Science.gov

Sample records for 2d diffraction patterns

  1. Algorithm of Shaping Multiple-beam Braggs Acousto-optic Diffraction Laser Field Into 1D and 2D Patterns

    NASA Astrophysics Data System (ADS)

    Zakharchenko, S.; Baturin, A.

    2015-09-01

    Algorithm of solving a direct problem of acousto-optic interaction between laser emission and acoustic signal consisting of a set of equidistant frequency components is proposed. An infinite system of coupled wave differential equations is reduced to eigenvalue problem. The contribution of the higher rediffraction orders is analyzed separately. Inverse problem of finding an optimal set of equidistant frequency components of a driving acoustic signal to form the objective diffraction pattern is also considered and a few optimization approaches are analyzed. A naïve heuristic method of splitting 2D pattern into subframes, each suitable for simultaneous projection by two acousto-optical deflectors driven by multifrequency composite signal, is developed.

  2. Calculating cellulose diffraction patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although powder diffraction of cellulose is a common experiment, the patterns are not widely understood. The theory is mathematical, there are numerous different crystal forms, and the conventions are not standardized. Experience with IR spectroscopy is not directly transferable. An awful error, tha...

  3. Optical diffraction by ordered 2D arrays of silica microspheres

    NASA Astrophysics Data System (ADS)

    Shcherbakov, A. A.; Shavdina, O.; Tishchenko, A. V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.

    2017-03-01

    The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality.

  4. 2D optical beam splitter using diffractive optical elements (DOE)

    NASA Astrophysics Data System (ADS)

    Wen, Fung J.; Chung, Po S.

    2006-09-01

    A novel approach for optical beam distribution into a 2-dimensional (2-D) packaged fiber arrays using 2-D Dammann gratings is investigated. This paper focuses on the design and fabrication of the diffractive optical element (DOE) and investigates the coupling efficiencies of the beamlets into a packaged V-grooved 2x2 fibre array. We report for the first time experimental results of a 2-D optical signal distribution into a packaged 2x2 fibre array using Dammann grating. This grating may be applicable to the FTTH network as it can support sufficient channels with good output uniformity together with low polarization dependent loss (PDL) and acceptable insertion loss. Using an appropriate optimization algorithm (the steepest descent algorithm in this case), the optimum profile for the gratings can be calculated. The gratings are then fabricated on ITO glass using electron-beam lithography. The overall performance of the design shows an output uniformity of around 0.14 dB and an insertion loss of about 12.63 dB, including the DOE, focusing lens and the packaged fiber array.

  5. SEM signal emulation for 2D patterns

    NASA Astrophysics Data System (ADS)

    Sukhov, Evgenii; Muelders, Thomas; Klostermann, Ulrich; Gao, Weimin; Braylovska, Mariya

    2016-03-01

    The application of accurate and predictive physical resist simulation is seen as one important use model for fast and efficient exploration of new patterning technology options, especially if fully qualified OPC models are not yet available at an early pre-production stage. The methodology of using a top-down CD-SEM metrology to extract the 3D resist profile information, such as the critical dimension (CD) at various resist heights, has to be associated with a series of presumptions which may introduce such small, but systematic CD errors. Ideally, the metrology effects should be carefully minimized during measurement process, or if possible be taken into account through proper metrology modeling. In this paper we discuss the application of a fast SEM signal emulation describing the SEM image formation. The algorithm is applied to simulated resist 3D profiles and produces emulated SEM image results for 1D and 2D patterns. It allows estimating resist simulation quality by comparing CDs which were extracted from the emulated and from the measured SEM images. Moreover, SEM emulation is applied for resist model calibration to capture subtle error signatures through dose and defocus. Finally, it should be noted that our SEM emulation methodology is based on the approximation of physical phenomena which are taking place in real SEM image formation. This approximation allows achieving better speed performance compared to a fully physical model.

  6. Computer Simulation of Diffraction Patterns.

    ERIC Educational Resources Information Center

    Dodd, N. A.

    1983-01-01

    Describes an Apple computer program (listing available from author) which simulates Fraunhofer and Fresnel diffraction using vector addition techniques (vector chaining) and allows user to experiment with different shaped multiple apertures. Graphics output include vector resultants, phase difference, diffraction patterns, and the Cornu spiral…

  7. Enhanced sampling of 2D interference patterns.

    PubMed

    Schwartz, Eyal; Ribak, Erez N

    2017-03-01

    We propose a simple analysis to improve the resolution of interference patterns which consist of straight fringes. As the pattern is rotated with respect to the detector, each row or column in the camera perceives it in a slightly shifted manner. We support this proposed method by analyzing both simulated and experimental interference patterns, and verify it using an interferogram obtained from a spectrally complex light source. The results imply that this technique could be implemented in different aspects of image analysis common in many fields in physics.

  8. Coherent X-ray beam metrology using 2D high-resolution Fresnel-diffraction analysis.

    PubMed

    Ruiz-Lopez, M; Faenov, A; Pikuz, T; Ozaki, N; Mitrofanov, A; Albertazzi, B; Hartley, N; Matsuoka, T; Ochante, Y; Tange, Y; Yabuuchi, T; Habara, T; Tanaka, K A; Inubushi, Y; Yabashi, M; Nishikino, M; Kawachi, T; Pikuz, S; Ishikawa, T; Kodama, R; Bleiner, D

    2017-01-01

    Direct metrology of coherent short-wavelength beamlines is important for obtaining operational beam characteristics at the experimental site. However, since beam-time limitation imposes fast metrology procedures, a multi-parametric metrology from as low as a single shot is desirable. Here a two-dimensional (2D) procedure based on high-resolution Fresnel diffraction analysis is discussed and applied, which allowed an efficient and detailed beamline characterization at the SACLA XFEL. So far, the potential of Fresnel diffraction for beamline metrology has not been fully exploited because its high-frequency fringes could be only partly resolved with ordinary pixel-limited detectors. Using the high-spatial-frequency imaging capability of an irradiated LiF crystal, 2D information of the coherence degree, beam divergence and beam quality factor M(2) were retrieved from simple diffraction patterns. The developed beam metrology was validated with a laboratory reference laser, and then successfully applied at a beamline facility, in agreement with the source specifications.

  9. Reflection high-energy electron diffraction measurements of reciprocal space structure of 2D materials.

    PubMed

    Xiang, Y; Guo, F-W; Lu, T-M; Wang, G-C

    2016-12-02

    Knowledge on the symmetry and perfection of a 2D material deposited or transferred to a surface is very important and valuable. We demonstrate a method to map the reciprocal space structure of 2D materials using reflection high energy diffraction (RHEED). RHEED from a 2D material gives rise to 'streaks' patterns. It is shown that from these streaks patterns at different azimuthal rotation angles that the reciprocal space intensity distribution can be constructed as a function of momentum transfer parallel to the surface. To illustrate the principle, we experimentally constructed the reciprocal space structure of a commercial graphene/SiO2/Si sample in which the graphene layer was transferred to the SiO2/Si substrate after it was deposited on a Cu foil by chemical vapor deposition. The result reveals a 12-fold symmetry of the graphene layer which is a result of two dominant orientation domains with 30° rotation relative to each other. We show that the graphene can serve as a template to grow other materials such as a SnS film that follows the symmetry of graphene.

  10. Periodically distributed objects with quasicrystalline diffraction pattern

    SciTech Connect

    Wolny, Janusz Strzalka, Radoslaw; Kuczera, Pawel

    2015-03-30

    It is possible to construct fully periodically distributed objects with a diffraction pattern identical to the one obtained for quasicrystals. These objects are probability distributions of distances obtained in the statistical approach to aperiodic structures distributed periodically. The diffraction patterns have been derived by using a two-mode Fourier transform—a very powerful method not used in classical crystallography. It is shown that if scaling is present in the structure, this two-mode Fourier transform can be reduced to a regular Fourier transform with appropriately rescaled scattering vectors and added phases. Detailed case studies for model sets 1D Fibonacci chain and 2D Penrose tiling are discussed. Finally, it is shown that crystalline, quasicrystalline, and approximant structures can be treated in the same way.

  11. New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Song, Kaijun; Fan, Yong

    2017-02-01

    A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model.

  12. New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters

    PubMed Central

    Zhang, Fan; Song, Kaijun; Fan, Yong

    2017-01-01

    A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model. PMID:28181514

  13. New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters.

    PubMed

    Zhang, Fan; Song, Kaijun; Fan, Yong

    2017-02-09

    A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model.

  14. Determination of differential stress in the D-DIA using cubic BN anvils and 2-D monochromatic diffraction

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Wang, Y.; Rivers, M. L.; Durham, W. B.; Mei, S.

    2003-04-01

    We have adopted X-ray transparent cubic boron nitride (cBN) anvils in a modified deformation DIA (D-DIA) to conduct monochromatic diffraction using a 2-D CCD detector (SMART1500). This setup allows us to obtain real-time diffraction data with complete Debye rings that are essential for accurate determination of lattice strains in the deformed sample. Experiments have been conducted on MgO to 6.3 GPa and 1273 K in the D-DIA. Samples were deformed continuously up to 30 percent axial shortening, with various strain rates between 0.001 and 0.00001 per second, under fixed confining pressure. Pressure, temperature, sample length, and monochromatic diffraction patterns were recorded repeatedly during the constant-strain rate deformation process. A monochromatic beam with a wavelength of 0.248 Angstrom (50 keV) was used for diffraction. We have developed a software package to analyze the 2-D diffraction data. After spatial and flat-field corrections, each 2-D diffraction pattern is converted into a multiple of 1-D patterns, according to a given azimuth angle range (typically binned at 1 degree intervals). The 1-D patterns are then fitted to yield information on the azimuth dependence for each lattice spacing. Lattice strain is then computed based on the well-known theory (A.K. Singh, J. Appl. Phys., 73, 4278, 1993) to convert to differential stress. This approach allows us to examine lattice strain as a function of pressure, temperature, and total plastic strain systematically. With the known pressure and temperature dependence of the elastic constants for MgO, differential stress can be evaluated throughout deformation. Details of the methodology and analysis will be presented and sources of experimental uncertainties will be discussed.

  15. Photo-and Electro-Switchable 1/2D Diffractive Structures Exploiting Soft-Matter

    DTIC Science & Technology

    2013-05-01

    again, a linear red-shift is observed, which clearly confirms that the behavior reported in Figure 4a is due to a photo - thermal mechanism; furthermore...AFRL-AFOSR-UK-TR-2013-0022 Photo -and Electro-Switchable 1/2D Diffractive Structures Exploiting Soft-Matter Luciano De Sio...TYPE Final Report 3. DATES COVERED (From – To) 14 November 2011 – 13 November 2012 4. TITLE AND SUBTITLE Photo -and Electro-Switchable 1/2D

  16. Individual speckle diffraction based 1D and 2D Random Grating Fabrication for detector and solar energy harvesting applications.

    PubMed

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2016-02-04

    Laser speckles and speckle patterns, which are formed by the random interference of scattered waves from optically rough surfaces, have found tremendous applications in a wide range of metrological and biomedical fields. Here, we demonstrate a novel edge diffraction phenomenon of individual speckle for the fabrication of 1D and 2D micron and sub-micron size random gratings. These random gratings exhibit broadband response with interesting diffusive diffraction patterns. As an immediate application for solar energy harvesting, significant reduction in transmission and enhanced absorption in thin "Si-random grating-Si" sandwich structure is demonstrated. This work has multifaceted significance where we exploited the individual speckle diffraction properties for the first time. Besides the solar harvesting applications, random gratings are suitable structures for fabrication of theoretically proposed random quantum well IR detectors and hence expected that this work will augur well for such studies in the near future.

  17. Individual speckle diffraction based 1D and 2D Random Grating Fabrication for detector and solar energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2016-02-01

    Laser speckles and speckle patterns, which are formed by the random interference of scattered waves from optically rough surfaces, have found tremendous applications in a wide range of metrological and biomedical fields. Here, we demonstrate a novel edge diffraction phenomenon of individual speckle for the fabrication of 1D and 2D micron and sub-micron size random gratings. These random gratings exhibit broadband response with interesting diffusive diffraction patterns. As an immediate application for solar energy harvesting, significant reduction in transmission and enhanced absorption in thin “Si-random grating-Si” sandwich structure is demonstrated. This work has multifaceted significance where we exploited the individual speckle diffraction properties for the first time. Besides the solar harvesting applications, random gratings are suitable structures for fabrication of theoretically proposed random quantum well IR detectors and hence expected that this work will augur well for such studies in the near future.

  18. Individual speckle diffraction based 1D and 2D Random Grating Fabrication for detector and solar energy harvesting applications

    PubMed Central

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2016-01-01

    Laser speckles and speckle patterns, which are formed by the random interference of scattered waves from optically rough surfaces, have found tremendous applications in a wide range of metrological and biomedical fields. Here, we demonstrate a novel edge diffraction phenomenon of individual speckle for the fabrication of 1D and 2D micron and sub-micron size random gratings. These random gratings exhibit broadband response with interesting diffusive diffraction patterns. As an immediate application for solar energy harvesting, significant reduction in transmission and enhanced absorption in thin “Si-random grating-Si” sandwich structure is demonstrated. This work has multifaceted significance where we exploited the individual speckle diffraction properties for the first time. Besides the solar harvesting applications, random gratings are suitable structures for fabrication of theoretically proposed random quantum well IR detectors and hence expected that this work will augur well for such studies in the near future. PMID:26842242

  19. Lateral elasticity and X-ray diffraction of protein 2D crystals bound to lipid monolayers at the water surface.

    NASA Astrophysics Data System (ADS)

    Lenne, P. F.; Berge, B.; Renault, A.; Vénien-Bryan, C.; Courty, S.; Konovalov, O.; Legrand, J. F.; Brisson, A.; Balavoine, F.; Lal, J.; Gruebel, G.

    1998-03-01

    We present high resolution X-ray grazing incidence diffraction experiments and macroscopic lateral rigidity measurements performed on two-dimensional crystals of proteins bound to lipid monolayers at the water surface. For four different protein systems, Streptavidin bound to biotinylated lipids, an hystidin-tagged transcription factor HupR bound to Nickel lipids, Annexin-V bound to PS and Cholera toxin subunit-B bound to GM1 lipids, we record a non-zero shear elastic constant. For the three first systems, we observe narrow diffraction peaks and measure the Bragg rods intensities. In the case of Streptavidin we found two different possible structures, one of them exhibiting 19 Bragg rods, diffracting at about 10Åin the plane. After injecting glutaraldehyde (a protein linker) under the already formed 2D-crystals, the shear rigidity increases by a factor of two and additional diffraction peaks appear. This illustrates the correlation between the macroscopic shear elastic constant and the maximum in-plane wave vector transfer of the diffraction pattern, as expected in two dimensions. It also shows the interest of keeping the 2D-crystal in the water for subsequent action of various agents.

  20. Spatial Solitons in 2D Graded-Index Waveguides with Different Distributed Transverse Diffractions

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Xiang

    2014-02-01

    We discuss the nonlinear Schrödinger equation with variable coefficients in 2D graded-index waveguides with different distributed transverse diffractions and obtain exact bright and dark soliton solutions. Based on these solutions, we mainly investigate the dynamical behaviors of solitons in three different diffraction decreasing waveguides with the hyperbolic, Gaussian and Logarithmic profiles. Results indicate that for the same parameters, the amplitude of bright solitons in the Logarithmic profile and the amplitude of dark solitons in the Gaussian profile are biggest respectively, and the amplitude in the hyperbolic profile is smallest, while the width of solitons has the opposite case.

  1. Intensity Measurements in a Fresnel Diffraction Pattern

    ERIC Educational Resources Information Center

    Boyer, R.; Fortin, E.

    1972-01-01

    Describes an undergraduate optics laboratory experiment to verify the law of intensity in the Fesnel diffraction of a thin wire. A gas laser as light source and a photocell as detector scan the diffraction pattern. The agreement with the theoretical pattern is remarkably good. (Author/TS)

  2. Backscattering from a statistically rough 2-D surface: Diffraction corrections to geometrical optics cross sections

    NASA Astrophysics Data System (ADS)

    Fuks, Iosif M.

    2007-12-01

    Diffraction corrections (up to terms ˜1/k2) to the geometric optics backscattering cross sections from a statistically rough 2-D perfectly conducting surface were derived for TE- and TM-polarized electromagnetic waves based on the high-frequency asymptotic expansions of electric and magnetic fields at the surface obtained by Fuks (2004). It was shown that at steep incident angles, where the specular reflections play the main part in scattering, diffraction results can be interpreted as scattering by a fictitious surface, the roughness of which is gentler that the real surface at HH polarization and steeper at VV polarization. The HH/VV polarization ratio (dB), being positive at steep incident angles, gradually decreases as the incident angle increases, and it becomes negative for moderate incident angles.

  3. Nonlinear Raman-Nath diffraction of femtosecond laser pulses in a 2D nonlinear photonic crystal.

    PubMed

    Vyunishev, A M; Arkhipkin, V G; Slabko, V V; Baturin, I S; Akhmatkhanov, A R; Shur, V Ya; Chirkin, A S

    2015-09-01

    We study second-harmonic generation (SHG) of femtosecond laser pulses in a rectangular two-dimensional nonlinear photonic crystal (NLPC). Multiple SH beams were observed in the vicinity of the propagation direction of the fundamental beam. It has been verified that the angular positions of these beams obey the conditions of nonlinear Raman-Nath diffraction (NRND). The measured SH spectra of specific NRND orders consist of narrow peaks that experience a high-frequency spectral shift as the order grows. We derive an analytical expression for the process studied and find the theoretical results to be in good agreement with the experimental data. We estimate the enhancement factor of nonlinear Raman-Nath diffraction in 2D NLPC to be 70.

  4. Nonlinear diffraction in orientation-patterned semiconductors.

    PubMed

    Karpinski, Pawel; Chen, Xin; Shvedov, Vladlen; Hnatovsky, Cyril; Grisard, Arnaud; Lallier, Eric; Luther-Davies, Barry; Krolikowski, Wieslaw; Sheng, Yan

    2015-06-01

    This work represents experimental demonstration of nonlinear diffraction in an orientation-patterned semiconducting material. By employing a new transverse geometry of interaction, three types of second-order nonlinear diffraction have been identified according to different configurations of quasi-phase matching conditions. Specifically, nonlinear Čerenkov diffraction is defined by the longitudinal quasi-phase matching condition, nonlinear Raman-Nath diffraction satisfies only the transverse quasi-phase matching condition, and nonlinear Bragg diffraction fulfils the full vectorial quasi-phase matching conditions. The study extends the concept of transverse nonlinear parametric interaction toward infrared frequency conversion in semiconductors. It also offers an effective nondestructive method to visualise and diagnose variations of second-order nonlinear coefficients inside semiconductors.

  5. Common arc method for diffraction pattern orientation.

    PubMed

    Bortel, Gábor; Tegze, Miklós

    2011-11-01

    Very short pulses of X-ray free-electron lasers opened the way to obtaining diffraction signal from single particles beyond the radiation dose limit. For three-dimensional structure reconstruction many patterns are recorded in the object's unknown orientation. A method is described for the orientation of continuous diffraction patterns of non-periodic objects, utilizing intensity correlations in the curved intersections of the corresponding Ewald spheres, and hence named the common arc orientation method. The present implementation of the algorithm optionally takes into account Friedel's law, handles missing data and is capable of determining the point group of symmetric objects. Its performance is demonstrated on simulated diffraction data sets and verification of the results indicates a high orientation accuracy even at low signal levels. The common arc method fills a gap in the wide palette of orientation methods.

  6. Diffraction pattern study for cell type identification.

    PubMed

    Mihailescu, M; Costescu, J

    2012-01-16

    This paper presents our study regarding diffracted intensity distribution in Fresnel and Fraunhofer approximation from different cell types. Starting from experimental information obtained through digital holographic microscopy, we modeled the cell shapes as oblate spheroids and built their phase-only transmission functions. In Fresnel approximation, the experimental and numerical diffraction patterns from mature and immature red blood cells have complementary central intensity values at different distances. The Fraunhofer diffraction patterns of deformed red blood cells were processed in the reciprocal space where, the isoamplitude curves were formed independently for each degree of cell deformation present within every sample; the values on each separate isoamplitude curve are proportional with the percentage of the respective cell type within the sample.

  7. Mapping the double-slit diffraction pattern

    NASA Astrophysics Data System (ADS)

    Selvaggi, Richard; Rogers, Charles; Richardson, Clay

    2010-10-01

    A red laser, movable double-slit, movable micrometer mounted single-slit light block, and CCD were utilized to map out the single and double-slit diffraction patterns between 0 and 30 millimeters. The three dimensional mapping results demonstrate that the double-slit troughs similarly redirect the electromagnetic energy and light particles. The measured alternating path of the electromagnetic energy and light particles in the double-slit diffraction pattern is different than the theoretic path of light waves defined by destructive interference and indicates that theoretical light waves do not always have electromagnetic energy. George Monk's 1937 and Richard Feynman's 1964 finding of conservation of electromagnetic energy in the double-slit light experiment present the following questions: 1) What are the mass-less and energy-less destructive interference light waves found in the double-slit troughs? 2) What force is applied to and what energy is consumed by the work of redistributing the electromagnetic energy and light particles in the double-slit diffraction pattern? 3) Is this unknown force and unknown energy the result of dark matter found in the double-slit troughs?

  8. 2-D traveling-wave patterns in binary fluid convection

    SciTech Connect

    Surko, C.M.; Porta, A.L.

    1996-12-31

    An overview is presented of recent experiments designed to study two-dimensional traveling-wave convection in binary fluid convection in a large aspect ratio container. Disordered patterns are observed when convection is initiated. As time proceeds, they evolve to more ordered patterns, consisting of several domains of traveling-waves separated by well-defined domain boundaries. The detailed character of the patterns depends sensitively on the Rayleigh number. Numerical techniques are described which were developed to provide a quantitative characterization of the traveling-wave patterns. Applications of complex demodulation techniques are also described, which make a detailed study of the structure and dynamics of the domain boundaries possible.

  9. Layout decomposition of self-aligned double patterning for 2D random logic patterning

    NASA Astrophysics Data System (ADS)

    Ban, Yongchan; Miloslavsky, Alex; Lucas, Kevin; Choi, Soo-Han; Park, Chul-Hong; Pan, David Z.

    2011-04-01

    Self-aligned double pattering (SADP) has been adapted as a promising solution for sub-30nm technology nodes due to its lower overlay problem and better process tolerance. SADP is in production use for 1D dense patterns with good pitch control such as NAND Flash memory applications, but it is still challenging to apply SADP to 2D random logic patterns. The favored type of SADP for complex logic interconnects is a two mask approach using a core mask and a trim mask. In this paper, we first describe layout decomposition methods of spacer-type double patterning lithography, then report a type of SADP compliant layouts, and finally report SADP applications on Samsung 22nm SRAM layout. For SADP decomposition, we propose several SADP-aware layout coloring algorithms and a method of generating lithography-friendly core mask patterns. Experimental results on 22nm node designs show that our proposed layout decomposition for SADP effectively decomposes any given layouts.

  10. Generalized source method in curvilinear coordinates for 2D grating diffraction simulation

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexey A.; Tishchenko, Alexandre V.

    2017-01-01

    The article presents a curvilinear coordinate Fourier space integral method for linear optical rigorous grating diffraction simulation in 3D (crossed grating diffraction). The presented formulation extends our previous work on a related method for 1D periodic grating diffraction. Following this previous work we exploit a concept of the generalized metric sources to efficiently solve the Maxwell's equations. The article provides a general description of the method together with a detailed formulation and analysis of sinusoidal corrugation crossed grating diffraction.

  11. Huygen-Fresnel Diffraction Model H-Fdm for the Simulation of Ultrasonic Time-Of Diffraction Technique in 2d Geometries

    NASA Astrophysics Data System (ADS)

    Reddy, K. Sanjeeva; Krishnamurthy, C. V.; Balasubramaniam, Krishnan; Balasubramanian, T.

    2010-02-01

    This paper discusses the evaluation of diffracted signals from cracks in 2D based on a new Huygen-Fresnel Diffraction Model (H-FDM). The model employs the frequency-domain far-field displacement expressions derived by Miller & Pursey [1] in 2D for a line source located on the free surface of a semi-infinite elastic medium. At each frequency in the bandwidth of a pulsed excitation, the complex diffracted field is obtained by summing over the unblocked virtual sources located in the section containing a vertical crack. The time-domain diffracted signal is obtained using standard FFT procedures. The effect of beam refraction from a wedge-based finite transducer has been modeled by treating the finite transducer as an array of line sources. The model has been used for predicting diffracted signals in time-of-flight from the crack like defect. The model allows the evaluation of back wall signal amplitude and lateral wave amplitude as well. Experiments have been carried out on 10 mm thick aluminum sample with surface breaking crack of lengths 2 mm and 4 mm using shear probe shoe. The simulated A-Scan results for the aluminum sample with 2 mm and 4 mm surface breaking lengths compare very well in relative amplitudes and time of arrivals with experiments. The H-FDM model offers a tool to evaluate diffraction and related phenomena quantitatively with modest computational resources.

  12. 2D pattern evolution constrained by complex network dynamics

    NASA Astrophysics Data System (ADS)

    da Rocha, L. E. C.; Costa, L. da F.

    2007-03-01

    Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling several complex natural and artificial systems. In the same time in which the structural intricacies of such networks are being revealed and understood, efforts have also been directed at investigating how such connectivity properties define and constrain the dynamics of systems unfolding on such structures. However, less attention has been focused on hybrid systems, i.e. involving more than one type of network and/or dynamics. Several real systems present such an organization, e.g. the dynamics of a disease coexisting with the dynamics of the immune system. The current paper investigates a specific system involving diffusive (linear and nonlinear) dynamics taking place in a regular network while interacting with a complex network of defensive agents following Erdös Rényi (ER) and Barabási Albert (BA) graph models with moveable nodes. More specifically, the complex network is expected to control, and if possible, to extinguish the diffusion of some given unwanted process (e.g. fire, oil spilling, pest dissemination, and virus or bacteria reproduction during an infection). Two types of pattern evolution are considered: Fick and Gray Scott. The nodes of the defensive network then interact with the diffusing patterns and communicate between themselves in order to control the diffusion. The main findings include the identification of higher efficiency for the BA control networks and the presence of relapses in the case of the ER model.

  13. Multi-imaging capabilities of a 2D diffraction grating in combination with digital holography.

    PubMed

    Paturzo, Melania; Merola, Francesco; Ferraro, Pietro

    2010-04-01

    In this Letter we report on an alternative approach to get multiple images in microscopy, exploiting the capabilities of both a lithium niobate diffraction grating and digital holographic technique. We demonstrate that multi-imaging can be achieved in a lensless configuration by using a hexagonal diffraction grating but overcoming, thanks to digital holography (DH), the many constrains imposed by the grating parameters in multi-imaging with Talbot effect or Talbot array illuminators. In fact, DH permits the numerical reconstruction of the optical field diffracted by the grating, thus obtaining in-focus multiple images in a plane different from the fractional or entire Talbot ones.

  14. Differential patterns of 2D location versus depth decoding along the visual hierarchy.

    PubMed

    Finlayson, Nonie J; Zhang, Xiaoli; Golomb, Julie D

    2017-02-15

    Visual information is initially represented as 2D images on the retina, but our brains are able to transform this input to perceive our rich 3D environment. While many studies have explored 2D spatial representations or depth perception in isolation, it remains unknown if or how these processes interact in human visual cortex. Here we used functional MRI and multi-voxel pattern analysis to investigate the relationship between 2D location and position-in-depth information. We stimulated different 3D locations in a blocked design: each location was defined by horizontal, vertical, and depth position. Participants remained fixated at the center of the screen while passively viewing the peripheral stimuli with red/green anaglyph glasses. Our results revealed a widespread, systematic transition throughout visual cortex. As expected, 2D location information (horizontal and vertical) could be strongly decoded in early visual areas, with reduced decoding higher along the visual hierarchy, consistent with known changes in receptive field sizes. Critically, we found that the decoding of position-in-depth information tracked inversely with the 2D location pattern, with the magnitude of depth decoding gradually increasing from intermediate to higher visual and category regions. Representations of 2D location information became increasingly location-tolerant in later areas, where depth information was also tolerant to changes in 2D location. We propose that spatial representations gradually transition from 2D-dominant to balanced 3D (2D and depth) along the visual hierarchy.

  15. Noise diffraction patterns eliminated in coherent optical systems

    NASA Technical Reports Server (NTRS)

    Grebowsky, G. R.; Hermann, R. L.; Paull, H. B.; Shulman, A. R.

    1971-01-01

    Lens rotation technique of noise diffraction pattern elimination spreads diffracted energy, normally concentrated over small area of image, over much larger annular area. Technique advantages include simplified lens selecting process, reduced clean room requirements, and low cost equipment requirements.

  16. [Applications of 2D and 3D landscape pattern indices in landscape pattern analysis of mountainous area at county level].

    PubMed

    Lu, Chao; Qi, Wei; Li, Le; Sun, Yao; Qin, Tian-Tian; Wang, Na-Na

    2012-05-01

    Landscape pattern indices are the commonly used tools for the quantitative analysis of landscape pattern. However, the traditional 2D landscape pattern indices neglect the effects of terrain on landscape, existing definite limitations in quantitatively describing the landscape patterns in mountains areas. Taking the Qixia City, a typical mountainous and hilly region in Shandong Province of East China, as a case, this paper compared the differences between 2D and 3D landscape pattern indices in quantitatively describing the landscape patterns and their dynamic changes in mountainous areas. On the basis of terrain structure analysis, a set of landscape pattern indices were selected, including area and density (class area and mean patch size), edge and shape (edge density, landscape shape index, and fractal dimension of mean patch), diversity (Shannon's diversity index and evenness index) , and gathering and spread (contagion index). There existed obvious differences between the 3D class area, mean patch area, and edge density and the corresponding 2D indices, but no significant differences between the 3D landscape shape index, fractal dimension of mean patch, and Shannon' s diversity index and evenness index and the corresponding 2D indices. The 3D contagion index and 2D contagion index had no difference. Because the 3D landscape pattern indices were calculated by using patch surface area and surface perimeter whereas the 2D landscape pattern indices were calculated by adopting patch projective area and projective perimeter, the 3D landscape pattern indices could be relative accurate and efficient in describing the landscape area, density and borderline, in mountainous areas. However, there were no distinct differences in describing landscape shape, diversity, and gathering and spread between the 3D and 2D landscape pattern indices. Generally, by introducing 3D landscape pattern indices to topographic pattern, the description of landscape pattern and its dynamic

  17. Experimental and theoretical study of rotationally inelastic diffraction of H2(D2) from methyl-terminated Si(111)

    NASA Astrophysics Data System (ADS)

    Nihill, Kevin J.; Hund, Zachary M.; Muzas, Alberto; Díaz, Cristina; del Cueto, Marcos; Frankcombe, Terry; Plymale, Noah T.; Lewis, Nathan S.; Martín, Fernando; Sibener, S. J.

    2016-08-01

    Fundamental details concerning the interaction between H2 and CH3-Si(111) have been elucidated by the combination of diffractive scattering experiments and electronic structure and scattering calculations. Rotationally inelastic diffraction (RID) of H2 and D2 from this model hydrocarbon-decorated semiconductor interface has been confirmed for the first time via both time-of-flight and diffraction measurements, with modest j = 0 → 2 RID intensities for H2 compared to the strong RID features observed for D2 over a large range of kinematic scattering conditions along two high-symmetry azimuthal directions. The Debye-Waller model was applied to the thermal attenuation of diffraction peaks, allowing for precise determination of the RID probabilities by accounting for incoherent motion of the CH3-Si(111) surface atoms. The probabilities of rotationally inelastic diffraction of H2 and D2 have been quantitatively evaluated as a function of beam energy and scattering angle, and have been compared with complementary electronic structure and scattering calculations to provide insight into the interaction potential between H2 (D2) and hence the surface charge density distribution. Specifically, a six-dimensional potential energy surface (PES), describing the electronic structure of the H2(D2)/CH3-Si(111) system, has been computed based on interpolation of density functional theory energies. Quantum and classical dynamics simulations have allowed for an assessment of the accuracy of the PES, and subsequently for identification of the features of the PES that serve as classical turning points. A close scrutiny of the PES reveals the highly anisotropic character of the interaction potential at these turning points. This combination of experiment and theory provides new and important details about the interaction of H2 with a hybrid organic-semiconductor interface, which can be used to further investigate energy flow in technologically relevant systems.

  18. Quantitative simulation of ultrasonic time of flight diffraction technique in 2D geometries using Huygens-Fresnel diffraction model: theory and experimental comparison.

    PubMed

    Kolkoori, Sanjeevareddy; Chitti Venkata, Krishnamurthy; Balasubramaniam, Krishnan

    2015-01-01

    This article presents an analytical approach for simulation of ultrasonic diffracted wave signals from cracks in two-dimensional geometries based on a novel Huygens-Fresnel Diffraction Model (HFDM). The model employs the frequency domain far-field displacement expressions derived by Miller and Pursey in 2D for a line source located on the free surface boundary of a semi-infinite elastic medium. At each frequency in the bandwidth of a pulsed excitation, the complex diffracted field is obtained by summation of displacements due to the unblocked virtual sources located in the section containing a vertical crack. The time-domain diffracted wave signal amplitudes in a general isotropic solid are obtained by standard Fast Fourier Transform (FFT) procedures. The wedge based finite aperture transducer refracted beam profiles were modelled by treating the finite dimension transducer as an array of line sources. The proposed model is able to evaluate back-wall signal amplitude and lateral wave signal amplitude, quantitatively. The model predicted range-dependent diffracted amplitudes from the edge of a bottom surface-breaking crack in the isotropic steel specimen were compared with Geometrical Theory of Diffraction (GTD) results. The good agreement confirms the validity of the HFDM method. The simulated ultrasonic time-of-flight diffraction (TOFD) A-scan signals for surface-breaking crack lengths 2 mm and 4 mm in a 10 mm thick aluminium specimen were compared quantitatively with the experimental results. Finally, important applications of HFDM method to the ultrasonic quantitative non-destructive evaluation are discussed.

