame. LMDB Builder aggregates landmarks across an arbitrarily large collection of frames with matched features. Range data from stereo vision processing can also be passed to improve the initial guess of the 3D point estimates. The LMDB Builder aggregates feature lists across all frames, manages the process to promote selected features to landmarks, and iteratively calculates the 3D landmark positions using the current camera pose estimations (via an optimal ray projection method), and then improves the camera pose estimates using the 3D landmark positions. Finally, it extracts image patches for each landmark from auto-selected key frames and constructs the landmark database. The landmark database can then be used to estimate future camera poses (and therefore localize a robotic vehicle that may be carrying the cameras) by matching current imagery to landmark database image patches and using the known 3D landmark positions to estimate the current pose.

  1. Averaging cross section data so we can fit it

    SciTech Connect

    Brown, D.

    2014-10-23

    The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).

  2. Cross-sectional echocardiographic diagnosis of systemic venous return.

    PubMed Central

    Huhta, J C; Smallhorn, J F; Macartney, F J; Anderson, R H; de Leval, M

    1982-01-01

    To determine the sensitivity and specificity of cross-sectional echocardiography in diagnosing anomalous systemic venous return we used the technique in 800 consecutive children with congenital heart disease and whom the diagnosis was ultimately confirmed by angiography. Cross-sectional echocardiography was performed without prior knowledge of the diagnosis in all but 11 patients, who were recalled because of a known abnormality of atrial situs. The sensitivity of cross-sectional echocardiographic detection of various structures was as follows: right superior vena cava 792/792 (100%); left superior vena cava 46/48 (96%); bilateral superior vena cava 38/40 (95%); bridging innominate vein with bilateral superior vena cava 13/18 (72%); connection of superior caval segment to heart (coronary sinus or either atrium) (100%); absence of suprarenal inferior vena cava 23/23 (100%); azygos continuation of the inferior vena cava 31/33 (91%); downstream connection of azygos continuation, once seen, 21/21 (100%); partial anomalous hepatic venous connection (one hepatic vein not connected to the inferior vena cava) 1/1 (100%); total anomalous hepatic venous connection (invariably associated with left isomerism) 23/23 (100%). The specificity of each above diagnoses was 100% except in one infant with exomphalos in whom absence of the suprarenal inferior vena cava was incorrectly diagnosed. Thus cross-sectional echocardiography is an extremely specific and highly sensitive method of recognizing anomalous systemic venous return. It is therefore of great value of planning both cardiac catheterisation and cannulation for open heart surgery. Images PMID:6751361

  3. A survey among Brazilian thoracic surgeons about the use of preoperative 2D and 3D images

    PubMed Central

    Cipriano, Federico Enrique Garcia; Arcêncio, Livia; Dessotte, Lycio Umeda; Rodrigues, Alfredo José; Vicente, Walter Villela de Andrade

    2016-01-01

    Background Describe the characteristics of how the thoracic surgeon uses the 2D/3D medical imaging to perform surgical planning, clinical practice and teaching in thoracic surgery and check the initial choice and the final choice of the Brazilian Thoracic surgeon as the 2D and 3D models pictures before and after acquiring theoretical knowledge on the generation, manipulation and interactive 3D views. Methods A descriptive research type Survey cross to data provided by the Brazilian Thoracic Surgeons (members of the Brazilian Society of Thoracic Surgery) who responded to the online questionnaire via the internet on their computers or personal devices. Results Of the 395 invitations visualized distributed by email, 107 surgeons completed the survey. There was no statically difference when comparing the 2D vs. 3D models pictures for the following purposes: diagnosis, assessment of the extent of disease, preoperative surgical planning, and communication among physicians, resident training, and undergraduate medical education. Regarding the type of tomographic image display routinely used in clinical practice (2D or 3D or 2D–3D model image) and the one preferred by the surgeon at the end of the questionnaire. Answers surgeons for exclusive use of 2D images: initial choice =50.47% and preferably end =14.02%. Responses surgeons to use 3D models in combination with 2D images: initial choice =48.60% and preferably end =85.05%. There was a significant change in the final selection of 3D models used together with the 2D images (P<0.0001). Conclusions There is a lack of knowledge of the 3D imaging, as well as the use and interactive manipulation in dedicated 3D applications, with consequent lack of uniformity in the surgical planning based on CT images. These findings certainly confirm in changing the preference of thoracic surgeons of 2D views of technologies for 3D images.

  4. A survey among Brazilian thoracic surgeons about the use of preoperative 2D and 3D images

    PubMed Central

    Cipriano, Federico Enrique Garcia; Arcêncio, Livia; Dessotte, Lycio Umeda; Rodrigues, Alfredo José; Vicente, Walter Villela de Andrade

    2016-01-01

    Background Describe the characteristics of how the thoracic surgeon uses the 2D/3D medical imaging to perform surgical planning, clinical practice and teaching in thoracic surgery and check the initial choice and the final choice of the Brazilian Thoracic surgeon as the 2D and 3D models pictures before and after acquiring theoretical knowledge on the generation, manipulation and interactive 3D views. Methods A descriptive research type Survey cross to data provided by the Brazilian Thoracic Surgeons (members of the Brazilian Society of Thoracic Surgery) who responded to the online questionnaire via the internet on their computers or personal devices. Results Of the 395 invitations visualized distributed by email, 107 surgeons completed the survey. There was no statically difference when comparing the 2D vs. 3D models pictures for the following purposes: diagnosis, assessment of the extent of disease, preoperative surgical planning, and communication among physicians, resident training, and undergraduate medical education. Regarding the type of tomographic image display routinely used in clinical practice (2D or 3D or 2D–3D model image) and the one preferred by the surgeon at the end of the questionnaire. Answers surgeons for exclusive use of 2D images: initial choice =50.47% and preferably end =14.02%. Responses surgeons to use 3D models in combination with 2D images: initial choice =48.60% and preferably end =85.05%. There was a significant change in the final selection of 3D models used together with the 2D images (P<0.0001). Conclusions There is a lack of knowledge of the 3D imaging, as well as the use and interactive manipulation in dedicated 3D applications, with consequent lack of uniformity in the surgical planning based on CT images. These findings certainly confirm in changing the preference of thoracic surgeons of 2D views of technologies for 3D images. PMID:27621874

  5. Rotationally symmetric triangulation sensor with integrated object imaging using only one 2D detector

    NASA Astrophysics Data System (ADS)

    Eckstein, Johannes; Lei, Wang; Becker, Jonathan; Jun, Gao; Ott, Peter

    2006-04-01

    In this paper a distance measurement sensor is introduced, equipped with two integrated optical systems, the first one for rotationally symmetric triangulation and the second one for imaging the object while using only one 2D detector for both purposes. Rotationally symmetric triangulation, introduced in [1], eliminates some disadvantages of classical triangulation sensors, especially at steps or strong curvatures of the object, wherefore the measurement result depends not any longer on the angular orientation of the sensor. This is achieved by imaging the scattered light from an illuminated object point to a centered and sharp ring on a low cost area detector. The diameter of the ring is proportional to the distance of the object. The optical system consists of two off axis aspheric reflecting surfaces. This system allows for integrating a second optical system in order to capture images of the object at the same 2D detector. A mock-up was realized for the first time which consists of the reflecting optics for triangulation manufactured by diamond turning. A commercially available appropriate small lens system for imaging was mechanically integrated in the reflecting optics. Alternatively, some designs of retrofocus lens system for larger field of views were investigated. The optical designs allow overlying the image of the object and the ring for distance measurement in the same plane. In this plane a CCD detector is mounted, centered to the optical axis for both channels. A fast algorithm for the evaluation of the ring is implemented. The characteristics, i.e. the ring diameter versus object distance shows very linear behavior. For illumination of the object point for distance measurement, the beam of a red laser diode system is reflected by a wavelength bandpath filter on the axis of the optical system in. Additionally, the surface of the object is illuminated by LED's in the green spectrum. The LED's are located on the outside rim of the reflecting optics. The

  6. Infrared absorption cross sections for trifluoromethane

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy J.

    2013-11-01

    High-resolution infrared absorption cross sections for trifluoromethane have been determined over the range 950-1500 cm-1 from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125HR) and a 26-cm-pathlength cell. Spectra of trifluoromethane/dry synthetic air mixtures were recorded at 0.015 cm-1 resolution (calculated as 0.9/MOPD) at a number of temperatures and pressures (23-762 Torr and 188-294 K) appropriate for atmospheric conditions. Intensities were calibrated using composite trifluoromethane spectra taken from the Pacific Northwest National Laboratory (PNNL) IR database.

  7. Multicollinearity in cross-sectional regressions

    NASA Astrophysics Data System (ADS)

    Lauridsen, Jørgen; Mur, Jesùs

    2006-10-01

    The paper examines robustness of results from cross-sectional regression paying attention to the impact of multicollinearity. It is well known that the reliability of estimators (least-squares or maximum-likelihood) gets worse as the linear relationships between the regressors become more acute. We resolve the discussion in a spatial context, looking closely into the behaviour shown, under several unfavourable conditions, by the most outstanding misspecification tests when collinear variables are added to the regression. A Monte Carlo simulation is performed. The conclusions point to the fact that these statistics react in different ways to the problems posed.

  8. The calculation of radar cross sections

    NASA Astrophysics Data System (ADS)

    Pizer, R.

    1980-04-01

    The FORTRAN program CHAOS, used for calculating cross sections is described including the physical approximations used to simplify Maxwell's equations. The scattering bodies are extended to both open and closed surfaces. The numerical methods used are supplied. The problems of wire junctions, of finite conductivity and the attaching of lumped loads to the structure are considered. Techniques for dealing with bodies having rotational or left-right symmetries are examined as well as the sparse matrix approximation and the complex frequency version of CHAOS. The formula used to calculate the impedance matrix elements, and the conventions adopted concerning coordinate systems and polarization are included.

  9. Windowed multipole for cross section Doppler broadening

    NASA Astrophysics Data System (ADS)

    Josey, C.; Ducru, P.; Forget, B.; Smith, K.

    2016-02-01

    This paper presents an in-depth analysis on the accuracy and performance of the windowed multipole Doppler broadening method. The basic theory behind cross section data is described, along with the basic multipole formalism followed by the approximations leading to windowed multipole method and the algorithm used to efficiently evaluate Doppler broadened cross sections. The method is tested by simulating the BEAVRS benchmark with a windowed multipole library composed of 70 nuclides. Accuracy of the method is demonstrated on a single assembly case where total neutron production rates and 238U capture rates compare within 0.1% to ACE format files at the same temperature. With regards to performance, clock cycle counts and cache misses were measured for single temperature ACE table lookup and for windowed multipole. The windowed multipole method was found to require 39.6% more clock cycles to evaluate, translating to a 7.9% performance loss overall. However, the algorithm has significantly better last-level cache performance, with 3 fewer misses per evaluation, or a 65% reduction in last-level misses. This is due to the small memory footprint of the windowed multipole method and better memory access pattern of the algorithm.

  10. Actinide Targets for Neutron Cross Section Measurements

    SciTech Connect

    John D. Baker; Christopher A. McGrath

    2006-10-01

    The Advanced Fuel Cycle Initiative (AFCI) and the Generation IV Reactor Initiative have demonstrated a lack of detailed neutron cross-sections for certain "minor" actinides, those other than the most common (235U, 238U, and 239Pu). For some closed-fuel-cycle reactor designs more than 50% of reactivity will, at some point, be derived from "minor" actinides that currently have poorly known or in some cases not measured (n,?) and (n,f) cross sections. A program of measurements under AFCI has begun to correct this. One of the initial hurdles has been to produce well-characterized, highly isotopically enriched, and chemically pure actinide targets on thin backings. Using a combination of resurrected techniques and new developments, we have made a series of targets including highly enriched 239Pu, 240Pu, and 242Pu. Thus far, we have electrodeposited these actinide targets. In the future, we plan to study reductive distillation to achieve homogeneous, adherent targets on thin metal foils and polymer backings. As we move forward, separated isotopes become scarcer, and safety concerns become greater. The chemical purification and electodeposition techniques will be described.

  11. List-mode likelihood: EM algorithm and image quality estimation demonstrated on 2-D PET.

    PubMed

    Parra, L; Barrett, H H

    1998-04-01

    Using a theory of list-mode maximum-likelihood (ML) source reconstruction presented recently by Barrett et al., this paper formulates a corresponding expectation-maximization (EM) algorithm, as well as a method for estimating noise properties at the ML estimate. List-mode ML is of interest in cases where the dimensionality of the measurement space impedes a binning of the measurement data. It can be advantageous in cases where a better forward model can be obtained by including more measurement coordinates provided by a given detector. Different figures of merit for the detector performance can be computed from the Fisher information matrix (FIM). This paper uses the observed FIM, which requires a single data set, thus, avoiding costly ensemble statistics. The proposed techniques are demonstrated for an idealized two-dimensional (2-D) positron emission tomography (PET) [2-D PET] detector. We compute from simulation data the improved image quality obtained by including the time of flight of the coincident quanta.

  12. Quantizing calcification in the lumbar aorta on 2-D lateral x-ray images

    NASA Astrophysics Data System (ADS)

    Conrad-Hansen, Lars A.; Lauze, Francois; Tanko, Laszlo B.; Nielsen, Mads

    2005-04-01

    In this paper we seek to improve upon the standard method of assessing the degree of calcification in the lumbar aorta, which is commonly used on lateral 2-D x-rays. The necessity for improvement arises from the fact that the existing method can not measure subtle progressions in the plaque development; neither is it possible to express the density of individual plaques. Both of these qualities would be desireable to assess, since they are the key for making progression studies as well as for testing the effect of drugs in longitudinal studies. Our approach is based on inpainting, a technique used in image restoration as well as postprocessing of film. In this study we discuss the potential implications of total variation inpainting for characterizing aortic calcification.

  13. Nonrigid 2D registration of fluoroscopic coronary artery image sequence with layered motion

    NASA Astrophysics Data System (ADS)

    Park, Taewoo; Jung, Hoyup; Yun, Il Dong

    2016-03-01

    We present a new method for nonrigid registration of coronary artery models with layered motion information. 2D nonrigid registration method is proposed that brings layered motion information into correspondence with fluoroscopic angiograms. The registered model is overlaid on top of interventional angiograms to provide surgical assistance during image-guided chronic total occlusion procedures. The proposed methodology is divided into two parts: layered structures alignments and local nonrigid registration. In the first part, inpainting method is used to estimate a layered rigid transformation that aligns layered motion information. In the second part, a nonrigid registration method is implemented and used to compensate for any local shape discrepancy. Experimental evaluation conducted on a set of 7 fluoroscopic angiograms results in a reduced target registration error, which showed the effectiveness of the proposed method over single layered approach.

  14. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1999-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: ##EQU1## wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  15. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)

    2000-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absorption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  16. Automatic ultrasound image enhancement for 2D semi-automatic breast-lesion segmentation

    NASA Astrophysics Data System (ADS)

    Lu, Kongkuo; Hall, Christopher S.

    2014-03-01

    Breast cancer is the fastest growing cancer, accounting for 29%, of new cases in 2012, and second leading cause of cancer death among women in the United States and worldwide. Ultrasound (US) has been used as an indispensable tool for breast cancer detection/diagnosis and treatment. In computer-aided assistance, lesion segmentation is a preliminary but vital step, but the task is quite challenging in US images, due to imaging artifacts that complicate detection and measurement of the suspect lesions. The lesions usually present with poor boundary features and vary significantly in size, shape, and intensity distribution between cases. Automatic methods are highly application dependent while manual tracing methods are extremely time consuming and have a great deal of intra- and inter- observer variability. Semi-automatic approaches are designed to counterbalance the advantage and drawbacks of the automatic and manual methods. However, considerable user interaction might be necessary to ensure reasonable segmentation for a wide range of lesions. This work proposes an automatic enhancement approach to improve the boundary searching ability of the live wire method to reduce necessary user interaction while keeping the segmentation performance. Based on the results of segmentation of 50 2D breast lesions in US images, less user interaction is required to achieve desired accuracy, i.e. < 80%, when auto-enhancement is applied for live-wire segmentation.

  17. Extending Ripley’s K-Function to Quantify Aggregation in 2-D Grayscale Images

    PubMed Central

    Amgad, Mohamed; Itoh, Anri; Tsui, Marco Man Kin

    2015-01-01

    In this work, we describe the extension of Ripley’s K-function to allow for overlapping events at very high event densities. We show that problematic edge effects introduce significant bias to the function at very high densities and small radii, and propose a simple correction method that successfully restores the function’s centralization. Using simulations of homogeneous Poisson distributions of events, as well as simulations of event clustering under different conditions, we investigate various aspects of the function, including its shape-dependence and correspondence between true cluster radius and radius at which the K-function is maximized. Furthermore, we validate the utility of the function in quantifying clustering in 2-D grayscale images using three modalities: (i) Simulations of particle clustering; (ii) Experimental co-expression of soluble and diffuse protein at varying ratios; (iii) Quantifying chromatin clustering in the nuclei of wt and crwn1 crwn2 mutant Arabidopsis plant cells, using a previously-published image dataset. Overall, our work shows that Ripley’s K-function is a valid abstract statistical measure whose utility extends beyond the quantification of clustering of non-overlapping events. Potential benefits of this work include the quantification of protein and chromatin aggregation in fluorescent microscopic images. Furthermore, this function has the potential to become one of various abstract texture descriptors that are utilized in computer-assisted diagnostics in anatomic pathology and diagnostic radiology. PMID:26636680

  18. Directional adaptive deformable models for segmentation with application to 2D and 3D medical images

    NASA Astrophysics Data System (ADS)

    Rougon, Nicolas F.; Preteux, Francoise J.

    1993-09-01

    In this paper, we address the problem of adapting the functions controlling the material properties of 2D snakes, and show how introducing oriented smoothness constraints results in a novel class of active contour models for segmentation which extends standard isotropic inhomogeneous membrane/thin-plate stabilizers. These constraints, expressed as adaptive L2 matrix norms, are defined by two 2nd-order symmetric and positive definite tensors which are invariant with respect to rigid motions in the image plane. These tensors, equivalent to directional adaptive stretching and bending densities, are quadratic with respect to 1st- and 2nd-order derivatives of the image intensity, respectively. A representation theorem specifying their canonical form is established and a geometrical interpretation of their effects if developed. Within this framework, it is shown that, by achieving a directional control of regularization, such non-isotropic constraints consistently relate the differential properties (metric and curvature) of the deformable model with those of the underlying intensity surface, yielding a satisfying preservation of image contour characteristics.

  19. Extending Ripley's K-Function to Quantify Aggregation in 2-D Grayscale Images.

    PubMed

    Amgad, Mohamed; Itoh, Anri; Tsui, Marco Man Kin

    2015-01-01

    In this work, we describe the extension of Ripley's K-function to allow for overlapping events at very high event densities. We show that problematic edge effects introduce significant bias to the function at very high densities and small radii, and propose a simple correction method that successfully restores the function's centralization. Using simulations of homogeneous Poisson distributions of events, as well as simulations of event clustering under different conditions, we investigate various aspects of the function, including its shape-dependence and correspondence between true cluster radius and radius at which the K-function is maximized. Furthermore, we validate the utility of the function in quantifying clustering in 2-D grayscale images using three modalities: (i) Simulations of particle clustering; (ii) Experimental co-expression of soluble and diffuse protein at varying ratios; (iii) Quantifying chromatin clustering in the nuclei of wt and crwn1 crwn2 mutant Arabidopsis plant cells, using a previously-published image dataset. Overall, our work shows that Ripley's K-function is a valid abstract statistical measure whose utility extends beyond the quantification of clustering of non-overlapping events. Potential benefits of this work include the quantification of protein and chromatin aggregation in fluorescent microscopic images. Furthermore, this function has the potential to become one of various abstract texture descriptors that are utilized in computer-assisted diagnostics in anatomic pathology and diagnostic radiology. PMID:26636680

  20. Spatial anatomic knowledge for 2-D interactive medical image segmentation and matching.

    PubMed

    Brinkley, J F

    1991-01-01

    A representation is described for two-dimensional anatomic shapes which can be described by single-valued distortions of a circle. The representation, called a radial contour model, is both generic, in that it captures the expected shape as well as the range of variation for an anatomic shape class, and flexible, in that the model can deform to fit an individual instance of the shape class. The model is implemented in a program called SCANNER (version 0.61) for 2-D interactive image segmentation and matching. An initial evaluation was performed using 7 shape models learned from a training set of 93 contours, and a control model containing no shape knowledge. Evaluation using 60 additional contours showed that in general the shape knowledge should reduce interactive segmentation time by a factor of two over the control, and that for specific shapes such as the eye, the improvement is much greater. A matching function was also devised which showed that the radial contour model should allow diagnosis of subtle shape changes. These results suggest that the use of spatial anatomic knowledge, when combined with good interactive tools, can help to alleviate the segmentation bottleneck in medical imaging. The models, when extended to more complex shapes, will form the spatial component of a knowledge base of anatomy that could have many uses in addition to image segmentation.

  1. Clinical applications of 2D and 3D CT imaging of the airways--a review.

    PubMed

    Salvolini, L; Bichi Secchi, E; Costarelli, L; De Nicola, M

    2000-04-01

    Hardware and software evolution has broadened the possibilities of 2D and 3D reformatting of spiral CT and MR data set. In the study of the thorax, intrinsic benefits of volumetric CT scanning and better quality of reconstructed images offer us the possibility to apply additional rendering techniques to everyday clinical practice. Considering the large number and redundancy of possible post-processing imaging techniques that we can apply to raw CT sections data, it is necessary to precisely set a well-defined number of clinical applications of each of them, by careful evaluation of their benefits and possible pitfalls in each clinical setting. In diagnostic evaluation of pathological processes affecting the airways, a huge number of thin sections is necessary for detailed appraisal and has to be evaluated, and information must then be transferred to referring clinicians. By additional rendering it is possible to make image evaluation and data transfer easier, faster, and more effective. In the study of central airways, additional rendering can be of interest for precise evaluation of the length, morphology, and degree of stenoses. It may help in depicting exactly the locoregional extent of central tumours by better display of relations with bronchovascular interfaces and can increase CT/bronchoscopy sinergy. It may allow closer radiotherapy planning and better depiction of air collections, and, finally, it could ease panoramic evaluation of the results of dynamic or functional studies, that are made possible by increased speed of spiral scanning. When applied to the evaluation of peripheral airways, as a completion to conventional HRCT scans, High-Resolution Volumetric CT, by projection slabs applied to target areas of interest, can better depict the profusion and extension of affected bronchial segments in bronchiectasis, influence the choice of different approaches for tissue sampling by better evaluation of the relations of lung nodules with the airways, or help

  2. Absorption and scattering 2-D volcano images from numerically calculated space-weighting functions

    NASA Astrophysics Data System (ADS)

    Del Pezzo, Edoardo; Ibañez, Jesus; Prudencio, Janire; Bianco, Francesca; De Siena, Luca

    2016-08-01

    Short-period small magnitude seismograms mainly comprise scattered waves in the form of coda waves (the tail part of the seismogram, starting after S waves and ending when the noise prevails), spanning more than 70 per cent of the whole seismogram duration. Corresponding coda envelopes provide important information about the earth inhomogeneity, which can be stochastically modeled in terms of distribution of scatterers in a random medium. In suitable experimental conditions (i.e. high earth heterogeneity), either the two parameters describing heterogeneity (scattering coefficient), intrinsic energy dissipation (coefficient of intrinsic attenuation) or a combination of them (extinction length and seismic albedo) can be used to image Earth structures. Once a set of such parameter couples has been measured in a given area and for a number of sources and receivers, imaging their space distribution with standard methods is straightforward. However, as for finite-frequency and full-waveform tomography, the essential problem for a correct imaging is the determination of the weighting function describing the spatial sensitivity of observable data to scattering and absorption anomalies. Due to the nature of coda waves, the measured parameter couple can be seen as a weighted space average of the real parameters characterizing the rock volumes illuminated by the scattered waves. This paper uses the Monte Carlo numerical solution of the Energy Transport Equation to find approximate but realistic 2-D space-weighting functions for coda waves. Separate images for scattering and absorption based on these sensitivity functions are then compared with those obtained with commonly used sensitivity functions in an application to data from an active seismic experiment carried out at Deception Island (Antarctica). Results show that these novel functions are based on a reliable and physically grounded method to image magnitude and shape of scattering and absorption anomalies. Their

  3. High-resolution GPR imaging using a nonstandard 2D EEMD technique

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Sung; Jeng*, Yih; Yu, Hung-Ming

    2013-04-01

    Ground Penetrating Radar (GPR) data are affected by a variety of factors. Linear and nonlinear data processing methods each have been widely applied to the GPR use in geophysical and engineering investigations. For complicated data such as the shallow earth image of urban area, a better result can be achieved by integrating both approaches. In this study, we introduce a nonstandard 2D EEMD approach, which integrates the natural logarithm transformed (NLT) ensemble empirical mode decomposition (EEMD) method with the linear filtering technique to process GPR images. The NLT converts the data into logarithmic values; therefore, it permits a wide dynamic range for the recorded GPR data to be presented. The EEMD dyadic filter bank decomposes the data into multiple components ready for image reconstruction. Consequently, the NLT EEMD method provides a new way of nonlinear energy compensating and noise filtering with results having minimal artifacts. However, horizontal noise in the GPR time-distance section may be enhanced after NLT process in some cases. To solve the dilemma, we process the data two dimensionally. At first, the vertical background noise of each GPR trace is removed by using a standard linear method, the background noise removal algorithm, or simply by performing the sliding background removal filter. After that, the NLT is applied to the data for examining the horizontal coherent energy. Next, we employ the EEMD filter bank horizontally at each time step to remove the horizontal coherent energy. After removing the vertical background noise and horizontal coherent energy, a vertical EEMD method is then applied to generate a filter bank of the GPR time-distance section for final image reconstruction. Two buried models imitating common shallow earth targets are used to verify the effectiveness of the proposed scheme. One model is a brick cistern buried in a disturbed site of poor reflection quality. The other model is a buried two-stack metallic target

  4. Lunar Radar Cross Section at Low Frequency

    NASA Technical Reports Server (NTRS)

    Rodriguez, P.; Kennedy, E. J.; Kossey, P.; McCarrick, M.; Kaiser, M. L.; Bougeret, J.-L.; Tokarev, Y. V.