  19. Fraunhofer Diffraction Patterns from Apertures Illuminated with Nonparallel Light.

    ERIC Educational Resources Information Center

    Klingsporn, Paul E.

    1979-01-01

    Discusses several aspects of Fraunhofer diffraction patterns from apertures illuminated by diverging light. Develops a generalization to apertures of arbitrary shape which shows that the sizes of the pattern are related by a simple scale factor. Uses the Abbe theory of image formation by diffraction to discuss the intensity of illumination of the…

  20. Observation of discrete diffraction patterns in an optically induced lattice.

    PubMed

    Sheng, Jiteng; Wang, Jing; Miri, Mohammad-Ali; Christodoulides, Demetrios N; Xiao, Min

    2015-07-27

    We have experimentally observed the discrete diffraction of light in a coherently prepared multi-level atomic medium. This is achieved by launching a probe beam into an optical lattice induced from the interference of two coupling beams. The diffraction pattern can be controlled through the atomic parameters such as two-photon detuning and temperature, as well as orientations of the coupling and probe beams. Clear diffraction patterns occur only near the two-photon resonance.

  1. Idealized powder diffraction patterns for cellulose polymorphs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellulose samples are routinely analyzed by X-ray diffraction to determine their crystal type (polymorph) and crystallinity. However, the connection is seldom made between those efforts and the crystal structures of cellulose that have been determined with synchrotron X-radiation and neutron diffrac...

  2. The CD control improvement by using CDSEM 2D measurement of complex OPC patterns

    NASA Astrophysics Data System (ADS)

    Chou, William; Cheng, Jeffrey; Lee, Adder; Cheng, James; Tzeng, Alex C.; Lu, Colbert; Yang, Ray; Lee, Hong Jen; Bandoh, Hideaki; Santo, Izumi; Zhang, Hao; Chen, Chien Kang

    2016-10-01

    As the process node becomes more advanced, the accuracy and precision in OPC pattern CD are required in mask manufacturing. CD SEM is an essential tool to confirm the mask quality such as CD control, CD uniformity and CD mean to target (MTT). Unfortunately, in some cases of arbitrary enclosed patterns or aggressive OPC patterns, for instance, line with tiny jogs and curvilinear SRAF, CD variation depending on region of interest (ROI) is a very serious problem in mask CD control, even it decreases the wafer yield. For overcoming this situation, the 2-dimensional (2D) method by Holon is adopted. In this paper, we summarize the comparisons of error budget between conventional (1D) and 2D data using CD SEM and the CD performance between mask and wafer by complex OPC patterns including ILT features.

  3. Quantitative theory of diffraction by ordered coaxial nanotubes: reciprocal-lattice and diffraction pattern indexing.

    PubMed

    Khalitov, Zufar; Khadiev, Azat; Valeeva, Diana; Pashin, Dmitry

    2016-11-01

    A quantitative theory of diffraction by right- and left-handed coaxial nanotubes with an ordered structure is developed. Their reciprocal lattices, including pseudo-orthogonal nodes, are studied. The explicit formulas that govern relations between direct and reciprocal lattices of a nanotube are achieved and a simple descriptive tool for diffraction pattern indexing is proposed.

  4. Orienting single-molecule diffraction patterns from XFELs using heavy-metal explosion fragments

    NASA Astrophysics Data System (ADS)

    Jurek, Zoltán; Faigel, Gyula

    2013-01-01

    Single-molecule imaging is one of the main target areas of X-ray free-electron lasers. It relies on the possibility of orienting the large number of low-counting-statistics 2D diffraction patterns taken at random orientations of identical replicas of the sample. This is a difficult process and the low statistics limits the usability of orientation methods and ultimately it could prevent single-molecule imaging. We suggest a new approach, which avoids the orientation process from the diffraction patterns. We propose to determine sample orientation through identifying the direction of ejection fragments. The orientation of the sample is measured together with the diffraction pattern by detecting some fragments of the Coulomb explosion. We show by molecular-dynamics simulations that from the angular distribution of the fragments one can obtain the orientation of the samples.

  5. Application of Fresnel diffraction from a 2D array of reflective disks in optical profilometry of a flat surface

    NASA Astrophysics Data System (ADS)

    Darudi, Ahmad; Asgari, Pegah; Pourvais, Yousef

    2015-05-01

    Optical methods of three-dimensional profilometry have been of growing interest in both industrial and scientific applications. These techniques provide absolutely non-destructive measurement due to their non-contact nature and maintain their high precision in a large field of view. Most of these techniques however, are based on interferometry which happens to be considerably sensitive to environmental noises such as turbulence and vibration. We have used the phenomena of Fresnel diffraction from phase-steps instead of interferometry to maintain a higher precision and reduce sensitivity to environmental noises. This phenomena has been recently introduced as a method for precise measurement of wavelength, thickness and refractive index. A 2D array of reflective disks are placed above the test surface to provide the required phase-steps. In this paper, theoretical principles of Fresnel diffraction from phase-steps are discussed and the experimental results of testing an optical flat surface are presented. A flat mirror surface has been tested as an optical test surface and is been profiled. The results show that the method is precise and is not sensitive to environmental noises such as vibration and turbulence. Furthermore, the method seems to be a powerful means for testing of curved surfaces, too.

  6. Simplified optical image encryption approach using single diffraction pattern in diffractive-imaging-based scheme.

    PubMed

    Qin, Yi; Gong, Qiong; Wang, Zhipeng

    2014-09-08

    In previous diffractive-imaging-based optical encryption schemes, it is impossible to totally retrieve the plaintext from a single diffraction pattern. In this paper, we proposed a new method to achieve this goal. The encryption procedure can be completed by proceeding only one exposure, and the single diffraction pattern is recorded as ciphertext. For recovering the plaintext, a novel median-filtering-based phase retrieval algorithm, including two iterative cycles, has been developed. This proposal not only extremely simplifies the encryption and decryption processes, but also facilitates the storage and transmission of the ciphertext, and its effectiveness and feasibility have been demonstrated by numerical simulations.

  7. Phase retrieval from single biomolecule diffraction pattern.

    PubMed

    Ikeda, Shiro; Kono, Hidetoshi

    2012-02-13

    In this paper, we propose the SPR (sparse phase retrieval) method, which is a new phase retrieval method for coherent x-ray diffraction imaging (CXDI). Conventional phase retrieval methods effectively solve the problem for high signal-to-noise ratio measurements, but would not be sufficient for single biomolecular imaging which is expected to be realized with femto-second x-ray free electron laser pulses. The SPR method is based on the Bayesian statistics. It does not need to set the object boundary constraint that is required by the commonly used hybrid input-output (HIO) method, instead a prior distribution is defined with an exponential distribution and used for the estimation. Simulation results demonstrate that the proposed method reconstructs the electron density under a noisy condition even some central pixels are masked.

  8. Continuous fabrication of scalable 2-dimensional (2D) micro- and nanostructures by sequential 1D mechanical patterning processes.

    PubMed

    Ok, Jong G; Panday, Ashwin; Lee, Taehwa; Jay Guo, L

    2014-12-21

    We present a versatile and simple methodology for continuous and scalable 2D micro/nano-structure fabrication via sequential 1D patterning strokes enabled by dynamic nano-inscribing (DNI) and vibrational indentation patterning (VIP) as well as a 'single-stroke' 2D patterning using a DNI tool in VIP.

  9. Optical method of measuring angular displacement using a diffraction pattern.

    PubMed

    Ami, M; Sato, K; Yamamoto, S; Kamada, O; Shibanuma, H

    1987-10-01

    We investigate a method of measuring the angular displacement of an aperture when the diffraction pattern rotates. The data that are on a rectangular coordinate are transformed into the data on a polar coordinate. We calculate a cross-correlation function between the diffraction pattern that is rotated and the reference pattern. When the angular displacement is within +/-5 degrees , the error is <0.050. Then, we calculated the angular displacement of the pattern on a spherical coordinate system by personal computer simulation. Consequently, when the azimuth and the elevation of its rotation axis are within +/-6 degrees , the error is <0.1 degrees .

  10. Diffractive optical element with same diffraction pattern for multicolor light-emitting diodes.

    PubMed

    Chen, Mengzhu; Wang, Qixia; Gu, Huarong; Tan, Qiaofeng

    2016-01-01

    The wavelength-division multiplexing technique can be utilized in visible light communication to increase the channel capacity when a multicolor mixed white LED is used as light source. In such an application, the illumination area of LEDs should be invariant to the incident wavelength, so as to decrease interference within the adjacent regions. Diffractive optical elements (DOEs) can be used in the optical transmitter system to shape the diffraction patterns into polygons. However, traditional DOEs illuminated by a multicolor mixed white LED would result into diffraction patterns with unequal sizes. In this paper, a hybrid algorithm which combines particle swarm optimization with a genetic algorithm is proposed for multicolor oriented DOEs design. A DOE is designed and fabricated for blue and red LEDs, and experimental results show that diffraction patterns with rather good uniformity as well as quasi-equal size for red and blue LEDs are obtained.

  11. Diffraction patterns from multiple tilted laser apertures: numerical analysis

    NASA Astrophysics Data System (ADS)

    Kovalev, Anton V.; Polyakov, Vadim M.

    2016-03-01

    We propose a Rayleigh-Sommerfeld based method for numerical calculation of multiple tilted apertures near and far field diffraction patterns. Method is based on iterative procedure of fast Fourier transform based circular convolution of the initial field complex amplitudes distribution and impulse response function modified in order to account aperture and observation planes mutual tilt. The method is computationally efficient and has good accordance with the results of experimental diffraction patterns and can be applied for analysis of spatial noises occurring in master oscillator power amplifier laser systems. The example of diffraction simulation for a Phobos-Ground laser rangefinder amplifier is demonstrated.

  12. Diffraction pattern of triangular grating in the resonance domain.

    PubMed

    Hoshino, Tetsuya; Banerjee, Saswatee; Itoh, Masahide; Yatagai, Toyohiko

    2009-03-01

    We propose a combination of ray optics and Fraunhofer multiple-slit diffraction theory for calculating the two-dimensional triangular periodic grating in the resonance domain. The peak of the envelope pattern of angular distribution of diffraction efficiency is calculated by ray optics while the peak width is calculated using Fraunhofer theory. It was clarified, using rigorous coupled-wave analysis and a nonstandard-finite-difference time-domain method, that the envelope pattern of the diffraction of the grating could be calculated easily and understood intuitively for the design of displays and lighting.

  13. Experiments on 2D Vortex Patterns with a Photoinjected Pure Electron Plasma

    NASA Astrophysics Data System (ADS)

    Durkin, Daniel; Fajans, Joel

    1998-11-01

    The equations governing the evolution of a strongly magnetized pure electron plasma are analogous to those of an ideal 2D fluid; plasma density is analogous to fluid vorticity. Therefore, we can study vortex dynamics with pure electron plasmas. We generate our electron plasma with a photocathode electron source. The photocathode provides greater control over the initial profile than previous thermionic sources and allows us to create complicated initial density distributions, corresponding to complicated vorticity distributions in a fluid. Results on the stability of 2D vortex patterns will be presented: 1) The stability of N vortices arranged in a ring; 2) The stability of N vortices arranged in a ring with a central vortex; 3) The stability of more complicated vortex patterns.(http://socrates.berkeley.edu/ )fajans/

  14. Studies of a suitable mask error enhancement factor for 2D patterns

    NASA Astrophysics Data System (ADS)

    Wei, Chih I.; Cheng, Yung Feng; Chen, Ming Jui

    2013-04-01

    In advanced 20nm and below technology nodes, the mask enhanced error factor (MEEF) plays an important rule due to the request of stable process control and quality of mask manufacture. It provides us an effective parameter to analyze the process window for lithography. In advanced nodes, MEEF criterion becomes more important than previous nodes because very tight process tolerance is requested, especially in OPC and mask capability control. Therefore, we have to do further studies on this topic. In the simple line/trench design layers (for example: Active and poly), the MEEF is easy to be defined because mask bias is isotropic. However, in the complicated two-dimensional (2D) design layers (for example: Contact and Mvia), they are hard to be defined a suitable definition of MEEF. In the first part, we used the global bias to calculate the MEEF on all patterns. It makes calculation easier to compare with other patterns which are different shapes. However, when we inspected the 2D line-end patterns on the wafer, we found the significant differences between the MEEF of wafer data and aerial simulation. In order to clarify this issue, we perform series simulation studies of the line-end MEEF. Then we knew that it came from the different bias strategies. Furthermore, the simulation studies show that the line-end MEEF of non-preferable orientation is very sensitive to mask X/Y ratio bias due to strong OAI optical behavior by the SMO source. As a result, a new point of view of 2D MEEF is suggested according to physical mask CD error measurement data. In this study, we would find a better description of the MEEF than traditional one for lithographic process development on 2D region.

  15. 2D-pattern matching image and video compression: theory, algorithms, and experiments.

    PubMed

    Alzina, Marc; Szpankowski, Wojciech; Grama, Ananth

    2002-01-01

    In this paper, we propose a lossy data compression framework based on an approximate two-dimensional (2D) pattern matching (2D-PMC) extension of the Lempel-Ziv (1977, 1978) lossless scheme. This framework forms the basis upon which higher level schemes relying on differential coding, frequency domain techniques, prediction, and other methods can be built. We apply our pattern matching framework to image and video compression and report on theoretical and experimental results. Theoretically, we show that the fixed database model used for video compression leads to suboptimal but computationally efficient performance. The compression ratio of this model is shown to tend to the generalized entropy. For image compression, we use a growing database model for which we provide an approximate analysis. The implementation of 2D-PMC is a challenging problem from the algorithmic point of view. We use a range of techniques and data structures such as k-d trees, generalized run length coding, adaptive arithmetic coding, and variable and adaptive maximum distortion level to achieve good compression ratios at high compression speeds. We demonstrate bit rates in the range of 0.25-0.5 bpp for high-quality images and data rates in the range of 0.15-0.5 Mbps for a baseline video compression scheme that does not use any prediction or interpolation. We also demonstrate that this asymmetric compression scheme is capable of extremely fast decompression making it particularly suitable for networked multimedia applications.

  16. Fresnel diffraction and fractal patterns from polygonal apertures.

    PubMed

    Huang, J G; Christian, J M; McDonald, G S

    2006-11-01

    Two compact analytical descriptions of Fresnel diffraction patterns from polygonal apertures under uniform illumination are detailed. In particular, a simple expression for the diffracted field from constituent edges is derived. These results have fundamental importance as well as specific applications, and they promise new physical insights into diffraction-related phenomena. The usefulness of the formulations is illuminated in the context of a virtual source theory that accounts for two transverse dimensions. This application permits calculation of fractal unstable-resonator modes of arbitrary order and unprecedented accuracy.

  17. Fractal analysis of powder X-ray diffraction patterns

    NASA Astrophysics Data System (ADS)

    Ortiz-Cruz, A.; Santolalla, C.; Moreno, E.; de los Reyes-Heredia, J. A.; Alvarez-Ramirez, J.

    2012-02-01

    X-ray diffraction (XRD) patterns with broad background are commonly found in the characterization of materials with a certain degree of amorphicity, so the sharp intensity peaks associated with material phases are not well defined. This work used rescaled range (denoted by R/S) analysis, a method intended for fractal analysis of noisy signals, to characterize XRD patterns with broad background. It is found that XRD patterns with broad background are not random at all, but contain information on regularities expressed as autocorrelations of the intensity signal. Sol-gel alumina fired at different temperatures was used as an example to illustrate the applicability of the method. It is shown that fractal R/S analysis is able to locate angular regions that can be associated to ideal International Centre for Diffraction Data Powder Diffraction File (ICDD PDF) lines of diverse alumina phases.

  18. Investigation of the thermal stability of 2-D patterns of Au nanoparticles.

    PubMed

    Shih, Ting-Yu; Requicha, Aristides A G; Thompson, Mark E; Koel, Bruce E

    2007-08-01

    Nanoparticles can serve as useful components or sub-assemblies, i.e., building blocks, in the design and fabrication of more complex structures needed for rapid prototyping using layered nanofabrication (LNF) or for use in nanoelectromechanical systems (NEMS). This paper describes investigations of the thermal stability of simple 2-D patterns of thiol-coated, 5-nm gold nanoparticles deposited on the native oxide surface of a Si(100) single crystal substrate. The changes in the particle structure and location on the surface were probed by using atomic force microscopy (AFM) before and after heating in ambient air. Experiments were carried out on the as-deposited nanoparticles and on patterns of nanoparticles that had been pretreated (prior to heating) by a 10-min exposure in a UV-ozone ashing chamber. All individual particles and 2-D patterns were stable up to 550 degrees C. Higher temperatures caused first a reduction in particle height and eventually a loss of the particle from the field of view (presumably by rather long-range diffusion).

  19. Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation

    SciTech Connect

    Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; Puretzky, Alexander A.; McGuire, Michael A.; Srijanto, Bernadeta R.; Xiao, Kai; Eres, Gyula; Duscher, Gerd; Geohegan, David B.

    2014-10-19

    Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substrate by pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.

  20. Diffractive-imaging-based optical image encryption with simplified decryption from single diffraction pattern.

    PubMed

    Qin, Yi; Wang, Zhipeng; Gong, Qiong

    2014-07-01

    In this paper, we propose a novel method for image encryption by employing the diffraction imaging technique. This method is in principle suitable for most diffractive-imaging-based optical encryption schemes, and a typical diffractive imaging architecture using three random phase masks in the Fresnel domain is taken for an example to illustrate it. The encryption process is rather simple because only a single diffraction intensity pattern is needed to be recorded, and the decryption procedure is also correspondingly simplified. To achieve this goal, redundant data are digitally appended to the primary image before a standard encrypting procedure. The redundant data serve as a partial input plane support constraint in a phase retrieval algorithm, which is employed for completely retrieving the plaintext. Simulation results are presented to verify the validity of the proposed approach.

  1. Lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns

    NASA Astrophysics Data System (ADS)

    Dong, Pinliang

    2009-10-01

    Spatial scale plays an important role in many fields. As a scale-dependent measure for spatial heterogeneity, lacunarity describes the distribution of gaps within a set at multiple scales. In Earth science, environmental science, and ecology, lacunarity has been increasingly used for multiscale modeling of spatial patterns. This paper presents the development and implementation of a geographic information system (GIS) software extension for lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns. Depending on the application requirement, lacunarity analysis can be performed in two modes: global mode or local mode. The extension works for: (1) binary (1-bit) and grey-scale datasets in any raster format supported by ArcGIS and (2) 1D, 2D, and 3D point datasets as shapefiles or geodatabase feature classes. For more effective measurement of lacunarity for different patterns or processes in raster datasets, the extension allows users to define an area of interest (AOI) in four different ways, including using a polygon in an existing feature layer. Additionally, directionality can be taken into account when grey-scale datasets are used for local lacunarity analysis. The methodology and graphical user interface (GUI) are described. The application of the extension is demonstrated using both simulated and real datasets, including Brodatz texture images, a Spaceborne Imaging Radar (SIR-C) image, simulated 1D points on a drainage network, and 3D random and clustered point patterns. The options of lacunarity analysis and the effects of polyline arrangement on lacunarity of 1D points are also discussed. Results from sample data suggest that the lacunarity analysis extension can be used for efficient modeling of spatial patterns at multiple scales.

  2. Fine structures in the light diffraction pattern of striated muscle.

    PubMed

    Leung, A F

    1984-10-01

    Single skeletal muscle fibres of frog were illuminated with a He-Ne, argon-ion or rhodamine 6G dye laser. The fine structures lying within the diffraction columns moved parallel to the fibre axis without changing their pattern when either the wavelength or the incident angle of the laser beam was varied, or when the fibre was stretched slightly. However, their pattern remained nearly constant when the fibre was submerged in hypotonic or hypertonic solution. As the illumination of about 1 mm or 0.1 mm width scanned along the length of the fibre, new structures emerged while others faded away giving rise to the notion that the diffraction columns were moving in the direction of the scan. A decrease in the illumination width caused the structures lying on the periphery of the diffraction column to disappear and the width of the remaining structures to increase. Measurements rule out the existence of large diffraction planes in these muscles. In addition, they indicate that the fine structures come from the diffraction of the whole rather than independent components of the illuminated volume. The origin of the fine structures is explained by two diffraction models.

  3. Synthesis of green emitting and transparent zn2siO4:mn2+ thin film phosphors on 2D photonic crystal patterned quartz substrates.

    PubMed

    Kim, Donghyuk; Han, Ji Yeon; Jeon, Duk Young

    2012-02-01

    Zn2SiO4:Mn2+ thin film phosphors (TFPs) have been synthesized by RF magnetron sputtering, using a single multicomponent stoichiometric target. And 2D photonic crystal patterns were introduced on a quartz substrate to enhance the light extraction efficiency. In order to introduce 2D photonic crystal patterns on a quartz substrate, nanosphere lithography was used. Polystyrene spheres, with diameter of 330 nm, were transferred on the quartz substrate and subsequently were served as an etch mask. Quartz substrates were patterned by CF4 gas-based reactive ion etching. Zn2SiO4:Mn2+ were deposited on that 2D photonic crystal patterned quartz substrate and the effect of height of photonic crystal layers were investigated. The light extraction efficiency of Zn2SiO4:Mn2+ thin film phosphors deposited on the photonic crystal patterned quartz substrate was enhanced three times to compared with that of flat Zn2SiO4:Mn2+ thin film phosphors due to the Bragg diffraction and leaky mode caused by PCLs. Transmittance of Zn2SiO4:Mn2+ TFPs deposited on the photonic crystal patterned substrate was high enough, above 70% in the visible light region with respect to that of quartz substrate.

  4. Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation

    DOE PAGES

    Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; ...

    2014-10-19

    Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substrate bymore » pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.« less

  5. Analysis of Fibonacci gratings and their diffraction patterns.

    PubMed

    Verma, Rupesh; Sharma, Manoj Kumar; Senthilkumaran, Paramasivam; Banerjee, Varsha

    2014-07-01

    Aperiodic and fractal optical elements are proving to be promising candidates in image-forming devices. In this paper, we analyze the diffraction patterns of Fibonacci gratings (FbGs), which are prototypical examples of aperiodicity. They exhibit novel characteristics such as redundancy and robustness that keep their imaging characteristics intact even when there is significant loss of information. FbGs also contain fractal signatures and are characterized by a fractal dimension. Our study suggests that aperiodic gratings may be better than their fractal counterparts in technologies based on such architectures. We also identify the demarcating features of aperiodic and fractal diffraction, which have been rather fuzzy in the literature so far.

  6. The concept models and implementations of multiport neural net associative memory for 2D patterns

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolskyy, Aleksandr I.; Yatskovskaya, Rimma A.; Yatskovsky, Victor I.

    2011-04-01

    The paper considers neural net models and training and recognizing algorithms with base neurobiologic operations: p-step autoequivalence and non-equivalenc The Modified equivalently models (MEMs) of multiport neural net associative memory (MNNAM) are offered with double adaptive - equivalently weighing (DAEW) for recognition of 2D-patterns (images). It is shown, the computing process in MNNAM under using the proposed MEMs, is reduced to two-step and multi-step algorithms and step-by-step matrix-matrix (tensor-tensor) procedures. The given results of computer simulations confirmed the perspective of such models. Besides the result was received when MNNAM capacity on base of MEMs exceeded the amount of neurons.

  7. Hybrid approach for structural modeling of biological systems from X-ray free electron laser diffraction patterns.

    PubMed

    Tokuhisa, Atsushi; Jonic, Slavica; Tama, Florence; Miyashita, Osamu

    2016-06-01

    We present a new hybrid approach for structural modeling using X-ray free electron laser (XFEL) diffraction patterns from non-crystalline biological samples. Reconstruction of a 3D structure requires a large number of diffraction patterns; however, in the current XFEL experiments with biological systems, the analysis often relies on a small number of 2D diffraction patterns. In this study, we explore the strategies to identify plausible 3D structural models by combining the 2D analysis of such diffraction patterns with computational modeling (normal mode analysis or molecular dynamics simulations). As the first step toward such hybrid modeling, we established a protocol to assess the agreement between the model structure and the target XFEL diffraction pattern and showed that XFEL data can be used to study the conformational transitions of biological molecules. We tested the proposed algorithms using data of three biomolecular complexes of different sizes (elongation factor 2, CCM virus, and ribosome) and examined the experimental conditions that are required to perform such studies, in particular the XFEL beam intensity requirements. The results indicate that the current beam intensity is close to a strength that enables us to study conformational transitions of macromolecules, such as ribosomes. The proposed algorithm can be combined with molecular mechanics approaches, such as molecular dynamics simulations and normal mode analysis, to generate a large number of candidate structures to perform hybrid structural modeling.

  8. Design and testing of the first 2D Prototype Vertically Integrated Pattern Recognition Associative Memory

    SciTech Connect

    Liu, T.; Deptuch, G.; Hoff, J.; Jindariani, S.; Joshi, S.; Olsen, J.; Tran, N.; Trimpl, M.

    2015-02-01

    An associative memory-based track finding approach has been proposed for a Level 1 tracking trigger to cope with increasing luminosities at the LHC. The associative memory uses a massively parallel architecture to tackle the intrinsically complex combinatorics of track finding algorithms, thus avoiding the typical power law dependence of execution time on occupancy and solving the pattern recognition in times roughly proportional to the number of hits. This is of crucial importance given the large occupancies typical of hadronic collisions. The design of an associative memory system capable of dealing with the complexity of HL-LHC collisions and with the short latency required by Level 1 triggering poses significant, as yet unsolved, technical challenges. For this reason, an aggressive R&D program has been launched at Fermilab to advance state of-the-art associative memory technology, the so called VIPRAM (Vertically Integrated Pattern Recognition Associative Memory) project. The VIPRAM leverages emerging 3D vertical integration technology to build faster and denser Associative Memory devices. The first step is to implement in conventional VLSI the associative memory building blocks that can be used in 3D stacking, in other words, the building blocks are laid out as if it is a 3D design. In this paper, we report on the first successful implementation of a 2D VIPRAM demonstrator chip (protoVIPRAM00). The results show that these building blocks are ready for 3D stacking.

  9. DRC Plus: augmenting standard DRC with pattern matching on 2D geometries

    NASA Astrophysics Data System (ADS)

    Dai, Vito; Yang, Jie; Rodriguez, Norma; Capodieci, Luigi

    2007-03-01

    Design rule constraints (DRC) are the industry workhorse for constraining design to ensure both physical and electrical manufacturability. However, as technology processes continue to shrink and aggressive resolution enhancement technologies (RET) and optical proximity correction (OPC) are applied, standard DRC sometimes fails to fully capture the concept of design manufacturability. Consequently, some DRC-clean layout designs are found to be difficult to manufacture. Attempts have been made to "patch up" standard DRC with additional rules to identify these specific problematic cases. However, due to the lack of specificity with DRC, these efforts often meet with mixed-success. Although it typically resolves the issue at hand, quite often, it is the enforcement of some DRC rule that causes other problematic geometries to be generated, as designers attempt to meet all the constraints given to them. In effect, designers meet the letter of the law, as defined by the DRC implementation code, without understanding the "spirit of the rule". This leads to more exceptional cases being added to the DRC manual, further increasing its complexity. DRC Plus adopts a different approach. It augments standard DRC by applying fast 2D pattern matching to design layout to identify problematic 2D configurations which are difficult to manufacture. The tool then returns specific feedback to designers on how to resolve these issues. This basic approach offers several advantages over other DFM techniques: It is enforceable, it offers a simple pass/no-pass criterion, it is simple to document as part of the design manual, it does not require compute intensive simulations, and it does not require highly-accurate lithographic models that may not be available during design. These advantages allow DRC Plus to be inserted early in the design flow, and enforced in conjunction with standard DRC.

  10. Diffraction pattern of modulated structures described by Bessel functions

    NASA Astrophysics Data System (ADS)

    Wolny, Janusz; Buganski, Ireneusz; Strzalka, Radoslaw

    2016-05-01

    We performed detailed analysis of 1D modulated structure (MS) with harmonic modulation within the statistical approach. By applying two-mode Fourier transform, we were able to derive analytically the structure factor for MS with single harmonic modulation component. We confirmed in a very smooth way that ordinary Bessel functions of the first kind define envelopes tuning the intensities of the diffraction peaks. This applies not only to main reflections of the diffraction pattern but also to all satellites. In the second part, we discussed in details the similarities between harmonically modulated structures with multiple modulations and 1D model quasicrystal. The Fourier expansion of the nodes' positions in the Fibonacci chain gives direct numerical definition of the atomic arrangement in MS. In that sense, we can define 1D quasicrystal as a MS with infinite number of harmonic modulations. We prove that characteristic measures (like v(u) relation typical for statistical approach and diffraction pattern) calculated for MS asymptotically approach their counterparts for 1D quasicrystal as large enough number of modulation terms is taken into account.

  11. Estimating the Size of Onion Epidermal Cells from Diffraction Patterns

    NASA Astrophysics Data System (ADS)

    Groff, Jeffrey R.

    2012-10-01

    Bioscience and premedical profession students are a major demographic served by introductory physics courses at many colleges and universities. Exposing these students to biological applications of physical principles will help them to appreciate physics as a useful tool for their future professions. Here I describe an experiment suitable for introductory physics where principles of wave optics are applied to probe the size of onion epidermal cells. The epidermis tissue is composed of cells of relatively uniform size and shape (Fig. 1) so the tissue acts like a one-dimensional transmission diffraction grating. The diffraction patterns generated when a laser beam passes through the tissue (Fig. 2) are analyzed and an estimate of the average width of individual onion epidermal cells is calculated. The results are compared to direct measurements taken using a light microscope. The use of microscopes and plant-cell tissue slides creates opportunities for cross-discipline collaboration between physics and biology instructors.

  12. What periodicities can be found in diffraction patterns of quasicrystals?

    PubMed

    Wolny, Janusz; Kozakowski, Bartlomiej; Kuczera, Pawel; Pytlik, Lucjan; Strzalka, Radoslaw

    2014-03-01

    The structure of quasicrystals is aperiodic. Their diffraction patterns, however, can be considered periodic. They are composed solely of series of peaks which exhibit a fully periodic arrangement in reciprocal space. Furthermore, the peak intensities in each series define the so-called `envelope function'. A Fourier transform of the envelope function gives an average unit cell, whose definition is based on the statistical distribution of atomic coordinates in physical space. If such a distribution is lifted to higher-dimensional space, it becomes the so-called atomic surface - the most fundamental feature of higher-dimensional analysis.

  13. Imaging outside the box: Resolution enhancement in X-ray coherent diffraction imaging by extrapolation of diffraction patterns

    SciTech Connect

    Latychevskaia, Tatiana Fink, Hans-Werner; Chushkin, Yuriy; Zontone, Federico

    2015-11-02

    Coherent diffraction imaging is a high-resolution imaging technique whose potential can be greatly enhanced by applying the extrapolation method presented here. We demonstrate the enhancement in resolution of a non-periodical object reconstructed from an experimental X-ray diffraction record which contains about 10% missing information, including the pixels in the center of the diffraction pattern. A diffraction pattern is extrapolated beyond the detector area and as a result, the object is reconstructed at an enhanced resolution and better agreement with experimental amplitudes is achieved. The optimal parameters for the iterative routine and the limits of the extrapolation procedure are discussed.

  14. 1D Josephson quantum interference grids: diffraction patterns and dynamics

    NASA Astrophysics Data System (ADS)

    Lucci, M.; Badoni, D.; Corato, V.; Merlo, V.; Ottaviani, I.; Salina, G.; Cirillo, M.; Ustinov, A. V.; Winkler, D.

    2016-02-01

    We investigate the magnetic response of transmission lines with embedded Josephson junctions and thus generating a 1D underdamped array. The measured multi-junction interference patterns are compared with the theoretical predictions for Josephson supercurrent modulations when an external magnetic field couples both to the inter-junction loops and to the junctions themselves. The results provide a striking example of the analogy between Josephson phase modulation and 1D optical diffraction grid. The Fiske resonances in the current-voltage characteristics with voltage spacing {Φ0}≤ft(\\frac{{\\bar{c}}}{2L}\\right) , where L is the total physical length of the array, {Φ0} the magnetic flux quantum and \\bar{c} the speed of light in the transmission line, demonstrate that the discrete line supports stable dynamic patterns generated by the ac Josephson effect interacting with the cavity modes of the line.

  15. High-resolution 2-D Bragg diffraction reveal heterogeneous domain transformation behavior in a bulk relaxor ferroelectric

    DOE PAGES

    Pramanick, Abhijit; Stoica, Alexandru D.; An, Ke

    2016-09-02

    In-situ measurement of fine-structure of neutron Bragg diffraction peaks from a relaxor single-crystal using a time-of-flight instrument reveals highly heterogeneous mesoscale domain transformation behavior under applied electric fields. We observed that only 25% of domains undergo reorienta- tion or phase transition contributing to large average strains, while at least 40% remain invariant and exhibit microstrains. Such insights could be central for designing new relaxor materials with better performance and longevity. The current experimental technique can also be applied to resolve com- plex mesoscale phenomena in other functional materials.

  16. Surface plasmon hurdles leading to a strongly localized giant field enhancement on two-dimensional (2D) metallic diffraction gratings.

    PubMed

    Brûlé, Yoann; Demésy, Guillaume; Gralak, Boris; Popov, Evgeny

    2015-04-06

    An extensive numerical study of diffraction of a plane monochromatic wave by a single gold cone on a plane gold substrate and by a periodical array of such cones shows formation of curls in the map of the Poynting vector. They result from the interference between the incident wave, the wave reflected by the substrate, and the field scattered by the cone(s). In case of a single cone, when going away from its base along the surface, the main contribution in the scattered field is given by the plasmon surface wave (PSW) excited on the surface. As expected, it has a predominant direction of propagation, determined by the incident wave polarization. Two particular cones with height approximately 1/6 and 1/3 of the wavelength are studied in detail, as they present the strongest absorption and field enhancement when arranged in a periodic array. While the PSW excited by the smaller single cone shows an energy flux globally directed along the substrate surface, we show that curls of the Poynting vector generated with the larger cone touch the diopter surface. At this point, their direction is opposite to the energy flow of the PSW, which is then forced to jump over the vortex regions. Arranging the cones in a two-dimensional subwavelength periodic array (diffraction grating), supporting a specular reflected order only, resonantly strengthens the field intensity at the tip of cones and leads to a field intensity enhancement of the order of 10 000 with respect to the incident wave intensity. The enhanced field is strongly localized on the rounded top of the cones. It is accompanied by a total absorption of the incident light exhibiting large angular tolerances. This strongly localized giant field enhancement can be of much interest in many applications, including fluorescence spectroscopy, label-free biosensing, surface-enhanced Raman scattering (SERS), nonlinear optical effects and photovoltaics.

  17. Lattice constant measurement from electron backscatter diffraction patterns.

    PubMed

    Saowadee, N; Agersted, K; Bowen, J R

    2017-02-20

    Kikuchi bands in election backscattered diffraction patterns (EBSP) contain information about lattice constants of crystallographic samples that can be extracted via the Bragg equation. An advantage of lattice constant measurement from EBSPs over diffraction (XRD) is the ability to perform local analysis. In this study, lattice constants of cubic STN and cubic YSZ in the pure materials and in co-sintered composites were measured from their EBSPs acquired at 10 kV using a silicon single crystal as a calibration reference. The EBSP distortion was corrected by spherical back projection and Kikuchi band analysis was made using in-house software. The error of the lattice constant measurement was determined to be in the range of 0.09-1.12% compared to values determined by XRD and from literature. The confidence level of the method is indicated by the standard deviation of the measurement, which is approximately 0.04 Å. Studying Kikuchi band size dependence of the measurement precision shows that the measurement error decays with increasing band size (i.e. decreasing lattice constant). However, in practice, the sharpness of wide bands tends to be low due to their low intensity, thus limiting the measurement precision. Possible methods to improve measurement precision are suggested.

  18. Massively parallel patterning of complex 2D and 3D functional polymer brushes by polymer pen lithography.

    PubMed

    Xie, Zhuang; Chen, Chaojian; Zhou, Xuechang; Gao, Tingting; Liu, Danqing; Miao, Qian; Zheng, Zijian

    2014-08-13

    We report the first demonstration of centimeter-area serial patterning of complex 2D and 3D functional polymer brushes by high-throughput polymer pen lithography. Arbitrary 2D and 3D structures of poly(glycidyl methacrylate) (PGMA) brushes are fabricated over areas as large as 2 cm × 1 cm, with a remarkable throughput being 3 orders of magnitudes higher than the state-of-the-arts. Patterned PGMA brushes are further employed as resist for fabricating Au micro/nanostructures and hard molds for the subsequent replica molding of soft stamps. On the other hand, these 2D and 3D PGMA brushes are also utilized as robust and versatile platforms for the immobilization of bioactive molecules to form 2D and 3D patterned DNA oligonucleotide and protein chips. Therefore, this low-cost, yet high-throughput "bench-top" serial fabrication method can be readily applied to a wide range of fields including micro/nanofabrication, optics and electronics, smart surfaces, and biorelated studies.

  19. XaNSoNS: GPU-accelerated simulator of diffraction patterns of nanoparticles

    NASA Astrophysics Data System (ADS)

    Neverov, V. S.

    XaNSoNS is an open source software with GPU support, which simulates X-ray and neutron 1D (or 2D) diffraction patterns and pair-distribution functions (PDF) for amorphous or crystalline nanoparticles (up to ∼107 atoms) of heterogeneous structural content. Among the multiple parameters of the structure the user may specify atomic displacements, site occupancies, molecular displacements and molecular rotations. The software uses general equations nonspecific to crystalline structures to calculate the scattering intensity. It supports four major standards of parallel computing: MPI, OpenMP, Nvidia CUDA and OpenCL, enabling it to run on various architectures, from CPU-based HPCs to consumer-level GPUs.

  20. Hierarchical alignment and full resolution pattern recognition of 2D NMR spectra: application to nematode chemical ecology.

    PubMed

    Robinette, Steven L; Ajredini, Ramadan; Rasheed, Hasan; Zeinomar, Abdulrahman; Schroeder, Frank C; Dossey, Aaron T; Edison, Arthur S

    2011-03-01

    Nuclear magnetic resonance (NMR) is the most widely used nondestructive technique in analytical chemistry. In recent years, it has been applied to metabolic profiling due to its high reproducibility, capacity for relative and absolute quantification, atomic resolution, and ability to detect a broad range of compounds in an untargeted manner. While one-dimensional (1D) (1)H NMR experiments are popular in metabolic profiling due to their simplicity and fast acquisition times, two-dimensional (2D) NMR spectra offer increased spectral resolution as well as atomic correlations, which aid in the assignment of known small molecules and the structural elucidation of novel compounds. Given the small number of statistical analysis methods for 2D NMR spectra, we developed a new approach for the analysis, information recovery, and display of 2D NMR spectral data. We present a native 2D peak alignment algorithm we term HATS, for hierarchical alignment of two-dimensional spectra, enabling pattern recognition (PR) using full-resolution spectra. Principle component analysis (PCA) and partial least squares (PLS) regression of full resolution total correlation spectroscopy (TOCSY) spectra greatly aid the assignment and interpretation of statistical pattern recognition results by producing back-scaled loading plots that look like traditional TOCSY spectra but incorporate qualitative and quantitative biological information of the resonances. The HATS-PR methodology is demonstrated here using multiple 2D TOCSY spectra of the exudates from two nematode species: Pristionchus pacificus and Panagrellus redivivus. We show the utility of this integrated approach with the rapid, semiautomated assignment of small molecules differentiating the two species and the identification of spectral regions suggesting the presence of species-specific compounds. These results demonstrate that the combination of 2D NMR spectra with full-resolution statistical analysis provides a platform for chemical and

  1. Optimal mapping of x-ray laser diffraction patterns into three dimensions using routing algorithms

    NASA Astrophysics Data System (ADS)

    Kassemeyer, Stephan; Jafarpour, Aliakbar; Lomb, Lukas; Steinbrener, Jan; Martin, Andrew V.; Schlichting, Ilme

    2013-10-01

    Coherent diffractive imaging with x-ray free-electron lasers (XFEL) promises high-resolution structure determination of noncrystalline objects. Randomly oriented particles are exposed to XFEL pulses for acquisition of two-dimensional (2D) diffraction snapshots. The knowledge of their orientations enables 3D imaging by multiview reconstruction, combining 2D diffraction snapshots in different orientations. Here we introduce a globally optimal algorithm that can infer these orientations. We apply it to experimental XFEL data of nanoparticles and so determine their 3D electron density.

  2. 2D pair distribution function analysis of anisotropic small-angle scattering patterns from elongated nano-composite hydrogels.

    PubMed

    Nishi, Kengo; Shibayama, Mitsuhiro

    2017-03-01

    Small angle scattering (SAS) on polymer nanocomposites under elongation or shear flow is an important experimental method to investigate the reinforcement effects of the mechanical properties by fillers. However, the anisotropic scattering patterns that appear in SAS are very complicated and difficult to interpret. A representative example is a four-spot scattering pattern observed in the case of polymer materials containing silica nanoparticles, the origin of which is still in debate because of the lack of quantitative analysis. The difficulties in the interpretation of anisotropic scattering patterns mainly arise from the abstract nature of the reciprocal space. Here, we focus on the 2D pair distribution function (PDF) directly evaluated from anisotropic scattering patterns. We applied this method to elongated poly(N,N-dimethylacrylamide) gels containing silica nanoparticles (PDAM-NP gel), which show a four-spot scattering pattern under elongation. From 2D PDFs, we obtained detailed and concrete structural information about the elongated PDAM-NP gel, such as affine and non-affine displacements of directly attached and homogeneously dispersed silica nanoparticles, respectively. We proposed that nanoparticles homogeneously dispersed in the perpendicular direction are not displaced due to the collision of the adsorbed polymer layer during elongation, while those in the parallel direction are displaced in an affine way. We assumed that this suppression of the lateral compression is the origin of the four-spot pattern in this study. These results strongly indicate that our 2D PDF analysis will provide deep insight into the internal structure of polymer nanocomposites hidden in the anisotropic scattering patterns.

  3. Translation symmetry of the Fraunhofer diffraction pattern from a polygonal aperture

    SciTech Connect

    Vinogradov, I.R.; Tarlykov, V.A.

    1995-12-01

    The problem of observing the translation symmetry in the Fraunhofer diffraction pattern is treated. The objective of this study is to show that translation symmetry can be observed in the Fraunhofer diffraction pattern if the diffraction aperture can be represented in the form of a set of parallelogram apertures. It is shown that the diffraction field produced by such an aperture can be represented as a system of point sources modulated with an amplitude factor. 10 refs., 2 figs.

  4. Anomalous behaviors of the Fraunhofer diffraction patterns for a class of partially coherent light.

    PubMed

    Pu, Jixiong; Nemoto, Shojiro

    2003-02-24

    In this paper, we investigate the Fraunhofer diffraction of a class of partially coherent light diffracted by a circular aperture. It is shown that by the illumination of partially coherent light of the special spatial correlation function, the anomalous behaviors of the diffraction patterns are found. We find that the decrease of the spatial coherence of the light in the aperture leads to the drastic changes of the diffraction pattern. Specifically, when the light in the aperture is fully coherent, the diffraction pattern is just an Airy disc. However, as the coherence decreases, the diffraction pattern becomes an annulus, and the radius of the annulus increases with the decrease of the coherence. Flattened annuli can be achieved, when the parameters characterizing the correlation of the partially coherent light are chosen with suitable values. Potential applications of modulating the coherence to achieve desired diffraction patterns are discussed.

  5. Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns.

    PubMed

    Bozzola, Angelo; Liscidini, Marco; Andreani, Lucio Claudio

    2012-03-12

    We theoretically investigate the light-trapping properties of one- and two-dimensional periodic patterns etched on the front surface of c-Si and a-Si thin film solar cells with a silver back reflector and an anti-reflection coating. For each active material and configuration, absorbance A and short-circuit current density Jsc are calculated by means of rigorous coupled wave analysis (RCWA), for different active materials thicknesses in the range of interest of thin film solar cells and in a wide range of geometrical parameters. The results are then compared with Lambertian limits to light-trapping for the case of zero absorption and for the general case of finite absorption in the active material. With a proper optimization, patterns can give substantial absorption enhancement, especially for 2D patterns and for thinner cells. The effects of the photonic patterns on light harvesting are investigated from the optical spectra of the optimized configurations. We focus on the main physical effects of patterning, namely a reduction of reflection losses (better impedance matching conditions), diffraction of light in air or inside the cell, and coupling of incident radiation into quasi-guided optical modes of the structure, which is characteristic of photonic light-trapping.

  6. Phenols content and 2-D electrophoresis protein pattern: a promising tool to monitor Posidonia meadows health state

    PubMed Central

    Migliore, Luciana; Rotini, Alice; Randazzo, Davide; Albanese, Nadia N; Giallongo, Agata

    2007-01-01

    Background The endemic seagrass Posidonia oceanica (L.) Delile colonizes soft bottoms producing highly productive meadows that play a crucial role in coastal ecosystems dynamics. Human activities and natural events are responsible for a widespread meadows regression; to date the identification of "diagnostic" tools to monitor conservation status is a critical issue. In this study the feasibility of a novel tool to evaluate ecological impacts on Posidonia meadows has been tested. Quantification of a putative stress indicator, i.e. phenols content, has been coupled to 2-D electrophoretic protein analysis of rhizome samples. Results The overall expression pattern from Posidonia rhizome was determined using a preliminary proteomic approach, 437 protein spots were characterized by pI and molecular weight. We found that protein expression differs in samples belonging to sites with high or low phenols: 22 unique protein spots are peculiar of "low phenols" and 27 other spots characterize "high phenols" samples. Conclusion Posidonia showed phenols variations within the meadow, that probably reflect the heterogeneity of environmental pressures. In addition, comparison of the 2-D electrophoresis patterns allowed to highlight qualitative protein expression differences in response to these pressures. These differences may account for changes in metabolic/physiological pathways as adaptation to stress. A combined approach, based on phenols content determination and 2-D electrophoresis protein pattern, seems a promising tool to monitor Posidonia meadows health state. PMID:17663776

  7. 2D spatially controlled polymer micro patterning for cellular behavior studies

    NASA Astrophysics Data System (ADS)

    Dinca, V.; Palla-Papavlu, A.; Paraico, I.; Lippert, T.; Wokaun, A.; Dinescu, M.

    2011-04-01

    A simple and effective method to functionalize glass surfaces that enable polymer micropatterning and subsequent spatially controlled adhesion of cells is reported in this paper. The method involves the application of laser induced forward transfer (LIFT) to achieve polymer patterning in a single step onto cell repellent substrates (i.e. polyethyleneglycol (PEG)). This approach was used to produce micron-size polyethyleneimine (PEI)-patterns alternating with cell-repellent areas. The focus of this work is the ability of SH-SY5Y human neuroblastoma cells to orient, migrate, and produce organized cellular arrangements on laser generated PEI patterns.

  8. Single-Slit Diffraction Pattern of a Thermal Atomic Potassium Beam

    ERIC Educational Resources Information Center

    Leavitt, John A.; Bills, Francis A.

    1969-01-01

    The diffraction of a full thermal atomic potassium beam by a single slit was observed. Four experimental diffraction patterns were compared with that predicted by de Brogtie's hypothesis and simple scalar Fresnel diffraction theory. Possible reasons for the differences were discussed. (LC)

  9. Quantification and geometric analysis of coiling patterns in gastropod shells based on 3D and 2D image data.

    PubMed

    Noshita, Koji

    2014-12-21

    The morphology of gastropod shells has been a focus of analyses in ecology and evolution. It has recently emerged as an important issue in developmental biology, thanks to recent advancements in molecular biological techniques. The growing tube model is a theoretical morphological model for describing various coiling patterns of molluscan shells, and it is a useful theoretical tool to relate local tissue growth with global shell morphology. However, the growing tube model has rarely been adopted in empirical research owing to the difficulty in estimating the parameters of the model from morphological data. In this article, I solve this problem by developing methods of parameter estimation when (1) 3D Computed Tomography (CT) data are available and (2) only 2D image data (such as photographs) are available. When 3D CT data are available, the parameters can be estimated by fitting an analytical solution of the growing tube model to the data. When only 2D image data are available, we first fit Raup׳s model to the 2D image data and then convert the parameters of Raup׳s model to those of the growing tube model. To illustrate the use of these methods, I apply them to data generated by a computer simulation of the model. Both methods work well, except when shells grow without coiling. I also demonstrate the effectiveness of the methods by applying the model to actual 3D CT data and 2D image data of land snails. I conclude that the method proposed in this article can reconstruct the coiling pattern from observed data.

  10. Film flows and self-organized patterns of 2D-localized structures

    SciTech Connect

    Frenkel, A.L.

    1996-12-31

    Films flowing down an inclined plane are considered. An unconventional perturbation approach is discussed. It yields the most general evolution equation for film thickness and the least restrictive conditions for its validity. Results of numerical simulations of the dissipative-dispersive evolution equation indicate that novel, more complex type of spatiotemporal patterns can exist for strange attractors of nonequilibrium systems. It is suggested that real-life experiments satisfying the validity conditions of this theory are possible.

  11. Diffraction pattern by rotated conical tracks in solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Stevanovic, N.; Markovic, V. M.

    2016-06-01

    The method for determination of diffraction pattern for irregular 3D objects with application on rotated conical tracks in solid state nuclear track detector (SSNTD) wasdescribed in this paper. The model can be applied for different types of the diffraction (Fresnel, Fraunhofer) and arbitrary shapes of the obstacle. By applying the developed model on conical tracks it was fond that diffraction pattern strongly depends from radius, length and rotation angle of the conical tracks. These dependences were investigated in this paper and results can be applied for determination of inner tracks structure via diffraction pattern.

  12. On the problem of the diffraction pattern visibility in laser diffractometry of red blood cells

    SciTech Connect

    Nikitin, Sergei Yu; Lugovtsov, Andrei E; Priezzhev, A V

    2011-01-24

    We consider the problem of the visibility of the diffraction pattern that is observed in scattering laser radiation on the erythrocyte suspension in ectacytometer. The theoretical estimates show that 10% variation in the particle size reduces the diffraction pattern visibility by 1% only. (application of lasers and laser-optical methods in life sciences)

  13. Multi-field electron emission pattern of 2D emitter: Illustrated with graphene

    NASA Astrophysics Data System (ADS)

    Luo, Ma; Li, Zhibing

    2016-11-01

    The mechanism of laser-assisted multi-field electron emission of two-dimensional emitters is investigated theoretically. The process is basically a cold field electron emission but having more controllable components: a uniform electric field controls the emission potential barrier, a magnetic field controls the quantum states of the emitter, while an optical field controls electron populations of specified quantum states. It provides a highly orientational vacuum electron line source whose divergence angle over the beam plane is inversely proportional to square root of the emitter height. Calculations are carried out for graphene with the armchair emission edge, as a concrete example. The rate equation incorporating the optical excitation, phonon scattering, and thermal relaxation is solved in the quasi-equilibrium approximation for electron population in the bands. The far-field emission patterns, that inherit the features of the Landau bands, are obtained. It is found that the optical field generates a characteristic structure at one wing of the emission pattern.

  14. Directional 2D functions as models for fast layout pattern transfer verification

    NASA Astrophysics Data System (ADS)

    Torres, J. Andres; Hofmann, Mark; Otto, Oberdan

    2009-03-01

    As advanced manufacturing processes become more stable, the need to adapt new designs to fully utilize the available manufacturing technology becomes a key technologic differentiator. However, many times such gains can only be realized and evaluated during full chip analysis. It has been demonstrated that the most accurate layout verification methods require application of the actual OPC recipes along with most of the mask data preparation that defines the pattern transfer characteristics of the process. Still, this method in many instances is not sufficiently fast to be used in a layout creation environment which undergoes constant updates. By doing an analysis of typical mask data processing, it is possible to determine that the most CPUintensive computations are the OPC and contour simulation steps needed to perform layout printability checks. Several researchers have tried to reduce the time it takes to compute the OPC mask by introducing matrix convolutions of the layout with empirically calibrated two-dimensional functions. However, most of these approaches do not provide a sufficient speed-up since they only replace the OPC computation and still require a full contour computation. Another alternative is to try to find effective ways of pattern matching those topologies that will exhibit transfer difficulties4, but such methods lack the ability to be predictive beyond their calibration data. In this paper we present a methodology that includes common resolution enhancement techniques, such as retargeting and sub-resolution assist feature insertion, and which replaces the OPC computation and subsequent contour calculation with an edge bias function based on an empirically-calibrated, directional, two-dimensional function. Because the edge bias function does not provide adequate control over the corner locations, a spline-based smoothing process is applied. The outcome is a piecewise-linear curve similar to those obtained by full lithographic simulations. Our

  15. Edge diffracted caustic fields. [spacecraft antenna radiation patterns

    NASA Technical Reports Server (NTRS)

    Burnside, W. D.; Peters, L., Jr.

    1974-01-01

    The fields near a caustic created by an edge diffraction process are computed using the equivalent current concept. These fields are shown to have the property commonly associated with ray optical analysis or the Geometrical Theory of Diffraction (GTD), e.g., a 90 deg phase shift as the ray passes through the caustic. The present effort is directed toward consideration of the caustic created by an edge diffraction process. Particular attention is focused on electromagnetic excitation. The acoustic excitation for the hard boundary condition is outlined in an appendix. In addition, goal is to establish the extent of the caustic region. This is of particular importance when a ray optical solution involves multiply-diffracted terms in that the minimum size of the body that can be analyzed may be restricted by the extent of the caustic, i.e., the 90 deg phase shift used in ray optical analysis may be introduced only if the caustic is contained on the surface being studied.

  16. Critical-current diffraction patterns of grain-boundary Josephson weak links

    SciTech Connect

    Peterson, R.L.; Ekin, J.W. )

    1990-11-01

    We discuss the diffraction patterns and other characteristics of the critical current as a function of magnetic field in grain-boundary Josephson barriers. Diffraction patterns occur not just for {ital SIS} junctions but for all types of Josephson links, including {ital SNS} junctions, which may be present at grain boundaries in high-{Tc} superconductors. We discuss the generality of the Airy diffraction pattern, which is expected to characterize grain-boundary barriers in bulk material more accurately than the Fraunhofer pattern. The transport critical-current density in many bulk, granular high-{ital T}{sub {ital c}} superconductors has a power-law dependence on very low magnetic fields, characteristic of averaged diffraction patterns, and cannot be fitted by an exponential magnetic-field dependence, which may result from the material properties of the barriers.

  17. Diffractive patterns superimposed over propagating N-slit interferograms

    NASA Astrophysics Data System (ADS)

    Duarte, F. J.; Taylor, T. S.; Black, A. M.; Olivares, I. E.

    2013-01-01

    Transparent, microscopic spider web silk fibers were used to softly intrude into the propagating path of N-slit interferograms. The resulting interferograms, with superimposed diffractive signals, were recorded using digital means and reproduced using N-slit interferometric calculations. We also show, for the first time, very slight and subtle alterations of the propagating interferograms via the soft insertion of spider web silk fibers into the intra-interferometric path. The experiments were performed at an overall intra-interferometric propagation path length of 7.235 m.

  18. Computer simulations of the X-ray diffraction patterns of imperfect Al/Nb superlattices

    NASA Astrophysics Data System (ADS)

    Baumann, J. R.; Liebemann, E.; Simon, M.; Bucher, E.

    In order to obtain more structural details from X-ray diffraction (XRD) patterns of metallic multilayers we developed a simulation program for XRD patterns of Al/Nb multilayers. We followed the theory of an imperfect one-dimensional superlattice described by Z. Mitura and P. Mikolajczak. Computer simulated patterns are compared with experimentally obtained XRD spectra.

  19. Powder x ray diffraction patterns of energetic materials for use as reference standards

    NASA Astrophysics Data System (ADS)

    Sullenger, D. B.; Cantrell, J. S.; Beiter, T. A.

    1993-03-01

    This report lists eighteen quality powder x-ray diffraction patterns produced at Mound for various explosives of recent and current interest. In each case the best possible experimental pattern, obtained from the substance in question via automated diffractometric step-scans, was compared with the corresponding pattern, calculated from the lattice and atomic positional parameters of the crystal structure, if known, and a reconciliation sought between the two was sought. In order to make these patterns more useful to various types of practitioners, previously published patterns for these substances have been included, together with a brief description of their crystallographies, some Chemical Abstracts reference information about them, and an evaluation of their quality via accepted powder diffraction criteria. Most of these patterns have been accepted by the International Center for Diffraction Data for inclusion in their Powder Data File; the others will be submitted in due course.

  20. Elliptical Bessel-like diffraction pattern produced by circular apertures with different radius

    NASA Astrophysics Data System (ADS)

    Andrés-Zárate, Esteban; Angulo-Córdova, Quintiliano; Hernández-Nolasco, J. Adán.; Gutiérrez-Tepach, Gerardo; Treviño-Palacios, Carlos Gerardo

    2013-11-01

    We present the results of the amplitude diffraction pattern produced by two circular apertures. It was found that on the Fraunhofer plane there are is a diffraction pattern with an elliptical geometry with a Bessel-like spatial distribution modulated by Young fringes. The model was experimentally confirmed using circular apertures illuminated with a Helium-Neon laser and propagating to either the divergent Fresnel zone and the Fraunhofer plane using an achromatic cemented doublet as transforming lens.

  1. On the origin of sharp peaks in the X-ray diffraction patterns of xanthan powders.

    PubMed

    Lad, M; Todd, T; Morris, G A; MacNaughtan, W; Sworn, G; Foster, T J

    2013-08-15

    A series of xanthans containing different levels of the charged group pyruvate has been examined. The X-ray diffraction patterns of the powders of these materials had different levels of a sharp pattern superimposed on an amorphous background. As the moisture content increased so the intensity of the sharp pattern increased up to a level between 20% and 40% moisture content where the sharp pattern disappeared. X-ray diffraction pattern identification software and an inorganic X-ray diffraction database showed the origin of the sharp peaks to be due to sodium sulphate polymorphs. The behaviour of the xanthans was thought to be due to the differences in charge on the molecule; however, the increase in the crystalline component observed with increased amounts of water was unexpected. The possibility of the drying of samples was considered but the interplay between ions, the charged polymer and the water present was considered necessary to more closely describe the results.

  2. An Approach to Model Neutron Diffraction Pattern of Uniaxial Deformed Sandstone Using Elastic Properties of Quartz

    NASA Astrophysics Data System (ADS)

    Breuer, S.; Schilling, F. R.; Mueller, B.; Scheffzuek, C.

    2015-12-01

    Mechanical properties of sedimentary rocks such as stress-strain-relations are essential for understanding dynamic processes within the Earth's crust. The measurement of in-situ lattice strain in bulk samples is possible with diffraction methods, e.g. with neutrons. The advantage of neutron diffraction is their high penetration depth, which enables to gather a statistically relevant number of grains by diffraction. The neutron time-of-flight diffraction at the strain diffractometer EPSILON which is located at the pulsed neutron source IBR-2M (JINR Dubna, RUS) enables the detection of the complete diffraction pattern up to λ = 7.1 Å (d = 5.1 Å). Uniaxial cyclic deformation experiments were carried out up to 50 MPa (three steps) on a macroscopically isotropic sandstone from Kuhbach / Lahr (Germany). The aim of the present study is to model diffraction patterns for different applied stress-levels, based on the zero-stress diffraction pattern and known elastic properties of Quartz single crystals. The as received model-predictions are compared to observations, both, in the direction of maximum stress (along the cylindric axis) and perpendicular to it. The results show that the shape of the grains has an influence on the macroscopic elastic behavior of the rock whereas the microscopic strain is affected in a different manner. The model is based on spherical quartz grains. The spheres are divided into slices. By removing some slices, the shape of sand grains is approximated. The reaction of each slice through the applied stress is modelled. Together with the relative volume of each slice and it´s elastic behavior, the diffraction pattern is predicted for different applied loads. Measured and modelled diffraction-patterns at different applied loads are in good agreement.

  3. Immobilization of biomolecules onto surfaces according to ultraviolet light diffraction patterns

    SciTech Connect

    Bjoern Petersen, Steffen; Kold di Gennaro, Ane; Neves-Petersen, Maria Teresa; Skovsen, Esben; Parracino, Antonietta

    2010-10-01

    We developed a method for immobilization of biomolecules onto thiol functionalized surfaces according to UV diffraction patterns. UV light-assisted molecular immobilization proceeds through the formation of free, reactive thiol groups that can bind covalently to thiol reactive surfaces. We demonstrate that, by shaping the pattern of the UV light used to induce molecular immobilization, one can control the pattern of immobilized molecules onto the surface. Using a single-aperture spatial mask, combined with the Fourier transforming property of a focusing lens, we show that submicrometer (0.7 {mu}m) resolved patterns of immobilized prostate-specific antigen biomolecules can be created. If a dual-aperture spatial mask is used, the results differ from the expected Fourier transform pattern of the mask. It appears as a superposition of two diffraction patterns produced by the two apertures, with a fine structured interference pattern superimposed.

  4. Computer-based classification of bacteria species by analysis of their colonies Fresnel diffraction patterns

    NASA Astrophysics Data System (ADS)

    Suchwalko, Agnieszka; Buzalewicz, Igor; Podbielska, Halina

    2012-01-01

    In the presented paper the optical system with converging spherical wave illumination for classification of bacteria species, is proposed. It allows for compression of the observation space, observation of Fresnel patterns, diffraction pattern scaling and low level of optical aberrations, which are not possessed by other optical configurations. Obtained experimental results have shown that colonies of specific bacteria species generate unique diffraction signatures. Analysis of Fresnel diffraction patterns of bacteria colonies can be fast and reliable method for classification and recognition of bacteria species. To determine the unique features of bacteria colonies diffraction patterns the image processing analysis was proposed. Classification can be performed by analyzing the spatial structure of diffraction patterns, which can be characterized by set of concentric rings. The characteristics of such rings depends on the bacteria species. In the paper, the influence of basic features and ring partitioning number on the bacteria classification, is analyzed. It is demonstrated that Fresnel patterns can be used for classification of following species: Salmonella enteritidis, Staplyococcus aureus, Proteus mirabilis and Citrobacter freundii. Image processing is performed by free ImageJ software, for which a special macro with human interaction, was written. LDA classification, CV method, ANOVA and PCA visualizations preceded by image data extraction were conducted using the free software R.

  5. Warm ionized gas in CALIFA early-type galaxies. 2D emission-line patterns and kinematics for 32 galaxies

    NASA Astrophysics Data System (ADS)

    Gomes, J. M.; Papaderos, P.; Kehrig, C.; Vílchez, J. M.; Lehnert, M. D.; Sánchez, S. F.; Ziegler, B.; Breda, I.; Dos Reis, S. N.; Iglesias-Páramo, J.; Bland-Hawthorn, J.; Galbany, L.; Bomans, D. J.; Rosales-Ortega, F. F.; Cid Fernandes, R.; Walcher, C. J.; Falcón-Barroso, J.; García-Benito, R.; Márquez, I.; Del Olmo, A.; Masegosa, J.; Mollá, M.; Marino, R. A.; González Delgado, R. M.; López-Sánchez, Á. R.; CALIFA Collaboration

    2016-04-01

    traces of localized star formation in the extranuclear component of several of our sample galaxies points to a non-negligible contribution by OB stars to the global ionizing photon budget in ETGs. Additionally, our data again highlight the diversity of ETGs in their gaseous and stellar kinematics. While in one half of our sample, gas and stars show similar (yet not necessarily identical) velocity patterns that are both dominated by rotation along the major galaxy axis, our analysis also documents several cases of kinematical decoupling between gas and stars, or rotation along the minor galaxy axis. We point out that the generally very low (≲1 Å) EW(Hα) of ETGs requires a careful quantitative assessment of potential observational and analysis biases in studies of their wim. With standard emission-line fitting tools, Balmer emission lines become progressively difficult to detect below an EW(Hα) ~ 3 Å, therefore our current understanding of the presence and 2D emission patterns and kinematics of the diffuse wim ETGs may be severely incomplete. We demonstrate that at the typical emission-line detection threshold of ~2 Å in previous studies, most of the extranuclear wim emission in an ETG may evade detection, which could in turn cause ETGs to be classified as entirely gas-devoid systems. Conclusions: This study adds further observational evidence for a considerable heterogeneity among ETGs with regard to the physical properties and 2D kinematics of their extended wim component, and it clearly shows that a comprehensive understanding of these systems requires IFS studies over their entire optical extent.

  6. The far field diffraction pattern for corner reflectors with complex reflection coefficients

    NASA Technical Reports Server (NTRS)

    Chang, R. F.; Currie, D. G.; Alley, C. O.; Pittman, M. E.

    1970-01-01

    The far field diffraction pattern of a geometrically perfect corner reflector is examined analytically for normally incident monochromatic light. The states of polarization and the complex amplitudes of the emerging light are expressed through transformation matrices in terms of those of the original incident light for each sextant of the face in a single coordinate system. The analytic expression of the total diffraction pattern is obtained for a circular face. This expression consists of three component functions in addition to the basic Airy function. The coefficient of each function is expressed in terms of complex coefficients of reflectance of the reflecting surface. Some numerical results for different reflecting surfaces, including total internal reflection, are presented. The iso-intensity contours of the diffraction pattern evaluated from the analytical expressions for an uncoated solid corner reflector are also presented along with the photographs of the pattern.

  7. Divide and Conquer Approach to Contact Map Overlap Problem Using 2D-Pattern Mining of Protein Contact Networks.

    PubMed

    Koneru, Suvarna Vani; Bhavani, Durga S

    2015-01-01

    A novel approach to Contact Map Overlap (CMO) problem is proposed using the two dimensional clusters present in the contact maps. Each protein is represented as a set of the non-trivial clusters of contacts extracted from its contact map. The approach involves finding matching regions between the two contact maps using approximate 2D-pattern matching algorithm and dynamic programming technique. These matched pairs of small contact maps are submitted in parallel to a fast heuristic CMO algorithm. The approach facilitates parallelization at this level since all the pairs of contact maps can be submitted to the algorithm in parallel. Then, a merge algorithm is used in order to obtain the overall alignment. As a proof of concept, MSVNS, a heuristic CMO algorithm is used for global as well as local alignment. The divide and conquer approach is evaluated for two benchmark data sets that of Skolnick and Ding et al. It is interesting to note that along with achieving saving of time, better overlap is also obtained for certain protein folds.