    2002-01-01

    Recent bistatic measurements of the lunar radar cross-section have extended the spectrum to long radio wavelength. We have utilized the HF Active Auroral Research Program (HAARP) radar facility near Gakona, Alaska to transmit high power pulses at 8.075 MHz to the Moon; the echo pulses were received onboard the NASA/WIND spacecraft by the WAVES HF receiver. This lunar radar experiment follows our previous use of earth-based HF radar with satellites to conduct space experiments. The spacecraft was approaching the Moon for a scheduled orbit perturbation when our experiment of 13 September 2001 was conducted. During the two-hour experiment, the radial distance of the satellite from the Moon varied from 28 to 24 Rm, where Rm is in lunar radii.

  5. Correlation cross sections along the international border

    SciTech Connect

    Martiniuk, C.D. ); Le Fever, J.A.; Anderson, S.B. )

    1991-06-01

    The Manitoba-North Dakota (Canada-US) stratigraphic correlation project is a joint study between the Petroleum Branch of Manitoba Energy and Mines and the North Dakota Geological Survey. It is an attempt to correlate the differing stratigraphic terminologies established in the two jurisdictions by providing a reference cross section across the international boundary. The study involves the subsurface correlation of logs of the Paleozoic and Mesozoic sequences in the Manitoba and North Dakota portions of the Williston basin. The Paleozoic and Mesozoic sequences are subdivided for presentation into the following stratigraphic intervals: (a) Cambrian-Ordovician-Silurian, (b) Devonian, (c) Mississippian, (d) Jurassic, and (e) Cretaceous. Wireline logs show the actual stratigraphic correlations. A nomenclature chart is also presented from each sequence. In addition, the sections include a generalized description of lithologies, thicknesses, environments of deposition, and petroleum potential for each geographic area.

  6. Absolute photoneutron cross sections of Sm isotopes

    SciTech Connect

    Gheorghe, I.; Glodariu, T.; Utsunomiya, H.; Filipescu, D.; Nyhus, H.-T.; Renstrom, T.; Tesileanu, O.; Shima, T.; Takahisa, K.; Miyamoto, S.

    2015-02-24

    Photoneutron cross sections for seven samarium isotopes, {sup 144}Sm, {sup 147}Sm, {sup 148}Sm, {sup 149}Sm, {sup 150}Sm, {sup 152}Sm and {sup 154}Sm, have been investigated near neutron emission threshold using quasimonochromatic laser-Compton scattering γ-rays produced at the synchrotron radiation facility NewSUBARU. The results are important for nuclear astrophysics calculations and also for probing γ-ray strength functions in the vicinity of neutron threshold. Here we describe the neutron detection system and we discuss the related data analysis and the necessary method improvements for adapting the current experimental method to the working parameters of the future Gamma Beam System of Extreme Light Infrastructure - Nuclear Physics facility.

  7. Collision cross sections for structural proteomics.

    PubMed

    Marklund, Erik G; Degiacomi, Matteo T; Robinson, Carol V; Baldwin, Andrew J; Benesch, Justin L P

    2015-04-01

    Ion mobility mass spectrometry (IM-MS) allows the structural interrogation of biomolecules by reporting their collision cross sections (CCSs). The major bottleneck for exploiting IM-MS in structural proteomics lies in the lack of speed at which structures and models can be related to experimental data. Here we present IMPACT (Ion Mobility Projection Approximation Calculation Tool), which overcomes these twin challenges, providing accurate CCSs up to 10(6) times faster than alternative methods. This allows us to assess the CCS space presented by the entire structural proteome, interrogate ensembles of protein conformers, and monitor molecular dynamics trajectories. Our data demonstrate that the CCS is a highly informative parameter and that IM-MS is of considerable practical value to structural biologists. PMID:25800554

  8. Preliminary cross section of Englebright Lake sediments

    USGS Publications Warehouse

    Snyder, Noah P.; Hampton, Margaret A.

    2003-01-01

    Overview -- The Upper Yuba River Studies Program is a CALFED-funded, multidisciplinary investigation of the feasibility of introducing anadromous fish species to the Yuba River system upstream of Englebright Dam. Englebright Lake (Figure 1 on poster) is a narrow, 14-km-long reservoir located in the northern Sierra Nevada, northeast of Marysville, CA. The dam was completed in 1941 for the primary purpose of trapping sediment derived from mining operations in the Yuba River watershed. Possible management scenarios include lowering or removing Englebright Dam, which could cause the release of stored sediments and associated contaminants, such as mercury used extensively in 19th-century hydraulic gold mining. Transport of released sediment to downstream areas could increase existing problems including flooding and mercury bioaccumulation in sport fish. To characterize the extent, grain size, and chemistry of this sediment, a coring campaign was done in Englebright Lake in May and June 2002. More than twenty holes were drilled at 7 different locations along the longitudinal axis of the reservoir (Figure 4 on poster), recovering 6 complete sequences of post-reservoir deposition and progradation. Here, a longitudinal cross section of Englebright Lake is presented (Figure 5 on poster), including pre-dam and present-day topographic profiles, and sedimentologic sections for each coring site. This figure shows the deltaic form of the reservoir deposit, with a thick upper section consisting of sand and gravel overlying silt, a steep front, and a thinner lower section dominated by silt. The methodologies used to create the reservoir cross section are discussed in the lower part of this poster.

  9. Coronary arteries motion modeling on 2D x-ray images

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Sundar, Hari

    2012-02-01

    During interventional procedures, 3D imaging modalities like CT and MRI are not commonly used due to interference with the surgery and radiation exposure concerns. Therefore, real-time information is usually limited and building models of cardiac motion are difficult. In such case, vessel motion modeling based on 2-D angiography images become indispensable. Due to issues with existing vessel segmentation algorithms and the lack of contrast in occluded vessels, manual segmentation of certain branches is usually necessary. In addition, such occluded branches are the most important vessels during coronary interventions and obtaining motion models for these can greatly help in reducing the procedure time and radiation exposure. Segmenting different cardiac phases independently does not guarantee temporal consistency and is not efficient for occluded branches required manual segmentation. In this paper, we propose a coronary motion modeling system which extracts the coronary tree for every cardiac phase, maintaining the segmentation by tracking the coronary tree during the cardiac cycle. It is able to map every frame to the specific cardiac phase, thereby inferring the shape information of the coronary arteries using the model corresponding to its phase. Our experiments show that our motion modeling system can achieve promising results with real-time performance.

  10. Experiments on Antiprotons: Antiproton-Nucleon Cross Sections

    DOE R&D Accomplishments Database

    Chamberlain, Owen; Keller, Donald V.; Mermond, Ronald; Segre, Emilio; Steiner, Herbert M.; Ypsilantis, Tom

    1957-07-22

    In this paper experiments are reported on annihilation and scattering of antiprotons in H{sub 2}O , D{sub 2}O, and O{sub 2}. From the data measured it is possible to obtain an antiproton-proton and an antiproton-deuteron cross section at 457 Mev (lab). Further analysis gives the p-p and p-n cross sections as 104 mb for the p-p reaction cross section and 113 mb for the p-n reaction cross section. The respective annihilation cross sections are 89 and 74 mb. The Glauber correction necessary in order to pass from the p-d to the p-n cross section by subtraction of the p-p cross section is unfortunately large and somewhat uncertain. The data are compared with the p-p and p-n cross sections and with other results on p-p collisions.

  11. Single-level resonance parameters fit nuclear cross-sections

    NASA Technical Reports Server (NTRS)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  12. FluoRender: An Application of 2D Image Space Methods for 3D and 4D Confocal Microscopy Data Visualization in Neurobiology Research

    PubMed Central

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2013-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists’ demands for qualitative analysis of confocal microscopy data. PMID:23584131

  13. FluoRender: An Application of 2D Image Space Methods for 3D and 4D Confocal Microscopy Data Visualization in Neurobiology Research.

    PubMed

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2012-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists' demands for qualitative analysis of confocal microscopy data.

  14. Transport model based on three-dimensional cross-section generation for TRIGA core analysis

    NASA Astrophysics Data System (ADS)

    Kriangchaiporn, Nateekool

    This dissertation addresses the development of a reactor core physics model based on 3-D transport methodology utilizing 3-D multigroup fuel lattice cross-section generation and core calculation for PSBR. The proposed 3-D transport calculation scheme for reactor core simulations is based on the TORT code. The methodology includes development of algorithms for 2-D and 3-D cross-section generation. The fine- and broad-group structures for the TRIGA cross-section generation problems were developed based on the CPXSD (Contributon and Point-wise Cross-Section Driven) methodology that selects effective group structure. Along with the study of cross section generation, the parametric studies for SN calculations were performed to evaluate the impact of the spatial meshing, angular, and scattering order variables and to obtain the suitable values for cross-section collapsing of the TRIGA cell problem. The TRIGA core loading 2 is used to verify and validate the selected effective group structures. Finally, the 13 group structure was selected to use for core calculations. The results agree with continuous energy for eigenvalues and normalized pin power distribution. The Monte Carlo solutions are used as the references.

  15. Electron Elastic-Scattering Cross-Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 64 NIST Electron Elastic-Scattering Cross-Section Database (PC database, no charge)   This database provides values of differential elastic-scattering cross sections, corresponding total elastic-scattering cross sections, phase shifts, and transport cross sections for elements with atomic numbers from 1 to 96 and for electron energies between 50 eV and 20,000 eV (in steps of 1 eV).

  16. 2-D arterial wall motion imaging using ultrafast ultrasound and transverse oscillations.

    PubMed

    Salles, Sebastien; Chee, Adrian J Y; Garcia, Damien; Yu, Alfred C H; Vray, Didier; Liebgott, Herve

    2015-06-01

    Ultrafast ultrasound is a promising imaging modality that enabled, inter alia, the development of pulse wave imaging and the local velocity estimation of the so-called pulse wave for a quantitative evaluation of arterial stiffness. However, this technique only focuses on the propagation of the axial displacement of the artery wall, and most techniques are not specific to the intima-media complex and do not take into account the longitudinal motion of this complex. Within this perspective, this paper presents a study of two-dimensional tissue motion estimation in ultrafast imaging combining transverse oscillations, which can improve motion estimation in the transverse direction, i.e., perpendicular to the beam axis, and a phase-based motion estimation. First, the method was validated in simulation. Two-dimensional motion, inspired from a real data set acquired on a human carotid artery, was applied to a numerical phantom to produce a simulation data set. The estimated motion showed axial and lateral mean errors of 4.2 ± 3.4 μm and 9.9 ± 7.9 μm, respectively. Afterward, experimental results were obtained on three artery phantoms with different wall stiffnesses. In this study, the vessel phantoms did not contain a pure longitudinal displacement. The longitudinal displacements were induced by the axial force produced by the wall's axial dilatation. This paper shows that the approach presented is able to perform 2-D tissue motion estimation very accurately even if the displacement values are very small and even in the lateral direction, making it possible to estimate the pulse wave velocity in both the axial and longitudinal directions. This demonstrates the method's potential to estimate the velocity of purely longitudinal waves propagating in the longitudinal direction. Finally, the stiffnesses of the three vessel phantom walls investigated were estimated with an average relative error of 2.2%. PMID:26067039

  17. Reproducing 2D breast mammography images with 3D printed phantoms

    NASA Astrophysics Data System (ADS)

    Clark, Matthew; Ghammraoui, Bahaa; Badal, Andreu

    2016-03-01

    Mammography is currently the standard imaging modality used to screen women for breast abnormalities and, as a result, it is a tool of great importance for the early detection of breast cancer. Physical phantoms are commonly used as surrogates of breast tissue to evaluate some aspects of the performance of mammography systems. However, most phantoms do not reproduce the anatomic heterogeneity of real breasts. New fabrication technologies, such as 3D printing, have created the opportunity to build more complex, anatomically realistic breast phantoms that could potentially assist in the evaluation of mammography systems. The primary objective of this work is to present a simple, easily reproducible methodology to design and print 3D objects that replicate the attenuation profile observed in real 2D mammograms. The secondary objective is to evaluate the capabilities and limitations of the competing 3D printing technologies, and characterize the x-ray properties of the different materials they use. Printable phantoms can be created using the open-source code introduced in this work, which processes a raw mammography image to estimate the amount of x-ray attenuation at each pixel, and outputs a triangle mesh object that encodes the observed attenuation map. The conversion from the observed pixel gray value to a column of printed material with equivalent attenuation requires certain assumptions and knowledge of multiple imaging system parameters, such as x-ray energy spectrum, source-to-object distance, compressed breast thickness, and average breast material attenuation. A detailed description of the new software, a characterization of the printed materials using x-ray spectroscopy, and an evaluation of the realism of the sample printed phantoms are presented.

  18. 2-D arterial wall motion imaging using ultrafast ultrasound and transverse oscillations.

    PubMed

    Salles, Sebastien; Chee, Adrian J Y; Garcia, Damien; Yu, Alfred C H; Vray, Didier; Liebgott, Herve

    2015-06-01

    Ultrafast ultrasound is a promising imaging modality that enabled, inter alia, the development of pulse wave imaging and the local velocity estimation of the so-called pulse wave for a quantitative evaluation of arterial stiffness. However, this technique only focuses on the propagation of the axial displacement of the artery wall, and most techniques are not specific to the intima-media complex and do not take into account the longitudinal motion of this complex. Within this perspective, this paper presents a study of two-dimensional tissue motion estimation in ultrafast imaging combining transverse oscillations, which can improve motion estimation in the transverse direction, i.e., perpendicular to the beam axis, and a phase-based motion estimation. First, the method was validated in simulation. Two-dimensional motion, inspired from a real data set acquired on a human carotid artery, was applied to a numerical phantom to produce a simulation data set. The estimated motion showed axial and lateral mean errors of 4.2 ± 3.4 μm and 9.9 ± 7.9 μm, respectively. Afterward, experimental results were obtained on three artery phantoms with different wall stiffnesses. In this study, the vessel phantoms did not contain a pure longitudinal displacement. The longitudinal displacements were induced by the axial force produced by the wall's axial dilatation. This paper shows that the approach presented is able to perform 2-D tissue motion estimation very accurately even if the displacement values are very small and even in the lateral direction, making it possible to estimate the pulse wave velocity in both the axial and longitudinal directions. This demonstrates the method's potential to estimate the velocity of purely longitudinal waves propagating in the longitudinal direction. Finally, the stiffnesses of the three vessel phantom walls investigated were estimated with an average relative error of 2.2%.

  19. Viscous Flow through Pipes of Various Cross-Sections

    ERIC Educational Resources Information Center

    Lekner, John

    2007-01-01

    An interesting variety of pipe cross-sectional shapes can be generated, for which the Navier-Stokes equations can be solved exactly. The simplest cases include the known solutions for elliptical and equilateral triangle cross-sections. Students can find pipe cross-sections from solutions of Laplace's equation in two dimensions, and then plot the…

  20. Dynamic tracking of a deformable tissue based on 3D-2D MR-US image registration

    NASA Astrophysics Data System (ADS)

    Marami, Bahram; Sirouspour, Shahin; Fenster, Aaron; Capson, David W.

    2014-03-01

    Real-time registration of pre-operative magnetic resonance (MR) or computed tomography (CT) images with intra-operative Ultrasound (US) images can be a valuable tool in image-guided therapies and interventions. This paper presents an automatic method for dynamically tracking the deformation of a soft tissue based on registering pre-operative three-dimensional (3D) MR images to intra-operative two-dimensional (2D) US images. The registration algorithm is based on concepts in state estimation where a dynamic finite element (FE)- based linear elastic deformation model correlates the imaging data in the spatial and temporal domains. A Kalman-like filtering process estimates the unknown deformation states of the soft tissue using the deformation model and a measure of error between the predicted and the observed intra-operative imaging data. The error is computed based on an intensity-based distance metric, namely, modality independent neighborhood descriptor (MIND), and no segmentation or feature extraction from images is required. The performance of the proposed method is evaluated by dynamically deforming 3D pre-operative MR images of a breast phantom tissue based on real-time 2D images obtained from an US probe. Experimental results on different registration scenarios showed that deformation tracking converges in a few iterations. The average target registration error on the plane of 2D US images for manually selected fiducial points was between 0.3 and 1.5 mm depending on the size of deformation.

  1. High energy muon induced radioactive nuclides in nickel plate and its use for 2-D muon-beam image profile

    NASA Astrophysics Data System (ADS)

    Kurebayashi, Y.; Sakurai, H.; Takahashi, Y.; Doshita, N.; Kikuchi, S.; Tokanai, F.; Horiuchi, K.; Tajima, Y.; Oe, T.; Sato, T.; Gunji, S.; Inui, E.; Kondo, K.; Iwata, N.; Sasaki, N.; Matsuzaki, H.; Kunieda, S.

    2015-11-01

    Target materials were exposed to a muon beam with an energy of 160 GeV/c at the COMPASS experiment line in CERN-SPS to measure the production cross-sections for muon-induced radionuclides. A muon imager containing four nickel plates, each measuring 100 mm×100 mm, exposed to the IP plate successfully detected the muon beam image during an irradiation period of 33 days. The contrasting density rate of the nickel plate was (5.2±0.7)×10-9 PSL/muon per one-day exposure to IP. The image measured 122 mm and 174 mm in horizontal and vertical lengths, respectively, in relation to the surface of the base, indicating that 50±6% of the muon beam flux is confined to an area of 18% of the whole muon beam. The number of muons estimated from the PSL value in the total beam image area (0.81±0.1)×1013 was comparable to the total muon counts of the ion-chamber at the M2 beam line in the CERN-SPS. The production cross-sections of Cr-51, Mn-54, Co-56, Co-57, and Co-58 in nickel were 0.19±0.08, 0.34±0.06, 0.5±0.05, 3.44±0.07, 0.4±0.03 in the unit of mb, respectively, reducing muon associated particles effects. They are approximately 10 times smaller than that a proceeding study by Heisinger et al.

  2. Self-calibration of cone-beam CT geometry using 3D–2D image registration

    PubMed Central

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-01-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM = 0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p < 0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE = 0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p < 0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional

  3. Self-calibration of cone-beam CT geometry using 3D-2D image registration.

    PubMed

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a 'self-calibration' of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM-e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE-e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is

  4. Self-calibration of cone-beam CT geometry using 3D-2D image registration.

    PubMed

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a 'self-calibration' of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM-e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE-e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is

  5. Self-calibration of cone-beam CT geometry using 3D-2D image registration

    NASA Astrophysics Data System (ADS)

    Ouadah, S.; Stayman, J. W.; Gang, G. J.; Ehtiati, T.; Siewerdsen, J. H.

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is

  6. Stochastic rank correlation: A robust merit function for 2D/3D registration of image data obtained at different energies

    PubMed Central

    Birkfellner, Wolfgang; Stock, Markus; Figl, Michael; Gendrin, Christelle; Hummel, Johann; Dong, Shuo; Kettenbach, Joachim; Georg, Dietmar; Bergmann, Helmar

    2010-01-01

    In this article, the authors evaluate a merit function for 2D/3D registration called stochastic rank correlation (SRC). SRC is characterized by the fact that differences in image intensity do not influence the registration result; it therefore combines the numerical advantages of cross correlation (CC)-type merit functions with the flexibility of mutual-information-type merit functions. The basic idea is that registration is achieved on a random subset of the image, which allows for an efficient computation of Spearman’s rank correlation coefficient. This measure is, by nature, invariant to monotonic intensity transforms in the images under comparison, which renders it an ideal solution for intramodal images acquired at different energy levels as encountered in intrafractional kV imaging in image-guided radiotherapy. Initial evaluation was undertaken using a 2D/3D registration reference image dataset of a cadaver spine. Even with no radiometric calibration, SRC shows a significant improvement in robustness and stability compared to CC. Pattern intensity, another merit function that was evaluated for comparison, gave rather poor results due to its limited convergence range. The time required for SRC with 5% image content compares well to the other merit functions; increasing the image content does not significantly influence the algorithm accuracy. The authors conclude that SRC is a promising measure for 2D/3D registration in IGRT and image-guided therapy in general. PMID:19746775

  7. The hadronic cross section measurement at KLOE

    NASA Astrophysics Data System (ADS)

    Valeriani, B.; KLOE Collaboration

    2004-04-01

    KLOE uses the radiative return to measure the hadronic cross section e+e- → π +- at DANE. Theemission of one or more hard photons in the initial state ( ISR) reduces the collision energy, otherwise fixed at 1020 MeV, and allows to perform an effective scan of the two pions invariant mass squared, sπ, in the whole sπ, region from threshold to mφ2. An extremely accurate knowledge of experimental systematics, background, luminosity and, on the theoretical side, a precise description of initial state radiation are needed to perform a competitive measurement. We present here the status of the analysis of 140 pb -1 collected in 2001. A preliminary evaluation of the hadronic contribution to aμ in the sπ range between 0.37 GeV 2 and 0.93 GeV 2 yields aμ = 378.4 ± 0.8 stat ± 4.5 syst ± 3.0 theo ± 3.8 FSR, consistent with the CMD-2 result and confirming the present discrepancy between e+e - and τ data.

  8. APPARATUS FOR MEASURING TOTAL NEUTRON CROSS SECTIONS

    DOEpatents

    Cranberg, L.