  8. Effect of microfibril twisting on theoretical powder diffraction patterns of cellulose Iβ

    PubMed

    Hadden, Jodi A; French, Alfred D; Woods, Robert J

    2014-04-01

    Previous studies of calculated diffraction patterns for cellulose crystallites suggest that distortions that arise once models have been subjected to MD simulation are the result of both microfibril twisting and changes in unit cell dimensions induced by the empirical force field; to date, it has not been possible to separate the individual contributions of these effects. To provide a better understanding of how twisting manifests in diffraction data, the present study demonstrates a method for generating twisted and linear cellulose structures that can be compared without the bias of dimensional changes, allowing assessment of the impact of twisting alone. Analysis of unit cell dimensions, microfibril volume, hydrogen bond patterns, glycosidic torsion angles, and hydroxymethyl group orientations confirmed that the twisted and linear structures collected with this method were internally consistent, and theoretical powder diffraction patterns for the two were shown to be effectively indistinguishable. These results indicate that differences between calculated patterns for the crystal coordinates and twisted structures from MD simulation can result entirely from changes in unit cell dimensions, and not from microfibril twisting alone. Although powder diffraction patterns for models in the 81-chain size regime were shown to be unaffected by twisting, suggesting that a modest degree of twist is not inconsistent with experimental data, it may be that other diffraction techniques are capable of detecting this structural difference. Until such time as definitive experimental evidence comes to light, the results of this study suggest that both twisted and linear microfibrils may represent an appropriate model for cellulose Iβ.

  9. Phase retrieval from a single near-field diffraction pattern with a large Fresnel number.

    PubMed

    Li, Enrong; Liu, Yijin; Liu, Xiaosong; Zhang, Kai; Wang, Zhili; Hong, Youli; Yuan, Qingxi; Huang, Wanxia; Marcelli, Augusto; Zhu, Peiping; Wu, Ziyu

    2008-11-01

    A new method of phase retrieval from a single near-field diffraction image with a large Fresnel number is presented and discussed. This method requires only the oversampled diffraction pattern without any other information such as the object envelope. Moreover, we show that the combination with a fast computational method is possible when the linear oversampling ratio is an integer. Numerical simulations are also presented, showing that the method works well with noisy data.

  10. Diffraction patterns from holographic masks generated using combined axicon and helical phase distributions

    NASA Astrophysics Data System (ADS)

    Mihailescu, M.; Preda, L.; Kusko, C.; Scarlat, E. I.

    2015-02-01

    The diffraction patterns (DPs) from helical phase distributions were intensively studied due to their peculiar capability of carrying orbital angular momentum. In the present study, we investigated the combination between a helical phase distribution and another distribution: axicon in our case. Such phase distributions were digitally embedded into holographic masks (HMs). The reconstruction step is performed by simulating the propagation through these HMs, using scalar diffraction theory, Fraunhofer approximation. The spatial intensity arrangement of the DPs is investigated linked with the radial and azimuthal constructive parameters values of the diffractive phase structures embedded in the HMs and transferred in these DPs. Keywords: helical phase distribution

  11. X-Ray Diffraction Techniques for a Field Instrument: Patterns of Lithologic Provences

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Keaten, R.

    1999-01-01

    Future exploration of Mars will attempt to shed light on the mineralogy of surface materials. Instruments deployed from remote platforms should have the capability to conduct both intensive analyses as well as rapid, reconnaissance surveys while they function in the martian environment as surrogate geologists. In order to accommodate the reconnaissance mode of analysis and to compensate for analytical limitations imposed by the space-flight conditions, data analysis methods are being developed that will permit interpretation of data by recognition of signatures or "fingerprints". Specifically, we are developing a technique which will allow interpretation of diffraction patterns by recognition of characteristic signatures of different lithologic provences. This technique allows a remote vehicle to function in a rapid-scan mode using the lithologic signature to determine where a more thorough analysis is needed. An x-ray diffraction pattern is characterized by the angular positions of diffracted x-rays, x-ray intensity levels and background radiation levels. These elements may be used to identify a generalized x-ray signature. Lithologic signatures are being developed in two ways. A signature is composed using the ideal powder diffraction indices from the mineral assembledge common to a specific lithologic provence. This is then confirmed using a laboratory diffraction pattern of a whole rock powder. Preliminary results comparing the diffraction signatures of the major mineral assembledges common to basalt, carbonate, and evaporite basin deposits indicate that lithologies are differentiable as a "fingerprint". Statistical analyses are being performed to establish the confidence levels of this technique.

  12. Cell patterning via diffraction-induced optoelectronic dielectrophoresis force on an organic photoconductive chip.

    PubMed

    Yang, Shih-Mo; Tseng, Sheng-Yang; Chen, Hung-Po; Hsu, Long; Liu, Cheng-Hsien

    2013-10-07

    A laser diffraction-induced dielectrophoresis (DEP) phenomenon for the patterning and manipulation of individual HepG2 cells and polystyrene beads via positive/negative DEP forces is reported in this paper. The optoelectronic substrate was fabricated using an organic photoconductive material, TiOPc, via a spin-coating process on an indium tin oxide glass surface. A piece of square aperture array grid grating was utilized to transform the collimating He-Ne laser beam into the multi-spot diffraction pattern which forms the virtual electrodes as the TiOPc-coating surface was illuminated by the multi-spot diffraction light pattern. HepG2 cells were trapped at the spot centers and polystyrene beads were trapped within the dim region of the illuminated image. The simulation results of light-induced electric field and a Fresnel diffraction image illustrated the distribution of trapped microparticles. The HepG2 morphology change, adhesion, and growth during a 5-day culture period demonstrated the cell viability through our manipulation. The power density inducing DEP phenomena, the characteristics of the thin TiOPc coating layer, the operating ac voltage/frequency, the sandwiched medium, the temperature rise due to the ac electric fields and the illuminating patterns are discussed in this paper. This concept of utilizing laser diffraction images to generate virtual electrodes on our TiOPc-based optoelectronic DEP chip extends the applications of optoelectronic dielectrophoretic manipulation.

  13. Theoretical Fraunhofer light diffraction patterns calculated from three-dimensional sarcomere arrays imaged from isolated cardiac cells at rest.

    PubMed

    Roos, K P; Leung, A F

    1987-08-01

    Sarcomere striation positions have been obtained throughout the volumes of calcium-tolerant resting heart cells by direct computer interfaced high-resolution optical imaging. Each sarcomere position is stored in a three-dimensional (3-D) matrix array from which Fraunhofer light diffraction patterns have been calculated using numerical methods based on Fourier transforms. Diffraction patterns have been calculated from heart cell data arrays oriented normal to a theoretical laser beam. Twelve characteristic features have been identified and described from these diffraction patterns that correlate to diffraction phenomena observed from both cardiac and skeletal muscle. This numerical approach provides the means to directly assess diffraction pattern formulation, the precision of layer line angular separation, layer-line intensity and angular asymmetries, line widths and fine structures in terms of the known diffracting source structures. These results confirm that theoretical calculations can predict real muscle diffraction patterns and their asymmetries.

  14. Information storage and retrieval for probe storage using optical diffraction patterns

    NASA Astrophysics Data System (ADS)

    van Honschoten, Joost W.; de Jong, Henri W.; Koelmans, Wabe W.; Parnell, Thomas P.; Zaboronski, Oleg

    2011-11-01

    A method for fast information retrieval from a probe storage device is considered. It is shown that information can be stored and retrieved using the optical diffraction patterns obtained by the illumination of a large array of cantilevers by a monochromatic light source. In thermo-mechanical probe storage, the information is stored as a sequence of indentations on the polymer medium. To retrieve the information, the array of probes is actuated by applying a bending force to the cantilevers. Probes positioned over indentations experience deflection by the depth of the indentation, probes over the flat media remain un-deflected. Thus the array of actuated probes can be viewed as an irregular optical grating, which creates a data-dependent diffraction pattern when illuminated by laser light. We develop a low complexity modulation scheme, which allows the extraction of information stored in the pattern of indentations on the media from Fourier coefficients of the intensity of the diffraction pattern. We then derive a low-complexity maximum-likelihood sequence detection algorithm for retrieving the user information from the Fourier coefficients. The derivation of both the modulation and the detection schemes is based on the Fraunhofer formula for data-dependent diffraction patterns. The applicability of Fraunhofer diffraction theory to the optical set-up relevant for probe storage is established both theoretically and experimentally. We confirm the potential of the optical readout technique by demonstrating that the impairment characteristics of probe storage channels (channel noise, global positioning errors, small indentation depth) do not lead to an unacceptable increase in data recovery error rates. We also show that for as long as the Fresnel number F ≤ 0.1, the optimal channel detector derived from Fraunhofer diffraction theory does not suffer any significant performance degradation.

  15. PCED2.0--a computer program for the simulation of polycrystalline electron diffraction pattern.

    PubMed

    Li, X Z

    2010-03-01

    A computer program for the simulation of polycrystalline electron diffraction patterns is described. PCED2.0, an upgraded version of the previous JECP/PCED, can be used as a teaching aid and research tool for phase identification, microstructure texture analysis, and phase fraction determination. In addition to kinematical theory for diffraction intensity calculation of polycrystalline samples, Blackman two-beam dynamical correction is included. March model is used for out-of-plane and in-plane texture simulation. A pseudo-Voigt function is used for the peak profile fitting of diffraction rings. User-friendly interface is improved in the handling of experimental diffraction data and the flexibility of indexing. Application of the program for the analysis of FePt thin films is given as an example.

  16. Determination of the absolute configuration of (-)-(2R)-succinic-2-d acid by neutron diffraction study: Unambiguous proof of the absolute stereochemistry of the NAD/sup +//NADH interconversion

    SciTech Connect

    Yuan, H.S.H.; Stevens, R.C.; Fujita, S.; Watkins, M.I.; Koetzle, T.F.; Bau, R.

    1988-05-01

    The absolute configuration of the CHD group (D = deuterium) in (-)-(2R)-succinic-2-d acid, as prepared from (-)-(2S,3R)-malic-3-d acid, has been shown unambiguously to be R by the technique of single-crystal neutron diffraction. The optically active cation (+)-phenylethylammonium was used as the chiral reference. The structure of (C/sub 6/H/sub 5/CH/sub 3/CHNH/sub 3/)/sup +/(HOOCCH/sub 2/CHDCOOO)/sup -/ has been studied with x-ray diffraction at room temperature and neutron diffraction at room temperature and neutron diffraction at 100 K. Crystal data from the neutron diffraction analysis of the phenylethylammonium slat of the title compound at 100 K: space group P2/sub 1/; a = 8.407 /angstrom/, b = 8.300 /angstrom/, c = 8.614 /angstrom/, ..beta.. = 91.20/degrees/; unit cell volume = 600.9 /angstrom//sup 3/, Z = 2. The result confirms the stereochemistry of the malate/succinate transformation, as well as the NAD/sup +//NADH interconversion, and demonstrates the usefulness of the single-crystal neutron diffraction method for determining the absolute configuration of molecules having a chiral monodeuteriomethylene group.

  17. Projection of diffraction patterns for use in cold-neutral-atom trapping

    SciTech Connect

    Gillen-Christandl, Katharina; Gillen, Glen D.

    2010-12-15

    Scalar diffraction theory is combined with beam-propagation techniques to investigate the projection of near-field diffraction patterns to spatial locations away from the aperture for use in optically trapping cold neutral alkali-metal atoms. Calculations show that intensity distributions with localized bright and dark spots usually found within a millimeter of the diffracting aperture can be projected to a region free from optical components such as a cloud of cold atoms within a vacuum chamber. Calculations also predict that the critical properties of the optical dipole atom traps are not only maintained for the projected intensity patterns but also can be manipulated and improved by adjustment of the optical components outside the vacuum chamber.

  18. Indexing amyloid peptide diffraction from serial femtosecond crystallography: new algorithms for sparse patterns

    SciTech Connect

    Brewster, Aaron S.; Sawaya, Michael R.; Rodriguez, Jose; Hattne, Johan; Echols, Nathaniel; McFarlane, Heather T.; Cascio, Duilio; Adams, Paul D.; Eisenberg, David S.; Sauter, Nicholas K.

    2015-02-01

    Special methods are required to interpret sparse diffraction patterns collected from peptide crystals at X-ray free-electron lasers. Bragg spots can be indexed from composite-image powder rings, with crystal orientations then deduced from a very limited number of spot positions. Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of the Computational Crystallography Toolbox (cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data set from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set of diffraction patterns with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented.

  19. Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances

    DOE PAGES

    Zhang, Yan; Inouye, Hideyo; Crowley, Michael; ...

    2016-10-14

    Intensity simulation of X-ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X-ray diffraction patterns from complex fibrils using atom-type-specific pair-distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair-distance data set. These quantized pair-distance arrays are used with a modified and vectorized Debyemore » formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. As a result, this algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement.« less

  20. Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances

    SciTech Connect

    Zhang, Yan; Inouye, Hideyo; Crowley, Michael; Yu, Leiming; Kaeli, David; Makowski, Lee

    2016-10-14

    Intensity simulation of X-ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X-ray diffraction patterns from complex fibrils using atom-type-specific pair-distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair-distance data set. These quantized pair-distance arrays are used with a modified and vectorized Debye formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. As a result, this algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement.

  1. Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials

    DOE PAGES

    MacDonald, M. J.; Vorberger, J.; Gamboa, E. J.; ...

    2016-06-07

    Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate lattice strains for all initial crystallite orientations, enablingmore » elastic anisotropy and sample texture effects to be modeled directly. Furthermore, the effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.« less

  2. Far-field diffraction patterns of circular sectors and related apertures.

    PubMed

    Urcid, Gonzalo; Padilla, Alfonso

    2005-12-20

    In studies of scalar diffraction theory and experimental practice, the basic geometric shape of a circle is widely used as an aperture. Its Fraunhofer diffraction pattern has a simple mathematical expression easily determined by use of the Fourier-Bessel transform. However, it may require considerable mathematical effort to determine the far-field diffraction patterns of aperture shapes related to the circular geometry. From a computational point of view, the mathematical difficulties posed by other aperture geometries as well as more-general apertures with irregular shapes can be surpassed by means of optical setups or fast numerical algorithms. Unfortunately, no additional insight or information can be obtained from their exclusive application, as would be the case if mathematical formulas were available. The research presented here describes the far-field diffraction patterns of single-sector apertures as well as their extension to double symmetrical sectors and to sector wheels formed by interleaved transparent sectors of equal angular size; in each case, full or annular sectors are considered. The analytic solutions of their far-field amplitude distribution are given here in terms of a series of Bessel functions, some interesting properties are deduced from these solutions, and several examples are provided to illustrate graphically the results obtained from approximate numerical computations. Our results have been verified numerically with the fast-Fourier-transform algorithm and experimentally by means of a spherical wavefront-single-lens Fourier-transform architecture.

  3. Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials

    SciTech Connect

    MacDonald, M. J.; Vorberger, J.; Gamboa, E. J.; Drake, R. P.; Glenzer, S. H.; Fletcher, L. B.

    2016-06-07

    Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate lattice strains for all initial crystallite orientations, enabling elastic anisotropy and sample texture effects to be modeled directly. Furthermore, the effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.

  4. Centimeter Scale Patterned Growth of Vertically Stacked Few Layer Only 2D MoS2/WS2 van der Waals Heterostructure.

    PubMed

    Choudhary, Nitin; Park, Juhong; Hwang, Jun Yeon; Chung, Hee-Suk; Dumas, Kenneth H; Khondaker, Saiful I; Choi, Wonbong; Jung, Yeonwoong

    2016-05-05

    Two-dimensional (2D) van der Waal (vdW) heterostructures composed of vertically-stacked multiple transition metal dichalcogenides (TMDs) such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are envisioned to present unprecedented materials properties unobtainable from any other material systems. Conventional fabrications of these hybrid materials have relied on the low-yield manual exfoliation and stacking of individual 2D TMD layers, which remain impractical for scaled-up applications. Attempts to chemically synthesize these materials have been recently pursued, which are presently limited to randomly and scarcely grown 2D layers with uncontrolled layer numbers on very small areas. Here, we report the chemical vapor deposition (CVD) growth of large-area (>2 cm(2)) patterned 2D vdW heterostructures composed of few layer, vertically-stacked MoS2 and WS2. Detailed structural characterizations by Raman spectroscopy and high-resolution/scanning transmission electron microscopy (HRTEM/STEM) directly evidence the structural integrity of two distinct 2D TMD layers with atomically sharp vdW heterointerfaces. Electrical transport measurements of these materials reveal diode-like behavior with clear current rectification, further confirming the formation of high-quality heterointerfaces. The intrinsic scalability and controllability of the CVD method presented in this study opens up a wide range of opportunities for emerging applications based on the unconventional functionalities of these uniquely structured materials.

  5. Centimeter Scale Patterned Growth of Vertically Stacked Few Layer Only 2D MoS2/WS2 van der Waals Heterostructure

    NASA Astrophysics Data System (ADS)

    Choudhary, Nitin; Park, Juhong; Hwang, Jun Yeon; Chung, Hee-Suk; Dumas, Kenneth H.; Khondaker, Saiful I.; Choi, Wonbong; Jung, Yeonwoong

    2016-05-01

    Two-dimensional (2D) van der Waal (vdW) heterostructures composed of vertically-stacked multiple transition metal dichalcogenides (TMDs) such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are envisioned to present unprecedented materials properties unobtainable from any other material systems. Conventional fabrications of these hybrid materials have relied on the low-yield manual exfoliation and stacking of individual 2D TMD layers, which remain impractical for scaled-up applications. Attempts to chemically synthesize these materials have been recently pursued, which are presently limited to randomly and scarcely grown 2D layers with uncontrolled layer numbers on very small areas. Here, we report the chemical vapor deposition (CVD) growth of large-area (>2 cm2) patterned 2D vdW heterostructures composed of few layer, vertically-stacked MoS2 and WS2. Detailed structural characterizations by Raman spectroscopy and high-resolution/scanning transmission electron microscopy (HRTEM/STEM) directly evidence the structural integrity of two distinct 2D TMD layers with atomically sharp vdW heterointerfaces. Electrical transport measurements of these materials reveal diode-like behavior with clear current rectification, further confirming the formation of high-quality heterointerfaces. The intrinsic scalability and controllability of the CVD method presented in this study opens up a wide range of opportunities for emerging applications based on the unconventional functionalities of these uniquely structured materials.

  6. Time-resolved measurements with streaked diffraction patterns from electrons generated in laser plasma wakefield

    NASA Astrophysics Data System (ADS)

    He, Zhaohan; Nees, John; Hou, Bixue; Krushelnick, Karl; Thomas, Alec; Beaurepaire, Benoît; Malka, Victor; Faure, Jérôme

    2013-10-01

    Femtosecond bunches of electrons with relativistic to ultra-relativistic energies can be robustly produced in laser plasma wakefield accelerators (LWFA). Scaling the electron energy down to sub-relativistic and MeV level using a millijoule laser system will make such electron source a promising candidate for ultrafast electron diffraction (UED) applications due to the intrinsic short bunch duration and perfect synchronization with the optical pump. Recent results of electron diffraction from a single crystal gold foil, using LWFA electrons driven by 8-mJ, 35-fs laser pulses at 500 Hz, will be presented. The accelerated electrons were collimated with a solenoid magnetic lens. By applying a small-angle tilt to the magnetic lens, the diffraction pattern can be streaked such that the temporal evolution is separated spatially on the detector screen after propagation. The observable time window and achievable temporal resolution are studied in pump-probe measurements of photo-induced heating on the gold foil.

  7. Imagerie 2D et 3D de matériaux monocristallins : topographie et tomographie en diffraction rayons X de très haute énergie

    NASA Astrophysics Data System (ADS)

    Hamelin, B.; Bastie, P.; Richard, D.; Eiaazzouzi, A.

    2004-11-01

    La caractérisation en volume de matériaux cristallins de forte épaisseur (plusieurs cm) n'est possible que par l'utilisation de sources de rayonnement X de forte énergie (diffractomètres gamma, lignes haute énergie du rayonnement synchrotron) ou encore par l'utilisation de faisceau de neutrons. L'Institut Laue Langevin a développé et construit, en coopération avec le Laboratoire de Spectrométrie Physique, un nouveau type d'instrument utilisant le spectre continu rayons X à très haute énergie (typiquement 100 à 400 keV) émis par un générateur rayons X à foyer fin utilisé pour des radiographies. Ce diffractomètre permet la caractérisation rapide, précise et en volume d'échantillons de forte épaisseur. Outre des applications variées dans différents domaines (structure cristalline, mesure de paramètre de maille, contraintes, textures,ldots), il est possible de caractériser complètement des échantillons cristallins à partir d'une série de mesures en diffraction. Il est en particulier possible de visualiser (localiser) les désorientations du réseau cristallin au sein d'un échantillon (topographie en transmission). Il est également possible de visualiser les volumes diffractants dans une section de l'échantillon en utilisant une reconstruction de type tomographique à partir d'une série d'acquisitions en diffraction. Ces nouvelles possibilités s'avèrent être particulièrement utiles pour le contrôle non destructif de matériaux cristallins.

  8. Modeling of the diffraction efficiency and polarization sensitivity for a liquid crystal 2D spatial light modulator for reconfigurable beam steering.

    PubMed

    James, Richard; Fernández, F Aníbal; Day, Sally E; Komarcević, Milos; Crossland, William A

    2007-08-01

    A nematic liquid crystal spatial light modulator used as a phase-modulating device and operating in the reflective mode is analyzed using three-dimensional modeling. Two configurations, which differ in their electrode placement relative to a fixed quarter-wave plate, are considered across a range of steering directions, with the grating conformal and in some cases oblique to the pixel grid. For each steering direction the sensitivity of the diffraction orders to the polarization state of the incident wavefront is studied. Optimal alignment of the liquid crystal is suggested to reduce this sensitivity.

  9. Tuning the Growth Pattern in 2D Confinement Regime of Sm2O3 and the Emerging Room Temperature Unusual Superparamagnetism

    PubMed Central

    Guria, Amit K.; Dey, Koushik; Sarkar, Suresh; Patra, Biplab K.; Giri, Saurav; Pradhan, Narayan

    2014-01-01

    Programming the reaction chemistry for superseding the formation of Sm2O3 in a competitive process of formation and dissolution, the crystal growth patterns are varied and two different nanostructures of Sm2O3 in 2D confinement regime are designed. Among these, the regular and self-assembled square platelets nanostructures exhibit paramagnetic behavior analogous to the bulk Sm2O3. But, the other one, 2D flower like shaped nanostructure, formed by irregular crystal growth, shows superparamagnetism at room temperature which is unusual for bulk paramagnet. It has been noted that the variation in the crystal growth pattern is due to the difference in the binding ability of two organic ligands, oleylamine and oleic acid, used for the synthesis and the magnetic behavior of the nanostructures is related to the defects incorporated during the crystal growth. Herein, we inspect the formation chemistry and plausible origin of contrasting magnetism of these nanostructures of Sm2O3. PMID:25269458

  10. Optimization of double patterning split by analyzing diffractive orders in the pupil plane

    NASA Astrophysics Data System (ADS)

    Zeggaoui, N.; Farys, V.; Trouiller, Y.; Yesilada, E.; Robert, F.; Besacier, M.

    2010-09-01

    In double patterning technology (DPT), two adjacent features must be assigned opposite colors, corresponding to different exposures if their pitch is less than a predefined minimum coloring pitch. However, certain design orientations for which pattern features separated by more than the minimum coloring pitch cannot be imaged with either of the two exposures. In such cases, there are no aerial images formed because in these directions there are no constructive interferences between diffractive orders in the pupil plane. The 22nm and 16nm nodes require the use of pixelized sources that will be generated using SMO (source mask co-optimization). Such pixelized sources while helpful in improving the contrast for selected configurations can lead to degraded contrast for configurations which have not been set during the SMO process. Therefore, we analyze the diffractive orders interactions in the pupil plane in order to detect limited orientations in the design and thus propose a decomposition to overcome the problem.

  11. Speckle in the diffraction patterns of Hendricks-Teller and icosahedral glass models

    NASA Technical Reports Server (NTRS)

    Garg, Anupam; Levine, Dov

    1988-01-01

    It is shown that the X-ray diffraction patterns from the Hendricks-Teller model for layered systems and the icosahedral glass models for the icosahedral phases show large fluctuations between nearby scattering wave vectors and from sample to sample, that are quite analogous to laser speckle. The statistics of these fluctuations are studied analytically for the first model and via computer simulations for the second. The observability of these effects is discussed briefly.

  12. Shape characterization of a large nonspherical particle by use of its Fraunhofer diffraction pattern.

    PubMed

    Borovoi, A; Naats, E; Oppel, U; Grishin, I

    2000-04-20

    We characterize the shape of a large nonspherical particle by means of the two-dimensional Fourier transformation of its diffraction pattern, called the S function. The main properties of S functions are considered. Some ways in which to retrieve the geometric parameters of a particle by use of its S function are discussed. In particular, the parameter of nonsphericity of a particle is defined by means of the S function.

  13. Indexing amyloid peptide diffraction from serial femtosecond crystallography: new algorithms for sparse patterns

    PubMed Central

    Brewster, Aaron S.; Sawaya, Michael R.; Rodriguez, Jose; Hattne, Johan; Echols, Nathaniel; McFarlane, Heather T.; Cascio, Duilio; Adams, Paul D.; Eisenberg, David S.; Sauter, Nicholas K.

    2015-01-01

    Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of the Computational Crystallography Toolbox (cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data set from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set of diffraction patterns with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented. PMID:25664747

  14. Novel optical super-resolution pattern with upright edges diffracted by a tiny thin aperture.

    PubMed

    Wu, Jiu Hui; Zhou, Kejiang

    2015-08-24

    In the past decade numerous efforts have been concentrated to achieve optical imaging resolution beyond the diffraction limit. In this letter a thin microcavity theory of near-field optics is proposed by using the power flow theorem firstly. According to this theory, the near-field optical diffraction from a tiny aperture whose diameter is less than one-tenth incident wavelength embedded in a thin conducting film is investigated by considering this tiny aperture as a thin nanocavity. It is very surprising that there exists a kind of novel super-resolution diffraction patterns showing resolution better than λ/80 (λ is the incident wavelength), which is revealed for the first time to our knowledge in this letter. The mechanism that has allowed the imaging with this kind of super-resolution patterns is due to the interaction between the incident wave and the thin nanocavity with a complex wavenumber. More precisely, these super-resolution patterns with discontinuous upright peaks are formed by one or three items of the integration series about the cylindrical waves according to our simulation results. This novel optical super-resolution with upright edges by using the thin microcavity theory presented in the study could have potential applications in the future semiconductor lithography process, nano-size laser-drilling technology, microscopy, optical storage, optical switch, and optical information processing.

  15. Indexing amyloid peptide diffraction from serial femtosecond crystallography: New algorithms for sparse patterns

    SciTech Connect

    Brewster, Aaron S.; Sawaya, Michael R.; Rodriguez, Jose; Hattne, Johan; Echols, Nathaniel; McFarlane, Heather T.; Cascio, Duilio; Adams, Paul D.; Eisenberg, David S.; Sauter, Nicholas K.

    2015-01-23

    Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of theComputational Crystallography Toolbox(cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data set from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set of diffraction patterns with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented.

  16. Composite axilens-axicon diffractive optical elements for generation of ring patterns with high focal depth

    NASA Astrophysics Data System (ADS)

    Dharmavarapu, Raghu; Vijayakumar, A.; Brunner, R.; Bhattacharya, Shanti

    2016-03-01

    A binary Fresnel Zone Axilens (FZA) is designed for the infinite conjugate mode and the phase profile of a refractive axicon is combined with it to generate a composite Diffractive Optical Element (DOE). The FZA designed for two focal lengths generates a line focus along the propagation direction extending between the two focal planes. The ring pattern generated by the axicon is focused through this distance and the radius of the ring depends on the propagation distance. Hence, the radius of the focused ring pattern can be tuned, during the design process, within the two focal planes. The integration of the two functions was carried out by shifting the location of zones of FZA with respect to the phase profile of the refractive axicon resulting in a binary composite DOE. The FZAs and axicons were designed for different focal depth values and base angles respectively, in order to achieve different ring radii within the focal depth of each element. The elements were simulated using scalar diffraction formula and their focusing characteristics were analyzed. The DOEs were fabricated using electron beam direct writing and evaluated using a fiber coupled diode laser. The tunable ring patterns generated by the DOEs have prospective applications in microdrilling as well as microfabrication of circular diffractive and refractive optical elements.

  17. Calibrating OPC model with full CD profile data for 2D and 3D patterns using scatterometry

    NASA Astrophysics Data System (ADS)

    Dave, Aasutosh D.; Kritsun, Oleg; Deng, Yunfei; Yoshimoto, Kenji; Li, Jie; Hu, Jiangtao

    2009-03-01

    The ability to manage critical dimensions (CDs) of structures on IC devices is vital to improving product yield and performance. It is challenging to achieve accurate metrology data as the geometries shrink beyond 40 nm features. At this technology node CDSEM noise and resist LER are of significant concerns1. This paper examines the extendibility of scatterometry techniques to characterize structures that are close to limits of lithographic printing and to extract full profile information for 2D and 3D features for OPC model calibration2. The resist LER concerns are diminished because of the automatic averaging that scatterometry provides over the measurement pad; this represents a significant added value for proper OPC model calibration and verification. This work develops a comparison matrix to determine the impact of scatterometry data on OPC model calibration with conventional CDSEM measurements. The paper will report test results for the OPC model through process data for accuracy and predictability.

  18. Direct single-shot phase retrieval from the diffraction pattern of separated objects

    PubMed Central

    Leshem, Ben; Xu, Rui; Dallal, Yehonatan; Miao, Jianwei; Nadler, Boaz; Oron, Dan; Dudovich, Nirit; Raz, Oren

    2016-01-01

    The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction' experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing the phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects. PMID:26899582

  19. Direct single-shot phase retrieval from the diffraction pattern of separated objects

    SciTech Connect

    Leshem, Ben; Xu, Rui; Dallal, Yehonatan; Miao, Jianwei; Nadler, Boaz; Oron, Dan; Dudovich, Nirit; Raz, Oren

    2016-02-22

    The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing the phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.

  20. Direct single-shot phase retrieval from the diffraction pattern of separated objects

    DOE PAGES

    Leshem, Ben; Xu, Rui; Dallal, Yehonatan; ...

    2016-02-22

    The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing themore » phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.« less

  1. Improving double patterning flow by analyzing the diffractive orders in the pupil plane

    NASA Astrophysics Data System (ADS)

    Zeggaoui, N.; Farys, V.; Besacier, M.; Li, Q.; Yesilada, E.; Trouiller, Y.

    2011-04-01

    To print sub 22nm node features, current lithography technology faces some tool limitations. One possible solution to overcome these problems is to use the double patterning technique (DPT). The principle of the double patterning technique is pitch splitting where two adjacent features must be assigned opposite masks (colors) corresponding to different exposures if their pitch is less than a predefined minimum coloring pitch. However, certain design orientations for which pattern features separated by more than the minimum coloring pitch cannot be imaged with either of the two exposures. In these directions, the contrast and the process window are degraded because constructive interferences between diffractive orders in the pupil plane are not sufficient. The 22nm and 16nm nodes require the use of very coherent sources that will be generated using SMO (source mask cooptimization). Such pixelized sources while helpful in improving the contrast for selected configurations, can lead to degrade it for configurations which have not been counted for during the SMO process. Therefore, we analyze the diffractive orders interactions in the pupil plane in order to detect these limited orientations in the design and thus propose a new double patterning decomposition algorithm to enlarge the process window and the contrast of each mask.

  2. Indexing amyloid peptide diffraction from serial femtosecond crystallography: New algorithms for sparse patterns

    DOE PAGES

    Brewster, Aaron S.; Sawaya, Michael R.; Rodriguez, Jose; ...

    2015-01-23

    Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of theComputational Crystallography Toolbox(cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data set from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set of diffraction patternsmore » with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented.« less

  3. Micro-patterning of ionic reservoirs within a double bilayer lipid membrane to fabricate a 2D array of ion-channel switch based electrochemical biosensors

    SciTech Connect

    Sansinena, J. M.; Yee, C. K.; Sapuri, A.; Swanson, Basil I.; Redondo, A.; Parikh, A. N.

    2004-01-01

    We present a simple approach for the design of ionic reservoir arrays within a double phospholipid bilayer to ultimately develop a 2D array of ion-channel switch based electrochemical biosensors. As a first step, a primary bilayer lipid membrane is deposited onto an array of electrodes patterned onto a substrate surface. Subsequently, an array of microvoids is created within the bilayer by a wet photolithographic patterning of phospholipid bilayers using a deep UV light source and a quartz/chrome photomask. To ensure registry, the photomask used to pattern bilayers is designed to match up the microvoids within the primary bilayer with the array of electrodes on the substrate surface. The deposition of a secondary bilayer lipid membrane onto the primary bilayer that spans across the patterned microvoids leads to the formation of the array of ionic reservoirs within the double phospholipid bilayer. This is accomplished using giant unilamellar vesicles and by exploiting membrane electrostatics. The use of ion-channels incorporated into the secondary bilayer that covers the individual ionic reservoirs allows the construction of a 2D array of ion-channel switch based electrochemical biosensors that are able to recognize different target-agents simultaneously.