    1959-10-13

    An apparatus is described for measuring high-resolution total neutron cross sections at high counting rate in the range above 50-kev neutron energy. The pulsed-beam time-of-flight technique is used to identify the neutrons of interest which are produced in the target of an electrostatic accelerator. Energy modulation of the accelerator . makes it possible to make observations at 100 energy points simultaneously. 761O An apparatus is described for monitoring the proton resonance of a liquid which is particulariy useful in the continuous purity analysis of heavy water. A hollow shell with parallel sides defines a meander chamber positioned within a uniform magnetic fieid. The liquid passes through an inlet at the outer edge of the chamber and through a spiral channel to the central region of the chamber where an outlet tube extends into the chamber perpendicular to the magnetic field. The radiofrequency energy for the monitor is coupled to a coil positioned coaxially with the outlet tube at its entrance point within the chamber. The improvement lies in the compact mechanical arrangement of the monitor unit whereby the liquid under analysis is subjected to the same magnetic field in the storage and sensing areas, and the entire unit is shielded from external electrostatic influences.

  9. [Fast neutron cross section measurements]. Progress report

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ``clean`` and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ``data production`` phase.

  10. Craniosynostosis: prenatal diagnosis by 2D/3D ultrasound, magnetic resonance imaging and computed tomography.

    PubMed

    Helfer, Talita Micheletti; Peixoto, Alberto Borges; Tonni, Gabriele; Araujo Júnior, Edward

    2016-09-01

    Craniosynostosis is defined as the process of premature fusion of one or more of the cranial sutures. It is a common condition that occurs in about 1 to 2,000 live births. Craniosynostosis may be classified in primary or secondary. It is also classified as nonsyndromic or syndromic. According to suture commitment, craniosynostosis may affect a single suture or multiple sutures. There is a wide range of syndromes involving craniosynostosis and the most common are Apert, Pffeifer, Crouzon, Shaethre-Chotzen and Muenke syndromes. The underlying etiology of nonsyndromic craniosynostosis is unknown. Mutations in the fibroblast growth factor (FGF) signalling pathway play a crucial role in the etiology of craniosynostosis syndromes. Prenatal ultrasound`s detection rate of craniosynostosis is low. Nowadays, different methods can be applied for prenatal diagnosis of craniosynostosis, such as two-dimensional (2D) and three-dimensional (3D) ultrasound, magnetic resonance imaging (MRI), computed tomography (CT) scan and, finally, molecular diagnosis. The presence of craniosynostosis may affect the birthing process. Fetuses with craniosynostosis also have higher rates of perinatal complications. In order to avoid the risks of untreated craniosynostosis, children are usually treated surgically soon after postnatal diagnosis. PMID:27622416

  11. Large resistive 2D Micromegas with genetic multiplexing and some imaging applications

    NASA Astrophysics Data System (ADS)

    Bouteille, S.; Attié, D.; Baron, P.; Calvet, D.; Magnier, P.; Mandjavidze, I.; Procureur, S.; Riallot, M.

    2016-10-01

    The performance of the first large resistive Micromegas detectors with 2D readout and genetic multiplexing is presented. These detectors have a 50 × 50cm2 active area and are equipped with 1024 strips both in X- and Y-directions. The same genetic multiplexing pattern is applied on both coordinates, resulting in the compression of signals on 2 × 61 readout channels. Four such detectors have been built at CERN, and extensively tested with cosmics. The resistive strip film allows for very high gain operation, compensating for the charge spread on the 2 dimensions as well as the S / N loss due to the huge, 1 nF input capacitance. This film also creates a significantly different signal shape in the X- and Y-coordinates due to the charge evacuation along the resistive strips. All in all a detection efficiency above 95% is achieved with a 1 cm drift gap. Though not yet optimal, the measured 300 μm spatial resolution allows for very precise imaging in the field of muon tomography, and some applications of these detectors are presented.

  12. Determining ice water content from 2D crystal images in convective cloud systems

    NASA Astrophysics Data System (ADS)

    Leroy, Delphine; Coutris, Pierre; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter

    2016-04-01

    Cloud microphysical in-situ instrumentation measures bulk parameters like total water content (TWC) and/or derives particle size distributions (PSD) (utilizing optical spectrometers and optical array probes (OAP)). The goal of this work is to introduce a comprehensive methodology to compute TWC from OAP measurements, based on the dataset collected during recent HAIC (High Altitude Ice Crystals)/HIWC (High Ice Water Content) field campaigns. Indeed, the HAIC/HIWC field campaigns in Darwin (2014) and Cayenne (2015) provide a unique opportunity to explore the complex relationship between cloud particle mass and size in ice crystal environments. Numerous mesoscale convective systems (MCSs) were sampled with the French Falcon 20 research aircraft at different temperature levels from -10°C up to 50°C. The aircraft instrumentation included an IKP-2 (isokinetic probe) to get reliable measurements of TWC and the optical array probes 2D-S and PIP recording images over the entire ice crystal size range. Based on the known principle relating crystal mass and size with a power law (m=α•Dβ), Fontaine et al. (2014) performed extended 3D crystal simulations and thereby demonstrated that it is possible to estimate the value of the exponent β from OAP data, by analyzing the surface-size relationship for the 2D images as a function of time. Leroy et al. (2015) proposed an extended version of this method that produces estimates of β from the analysis of both the surface-size and perimeter-size relationships. Knowing the value of β, α then is deduced from the simultaneous IKP-2 TWC measurements for the entire HAIC/HIWC dataset. The statistical analysis of α and β values for the HAIC/HIWC dataset firstly shows that α is closely linked to β and that this link changes with temperature. From these trends, a generalized parameterization for α is proposed. Finally, the comparison with the initial IKP-2 measurements demonstrates that the method is able to predict TWC values

  13. Evaluation of storage phosphor imaging for quantitative analysis of 2-D gels using the Quest II system.

    PubMed

    Patterson, S D; Latter, G I

    1993-12-01

    The advent of storage phosphor technology has been of considerable benefit to the imaging of gel-separated radiolabeled proteins due to the rapid and quantitative nature of the data acquisition process. Previously, times over one month were required to obtain fluorographs of the same gel to yield data of sufficient dynamic range for quantitative analysis of high-resolution two-dimensional (2-D) gels. As we are in the process of building a human 2-D gel protein database, and therefore have a high throughput of 2-D gels both to image and quantitate using the Quest II software, we undertook an evaluation of a storage phosphor imager, including an evaluation of signal fade. The results of this evaluation demonstrate the feasibility of using such a system, and we describe the procedures that allow us to use this technique for quantitative analysis of many complex 2-D gel patterns. These procedures include a useful batch printing program that allows printing of many images in a non-interactive mode. Examples will be presented of how autoradiography, using storage phosphor plates and the Quest II system, have enabled us to begin building a human 2-D gel protein database including posttranslational modification information, without the previous time constraints associated with such a project.

  14. Electron-impact-ionization cross section for the hydrogen atom

    NASA Astrophysics Data System (ADS)

    Hu, W.; Fang, D.; Wang, Y.; Yang, F.

    1994-02-01

    A distorted-wave Born exchange approximation was used to calculate the cross section for electron-impact ionization of the hydrogen atoms. Both the integral and energy-differential cross section were calculated. The results were compared with the latest experimental data and other theoretical calculations. Comparison shows that the calculations agree with differential cross-section measurements in general. For integral cross sections the calculation shows a better agreement with an earlier measurement [M.B. Shah, D. S. Elliott, and H. B. Gilbody, J. Phys. B 20, 3501 (1987)] in which the cross sections are normalized to the first Born approximation.

  15. Detection of Cracks Using 2d Electrical Resistivity Imaging In A Cultivated Soil

    NASA Astrophysics Data System (ADS)

    Samouëlian, A.; Cousin, I.; Richard, G.; Bruand, A.

    Variations of soil structure is significant for the understanding of water and gas trans- fer in soil profiles. In the context of arable land, soil structure can be compacted due to either agriculture operation (wheel tracks), or hardsetting and crusting processes. As a consequence, soil porosity is reduced which may lead to decrease water infiltra- tion and to anoxic conditions. Porosity can be increased by cracks formation due to swelling and shrinking phenomenon. We present here a laboratory experiment based on soil electrical characteristics. Electrical resistivity allows a non destructive three di- mensional and dynamical analysis of the soil structure. Our main objective is to detect cracks in the soil. Cracks form an electrical resistant object and the contrast of resis- tivity between air and soil is large enough to be detected. Our sample is an undisturbed soil block 240mm*170mm*160mm with an initial structure compacted by wheel traf- fic. Successive artificial cracks are generated. Electrodes built with 2 mm ceramic cups permit a good electrical contact at the soil surface whatever its water content. They are installed 15 mm apart and the electrical resistivity is monitored using a dipole-dipole and wenner multi-electrodes 2D imaging method which gives a picture of the subsur- face resistivity. The interpreted resistivity sections show the major soil structure. The electrical response changes with the cracks formation. The structure information ex- tracted from the electrical map are in good agreement with the artificially man-made cracks. These first results demonstrate the relevance of high resolution electrical imag- ing of the soil profile. Further experiments need to be carried out in order to monitor natural soil structure evolution during wetting-drying cycles.

  16. Fast 2-D soft X-ray imaging device based on micro pattern gas detector

    NASA Astrophysics Data System (ADS)

    Pacella, D.; Bellazzini, R.; Brez, A.; Pizzicaroli, G.

    2003-09-01

    An innovative fast system for X-ray imaging has been developed at ENEA Frascati (Italy) to be used as diagnostic of magnetic plasmas for thermonuclear fusion. It is based on a pinhole camera coupled to a Micro Pattern Gas Detector (MPGD) having a Gas Electron Multiplier (GEM) as amplifying stage. This detector (2.5 cm × 2.5 cm active area) is equipped with a 2-D read-out printed circuit board with 144 pixels (12 × 12), with an electronic channel for each pixel (charge conversion, shaping, discrimination and counting). Working in photon counting mode, in proportional regime, it is able to get X-ray images of the plasma in a selectable X-ray energy range, at very high photon fluxes (106 ph s-̊1mm-2 all over the detector) and high framing rate (up to 100 kHz). It has very high dynamic range, high signal to noise ratio (statistical) and large flexibility in the optical configurations (magnification and views on the plasma). The system has been tested successfully on the Frascati Tokamak Upgrade (FTU), having central electron temperature of a few keV and density of 1020 m-3, during the summer 2001, with a one-dimensional perpendicular view of the plasma. In collaboration with ENEA, the Johns Hopkins University (JHU) and Princeton Plasma Physics (PPPL), this system has been set up and calibrated in the X-ray energy range 2-8 keV and it has been installed, with a two-dimensional tangential view, on the spherical tokamak NSTX at Princeton. Time resolved X-ray images of the NSTX plasma core have been obtained. Fast acquisitions, performed up to 50 kHz of framing rate, allow the study of the plasma evolution and its magneto-hydrodynamic instabilities, while with a slower sampling (a few kHz) the curvature of the magnetic surfaces can be measured. All these results reveal the good imaging properties of this device at high time resolution, despite of the low number of pixels, and the effectiveness of the fine controlled energy discrimination.

  17. Graphs of the cross sections in the recommended Monte Carlo cross-section library at the Los Alamos Scientific Laboratory

    SciTech Connect

    Soran, P.D.; Seamon, R.E.

    1980-05-01

    Graphs of all neutron cross sections and photon production cross sections on the Recommended Monte Carlo Cross Section (RMCCS) library have been plotted along with local neutron heating numbers. Values for anti ..nu.., the average number of neutrons per fission, are also given.

  18. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    NASA Astrophysics Data System (ADS)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.

  19. Application of 2D and 3D Digital Image Correlation on CO2-like altered carbonate

    NASA Astrophysics Data System (ADS)

    zinsmeister, Louis; Dautriat, Jérémie; Dimanov, Alexandre; Raphanel, Jean; Bornert, Michel

    2013-04-01

    In order to provide mechanical constitutive laws for reservoir monitoring during CO2 long term storage, we studied the mechanical properties of Lavoux limestone before and after a homogeneous alteration following the protocol of acid treatments defined by Egermann et al, (2006). The mechanical data have been analysed at the light of systematic microstructural investigations. Firstly, the alteration impact on the evolution of flow properties related to microstructural changes was studied at successive levels of alteration by classical petrophysical measurements of porosity and permeability (including NMR, mercury porosimetry and laser diffraction) and by observations of microstructures on thin sections and by SEM. Secondly, the mechanical properties of the samples were investigated by classical (macroscopic) triaxial and uniaxial tests and are discussed in terms of the structural modifications. The macroscopic tests indicate that the alteration weakens the material, according to the observed decrease of elastic moduli and Uniaxial Compressive Strengths, from 29MPa to 19MPa after 6 cycles of acid treatments. The study is further complemented by 2D full (mechanical) field measurements, thanks to Digital Image Correlation (DIC) performed on images acquired during the uniaxial tests. This technique allows for continuous quantitative micro-mechanical monitoring in terms of deformation history and localisation processes during compression. This technique was applied on both intact and altered materials and at different scales of observation: (i) cm-sized samples were compressed in a classical load frame and optically imaged, (ii) mm-sized samples were loaded with a miniaturized compression rig implemented within a Scanning Electron Microscope. At last, 3D full field measurements were performed by 3D-DIC on mm-sized samples, which were compressed "in-situ" an X-ray microtomograph thanks to a miniaturized triaxial cell allowing for confining pressures of up to 15 MPa. At

  20. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    PubMed Central

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-01-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases. PMID:26855466

  1. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases.

  2. Effects of target shape and reflection on laser radar cross sections.

    PubMed

    Steinvall, O

    2000-08-20

    Laser radar cross sections have been evaluated for a number of ideal targets such as cones, spheres, paraboloids, and cylinders by use of different reflection characteristics. The time-independent cross section is the ratio of the cross section of one of these forms to that of a plate with the same maximum radius. The time-dependent laser radar cross section involves the impulse response from the object shape multiplied by the beam's transverse profile and the surface bidirectional reflection distribution function. It can be clearly seen that knowledge of the combined effect of object shape and reflection characteristics is important for determining the shape and the magnitude of the laser radar return. The results of this study are of interest for many laser radar applications such as ranging, three-dimensional imaging-modeling, tracking, antisensor lasers, and target recognition.

  3. Process to generate a synthetic diagnostic for microwave imaging reflectometry with the full-wave code FWR2D.

    PubMed

    Ren, X; Domier, C W; Kramer, G; Luhmann, N C; Muscatello, C M; Shi, L; Tobias, B J; Valeo, E

    2014-11-01

    A synthetic microwave imaging reflectometer (MIR) diagnostic employing the full-wave reflectometer code (FWR2D) has been developed and is currently being used to guide the design of real systems, such as the one recently installed on DIII-D. The FWR2D code utilizes real plasma profiles as input, and it is combined with optical simulation tools for synthetic diagnostic signal generation. A detailed discussion of FWR2D and the process to generate the synthetic signal are presented in this paper. The synthetic signal is also compared to a prescribed density fluctuation spectrum to quantify the imaging quality. An example is presented with H-mode-like plasma profiles derived from a DIII-D discharge, where the MIR focal is located in the pedestal region. It is shown that MIR is suitable for diagnosing fluctuations with poloidal wavenumber up to 2.0 cm(-1) and fluctuation amplitudes less than 5%.

  4. Mapping and characterizing endometrial implants by registering 2D transvaginal ultrasound to 3D pelvic magnetic resonance images.

    PubMed

    Yavariabdi, Amir; Bartoli, Adrien; Samir, Chafik; Artigues, Maxime; Canis, Michel

    2015-10-01

    We propose a new deformable slice-to-volume registration method to register a 2D Transvaginal Ultrasound (TVUS) to a 3D Magnetic Resonance (MR) volume. Our main goal is to find a cross-section of the MR volume such that the endometrial implants and their depth of infiltration can be mapped from TVUS to MR. The proposed TVUS-MR registration method uses contour to surface correspondences through a novel variational one-step deformable Iterative Closest Point (ICP) method. Specifically, we find a smooth deformation field while establishing point correspondences automatically. We demonstrate the accuracy of the proposed method by quantitative and qualitative tests on both semi-synthetic and clinical data. To generate semi-synthetic data sets, 3D surfaces are deformed with 4-40% degrees of deformation and then various intersection curves are obtained at 0-20° cutting angles. Results show an average mean square error of 5.7934±0.4615mm, average Hausdorff distance of 2.493±0.14mm, and average Dice similarity coefficient of 0.9750±0.0030.

  5. Simultaneous image segmentation and medial structure estimation: application to 2D and 3D vessel tree extraction

    NASA Astrophysics Data System (ADS)

    Makram-Ebeid, Sherif; Stawiaski, Jean; Pizaine, Guillaume

    2011-03-01

    We propose a variational approach which combines automatic segmentation and medial structure extraction in a single computationally efficient algorithm. In this paper, we apply our approach to the analysis of vessels in 2D X-ray angiography and 3D X-ray rotational angiography of the brain. Other variational methods proposed in the literature encode the medial structure of vessel trees as a skeleton with associated vessel radii. In contrast, our method provides a dense smooth level set map which sign provides the segmentation. The ridges of this map define the segmented regions skeleton. The differential structure of the smooth map (in particular the Hessian) allows the discrimination between tubular and other structures. In 3D, both circular and non-circular tubular cross-sections and tubular branching can be handled conveniently. This algorithm allows accurate segmentation of complex vessel structures. It also provides key tools for extracting anatomically labeled vessel tree graphs and for dealing with challenging issues like kissing vessel discrimination and separation of entangled 3D vessel trees.

  6. Registration of 2D x-ray images to 3D MRI by generating pseudo-CT data

    NASA Astrophysics Data System (ADS)

    van der Bom, M. J.; Pluim, J. P. W.; Gounis, M. J.; van de Kraats, E. B.; Sprinkhuizen, S. M.; Timmer, J.; Homan, R.; Bartels, L. W.

    2011-02-01

    Spatial and soft tissue information provided by magnetic resonance imaging can be very valuable during image-guided procedures, where usually only real-time two-dimensional (2D) x-ray images are available. Registration of 2D x-ray images to three-dimensional (3D) magnetic resonance imaging (MRI) data, acquired prior to the procedure, can provide optimal information to guide the procedure. However, registering x-ray images to MRI data is not a trivial task because of their fundamental difference in tissue contrast. This paper presents a technique that generates pseudo-computed tomography (CT) data from multi-spectral MRI acquisitions which is sufficiently similar to real CT data to enable registration of x-ray to MRI with comparable accuracy as registration of x-ray to CT. The method is based on a k-nearest-neighbors (kNN)-regression strategy which labels voxels of MRI data with CT Hounsfield Units. The regression method uses multi-spectral MRI intensities and intensity gradients as features to discriminate between various tissue types. The efficacy of using pseudo-CT data for registration of x-ray to MRI was tested on ex vivo animal data. 2D-3D registration experiments using CT and pseudo-CT data of multiple subjects were performed with a commonly used 2D-3D registration algorithm. On average, the median target registration error for registration of two x-ray images to MRI data was approximately 1 mm larger than for x-ray to CT registration. The authors have shown that pseudo-CT data generated from multi-spectral MRI facilitate registration of MRI to x-ray images. From the experiments it could be concluded that the accuracy achieved was comparable to that of registering x-ray images to CT data.

  7. Aerodynamics of the flying snake Chrysopelea paradisi: how a bluff body cross-sectional shape contributes to gliding performance.

    PubMed

    Holden, Daniel; Socha, John J; Cardwell, Nicholas D; Vlachos, Pavlos P

    2014-02-01

    A prominent feature of gliding flight in snakes of the genus Chrysopelea is the unique cross-sectional shape of the body, which acts as the lifting surface in the absence of wings. When gliding, the flying snake Chrysopelea paradisi morphs its circular cross-section into a triangular shape by splaying its ribs and flattening its body in the dorsoventral axis, forming a geometry with fore-aft symmetry and a thick profile. Here, we aimed to understand the aerodynamic properties of the snake's cross-sectional shape to determine its contribution to gliding at low Reynolds numbers. We used a straight physical model in a water tunnel to isolate the effects of 2D shape, analogously to studying the profile of an airfoil of a more typical flyer. Force measurements and time-resolved (TR) digital particle image velocimetry (DPIV) were used to determine lift and drag coefficients, wake dynamics and vortex-shedding characteristics of the shape across a behaviorally relevant range of Reynolds numbers and angles of attack. The snake's cross-sectional shape produced a maximum lift coefficient of 1.9 and maximum lift-to-drag ratio of 2.7, maintained increases in lift up to 35 deg, and exhibited two distinctly different vortex-shedding modes. Within the measured Reynolds number regime (Re=3000-15,000), this geometry generated significantly larger maximum lift coefficients than many other shapes including bluff bodies, thick airfoils, symmetric airfoils and circular arc airfoils. In addition, the snake's shape exhibited a gentle stall region that maintained relatively high lift production even up to the highest angle of attack tested (60 deg). Overall, the cross-sectional geometry of the flying snake demonstrated robust aerodynamic behavior by maintaining significant lift production and near-maximum lift-to-drag ratios over a wide range of parameters. These aerodynamic characteristics help to explain how the snake can glide at steep angles and over a wide range of angles of attack

  8. Aerodynamics of the flying snake Chrysopelea paradisi: how a bluff body cross-sectional shape contributes to gliding performance.

    PubMed

    Holden, Daniel; Socha, John J; Cardwell, Nicholas D; Vlachos, Pavlos P

    2014-02-01

    A prominent feature of gliding flight in snakes of the genus Chrysopelea is the unique cross-sectional shape of the body, which acts as the lifting surface in the absence of wings. When gliding, the flying snake Chrysopelea paradisi morphs its circular cross-section into a triangular shape by splaying its ribs and flattening its body in the dorsoventral axis, forming a geometry with fore-aft symmetry and a thick profile. Here, we aimed to understand the aerodynamic properties of the snake's cross-sectional shape to determine its contribution to gliding at low Reynolds numbers. We used a straight physical model in a water tunnel to isolate the effects of 2D shape, analogously to studying the profile of an airfoil of a more typical flyer. Force measurements and time-resolved (TR) digital particle image velocimetry (DPIV) were used to determine lift and drag coefficients, wake dynamics and vortex-shedding characteristics of the shape across a behaviorally relevant range of Reynolds numbers and angles of attack. The snake's cross-sectional shape produced a maximum lift coefficient of 1.9 and maximum lift-to-drag ratio of 2.7, maintained increases in lift up to 35 deg, and exhibited two distinctly different vortex-shedding modes. Within the measured Reynolds number regime (Re=3000-15,000), this geometry generated significantly larger maximum lift coefficients than many other shapes including bluff bodies, thick airfoils, symmetric airfoils and circular arc airfoils. In addition, the snake's shape exhibited a gentle stall region that maintained relatively high lift production even up to the highest angle of attack tested (60 deg). Overall, the cross-sectional geometry of the flying snake demonstrated robust aerodynamic behavior by maintaining significant lift production and near-maximum lift-to-drag ratios over a wide range of parameters. These aerodynamic characteristics help to explain how the snake can glide at steep angles and over a wide range of angles of attack

  9. Viewing effects of 3-D images synthesized from a series of 2-D tomograms by VAP and HAP approaches

    NASA Astrophysics Data System (ADS)

    Zhai, H. C.; Wang, M. W.; Liu, F. M.; Hsu, Ken Y.

    We report, for the first time, the experimental result and its analysis of synthesizing a series of simulating 2-D tomograms into a 3-D monochromatic image. Our result shows clearly the advantage in monochromaticity of a vertical area-partition (VAP) approach over a horizontal area-partition (HAP) approach during the final white-light reconstruction. This monochromaticity will ensure a 3-D image synthesis without any distortion in gray level or positional recovery.