  4. Research on precision-calibration techniques for selected area electron diffraction patterns of pyrocarbon.

    PubMed

    Qi, Lehua; Li, Miaoling; Li, Hejun; Xu, Guozhong; Wang, Chuang

    2009-04-01

    The key techniques for determining orientation angle (OA) and interlayer space (d002) of pyrocarbon were investigated by analyzing selected area electron diffraction (SAED) patterns. A series of algorithms, which mainly include the five-point center-determined technique, the integral factor for the ellipse detection, the background subtraction operation and the Gaussian multipeak fitting algorithm, were designed for intensity sampling, data correction, and data fitting. The contribution ratio of the reflection intensity to the average d002 was considered. The algorithms were programmed and applied to evaluate SAED patterns of pyrocarbon in C/C composites by chemical vapor infiltration. Results showed that the proposed techniques can be effectively used to measure various SAED patterns, with a beam stop image or not, of pyrocarbon. The azimuthal intensities along the (002) arcs essentially obey the Gaussian distribution, although this is not obvious for the lower textural pyrocarbon. It is necessary for accurate OA to use the Gaussian multipeak fitting algorithm.

  5. Method for characterizing mask defects using image reconstruction from X-ray diffraction patterns

    DOEpatents

    Hau-Riege, Stefan Peter

    2007-05-01

    The invention applies techniques for image reconstruction from X-ray diffraction patterns on the three-dimensional imaging of defects in EUVL multilayer films. The reconstructed image gives information about the out-of-plane position and the diffraction strength of the defect. The positional information can be used to select the correct defect repair technique. This invention enables the fabrication of defect-free (since repaired) X-ray Mo--Si multilayer mirrors. Repairing Mo--Si multilayer-film defects on mask blanks is a key for the commercial success of EUVL. It is known that particles are added to the Mo--Si multilayer film during the fabrication process. There is a large effort to reduce this contamination, but results are not sufficient, and defects continue to be a major mask yield limiter. All suggested repair strategies need to know the out-of-plane position of the defects in the multilayer.

  6. Orbital motion of spherical microparticles trapped in diffraction patterns of circularly polarized light

    SciTech Connect

    Adachi, Hiroto; Akahoshi, Shin; Miyakawa, Kenji

    2007-06-15

    We investigate arrays and rotation of spherical microparticles trapped by focusing a circularly polarized Gaussian beam just above the top coverslip-water interface. Particles are trapped in various patterns due to a Fresnel diffraction, such as rings and close-packed structures. We find that rings of particles orbit around the beam axis, whereas close-packed arrays spin in the opposite sense on the beam axis. The sense of the orbiting, as well as that of the spinning, is determined by the input circular polarization handedness. The results are interpreted on the assumption that the spin angular momentum carried by a circularly polarized beam is converted into the orbital angular momentum in the optical process by which the focused Gaussian beam's shape is transformed due to diffraction.

  7. Detection of Diffraction Patterns at the edge of the African Superplume

    NASA Astrophysics Data System (ADS)

    Sun, D.; Bower, D. J.; Helmberger, D.

    2007-12-01

    A metastable thermal-chemical convection model has been developed to explain the African low velocity structure with its dome-like morphology. The model that best fits the seismic waveform data is referred to as the High Bulk Modulus Structure (HBMS), which has sharp walls. A recently developed WKBJ-type code (DWKM) can be used to generate approximate 3D synthetics for such structures. This method approximates 3D effects by adding out-of- plane contributions from virtual receivers at neighboring azimuths with two related to the inner Fresnel zone and two longer-period contributors sampling the outer Fresnel zone. The four responses are weighted by diffraction operators that are defined by the source duration and travel time from the edges of the structure. Here we use the HBMS model to generate 3D synthetics displaying waveform complexity patterns predicted for possible geometries. We show that these synthetics can be simulated from PREM synthetics where the shifts (δ ti) between the four operators are determined by a grid-search. Contours of these (δ ti) values obtained, from a grid of stations, produces a diffraction pattern footprint that suggests that array data can be processed directly to reveal 3D structure. We demonstrate the usefulness of this technique by processing both P and S wave data from the Kaapvaal array in Southern Africa. The difference between the patterns produced by P and S wave data for the same events (same ray paths) further validates the nature of these chemically sharp boundaries.

  8. Cryptotomography: reconstructing 3D Fourier intensities from randomly oriented single-shot diffraction patterns (CXIDB ID 9)

    DOE Data Explorer

    Loh, Ne-Te Duane

    2011-08-01

    These 2000 single-shot diffraction patterns include were either background-scattering only or hits (background-scattering plus diffraction signal from sub-micron ellipsoidal particles at random, undetermined orientations). Candidate hits were identified by eye, and the remainder were presumed as background. 54 usable, background-subtracted hits in this set (procedure in referenced article) were used to reconstruct the 3D diffraction intensities of the average ellipsoidal particle.

  9. Phase and amplitude retrieval of objects embedded in a sinusoidal background from its diffraction pattern

    SciTech Connect

    Wu, Chu; Ng, Tuck Wah; Neild, Adrian

    2010-04-01

    Efforts of phase and amplitude retrieval from diffraction patterns have almost exclusively been applied for nonperiodic objects. We investigated the quality of retrieval of nonperiodic objects embedded in a sinusoidal background, using the approach of iterative hybrid input-output with oversampling. Two strategies were employed; one by filtering in the frequency domain prior to phase retrieval, and the other by filtering the phase or amplitude image after retrieval. Results obtained indicate better outcomes with the latter approach provided detector noise is not excessive.

  10. Fraunhofer diffraction patterns from uniformly illuminated square output apertures with noncentered square obscurations.

    PubMed

    Sutton, G W; Weiner, M M; Mani, S A

    1976-09-01

    Theoretical Fraunhofer diffraction patterns are presented for uniformly illuminated square apertures with noncentered square obscurations. The energy within a given subtended solid angle in the far field is calculated. It is shown that the cornered-off-axis obscuration provides much more far-field energy in a given spot size than the centered obscuration for the same clear aperture area and total energy, for example, 82% more far-field energy in the first Airy square for 50% obscuration, thus providing superior performance for practical systems.

  11. Phase analysis on dual-phase steel using band slope of electron backscatter diffraction pattern.

    PubMed

    Kang, Jun-Yun; Park, Seong-Jun; Moon, Man-Been

    2013-08-01

    A quantitative and automated phase analysis of dual-phase (DP) steel using electron backscatter diffraction (EBSD) was attempted. A ferrite-martensite DP microstructure was produced by intercritical annealing and quenching. An EBSD map of the microstructure was obtained and post-processed for phase discrimination. Band slope (BS), which was a measure of pattern quality, exhibited much stronger phase contrast than another conventional one, band contrast. Owing to high sensitivity to lattice defect and little orientation dependence, BS provided handiness in finding a threshold for phase discrimination. Its grain average gave a superior result on the discrimination and volume fraction measurement of the constituent phases in the DP steel.

  12. Effect of grain size on stability of X-ray diffraction patterns used for threat detection

    NASA Astrophysics Data System (ADS)

    Ghammraoui, B.; Rebuffel, V.; Tabary, J.; Paulus, C.; Verger, L.; Duvauchelle, Ph.

    2012-08-01

    Energy Dispersive X-ray Diffraction (EDXRD) is well-suited to detecting narcotics and a wide range of explosives. The integrated intensity of an X-ray diffraction peak is proportional to the number of grains in the inspected object which are oriented such that they satisfy Bragg's condition. Several parameters have a significant influence on this number. Among them, we can list grain size and the fill rate for polycrystalline materials that both may significantly vary for a same material according to its way of production. Consequently, peak intensity may change significantly from one measurement to another one, thus increasing the risk of losing peaks. This instability is one of the many causes of false alarms. To help avoid these, we have developed a model to quantify the stability of the diffraction patterns measured. Two methods (extension of the detector in a direction perpendicular to the diffractometer plane and slow rotation of both source and detector) can be used to decrease the coefficient of variation, leading to a more stable spectral measurement.

  13. Encapsulation and Diffraction-Pattern-Correction Methods to Reduce the Effect of Damage in X-Ray Diffraction Imaging of Single Biological Molecules

    SciTech Connect

    Hau-Riege, Stefan P.; London, Richard A.; Chapman, Henry N.; Szoke, Abraham; Timneanu, Nicusor

    2007-05-11

    Short and intense x-ray pulses may be used for atomic-resolution diffraction imaging of single biological molecules. Radiation damage and a low signal-to-noise ratio impose stringent pulse requirements. In this Letter, we describe methods for decreasing the damage and improving the signal by encapsulating the molecule in a sacrificial layer (tamper) that reduces atomic motion and by postprocessing the pulse-averaged diffraction pattern to correct for ionization damage. Simulations show that these methods greatly improve the image quality.

  14. Diffraction-Enhanced Imaging for studying pattern recognition in cranial ontogeny of bats and marsupials

    NASA Astrophysics Data System (ADS)

    Rocha, H. S.; Lopes, R. T.; Pessôa, L. M.; Hönnicke, M. G.; Tirao, G.; Cusatis, C.; Mazzaro, I.; Giles, C.

    2005-08-01

    The key to understanding evolution lies in the elucidation of mechanisms responsible for the observed underlying patterns and in the observation of sequences that emerge from those evolutionary landmarks. The comparative development can be used to access the derivation of form and the homology versus the convergence of evolution features. Phylogenetic and biological homologies are necessary to discern the evolutionary origins of these features. This work examined the patterns of cranial formation in pre-born bat specimens as well as post-born opossum by means of microradiography and Diffraction-Enhanced Radiography (DER) techniques. A direct conversion CCD camera was used to provide micrometer spatial resolution in order to acquire highly detailed density images. This technique allows the observation of structures, in early stages of development, which were impossible to be observed with traditional techniques, such as clearing and staining. Some cranial features have been described for adults in the literature, but the detailed description of the appearance sequence of those features in these species is still unknown and obscure. Microradiography and diffraction-enhanced imaging can improve quality of morphological detail analysis and permit the identification of anatomical landmarks that are useful in comparative studies and are still unknown in both species. In this study, we access evolution features in cranial morphology of bats and marsupials using both X-ray techniques.

  15. Scattering of He Atoms from a Microstructured Grating: Quantum Reflection Probabilities and Diffraction Patterns.

    PubMed

    Miret-Artés, Salvador; Pollak, Eli

    2017-03-02

    The quantum reflection measured previously by Zhao et al. ( Phys. Rev. A 2008 , 78 , 010902(R) ) for the scattering of He atoms off of a microstructured grating is described and analyzed theoretically. Using the close-coupling formalism with a complex absorbing potential and describing the long-range interaction in terms of the Casimir-van der Waals potential, we find probabilities and diffraction patterns that are in fairly good agreement with the experimental results. The central outcomes of this study are two-fold. First is the theoretical confirmation that, indeed, the phenomenon of quantum reflection may be detected not only through the elastic peak but also in terms of a quantum reflected diffraction pattern. Second, we demonstrate that the phenomenon of quantum reflection is the result of a coherent process where all of the potential regions are involved on an equal footing. It is a nonlocal property and cannot be related only to the long-range badlands region of the potential of interaction.

  16. TEMPERATURE AND DENSITY ESTIMATES OF EXTREME-ULTRAVIOLET FLARE RIBBONS DERIVED FROM TRACE DIFFRACTION PATTERNS

    SciTech Connect

    Krucker, Saem; Raftery, Claire L.; Hudson, Hugh S.

    2011-06-10

    We report on Transition Region And Coronal Explorer 171 A observations of the GOES X20 class flare on 2001 April 2 that shows EUV flare ribbons with intense diffraction patterns. Between the 11th to 14th order, the diffraction patterns of the compact flare ribbon are dispersed into two sources. The two sources are identified as emission from the Fe IX line at 171.1 A and the combined emission from Fe X lines at 174.5, 175.3, and 177.2 A. The prominent emission of the Fe IX line indicates that the EUV-emitting ribbon has a strong temperature component near the lower end of the 171 A temperature response ({approx}0.6-1.5 MK). Fitting the observation with an isothermal model, the derived temperature is around 0.65 MK. However, the low sensitivity of the 171 A filter to high-temperature plasma does not provide estimates of the emission measure for temperatures above {approx}1.5 MK. Using the derived temperature of 0.65 MK, the observed 171 A flux gives a density of the EUV ribbon of 3 x 10{sup 11} cm{sup -3}. This density is much lower than the density of the hard X-ray producing region ({approx}10{sup 13} to 10{sup 14} cm{sup -3}) suggesting that the EUV sources, though closely related spatially, lie at higher altitudes.

  17. Temperature and Density Estimates of Extreme-ultraviolet Flare Ribbons Derived from TRACE Diffraction Patterns

    NASA Astrophysics Data System (ADS)

    Krucker, Säm; Raftery, Claire L.; Hudson, Hugh S.

    2011-06-01

    We report on Transition Region And Coronal Explorer 171 Å observations of the GOES X20 class flare on 2001 April 2 that shows EUV flare ribbons with intense diffraction patterns. Between the 11th to 14th order, the diffraction patterns of the compact flare ribbon are dispersed into two sources. The two sources are identified as emission from the Fe IX line at 171.1 Å and the combined emission from Fe X lines at 174.5, 175.3, and 177.2 Å. The prominent emission of the Fe IX line indicates that the EUV-emitting ribbon has a strong temperature component near the lower end of the 171 Å temperature response (~0.6-1.5 MK). Fitting the observation with an isothermal model, the derived temperature is around 0.65 MK. However, the low sensitivity of the 171 Å filter to high-temperature plasma does not provide estimates of the emission measure for temperatures above ~1.5 MK. Using the derived temperature of 0.65 MK, the observed 171 Å flux gives a density of the EUV ribbon of 3 × 1011 cm-3. This density is much lower than the density of the hard X-ray producing region (~1013 to 1014 cm-3) suggesting that the EUV sources, though closely related spatially, lie at higher altitudes.

  18. Three-dimensional shape measurement based on light patterns projection using diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Twardowski, P.; Serio, B.; Raulot, V.; Guilhem, M.

    2010-05-01

    We propose a structured light micro-opto electromechanical system (MOEMS) projector specially designed to display successively a set of patterns in order to extract the 3-D shape of an object using a CCD cameras module and a small ARM-based computer for control, registration and numerical analysis. This method consists in a temporal codification using a modified Gray code combined with a classical phase shifting technique. Our approach is to combine the unambiguous and robust codification of the Gray code method with the high resolution of the phase shifting method to result in highly accurate 3D reconstructions. The proposed MOEMS is based on an array of vertical-cavity surface-emitting laser (VCSEL) combined with two planar static diffractive optical elements (DOEs) arrays. DOEs masters on quartz substrate have been fabricated using photolithography therefore replication in polycarbonate is possible at low cost. The first DOE array is designed to collimate the VCSEL light (Fresnel-type element) and the second one to project the codification patterns. DOEs have been designed and fabricated by surface etching to achieve a good diffraction efficiency using four phase levels. First we introduce the MEOMS principle and the features of the different components. We present the layout design of the DOEs and describe the issues related to the micro-fabrication process. An experimental study of the topography of the DOEs is presented and discussed. We then discuss fabrication aspects including the DOEs integration and packaging.

  19. Evolving detectors of 2D patterns on a simulated CAM-Brain machine: an evolvable hardware tool for building a 75-million-neuron artificial brain

    NASA Astrophysics Data System (ADS)

    de Garis, Hugo; Korkin, Michael; Guttikonda, Padma; Cooley, Donald

    2000-11-01

    This paper presents some simulation results of the evolution of 2D visual pattern recognizers to be implemented very shortly on real hardware, namely the 'CAM-Brain Machine' (CBM), an FPGA based piece of evolvable hardware which implements a genetic algorithm (GA) to evolve a 3D cellular automata (CA) based neural network circuit module, of approximately 1,000 neurons, in about a second, i.e. a complete run of a GA, with 10,000s of circuit growths and performance evaluations. Up to 65,000 of these modules, each of which is evolved with a humanly specified function, can be downloaded into a large RAM space, and interconnected according to humanly specified gvdvips -o SPIE-2000.ps SPIE-2000 artificial brain architectures. This RAM, containing an artificial brain with up to 75 million neurons, is then updated by the CBM at a rate of 130 billion CA cells per second. Such speeds will enable real time control of robots and hopefully the birth of a new research field that we call 'brain building.' The first such artificial brain, to be built at STARLAB in 2000 and beyond, will be used to control the behaviors of a life sized kitten robot called 'Robokitty.' This kitten robot will need 2D pattern recognizers in the visual section of its artificial brain. This paper presents simulation results on the evolvability and generalization properties of such recognizers.

  20. Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications

    NASA Astrophysics Data System (ADS)

    Kumara, N. T. R. N.; Chou Chau, Yuan-Fong; Huang, Jin-Wei; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang

    2016-11-01

    Simulations of surface plasmon resonance (SPR) on the near field intensity and absorption spectra of one-dimensional (1D) and two-dimensional (2D) periodic arrays of rod-shape metal nanoparticle (MNP) pairs using the finite element method (FEM) and taking into account the different core patterns for biosensor and solar cell applications are investigated. A tunable optical spectrum corresponding to the transverse SPR modes is observed. The peak resonance wavelength (λ res) can be shifted to red as the core patterns in rod-shape MNPs have been changed. We find that the 2D periodic array of core-shell MNP pairs (case 2) exhibit a red shifted SPR that can be tuned the gap enhancement and absorption efficiency simultaneously over an extended wavelength range. The tunable optical performances give us a qualitative idea of the geometrical properties of the periodic array of rod-shape MNP pairs on SPRs that can be as a promising candidate for plasmonic biosensor and solar cell applications.

  1. Small phase pattern 2D beam steering and a single LCOS design of 40 1 × 12 stacked wavelength selective switches.

    PubMed

    Yang, Haining; Robertson, Brian; Wilkinson, Peter; Chu, Daping

    2016-05-30

    Two-dimensional beam steering by small, square, phase patterns as small as 50 × 50 pixels on a phase-only liquid crystal on silicon (LCOS) device is experimentally verified as suitable for the application of wavelength selective switches (WSSs), in terms of the diffraction efficiency and steering accuracy. This enables a proposed highly functional and versatile stacked switch architecture, where 40 independent 1 × 12 WSSs can be realised on a single 4k LCOS device. They can be configured to support a 1 × N WSSs with N≤144, or an N × N wavelength crossconnect with N≤12.

  2. Optical analysis of spatially periodic patterns in nematic liquid crystals: Diffraction and shadowgraphy

    NASA Astrophysics Data System (ADS)

    Pesch, Werner; Krekhov, Alexei

    2013-05-01

    Optical methods are most convenient for analyzing spatially periodic patterns with wave vector q in a thin layer of a nematic liquid crystal. In the standard experimental setup a beam of parallel light with a “short” wavelength λ≪2π/q passes the nematic layer. Recording the transmitted light the patterns are either directly visualized by shadowgraphy or characterized more indirectly by the diffraction fringes due to the optical-grating effects of the pattern. In this work we present a systematic short-wavelength analysis of these methods for the commonly used planar orientation of the optical axis of liquid crystal at the confining surfaces. Our approach covers general three-dimensional experimental geometries with respect to the relative orientation of q and of the wave vector k of the incident light. In particular, we emphasize the importance of phase-grating effects, which are not accessible in a pure geometric optics approach. Finally, as a by-product we present also an optical analysis of convection rolls in Rayleigh-Bénard convection, where the refraction index of the fluid is isotropic in contrast to its uniaxial symmetry in nematic liquid crystals. Our analysis is in excellent agreement with an earlier physical optics approach by Trainoff and Cannell [Phys. FluidsPHFLE61070-663110.1063/1.1449892 14, 1340 (2002)], which is restricted to a two-dimensional geometry and technically much more demanding.

  3. Optical analysis of spatially periodic patterns in nematic liquid crystals: diffraction and shadowgraphy.

    PubMed

    Pesch, Werner; Krekhov, Alexei

    2013-05-01

    Optical methods are most convenient for analyzing spatially periodic patterns with wave vector q in a thin layer of a nematic liquid crystal. In the standard experimental setup a beam of parallel light with a "short" wavelength λ<2π/q passes the nematic layer. Recording the transmitted light the patterns are either directly visualized by shadowgraphy or characterized more indirectly by the diffraction fringes due to the optical-grating effects of the pattern. In this work we present a systematic short-wavelength analysis of these methods for the commonly used planar orientation of the optical axis of liquid crystal at the confining surfaces. Our approach covers general three-dimensional experimental geometries with respect to the relative orientation of q and of the wave vector k of the incident light. In particular, we emphasize the importance of phase-grating effects, which are not accessible in a pure geometric optics approach. Finally, as a by-product we present also an optical analysis of convection rolls in Rayleigh-Bénard convection, where the refraction index of the fluid is isotropic in contrast to its uniaxial symmetry in nematic liquid crystals. Our analysis is in excellent agreement with an earlier physical optics approach by Trainoff and Cannell [Phys. Fluids 14, 1340 (2002)], which is restricted to a two-dimensional geometry and technically much more demanding.

  4. Automatic organ localizations on 3D CT images by using majority-voting of multiple 2D detections based on local binary patterns and Haar-like features

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Yamaguchi, Shoutarou; Zhou, Xinxin; Chen, Huayue; Hara, Takeshi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Fujita, Hiroshi

    2013-02-01

    This paper describes an approach to accomplish the fast and automatic localization of the different inner organ regions on 3D CT scans. The proposed approach combines object detections and the majority voting technique to achieve the robust and quick organ localization. The basic idea of proposed method is to detect a number of 2D partial appearances of a 3D target region on CT images from multiple body directions, on multiple image scales, by using multiple feature spaces, and vote all the 2D detecting results back to the 3D image space to statistically decide one 3D bounding rectangle of the target organ. Ensemble learning was used to train the multiple 2D detectors based on template matching on local binary patterns and Haar-like feature spaces. A collaborative voting was used to decide the corner coordinates of the 3D bounding rectangle of the target organ region based on the coordinate histograms from detection results in three body directions. Since the architecture of the proposed method (multiple independent detections connected to a majority voting) naturally fits the parallel computing paradigm and multi-core CPU hardware, the proposed algorithm was easy to achieve a high computational efficiently for the organ localizations on a whole body CT scan by using general-purpose computers. We applied this approach to localization of 12 kinds of major organ regions independently on 1,300 torso CT scans. In our experiments, we randomly selected 300 CT scans (with human indicated organ and tissue locations) for training, and then, applied the proposed approach with the training results to localize each of the target regions on the other 1,000 CT scans for the performance testing. The experimental results showed the possibility of the proposed approach to automatically locate different kinds of organs on the whole body CT scans.

  5. Complex (Nonstandard) Six-Layer Polytypes of Lizardite Revealed from Oblique-Texture Electron Diffraction Patterns

    SciTech Connect

    Zhukhlistov, A.P.; Zinchuk, N.N.; Kotel'nikov, D.D.

    2004-11-01

    Association of simple (1T and 3R) and two complex (nonstandard) orthogonal polytypes of the serpentine mineral lizardite from the Catoca kimberlite pipe (West Africa) association is revealed from oblique-texture electron diffraction patterns. A six-layer polytype with an ordered superposition of equally oriented layers (notation 3{sub 2}3{sub 2}3{sub 4}3{sub 4}3{sub 6}3{sub 6} or ++ - -00) belonging to the structural group A and a three-layer (336 or I,I,II) or a six-layer (336366 or I,I,II,I,II,II) polytype with alternating oppositely oriented layers and semi-disordered structure are identified using polytype analysis.

  6. The Connection between the Presence of Melanoma and Changes in Fibre Diffraction Patterns

    SciTech Connect

    James, Veronica J.; Kirby, Nigel

    2010-10-08

    An accurate diagnosis of melanomas at an early stage correlates directly with a better prognosis. However the incidence of melanoma is still increasing along with the number of related deaths. Melanoma cells grow extremely fast, with the result that many patients present after metastasis has occurred, too late for effective treatment. This paper describes the changes in the fibre diffraction patterns of skin that indicate the presence of a melanoma. Identification of these changes would provide an alternative early low-cost, reliable diagnostic test which could be conducted on a regular basis in local radiology facilities using rotating anode X-ray generators or as a mass screening test using suitable small angle x-ray beam-lines at synchrotrons.

  7. The Connection between the Presence of Melanoma and Changes in Fibre Diffraction Patterns

    PubMed Central

    James, Veronica J.; Kirby, Nigel

    2010-01-01

    An accurate diagnosis of melanomas at an early stage correlates directly with a better prognosis. However the incidence of melanoma is still increasing along with the number of related deaths. Melanoma cells grow extremely fast, with the result that many patients present after metastasis has occurred, too late for effective treatment. This paper describes the changes in the fibre diffraction patterns of skin that indicate the presence of a melanoma. Identification of these changes would provide an alternative early low-cost, reliable diagnostic test which could be conducted on a regular basis in local radiology facilities using rotating anode X-ray generators or as a mass screening test using suitable small angle x-ray beam-lines at synchrotrons. PMID:22206040

  8. Wavelength estimation by using the Airy disk from a diffraction pattern with didactic purposes

    NASA Astrophysics Data System (ADS)

    Rivera-Ortega, Uriel; Pico-Gonzalez, Beatriz

    2016-01-01

    In this paper a simple and easy to implement method that uses the Airy disk generated from a Fraunhofer diffraction pattern due to a circular aperture will be used to estimate the wavelength of the illuminating laser source. This estimation is based on the measurement of the Airy disk diameter, whose approximation is directly proportional to the wavelength of the light source and to the distance between the aperture and the image plane; and inversely proportional to the diameter of the aperture. Due to the characteristics and versatility of the present proposal, this is perfectly suitable for use in graduate or undergraduate physics laboratories, or even in classrooms for educational and/or demonstrative purposes.

  9. X-ray Fraunhofer diffraction patterns from a thin-film waveguide

    SciTech Connect

    Feng, Y.P.; Sinha, S.K.; Fullerton, E.E.; Gruebel, G.; Abernathy, D.; Siddons, D.P.; Hastings, J.B.

    1995-12-11

    We have observed the Fraunhofer diffraction pattern of x-rays exiting from the end face of a SiO{sub 2}/polyimide/Si thin-film waveguide. The measured angular intensity distributions are in excellent agreement with those calculated based on the dimensions and the refractive index profile of the guide. Our measurement confirms that, at the end face of the guide, the wavefront of a single guided mode is fully coherent in the direction normal to the guiding plane. This focused and transversely coherent x-ray beam may be used as a source for coherence-based experiments, such as x-ray photon correlation spectroscopy. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  10. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN.

    PubMed

    Bascil, M Serdar; Tesneli, Ahmet Y; Temurtas, Feyzullah

    2016-09-01

    Brain computer interface (BCI) is a new communication way between man and machine. It identifies mental task patterns stored in electroencephalogram (EEG). So, it extracts brain electrical activities recorded by EEG and transforms them machine control commands. The main goal of BCI is to make available assistive environmental devices for paralyzed people such as computers and makes their life easier. This study deals with feature extraction and mental task pattern recognition on 2-D cursor control from EEG as offline analysis approach. The hemispherical power density changes are computed and compared on alpha-beta frequency bands with only mental imagination of cursor movements. First of all, power spectral density (PSD) features of EEG signals are extracted and high dimensional data reduced by principle component analysis (PCA) and independent component analysis (ICA) which are statistical algorithms. In the last stage, all features are classified with two types of support vector machine (SVM) which are linear and least squares (LS-SVM) and three different artificial neural network (ANN) structures which are learning vector quantization (LVQ), multilayer neural network (MLNN) and probabilistic neural network (PNN) and mental task patterns are successfully identified via k-fold cross validation technique.

  11. The CCP13 FibreFix program suite: semi-automated analysis of diffraction patterns from non-crystalline materials.

    PubMed

    Rajkumar, Ganeshalingam; Al-Khayat, Hind A; Eakins, Felicity; Knupp, Carlo; Squire, John M

    2007-02-01

    The extraction of useful information from recorded diffraction patterns from non-crystalline materials is non-trivial and is not a well defined operation. Unlike protein crystallography where one expects to see well behaved diffraction spots in predictable positions defined by standard space groups, the diffraction patterns from non-crystalline materials are very diverse. They can range from uniaxially oriented fibre patterns which are completely sampled as Bragg peaks, but rotationally averaged around the fibre axis, to fibre patterns that are completely unsampled, to either kind of pattern with considerable axial misalignment (disorientation), to liquid-like order and even to mixtures of these various structure types. In the case of protein crystallography, the specimen is generated artificially and only used if the degree of order is sufficient to yield a three-dimensional density map of high enough resolution to be interpreted sensibly. However, with non-crystalline diffraction, many of the specimens of interest are naturally occurring (e.g. cellulose, rubber, collagen, muscle, hair, silk) and to elucidate their structure it is necessary to extract structural information from the materials as they actually are and to whatever resolution is available. Even when synthetic fibres are generated from purified components (e.g. nylon, polyethylene, DNA, polysaccharides, amyloids etc.) and diffraction occurs to high resolution, it is rarely possible to obtain perfect uniaxial alignment. The CCP13 project was established in the 1990s to generate software which will be generally useful for analysis of non-crystalline diffraction patterns. Various individual programs were written which allowed separate steps in the analysis procedure to be carried out. Many of these programs have now been integrated into a single user-friendly package known as FibreFix, which is freely downloadable from http://www.ccp13.ac.uk. Here the main features of FibreFix are outlined and some of

  12. A computer-controlled near-field electrospinning setup and its graphic user interface for precision patterning of functional nanofibers on 2D and 3D substrates.

    PubMed

    Bisht, Gobind; Nesterenko, Sergiy; Kulinsky, Lawrence; Madou, Marc

    2012-08-01

    Electrospinning is a versatile technique for production of nanofibers. However, it lacks the precision and control necessary for fabrication of nanofiber-based devices. The positional control of the nanofiber placement can be dramatically improved using low-voltage near-field electrospinning (LV-NFES). LV-NFES allows nanofibers to be patterned on 2D and 3D substrates. However, use of NFES requires low working distance between the electrospinning nozzle and substrate, manual jet initiation, and precise substrate movement to control fiber deposition. Environmental factors such as humidity also need to be controlled. We developed a computer-controlled automation strategy for LV-NFES to improve performance and reliability. With this setup, the user is able to control the relevant sensor and actuator parameters through a custom graphic user interface application programmed on the C#.NET platform. The stage movement can be programmed as to achieve any desired nanofiber pattern and thickness. The nanofiber generation step is initiated through a software-controlled linear actuator. Parameter setting files can be saved into an Excel sheet and can be used subsequently in running multiple experiments. Each experiment is automatically video recorded and stamped with the pertinent real-time parameters. Humidity is controlled with ±3% accuracy through a feedback loop. Further improvements, such as real-time droplet size control for feed rate regulation are in progress.

  13. Double patterning HSQ processes of zone plates for 10 nm diffraction limitedperformance

    SciTech Connect

    Chao, Weilun; Kim, Jihoon; Anderson, Erik H.; Fischer, Peter; Rekawa, Senajith; Attwood, David T.

    2009-01-09

    In e-beam lithography, fabrication of sub-20 nm dense structures is challenging. While there is a constant effort to develop higher resolution resist processes, the progress of increasing pattern density is slow. For zone plates, consisting of dense lines and spaces, the outermost zone width has been limited to slightly less than 20 nm due to effects such as low aerial image contrast, forward scattering, intrinsic resist resolution, and development issues. To circumvent these effects, we have successfully developed a new double patterning HSQ process, and as a result, we have fabricated zone plates of 10 and 12 nm using the process. We previously developed a double patterning process in which a dense zone plate pattern is sub-divided into two semi-isolated, complementary zone set patterns. These patterns are fabricated separately and then overlaid with high accuracy to yield the desired pattern. The key to success with this process is the accuracy of the overlay. For diffraction-limited zone plates, accuracy better than one-third of the smallest zone width is needed. In our previous work, the zone set patterns were formed using PMMA and gold electroplating, which were overlaid and aligned to the zero-level mark layer with sub-pixel accuracy using our internally developed algorithm. The complete zone plate fabrication was conducted in-house. With this process, we successfully fabricated zone plates of 15 nm outermost zone. Using this zone plate, we were able to achieve sub-15 nm resolution at 1.52 nm wavelength, the highest resolution ever demonstrated in optical microscopy at that time. We attempted to extend the process to fabricating 12 nm and smaller zones. However, the modest PMMA contrast, combined with a relatively large electron beam size compared to the target feature sized limited the process latitude. To overcome this problem, we developed a new overlay process based on high resolution negative tone resist of hydrogen silsesquioxane (HSQ). With the

  14. Nonprincipal-plane scattering from flat plates: Second-order and corner diffraction and pattern control of horn antennas

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.

    1989-01-01

    Several high-frequency models for nonprincipal-plane scattering from a rectangular, perfectly conducting plate are examined. Two methods, the Method of Equivalent Currents and corner diffraction coefficients, are considered. Formulations for second-order Physical Theory of Diffraction equivalent currents and for corner diffracted fields are presented. Comparisons are made among plate models. Results away from grazing are accurate using only first-order terms. Near grazing, second-order and corner diffraction terms improve the results for many cases. The pattern control of horn antennas using lossy materials to coat the inner walls of the horn is also investigated. Integral Equation and Moment Method techniques are used to formulate the problem. It is clearly demonstrated that side lobe level reduction can be achieved using impedance surfaces on the inner walls of the horn.