  10. Optimal angular dose distribution to acquire 3D and extra 2D images for digital breast tomosynthesis (DBT)

    NASA Astrophysics Data System (ADS)

    Park, Hye-Suk; Kim, Ye-Seul; Lee, Haeng-Hwa; Gang, Won-Suk; Kim, Hee-Joung; Choi, Young-Wook; Choi, JaeGu

    2015-08-01

    The purpose of this study is to determine the optimal non-uniform angular dose distribution to improve the quality of the 3D reconstructed images and to acquire extra 2D projection images. In this analysis, 7 acquisition sets were generated by using four different values for the number of projections (11, 15, 21, and 29) and total angular range (±14°, ±17.5°, ±21°, and ±24.5° ). For all acquisition sets, the zero-degree projection was used as the 2D image that was close to that of standard conventional mammography (CM). Exposures used were 50, 100, 150, and 200 mR for the zero-degree projection, and the remaining dose was distributed over the remaining projection angles. To quantitatively evaluate image quality, we computed the CNR (contrast-to-noise ratio) and the ASF (artifact spread function) for the same radiation dose. The results indicate that, for microcalcifications, acquisition sets with approximately 4 times higher exposure on the zero-degree projection than the average exposure for the remaining projection angles yielded higher CNR values and were 3% higher than the uniform distribution. However, very high dose concentrations toward the zero-degree projection may reduce the quality of the reconstructed images due to increasing noise in the peripheral views. The zero-degree projection of the non-uniform dose distribution offers a 2D image similar to that of standard CM, but with a significantly lower radiation dose. Therefore, we need to evaluate the diagnostic potential of extra 2D projection image when diagnose breast cancer by using 3D images with non-uniform angular dose distributions.

  11. Development of radar cross section analysis system of naval ships

    NASA Astrophysics Data System (ADS)

    Kim, Kookhyun; Kim, Jin-Hyeong; Choi, Tae-Muk; Cho, Dae-Seung

    2012-03-01

    A software system for a complex object scattering analysis, named SYSCOS, has been developed for a systematic radar cross section (RCS) analysis and reduction design. The system is based on the high frequency analysis methods of physical optics, geometrical optics, and physical theory of diffraction, which are suitable for RCS analysis of electromagnetically large and complex targets as like naval ships. In addition, a direct scattering center analysis function has been included, which gives relatively simple and intuitive way to discriminate problem areas in design stage when comparing with conventional image-based approaches. In this paper, the theoretical background and the organization of the SYSCOS system are presented. To verify its accuracy and to demonstrate its applicability, numerical analyses for a square plate, a sphere and a cylinder, a weapon system and a virtual naval ship have been carried out, of which results have been compared with analytic solutions and those obtained by the other existing software.

  12. High E{sub T} jet cross sections at CDF

    SciTech Connect

    Flaugher, B.; CDF Collaboration

    1996-08-01

    The inclusive jet cross section for {ital p}{ital {anti p}} collisions at {radical}s = 1.8 TeV as measured by the CDF collaboration will be presented. Preliminary CDF measurements of the {Sigma} E{sub T} cross section at {radical}s = 1.8 TeV and the central inclusive jet cross section at {radical}s = 0.630 TeV will also be shown.

  13. Measured microwave scattering cross sections of three meteorite specimens

    NASA Technical Reports Server (NTRS)

    Hughes, W. E.

    1972-01-01

    Three meteorite specimens were used in a microwave scattering experiment to determine the scattering cross sections of stony meteorites and iron meteorites in the frequency range from 10 to 14 GHz. The results indicate that the stony meteorites have a microwave scattering cross section that is 30 to 50 percent of their projected optical cross section. Measurements of the iron meteorite scattering were inconclusive because of specimen surface irregularities.

  14. Projectile and Lab Frame Differential Cross Sections for Electromagnetic Dissociation

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Adamczyk, Anne; Dick, Frank

    2008-01-01

    Differential cross sections for electromagnetic dissociation in nuclear collisions are calculated for the first time. In order to be useful for three - dimensional transport codes, these cross sections have been calculated in both the projectile and lab frames. The formulas for these cross sections are such that they can be immediately used in space radiation transport codes. Only a limited amount of data exists, but the comparison between theory and experiment is good.

  15. Analytical formulation of the quantum electromagnetic cross section

    NASA Astrophysics Data System (ADS)

    Brandsema, Matthew J.; Narayanan, Ram M.; Lanzagorta, Marco

    2016-05-01

    It has been found that the quantum radar cross section (QRCS) equation can be written in terms of the Fourier transform of the surface atom distribution of the object. This paper uses this form to provide an analytical formulation of the quantum radar cross section by deriving closed form expressions for various geometries. These expressions are compared to the classical radar cross section (RCS) expressions and the quantum advantages are discerned from the differences in the equations. Multiphoton illumination is also briefly discussed.

  16. Flow in tubes of non-circular cross-sections

    NASA Astrophysics Data System (ADS)

    Quadir, Raushan Ara

    Laminar, viscous, incompressible flow in tubes of noncircular cross sections is investigated. The specific aims of the investigation are (1) to look at the problems of both developing flow and fully developed flow, (2) to consider noncircular cross sections in a more systematic manner than has been done in the past, and (3) to develop a relatively simple finite element technique for producing accurate numerical solutions of flow in tubes of fairly arbitrary cross sections. Fully developed flow in tubes is governed by a Poisson type equation for the mainstream velocity. Both analytical and numerical solutions are considered. The cross sections studied include elliptic and rectangular cross sections of different aspect ratios, some triangular cross sections, and a series of crescent-shaped cross sections. The physical characteristics of the flow are examined in a systematic manner in order to determine how these characteristics are affected by certain geometrical features of the cross section. Solutions fall into three basic categories depending on the shape of the cross section. In the first category, which includes circular and elliptic cross sections, solutions are possible in closed form. In the second, including rectangular and some triangular cross sections, solutions are in the form of infinite series. In the third, including cross sections of more complicated or irregular shapes, only numerical solutions are possible. Results of calculations of velocity profiles, flow rate, pumping power, and friction factor are presented in a way which can be useful for engineering applications. In numerical studies of both developing and fully developed flow finite element techniques are used. Results are obtained for tubes of rectangular and elliptic cross sections of different aspect ratios, for tubes of crescent-shaped cross sections, and a tube whose cross section is an oval of Cassini. For fully developed flow, results are compared with the corresponding exact

  17. Flow in Tubes of Non-Circular Cross-Sections

    NASA Astrophysics Data System (ADS)

    Quadir, Raushan Ara

    In this thesis steady, laminar, viscous, incompressible flow in tubes of non-circular cross sections is investigated. The specific aims of the investigation are (a) to look at the problems of both developing flow and fully developed flow, (b) to consider non-circular cross sections in a more systematic manner than has been done in the past, and (c) to develop a relatively simple finite element technique for producing accurate numerical solutions of flow in tubes of fairly arbitrary cross sections. Fully developed flow in tubes is governed by a Poisson type equation for the mainstream velocity. Both analytical and numerical solutions are considered. The cross sections studied include elliptic and rectangular cross sections of different aspect ratios, some triangular cross sections, and a series of crescent-shaped cross sections. The physical characteristics of the flow are examined in a systematic manner in order to determine how these characteristics are affected by certain geometrical features of the cross section. Solutions fall into three basic categories depending on the shape of the cross section. In the first category, which includes circular and elliptic cross sections, solutions are possible in closed form. In the second, including rectangular and some triangular cross sections, solutions are in the form of infinite series. In the third, including cross sections of more complicated or irregular shapes, only numerical solutions are possible. Results of calculations of velocity profiles, flow rate, pumping power, and friction factor are presented in a way which can be useful for engineering applications. In numerical studies of both developing and fully developed flow finite element techniques are used. Results are obtained for tubes of rectangular and elliptic cross sections of different aspect ratios, for tubes of crescent -shaped cross sections and a tube whose cross section is an oval of Cassini. For fully developed flow, results are compared with the

  18. Documentation of Uncertainties in Experimental Cross Sections for EXFOR

    SciTech Connect

    Otuka, N.; Smith, D.L.

    2014-06-15

    Documentation of uncertainties and covariances in experimental nuclear reaction cross sections has been assessed. Following consideration of the importance of covariances for nuclear data in various nuclear applications, and presentation of a simple numerical example to demonstrate this point, the minimum basic concepts (mean, covariance, standard derivation, partial uncertainties, micro- and macro-correlation coefficients) are introduced. A deterministic approach to propagating the covariances in primary measured parameters (e.g., counts) to the derived cross sections is discussed, using a neutron-induced activation cross section measurement as an example. Finally, various approaches to documentation (publication, compilation) of experimental cross sections to facilitate their use in future evaluations are mentioned.

  19. Neutron-capture Cross Sections from Indirect Measurements

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J

    2011-10-18

    Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  20. Thermal Neutron Capture Cross Section of 22Ne

    NASA Astrophysics Data System (ADS)

    Belgya, T.; Uberseder, E.; Petrich, D.; Käppeler, F.

    2009-01-01

    The radiative thermal neutron capture cross section of the astrophysically important 22Ne nucleus has been measured at the guided cold neutron beam of the Budapest Research Reactor. High-pressure gas-bottles filled with mixtures of enriched 22Ne and CH4 were used. The cross section was determined by means of the comparator method, and an improved decay-scheme obtained in this work. The new value for the thermal neutron cross section is 52.7±0.7 mb, 18% larger than the accepted value. The influence of the new cross section on the astrophysical reaction rate is under investigation.

  1. Improved 2-D resistivity imaging of features in covered karst terrain with arrays of implanted electrodes

    NASA Astrophysics Data System (ADS)

    Kiflu, H. G.; Kruse, S. E.; Harro, D.; Loke, M. H.; Wilkinson, P. B.

    2013-12-01

    Electrical resistivity tomography is commonly used to identify geologic features associated with sinkhole formation. In covered karst terrain, however, it can be difficult to resolve the depth to top of limestone with this method. This is due to the fact that array lengths, and hence depth of resolution, are often limited by residential or commercial lot dimensions in urban environments. Furthermore, the sediments mantling the limestone are often clay-rich and highly conductive. The resistivity method has limited sensitivity to resistive zones beneath conductive zones. This sensitivity can be improved significantly with electrodes implanted at depth in the cover sediments near the top of limestone. An array of deep electrodes is installed with direct push technology in the karst cover. When combined with a surface array in which each surface electrode is underlain by a deep electrode, the array geometry is similar to a borehole array turned on its side. This method, called the Multi-Electrode Resistivity Implant Technique (MERIT), offers the promise of significantly improved resolution of epikarst and cover collapse development zones in the overlying sediment, the limestone or at the sediment-bedrock interface in heterogeneous karst environments. With a non-traditional array design, the question of optimal array geometries arises. Optimizing array geometries is complicated by the fact that many plausible 4-electrode readings will produce negative apparent resistivity values, even in homogeneous terrain. Negative apparent resistivities cannot be used in inversions based on the logarithm of the apparent resistivity. New algorithms for seeking optimal array geometries have been developed by modifying the 'Compare R' method of Wilkinson and Loke. The optimized arrays show significantly improved resolution over basic arrays adapted from traditional 2D surface geometries. Several MERIT case study surveys have been conducted in covered karst in west-central Florida, with

  2. Development and validation of a modelling framework for simulating 2D-mammography and breast tomosynthesis images

    NASA Astrophysics Data System (ADS)

    Elangovan, Premkumar; Warren, Lucy M.; Mackenzie, Alistair; Rashidnasab, Alaleh; Diaz, Oliver; Dance, David R.; Young, Kenneth C.; Bosmans, Hilde; Strudley, Celia J.; Wells, Kevin

    2014-08-01

    Planar 2D x-ray mammography is generally accepted as the preferred screening technique used for breast cancer detection. Recently, digital breast tomosynthesis (DBT) has been introduced to overcome some of the inherent limitations of conventional planar imaging, and future technological enhancements are expected to result in the introduction of further innovative modalities. However, it is crucial to understand the impact of any new imaging technology or methodology on cancer detection rates and patient recall. Any such assessment conventionally requires large scale clinical trials demanding significant investment in time and resources. The concept of virtual clinical trials and virtual performance assessment may offer a viable alternative to this approach. However, virtual approaches require a collection of specialized modelling tools which can be used to emulate the image acquisition process and simulate images of a quality indistinguishable from their real clinical counterparts. In this paper, we present two image simulation chains constructed using modelling tools that can be used for the evaluation of 2D-mammography and DBT systems. We validate both approaches by comparing simulated images with real images acquired using the system being simulated. A comparison of the contrast-to-noise ratios and image blurring for real and simulated images of test objects shows good agreement ( < 9% error). This suggests that our simulation approach is a promising alternative to conventional physical performance assessment followed by large scale clinical trials.

  3. Development and validation of a modelling framework for simulating 2D-mammography and breast tomosynthesis images.

    PubMed

    Elangovan, Premkumar; Warren, Lucy M; Mackenzie, Alistair; Rashidnasab, Alaleh; Diaz, Oliver; Dance, David R; Young, Kenneth C; Bosmans, Hilde; Strudley, Celia J; Wells, Kevin

    2014-08-01

    Planar 2D x-ray mammography is generally accepted as the preferred screening technique used for breast cancer detection. Recently, digital breast tomosynthesis (DBT) has been introduced to overcome some of the inherent limitations of conventional planar imaging, and future technological enhancements are expected to result in the introduction of further innovative modalities. However, it is crucial to understand the impact of any new imaging technology or methodology on cancer detection rates and patient recall. Any such assessment conventionally requires large scale clinical trials demanding significant investment in time and resources. The concept of virtual clinical trials and virtual performance assessment may offer a viable alternative to this approach. However, virtual approaches require a collection of specialized modelling tools which can be used to emulate the image acquisition process and simulate images of a quality indistinguishable from their real clinical counterparts. In this paper, we present two image simulation chains constructed using modelling tools that can be used for the evaluation of 2D-mammography and DBT systems. We validate both approaches by comparing simulated images with real images acquired using the system being simulated. A comparison of the contrast-to-noise ratios and image blurring for real and simulated images of test objects shows good agreement ( < 9% error). This suggests that our simulation approach is a promising alternative to conventional physical performance assessment followed by large scale clinical trials.

  4. An enhanced CCRTM (E-CCRTM) damage imaging technique using a 2D areal scan for composite plates

    NASA Astrophysics Data System (ADS)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-04-01

    A two-dimensional (2-D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric actuator mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region to capture the scattered wavefield in the vicinity of the PZT. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, the reflectivity coefficients of the delamination can be calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2-D areal scans and linear scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2-D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  5. Assessment of some problematic factors in facial image identification using a 2D/3D superimposition technique.

    PubMed

    Atsuchi, Masaru; Tsuji, Akiko; Usumoto, Yosuke; Yoshino, Mineo; Ikeda, Noriaki

    2013-09-01

    The number of criminal cases requiring facial image identification of a suspect has been increasing because a surveillance camera is installed everywhere in the city and furthermore, the intercom with the recording function is installed in the home. In this study, we aimed to analyze the usefulness of a 2D/3D facial image superimposition system for image identification when facial aging, facial expression, and twins are under consideration. As a result, the mean values of the average distances calculated from the 16 anatomical landmarks between the 3D facial images of the 50s groups and the 2D facial images of the 20s, 30s, and 40s groups were 2.6, 2.3, and 2.2mm, respectively (facial aging). The mean values of the average distances calculated from 12 anatomical landmarks between the 3D normal facial images and four emotional expressions were 4.9 (laughter), 2.9 (anger), 2.9 (sadness), and 3.6mm (surprised), respectively (facial expressions). The average distance obtained from 11 anatomical landmarks between the same person in twins was 1.1mm, while the average distance between different person in twins was 2.0mm (twins). Facial image identification using the 2D/3D facial image superimposition system demonstrated adequate statistical power and identified an individual with high accuracy, suggesting its usefulness. However, computer technology concerning video image processing and superimpose progress, there is a need to keep familiar with the morphology and anatomy as its base. PMID:23886899

  6. Neutron Fission of 235,237,239U and 241,243Pu: Cross Sections, Integral Cross Sections and Cross Sections on Excited States

    SciTech Connect

    Younes, W; Britt, H C

    2003-07-10

    In a recent paper submitted to Phys. Rev. C they have presented estimates for (n,f) cross sections on a series of Thorium, Uranium and Plutonium isotopes over the range E{sub n} = 0.1-2.5 MeV. The (n,f) cross sections for many of these isotopes are difficult or impossible to measure in the laboratory. The cross sections were obtained from previous (t,pf) reaction data invoking a model which takes into account the differences between (t,pf) and (n,f) reaction processes, and which includes improved estimates for the neutron compound formation process. The purpose of this note is: (1) to compare the estimated cross sections to current data files in both ENDF and ENDL databases; (2) to estimate ratios of cross sections relatively to {sup 235}U integrated over the ''tamped flattop'' critical assembly spectrum that was used in the earlier {sup 237}U report; and (3) to show the effect on the integral cross sections when the neutron capturing state is an excited rotational state or an isomer. The isomer and excited state results are shown for {sup 235}U and {sup 237}U.

  7. Cross Sections for Inner-Shell Ionization by Electron Impact

    SciTech Connect

    Llovet, Xavier; Powell, Cedric J.; Salvat, Francesc; Jablonski, Aleksander

    2014-03-15

    An analysis is presented of measured and calculated cross sections for inner-shell ionization by electron impact. We describe the essentials of classical and semiclassical models and of quantum approximations for computing ionization cross sections. The emphasis is on the recent formulation of the distorted-wave Born approximation by Bote and Salvat [Phys. Rev. A 77, 042701 (2008)] that has been used to generate an extensive database of cross sections for the ionization of the K shell and the L and M subshells of all elements from hydrogen to einsteinium (Z = 1 to Z = 99) by electrons and positrons with kinetic energies up to 1 GeV. We describe a systematic method for evaluating cross sections for emission of x rays and Auger electrons based on atomic transition probabilities from the Evaluated Atomic Data Library of Perkins et al. [Lawrence Livermore National Laboratory, UCRL-ID-50400, 1991]. We made an extensive comparison of measured K-shell, L-subshell, and M-subshell ionization cross sections and of Lα x-ray production cross sections with the corresponding calculated cross sections. We identified elements for which there were at least three (for K shells) or two (for L and M subshells) mutually consistent sets of cross-section measurements and for which the cross sections varied with energy as expected by theory. The overall average root-mean-square deviation between the measured and calculated cross sections was 10.9% and the overall average deviation was −2.5%. This degree of agreement between measured and calculated ionization and x-ray production cross sections was considered to be very satisfactory given the difficulties of these measurements.

  8. A Real-time D-bar Algorithm for 2-D Electrical Impedance Tomography Data

    PubMed Central

    Dodd, Melody; Mueller, Jennifer L.

    2014-01-01

    The aim of this paper is to show the feasibility of the D-bar method for real-time 2-D EIT reconstructions. A fast implementation of the D-bar method for reconstructing conductivity changes on a 2-D chest-shaped domain is described. Cross-sectional difference images from the chest of a healthy human subject are presented, demonstrating what can be achieved in real time. The images constitute the first D-bar images from EIT data on a human subject collected on a pairwise current injection system. PMID:25937856

  9. Integration of 3D and 2D imaging data for assured navigation in unknown environments: initial steps

    NASA Astrophysics Data System (ADS)

    Dill, Evan; Uijt de Haag, Maarten

    2009-05-01

    This paper discusses the initial steps of the development of a novel navigation method that integrates three-dimensional (3D) point cloud data, two-dimensional (2D) gray-level (intensity), and data from an Inertial Measurement Unit (IMU). A time-of-flight camera such as MESA's Swissranger will output both the 3D and 2D data. The target application is position and attitude determination of unmanned aerial vehicles (UAV) and autonomous ground vehicles (AGV) in urban or indoor environments. In urban and indoor environments a GPS position capability may not only be unavailable due to shadowing, significant signal attenuation or multipath, but also due to intentional denial or deception. The proposed algorithm extracts key features such as planar surfaces, lines and corner-points from both the 3D (point-cloud) and 2D (intensity) imagery. Consecutive observations of corresponding features in the 3D and 2D image frames are then used to compute estimates of position and orientation changes. Since the use of 3D image features for positioning suffers from limited feature observability resulting in deteriorated position accuracies, and the 2D imagery suffers from an unknown depth when estimating the pose from consecutive image frames, it is expected that the integration of both data sets will alleviate the problems with the individual methods resulting in an position and attitude determination method with a high level of assurance. An Inertial Measurement Unit (IMU) is used to set up the tracking gates necessary to perform data association of the features in consecutive frames. Finally, the position and orientation change estimates can be used to correct for the IMU drift errors.

  10. Ice Layer Cross-Section In False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    This image of shows a cross sectional view of the ice layers. Note the subtle peach banding on the left side of the image. The time variation that the bands represent is not yet understood.

    Image information: VIS instrument. Latitude 83.5, Longitude 118.2 East (241.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Electron induced inelastic and ionization cross section for plasma modeling

    NASA Astrophysics Data System (ADS)

    Verma, Pankaj; Mahato, Dibyendu; Kaur, Jaspreet; Antony, Bobby

    2016-09-01

    The present paper reports electron impact total inelastic and ionization cross section for silicon, germanium, and tin tetrahalides at energies varying from ionization threshold of the target to 5000 eV. These cross section data over a wide energy domain are very essential to understand the physico-chemical processes involved in various environments such as plasma modeling, semiconductor etching, atmospheric sciences, biological sciences, and radiation physics. However, the cross section data on the above mentioned molecules are scarce. In the present article, we report the computation of total inelastic cross section using spherical complex optical potential formalism and the estimation of ionization cross section through a semi-empirical method. The present ionization cross section result obtained for SiCl4 shows excellent agreement with previous measurements, while other molecules have not yet been investigated experimentally. Present results show more consistent behaviour than previous theoretical estimates. Besides cross sections, we have also studied the correlation of maximum ionization cross section with the square root of the ratio of polarizability to ionization potential for the molecules with known polarizabilities. A linear relation is observed between these quantities. This correlation is used to obtain approximate polarizability volumes for SiBr4, SiI4, GeCl4, GeBr4, and GeI4 molecules.

  12. Electron impact on atmospheric gases. I - Updated cross sections

    NASA Technical Reports Server (NTRS)

    Jackman, C. H.; Garvey, R. H.; Green, A. E. S.

    1977-01-01

    The analytic characterizations of electron impact cross sections for important atmospheric gases (namely, O2, N2, O, CO, CO2, and He) are updated. With these cross sections it is simple to communicate massive quantities of experimental and theoretical results. In addition, these forms are convenient for applications in energy degradation calculations, including a new approach described in a companion paper.

  13. Cross Sections for Electron Collisions with Carbon Monoxide

    SciTech Connect

    Itikawa, Yukikazu

    2015-03-15

    Cross section data are collected and reviewed for electron collisions with carbon monoxide. Collision processes included are total scattering, elastic scattering, momentum transfer, excitations of rotational, vibrational and electronic states, ionization, and dissociation. For each process, recommended values of the cross sections are presented, when possible. The literature has been surveyed through to the end of 2013.

  14. Cross sections for electron collisions with nitric oxide

    NASA Astrophysics Data System (ADS)

    Itikawa, Yukikazu

    2016-09-01

    Cross section data are reviewed for electron collisions with nitric oxide. Collision processes considered are total scattering, elastic scattering, momentum transfer, excitations of rotational, vibrational, and electronic states, ionization, and dissociative electron attachment. After a survey of the literature (up to the end of 2015), recommended values of the cross section are determined, as far as possible.

  15. Benchmark Calculations of Electron-Impact Differential Cross Sections

    SciTech Connect

    Bray, I.; Bostock, C. J.; Fursa, D. V.; Hines, C. W.; Kadyrov, A. S.; Stelbovics, A. T.

    2011-05-11

    The calculation of electron-atom excitation and ionization cross section is considered in both the non-relativistic and relativistic scattering theory. We consider electron collisions with H, He, Cs, and Hg. Differential cross sections for elastic scattering and ionization are presented.