  15. Determination of the size of a radiation source by the method of calculation of diffraction patterns

    NASA Astrophysics Data System (ADS)

    Tilikin, I. N.; Shelkovenko, T. A.; Pikuz, S. A.; Hammer, D. A.

    2013-07-01

    In traditional X-ray radiography, which has been used for various purposes since the discovery of X-ray radiation, the shadow image of an object under study is constructed based on the difference in the absorption of the X-ray radiation by different parts of the object. The main method that ensures a high spatial resolution is the method of point projection X-ray radiography, i.e., radiography from a point and bright radiation source. For projection radiography, the small size of the source is the most important characteristic of the source, which mainly determines the spatial resolution of the method. In this work, as a point source of soft X-ray radiation for radiography with a high spatial and temporal resolution, radiation from a hot spot of X-pinches is used. The size of the radiation source in different setups and configurations can be different. For four different high-current generators, we have calculated the sizes of sources of soft X-ray radiation from X-ray patterns of corresponding objects using Fresnel-Kirchhoff integrals. Our calculations show that the size of the source is in the range 0.7-2.8 μm. The method of the determination of the size of a radiation source from calculations of Fresnel-Kirchhoff integrals makes it possible to determine the size with an accuracy that exceeds the diffraction limit, which frequently restricts the resolution of standard methods.

  16. Diffraction patterns of the beam splitters used in a soft-x-ray interferometer with He-Ne laser

    SciTech Connect

    Oh, C. H.; Choi, D. U.; Park, S. J.; Suk, S. S.; Howells, M. R.; Hussain, Z.; Moler, E. J.; Spring, J.

    1997-04-01

    Two 50% reflection-50% transmission-grating beam splitter (B.S.) are being used in the soft x-ray interferometry at Beamline 9.3.2 of ALS. They are consisted of a rigid flat mirror with a series of slots width of 50 {mu}m etched in part (5{times}18 mm{sup 2}) of the area. The diffraction patterns of the first B.S. and both B.S.s were investigated with He-Ne laser in both cases of normal incident and 20{degrees} grazing incident to the B.S. The intensities of each diffraction pattern were measured with a radiation power meter (ORIEL 70260, 70261). The normal incident pattern is straight line and shows nearly same intervals, and the intensities of them are similar to that of the double slits with Fraunhofer diffraction theory. The diffraction patterns of grazing incident shows a circle spot line. The transmitted patterns and reflected patterns show a symmetric arc on a long distance screen, whose radii are same and confirm a modified diffraction equation. The intensities of all the fringes of the B.S. also follows to the Fraunhofer diffraction theory. Patterns of the grating were affected strongly by the single slit effect. It was observed that only 3 fringes of each pattern were illuminated on the 2nd beam splitter. For the soft x-ray ({lambda}=10 nm), the number of fringes illuminating on the 2nd B.S. was calculated from the results of He-Ne laser beam ({lambda}=632.8 nm) experiment, and showed x=0.0314 nm(fringe interval), n={+-}95.5(number of order) and therefore the total number was 191 fringes. The patterns produced by the 2nd beam splitter were also investigated in intensities and positions of them. Both patterns of upper beam and lower beam are the same direction and same radii of circle. It was found that each fringe consisted of fine fringes which as caused by two fringe beams arrived at the 2nd beam splitter.

  17. Tetramethyl ammonium as masking agent for molecular stencil patterning in the confined space of the nano-channels of 2D hexagonal-templated porous silicas.

    PubMed

    Zhang, Kun; Albela, Belén; He, Ming-Yuan; Wang, Yimeng; Bonneviot, Laurent

    2009-04-28

    The molecular stencil patterning (MSP) technique is a new surface molecular engineering technique developed for cation-templated porous silicas to graft several functions with vicinity control. First, tetramethylammonium ions (TMA(+)) are introduced by ion exchange of the cetyltrimethyl-ammonium template (CTA(+)). Then, the coverage is controlled to create a masking array of cations, the pattern of which is produced by mutual electrostatic repulsion. A first function is grafted, here monopodal trimethylsilyl groups (TMS) or dipodal ethyl-1,2-bis(dimethylsilyl) (EBDMS) groups. After the removal of the masking cations, a second function is grafted using here N-(2-aminoethyl)-3-amino-propyltrimethoxysilane precursor. The distribution of N-(2-aminoethyl)-3-amino-propylsilyl functions (AAPS) is probed by complexation to Cu(ii) ions. X-Ray diffraction, N(2) adsorption-desorption isotherms, (13)C solid-state NMR, IR, UV-visible and electron paramagnetic resonance (EPR) techniques show that MSP can produce isolation of AAPS by TMS, or even better by EBDMS groups, with preservation of the silica pore structure.

  18. High quality single shot diffraction patterns using ultrashort megaelectron volt electron beams from a radio frequency photoinjector.

    PubMed

    Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Bender, H A; Wilcox, N S

    2010-01-01

    Single shot diffraction patterns using a 250-fs-long electron beam have been obtained at the UCLA Pegasus laboratory. High quality images with spatial resolution sufficient to distinguish closely spaced peaks in the Debye-Scherrer ring pattern have been recorded by scattering the 1.6 pC 3.5 MeV electron beam generated in the rf photoinjector off a 100-nm-thick Au foil. Dark current and high emittance particles are removed from the beam before sending it onto the diffraction target using a 1 mm diameter collimating hole. These results open the door to the study of irreversible phase transformations by single shot MeV electron diffraction.

  19. High quality single shot diffraction patterns using ultrashort megaelectron volt electron beams from a radio frequency photoinjector

    SciTech Connect

    Musumeci, P.; Moody, J. T.; Scoby, C. M.; Gutierrez, M. S.; Bender, H. A.; Wilcox, N. S.

    2010-01-15

    Single shot diffraction patterns using a 250-fs-long electron beam have been obtained at the UCLA Pegasus laboratory. High quality images with spatial resolution sufficient to distinguish closely spaced peaks in the Debye-Scherrer ring pattern have been recorded by scattering the 1.6 pC 3.5 MeV electron beam generated in the rf photoinjector off a 100-nm-thick Au foil. Dark current and high emittance particles are removed from the beam before sending it onto the diffraction target using a 1 mm diameter collimating hole. These results open the door to the study of irreversible phase transformations by single shot MeV electron diffraction.

  20. High Quality Single Shot Diffraction Patterns Using Ultrashort Megaelectron Volt Electron Beams from a Radio Frequency Photoinjector

    SciTech Connect

    P. Musumeci, J. T. Moody, C. M. Scoby, M. S. Gutierrez, H. A. Bender, N. S. Wilcox

    2010-01-01

    Single shot diffraction patterns using a 250 fs long electron beam have been obtained at the UCLA Pegasus laboratory. High quality images with spatial resolution sufficient to distinguish closely spaced peaks in the Debye-Scherrer ring pattern have been recorded by scattering the 1.6 pC 3.5 MeV electron beam generated in the RF photoinjector off a 100 nm thick Au foil. Dark current and high emittance particles are removed from the beam before sending it onto the diffraction target using a 1 mm diameter collimating hole. These results open the door to the study of irreversible phase transformations by single shot MeV electron diffraction

  1. Segal crystallinity index revisited by the simulation of x-ray diffraction patterns of cotton cellulose IB and cellulose II

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Segal method estimates the amorphous fraction of cellulose IB materials simply based on intensity at 18o 20 in an X-ray diffraction pattern and was extended to cellulose II using 16o 2O intensity. To address the dependency of Segal amorphous intensity on crystal size, cellulose polymorph, and th...

  2. Effect of Service Stress on Impact Resistance, X-ray Diffraction Patterns, and Microstructure of 25s Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Kies, J A; Quick, G W

    1939-01-01

    Report presents the results of a great number of tests made to determine the effect of service stresses on the impact resistance, the x-ray diffraction patterns, and the microstructure of 25s aluminum alloy. Many of the specimens were taken from actual propeller blades and others were cut from 13/16-inch rod furnished by the Aluminum Company of America.

  3. Influence of various growth conditions on Fresnel diffraction patterns of bacteria colonies examined in the optical system with converging spherical wave illumination.

    PubMed

    Buzalewicz, Igor; Wieliczko, Alina; Podbielska, Halina

    2011-10-24

    The novel optical system based on converging spherical wave illumination for analysis of bacteria colonies diffraction patterns, is proposed. The complex physical model of light transformation on bacteria colonies in this system, is presented. Fresnel diffraction patterns of bacteria colonies Escherichia coli, Salmonella enteritidis, Staphylococcus aureus grown in various conditions, were examined. It was demonstrated that the proposed system enables the characterization of morphological changes of colony structures basing on the changes of theirs Fresnel diffraction patterns.

  4. Pattern formation without diffraction matching in optical parametric oscillators with a metamaterial.

    PubMed

    Tassin, Philippe; Van der Sande, Guy; Veretennicoff, Irina; Kockaert, Pascal; Tlidi, Mustapha

    2009-05-25

    We consider a degenerate optical parametric oscillator containing a left-handed material. We show that the inclusion of a left-handed material layer allows for controlling the strength and sign of the diffraction coefficient at either the pump or the signal frequency. Subsequently, we demonstrate the existence of stable dissipative structures without diffraction matching, i.e., without the usual relationship between the diffraction coefficients of the signal and pump fields. Finally, we investigate the size scaling of these light structures with decreasing diffraction strength.

  5. Signatures of DNA flexibility, interactions and sequence-related structural variations in classical X-ray diffraction patterns

    PubMed Central

    Kornyshev, A. A.; Lee, D. J.; Wynveen, A.; Leikin, S.

    2011-01-01

    The theory of X-ray diffraction from ideal, rigid helices allowed Watson and Crick to unravel the DNA structure, thereby elucidating functions encoded in it. Yet, as we know now, the DNA double helix is neither ideal nor rigid. Its structure varies with the base pair sequence. Its flexibility leads to thermal fluctuations and allows molecules to adapt their structure to optimize their intermolecular interactions. In addition to the double helix symmetry revealed by Watson and Crick, classical X-ray diffraction patterns of DNA contain information about the flexibility, interactions and sequence-related variations encoded within the helical structure. To extract this information, we have developed a new diffraction theory that accounts for these effects. We show how double helix non-ideality and fluctuations broaden the diffraction peaks. Meridional intensity profiles of the peaks at the first three helical layer lines reveal information about structural adaptation and intermolecular interactions. The meridional width of the fifth layer line peaks is inversely proportional to the helical coherence length that characterizes sequence-related and thermal variations in the double helix structure. Analysis of measured fiber diffraction patterns based on this theory yields important parameters that control DNA structure, packing and function. PMID:21593127

  6. Signatures of DNA flexibility, interactions and sequence-related structural variations in classical X-ray diffraction patterns.

    PubMed

    Kornyshev, A A; Lee, D J; Wynveen, A; Leikin, S

    2011-09-01

    The theory of X-ray diffraction from ideal, rigid helices allowed Watson and Crick to unravel the DNA structure, thereby elucidating functions encoded in it. Yet, as we know now, the DNA double helix is neither ideal nor rigid. Its structure varies with the base pair sequence. Its flexibility leads to thermal fluctuations and allows molecules to adapt their structure to optimize their intermolecular interactions. In addition to the double helix symmetry revealed by Watson and Crick, classical X-ray diffraction patterns of DNA contain information about the flexibility, interactions and sequence-related variations encoded within the helical structure. To extract this information, we have developed a new diffraction theory that accounts for these effects. We show how double helix non-ideality and fluctuations broaden the diffraction peaks. Meridional intensity profiles of the peaks at the first three helical layer lines reveal information about structural adaptation and intermolecular interactions. The meridional width of the fifth layer line peaks is inversely proportional to the helical coherence length that characterizes sequence-related and thermal variations in the double helix structure. Analysis of measured fiber diffraction patterns based on this theory yields important parameters that control DNA structure, packing and function.

  7. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    SciTech Connect

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-09-26

    A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.

  8. Simplification for Fraunhofer diffracting pattern of various randomly oriented ice crystals in cirrus.

    PubMed

    Pujol, Olivier; Brogniez, Gérard; Labonnote, Laurent

    2012-09-01

    This paper deals with Fraunhofer diffraction by an ensemble of independent randomly oriented ice crystals of assorted shapes, like those of cirrus clouds. There is no restriction on the shape of each crystal. It is shown that light flux density in the Fourier plane is azimuth-invariant and varies as 1/sin(4)θ, θ being the angle of diffraction. The analytical formula proposed is exact. The key point of this study is conservation of electromagnetic energy.

  9. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    SciTech Connect

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-09-26

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15µm) loaded into the chips yielded a complete, high-resolution (<1.6Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.

  10. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions.

    PubMed

    Murray, Thomas D; Lyubimov, Artem Y; Ogata, Craig M; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T; Berger, James M

    2015-10-01

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10-15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.

  11. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE PAGES

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; ...

    2015-08-11

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  12. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    SciTech Connect

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-08-11

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.

  13. APPLICATION OF LASERS AND LASER-OPTICAL METHODS IN LIFE SCIENCES On the problem of the diffraction pattern visibility in laser diffractometry of red blood cells

    NASA Astrophysics Data System (ADS)

    Nikitin, Sergei Yu; Lugovtsov, Andrei E.; Priezzhev, A. V.

    2011-01-01

    We consider the problem of the visibility of the diffraction pattern that is observed in scattering laser radiation on the erythrocyte suspension in ectacytometer. The theoretical estimates show that 10% variation in the particle size reduces the diffraction pattern visibility by 1% only.

  14. The First X-ray Diffraction Patterns of Clay Minerals from Gale Crater

    NASA Technical Reports Server (NTRS)

    Bristow, Thomas; Blake, David; Bish, David L.; Vaniman, David; Ming, Douglas W.; Morris, Richard V.; Chipera, Steve; Rampe, Elizabeth B.; Farmer, Jack, D.; Treiman, Allan H; Downs, Robert; Morrison, Shaunna; Achilles, Cherie; DesMarais, David J.; Crisp, Joy A.; Sarrazin, Philippe; Morookian, John Michael; Grotzinger. John P.

    2013-01-01

    The Mars Science Laboratory (MSL) Rover, Curiosity spent approx 150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (approx 3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of approx 20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 021 band consistent with a trioctahedral phyllosilicate. A broad peak at approx 10A with a slight inflexion at approx 12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and heating

  15. Diffraction pattern from thermal neutron incoherent elastic scattering and the holographic reconstruction of the coherent scattering length distribution

    SciTech Connect

    Sur, B.; Anghel, V.N.P.; Rogge, R.B.; Katsaras, J.

    2005-01-01

    The diffraction of spherical waves (S waves) interacting with a periodic scattering length distribution produces characteristic intensity patterns known as Kossel and Kikuchi lines (collectively called K lines). The K-line signal can be inverted to give the three-dimensional structure of the coherent scattering length distribution surrounding the source of S waves - a process known as 'Gabor holography' or, simply, 'holography'. This paper outlines a kinematical formulation for the diffraction pattern of monochromatic plane waves scattering from a mixed incoherent and coherent S-wave scattering length distribution. The formulation demonstrates that the diffraction pattern of plane waves incident on a sample with a uniformly random distribution of incoherent scatterers is the same as that from a sample with a single incoherent scatterer per unit cell. In practice, one can therefore reconstruct the holographic data from samples with numerous incoherent S-wave scatterers per unit cell. Thus atomic resolution thermal neutron holography is possible for materials naturally rich in incoherent thermal neutron scatterers, such as hydrogen (e.g., biological and polymeric materials). Additionally, holographic inversions from single-wavelength data have suffered from the so-called conjugate or twin-image problem. The formulation presented for holographic inversion - different from those used previously [e.g., T. Gog et al., Phys. Rev. Lett. 76, 3132 (1996)] - eliminates the twin-image problem for single-wavelength data.

  16. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II.

    PubMed

    Nam, Sunghyun; French, Alfred D; Condon, Brian D; Concha, Monica

    2016-01-01

    The Segal method estimates the amorphous fraction of cellulose Iβ materials simply based on intensity at 18° 2θ in an X-ray diffraction pattern and was extended to cellulose II using 16° 2θ intensity. To address the dependency of Segal amorphous intensity on crystal size, cellulose polymorph, and the degree of polymorphic conversion, we simulated the diffraction patterns of cotton celluloses (Iβ and II) and compared the simulated amorphous fractions with the Segal values. The diffraction patterns of control and mercerized cottons, respectively, were simulated with perfect crystals of cellulose Iβ (1.54° FWHM) and cellulose II (2.30° FWHM) as well as 10% and 35% amorphous celluloses. Their Segal amorphous fractions were 15% and 31%, respectively. The higher Segal amorphous fraction for control cotton was attributed to the peak overlap. Although the amorphous fraction was set in the simulation, the peak overlap induced by the increase of FWHM further enhanced the Segal amorphous intensity of cellulose Iβ. For cellulose II, the effect of peak overlap was smaller; however the lower reflection of the amorphous cellulose scattering in its Segal amorphous location resulted in smaller Segal amorphous fractions. Despite this underestimation, the relatively good agreement of the Segal method with the simulation for mercerized cotton was attributed to the incomplete conversion to cellulose II. The (1-10) and (110) peaks of cellulose Iβ remained near the Segal amorphous location of cellulose II for blends of control and mercerized cotton fibers.

  17. Elastic and inelastic contributions to the XPS photoelectron diffraction patterns of Ni(100) and NiO(100)

    NASA Astrophysics Data System (ADS)

    Steiner, P.; Straub, Th.; Reinert, Fr.; Zimmermann, R.; Hüfner, S.

    1993-07-01

    XPS spectra of Ni(100) and NiO(100) single crystals, measured as a function of the polar angle in the [100]-[010] emission plane, are successfully decomposed into their elastic (intrinsic spectrum) and inelastic contributions using the background subtraction procedure as proposed by Tougaard et al. [Phys. Rev. B 25 (1981) 4452; Surf. Interface Anal. 11 (1988) 453; J. Electron Spectrosc. Relat. Phenom. 52 (1990) 243], with an electron energy loss function deduced from experimental electron energy loss spectra. The inelastic background correction factor shows a diffraction pattern which anticorrelates nearly linearly to the photoelectron diffraction pattern of the intrinsic spectrum, that is its maxima and minima coincide with the minima and maxima of the latter. This behaviour can be described by a simple model, based on heuristic arguments on inelastic and elastic losses and "defocusing" due to multiple scattering along densely packed rows of atoms in the lattice. The consequence of different background subtraction procedures on the shape of the XPS diffraction pattern and for the quantification of XPS data is discussed.

  18. A complete comparison of simulated electron diffraction patterns using different parameterizations of the electron scattering factors.

    PubMed

    Lobato, I; Van Dyck, D

    2015-08-01

    The steadily improving experimental possibilities in instrumental resolution as in sensitivity and quantization of the data recording put increasingly higher demands on the precision of the scattering factors, which are the key ingredients for electron diffraction or high-resolution imaging simulation. In the present study, we will systematically investigate the accuracy of fitting of the main parameterizations of the electron scattering factor for the calculation of electron diffraction intensities. It is shown that the main parameterizations of the electron scattering factor are consistent to calculate electron diffraction intensities for thin specimens and low angle scattering. Parameterizations of the electron scattering factor with the correct asymptotic behavior (Lobato and Dyck [5], Kirkland [4], and Weickenmeier and Kohl [2]) produce similar results for both the undisplaced lattice model and the frozen phonon model, except for certain thicknesses and reflections.

  19. Controlled far-field pattern selection in diffraction-coupled semiconductor laser arrays

    SciTech Connect

    Wilcox, J.Z.; Jansen, M.; Silver, A.H.; Yang, J.J.J.; Simmons, W.W.

    1988-08-16

    A diffraction-coupled semiconductor laser array is described capable of being switched between essentially in-phase and essentially out-of-phase supermodes of operation. The array consists of: a waveguide section having an array of semiconductor lasers coupled together by evanescent coupling, and having one at least partially reflective optical emission element; a diffraction section connected to the waveguide section, and having an at least partially reflective optical emission element that cooperates with the optical emission element in the waveguide section, to produce lasing of the array; wherein the dimensions of the waveguide section and the diffraction section are selected to encourage in-phase lasing of the array; and wherein the diffraction section and the waveguide section have electrically isolated contact layers to switch the array, by independent current injection, between two different operating states, one of which promotes lasing in the in-phase supermode and the other of which promotes lasing in the out-of-phase supermode.

  20. Magnetic symmetries in neutron and resonant x-ray Bragg diffraction patterns of four iridium oxides.

    PubMed

    Lovesey, S W; Khalyavin, D D; Manuel, P; Chapon, L C; Cao, G; Qi, T F

    2012-12-12

    The magnetic properties of Sr(2)IrO(4), Na(2)IrO(3), Sr(3)Ir(2)O(7) and CaIrO(3) are discussed, principally in the light of experimental data in recent literature for Bragg intensities measured in x-ray diffraction with enhancement at iridium L-absorption edges. The electronic structure factors we report, which incorporate parity-even and acentric entities, serve the immediate purpose of making full use of crystal and magnetic symmetry to refine our knowledge of the magnetic properties of the four iridates from resonant x-ray diffraction data. They also offer a platform on which to interpret future investigations, using dichroic signals, resonant x-ray diffraction and neutron diffraction, for example, as well as ab initio calculations of electronic structure. Unit-cell structure factors, suitable for x-ray Bragg diffraction enhanced by an electric dipole-electric dipole (E1-E1) event, reveal exactly which iridium multipoles are visible, e.g., a magnetic dipole parallel to the crystal c-axis (z-axis) and an electric quadrupole with yz-like symmetry in the specific case of CaIrO(3). Magnetic space-groups are assigned to Sr(2)IrO(4), Sr(3)Ir(2)O(7) and CaIrO(3), namely, P(I)cca, P(A)ban and Cm'cm', respectively, in the Belov-Neronova-Smirnova notation. The assignment for Sr(2)IrO(4) is possible because of our new high-resolution neutron diffraction data, gathered on a powder sample. In addition, the new data are used to show that the ordered magnetic moment of an Ir(4+) ion in Sr(2)IrO(4) does not exceed 0.29(4) μ(B). Na(2)IrO(3) has two candidate magnetic space-groups that are not resolved with currently available resonant x-ray data.

  1. A relationship between the far field diffraction pattern and the axial pressure radiating from a two-dimensional aperture.

    PubMed

    Pees, Edward H

    2010-03-01

    The diffraction of an acoustic wave by a two-dimensional aperture produces a sound field that can generally be represented at any point in space as a superposition of a continuum of plane waves. The mathematical formulation that facilitates this representation is known as the angular spectrum of plane waves method. The spectrum, in this representation, is a wavenumber spectrum obtained from a two-dimensional Fourier transform of the acoustic pressure (or velocity) distribution over the surface of the aperture boundary; a quantity which is also known to characterize the Fraunhofer diffraction pattern of the aperture. In this article, the angular spectrum method is used to formulate a mathematical relationship for two-dimensional apertures between the Fraunhofer diffraction pattern and a one-dimensional Fourier transform of the axial pressure. This relationship can be used to rapidly compute the axial pressure profile of the aperture if the boundary condition on the aperture is known and, in some cases, can be used as an inverse method. The approach is demonstrated for the cases of a flat circular piston and a flat rectangular piston undergoing harmonic motion in an infinite, rigid baffle. In the latter case, an analytical solution is also obtained.

  2. Theoretical study on the interference pattern of femtosecond pulses diffracted by a phase mask

    NASA Astrophysics Data System (ADS)

    Bueno, A.; Kinet, D.; Chah, K.; Mégret, P.; Caucheteur, C.

    2016-05-01

    In this paper, we describe a theoretical study on the interference created by a phase mask when a femtosecond laser is used. The limitations of the phase mask-to-fiber distance are discussed and the optimal inscription range is established. Femtosecond lasers have the unique feature of short coherence length and thus the diffraction orders do not interfere after a certain distance travelled from the phase mask even if the phase mask has a poor zero order suppression. The equation describing this behaviour is presented and simulations are included for validation. The intensity profile of the overlapping +/-1 diffraction orders after the phase mask is also studied for 1st order (1070 nm pitch) and for 2nd order (2140 nm pitch) phase masks.

  3. Inferring planar disorder in close-packed structures via ε-machine spectral reconstruction theory: examples from simulated diffraction patterns.

    PubMed

    Varn, D P; Canright, G S; Crutchfield, J P

    2013-07-01

    A previous paper detailed a novel algorithm, ε-machine spectral reconstruction theory (εMSR), that infers pattern and disorder in planar-faulted, close-packed structures directly from X-ray diffraction patterns [Varn et al. (2013). Acta Cryst. A69, 197-206]. Here εMSR is applied to simulated diffraction patterns from four close-packed crystals. It is found that, for stacking structures with a memory length of three or less, εMSR reproduces the statistics of the stacking structure; the result being in the form of a directed graph called an ε-machine. For stacking structures with a memory length larger than three, εMSR returns a model that captures many important features of the original stacking structure. These include multiple stacking faults and multiple crystal structures. Further, it is found that εMSR is able to discover stacking structure in even highly disordered crystals. In order to address issues concerning the long-range order observed in many classes of layered materials, several length parameters are defined, calculable from the ε-machine, and their relevance is discussed.

  4. Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers: Association to striatal D2/D3 receptors

    SciTech Connect

    Tomasi, Dardo; Wang, Gene -Jack; Wang, Ruiliang; Caparelli, Elisabeth C.; Logan, Jean; Volkow, Nora D.

    2014-08-20

    Cocaine, through its activation of dopamine (DA) signaling, usurps pathways that process natural rewards. However, the extent to which there is overlap between the networks that process natural and drug rewards and whether DA signaling associated with cocaine abuse influences these networks have not been investigated in humans. We measured brain activation responses to food and cocaine cues with fMRI, and D2/D3 receptors in the striatum with [11C]raclopride and PET in 20 active cocaine abusers. Compared to neutral cues, food and cocaine cues increasingly engaged cerebellum, orbitofrontal, inferior frontal and premotor cortices and insula and disengaged cuneus and default mode network (DMN). These fMRI signals were proportional to striatal D2/D3 receptors. Surprisingly cocaine and food cues also deactivated ventral striatum and hypothalamus. Compared to food cues, cocaine cues produced lower activation in insula and postcentral gyrus, and less deactivation in hypothalamus and DMN regions. Activation in cortical regions and cerebellum increased in proportion to the valence of the cues, and activation to food cues in somatosensory and orbitofrontal cortices also increased in proportion to body mass. Longer exposure to cocaine was associated with lower activation to both cues in occipital cortex and cerebellum, which could reflect the decreases in D2/D3 receptors associated with chronicity. In conclusion, these findings show that cocaine cues activate similar, though not identical, pathways to those activated by food cues and that striatal D2/D3 receptors modulate these responses, suggesting that chronic cocaine exposure might influence brain sensitivity not just to drugs but also to food cues.

  5. Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers: Association to striatal D2/D3 receptors

    DOE PAGES

    Tomasi, Dardo; Wang, Gene -Jack; Wang, Ruiliang; ...

    2014-08-20

    Cocaine, through its activation of dopamine (DA) signaling, usurps pathways that process natural rewards. However, the extent to which there is overlap between the networks that process natural and drug rewards and whether DA signaling associated with cocaine abuse influences these networks have not been investigated in humans. We measured brain activation responses to food and cocaine cues with fMRI, and D2/D3 receptors in the striatum with [11C]raclopride and PET in 20 active cocaine abusers. Compared to neutral cues, food and cocaine cues increasingly engaged cerebellum, orbitofrontal, inferior frontal and premotor cortices and insula and disengaged cuneus and default modemore » network (DMN). These fMRI signals were proportional to striatal D2/D3 receptors. Surprisingly cocaine and food cues also deactivated ventral striatum and hypothalamus. Compared to food cues, cocaine cues produced lower activation in insula and postcentral gyrus, and less deactivation in hypothalamus and DMN regions. Activation in cortical regions and cerebellum increased in proportion to the valence of the cues, and activation to food cues in somatosensory and orbitofrontal cortices also increased in proportion to body mass. Longer exposure to cocaine was associated with lower activation to both cues in occipital cortex and cerebellum, which could reflect the decreases in D2/D3 receptors associated with chronicity. In conclusion, these findings show that cocaine cues activate similar, though not identical, pathways to those activated by food cues and that striatal D2/D3 receptors modulate these responses, suggesting that chronic cocaine exposure might influence brain sensitivity not just to drugs but also to food cues.« less

  6. Comparison of the urinary protein patterns of athletes by 2D-gel electrophoresis and mass spectrometry-a pilot study.

    PubMed

    Kohler, Maxie; Franz, Stefan; Regeniter, Axel; Ikonen, Anna; Walpurgis, Katja; Thomas, Andreas; Schänzer, Wilhelm; Thevis, Mario

    2009-08-01

    Urinary proteins and exercise-induced proteinuria have been the subject of much research. Proteinuria has been studied in depth after different running and cycling intensities and durations and the different mechanisms of glomerular filtration and tubular dysfunction have been elucidated. The present study was carried out to compare urinary protein profiles of athletes in different sport categories (endurance sport, team sport, strength sport). Doping-control urine samples obtained from in-competition testing and specimens derived from a control group were analysed by means of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and significantly deviating protein spots were enzymatically hydrolysed and identified by nanoflow liquid chromatography-orbitrap mass spectrometry. Endurance sport samples demonstrated a significant increase of mainly medium-sized urinary proteins such as transferrin, zinc alpha-2-glycoprotein and prostaglandin H2 D-isomerase (30-80 kDa) in 2D-PAGE experiments. Proteinuria was evident in all samples after protein concentration measurements (protein/creatinine > 15 mg/mmol). Alterations were also observed in strength sport samples, which showed an increase of low molecular weight proteins or protein fragments (<30 kDa, e.g., transthyretin, CD 59 antigen or an N-terminal transferrin fragment). In contrast, the concentration measurements did not imply proteinuria but total protein excretion was in a normal range. The study provides a first overview on 2D maps of the urinary proteome after different types of exercise. Future studies may lead to the establishment of urinary protein maps that are typical for a certain type of sport or even an individual athlete. These maps may complement the blood passport of athletes in doping control.

  7. Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers: association to striatal D2/D3 receptors

    PubMed Central

    Tomasi, Dardo; Wang, Gene-Jack; Wang, Ruiliang; Caparelli, Elisabeth C.; Logan, Jean; Volkow, Nora D.

    2014-01-01

    Cocaine, through its activation of dopamine (DA) signaling, usurps pathways that process natural rewards. However, the extent to which there is overlap between the networks that process natural and drug rewards and whether DA signaling associated with cocaine abuse influences these networks have not been investigated in humans. We measured brain activation responses to food and cocaine cues with fMRI, and D2/D3 receptors in the striatum with [11C]raclopride and PET in 20 active cocaine abusers. Compared to neutral cues, food and cocaine cues increasingly engaged cerebellum, orbitofrontal, inferior frontal and premotor cortices and insula and disengaged cuneus and default mode network (DMN). These fMRI signals were proportional to striatal D2/D3 receptors. Surprisingly cocaine and food cues also deactivated ventral striatum and hypothalamus. Compared to food cues, cocaine cues produced lower activation in insula and postcentral gyrus, and less deactivation in hypothalamus and DMN regions. Activation in cortical regions and cerebellum increased in proportion to the valence of the cues, and activation to food cues in somatosensory and orbitofrontal cortices also increased in proportion to body mass. Longer exposure to cocaine was associated with lower activation to both cues in occipital cortex and cerebellum, which could reflect the decreases in D2/D3 receptors associated with chronicity. These findings show that cocaine cues activate similar, though not identical, pathways to those activated by food cues and that striatal D2/D3 receptors modulate these responses, suggesting that chronic cocaine exposure might influence brain sensitivity not just to drugs but also to food cues. PMID:25142207

  8. X-ray powder diffraction patterns for certain beta-lactam, tetracycline and macrolide antibiotic drugs.

    PubMed

    Thangadurai, S; Abraham, J T; Srivastava, A K; Moorthy, M Nataraja; Shukla, S K; Anjaneyulu, Y

    2005-07-01

    X-ray powder diffraction (XRD) data for eight beta-lactam viz., ampicillin sodium, ampicillin trihydrate, penicillin G procaine, benzathine penicillin, benzyl penicillin sodium, cefalexin, cefotaxime sodium and ceftriaxone sodium; three tetracyclines viz., doxycycline hydrochloride, oxytetracycline dihydrate and tetracycline hydrochloride; and two macrolide viz., azithromycin and erythromycin estolate antibiotic drugs were obtained using a powder diffractometer. The drugs were scanned from Bragg angles (2theta) of 10 degrees to 70 degrees. The obtained data were tabulated in terms of the lattice spacing (A) and relative line intensities (I/I(I)). This new information may be useful for identifying these drugs from confiscated materials, which has been frequently encountered in forensic laboratories.

  9. Rietveld Refinement on X-Ray Diffraction Patterns of Bioapatite in Human Fetal Bones

    PubMed Central

    Meneghini, Carlo; Dalconi, Maria Chiara; Nuzzo, Stefania; Mobilio, Settimio; Wenk, Rudy H.