  16. Analysis of cross sections using various nuclear potential

    SciTech Connect

    Aziz, Azni Abdul; Kassim, Hasan Abu; Yusof, Norhasliza; Muhammad Zamrun, F.

    2014-05-02

    The relevant astrophysical reaction rates which are derived from the reaction cross sections are necessary input to the reaction network. In this work, we analyse several theoretical models of the nuclear potential which give better prediction of the cross sections for some selected reactions.

  17. Temperature-dependent high resolution absorption cross sections of propane

    NASA Astrophysics Data System (ADS)

    Beale, Christopher A.; Hargreaves, Robert J.; Bernath, Peter F.

    2016-10-01

    High resolution (0.005 cm-1) absorption cross sections have been measured for pure propane (C3H8). These cross sections cover the 2550-3500 cm-1 region at five temperatures (from 296 to 700 K) and were measured using a Fourier transform spectrometer and a quartz cell heated by a tube furnace. Calibrations were made by comparison to the integrated cross sections of propane from the Pacific Northwest National Laboratory. These are the first high resolution absorption cross sections of propane for the 3 μm region at elevated temperatures. The cross sections provided may be used to monitor propane in combustion environments and in astronomical sources such as the auroral regions of Jupiter, brown dwarfs and exoplanets.

  18. Analytical approximations for x-ray cross sections III

    SciTech Connect

    Biggs, F; Lighthill, R

    1988-08-01

    This report updates our previous work that provided analytical approximations to cross sections for both photoelectric absorption of photons by atoms and incoherent scattering of photons by atoms. This representation is convenient for use in programmable calculators and in computer programs to evaluate these cross sections numerically. The results apply to atoms of atomic numbers between 1 and 100 and for photon energiesgreater than or equal to10 eV. The photoelectric cross sections are again approximated by four-term polynomials in reciprocal powers of the photon energy. There are now more fitting intervals, however, than were used previously. The incoherent-scattering cross sections are based on the Klein-Nishina relation, but use simpler approximate equations for efficient computer evaluation. We describe the averaging scheme for applying these atomic results to any composite material. The fitting coefficients are included in tables, and the cross sections are shown graphically. 100 graphs, 1 tab.

  19. Fission cross section measurements of actinides at LANSCE

    SciTech Connect

    Tovesson, Fredrik; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications. By combining measurement at two LANSCE facilities, Lujan Center and the Weapons Neutron Research center (WNR), differential cross sections can be measured from sub-thermal energies up to 200 MeV. Incident neutron energies are determined using the time-of-flight method, and parallel-plate ionization chambers are used to measure fission cross sections relative to the {sup 235}U standard. Recent measurements include the {sup 233,238}U, {sup 239,242}Pu and {sup 243}Am neutron-induced fission cross sections. In this paper preliminary results for cross section data of {sup 243}Am and {sup 233}U will be presented.

  20. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  1. Optimization of multi-group cross sections for fast reactor analysis

    SciTech Connect

    Chin, M. R.; Manalo, K. L.; Edgar, C. A.; Paul, J. N.; Molinar, M. P.; Redd, E. M.; Yi, C.; Sjoden, G. E.

    2013-07-01

    The selection of the number of broad energy groups, collapsed broad energy group boundaries, and their associated evaluation into collapsed macroscopic cross sections from a general 238-group ENDF/B-VII library dramatically impacted the k eigenvalue for fast reactor analysis. An analysis was undertaken to assess the minimum number of energy groups that would preserve problem physics; this involved studies using the 3D deterministic transport parallel code PENTRAN, the 2D deterministic transport code SCALE6.1, the Monte Carlo based MCNP5 code, and the YGROUP cross section collapsing tool on a spatially discretized MOX fuel pin comprised of 21% PUO{sub 2}-UO{sub 2} with sodium coolant. The various cases resulted in a few hundred pcm difference between cross section libraries that included the 238 multi-group reference, and cross sections rendered using various reaction and adjoint weighted cross sections rendered by the YGROUP tool, and a reference continuous energy MCNP case. Particular emphasis was placed on the higher energies characteristic of fission neutrons in a fast spectrum; adjoint computations were performed to determine the average per-group adjoint fission importance for the MOX fuel pin. This study concluded that at least 10 energy groups for neutron transport calculations are required to accurately predict the eigenvalue for a fast reactor system to within 250 pcm of the 238 group case. In addition, the cross section collapsing/weighting schemes within YGROUP that provided a collapsed library rendering eigenvalues closest to the reference were the contribution collapsed, reaction rate weighted scheme. A brief analysis on homogenization of the MOX fuel pin is also provided, although more work is in progress in this area. (authors)

  2. Tracking objects outside the line of sight using 2D intensity images

    NASA Astrophysics Data System (ADS)

    Klein, Jonathan; Peters, Christoph; Martín, Jaime; Laurenzis, Martin; Hullin, Matthias B.

    2016-08-01

    The observation of objects located in inaccessible regions is a recurring challenge in a wide variety of important applications. Recent work has shown that using rare and expensive optical setups, indirect diffuse light reflections can be used to reconstruct objects and two-dimensional (2D) patterns around a corner. Here we show that occluded objects can be tracked in real time using much simpler means, namely a standard 2D camera and a laser pointer. Our method fundamentally differs from previous solutions by approaching the problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through the scene, we determine the set of object parameters that most closely fits the measured intensity distribution. We experimentally demonstrate that this approach is capable of following the translation of unknown objects, and translation and orientation of a known object, in real time.

  3. Tracking objects outside the line of sight using 2D intensity images.

    PubMed

    Klein, Jonathan; Peters, Christoph; Martín, Jaime; Laurenzis, Martin; Hullin, Matthias B

    2016-08-31

    The observation of objects located in inaccessible regions is a recurring challenge in a wide variety of important applications. Recent work has shown that using rare and expensive optical setups, indirect diffuse light reflections can be used to reconstruct objects and two-dimensional (2D) patterns around a corner. Here we show that occluded objects can be tracked in real time using much simpler means, namely a standard 2D camera and a laser pointer. Our method fundamentally differs from previous solutions by approaching the problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through the scene, we determine the set of object parameters that most closely fits the measured intensity distribution. We experimentally demonstrate that this approach is capable of following the translation of unknown objects, and translation and orientation of a known object, in real time.

  4. Tracking objects outside the line of sight using 2D intensity images.

    PubMed

    Klein, Jonathan; Peters, Christoph; Martín, Jaime; Laurenzis, Martin; Hullin, Matthias B

    2016-01-01

    The observation of objects located in inaccessible regions is a recurring challenge in a wide variety of important applications. Recent work has shown that using rare and expensive optical setups, indirect diffuse light reflections can be used to reconstruct objects and two-dimensional (2D) patterns around a corner. Here we show that occluded objects can be tracked in real time using much simpler means, namely a standard 2D camera and a laser pointer. Our method fundamentally differs from previous solutions by approaching the problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through the scene, we determine the set of object parameters that most closely fits the measured intensity distribution. We experimentally demonstrate that this approach is capable of following the translation of unknown objects, and translation and orientation of a known object, in real time. PMID:27577969

  5. Tracking objects outside the line of sight using 2D intensity images

    PubMed Central

    Klein, Jonathan; Peters, Christoph; Martín, Jaime; Laurenzis, Martin; Hullin, Matthias B.

    2016-01-01

    The observation of objects located in inaccessible regions is a recurring challenge in a wide variety of important applications. Recent work has shown that using rare and expensive optical setups, indirect diffuse light reflections can be used to reconstruct objects and two-dimensional (2D) patterns around a corner. Here we show that occluded objects can be tracked in real time using much simpler means, namely a standard 2D camera and a laser pointer. Our method fundamentally differs from previous solutions by approaching the problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through the scene, we determine the set of object parameters that most closely fits the measured intensity distribution. We experimentally demonstrate that this approach is capable of following the translation of unknown objects, and translation and orientation of a known object, in real time. PMID:27577969

  6. Saturation Dynamics Measures Absolute Cross Section and Generates Contrast within a Neuron.

    PubMed

    Kumar, Suraj; Singh, Aditya; Singh, Vijay R; George, Jude B; Balaji, J

    2016-09-20

    The intensity required to optically saturate a chromophore is a molecular property that is determined by its absorption cross section (σ) and the excited state lifetime. We present an analytical description of such a system and show that fluorescence around the onset of saturation is characterized by product of absorption cross section and lifetime. Using this approach we formulate a generalized method for measuring the multiphoton cross section of fluorophores and use it to obtain the absolute three-photon cross-section spectra of tryptophan. We find that the tryptophan three-photon cross section ranges from 0.28 S.I. units (m(6)s(2)photon(-2)) at 870 nm to 20 S.I. units at 740 nm. Further, we show that the product of molecular rate of excitation and de-excitation, denoted as β, serves as a vital contrasting agent for imaging local environment. Our contrast parameter, β, is related to fraction of the population present in the excited state and is independent of the fluorophore concentration. We show that β-imaging can be carried out in a regular two-photon microscope setup through a series of intensity scans. Using enhanced green fluorescent protein (EGFP) fluorescence from the brain slices of Thy-1 EGFP transgenic mice, we show that there is an inherent, concentration independent, variation in contrast across the soma and the dendrite.

  7. Saturation Dynamics Measures Absolute Cross Section and Generates Contrast within a Neuron.

    PubMed

    Kumar, Suraj; Singh, Aditya; Singh, Vijay R; George, Jude B; Balaji, J

    2016-09-20

    The intensity required to optically saturate a chromophore is a molecular property that is determined by its absorption cross section (σ) and the excited state lifetime. We present an analytical description of such a system and show that fluorescence around the onset of saturation is characterized by product of absorption cross section and lifetime. Using this approach we formulate a generalized method for measuring the multiphoton cross section of fluorophores and use it to obtain the absolute three-photon cross-section spectra of tryptophan. We find that the tryptophan three-photon cross section ranges from 0.28 S.I. units (m(6)s(2)photon(-2)) at 870 nm to 20 S.I. units at 740 nm. Further, we show that the product of molecular rate of excitation and de-excitation, denoted as β, serves as a vital contrasting agent for imaging local environment. Our contrast parameter, β, is related to fraction of the population present in the excited state and is independent of the fluorophore concentration. We show that β-imaging can be carried out in a regular two-photon microscope setup through a series of intensity scans. Using enhanced green fluorescent protein (EGFP) fluorescence from the brain slices of Thy-1 EGFP transgenic mice, we show that there is an inherent, concentration independent, variation in contrast across the soma and the dendrite. PMID:27653491

  8. 2-D Fused Image Reconstruction approach for Microwave Tomography: a theoretical assessment using FDTD Model.

    PubMed

    Bindu, G; Semenov, S

    2013-01-01

    This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell's equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness.

  9. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  10. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging

    SciTech Connect

    Schmidgunst, C.; Ritter, D.; Lang, E.

    2007-09-15

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.

  11. Correlation of firing pin impressions based on congruent matching cross-sections (CMX) method.

    PubMed

    Zhang, Hao; Song, John; Tong, Mingsi; Chu, Wei

    2016-06-01

    Comparison of firing pin impressions of cartridge cases is an important part of firearms evidence identification. However, compared with breach face impressions, there is only a limited surface area over which firing pin impressions can be compared. Furthermore, the curvature of firing pin impressions makes it difficult to perform automatic correlations of the surfaces. In this study, a new method and related algorithm named congruent matching cross-sections (CMX) are proposed. Each firing pin impression is sliced into layers and the resulting circular cross-sections are converted to two dimensional linear profiles by a polar coordinate transformation. The differential profile extraction method is used for extracting the high frequency micro-features, or the individual characteristics, for accurate correlation. Three parameters are proposed for determining whether these pairwise firing pin impressions are fired from the same firearm. The cross-correlation function (CCF) is used for quantifying similarity of the pairwise profiles which represent the two correlated firing pin images. If the correlated cartridge pair is fired from the same firearm, the maximum CCF value between each of the profile pairs from the reference and the correlated firing pin impressions will be high. The other two parameters relate to the horizontal (or angular) and vertical range of relative shifts that the profiles undergo to obtain the maximum CCF. These shifts are the phase angle θ which corresponds to a horizontal shift of the 2D profiles and the vertical shift distance of slice section, i.e. where the profiles match in the depth of the impression. These shift parameters are used to determine the congruency of the pairwise profile patterns. When these parameter values and their statistical distributions are collected for analysis, the CMX number is derived as a key parameter for a conclusive identification or exclusion. Validation tests using 40 cartridge cases of three different

  12. Correlation of firing pin impressions based on congruent matching cross-sections (CMX) method.

    PubMed

    Zhang, Hao; Song, John; Tong, Mingsi; Chu, Wei

    2016-06-01

    Comparison of firing pin impressions of cartridge cases is an important part of firearms evidence identification. However, compared with breach face impressions, there is only a limited surface area over which firing pin impressions can be compared. Furthermore, the curvature of firing pin impressions makes it difficult to perform automatic correlations of the surfaces. In this study, a new method and related algorithm named congruent matching cross-sections (CMX) are proposed. Each firing pin impression is sliced into layers and the resulting circular cross-sections are converted to two dimensional linear profiles by a polar coordinate transformation. The differential profile extraction method is used for extracting the high frequency micro-features, or the individual characteristics, for accurate correlation. Three parameters are proposed for determining whether these pairwise firing pin impressions are fired from the same firearm. The cross-correlation function (CCF) is used for quantifying similarity of the pairwise profiles which represent the two correlated firing pin images. If the correlated cartridge pair is fired from the same firearm, the maximum CCF value between each of the profile pairs from the reference and the correlated firing pin impressions will be high. The other two parameters relate to the horizontal (or angular) and vertical range of relative shifts that the profiles undergo to obtain the maximum CCF. These shifts are the phase angle θ which corresponds to a horizontal shift of the 2D profiles and the vertical shift distance of slice section, i.e. where the profiles match in the depth of the impression. These shift parameters are used to determine the congruency of the pairwise profile patterns. When these parameter values and their statistical distributions are collected for analysis, the CMX number is derived as a key parameter for a conclusive identification or exclusion. Validation tests using 40 cartridge cases of three different

  13. Ultra wide band 3-D cross section (RCS) holography

    SciTech Connect

    Collins, H.D.; Hall, T.E.

    1992-07-01

    Ultra wide band impulse holography is an exciting new concept for predictive radar cross section (RCS) evaluation employing near-field measurements. Reconstruction of the near-field hologram data maps the target`s scattering areas, and uniquely identifies the ``hot spot`` locations on the target. In addition, the target and calibration sphere`s plane wave angular spectrums are computed (via digital algorithm) and used to generate the target`s far-field RCS values in three dimensions for each frequency component in the impulse. Thin and thick targets are defined in terms of their near-field amplitude variations in range. Range gating and computer holographic techniques are applied to correct these variations. Preliminary experimental results on various targets verify the concept of RCS holography. The unique 3-D presentation (i.e., typically containing 524,288 RCS values for a 1024 {times} 512 sampled aperture for every frequency component) illustrates the efficacy of target recognition in terms of its far-field plane wave angular spectrum image. RCS images can then be viewed at different angles for target recognition, etc.

  14. Ultra wide band 3-D cross section (RCS) holography

    SciTech Connect

    Collins, H.D.; Hall, T.E.

    1992-07-01

    Ultra wide band impulse holography is an exciting new concept for predictive radar cross section (RCS) evaluation employing near-field measurements. Reconstruction of the near-field hologram data maps the target's scattering areas, and uniquely identifies the hot spot'' locations on the target. In addition, the target and calibration sphere's plane wave angular spectrums are computed (via digital algorithm) and used to generate the target's far-field RCS values in three dimensions for each frequency component in the impulse. Thin and thick targets are defined in terms of their near-field amplitude variations in range. Range gating and computer holographic techniques are applied to correct these variations. Preliminary experimental results on various targets verify the concept of RCS holography. The unique 3-D presentation (i.e., typically containing 524,288 RCS values for a 1024 {times} 512 sampled aperture for every frequency component) illustrates the efficacy of target recognition in terms of its far-field plane wave angular spectrum image. RCS images can then be viewed at different angles for target recognition, etc.

  15. Microphysical Analysis using Airborne 2-D Cloud and Precipitation Imaging Probe Data

    NASA Astrophysics Data System (ADS)

    Guy, N.; Jorgensen, D.; Witte, M.; Chuang, P. Y.; Black, R. A.

    2013-12-01

    The NOAA P-3 instrumented aircraft provided in-situ cloud and precipitation microphysical observations during the DYNAMO (Dynamics of the Madden-Julian Oscillation) field experiment. The Particle Measuring System 2D cloud (2D-C) and precipitation (2D-P) probes collected data for particles between 12.5 μm - 1.55 mm (25 μm resolution) and 100 μm - 6.2 mm (100 μm resolution), respectively. Spectra from each instrument were combined to provide a broad distribution of precipitation particle sizes. The 'method of moments' technique was used to analyze drop size distribution (DSD) spectra, which were modeled by fitting a three-parameter (slope, shape, and intercept) gamma distribution to the spectra. The characteristic shape of the mean spectrum compares to previous maritime measurements. DSD variability will be presented with respect to the temporal evolution of cloud populations during a Madden-Julian Oscillation (MJO) event, as well as in-situ aircraft vertical wind velocity measurements. Using the third and sixth moments, rainfall rate (R) and equivalent radar reflectivity factor (Z), respectively, were computed for each DSD. Linear regression was applied to establish a Z-R relationship for the data for the estimation of precipitation. The study indicated unique characteristics of microphysical processes for this region. These results are important to continue to define the cloud population characteristics in the climatological MJO region. Improved representation of the cloud characteristics on the microphysical scale will serve as a check to model parameterizations, helping to improve numerical simulations.

  16. Auto-masked 2D/3D image registration and its validation with clinical cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Steininger, P.; Neuner, M.; Weichenberger, H.; Sharp, G. C.; Winey, B.; Kametriser, G.; Sedlmayer, F.; Deutschmann, H.

    2012-07-01

    Image-guided alignment procedures in radiotherapy aim at minimizing discrepancies between the planned and the real patient setup. For that purpose, we developed a 2D/3D approach which rigidly registers a computed tomography (CT) with two x-rays by maximizing the agreement in pixel intensity between the x-rays and the corresponding reconstructed radiographs from the CT. Moreover, the algorithm selects regions of interest (masks) in the x-rays based on 3D segmentations from the pre-planning stage. For validation, orthogonal x-ray pairs from different viewing directions of 80 pelvic cone-beam CT (CBCT) raw data sets were used. The 2D/3D results were compared to corresponding standard 3D/3D CBCT-to-CT alignments. Outcome over 8400 2D/3D experiments showed that parametric errors in root mean square were <0.18° (rotations) and <0.73 mm (translations), respectively, using rank correlation as intensity metric. This corresponds to a mean target registration error, related to the voxels of the lesser pelvis, of <2 mm in 94.1% of the cases. From the results we conclude that 2D/3D registration based on sequentially acquired orthogonal x-rays of the pelvis is a viable alternative to CBCT-based approaches if rigid alignment on bony anatomy is sufficient, no volumetric intra-interventional data set is required and the expected error range fits the individual treatment prescription.

  17. Estimating elastic moduli of rocks from thin sections: Digital rock study of 3D properties from 2D images

    NASA Astrophysics Data System (ADS)

    Saxena, Nishank; Mavko, Gary

    2016-03-01

    Estimation of elastic rock moduli using 2D plane strain computations from thin sections has several numerical and analytical advantages over using 3D rock images, including faster computation, smaller memory requirements, and the availability of cheap thin sections. These advantages, however, must be weighed against the estimation accuracy of 3D rock properties from thin sections. We present a new method for predicting elastic properties of natural rocks using thin sections. Our method is based on a simple power-law transform that correlates computed 2D thin section moduli and the corresponding 3D rock moduli. The validity of this transform is established using a dataset comprised of FEM-computed elastic moduli of rock samples from various geologic formations, including Fontainebleau sandstone, Berea sandstone, Bituminous sand, and Grossmont carbonate. We note that using the power-law transform with a power-law coefficient between 0.4-0.6 contains 2D moduli to 3D moduli transformations for all rocks that are considered in this study. We also find that reliable estimates of P-wave (Vp) and S-wave velocity (Vs) trends can be obtained using 2D thin sections.

  18. Cross Section Sensitivity and Propagated Errors in HZE Exposures

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Wilson, John W.; Blatnig, Steve R.; Qualls, Garry D.; Badavi, Francis F.; Cucinotta, Francis A.

    2005-01-01

    It has long been recognized that galactic cosmic rays are of such high energy that they tend to pass through available shielding materials resulting in exposure of astronauts and equipment within space vehicles and habitats. Any protection provided by shielding materials result not so much from stopping such particles but by changing their physical character in interaction with shielding material nuclei forming, hopefully, less dangerous species. Clearly, the fidelity of the nuclear cross-sections is essential to correct specification of shield design and sensitivity to cross-section error is important in guiding experimental validation of cross-section models and database. We examine the Boltzmann transport equation which is used to calculate dose equivalent during solar minimum, with units (cSv/yr), associated with various depths of shielding materials. The dose equivalent is a weighted sum of contributions from neutrons, protons, light ions, medium ions and heavy ions. We investigate the sensitivity of dose equivalent calculations due to errors in nuclear fragmentation cross-sections. We do this error analysis for all possible projectile-fragment combinations (14,365 such combinations) to estimate the sensitivity of the shielding calculations to errors in the nuclear fragmentation cross-sections. Numerical differentiation with respect to the cross-sections will be evaluated in a broad class of materials including polyethylene, aluminum and copper. We will identify the most important cross-sections for further experimental study and evaluate their impact on propagated errors in shielding estimates.

  19. Modeling elastic momentum transfer cross-sections from mobility data

    NASA Astrophysics Data System (ADS)

    Nikitović, Ž. D.; Stojanović, V. D.; Raspopović, Z. M.

    2016-04-01

    In this letter we present a new method to simply obtain the elastic momentum transfer cross-section which predicts a maximum of reduced mobility and its sensitivity to the temperature variation at low energies. We first determined the transport cross-section which resembles mobility data for similar closed-shell systems by using the Monte Carlo method. Second, we selected the most probable reactive processes and compiled cross-sections from experimental and theoretical data. At the end, an elastic momentum transfer cross-section is obtained by subtracting the compiled cross-sections from the momentum transfer cross-section, taking into account the effects of the angular scattering distributions. Finally, the cross-section set determined in such a way is used as an input in a final Monte Carlo code run, to calculate the flux and bulk reduced mobility for Ne+ + CF4 which were discussed as functions of the reduced electric field E/N (N is the gas density) for the temperature T = 300 K.

  20. Electron impact rotationally elastic total cross section for formamide

    NASA Astrophysics Data System (ADS)

    Vinodkumar, Minaxi; Limbachiya, Chetan; Desai, Hardik; Vinodkumar, P. C.

    2014-09-01

    This paper reports computational results of the total cross sections for electron impact on formamide (HCONH2) over a wide range of energies from 0.01 eV to 5 keV. Total cross sections over such a wide range are reported for the first time as the earlier reported data is up to maximum of 12 eV. Below ionization threshold of the target, we performed ab initio calculations using UK molecular R-Matrix code within static, exchange plus polarization (SEP), and close coupling approximations. Twenty eight target states are included in close coupling formalism. Total 350 channels and 2410 configuration state functions are included in the calculations. We observe a π* shape resonance at 3.41 eV and a σ* resonance at 15.3 eV as against similar resonances reported at 3.77 eV and 14.9 eV, respectively, by Goumans et al. [J. Chem. Theory Comput. 5, 217 (2009)] using SEP model. The cross sections at higher energies are evaluated using the spherical complex optical potential formalism. The two methods are found to be consistent with a smooth cross over at 18 eV. The vertical excitation energies, electronic excitation cross sections, differential cross sections, momentum transfer, and total cross sections are computed. In absence of experimental data, we compared our computed total cross sections with available other theoretical results.

  1. Electron impact rotationally elastic total cross section for formamide

    SciTech Connect

    Vinodkumar, Minaxi; Limbachiya, Chetan; Desai, Hardik Vinodkumar, P. C.

    2014-09-28

    This paper reports computational results of the total cross sections for electron impact on formamide (HCONH₂) over a wide range of energies from 0.01 eV to 5 keV. Total cross sections over such a wide range are reported for the first time as the earlier reported data is up to maximum of 12 eV. Below ionization threshold of the target, we performed ab initio calculations using UK molecular R-Matrix code within static, exchange plus polarization (SEP), and close coupling approximations. Twenty eight target states are included in close coupling formalism. Total 350 channels and 2410 configuration state functions are included in the calculations. We observe a π* shape resonance at 3.41 eV and a σ* resonance at 15.3 eV as against similar resonances reported at 3.77 eV and 14.9 eV, respectively, by Goumans et al. [J. Chem. Theory Comput. 5, 217 (2009)] using SEP model. The cross sections at higher energies are evaluated using the spherical complex optical potential formalism. The two methods are found to be consistent with a smooth cross over at 18 eV. The vertical excitation energies, electronic excitation cross sections, differential cross sections, momentum transfer, and total cross sections are computed. In absence of experimental data, we compared our computed total cross sections with available other theoretical results.

  2. Electron impact ionization cross sections of beryllium-tungsten clusters*

    NASA Astrophysics Data System (ADS)

    Sukuba, Ivan; Kaiser, Alexander; Huber, Stefan E.; Urban, Jan; Probst, Michael

    2016-01-01

    We report calculated electron impact ionization cross sections (EICSs) of beryllium-tungsten clusters, BenW with n = 1,...,12, from the ionization threshold to 10 keV using the Deutsch-Märk (DM) and the binary-encounter-Bethe (BEB) formalisms. The positions of the maxima of DM and BEB cross sections are mostly close to each other. The DM cross sections are more sensitive with respect to the cluster size. For the clusters smaller than Be4W they yield smaller cross sections than BEB and vice versa larger cross sections than BEB for clusters larger than Be6W. The maximum cross section values for the singlet-spin groundstate clusters range from 7.0 × 10-16 cm2 at 28 eV (BeW) to 54.2 × 10-16 cm2 at 43 eV (Be12W) for the DM cross sections and from 13.5 × 10-16 cm2 at 43 eV (BeW) to 38.9 × 10-16 cm2 at 43 eV (Be12W) for the BEB cross sections. Differences of the EICSs in different isomers and between singlet and triplet states are also explored. Both the DM and BEB cross sections could be fitted perfectly to a simple expression used in modeling and simulation codes in the framework of nuclear fusion research. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2015-60583-7

  3. Registration of 2D C-Arm and 3D CT Images for a C-Arm Image-Assisted Navigation System for Spinal Surgery

    PubMed Central

    Chang, Chih-Ju; Lin, Geng-Li; Tse, Alex; Chu, Hong-Yu; Tseng, Ching-Shiow

    2015-01-01

    C-Arm image-assisted surgical navigation system has been broadly applied to spinal surgery. However, accurate path planning on the C-Arm AP-view image is difficult. This research studies 2D-3D image registration methods to obtain the optimum transformation matrix between C-Arm and CT image frames. Through the transformation matrix, the surgical path planned on preoperative CT images can be transformed and displayed on the C-Arm images for surgical guidance. The positions of surgical instruments will also be displayed on both CT and C-Arm in the real time. Five similarity measure methods of 2D-3D image registration including Normalized Cross-Correlation, Gradient Correlation, Pattern Intensity, Gradient Difference Correlation, and Mutual Information combined with three optimization methods including Powell's method, Downhill simplex algorithm, and genetic algorithm are applied to evaluate their performance in converge range, efficiency, and accuracy. Experimental results show that the combination of Normalized Cross-Correlation measure method with Downhill simplex algorithm obtains maximum correlation and similarity in C-Arm and Digital Reconstructed Radiograph (DRR) images. Spine saw bones are used in the experiment to evaluate 2D-3D image registration accuracy. The average error in displacement is 0.22 mm. The success rate is approximately 90% and average registration time takes 16 seconds. PMID:27018859

  4. Registration of 2D C-Arm and 3D CT Images for a C-Arm Image-Assisted Navigation System for Spinal Surgery.

    PubMed

    Chang, Chih-Ju; Lin, Geng-Li; Tse, Alex; Chu, Hong-Yu; Tseng, Ching-Shiow

    2015-01-01

    C-Arm image-assisted surgical navigation system has been broadly applied to spinal surgery. However, accurate path planning on the C-Arm AP-view image is difficult. This research studies 2D-3D image registration methods to obtain the optimum transformation matrix between C-Arm and CT image frames. Through the transformation matrix, the surgical path planned on preoperative CT images can be transformed and displayed on the C-Arm images for surgical guidance. The positions of surgical instruments will also be displayed on both CT and C-Arm in the real time. Five similarity measure methods of 2D-3D image registration including Normalized Cross-Correlation, Gradient Correlation, Pattern Intensity, Gradient Difference Correlation, and Mutual Information combined with three optimization methods including Powell's method, Downhill simplex algorithm, and genetic algorithm are applied to evaluate their performance in converge range, efficiency, and accuracy. Experimental results show that the combination of Normalized Cross-Correlation measure method with Downhill simplex algorithm obtains maximum correlation and similarity in C-Arm and Digital Reconstructed Radiograph (DRR) images. Spine saw bones are used in the experiment to evaluate 2D-3D image registration accuracy. The average error in displacement is 0.22 mm. The success rate is approximately 90% and average registration time takes 16 seconds.

  5. Registration of 2D C-Arm and 3D CT Images for a C-Arm Image-Assisted Navigation System for Spinal Surgery.

    PubMed

    Chang, Chih-Ju; Lin, Geng-Li; Tse, Alex; Chu, Hong-Yu; Tseng, Ching-Shiow

    2015-01-01

    C-Arm image-assisted surgical navigation system has been broadly applied to spinal surgery. However, accurate path planning on the C-Arm AP-view image is difficult. This research studies 2D-3D image registration methods to obtain the optimum transformation matrix between C-Arm and CT image frames. Through the transformation matrix, the surgical path planned on preoperative CT images can be transformed and displayed on the C-Arm images for surgical guidance. The positions of surgical instruments will also be displayed on both CT and C-Arm in the real time. Five similarity measure methods of 2D-3D image registration including Normalized Cross-Correlation, Gradient Correlation, Pattern Intensity, Gradient Difference Correlation, and Mutual Information combined with three optimization methods including Powell's method, Downhill simplex algorithm, and genetic algorithm are applied to evaluate their performance in converge range, efficiency, and accuracy. Experimental results show that the combination of Normalized Cross-Correlation measure method with Downhill simplex algorithm obtains maximum correlation and similarity in C-Arm and Digital Reconstructed Radiograph (DRR) images. Spine saw bones are used in the experiment to evaluate 2D-3D image registration accuracy. The average error in displacement is 0.22 mm. The success rate is approximately 90% and average registration time takes 16 seconds. PMID:27018859

  6. Top quark pair production cross section at Tevatron

    SciTech Connect

    Shary, V.; /DAPNIA, Saclay

    2009-05-01

    An overview of the recent measurements of the top antitop quark pair production cross section in proton antiproton collisions at {radical}s = 1.96 TeV in lepton + jets and dilepton final states is presented. These measurements are based on 1-2.8 fb{sup -1} of data collected with the D0 and CDF experiments at the Fermilab Tevatron collider. The cross section is measured with a precision close to 8 % and found to be compatible with the standard model prediction. Interpretations of the cross-section measurements for charge higgs search and for top quark mass measurement are also discussed.

  7. Relative charge transfer cross section from Rb (4d)

    NASA Astrophysics Data System (ADS)

    Shah, M. H.; Camp, H. A.; Trachy, M. L.; Fléchard, X.; Gearba, M. A.; Nguyen, H.; Brédy, R.; Lundeen, S. R.; Depaola, B. D.

    2005-08-01

    Relative charge transfer cross section measurements for the excited state Rb(4d) with 7keV Na+ is reported. The specific channels reported are Na++Rb(4d5/2)→Na(nl)+Rb+ , where the dominant transfer cross sections channels were nl=3d and 4s . Using a combination of a magneto-optical trap and recoil ion momentum spectroscopy (MOTRIMS methodology), the cross sections were measured relative to the previously studied Na++Rb(5s,5p) systems at the same collision energy.

  8. Antinucleus-Nucleus Cross Sections Implemented in Geant4

    SciTech Connect

    Uzhinsky, V.; Apostolakis, J.; Galoyan, A.; Folger, G.; Grichine, V.M.; Ivanchenko, V.N.; Wright, D.H.; /SLAC

    2012-04-26

    Cross sections of antinucleus ({bar p}, {bar d}, {bar t}, {sup 3}{ovr He}, {sup 4}{ovr He}) interactions with nuclei in the energy range 100 MeV/c to 1000 GeV/c per antinucleon are calculated in the Glauber approximation which provides good description of all known {bar p}Across sections. The results were obtained using a new parameterization of the total and elastic {bar p}p cross sections. Simple parameterizations of the antinucleus-nucleus cross sections are proposed for use in estimating the efficiency of antinucleus detection and tracking in cosmic rays and accelerator experiments. These parameterizations are implemented in the Geant4 toolkit.

  9. Actinide neutron-induced fission cross section measurements at LANSCE

    SciTech Connect

    Tovesson, Fredrik K; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  10. Relative charge transfer cross section from Rb(4d)

    SciTech Connect

    Shah, M.H.; Camp, H.A.; Trachy, M.L.; De Paola, B.D.; Flechard, X.; Gearba, M.A.; Nguyen, H.; Bredy, R.; Lundeen, S.R.

    2005-08-15

    Relative charge transfer cross section measurements for the excited state Rb(4d) with 7 keV Na{sup +} is reported. The specific channels reported are Na{sup +}+Rb(4d{sub 5/2}){yields}Na(nl)+Rb{sup +}, where the dominant transfer cross sections channels were nl=3d and 4s. Using a combination of a magneto-optical trap and recoil ion momentum spectroscopy (MOTRIMS methodology), the cross sections were measured relative to the previously studied Na{sup +}+Rb(5s,5p) systems at the same collision energy.

  11. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques.

    PubMed

    Parmar, Biren J; Longsine, Whitney; Sabonghy, Eric P; Han, Arum; Tasciotti, Ennio; Weiner, Bradley K; Ferrari, Mauro; Righetti, Raffaella

    2010-08-21

    Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 microm to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.

  12. Soft-tissues Image Processing: Comparison of Traditional Segmentation Methods with 2D active Contour Methods

    NASA Astrophysics Data System (ADS)

    Mikulka, J.; Gescheidtova, E.; Bartusek, K.

    2012-01-01

    The paper deals with modern methods of image processing, especially image segmentation, classification and evaluation of parameters. It focuses primarily on processing medical images of soft tissues obtained by magnetic resonance tomography (MR). It is easy to describe edges of the sought objects using segmented images. The edges found can be useful for further processing of monitored object such as calculating the perimeter, surface and volume evaluation or even three-dimensional shape reconstruction. The proposed solutions can be used for the classification of healthy/unhealthy tissues in MR or other imaging. Application examples of the proposed segmentation methods are shown. Research in the area of image segmentation focuses on methods based on solving partial differential equations. This is a modern method for image processing, often called the active contour method. It is of great advantage in the segmentation of real images degraded by noise with fuzzy edges and transitions between objects. In the paper, results of the segmentation of medical images by the active contour method are compared with results of the segmentation by other existing methods. Experimental applications which demonstrate the very good properties of the active contour method are given.

  13. 2D and 3D MALDI-imaging: conceptual strategies for visualization and data mining.

    PubMed

    Thiele, Herbert; Heldmann, Stefan; Trede, Dennis; Strehlow, Jan; Wirtz, Stefan; Dreher, Wolfgang; Berger, Judith; Oetjen, Janina; Kobarg, Jan Hendrik; Fischer, Bernd; Maass, Peter

    2014-01-01

    3D imaging has a significant impact on many challenges in life sciences, because biology is a 3-dimensional phenomenon. Current 3D imaging-technologies (various types MRI, PET, SPECT) are labeled, i.e. they trace the localization of a specific compound in the body. In contrast, 3D MALDI mass spectrometry-imaging (MALDI-MSI) is a label-free method imaging the spatial distribution of molecular compounds. It complements 3D imaging labeled methods, immunohistochemistry, and genetics-based methods. However, 3D MALDI-MSI cannot tap its full potential due to the lack of statistical methods for analysis and interpretation of large and complex 3D datasets. To overcome this, we established a complete and robust 3D MALDI-MSI pipeline combined with efficient computational data analysis methods for 3D edge preserving image denoising, 3D spatial segmentation as well as finding colocalized m/z values, which will be reviewed here in detail. Furthermore, we explain, why the integration and correlation of the MALDI imaging data with other imaging modalities allows to enhance the interpretation of the molecular data and provides visualization of molecular patterns that may otherwise not be apparent. Therefore, a 3D data acquisition workflow is described generating a set of 3 different dimensional images representing the same anatomies. First, an in-vitro MRI measurement is performed which results in a three-dimensional image modality representing the 3D structure of the measured object. After sectioning the 3D object into N consecutive slices, all N slices are scanned using an optical digital scanner, enabling for performing the MS measurements. Scanning the individual sections results into low-resolution images, which define the base coordinate system for the whole pipeline. The scanned images conclude the information from the spatial (MRI) and the mass spectrometric (MALDI-MSI) dimension and are used for the spatial three-dimensional reconstruction of the object performed by image

  14. 2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability

    SciTech Connect

    Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent

    2013-09-03

    Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of

  15. Pore cross-section area on predicting elastic properties of trabecular bovine bone for human implants.

    PubMed

    Maciel, Alfredo; Presbítero, Gerardo; Piña, Cristina; del Pilar Gutiérrez, María; Guzmán, José; Munguía, Nadia

    2015-01-01

    A clear understanding of the dependence of mechanical properties of bone remains a task not fully achieved. In order to estimate the mechanical properties in bones for implants, pore cross-section area, calcium content, and apparent density were measured in trabecular bone samples for human implants. Samples of fresh and defatted bone tissue, extracted from one year old bovines, were cut in longitudinal and transversal orientation of the trabeculae. Pore cross-section area was measured with an image analyzer. Compression tests were conducted into rectangular prisms. Elastic modulus presents a linear tendency as a function of pore cross-section area, calcium content and apparent density regardless of the trabecular orientation. The best variable to estimate elastic modulus of trabecular bone for implants was pore cross-section area, and affirmations to consider Nukbone process appropriated for marrow extraction in trabecular bone for implantation purposes are proposed, according to bone mechanical properties. Considering stress-strain curves, defatted bone is stiffer than fresh bone. Number of pores against pore cross-section area present an exponential decay, consistent for all the samples. These graphs also are useful to predict elastic properties of trabecular samples of young bovines for implants.

  16. Influence of cross sectional geometry on surface plasmon polariton propagation in gold nanowires.

    PubMed

    Nauert, Scott; Paul, Aniruddha; Zhen, Yu-Rong; Solis, David; Vigderman, Leonid; Chang, Wei-Shun; Zubarev, Eugene R; Nordlander, Peter; Link, Stephan

    2014-01-28

    We investigated the effects of cross sectional geometry on surface plasmon polariton propagation in gold nanowires (NWs) using bleach-imaged plasmon propagation and electromagnetic simulations. Chemically synthesized NWs have pentagonally twinned crystal structures, but recent advances in synthesis have made it possible to amplify this pentagonal shape to yield NWs with a five-pointed-star cross section and sharp end tips. We found experimentally that NWs with a five-pointed-star cross section, referred to as SNWs, had a shorter propagation length for surface plasmon polaritons at 785 nm, but a higher effective incoupling efficiency compared to smooth NWs with a pentagonal cross section, labeled as PNWs. Electromagnetic simulations revealed that the electric fields were localized at the sharp ridges of the SNWs, leading to higher absorptive losses and hence shorter propagation lengths compared to PNWs. On the other hand, scattering losses were found to be relatively uncorrelated with cross sectional geometry, but were strongly dependent on the plasmon mode excited. Our results provide insight into the shape-dependent waveguiding properties of chemically synthesized metal NWs and the mode-dependent loss mechanisms that govern surface plasmon polariton propagation. PMID:24308802

  17. Bistatic and Multistatic Radar: Surveillance, Countermeasures, and Radar Cross Sections. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The bibliography contains citations concerning the design, development, testing, and evaluation of bistatic and multistatic radar used in surveillance and countermeasure technology. Citations discuss radar cross sections, target recognition and characteristics, ghost recognition, motion image compensation, and wavelet analysis. Stealth aircraft design, stealth target tracking, synthetic aperture radar, and space applications are examined.

  18. Bistatic and Multistatic Radar: Surveillance, Countermeasures, and Radar Cross Sections. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The bibliography contains citations concerning the design, development, testing, and evaluation of bistatic and multistatic radar used in surveillance and countermeasure technology. Citations discuss radar cross sections, target recognition and characteristics, ghost recognition, motion image compensation, and wavelet analysis. Stealth aircraft design, stealth target tracking, synthetic aperture radar, and space applications are examined.

  19. Signal intensity, clinical activity and cross-sectional areas on MRI scans in thyroid eye disease.

    PubMed

    Mayer, E J; Fox, D L; Herdman, G; Hsuan, J; Kabala, J; Goddard, P; Potts, M J; Lee, R W J

    2005-10-01

    The signal intensity from inflamed extra-ocular muscles on short tau inversion recovery (STIR)-sequence magnetic resonance imaging (MRI) is known to correlate with clinical scores of thyroid eye disease (TED) severity. Twenty-one patients who had undergone repeated MRI scanning for TED were studied retrospectively. Signal intensity of extra-ocular muscles (from STIR-sequence MRI) and cross-sectional area (from STIR and T1 MRI) were correlated with Mourits' clinical activity score (CAS). The area of highest signal intensity within the most inflamed extra-ocular muscle, and the average cross-sectional signal intensity of the most inflamed extra-ocular muscle reliably correlated with CAS, and this was maintained as disease activity changed over time. In contrast, isolated measures of muscle cross-sectional area did not correlate with CAS. The extra-ocular muscle cross-sectional area calculated from STIR-sequence MR images was greater than that measured on T1 images. This suggests that muscle area from STIR-sequence MRI may also detect peri-muscular inflammation. We conclude that the peak signal intensity from the most inflamed extra-ocular muscle remains the most reliable correlate of clinical disease activity obtained from these images. STIR-sequence MRI scans provide a number of useful measures of disease activity in TED.

  20. Improving object detection in 2D images using a 3D world model

    NASA Astrophysics Data System (ADS)

    Viggh, Herbert E. M.; Cho, Peter L.; Armstrong-Crews, Nicholas; Nam, Myra; Shah, Danelle C.; Brown, Geoffrey E.

    2014-05-01

    A mobile robot operating in a netcentric environment can utilize offboard resources on the network to improve its local perception. One such offboard resource is a world model built and maintained by other sensor systems. In this paper we present results from research into improving the performance of Deformable Parts Model object detection algorithms by using an offboard 3D world model. Experiments were run for detecting both people and cars in 2D photographs taken in an urban environment. After generating candidate object detections, a 3D world model built from airborne Light Detection and Ranging (LIDAR) and aerial photographs was used to filter out false alarm using several types of geometric reasoning. Comparison of the baseline detection performance to the performance after false alarm filtering showed a significant decrease in false alarms for a given probability of detection.

  1. Assessing 3D tunnel position in ACL reconstruction using a novel single image 3D-2D registration

    NASA Astrophysics Data System (ADS)

    Kang, X.; Yau, W. P.; Otake, Y.; Cheung, P. Y. S.; Hu, Y.; Taylor, R. H.

    2012-02-01

    The routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using a mixture of von Mises-Fisher-Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment using a plastic phantom showed accurate results with errors of (-0.43°+/-1.19°, 0.45°+/-2.17°, 0.23°+/-1.05°) and (0.03+/-0.55, -0.03+/-0.54, -2.73+/-1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained with high accuracy of 0.53+/-0.30 mm distance errors.

  2. Known-component 3D-2D registration for image guidance and quality assurance in spine surgery pedicle screw placement

    NASA Astrophysics Data System (ADS)

    Uneri, A.; Stayman, J. W.; De Silva, T.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Wolinsky, J.-P.; Gokaslan, Z. L.; Siewerdsen, J. H.

    2015-03-01

    Purpose. To extend the functionality of radiographic / fluoroscopic imaging systems already within standard spine surgery workflow to: 1) provide guidance of surgical device analogous to an external tracking system; and 2) provide intraoperative quality assurance (QA) of the surgical product. Methods. Using fast, robust 3D-2D registration in combination with 3D models of known components (surgical devices), the 3D pose determination was solved to relate known components to 2D projection images and 3D preoperative CT in near-real-time. Exact and parametric models of the components were used as input to the algorithm to evaluate the effects of model fidelity. The proposed algorithm employs the covariance matrix adaptation evolution strategy (CMA-ES) to maximize gradient correlation (GC) between measured projections and simulated forward projections of components. Geometric accuracy was evaluated in a spine phantom in terms of target registration error at the tool tip (TREx), and angular deviation (TREΦ) from planned trajectory. Results. Transpedicle surgical devices (probe tool and spine screws) were successfully guided with TREx<2 mm and TREΦ <0.5° given projection views separated by at least >30° (easily accommodated on a mobile C-arm). QA of the surgical product based on 3D-2D registration demonstrated the detection of pedicle screw breach with TREx<1 mm, demonstrating a trend of improved accuracy correlated to the fidelity of the component model employed. Conclusions. 3D-2D registration combined with 3D models of known surgical components provides a novel method for near-real-time guidance and quality assurance using a mobile C-arm without external trackers or fiducial markers. Ongoing work includes determination of optimal views based on component shape and trajectory, improved robustness to anatomical deformation, and expanded preclinical testing in spine and intracranial surgeries.

  3. 8. VIEW OF CROSS SECTION OF THE EASTERNMOST WALL SEGMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF CROSS SECTION OF THE EASTERNMOST WALL SEGMENT THAT SHOWS THE TRENCHING AND 1960 PIPELINE CORRIDOR BETWEEN THE WALL SEGMENTS, LOOKING WEST-NORTHWEST - Rock Wall, North side of Battle Creek Canyon, Shingletown, Shasta County, CA

  4. Radiative neutron capture cross sections on 176Lu at DANCE

    NASA Astrophysics Data System (ADS)

    Roig, O.; Jandel, M.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.

    2016-03-01

    The cross section of the neutron capture reaction 176Lu(n ,γ ) has been measured for a wide incident neutron energy range with the Detector for Advanced Neutron Capture Experiments at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be (1912 ±132 ) b for one of the Lu natural isotopes, 176Lu. The resonance part was measured and compared to the Mughabghab's atlas using the R -matrix code, sammy. At higher neutron energies the measured cross sections are compared to ENDF/B-VII.1, JEFF-3.2, and BRC evaluated nuclear data. The Maxwellian averaged cross sections in a stellar plasma for thermal energies between 5 keV and 100 keV were extracted using these data.

  5. Fluctuations of cross sections seen in cosmic ray data

    SciTech Connect

    Wilk, G. ); Wlodarczyk, Z. )

    1994-08-01

    We argue that the unexpected nonexponential behavior of some cosmic ray data is just a manifestation of cross section fluctuations discussed recently in the literature and observed in nuclear collisions and in diffraction dissociation experiments on accelerators.