    2003-01-01

    Bioapatite, the main constituent of mineralized tissue in mammalian bones, is a calcium-phosphate-based mineral that is similar in structure and composition to hydroxyapatite. In this work, the crystallographic structure of bioapatite in human fetuses was investigated by synchrotron radiation x-ray diffraction (XRD) and microdiffraction (μ-XRD) techniques. Rietveld refinement analyses of XRD and μ-XRD data allow for quantitative probing of the structural modifications of bioapatite as functions of the mineralization process and gestational age. PMID:12609904

  10. Transmission X-ray Diffraction (XRD) Patterns Relevant to the MSL Chemin Amorphous Component: Sulfates And Silicates

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Rampe, E. B.; Graff, T. G.; Archer, P. D., Jr.; Le, L.; Ming, D. W.; Sutter, B.

    2015-01-01

    The Mars Science Laboratory (MSL) CheMin instrument on the Curiosity rover is a transmission X-ray diffractometer (Co-Kalpha radiation source and a approx.5deg to approx.52deg 2theta range) where the analyzed powder samples are constrained to have discrete particle diameters <150 microns by a sieve. To date, diffraction patterns have been obtained for one basaltic soil (Rocknest (RN)) and four drill fines of coherent rock (John Klein (JK), Cumberland (CB), Windjana (WJ), and Confidence Hills (CH)). The CheMin instrument has detected and quantified the abundance of both primary igneous (e.g., feldspar, olivine, and pyroxene) and secondary (e.g., Ca-sulfates, hematite, akaganeite, and Fe-saponite) minerals. The diffraction patterns of all CheMin samples are also characterized by a broad diffraction band centered near 30deg 2theta and by increasing diffraction intensity (scattering continuum) from approx.15deg to approx.5deg, the 2theta minimum. Both the broad band and the scattering continuum are attributed to the presence of an XRD amorphous component. Estimates of amorphous component abundance, based on the XRD data itself and on mass-balance calculations using APXS data crystalline component chemistry derived from XRD data, martian meteorites, and/or stoichiometry [e.g., 6-9], range from approx.20 wt.% to approx.50 wt.% of bulk sample. The APXSbased calculations show that the amorphous component is rich in volatile elements (esp. SO3) and is not simply primary basaltic glass, which was used as a surrogate to model the broad band in the RN CheMin pattern. For RN, the entire volatile inventory (except minor anhydrite) is assigned to the amorphous component because no volatile-bearing crystalline phases were reported within detection limits [2]. For JK and CB, Fesaponite, basanite, and akaganeite are volatile-bearing crystalline components. Here we report transmission XRD patterns for sulfate and silicate phases relevant to interpretation of MSL-CheMin XRD amorphous

  11. Third-dimension information retrieval from a single convergent-beam transmission electron diffraction pattern using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Pennington, Robert S.; Van den Broek, Wouter; Koch, Christoph T.

    2014-05-01

    We have reconstructed third-dimension specimen information from convergent-beam electron diffraction (CBED) patterns simulated using the stacked-Bloch-wave method. By reformulating the stacked-Bloch-wave formalism as an artificial neural network and optimizing with resilient back propagation, we demonstrate specimen orientation reconstructions with depth resolutions down to 5 nm. To show our algorithm's ability to analyze realistic data, we also discuss and demonstrate our algorithm reconstructing from noisy data and using a limited number of CBED disks. Applicability of this reconstruction algorithm to other specimen parameters is discussed.

  12. Time dependent diffraction ring patterns in bromothymol blue dye doped PMMA film under irradiation with continuous wave green laser light

    NASA Astrophysics Data System (ADS)

    Al-Saymari, F. A.; Badran, H. A.; Al-Ahmad, A. Y.; Emshary, C. A.

    2013-11-01

    Diffraction ring patterns are generated in bromothymol blue (BTB) doped poly methyl methacrylate (PMMA) film with the aid of visible light from a solid state laser of Gaussian distribution. Temporal evolution of patterns i.e. the number of rings increases as time elapse is observed. Based on the experimental findings, change in refractive index ( ∆n) effective nonlinear refractive index ( n 2) and variation of refractive index with temperature ( dn/ dT) have been obtained as 0.0025, 1.45 × 10-6 cm2 W-1, 1.69 × 10-5 K-1 respectively. Obtained results suggest the possibility of using BTB doped PMMA in data storage, recording and holography.

  13. Two-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed Bessel beam.

    PubMed

    Yang, Liang; Qian, Dongdong; Xin, Chen; Hu, Zhijiang; Ji, Shengyun; Wu, Dong; Hu, Yanlei; Li, Jiawen; Huang, Wenhao; Chu, Jiaru

    2017-02-15

    In this Letter, superposed Bessel beams (SBBs) are realized by alternatively imprinting holograms of opposite-order Bessel beams along the radial direction on a spatial light modulator. The propagation invariance and non-rotation properties of SBBs are theoretically predicted and experimentally demonstrated. The focusing property of SBBs with a high numerical aperture (NA) objective is investigated with the Debye vectorial diffraction theory. Near the focal plane, a circularly distributed multiple foci pattern is achieved. The multiple foci generated from SBBs are adopted in a two-photon fabrication system, and micropattern fabrication by a single exposure is demonstrated. Facile fabrication of three-dimensional microstructures with SBBs is realized by dynamically controlling the number of focal spots, and the diameter and rotation of the focal pattern.

  14. Full characterization of planar infrared metamaterials from far field diffraction pattern

    NASA Astrophysics Data System (ADS)

    Kanté, Boubacar; Burokur, Shah Nawaz; Gadot, Frédérique; de Lustrac, André

    2008-04-01

    Since the event of metamaterials, a considerable effort has been performed to fabricate them in the infrared and optical regimes. However, apart from the experimental demonstration and observation of H. J. Lezec et al based on surface plasma polariton, direct visualisation of negative refraction based on metal-dielectric resonances have not been performed experimentally so far in the infrared or visible regime (photonic crystals with periodicity on the order of the wavelength are not considered here). Very often only simulations have given the needed phase information for the retrieval methods in optical experiments. In this paper, a metamaterial composed of SRR (Split Ring Resonators) and a continuous wire is considered. We extract the phase information from the transmission and the reflection measurements through a diffraction grating made of the metamaterial to be characterized and silicon or gold. This retrieval allows a unambiguous retrieval of the effective parameters under conditions discussed in the paper at IR and visible wavelengths.

  15. Fast mask CD uniformity measurement using zero order diffraction from memory array pattern

    NASA Astrophysics Data System (ADS)

    Heo, Jinseok; Park, Jinhong; Yeo, Jeongho; Choi, Seongwoon; Han, Woosung

    2009-03-01

    CD Uniformity (CDU) control is getting more concerning in lithographic process and required to control tighter as design rule shrinkage. Traditionally CDU is measured through discrete spatial sampling based data and interpolated data map represents uniformity trends within shot and wafer. There is growing requirement on more high sampling resolution for the CDU mapping from wafer. However, it requires huge time consumption for CD measurements with traditional methods like CD-SEM and OCD. To overcome the throughput limitation, there was an approach with inspection tool to measure CD trends on array area which showed good correlation to the traditional CD measurement. In this paper, we suggest a fast mask CD error estimation method using 0th order of diffraction. To accomplish fast measurement, simple macro inspection tool was adopted to cover full wafer area and scan result gives good correlation with mask uniformity data.

  16. Chemical analyses and x-ray diffraction patterns of powders and films of chloroaluminum phthalocyanine

    NASA Astrophysics Data System (ADS)

    Cote, Roland; Denes, G.; Gastonguay, Louis; Dodelet, Jean-Pol

    1992-12-01

    Fine powders and sublimed films (15 micrometers thick) of pure chloroaluminum phthalocyanine (ClAlPc) undergo both, chemical reaction and structural modification, when immersed in aqueous solutions containing anions (I3-/I- or Br- at various acid pH values). The x-ray diffraction diagrams of powder and films of untreated ClAlPc exhibit a strong characteristic peak corresponding to a d-spacing of 3.29 angstrom. A 48 h. immersion of ClAlPc (powder or film) resulted in the appearance of a new peak at 3.45 angstrom in the diffraction diagram. The peak intensity at d equals 3.45 angstrom is only 11% (powder) or 47% (film) of the main peak intensity at d equals 3.29 angstrom. It clearly shows that the crystal structure of ClAlPc has only been partially modified in both cases. However, the modification is more complete for the film than for the powder. Chemical analyses by neutron activation were performed on fine powders of ClAlPc before and after immersion. For instance ClAlPc absorbs 7.6% by weight of iodine after 24 h of immersion in I3-/I- (0.005 M/0.4 M) redox electrolyte at pH 1.0. The decrease in the chlorine content of untreated ClAlPc from 6.1% to 3.7% after immersion could be explained in terms of an hydrolysis reaction of some ClAlPc. These results lead us to a model where by the surface of the ClAlPc crystallites would be hydrolyzed to HOAlPc and heavily doped with anions taken up from the aqueous solution. These transformations improve the photoactivity of the material.

  17. Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays.

    PubMed

    Lu, Zhengang; Wang, Heyan; Tan, Jiubin; Ma, Limin; Lin, Shen

    2016-05-01

    We provide theoretical and experimental evidence that introducing metallic rings and sub-rings in mesh unit cells significantly decreases the high-order diffraction energy. Moreover, rotating the sub-rings results in increased uniformity in the diffraction distribution without affecting the transmittance. Experiments show that the triangular ring mesh with rotated sub-rings exhibits a normalized visible transmittance greater than 95% as well as an ultra-uniform diffraction pattern of stray light, whose maximal normalized high-order diffraction energy is lower than 0.0167%. This kind of metallic mesh will be favorable in transparent electromagnetic interference shielding devices and touch screens.

  18. The interpretation of diffraction patterns of two prototypical protic ionic liquids: a challenging task for classical molecular dynamics simulations.

    PubMed

    Gontrani, Lorenzo; Bodo, Enrico; Triolo, Alessandro; Leonelli, Francesca; D'Angelo, Paola; Migliorati, Valentina; Caminiti, Ruggero

    2012-11-01

    In this study, we discuss the performance of classical molecular dynamics in predicting the experimental X-ray diffraction patterns of liquid ethylammonium nitrate (one of the simplest protic room-temperature ionic liquid showing amphiphilic behavior) and of its hydroxy derivative (2-ethanolammonium nitrate, 2-HOEAN). Newly recorded energy-dispersive X-ray diffraction structure factors are compared with the corresponding quantities extracted from molecular dynamics simulations. Other useful theoretical and experimental indicators are used as a probe of the local structure of the title ionic liquids. We shall show that the use of a general purpose, two-body terms only, force field, such as OPLS/AA is able to describe most of the structural experimental data. However, we shall also point out that an improved description of some key structural features observed in the X-ray radial distribution function, can be obtained very easily by adding a general three-body potential energy term instead of changing the two-body potential parameters, in order to optimize the agreement with experimental data. This three-body term turns out to be naturally able to describe the complex polarization effects due to hydrogen bonding without requiring a quanto-mechanical treatment or a polarizable force field. In addition the present model turns out to be able to account for the presence of a low-Q peak in the scattering patterns of EAN, which has been commonly interpreted as a manifestation of the amphiphilic nature of this compound.

  19. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging.

    PubMed

    Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro

    2013-11-01

    Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 10(6) noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 10(6) diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode.

  20. Real-time application of critical dimension measurement of TFT-LCD pattern using a newly proposed 2D image-processing algorithm

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Ho; Kim, You-Sik; Kim, Sung-Ryoung; Lee, Il-Hwan; Pahk, Heui-Jae

    2008-07-01

    A critical dimension measurement system for TFT-LCD patterns has been implemented in this study. To improve the measurement accuracy, an imaging auto-focus algorithm, fast pattern-matching algorithm, and precise edge detection algorithm with subpixel accuracy have been developed and implemented in the system. The optimum focusing position can be calculated using the image focus estimator. The two-step auto-focusing technique has been newly proposed for various LCD patterns, and various focus estimators have been compared to select a stable and accurate one. Fast pattern matching and subpixel edge detection have been developed for measurement. The new approach, called NEMC, is based on edge detection for the selection of influential points; in this approach, points having a strong edge magnitude are only used in the matching procedure. To accelerate pattern matching, point correlation and an image pyramid structure are combined. Edge detection is the most important technique in a vision inspection system. A two-stage edge detection algorithm has been introduced. In the first stage, a first order derivative operator such as the Sobel operator is used to place the edge points and to find the edge directions using a least-square estimation method with pixel accuracy. In the second stage, an eight-connected neighborhood of the estimated edge points is convolved with the LoG (Laplacian of Gaussian) operator, and the LoG-filtered image can be modeled as a continuous function using the facet model. The measurement results of the various patterns are finally presented. The developed system has been successfully used in the TFT-LCD manufacturing industry, and repeatability of less than 30 nm (3 σ) can be obtained with a very fast inspection time.

  1. A new method to evaluate the quality of single crystal Cu by an X-ray diffraction butterfly pattern method

    SciTech Connect

    Xu Zhenming . E-mail: zmxu@sjtu.edu.cn; Guo Zhenqi; Li Jianguo

    2004-12-15

    A new method for the evaluation of the quality of an Ohno continuous cast (OCC) Cu single crystal by X-ray diffraction (XRD) butterfly pattern was brought forward. Experimental results show that the growth direction of single crystal Cu is inclined from both sides of the single crystal Cu rod to the axis and is axially symmetric. The degree of deviation from the [100] orientation from the crystal axis is less than 5 deg. with a casting speed 10-40 mm/min. The orientation of single crystal Cu does not have a fixed direction but is in a regular range. Moreover, the orientation of stray grains in the single crystal Cu is random from continuous casting.

  2. Reordering of the ridge patterns of a stochastic electromagnetic field by diffraction due to an ideal slit

    NASA Astrophysics Data System (ADS)

    Avendaño, J.; de La Peña, L.

    2005-12-01

    We study the behavior of scarlets of a stochastic radiation field of fixed frequency in the presence of a slit pierced on an infinitely thin metallic screen of ideal conductivity. Our methodology involves the exact solution of the Maxwell equations with appropriate boundary conditions, the only approximations being those due to the numerical procedure. Our numerical simulations show that the field is unfolded into two components, a dominant one that is disordered and a weaker one that is ordered. The former still presents scarlets although modified, while the latter exhibits a pattern of perfectly coherent diffraction. Due to the dominant character of the disordered component, the general appearance of the scattered field is stochastic; however, an underlying order exists. Our results confirm, thus, a novel effect suggested previously in the context of stochastic electrodynamics.

  3. Reordering of the ridge patterns of a stochastic electromagnetic field by diffraction due to an ideal slit.

    PubMed

    Avendaño, J; de la Peña, L

    2005-12-01

    We study the behavior of scarlets of a stochastic radiation field of fixed frequency in the presence of a slit pierced on an infinitely thin metallic screen of ideal conductivity. Our methodology involves the exact solution of the Maxwell equations with appropriate boundary conditions, the only approximations being those due to the numerical procedure. Our numerical simulations show that the field is unfolded into two components, a dominant one that is disordered and a weaker one that is ordered. The former still presents scarlets although modified, while the latter exhibits a pattern of perfectly coherent diffraction. Due to the dominant character of the disordered component, the general appearance of the scattered field is stochastic; however, an underlying order exists. Our results confirm, thus, a novel effect suggested previously in the context of stochastic electrodynamics.

  4. Refractive-index determination of solids from first- and second-order critical diffraction angles of periodic surface patterns

    SciTech Connect

    Meichner, Christoph Kador, Lothar; Schedl, Andreas E.; Neuber, Christian; Kreger, Klaus; Schmidt, Hans-Werner

    2015-08-15

    We present two approaches for measuring the refractive index of transparent solids in the visible spectral range based on diffraction gratings. Both require a small spot with a periodic pattern on the surface of the solid, collimated monochromatic light, and a rotation stage. We demonstrate the methods on a polydimethylsiloxane film (Sylgard{sup ®} 184) and compare our data to those obtained with a standard Abbe refractometer at several wavelengths between 489 and 688 nm. The results of our approaches show good agreement with the refractometer data. Possible error sources are analyzed and discussed in detail; they include mainly the linewidth of the laser and/or the angular resolution of the rotation stage. With narrow-band light sources, an angular accuracy of ±0.025{sup ∘} results in an error of the refractive index of typically ±5 ⋅ 10{sup −4}. Information on the sample thickness is not required.

  5. Molecular cloning, expression pattern, and chromosomal localization of human CDKN2D/INK4d, an inhibitor of cyclin D-dependent kinases

    SciTech Connect

    Okuda, Tsukasa; Shurtleff, S.A.; Downing, J.R.

    1995-10-10

    Progression through the G1 phase of the cell cycle is dependent on the activity of holoenzymes formed between D-type cyclins and their catalytic partners, the cyclin-dependent kinases cdk4 and cdk6. p16{sup INK4a} p15{sup INK4b}, and p18{sup INK4c}, a group of structurally related proteins, function as specific inhibitors of the cyclin D-dependent kinases and are likely to play physiologic roles as specific regulators of these kinases in vivo. A new member of the INK4 gene family, murine INK4d, has recently been identified. Here we report the isolation of human INK4d (gene symbol CDKN2D), which is 86 identical at the amino acid level to the murine clone and {approximately}44% identical to each of the other human INK4 family members. The INK4d gene is ubiquitously expressed as a single 1.4-kb mRNA with the highest levels detected in thymus, spleen, peripheral blood leukocytes, fetal liver, brain, and testes. The abundance of INK4d mRNA oscillates in a cell-cycle-dependent manner with expression lowest at mid G1 and maximal during S phase. Using a P1-phage genomic clone of INK4d for fluorescence in situ hybridization analysis, the location of this gene was mapped to chromosome 19p13. No rearrangements or deletions of the INK4d gene were observed in Southern blot analysis of selected cases of pediatric acute lymphoblastic leukemia (ALL) containing a variant (1;19)(q23;p13) translocation that lacks rearrangement of either E2A or PBX1, or in ALL cases containing homozygous or hemizygous deletions of the related genes, INK4a and INK4b. 39 refs., 3 figs.

  6. Building X-ray Diffraction Calibration Software

    SciTech Connect

    Lande, Joshua; /Marlboro Coll.

    2007-10-31

    X-ray diffraction is a technique used to analyze the structure of crystals. It records the interference pattern created when x-rays travel through a crystal. Three dimensional structure can be inferred from these two dimensional diffraction patterns. Before the patterns can be analyzed, diffraction data must be precisely calibrated. Calibration is used to determine the experimental parameters of the particular experiment. This is done by fitting the experimental parameters to the diffraction pattern of a well understood crystal. Fit2D is a software package commonly used to do this calibration but it leaves much to be desired. In particular, it does not give very much control over the calibration of the data, requires a significant amount of manual input, does not allow for the calibration of highly tilted geometries, does not properly explain the assumptions that it is making, and cannot be modified. We build code to do this calibration while at the same time overcoming the limitations of Fit2D. This paper describes the development of the calibration software and the assumptions that are made in doing the calibration.

  7. Dark-field imaging based on post-processed electron backscatter diffraction patterns of bulk crystalline materials in a scanning electron microscope.

    PubMed

    Brodusch, Nicolas; Demers, Hendrix; Gauvin, Raynald

    2015-01-01

    Dark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope. The offline facility of this technique permits the selection of any diffraction condition available in the diffraction pattern and displaying the corresponding image. The high number of diffraction-based images available allows a better monitoring of deformation structures compared to electron channeling contrast imaging (ECCI) which is generally limited to a few images of the same area. This technique was applied to steel and iron specimens and showed its high capability in describing more rigorously the deformation structures around micro-hardness indents. Due to the offline relation between the reference EBSP and the EBSD-DF images, this new technique will undoubtedly greatly improve our knowledge of deformation mechanism and help to improve our understanding of the ECCI contrast mechanisms.

  8. Coherent 3D nanostructure of γ-Al2O3: Simulation of whole X-ray powder diffraction pattern

    NASA Astrophysics Data System (ADS)

    Pakharukova, V. P.; Yatsenko, D. A.; Gerasimov, E. Yu.; Shalygin, A. S.; Martyanov, O. N.; Tsybulya, S. V.

    2017-02-01

    The structure and nanostructure features of nanocrystalline γ-Al2O3 obtained by dehydration of boehmite with anisotropic platelet-shaped particles were investigated. The original models of 3D coherent nanostructure of γ-Al2O3 were constructed. The models of nanostructured γ-Al2O3 particles were first confirmed by a direct simulation of powder X-Ray diffraction (XRD) patterns using the Debye Scattering Equation (DSE) with assistance of high-resolution transmission electron microscopy (HRTEM) study. The average crystal structure of γ-Al2O3 was shown to be tetragonally distorted. The experimental results revealed that thin γ-Al2O3 platelets were heterogeneous on a nanometer scale and nanometer-sized building blocks were separated by partially coherent interfaces. The XRD simulation results showed that a specific packing of the primary crystalline blocks in the nanostructured γ-Al2O3 particles with formation of planar defects on {001}, {100}, and {101} planes nicely accounted for pronounced diffuse scattering, anisotropic peak broadening and peak shifts in the experimental XRD pattern. The identified planar defects in cation sublattice seem to be described as filling cation non-spinel sites in existing crystallographic models of γ-Al2O3 structure. The overall findings provided an insight into the complex nanostructure, which is intrinsic to the metastable γ-Al2O3 oxide.

  9. Synchrotron x-ray diffraction study of micro-patterns obtained by spatially selective hydrogenation of GaAsN

    SciTech Connect

    Ciatto, G.; Pettinari, G.; Balakrishnan, N.; Patanè, A.; Berenguer, F.; Birindelli, S.; Felici, M.; Polimeni, A.

    2015-02-02

    We report a comparative synchrotron radiation x-ray diffraction study of GaAs{sub 1−y}N{sub y} micro-structures obtained by two different patterning methods: spatially selective H incorporation achieved by using H-opaque masks and spatially selective H removal attained by laser writing. These methods are emerging as original routes for fabrication of micro- and nano-structures with in-plane modulation of the bandgap energy. By measuring the out-of-plane and in-plane lattice parameters, we find that for both patterning approaches the largest part of the micro-structure volume remains tensile-strained and pseudomorphic to the substrate, regardless of the compressive-strained hydrogenated barriers. However, a larger lattice disorder is probed in the laser-written micro-structures and attributed to partial removal of H and/or strain changes at the micro-structure boundaries. This larger lattice disorder is confirmed by photoluminescence studies.

  10. Single-particle structure determination by correlations of snapshot X-ray diffraction patterns (CXIDB ID 20)

    SciTech Connect

    Starodub, D.

    2013-03-25

    This deposition includes the diffraction images generated by the paired polystyrene spheres in random orientations. These images were used to determine and phase the single particle diffraction volume from their autocorrelation functions.

  11. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  12. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers

    PubMed Central

    Zhang, Chendong; Chuu, Chih-Piao; Ren, Xibiao; Li, Ming-Yang; Li, Lain-Jong; Jin, Chuanhong; Chou, Mei-Yin; Shih, Chih-Kang

    2017-01-01

    By using direct growth, we create a rotationally aligned MoS2/WSe2 hetero-bilayer as a designer van der Waals heterostructure. With rotational alignment, the lattice mismatch leads to a periodic variation of atomic registry between individual van der Waals layers, exhibiting a Moiré pattern with a well-defined periodicity. By combining scanning tunneling microscopy/spectroscopy, transmission electron microscopy, and first-principles calculations, we investigate interlayer coupling as a function of atomic registry. We quantitatively determine the influence of interlayer coupling on the electronic structure of the hetero-bilayer at different critical points. We show that the direct gap semiconductor concept is retained in the bilayer although the valence and conduction band edges are located at different layers. We further show that the local bandgap is periodically modulated in the X-Y direction with an amplitude of ~0.15 eV, leading to the formation of a two-dimensional electronic superlattice. PMID:28070558

  13. LauePt, a graphical-user-interface program for simulating and analyzing white-beam x-ray diffraction Laue patterns.

    SciTech Connect

    Huang, X.

    2010-08-01

    LauePt is a robust and extremely easy-to-use Windows application for accurately simulating, indexing and analyzing white-beam X-ray diffraction Laue patterns of any crystals under arbitrary diffraction geometry. This program has a user-friendly graphic interface and can be conveniently used by nonspecialists with little X-ray diffraction or crystallography knowledge. Its wide range of applications include (1) determination of single-crystal orientation with the Laue method, (2) white-beam topography, (3) white-beam microdiffraction, (4) X-ray studies of twinning, domains and heterostructures, (5) verification or determination of crystal structures from white-beam diffraction, and (6) teaching of X-ray crystallography.

  14. Travel-time sensitivity kernels versus diffraction patterns obtained through double beam-forming in shallow water.

    PubMed

    Iturbe, Ion; Roux, Philippe; Virieux, Jean; Nicolas, Barbara

    2009-08-01

    In recent years, the use of sensitivity kernels for tomographic purposes has been frequently discussed in the literature. Sensitivity kernels of different observables (e.g., amplitude, travel-time, and polarization for seismic waves) have been proposed, and relationships between adjoint formulation, time-reversal theory, and sensitivity kernels have been developed. In the present study, travel-time sensitivity kernels (TSKs) are derived for two source-receiver arrays in an acoustic waveguide. More precisely, the TSKs are combined with a double time-delay beam-forming algorithm performed on two source-receiver arrays to isolate and identify each eigenray of the multipath propagation between a source-receiver pair in the acoustic waveguide. A relationship is then obtained between TSKs and diffraction theory. It appears that the spatial shapes of TSKs are equivalent to the gradients of the combined direction patterns of the source and receiver arrays. In the finite-frequency regimes, the combination of TSKs and double beam-forming both simplifies the calculation of TSK and increases the domain of validity for ray theory in shallow-water ocean acoustic tomography.

  15. 2D semiconductor optoelectronics

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  16. Classifying and assembling two-dimensional X-ray laser diffraction patterns of a single particle to reconstruct the three-dimensional diffraction intensity function: resolution limit due to the quantum noise.

    PubMed

    Tokuhisa, Atsushi; Taka, Junichiro; Kono, Hidetoshi; Go, Nobuhiro

    2012-05-01

    A new two-step algorithm is developed for reconstructing the three-dimensional diffraction intensity of a globular biological macromolecule from many experimentally measured quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The first step is classification of the two-dimensional patterns into groups according to the similarity of direction of the incident X-rays with respect to the molecule and an averaging within each group to reduce the noise. The second step is detection of common intersecting circles between the signal-enhanced two-dimensional patterns to identify their mutual location in the three-dimensional wavenumber space. The newly developed algorithm enables one to detect a signal for classification in noisy experimental photon-count data with as low as ~0.1 photons per effective pixel. The wavenumber of such a limiting pixel determines the attainable structural resolution. From this fact, the resolution limit due to the quantum noise attainable by this new method of analysis as well as two important experimental parameters, the number of two-dimensional patterns to be measured (the load for the detector) and the number of pairs of two-dimensional patterns to be analysed (the load for the computer), are derived as a function of the incident X-ray intensity and quantities characterizing the target molecule.

  17. Tactile perception of nonpainful unpleasantness in relation to perceived roughness: effects of inter-element spacing and speed of relative motion of rigid 2-D raised-dot patterns at two body loci.

    PubMed

    Kitada, Ryo; Sadato, Norihiro; Lederman, Susan J

    2012-01-01

    Rigid surfaces consisting of spatially jittered 2-D raised-dot patterns with different inter-element spacings were moved back and forth across the skin at three different speeds (10-fold range). Within each psychophysical experiment, participants numerically estimated the perceived magnitude of either unpleasantness (nonpainful) or roughness of 2-D raised-dot surfaces applied to two stationary body sites (experiment 1: fingers; experiment 2: forearm). The psychophysical functions for the two types of perceptual judgment were highly similar at both body loci; more specifically, the perceived magnitude of unpleasantness and roughness both increased monotonically as a power function of increasing inter-element spacing, with the rate of growth declining at the upper end of the continuum. These results suggest that inter-element spacing is a critical determinant of the perceived magnitude of unpleasantness (nonpainful), as well as of roughness. Each perceptual judgment also increased as a function of increasing relative speed at both body loci. However, the magnitude of this effect was significantly greater for perceived unpleasantness than for perceived roughness; conversely, the speed effect was significantly greater on the forearm than on the fingers. Several possible explanations for these findings are considered.

  18. Application of convergent beam electron diffraction to two-dimensional strain mapping in silicon devices

    NASA Astrophysics Data System (ADS)

    Armigliato, A.; Balboni, R.; Carnevale, G. P.; Pavia, G.; Piccolo, D.; Frabboni, S.; Benedetti, A.; Cullis, A. G.

    2003-03-01

    A method of obtaining quantitative two-dimensional (2D) maps of strain by the convergent beam electron diffraction technique in a transmission electron microscope is described. It is based on the automatic acquisition of a series of diffraction patterns generated from digital rastering the electron spot in a matrix of points within a selected area of the sample. These patterns are stored in a database and the corresponding strain tensor at each point is calculated, thus yielding a 2D strain map. An example of application of this method to cross-sectioned cells fabricated for the 0.15 μm technology of flash memories is reported.

  19. Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent X-ray diffraction patterns: a numerical study1

    PubMed Central

    Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc

    2015-01-01

    Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and ‘relaxed’ after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal. PMID:26089755

  20. Incorporation of AgI clusters into the cages of zeolites LTA and FAU observed by optical spectra and X-ray diffraction patterns

    NASA Astrophysics Data System (ADS)

    Kodaira, Tetsuya; Ikeda, Takuji; Takeo, Harutoshi

    1999-02-01

    The loading of AgI into the cages of zeolites LTA and FAU was performed by vapor-phase adsorption. The successful incorporation of AgI clusters into the cages was confirmed by optical absorption spectra and X-ray powder diffraction patterns. Large blue shifts of the absorption edges were observed in the spectra of adsorbed AgI to both zeolites, compared with the lowest excited state of AgI in the bulk. The present observation of the shift implies that a strong quantum confinement in the photoexcited state of AgI occurs, which leads to the conclusion that AgI clusters have been formed in the cages. In the X-ray powder diffraction pattern of AgI-loaded LTA, superlattice reflection peaks are observed which cannot be assigned either to the reflection of LTA or the AgI in the bulk.

  1. Analysis of x-ray diffraction pattern and complex plane impedance plot of polypyrrole/titanium dioxide nanocomposite: A simulation study

    NASA Astrophysics Data System (ADS)

    Ravikiran, Y. T.; Vijaya Kumari, S. C.

    2013-06-01

    To innovate the properties of Polypyrrole/Titanium dioxide (PPy/TiO2) nanocomposite further, it has been synthesized by chemical polymerization technique. The nanostructure and monoclinic phase of the prepared composite have been confirmed by simulating the X-ray diffraction pattern (XRD). Also, complex plane impedance plot of the composite has been simulated to find equivalent resistance capacitance circuit (RC circuit) and numerical values of R and C have been predicted.

  2. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  3. 2D mapping of texture and lattice parameters of dental enamel.

    PubMed

    Al-Jawad, Maisoon; Steuwer, Axel; Kilcoyne, Susan H; Shore, Roger C; Cywinski, Robert; Wood, David J

    2007-06-01

    We have used synchrotron X-ray diffraction to study the texture and the change in lattice parameter as a function of position in a cross section of human dental enamel. Our study is the first to map changes in preferred orientation and lattice parameter as a function of position within enamel across a whole tooth section with such high resolution. Synchrotron X-ray diffraction with a micro-focused beam spot was used to collect two-dimensional (2D) diffraction images at 150 microm spatial resolution over the entire tooth crown. Contour maps of the texture and lattice parameter distribution of the hydroxyapatite phase were produced from Rietveld refinement of diffraction patterns generated by azimuthally sectioning and integrating the 2D images. The 002 Debye ring showed the largest variation in intensity. This variation is indicative of preferred orientation. Areas of high crystallite alignment on the tooth cusps match the expected biting surfaces. Additionally we found a large variation in lattice parameter when travelling from the enamel surface to the enamel-dentine junction. We believe this to be due to a change in the chemical composition within the tooth. The results provide a new insight on the texture and lattice parameter profiles within enamel.

  4. Photon diffraction

    NASA Astrophysics Data System (ADS)

    Hodge, John

    2009-11-01

    In current light models, a particle-like model of light is inconsistent with diffraction observations. A model of light is proposed wherein photon inferences are combined with the cosmological scalar potential model (SPM). That the photon is a surface with zero surface area in the travel direction is inferred from the Michelson-Morley experiment. That the photons in slits are mathematically treated as a linear antenna array (LAA) is inferred from the comparison of the transmission grating interference pattern and the single slit diffraction pattern. That photons induce a LAA wave into the plenum is inferred from the fractal model. Similarly, the component of the photon (the hod) is treated as a single antenna radiating a potential wave into the plenum. That photons are guided by action on the surface of the hod is inferred from the SPM. The plenum potential waves are a real field (not complex) that forms valleys, consistent with the pilot waves of the Bohm interpretation of quantum mechanics. Therefore, the Afshar experiment result is explained, supports Bohm, and falsifies Copenhagen. The papers may be viewed at http://web.citcom.net/˜scjh/.

  5. Electron diffraction from cylindrical nanotubes

    SciTech Connect

    Qin, L.C. )

    1994-09-01

    Electron diffraction intensities from cylindrical objects can be conveniently analyzed using Bessel functions. Analytic formulas and geometry of the diffraction patterns from cylindrical carbon nanotubes are presented in general forms in terms of structural parameters, such as the pitch angle and the radius of a tubule. As an example the Fraunhofer diffraction pattern from a graphitic tubule of structure [18,2] has been simulated to illustrate the characteristics of such diffraction patterns. The validity of the projection approximation is also discussed.