  6. Local Deplanation Of Double Reinforced Beam Cross Section Under Bending

    NASA Astrophysics Data System (ADS)

    Baltov, Anguel; Yanakieva, Ana

    2015-12-01

    Bending of beams, double reinforced by means of thin composite layers, is considered in the study. Approximate numerical solution is proposed, considering transitional boundary areas, where smooth quadratic transition of the elasticity modulus and deformations take place. Deplanation of the cross section is also accounted for in the areas. Their thickness is found equalizing the total stiffness of the cross section and the layer stiffness. Deplanation of the cross section of the transitional area is determined via the longitudinal deformation in the reinforcing layer, accounting for the equilibrium between the internal and the external moment, generated by the longitudinal stresses in the cross section. A numerical example is given as an illustration demonstrating model's plausibility. The model allows the design and the calculation of recycled concrete beams double reinforced by means of thin layers. The approach is in agreement with modern design of nearly zero energy buildings (NZEB).

  7. 36. CROSS SECTIONAL VIEW OF ORIGINAL HORSE MESA DAM POWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. CROSS SECTIONAL VIEW OF ORIGINAL HORSE MESA DAM POWER PLANT, LOOKING NORTH. ONLY TWO OF THE THREE UNITS ARE VISIBLE - Horse Mesa Dam, Salt River, 65 miles East of Phoenix, Phoenix, Maricopa County, AZ

  8. 20. CROSS SECTIONAL VIEW OF HORSE MESA, SHOWING RIGHT SPILLWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. CROSS SECTIONAL VIEW OF HORSE MESA, SHOWING RIGHT SPILLWAY SUPERSTRUCTURE AND CONCRETE PLACEMENT LINES August 2, 1927 - Horse Mesa Dam, Salt River, 65 miles East of Phoenix, Phoenix, Maricopa County, AZ

  9. On the cyclo-synchrotron cross-section

    NASA Astrophysics Data System (ADS)

    Gliozzi, M.; Bodo, G.; Ghisellini, G.; Trussoni, E.

    1996-06-01

    The study of the synchrotron and cyclotron absorption processes and their relative cross-sections, recently analysed by Ghisellini & Svensson, is extended to the case of photons propagating along the direction of the magnetic field. In the relativistic regime we follow a quantum approach, which requires first the derivation of the particle emissivity for the assumed configuration. The expression for the cross-section coincides with that obtained through a classical treatment of the problem in the non-relativistic regime. In the frequency range where absorption is important, the cross-section is larger than the Thomson cross-section by several orders of magnitude, implying a strong coupling between radiation and magnetized plasma. The possible atrophysical implications of this process are briefly discussed; in particular, in a magnetized plasma the Eddington luminosity for synchrotron interaction can be much lower than the standard value.

  10. Photocopy of longitudinal, cross sections and roof plan of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of longitudinal, cross sections and roof plan of the C.B. & Q. R.R. roundhouse and locomotive shops. June 1980. - Chicago, Burlington & Quincy Railroad, Roundhouse & Shops, Broadway & Spring Streets, Aurora, Kane County, IL

  11. Cross Sections for K-Shell Ionization by Electron Impact

    NASA Astrophysics Data System (ADS)

    Santos, J. P.; Parente, F.; Kim, Yong-Ki

    2001-05-01

    The formula for the total ionization cross section by electron impact based on the Binary-Encounter-Bethe (BEB) model, which has been very successful in reproducing electron-impact total ionization cross sections for atoms(Y.-K. Kim and M.E. Rudd, Phys. Rev A 50), 3954 (1994), was extended to provides reliable inner-shell ionization cross sections from the threshold to relativistic incident electron energies with simple input data for the target inner shell: the binding energy, the orbital kinetic energy and the electron occupation number(Y.-K. Kim, J. P. Santos, and F. Parente, Phys. Rev. A, 62), 052710 (2000). A comparison between the nonrelativistic BEB and the relativistic BEB (RBEB) K-shell ionization cross sections by electron impact for the carbon, argon, nickel, niobium, and silver atoms and the available experimental and theoretical data will be presented at the conference.

  12. 4. DETAIL VIEW OF CROSS SECTION OF STRUCTURE, SHOWING EXTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL VIEW OF CROSS SECTION OF STRUCTURE, SHOWING EXTERIOR FACINGS LINED WITH RUBBLE BACKING AND EARTH INFILL, LOOKING EAST - Rock Wall, North side of Battle Creek Canyon, Shingletown, Shasta County, CA

  13. Modeling ionization cross sections: Two decades of dreams come true

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Ki

    1996-03-01

    Modeling of differential and total ionization cross sections by electron impact is reviewed. A new theoretical model that does not depend on any empirical or arbitrary parameters is described. The prototype of this new model was proposed by Rudd and was originally based on the binary-encounter theory. The model has been improved by replacing a part of the binary-encounter theory with the dipole contribution as prescribed by the Bethe theory. The current model, henceforth referred to as the binary-encounter-dipole (BED) model, reproduces known singly differential and total ionization cross sections for small atoms and molecules accurately. The possibility of extending the BED theory to doubly differential cross sections as well as to proton-impact ionization cross sections is discussed.

  14. 15. Power plant elevations and cross sections, sheet 64 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Power plant elevations and cross sections, sheet 64 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  15. Theoretical Studies on Photoionization Cross Sections of Solid Gold

    NASA Astrophysics Data System (ADS)

    Ma, Xiao-Guang; Sun, Wei-Guo; Cheng, Yan-Song

    2005-01-01

    Accurate expression for photoabsorption (photoionization) cross sections of high density system proposed recently is used to study the photoionization of solid gold. The results show that the present theoretical photoionization cross sections have good agreement both in structure and in magnitude with the experimental results of gold crystal. The studies also indicate that both the real part ε' and the imaginary part ε'' of the complex dielectric constant ε, and the dielectric influence function of a nonideal system have rich structures in low energy side with a range about 50 eV, and suggest that the influence of particle interactions of surrounding particles with the photoionized particle on the photoionization cross sections can be easily investigated using the dielectric influence function. The electron overlap effects are suggested to be implemented in the future studies to improve the accuracy of theoretical photoionization cross sections of a solid system.

  16. Electron-Impact Total Ionization Cross Sections of Hydrocarbon Ions

    PubMed Central

    Irikura, Karl K.; Kim, Yong-Ki; Ali, M. A.

    2002-01-01

    The Binary-Encounter-Bethe (BEB) model for electron-impact total ionization cross sections has been applied to CH2+, CH3+, CH4+, C2H2+, C2H4+, C2H6+ and H3O+. The cross sections for the hydrocarbon ions are needed for modeling cool plasmas in fusion devices. No experimental data are available for direct comparison. Molecular constants to generate total ionization cross sections at arbitrary incident electron energies using the BEB formula are presented. A recent experimental result on the ionization of H3O+ is found to be almost 1/20 of the present theory at the cross section peak. PMID:27446718

  17. 28. CROSS SECTION OF A RECTANGULAR COKE OVEN SHOWING THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. CROSS SECTION OF A RECTANGULAR COKE OVEN SHOWING THE INTERNAL STRUCTURE OF THE OVEN. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  18. 12. CLOSEUP VIEW OF CROSS SECTION OF SPILLWAY FIFTY FEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. CLOSE-UP VIEW OF CROSS SECTION OF SPILLWAY FIFTY FEET FROM LAKESHORE, SHOWING REMAINS OF SPILLWAY TIMBERS, LOOKING WEST - Three Bears Lake & Dams, North of Marias Pass, East Glacier Park, Glacier County, MT

  19. Differential cross sections of positron–hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Rong-Mei, Yu; Chun-Ying, Pu; Xiao-Yu, Huang; Fu-Rong, Yin; Xu-Yan, Liu; Li-Guang, Jiao; Ya-Jun, Zhou

    2016-07-01

    We make a detailed study on the angular differential cross sections of positron–hydrogen collisions by using the momentum-space coupled-channels optical (CCO) method for incident energies below the H ionization threshold. The target continuum and the positronium (Ps) formation channels are included in the coupled-channels calculations via a complex equivalent-local optical potential. The critical points, which show minima in the differential cross sections, as a function of the scattering angle and the incident energy are investigated. The resonances in the angular differential cross sections are reported for the first time in this energy range. The effects of the target continuum and the Ps formation channels on the different cross sections are discussed. Project supported by the Nanyang Normal University Science Foundation of China (Grant No. ZX2013017) and the National Natural Science Foundation of China (Grant Nos. 11174066, 61306007, and U1304114).

  20. Photocopy of "sheet 6 of 8" showing cross section of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of "sheet 6 of 8" showing cross section of house, front elevation, fire finder stand, hip roof cap, and shiplap roof sheathing. - Badger Mountain Lookout, .125 mile northwest of Badger Mountain summit, East Wenatchee, Douglas County, WA

  1. Excited state cross sections for Er-doped glasses

    NASA Astrophysics Data System (ADS)

    Zemon, Stanley A.; Lambert, Gary M.; Miniscalco, William J.; Davies, Richard W.; Hall, Bruce T.; Folweiler, Robert C.; Wei, Ta-Sheng; Andrews, Leonard J.; Singh, Mahendra P.

    1991-01-01

    Excited-state-absorption (ESA) cross sections were determined for the region between 760 and 900 nm for Er-doped fluorophosphate phosphate and silicate glasses. Measurements were performed on multimode fibers pumping at 647 nm with powers 1 . 5 Wto invert the population into the saturation regime. Over much of the 800-nm band ground-state-absorption (GSA) cross sections are equal to or greater than ESA cross sections. For comparison ESA was also measured for singlemode Al/P-doped silica fiber. The cross sections were incorporated into an amplifier model and the phosphate and fluorophosphate glasses were found to provide higher gain than silica for pumping in the 800-nm band. Photoexcited fluorozirconates were found to have substantial populations in the first four excited states and ESA transitions originating from these states are identified.

  2. Thermal neutron capture cross sections of tellurium isotopes

    SciTech Connect

    Tomandl, I.; Honzatko, J.; von Egidy, T.; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-03-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given.

  3. Modelling of reaction cross sections and prompt neutron emission

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.; Tudora, A.; Oberstedt, S.

    2010-10-01

    Accurate nuclear data concerning reaction cross sections and the emission of prompt fission neutrons (i.e. multiplicity and spectra) as well as other fission fragment data are of great importance for reactor physics design, especially for the new Generation IV nuclear energy systems. During the past years for several actinides (238U(n, f) and 237Np(n, f)) both the reaction cross sections and prompt neutron multiplicities and spectra have been calculated within the frame of the EFNUDAT project.

  4. Top Quark Pair Production Cross Section at the Tevatron

    SciTech Connect

    Peters, Reinhild Yvonne

    2015-09-25

    The top quark, discovered in 1995 by the CDF and D0 collaborations at the Tevatron proton antiproton collider at Fermilab, has undergone intense studies in the last 20 years. Currently, CDF and D0 converge on their measurements of top-antitop quark production cross sections using the full Tevatron data sample. In these proceedings, the latest results on inclusive and differential measurements of top-antitop quark production cross sections at the Tevatron are reported.

  5. Absorption cross sections of the ClO dimer

    NASA Technical Reports Server (NTRS)

    Huder, K. J.; DeMore, W. B.

    1995-01-01

    The absorption cross sections of the ClO dimer, ClOOCl, are important to the photochemistry of ozone depletion in the Antarctic. In this work, new measurements were made of the dimer cross sections at 195 K. the results yield somewhat lower values in the long wavelength region, compared to those currently recommended in the NASA data evaluation (JPL 94-26). The corresponding solar photodissociation rates in the Antarctic are reduced by about 40%.

  6. Profile variation impact on FIB cross-section metrology

    NASA Astrophysics Data System (ADS)

    Cordes, Aaron; Bunday, Benjamin; Nadeau, Jim

    2012-03-01

    The focused ion beam (FIB) milling tool is an important component of reference metrology and process characterization, both as a supporting instrument for bulk sample preparation before forwarding to the transmission electron microscope (TEM) and other instruments and as an in situ measurement instrument using angled scanning electron microscopy. As features grow denser, deeper and more demanding, full-profile reference metrology is needed, and this methodology will only grow in importance. Thus, the ability to extract accurate dimensional and profile information out of the crosssectional faces produced by FIB milling is critical. For features that demonstrate perfect symmetry in the plane of the cross section, analyzing images and extracting metrology data are straightforward. However, for industrial materials, symmetry is not a safe assumption: as features shrink, the line edge and sidewall roughness increases as a percentage of the overall feature dimension. Furthermore, with the introduction of more complex architectures such as 3D memory and FinFETs, the areas of greatest interest, such as the intersections of wrap-around gates, cannot be assumed to be symmetrical in any given plane if cut placement is not precisely controlled. Therefore it is important to establish the exact location and repeatability of the cross-section plane, both in terms of coordinate placement and effective angle of the milled surface. To this end, we prepared designed-in line edge roughness samples in the Albany Nanotech facility using SEMATECH's AMAG6 metrology reticle. The samples were thoroughly characterized before being milled by a non-destructive, sidewall-scanning atomic force microscope (AFM). These samples are then milled and measured under varying process and setup parameters using a single-beam FIB with angled SEM. We established methodologies that allow precise alignment of the cut planes of slice-and-view FIB milling to 3D-AFM scan lines to compare repeated sections

  7. Proton Radiography: Cross Section Measurements and Detector Development

    SciTech Connect

    Michael J. Longo; H. R. Gustafson: Durga Rajaram; Turgun Nigmanov

    2010-04-16

    Proton radiography has become an important tool for predicting the performance of stockpiled nuclear weapons. Current proton radiography experiments at LANSCE are confined to relatively small targets on the order of centimeters in size because of the low beam energy. LANL scientists have made radiographs with 12 and 24 GeV protons produced by the accelerator at Brookhaven National Laboratory. These energies are in the range required for hydrotest radiography. The design of a facility for hydrotest radiography requires knowledge of the cross sections for producing high-energy particles in the forward direction, which are incorporated into the Monte Carlo simulation used in designing the beam and detectors. There are few existing measurements of neutron production cross sections for proton-nuclei interactions in the 50 GeV range, and almost no data exist for forward neutron production, especially for heavy target nuclei. Thus the data from the MIPP EMCAL and HCAL, for which our group was responsible, are critical to proton radiography. Since neutrons and photons cannot be focused by magnets, they cause a background “fog” on the images. This problem can be minimized by careful design of the focusing system and detectors. The purpose of our research was to measure forward production of neutrons produced by high-energy proton beams striking a variety of targets. The forward-going particles carry most of the energy from a high-energy proton interaction, so these are the most important to proton radiography. This work was carried out in conjunction with the Fermilab E-907 (MIPP) collaboration. Our group was responsible for designing and building the E907 forward neutron and photon calorimeters. With the support of our Stewardship Science Academic Alliances grants, we were able to design, build, and commission the calorimeters on budget and ahead of schedule. The MIPP experiment accumulated a large amount of data in the first run that ended in early 2006. Our group has

  8. Registration of 2D to 3D joint images using phase-based mutual information

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Abugharbieh, Rafeef; Pickering, Mark; Scarvell, Jennie; Smith, Paul

    2007-03-01

    Registration of two dimensional to three dimensional orthopaedic medical image data has important applications particularly in the area of image guided surgery and sports medicine. Fluoroscopy to computer tomography (CT) registration is an important case, wherein digitally reconstructed radiographs derived from the CT data are registered to the fluoroscopy data. Traditional registration metrics such as intensity-based mutual information (MI) typically work well but often suffer from gross misregistration errors when the image to be registered contains a partial view of the anatomy visible in the target image. Phase-based MI provides a robust alternative similarity measure which, in addition to possessing the general robustness and noise immunity that MI provides, also employs local phase information in the registration process which makes it less susceptible to the aforementioned errors. In this paper, we propose using the complex wavelet transform for computing image phase information and incorporating that into a phase-based MI measure for image registration. Tests on a CT volume and 6 fluoroscopy images of the knee are presented. The femur and the tibia in the CT volume were individually registered to the fluoroscopy images using intensity-based MI, gradient-based MI and phase-based MI. Errors in the coordinates of fiducials present in the bone structures were used to assess the accuracy of the different registration schemes. Quantitative results demonstrate that the performance of intensity-based MI was the worst. Gradient-based MI performed slightly better, while phase-based MI results were the best consistently producing the lowest errors.

  9. Influence of knee alignment on quadriceps cross-sectional area.

    PubMed

    Sogabe, Akitoshi; Mukai, Naoki; Miyakawa, Shunpei; Mesaki, Noboru; Maeda, Kazuaki; Yamamoto, Tadashi; Gallagher, Philip M; Schrager, Matt; Fry, Andrew C

    2009-10-16

    Previous studies of methods for stimulating the individual muscles composing the quadriceps femoris have not considered the structural features of a subject's knee joint. In this study, we compared the ratios of the individual muscles composing the quadriceps between subjects with different knee alignments using magnetic resonance (MR) imaging. A total of 18 healthy males were examined: 6 normal knees (age, 23.0+/-0.6 yr; femorotibial angle (FTA), 176.8+/-0.4 degrees), 6 genu varum (age, 21.8+/-2.9 yr; FTA, 181.7+/-2.6 degrees) and 6 genu valgum (age, 21.0+/-1.6 yr; FTA, 172.3+/-1.5 degrees). The cross-sectional areas (CSAs) of quadriceps muscles were obtained by MR imaging of the entire left thigh. The CSAs of the vastus lateralis (VL), rectus femoris (RF), vastus medialis (VM) and vastus intermedius (VI) muscles were obtained by MR imaging of the entire left thigh in a supine position. The VM/VL ratio was also obtained by dividing the CSA of the VM by that of the VL and compared among the three groups of subjects with different knee alignments. The genu varum group showed a significantly higher %CSA of VM in the CSA of the quadriceps (VM/Quad) (49.0+/-2.6%) than values for the other two groups. The genu valgum group showed significantly higher values of RF/Quad (15.2+/-2.1%) and VL/Quad (40.6+/-4.0%) than the other groups. The VM/VL ratio was significantly higher in the genu varum than in values for the other two groups. This difference in CSA, in respect to knee alignment, may be considered when devising muscle training programs. PMID:19698946

  10. Updated ozone absorption cross section will reduce air quality compliance

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Evans, M. J.; Lewis, A. C.

    2015-12-01

    Photometric ozone measurements rely upon an accurate value of the ozone absorption cross section at 253.65 nm. This has recently been re-evaluated by Viallon et al. (2015) as 1.8 % smaller than the accepted value (Hearn, 1961) used for the preceding 50 years. Thus, ozone measurements that applied the older cross section systematically underestimate the amount of ozone in air. We correct the reported historical surface data from North America and Europe and find that this modest change in cross section has a significant impact on the number of locations that are out of compliance with air quality regulations if the air quality standards remain the same. We find 18, 23, and 20 % increases in the number of sites that are out of compliance with current US, Canadian, and European ozone air quality health standards for the year 2012. Should the new cross-section value be applied, it would impact attainment of air quality standards and compliance with relevant clean air acts, unless the air quality target values themselves were also changed proportionately. We draw attention to how a small change in gas metrology has a global impact on attainment and compliance with legal air quality standards. We suggest that further laboratory work to evaluate the new cross section is needed and suggest three possible technical and policy responses should the new cross section be adopted.

  11. Updated ozone absorption cross section will reduce air quality compliance

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Evans, M. J.; Lewis, A. C.

    2015-07-01

    Photometric ozone measurements rely upon an accurate value of the ozone absorption cross section at 253.65 nm. This has recently been reevaluated by Viallon et al. (2015) as 1.8 % smaller than the accepted value (Hearn, 1961) used for the preceding fifty years. Thus, ozone measurements that applied the older cross section systematically underestimate the amount of ozone in air. We correct the reported historical surface data from North America and Europe and find that this modest change in cross section has a significant impact on the number of locations that are out of compliance with air quality regulations if the air quality standards remain the same. We find 18, 23, and 20 % increases in the number of sites that are out of compliance with current US, Canadian, and European ozone air quality health standards for the year 2012. Should the new cross section value be applied, it would impact attainment of air quality standards and compliance with relevant clean air acts, unless the air quality target values themselves were also changed proportionately. We draw attention to how a small change in gas metrology has a global impact on attainment and compliance with legal air quality standards. We suggest that further laboratory work to evaluate the new cross section is needed and suggest three possible technical and policy responses should the new cross section be adopted.

  12. Krypton charge exchange cross sections for Hall effect thruster models

    SciTech Connect

    Hause, Michael L.; Prince, Benjamin D.; Bemish, Raymond J.

    2013-04-28

    Following discharge from a Hall effect thruster, charge exchange occurs between ions and un-ionized propellant atoms. The low-energy cations produced can disturb operation of onboard instrumentation or the thruster itself. Charge-exchange cross sections for both singly and doubly charged propellant atoms are required to model these interactions. While xenon is the most common propellant currently used in Hall effect thrusters, other propellants are being considered, in particular, krypton. We present here guided-ion beam measurements and comparisons to semiclassical calculations for Kr{sup +} + Kr and Kr{sup 2+} + Kr cross sections. The measurements of symmetric Kr{sup +} + Kr charge exchange are in good agreement with both the calculations including spin-orbit effects and previous measurements. For the symmetric Kr{sup 2+} + Kr reaction, we present cross section measurements for center-of-mass energies between 1 eV and 300 eV, which spans energies not previously examined experimentally. These cross section measurements compare well with a simple one-electron transfer model. Finally, cross sections for the asymmetric Kr{sup 2+} + Kr {yields} Kr{sup +} + Kr{sup +} reaction show an onset near 12 eV, reaching cross sections near constant value of 1.6 A{sup 2} with an exception near 70-80 eV.

  13. Topological Optimization of Beam Cross Section by Employing Extrusion Constraint

    NASA Astrophysics Data System (ADS)

    Zuberi, Rehan H.; Zhengxing, Zuo; Kai, Long

    2010-05-01

    Optimal cross-section design of beams plays a characteristic role which signifies the rigidity of the member in bending, shear and torsion load conditions. Practically modern overhead crane girders, railway bridge girders or rail tracks etc. require constant cross-section along the axial direction. Conventional topological optimization modeling procedures in such cases prove inadequate for the reason that these procedures generate non-uniform topologies along the axis of the bending member. To examine optimal topology of those structural bending members which commonly possess constant cross-section along the axis the topology optimization with extrusion constraint is more appropriate. The extrusion constraint method suggests a fresh approach to investigate optimal topologies of beam cross-section under the influence of realistic loading condition across the section at the beginning of design cycle. Presented study is focused upon the influence of various configuration and location of the load and boundary conditions on the topology of the of the beam cross-section which was not possible prior to the materialization of the extrusion or stamping constraint method. Several realistic loads and boundary conditions have been applied on the 3D beam model and optimal cross-section topologies obtained have uniform compliance history and convergent solutions. The lowest compliance criteria have been suggested to choose topologies as furthers shape and size optimization candidates during beam design process.

  14. General Constraints on Cross Sections Deduced from Surrogate Reactions

    SciTech Connect

    Younes, W

    2003-08-14

    Cross sections that cannot be measured in the laboratory, e.g. because the target lifetime is too short, can be inferred indirectly from a different reaction forming the same compound system, but with a more accessible beam/target combination (the ''surrogate-reaction'' technique). The reactions share the same compound system and a common decay mechanism, but they involve different formation processes. Therefore, an implicit constraint is imposed on the inferred cross section deduced from the measured surrogate-reaction data, through the common decay mechanism. In this paper, the mathematical consequences of this implicit constraint are investigated. General formulas are derived from upper and lower bounds on the inferred cross section, estimated from surrogate data in a procedure which does not require any modeling of the common decay process. As an example, the formulas developed here are applied to the case of the {sup 235}U(n,f) cross section, deduced from {sup 234}U(t,pf) surrogate data. The calculated bounds are not very tight in this particular case. However, by introducing a few qualitative assumptions about the physics of the fission process, meaningful bounds on the deduced cross section are obtained. Upper and lower limits for the cross-section ratio of the (n,f) reaction on the {sup 235}U isomer at E{sub x} = 77 eV relative to the (n,f) reaction on the ground state are also calculated. The generalization of this technique to other surrogate reactions is discussed.

  15. A genetic algorithm to reduce stream channel cross section data

    USGS Publications Warehouse

    Berenbrock, C.

    2006-01-01

    A genetic algorithm (GA) was used to reduce cross section data for a hypothetical example consisting of 41 data points and for 10 cross sections on the Kootenai River. The number of data points for the Kootenai River cross sections ranged from about 500 to more than 2,500. The GA was applied to reduce the number of data points to a manageable dataset because most models and other software require fewer than 100 data points for management, manipulation, and analysis. Results indicated that the program successfully reduced the data. Fitness values from the genetic algorithm were lower (better) than those in a previous study that used standard procedures of reducing the cross section data. On average, fitnesses were 29 percent lower, and several were about 50 percent lower. Results also showed that cross sections produced by the genetic algorithm were representative of the original section and that near-optimal results could be obtained in a single run, even for large problems. Other data also can be reduced in a method similar to that for cross section data.

  16. Automatic Characterization of the Physiological Condition of the Carotid Artery in 2D Ultrasound Image Sequences Using Spatiotemporal and Spatiospectral 2D Maps

    PubMed Central

    Hamid Muhammed, Hamed; Azar, Jimmy C.

    2014-01-01

    A novel method for characterizing and visualizing the progression of waves along the walls of the carotid artery is presented. The new approach is noninvasive and able to simultaneously capture the spatial and the temporal propagation of wavy patterns along the walls of the carotid artery in a completely automated manner. Spatiotemporal and spatiospectral 2D maps describing these patterns (in both the spatial and the frequency domains, resp.) were generated and analyzed by visual inspection as well as automatic feature extraction and classification. Three categories of cases were considered: pathological elderly, healthy elderly, and healthy young cases. Automatic differentiation, between cases of these three categories, was achieved with a sensitivity of 97.1% and a specificity of 74.5%. Two features were proposed and computed to measure the homogeneity of the spatiospectral 2D map which presents the spectral characteristics of the carotid artery wall's wavy motion pattern which are related to the physical, mechanical (e.g., elasticity), and physiological properties and conditions along the artery. These results are promising and confirm the potential of the proposed method in providing useful information which can help in revealing the physiological condition of the cardiovascular system. PMID:24971088

  17. Unified nonlinear analysis for nonhomogeneous anisotropic beams with closed cross sections

    NASA Technical Reports Server (NTRS)

    Atilgan, Ali R.; Hodges, Dewey H.

    1991-01-01

    A unified methodology for geometrically nonlinear analysis of nonhomogeneous, anisotropic beams is presented. A 2D cross-sectional analysis and a nonlinear 1D global deformation analysis are derived from the common framework of a 3D, geometrically nonlinear theory of elasticity. The only restrictions are that the strain and local rotation are small compared to unity and that warping displacements are small relative to the cross-sectional dimensions. It is concluded that the warping solutions can be affected by large deformation and that this could alter the incremental stiffnes of the section. It is shown that sectional constants derived from the published, linear analysis can be used in the present nonlinear, 1D analysis governing the global deformation of the beam, which is based on intrinsic equations for nonlinear beam behavior. Excellent correlation is obtained with published experimental results for both isotropic and anisotropic beams undergoing large deflections.

  18. 2D and 3D Refraction Based X-ray Imaging Suitable for Clinical and Pathological Diagnosis

    SciTech Connect

    Ando, Masami; Bando, Hiroko; Ueno, Ei

    2007-01-19

    The first observation of micro papillary (MP) breast cancer by x-ray dark-field imaging (XDFI) and the first observation of the 3D x-ray internal structure of another breast cancer, ductal carcinoma in-situ (DCIS), are reported. The specimen size for the sheet-shaped MP was 26 mm x 22 mm x 2.8 mm, and that for the rod-shaped DCIS was 3.6 mm in diameter and 4.7 mm in height. The experiment was performed at the Photon Factory, KEK: High Energy Accelerator Research Organization. We achieved a high-contrast x-ray image by adopting a thickness-controlled transmission-type angular analyzer that allows only refraction components from the object for 2D imaging. This provides a high-contrast image of cancer-cell nests, cancer cells and stroma. For x-ray 3D imaging, a new algorithm due to the refraction for x-ray CT was created. The angular information was acquired by x-ray optics diffraction-enhanced imaging (DEI). The number of data was 900 for each reconstruction. A reconstructed CT image may include ductus lactiferi, micro calcification and the breast gland. This modality has the possibility to open up a new clinical and pathological diagnosis using x-ray, offering more precise inspection and detection of early signs of breast cancer.

  19. Imaging geological contact utilizing 2D resistivity method for light rail transit (LRT) track alignment

    NASA Astrophysics Data System (ADS)

    Ali, Nisa'; Saad, Rosli; Muztaza, Nordiana M.; Ismail, Noer E. H.

    2013-05-01

    The purpose of this study was to locate the geological contact using 2D resistivity method for Light Rail Transit (LRT) track alignment. The resistivity method was conducted on eight survey lines with the length of line 1 was 600m. The length of line 2, 3, 4, 5, 6, and 7 were 200m each while line 8 is 115m. All the survey used minimum electrode spacing of 5m and using Pole-dipole array with minimum current is 2mA and maximum was 20mA. The result obtained from the pseudosection showed that the area generally divided into three main zones, fill materials/residual soil with a resistivity value of <500 Ωm, saturated zone with a resistivity value of 30-100 Ωm and bedrock with a resistivity value of >2000 Ωm. Three fractured zones were detected along line L1 and a lot of boulders were detected at L1, L3, L4, L5 and L6. The geological contact was between the residual soil and granite bedrock.

  20. One decade of imaging precipitation measurement by 2D-video-distrometer

    NASA Astrophysics Data System (ADS)

    Schönhuber, M.; Lammer, G.; Randeu, W. L.

    2007-04-01

    The 2D-Video-Distrometer (2DVD) is a ground-based point-monitoring precipitation gauge. From each particle reaching the measuring area front and side contours as well as fall velocity and precise time stamp are recorded. In 1991 the 2DVD development has been started to clarify discrepancies found when comparing weather radar data analyses with literature models. Then being manufactured in a small scale series the first 2DVD delivery took place in 1996, 10 years back from now. An overview on present 2DVD features is given, and it is presented how the instrument was continuously improved in the past ten years. Scientific merits of 2DVD measurements are explained, including drop size readings without upper limit, drop shape and orientation angle information, contours of solid and melting particles, and an independent measurement of particles' fall velocity also in mixed phase events. Plans for a next generation instrument are described, by enhanced user-friendliness the unique data type shall be opened to a wider user community.

  1. Uncertainty in 2D hydrodynamic models from errors in roughness parameterization based on aerial images

    NASA Astrophysics Data System (ADS)

    Straatsma, Menno; Huthoff, Fredrik

    2011-01-01

    In The Netherlands, 2D-hydrodynamic simulations are used to evaluate the effect of potential safety measures against river floods. In the investigated scenarios, the floodplains are completely inundated, thus requiring realistic representations of hydraulic roughness of floodplain vegetation. The current study aims at providing better insight into the uncertainty of flood water levels due to uncertain floodplain roughness parameterization. The study focuses on three key elements in the uncertainty of floodplain roughness: (1) classification error of the landcover map, (2), within class variation of vegetation structural characteristics, and (3) mapping scale. To assess the effect of the first error source, new realizations of ecotope maps were made based on the current floodplain ecotope map and an error matrix of the classification. For the second error source, field measurements of vegetation structure were used to obtain uncertainty ranges for each vegetation structural type. The scale error was investigated by reassigning roughness codes on a smaller spatial scale. It is shown that classification accuracy of 69% leads to an uncertainty range of predicted water levels in the order of decimeters. The other error sources are less relevant. The quantification of the uncertainty in water levels can help to make better decisions on suitable flood protection measures. Moreover, the relation between uncertain floodplain roughness and the error bands in water levels may serve as a guideline for the desired accuracy of floodplain characteristics in hydrodynamic models.

  2. Machine Learning of Hierarchical Clustering to Segment 2D and 3D Images

    PubMed Central

    Nunez-Iglesias, Juan; Kennedy, Ryan; Parag, Toufiq; Shi, Jianbo; Chklovskii, Dmitri B.

    2013-01-01

    We aim to improve segmentation through the use of machine learning tools during region agglomeration. We propose an active learning approach for performing hierarchical agglomerative segmentation from superpixels. Our method combines multiple features at all scales of the agglomerative process, works for data with an arbitrary number of dimensions, and scales to very large datasets. We advocate the use of variation of information to measure segmentation accuracy, particularly in 3D electron microscopy (EM) images of neural tissue, and using this metric demonstrate an improvement over competing algorithms in EM and natural images. PMID:23977123

  3. Estimating elastic properties of tissues from standard 2D ultrasound images

    NASA Astrophysics Data System (ADS)

    Kybic, Jan; Smutek, Daniel

    2005-04-01

    We propose a way of measuring elastic properties of tissues in-vivo, using standard medical image ultrasound machine without any special hardware. Images are acquired while the tissue is being deformed by a varying pressure applied by the operator on the hand-held ultrasound probe. The local elastic shear modulus is either estimated from a local displacement field reconstructed by an elastic registration algorithm, or both the modulus and the displacement are estimated simultaneously. The relation between modulus and displacement is calculated using a finite element method (FEM). The estimation algorithms were tested on both synthetic, phantom and real subject data.

  4. 3D/2D model-to-image registration applied to TIPS surgery.

    PubMed

    Jomier, Julien; Bullitt, Elizabeth; Van Horn, Mark; Pathak, Chetna; Aylward, Stephen R

    2006-01-01

    We have developed a novel model-to-image registration technique which aligns a 3-dimensional model of vasculature with two semiorthogonal fluoroscopic projections. Our vascular registration method is used to intra-operatively initialize the alignment of a catheter and a preoperative vascular model in the context of image-guided TIPS (Transjugular, Intrahepatic, Portosystemic Shunt formation) surgery. Registration optimization is driven by the intensity information from the projection pairs at sample points along the centerlines of the model. Our algorithm shows speed, accuracy and consistency given clinical data.

  5. Fast Ion Induced Shearing of 2D Alfven Eigenmodes Measured by Electron Cyclotron Emission Imaging

    SciTech Connect

    Tobias, Ben; Classen, I.G.J.; Domier, C. W.; Heidbrink, W.; Luhmann, N.C.; Nazikian, Raffi; Park, H.K.; Spong, Donald A; Van Zeeland, Michael

    2011-01-01

    Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfven eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.

  6. Learning-based roof style classification in 2D satellite images

    NASA Astrophysics Data System (ADS)

    Zang, Andi; Zhang, Xi; Chen, Xin; Agam, Gady

    2015-05-01

    Accurately recognizing building roof style leads to a much more realistic 3D building modeling and rendering. In this paper, we propose a novel system for image based roof style classification using machine learning technique. Our system is capable of accurately recognizing four individual roof styles and a complex roof which is composed of multiple parts. We make several novel contributions in this paper. First, we propose an algorithm that segments a complex roof to parts which enable our system to recognize the entire roof based on recognition of each part. Second, to better characterize a roof image, we design a new feature extracted from a roof edge image. We demonstrate that this feature has much better performance compared to recognition results generated by Histogram of Oriented Gradient (HOG), Scale-invariant Feature Transform (SIFT) and Local Binary Patterns (LBP). Finally, to generate a classifier, we propose a learning scheme that trains the classifier using both synthetic and real roof images. Experiment results show that our classifier performs well on several test collections.

  7. A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging

    PubMed Central

    Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto

    2015-01-01

    Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies. PMID:26545097

  8. Application and further development of diffusion based 2D chemical imaging techniques in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Hoefer, Christoph; Santner, Jakob; Borisov, Sergey; Kreuzeder, Andreas; Wenzel, Walter; Puschenreiter, Markus

    2015-04-01

    Two dimensional chemical imaging of root processes refers to novel in situ methods to investigate and map solutes at a high spatial resolution (sub-mm). The visualization of these solutes reveals new insights in soil biogeochemistry and root processes. We derive chemical images by using data from DGT-LA-ICP-MS (Diffusive Gradients in Thin Films and Laser Ablation Inductively Coupled Plasma Mass Spectrometry) and POS (Planar Optode Sensors). Both technologies have shown promising results when applied in aqueous environment but need to be refined and improved for imaging at the soil-plant interface. Co-localized mapping using combined DGT and POS technologies and the development of new gel combinations are in our focus. DGTs are smart and thin (<0.4 mm) hydrogels; containing a binding resin for the targeted analytes (e.g. trace metals, phosphate, sulphide or radionuclides). The measurement principle is passive and diffusion based. The present analytes are diffusing into the gel and are bound by the resin. Thereby, the resin acts as zero sink. After application, DGTs are retrieved, dried, and analysed using LA-ICP-MS. The data is then normalized by an internal standard (e.g. 13C), calibrated using in-house standards and chemical images of the target area are plotted using imaging software. POS are, similar to DGT, thin sensor foils containing a fluorophore coating depending on the target analyte. The measurement principle is based on excitation of the flourophore by a specific wavelength and emission of the fluorophore depending on the presence of the analyte. The emitted signal is captured using optical filters and a DSLR camera. While DGT analysis is destructive, POS measurements can be performed continuously during the application. Both semi-quantitative techniques allow an in situ application to visualize chemical processes directly at the soil-plant interface. Here, we present a summary of results from rhizotron experiments with different plants in metal

  9. A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging.

    PubMed

    Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto

    2015-01-01

    Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies. PMID:26545097

  10. A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging.

    PubMed

    Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto

    2015-01-01

    Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies.

  11. A Multigroup Reaction Cross-Section Collapsing Code and Library of 154-Group Fission-Product Cross Sections.

    1983-03-23

    Version 01/02 The code reads multigroup cross sections from a compatible data file and collapses user-selected reaction cross sections to any few-group structure using one of a variety of user neutron flux spectrum options given below: Option Flux description 1 Built-in function including Maxwellian, fission, fusion and slowing-down regions and requiring user-specified parameters and energy-region boundaries. 2 Set of log-log flux-energy interpolation points read from input cross-section data file. 3 Set of log-log flux-energy interpolationmore » points read from user-supplied card input. 4 - 6 Histogram flux values read from user-supplied card input in arbitrary group structure in units of flux-per unit-energy, flux-per-unit lethargy, or integral group flux. LAFPX-E may be used to collapse any set of multigroup reaction cross sections furnished in the required format. However, the code was developed for, and is furnished with, a library of 154-group fission-product cross sections processed from ENDF/B-IV with a typical light water reactor (LWR) flux spectrum and temperature. Four-group radiative capture cross sections produced for LWR calculations are tabulated in the code documentation and are incorporated in the EPRI-CINDER data library, RSIC Code Package CCC-309.« less

  12. The chaotic saddle of a three degrees of freedom scattering system reconstructed from cross-section data

    NASA Astrophysics Data System (ADS)

    Drótos, G.; Jung, C.

    2016-06-01

    The topic of this paper is hyperbolic chaotic scattering in a three degrees of freedom system. We generalize how shadows in the domain of the doubly differential cross-section are found: they are traced out by the appropriately filtered unstable manifolds of the periodic trajectories in the chaotic saddle. These shadows are related to the rainbow singularities in the doubly differential cross-section. As a result of this relation, we discover a method of how to recognize in the cross section a smoothly deformed image of the chaotic saddle, allowing the reconstruction of the symbolic dynamics of the chaotic saddle, its topology and its scaling factors.

  13. Pre-stack depth migration for improved imaging under seafloor canyons: 2D case study of Browse Basin, Australia*

    NASA Astrophysics Data System (ADS)

    Debenham, Helen 124Westlake, Shane

    2014-06-01

    In the Browse Basin, as in many areas of the world, complex seafloor topography can cause problems with seismic imaging. This is related to complex ray paths, and sharp lateral changes in velocity. This paper compares ways in which 2D Kirchhoff imaging can be improved below seafloor canyons, using both time and depth domain processing. In the time domain, to improve on standard pre-stack time migration (PSTM) we apply removable seafloor static time shifts in order to reduce the push down effect under seafloor canyons before migration. This allows for better event continuity in the seismic imaging. However this approach does not fully solve the problem, still giving sub-optimal imaging, leaving amplitude shadows and structural distortion. Only depth domain processing with a migration algorithm that honours the paths of the seismic energy as well as a detailed velocity model can provide improved imaging under these seafloor canyons, and give confidence in the structural components of the exploration targets in this area. We therefore performed depth velocity model building followed by pre-stack depth migration (PSDM), the result of which provided a step change improvement in the imaging, and provided new insights into the area.

  14. A general framework for face reconstruction using single still image based on 2D-to-3D transformation kernel.

    PubMed

    Fooprateepsiri, Rerkchai; Kurutach, Werasak

    2014-03-01

    Face authentication is a biometric classification method that verifies the identity of a user based on image of their face. Accuracy of the authentication is reduced when the pose, illumination and expression of the training face images are different than the testing image. The methods in this paper are designed to improve the accuracy of a features-based face recognition system when the pose between the input images and training images are different. First, an efficient 2D-to-3D integrated face reconstruction approach is introduced to reconstruct a personalized 3D face model from a single frontal face image with neutral expression and normal illumination. Second, realistic virtual faces with different poses are synthesized based on the personalized 3D face to characterize the face subspace. Finally, face recognition is conducted based on these representative virtual faces. Compared with other related works, this framework has the following advantages: (1) only one single frontal face is required for face recognition, which avoids the burdensome enrollment work; and (2) the synthesized face samples provide the capability to conduct recognition under difficult conditions like complex pose, illumination and expression. From the experimental results, we conclude that the proposed method improves the accuracy of face recognition by varying the pose, illumination and expression. PMID:24529782

  15. Recent Advances In 2D-Band Structure Imaging By k-PEEM and Prospects For Technological Materials

    NASA Astrophysics Data System (ADS)

    Mathieu, C.; Renault, O.; Rotella, H.; Barrett, N.; Chabli, A.

    2011-11-01

    The imaging of surfaces using the PhotoElectron Emission Microscopy (PEEM) technique has recently received considerable interest, mainly thanks to the use of high brilliance synchrotron radiation which facilitates the study of surface properties and chemical selectivity. By inserting a transfer lens in the optical column of a high transmission and full energy-filtering PEEM, it is possible to image the back focal plane, named k-PEEM imaging mode. Hence, the corresponding image shows the angular distribution of the emitted photoelectrons for a given kinetic energy. By varying the kinetic energy, the complete energy filtering provides full 2D cuts of the band structure in reciprocal space. In this paper, we present the principles and the capabilities of this new imaging mode, and compare it to the standard ARPES technique. Then, we present results obtained on a model sample: Ag(100), and on a technological sample, epitaxial graphene on SiC(0001), highlighting the potential of this new imaging mode for the spatially resolved characterization of the electronic structure of monocrystalline materials in devices.

  16. A general framework for face reconstruction using single still image based on 2D-to-3D transformation kernel.

    PubMed

    Fooprateepsiri, Rerkchai; Kurutach, Werasak

    2014-03-01

    Face authentication is a biometric classification method that verifies the identity of a user based on image of their face. Accuracy of the authentication is reduced when the pose, illumination and expression of the training face images are different than the testing image. The methods in this paper are designed to improve the accuracy of a features-based face recognition system when the pose between the input images and training images are different. First, an efficient 2D-to-3D integrated face reconstruction approach is introduced to reconstruct a personalized 3D face model from a single frontal face image with neutral expression and normal illumination. Second, realistic virtual faces with different poses are synthesized based on the personalized 3D face to characterize the face subspace. Finally, face recognition is conducted based on these representative virtual faces. Compared with other related works, this framework has the following advantages: (1) only one single frontal face is required for face recognition, which avoids the burdensome enrollment work; and (2) the synthesized face samples provide the capability to conduct recognition under difficult conditions like complex pose, illumination and expression. From the experimental results, we conclude that the proposed method improves the accuracy of face recognition by varying the pose, illumination and expression.

  17. ACTIV87: Fast Neutron Activation Cross Section File

    1993-08-01

    4. HISTORICAL BACKGROUND AND INFORMATION ACTIV87 is a compilation of fast neutron induced activation reaction cross-sections. The compilation covers energies from threshold to 20 MeV and is based on evaluated data taken from other evaluated data libraries and individual evaluations. The majority of these evaluations were performed by using available experimental data. The aforementioned available experimental data were used in the selection of needed parameters for theoretical computations and for normalizing the results of suchmore » computations. Theoretical calculations were also used for interpolation and extrapolation of experimental cross-section data. All of the evaluated data curves were compared with experimental data that had been reported over the four year period preceding 1987. Only those cross-sections not in contradiction with experimental data that was current in 1987 were retained in the activation file, ACTIV87. In cases of several conflicting evaluations, that evaluation was chosen which best corresponded to the experimental data. A few evaluated curves were renormalized in accordance with the results of the latest precision measurements. 5. APPLICATION OF THE DATA 6. SOURCE AND SCOPE OF DATA The following libraries and individual files of evaluated neutron cross-section data were used for the selection of the activation cross-sections: the BOSPOR Library, the Activation File of the Evaluated Nuclear Data Library, the Evaluated Neutron Data File (ENDF/B-V) Activation File, the International Reactor Dosimetry File (IRDF-82), and individual evaluations carried out under various IAEA research contracts. The file of selected reactions contains 206 evaluated cross-section curves of the (n,2n), (n,p) and (n,a) reactions which lead to radioactive products and may be used in many practical applications of neutron activation analysis. Some competing activation reactions, usually with low cross-section values, are given for completeness.« less

  18. Measurement of the 242Pu neutron capture cross section

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Chyzh, A.; Dance Collaboration

    2015-10-01

    Precision (n,f) and (n, γ) cross sections are important for the network calculations of the radiochemical diagnostic chain for the U.S. DOE's Stockpile Stewardship Program. 242Pu(n, γ) cross section is relevant to the network calculations of Pu and Am. Additionally, new reactor concepts have catalyzed considerable interest in the measurement of improved cross sections for neutron-induced reactions on key actinides. To date, little or no experimental data has been reported on 242Pu(n, γ) for incident neutron energy below 50 keV. A new measurement of the 242Pu(n, γ) reaction was performed with the DANCE together with an improved PPAC for fission-fragment detection at LANSCE during FY14. The relative scale of the 242Pu(n, γ) cross section spans four orders of magnitude for incident neutron energies from thermal to ~ 30 keV. The absolute scale of the 242Pu(n, γ) cross section is set according to the measured 239Pu(n,f) resonance at 7.8 eV; the target was spiked with 239Pu for this measurement. The absolute 242Pu(n, γ) neutron capture cross section is ~ 30% higher than the cross section reported in ENDF for the 2.7 eV resonance. Latest results to be reported. Funded by U.S. DOE Contract No. DE-AC52-07NA27344 (LLNL) and DE-AC52-06NA25396 (LANL). U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development. Isotopes (ORNL).

  19. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    SciTech Connect

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu; Chen, Hongya; Zhang, Jieqiu; Xu, Zhuo; Zhang, Anxue

    2014-06-02

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  20. Application of image processing technology to 2-D signal processing (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Meckley, John R.

    1991-04-01

    The analytical and processing developments in the field of Image Understanding over the last 15 years have led to the creation of a set of processing tools for the detection, characterization (feature extraction), and classification of 2 dimensional signals. This set of tools is applicable to 2 dimensional signals other than the traditional "image" type signals. In particular, for passive sonar detection processing several 2 dimensional signal transforms are generated from the 1 dimensional sensor time series data. These transforms are selected in order to concentrate signal energy locally within the 2 dimensional transform. A classic example is the Lofargram which is a grequency versus time transform of the time series data. If the acoutic source is emitting tones (for example from machinery) then the Lofargram will contain line like structures.