  6. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined

  7. Hands-on Fourier analysis by means of far-field diffraction

    NASA Astrophysics Data System (ADS)

    Ceffa, Nicolo' Giovanni; Collini, Maddalena; D'Alfonso, Laura; Chirico, Giuseppe

    2016-11-01

    Coherent sources of light are easily available to university undergraduate laboratory courses and the demonstration of electro-magnetic wave diffraction is typically made with light. However, the construction of arbitrary patterns for the study of light diffraction is particularly demanding due to the small linear scale needed when using sub-micrometer wavelengths, limiting the possibility to thoroughly investigate diffraction experimentally. We describe and test a simple and affordable method to develop arbitrary light diffraction patterns with first year undergraduate or last year high school students. This method is exploited to investigate experimentally the connection between diffraction and the Fourier transform, leading to the development of the concept of spectral analysis of a (2D) signal. We therefore discuss the possibility of building a teaching unit for first year undergraduate or last year high school students on the interdisciplinary topic of spectral analysis starting from an experimental approach to light diffraction.

  8. Structure of lintnerized starch is related to X-ray diffraction pattern and susceptibility to acid and enzyme hydrolysis of starch granules.

    PubMed

    Srichuwong, Sathaporn; Isono, Naoto; Mishima, Takashi; Hisamatsu, Makoto

    2005-11-15

    Acid-resistant residues (lintnerized starches, Ls) were prepared from starches showing A-, B- and C- X-ray diffraction patterns. Ls retained the same X-ray crystalline type as their native counterparts with an improvement in diffraction intensity. Fluorophore-assisted capillary electrophoresis (FACE) study indicated that structural characteristics of Ls were associated with X-ray diffraction patterns. Double helices originated from linear chains with an approximate average degree of polymerisation (DP) 14, 16, and 15 would span the entire length of crystalline lamellae of A-, B-, and C-type starches, respectively. The proportion of singly branched materials (SB) with DP 25 protected in Ls was higher for A-type Ls (10-17%) than for B-type Ls (4-6%) and C-type Ls (8%). The structures of SB were similar in which branched chain (DP 13-15) was longer than main chain (DP 10-12). The structural characteristics of Ls are discussed in relation to acid and enzymatic degradations of starch granules.

  9. Dopamine D1/D5, But not D2/D3, Receptor Dependency of Synaptic Plasticity at Hippocampal Mossy Fiber Synapses that Is Enabled by Patterned Afferent Stimulation, or Spatial Learning.

    PubMed

    Hagena, Hardy; Manahan-Vaughan, Denise

    2016-01-01

    Although the mossy fiber (MF) synapses of the hippocampal CA3 region display quite distinct properties in terms of the molecular mechanisms that underlie synaptic plasticity, they nonetheless exhibit persistent (>24 h) synaptic plasticity that is akin to that observed at the Schaffer collateral (SCH)-CA1 and perforant path (PP)-dentate gyrus (DG) synapses of freely behaving rats. In addition, they also respond to novel spatial learning with very enduring forms of long-term potentiation (LTP) and long-term depression (LTD). These latter forms of synaptic plasticity are directly related to the learning behavior: novel exploration of generalized changes in space facilitates the expression of LTP at MF-CA3 synapses, whereas exploration of novel configurations of large environmental features facilitates the expression of LTD. In the absence of spatial novelty, synaptic plasticity is not expressed. Motivation is a potent determinant of whether learning about the spatial experience effectively occurs and the neuromodulator dopamine (DA) plays a key role in motivation-based learning. Prior research on the regulation by DA receptors of long-term synaptic plasticity in CA1 and DG synapses in vivo suggests that whereas D2/D3 receptors may modulate a general predisposition toward expressing plasticity, D1/D5 receptors may directly regulate the direction of change in synaptic strength that occurs during learning. Although the CA3 region is believed to play a pivotal role in many forms of learning, the role of dopamine receptors in persistent (>24 h) forms of synaptic plasticity at MF-CA3 synapses is unknown. Here, we report that whereas pharmacological antagonism of D2/D3 receptors had no impact on LTP or LTD, antagonism of D1/D5 receptors significantly impaired LTP and LTD that were induced by solely by means of patterned afferent stimulation, or LTP/LTD that are typically enhanced by the conjunction of afferent stimulation and novel spatial learning. These data indicate an

  10. Dopamine D1/D5, But not D2/D3, Receptor Dependency of Synaptic Plasticity at Hippocampal Mossy Fiber Synapses that Is Enabled by Patterned Afferent Stimulation, or Spatial Learning

    PubMed Central

    Hagena, Hardy; Manahan-Vaughan, Denise

    2016-01-01

    Although the mossy fiber (MF) synapses of the hippocampal CA3 region display quite distinct properties in terms of the molecular mechanisms that underlie synaptic plasticity, they nonetheless exhibit persistent (>24 h) synaptic plasticity that is akin to that observed at the Schaffer collateral (SCH)-CA1 and perforant path (PP)-dentate gyrus (DG) synapses of freely behaving rats. In addition, they also respond to novel spatial learning with very enduring forms of long-term potentiation (LTP) and long-term depression (LTD). These latter forms of synaptic plasticity are directly related to the learning behavior: novel exploration of generalized changes in space facilitates the expression of LTP at MF-CA3 synapses, whereas exploration of novel configurations of large environmental features facilitates the expression of LTD. In the absence of spatial novelty, synaptic plasticity is not expressed. Motivation is a potent determinant of whether learning about the spatial experience effectively occurs and the neuromodulator dopamine (DA) plays a key role in motivation-based learning. Prior research on the regulation by DA receptors of long-term synaptic plasticity in CA1 and DG synapses in vivo suggests that whereas D2/D3 receptors may modulate a general predisposition toward expressing plasticity, D1/D5 receptors may directly regulate the direction of change in synaptic strength that occurs during learning. Although the CA3 region is believed to play a pivotal role in many forms of learning, the role of dopamine receptors in persistent (>24 h) forms of synaptic plasticity at MF-CA3 synapses is unknown. Here, we report that whereas pharmacological antagonism of D2/D3 receptors had no impact on LTP or LTD, antagonism of D1/D5 receptors significantly impaired LTP and LTD that were induced by solely by means of patterned afferent stimulation, or LTP/LTD that are typically enhanced by the conjunction of afferent stimulation and novel spatial learning. These data indicate an

  11. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  12. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  13. Orthotropic Piezoelectricity in 2D Nanocellulose.

    PubMed

    García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M

    2016-10-06

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V(-1), ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  14. Formation of uniform fringe pattern free from diffraction noise at LDA measurement volume using holographic imaging configuration

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhijit; Nirala, A. K.

    2016-05-01

    In the present study we have proposed a technique for improving fringe quality at laser Doppler anemometry measurement volume in real time using single hololens imaging configuration over conventional imaging configuration with Gaussian beam optics. In order to remove interference fringe gradients as well as higher order diffraction noise formed at measurement volume in the former approach, a combined hololens imaging system has also been proposed. For qualitative as well as quantitative analysis of fringes formed at measurement volume, atomic force microscopy (AFM) analysis has been performed.

  15. Phononic crystal diffraction gratings

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent

    2012-02-01

    When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.

  16. THz quantum cascade lasers operating on the radiative modes of a 2D photonic crystal.

    PubMed

    Halioua, Y; Xu, G; Moumdji, S; Li, L H; Davies, A G; Linfield, E H; Colombelli, R

    2014-07-01

    Photonic-crystal lasers operating on Γ-point band-edge states of a photonic structure naturally exploit the so-called "nonradiative" modes. As the surface output coupling efficiency of these modes is low, they have relatively high Q factors, which favor lasing. We propose a new 2D photonic-crystal design that is capable of reversing this mode competition and achieving lasing on the radiative modes instead. Previously, this has only been shown in 1D structures, where the central idea is to introduce anisotropy into the system, both at unit-cell and resonator scales. By applying this concept to 2D photonic-crystal patterned terahertz frequency quantum cascade lasers, surface-emitting devices with diffraction-limited beams are demonstrated, with 17 mW peak output power.

  17. Fraunhofer-type diffraction patterns of matter-wave scattering of projectiles: Electron transfer in energetic ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Agueny, Hicham

    2015-07-01

    We present results for single and double electron captures in intermediate energies H+ and 2H+ projectiles colliding with a helium target. The processes under investigations are treated using a nonperturbative semiclassical approach in combination with Eikonal approximation to calculate the scattering differential cross sections. The latter reveals pronounced minima and maxima in the scattering angles, in excellent agreement with the recent experimental data. It turns out that the present structure depends strongly on the projectile energy and shows only slight variations with different capture channels. The observed structure demonstrates the analogy of atomic de Broglie's matter-wave scattering with λd B=1.3 -3.2 ×10-3 a.u. and Fraunhofer-type diffraction of light waves.

  18. Rietveld Analysis of X-ray Powder Diffraction Patterns as a Potential Tool for the Identification of Impact-deformed Carbonate Rocks

    SciTech Connect

    Huson, Sarah A.; Foit, Franklin F.; Watkinson, A. J.; Pope, Michael C.

    2009-11-01

    Previous X-ray powder diffraction (XRD) studies revealed that shock deformed carbonates and quartz have broader XRD patterns than those of unshocked samples. Entire XRD patterns, single peak profiles and Rietveld refined parameters of carbonate samples from the Sierra Madera impact crater, west Texas, unshocked equivalent samples from 95 miles north of the crater and the Mission Canyon Formation of southwest Montana and western Wyoming were used to evaluate the use of X-ray powder diffraction as a potential tool for distinguishing impact deformed rocks from unshocked and tectonically deformed rocks. At Sierra Madera dolostone and limestone samples were collected from the crater rim (lower shock intensity) and the central uplift (higher shock intensity). Unshocked equivalent dolostone samples were collected from well cores drilled outside of the impact crater. Carbonate rocks of the Mission Canyon Formation were sampled along a transect across the tectonic front of the Sevier and Laramide orogenic belts. Whereas calcite subjected to significant shock intensities at the Sierra Madera impact crater can be differentiated from tectonically deformed calcite from the Mission Canyon Formation using Rietveld refined peak profiles, weakly shocked calcite from the crater rim appears to be indistinguishable from the tectonically deformed calcite. In contrast, Rietveld analysis readily distinguishes shocked Sierra Madera dolomite from unshocked equivalent dolostone samples from outside the crater and tectonically deformed Mission Canyon Formation dolomite.

  19. Fresnel diffraction of fractal grating and self-imaging effect.

    PubMed

    Wang, Junhong; Zhang, Wei; Cui, Yuwei; Teng, Shuyun

    2014-04-01

    Based on the self-similarity property of fractal, two types of fractal gratings are produced according to the production and addition operations of multiple periodic gratings. Fresnel diffractions of fractal grating are analyzed theoretically, and the general mathematic expressions of the diffraction intensity distributions of fractal grating are deduced. The gray-scale patterns of the 2D diffraction distributions of fractal grating are provided through numerical calculations. The diffraction patterns take on the periodicity along the longitude and transverse directions. The 1D diffraction distribution at some certain distances shows the same structure as the fractal grating. This indicates that the self-image of fractal grating is really formed in the Fresnel diffraction region. The experimental measurement of the diffraction intensity distribution of fractal grating with different fractal dimensions and different fractal levels is performed, and the self-images of fractal grating are obtained successfully in experiments. The conclusions of this paper are helpful for the development of the application of fractal grating.

  20. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  1. Intercalation of organic molecules in 2D copper (II) nitroprusside: Intermolecular interactions and magnetic properties

    SciTech Connect

    Osiry, H.; Cano, A.; Lemus-Santana, A.A.; Rodríguez, A.; Carbonio, R.E.; Reguera, E.

    2015-10-15

    This contribution discusses the intercalation of imidazole and its 2-ethyl derivative, and pyridine in 2D copper nitroprusside. In the interlayer region, neighboring molecules remain interacting throu gh their dipole and quadrupole moments, which supports the solid 3D crystal structure. The crystal structure of this series of intercalation compounds was solved and refined from powder X-ray diffraction patterns complemented with spectroscopic information. The intermolecular interactions were studied from the refined crystal structures and low temperature magnetic measurements. Due to strong attractive forces between neighboring molecules, the resulting π–π cloud overlapping enables the ferromagnetic coupling between metal centers on neighboring layers, which was actually observed for the solids containing imidazole and pyridine as intercalated molecules. For these two solids, the magnetic data were properly described with a model of six neighbors. For the solid containing 2-ethylimidazole and for 2D copper nitroprusside, a model of four neighbors in a plane is sufficient to obtain a reliable data fitting. - Highlights: • Intercalation of organic molecules in 2D copper (II) nitroprusside. • Molecular properties of intercalation compounds of 2D copper (II) nitroprusside. • Magnetic properties of hybrid inorganic–organic solids. • Hybrid inorganic–organic 3D framework.

  2. Teaching Fraunhofer diffraction via experimental and simulated images in the laboratory

    NASA Astrophysics Data System (ADS)

    Peinado, Alba; Vidal, Josep; Escalera, Juan Carlos; Lizana, Angel; Campos, Juan; Yzuel, Maria

    2012-10-01

    Diffraction is an important phenomenon introduced to Physics university students in a subject of Fundamentals of Optics. In addition, in the Physics Degree syllabus of the Universitat Autònoma de Barcelona, there is an elective subject in Applied Optics. In this subject, diverse diffraction concepts are discussed in-depth from different points of view: theory, experiments in the laboratory and computing exercises. In this work, we have focused on the process of teaching Fraunhofer diffraction through laboratory training. Our approach involves students working in small groups. They visualize and acquire some important diffraction patterns with a CCD camera, such as those produced by a slit, a circular aperture or a grating. First, each group calibrates the CCD camera, that is to say, they obtain the relation between the distances in the diffraction plane in millimeters and in the computer screen in pixels. Afterwards, they measure the significant distances in the diffraction patterns and using the appropriate diffraction formalism, they calculate the size of the analyzed apertures. Concomitantly, students grasp the convolution theorem in the Fourier domain by analyzing the diffraction of 2-D gratings of elemental apertures. Finally, the learners use a specific software to simulate diffraction patterns of different apertures. They can control several parameters: shape, size and number of apertures, 1-D or 2-D gratings, wavelength, focal lens or pixel size.Therefore, the program allows them to reproduce the images obtained experimentally, and generate others by changingcertain parameters. This software has been created in our research group, and it is freely distributed to the students in order to help their learning of diffraction. We have observed that these hands on experiments help students to consolidate their theoretical knowledge of diffraction in a pedagogical and stimulating learning process.

  3. Quasiparticle interference in unconventional 2D systems

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-01

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  4. Ab-initio primitive cell parameters from single convergent-beam electron diffraction patterns: a converse route to the identification of microcrystals with electrons.

    PubMed

    Le Page, Y

    1992-04-01

    A new method for the ab initio derivation of Buerger-reduced primitive cell parameters from coordinate measurements of spots on single convergent-beam electron diffraction (CBED) patterns is described, which does not involve trial-and-error. The pattern can be taken along any zone axis, and misorientations of the crystallite by as much as a few degrees are taken into account without loss of accuracy. This derivation of cell parameters by least-squares analysis of the measurements has been automated in a program called NRCBED. Present accuracy is about 1% on lengths and 2 degrees on angles, but could be significantly improved by modelling projector lens aberrations, or by using a microscope without a projector lens. With present technology, it is possible to obtain a CBED pattern and a semi-quantitative energy-dispersive X-ray (EDX) analysis simultaneously from a single microcrystal a few hundred Angströms across. It becomes therefore possible to identify the material of the crystal on a single CBED pattern: a cell parameter database for known compounds is searched with the primitive cell parameters obtained in the above way, and with a mask describing the EDX results qualitatively. Feasibility is demonstrated on a crystallite of CeO2 500 Angströms across. With this new approach, trial-and-error should disappear from the solution of other long-standing problems: interpretation of X-ray powder patterns for new compounds in the presence of impurity lines, or in the case of multiple phases should become straight-forward.

  5. Highly crystalline 2D superconductors

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-12-01

    Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.

  6. Extensions of 2D gravity

    SciTech Connect

    Sevrin, A.

    1993-06-01

    After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.

  7. Aberrations of diffracted wave fields. II. Diffraction gratings.

    PubMed

    Mahajan, V N

    2000-12-01

    The Rayleigh-Sommerfeld theory is applied to diffraction of a spherical wave by a grating. The grating equation is obtained from the aberration-free diffraction pattern, and its aberrations are shown to be the same as the conventional aberrations obtained by using Fermat's principle. These aberrations are shown to be not associated with the diffraction process. Moreover, it is shown that the irradiance distribution of a certain diffraction order is the Fraunhofer diffraction pattern of the grating aperture as a whole aberrated by the aberration of that order.

  8. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  9. 3D tracking of single nanoparticles and quantum dots in living cells by out-of-focus imaging with diffraction pattern recognition.

    PubMed

    Gardini, Lucia; Capitanio, Marco; Pavone, Francesco S

    2015-11-03

    Live cells are three-dimensional environments where biological molecules move to find their targets and accomplish their functions. However, up to now, most single molecule investigations have been limited to bi-dimensional studies owing to the complexity of 3d-tracking techniques. Here, we present a novel method for three-dimensional localization of single nano-emitters based on automatic recognition of out-of-focus diffraction patterns. Our technique can be applied to track the movements of single molecules in living cells using a conventional epifluorescence microscope. We first demonstrate three-dimensional localization of fluorescent nanobeads over 4 microns depth with accuracy below 2 nm in vitro. Remarkably, we also establish three-dimensional tracking of Quantum Dots, overcoming their anisotropic emission, by adopting a ligation strategy that allows rotational freedom of the emitter combined with proper pattern recognition. We localize commercially available Quantum Dots in living cells with accuracy better than 7 nm over 2 microns depth. We validate our technique by tracking the three-dimensional movements of single protein-conjugated Quantum Dots in living cell. Moreover, we find that important localization errors can occur in off-focus imaging when improperly calibrated and we give indications to avoid them. Finally, we share a Matlab script that allows readily application of our technique by other laboratories.

  10. Study of optical Laue diffraction

    SciTech Connect

    Chakravarthy, Giridhar E-mail: aloksharan@email.com; Allam, Srinivasa Rao E-mail: aloksharan@email.com; Satyanarayana, S. V. M. E-mail: aloksharan@email.com; Sharan, Alok E-mail: aloksharan@email.com

    2014-10-15

    We present the study of the optical diffraction pattern of one and two-dimensional gratings with defects, designed using desktop pc and printed on OHP sheet using laser printer. Gratings so prepared, using novel low cost technique provides good visual aid in teaching. Diffraction pattern of the monochromatic light (632.8nm) from the grating so designed is similar to that of x-ray diffraction pattern of crystal lattice with point defects in one and two-dimensions. Here both optical and x-ray diffractions are Fraunhofer. The information about the crystalline lattice structure and the defect size can be known.

  11. Study of optical Laue diffraction

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Giridhar; Allam, Srinivasa Rao; Satyanarayana, S. V. M.; Sharan, Alok

    2014-10-01

    We present the study of the optical diffraction pattern of one and two-dimensional gratings with defects, designed using desktop pc and printed on OHP sheet using laser printer. Gratings so prepared, using novel low cost technique provides good visual aid in teaching. Diffraction pattern of the monochromatic light (632.8nm) from the grating so designed is similar to that of x-ray diffraction pattern of crystal lattice with point defects in one and two-dimensions. Here both optical and x-ray diffractions are Fraunhofer. The information about the crystalline lattice structure and the defect size can be known.

  12. Ultrafast electron diffraction from aligned molecules

    SciTech Connect

    Centurion, Martin

    2015-08-17

    The aim of this project was to record time-resolved electron diffraction patterns of aligned molecules and to reconstruct the 3D molecular structure. The molecules are aligned non-adiabatically using a femtosecond laser pulse. A femtosecond electron pulse then records a diffraction pattern while the molecules are aligned. The diffraction patterns are then be processed to obtain the molecular structure.

  13. Direct Formation of Large-Area 2D Nanosheets from Fluorescent Semiconducting Homopolymer with Orthorhombic Crystalline Orientation.

    PubMed

    Yang, Sanghee; Shin, Suyong; Choi, Inho; Lee, Jaeho; Choi, Tae-Lim

    2017-03-01

    Semiconducting polymers have been widely investigated due to their intriguing optoelectronic properties and their high crystallinity that provides a strong driving force for self-assembly. Although there are various reports of successful self-assembly of nanostructures using semiconducting polymers, direct in situ self-assembly of these polymers into two-dimensional (2D) nanostructures has proven difficult, despite their importance for optoelectronics applications. Here, we report the synthesis of a simple conjugated homopolymer by living cyclopolymerization of a 1,6-heptadiyne (having a fluorene moiety) and its efficient in situ formation of large-area 2D fluorescent semiconducting nanostructures. Using high-resolution imaging tools such as atomic force microscopy and transmission electron microscopy, we observed the solvent-dependent self-assembly behaviors of this homopolymer; the identical starting polymer formed 2D nanosheets with different shapes, such as rectangle, raft, and leaf, when dissolved in different solvents. Furthermore, super-resolution optical microscopy enabled the real-time imaging of the fluorescent 2D nanosheets, revealing their stable and uniform shapes, fluorescence, and solution dynamics. Notably, we propose an orthorhombic crystalline packing model to explain the direct formation of 2D nanostructures based on various diffraction patterns, providing important insight for their shape modulation during the self-assembly.

  14. Wide-Angle X-ray Scattering Study on Shear-Induced Crystallization of Propylene-1-Butylene Random Copolymer: Experiment and Diffraction Pattern Simulation

    SciTech Connect

    Y Mao; C Burger; F Zuo; B Hsiao; A Mehta; C Mitchell; A Tsou

    2011-12-31

    Shear-induced crystallization of a propylene-1-butylene random copolymer with low butylene content (5.7 mol %) was studied using time-resolved wide-angle X-ray scattering (WAXS) techniques. Polymorphism, preferred crystal orientation, crystallization kinetics, and disorder effect were investigated based on WAXS 2D whole pattern analysis. It was found that at 100 C, the crystallite of P-B copolymer was a mixture of 80% {gamma}-form and 20% {alpha}-form of isotactic polypropylene (iPP) crystals. The application of a step shear (shear rate = 100 s{sup -1}, shear duration =3s) induced {gamma}-form crystals with c-axis oriented perpendicular to the shear direction. In contrast, the c-axis of {alpha}-form crystals was normally in parallel to the shear direction. Both crystallization kinetics and crystallinity were greatly enhanced by shear. The disorder effect was found to play an important role in the crystallization behavior of P-B copolymer. In the early stage crystallization, the chosen copolymer contained a large amount of structure defects, where crystals became more ordered upon annealing. The degree of crystal orientation was also found to decrease during crystallization due to the relaxation after shear.

  15. Evidence from x-ray and neutron powder diffraction patterns that the so-called icosahedral and decagonal quasicrystals of MnAl/sub 6/ and other alloys are twinned cubic crystals

    SciTech Connect

    Pauling, L.

    1987-06-01

    It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl/sub 6/ and Mg/sub 32/(Al,Zn)/sub 49/ and the neutron powder diffraction pattern of MnAl/sub 5/ are compatible with the proposed 820-atom primitive cubic structure. The values found for the edge of the unit cube are 23.365 A (x-ray) and 23.416 A (neutron) for MnAl/sub 6/ and 24.313 A (x-ray) for Mg/sub 32/(Al,Zn)/sub 49/.

  16. Characterization of nonlinear ultrasound fields of 2D therapeutic arrays

    PubMed Central

    Yuldashev, Petr V.; Kreider, Wayne; Sapozhnikov, Oleg A.; Farr, Navid; Partanen, Ari; Bailey, Michael R.; Khokhlova, Vera

    2015-01-01

    A current trend in high intensity focused ultrasound (HIFU) technologies is to use 2D focused phased arrays that enable electronic steering of the focus, beamforming to avoid overheating of obstacles (such as ribs), and better focusing through inhomogeneities of soft tissue using time reversal methods. In many HIFU applications, the acoustic intensity in situ can reach thousands of W/cm2 leading to nonlinear propagation effects. At high power outputs, shock fronts develop in the focal region and significantly alter the bioeffects induced. Clinical applications of HIFU are relatively new and challenges remain for ensuring their safety and efficacy. A key component of these challenges is the lack of standard procedures for characterizing nonlinear HIFU fields under operating conditions. Methods that combine low-amplitude pressure measurements and nonlinear modeling of the pressure field have been proposed for axially symmetric single element transducers but have not yet been validated for the much more complex 3D fields generated by therapeutic arrays. Here, the method was tested for a clinical HIFU source comprising a 256-element transducer array. A numerical algorithm based on the Westervelt equation was used to enable 3D full-diffraction nonlinear modeling. With the acoustic holography method, the magnitude and phase of the acoustic field were measured at a low power output and used to determine the pattern of vibrations at the surface of the array. This pattern was then scaled to simulate a range of intensity levels near the elements up to 10 W/cm2. The accuracy of modeling was validated by comparison with direct measurements of the focal waveforms using a fiber-optic hydrophone. Simulation results and measurements show that shock fronts with amplitudes up to 100 MPa were present in focal waveforms at clinically relevant outputs, indicating the importance of strong nonlinear effects in ultrasound fields generated by HIFU arrays. PMID:26203345

  17. Characterization of nonlinear ultrasound fields of 2D therapeutic arrays.

    PubMed

    Yuldashev, Petr V; Kreider, Wayne; Sapozhnikov, Oleg A; Farr, Navid; Partanen, Ari; Bailey, Michael R; Khokhlova, Vera

    2012-10-07

    A current trend in high intensity focused ultrasound (HIFU) technologies is to use 2D focused phased arrays that enable electronic steering of the focus, beamforming to avoid overheating of obstacles (such as ribs), and better focusing through inhomogeneities of soft tissue using time reversal methods. In many HIFU applications, the acoustic intensity in situ can reach thousands of W/cm(2) leading to nonlinear propagation effects. At high power outputs, shock fronts develop in the focal region and significantly alter the bioeffects induced. Clinical applications of HIFU are relatively new and challenges remain for ensuring their safety and efficacy. A key component of these challenges is the lack of standard procedures for characterizing nonlinear HIFU fields under operating conditions. Methods that combine low-amplitude pressure measurements and nonlinear modeling of the pressure field have been proposed for axially symmetric single element transducers but have not yet been validated for the much more complex 3D fields generated by therapeutic arrays. Here, the method was tested for a clinical HIFU source comprising a 256-element transducer array. A numerical algorithm based on the Westervelt equation was used to enable 3D full-diffraction nonlinear modeling. With the acoustic holography method, the magnitude and phase of the acoustic field were measured at a low power output and used to determine the pattern of vibrations at the surface of the array. This pattern was then scaled to simulate a range of intensity levels near the elements up to 10 W/cm(2). The accuracy of modeling was validated by comparison with direct measurements of the focal waveforms using a fiber-optic hydrophone. Simulation results and measurements show that shock fronts with amplitudes up to 100 MPa were present in focal waveforms at clinically relevant outputs, indicating the importance of strong nonlinear effects in ultrasound fields generated by HIFU arrays.

  18. Aberrations of diffracted wave fields: distortion.

    PubMed

    Harvey, James E; Bogunovic, Dijana; Krywonos, Andrey

    2003-03-01

    Near-field diffraction patterns are merely aberrated Fraunhofer diffraction patterns. These aberrations, inherent to the diffraction process, provide insight and understanding into wide-angle diffraction phenomena. Nonparaxial patterns of diffracted orders produced by a laser beam passing through a grating and projected upon a plane screen exhibit severe distortion (W311). This distortion is an artifact of the configuration chosen to observe diffraction patterns. Grating behavior expressed in terms of the direction cosines of the propagation vectors of the incident and diffracted orders exhibits no distortion. Use of a simple direction cosine diagram provides an elegant way to deal with nonparaxial diffraction patterns, particularly when large obliquely incident beams produce conical diffraction.

  19. Design the diffractive optical element with large diffraction angle

    NASA Astrophysics Data System (ADS)

    Pang, Hui; Yin, Shaoyun; Zheng, Guoxing; Deng, Qiling; Shi, Lifang; Du, Chunlei

    2014-11-01

    In this paper, a quite effective method is proposed for designing the diffractive optical element (DOE) to generate a pattern with large diffraction angle. Through analyze the difference between the non-paraxial Rayleigh Sommerfeld integral and the paraxial Fraunhofer diffraction integral, we modify the desired output intensity distribution with coordinate transformation and intensity adjustment. Then the paraxial Fraunhofer diffraction integral can be used to design the DOE, which adopts the fast-Fourier-transform (FFT) algorithm to accelerate the computation. To verify our method, the simulation and the experiments are taken. And the result shows that our method can effectively rectify the pillow distortion and can achieve the exact diffraction angle.

  20. Model calculations on vertical common black equilibrium soap films: the relation of contact angle to Fresnel diffraction patterns from the film-border transition

    SciTech Connect

    Agterof, W.G.M.

    1982-04-01

    The surface tension of a thin liquid (soap) film is often different from that of the bulk solution from which the film is made. This is a consequence of the action of long-range interation forces in the film. In general, 2 forces are considered. The first is the electric double-layer repulsion which is a result of the overlap of the double-layer buildup in the central aqueous core of the film by the ionic detergent molecules at the surfaces. The second is the London-Van der Waals attraction due to the fact that a molecule in the film has a smaller number of other molecules in its interaction sphere than a molecule in the bulk solution. Both forces, which are functions of the thickness of the film, compose the disjoining pressure. From the profiles Fresnel diffraction patterns were calculated and the following conclusions were drawn: (1) they are not very sensitive for the details of the transition region, between a film and its meniscus; (2) for contact angles larger than 16 ft, the results of Princen and Frankel coincide within 5%; and (3) this optical method will not result in reliable contact angles when they are smaller than 10 ft. 22 references.

  1. 2D quasiperiodic plasmonic crystals

    PubMed Central

    Bauer, Christina; Kobiela, Georg; Giessen, Harald

    2012-01-01

    Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871

  2. Valleytronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Schaibley, John R.; Yu, Hongyi; Clark, Genevieve; Rivera, Pasqual; Ross, Jason S.; Seyler, Kyle L.; Yao, Wang; Xu, Xiaodong

    2016-11-01

    Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.

  3. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  4. 2D-3D transition of gold cluster anions resolved

    NASA Astrophysics Data System (ADS)

    Johansson, Mikael P.; Lechtken, Anne; Schooss, Detlef; Kappes, Manfred M.; Furche, Filipp

    2008-05-01

    Small gold cluster anions Aun- are known for their unusual two-dimensional (2D) structures, giving rise to properties very different from those of bulk gold. Previous experiments and calculations disagree about the number of gold atoms nc where the transition to 3D structures occurs. We combine trapped ion electron diffraction and state of the art electronic structure calculations to resolve this puzzle and establish nc=12 . It is shown that theoretical studies using traditional generalized gradient functionals are heavily biased towards 2D structures. For a correct prediction of the 2D-3D crossover point it is crucial to use density functionals yielding accurate jellium surface energies, such as the Tao-Perdew-Staroverov-Scuseria (TPSS) functional or the Perdew-Burke-Ernzerhof functional modified for solids (PBEsol). Further, spin-orbit effects have to be included, and large, flexible basis sets employed. This combined theoretical-experimental approach is promising for larger gold and other metal clusters.

  5. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  6. Quantum coherence selective 2D Raman-2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-03-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  7. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    PubMed

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  8. DIFFRACTION FROM MODEL CRYSTALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although calculating X-ray diffraction patterns from atomic coordinates of a crystal structure is a widely available capability, calculation from non-periodic arrays of atoms has not been widely applied to cellulose. Non-periodic arrays result from modeling studies that, even though started with at...

  9. Fresnel diffraction plates are simple and inexpensive

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.

    1967-01-01

    Fresnel plate demonstrates diffraction phenomena simply and inexpensively. A large number of identical diffracting apertures are made in random orientation on photographic film. When a small source of light is viewed through the plate, the diffraction pattern typical of the diffracting aperture is readily seen.

  10. 3D Image Reconstruction: Determination of Pattern Orientation

    SciTech Connect

    Blankenbecler, Richard

    2003-03-13

    The problem of determining the euler angles of a randomly oriented 3-D object from its 2-D Fraunhofer diffraction patterns is discussed. This problem arises in the reconstruction of a positive semi-definite 3-D object using oversampling techniques. In such a problem, the data consists of a measured set of magnitudes from 2-D tomographic images of the object at several unknown orientations. After the orientation angles are determined, the object itself can then be reconstructed by a variety of methods using oversampling, the magnitude data from the 2-D images, physical constraints on the image and then iteration to determine the phases.

  11. Single molecule diffraction.

    PubMed

    Spence, J C H; Doak, R B

    2004-05-14

    For solving the atomic structure of organic molecules such as small proteins which are difficult to crystallize, the use of a jet of doped liquid helium droplets traversing a continuous high energy electron beam is proposed as a means of obtaining electron diffraction patterns (serial crystallography). Organic molecules (such as small proteins) within the droplet (and within a vitreous ice jacket) may be aligned by use of a polarized laser beam. Iterative methods for solving the phase problem are indicated. Comparisons with a related plan for pulsed x-ray diffraction from single proteins in a molecular beam are provided.

  12. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate.

    PubMed

    Trache, Tudor; Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-12-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values.

  13. Diffraction before destruction

    PubMed Central

    Chapman, Henry N.; Caleman, Carl; Timneanu, Nicusor

    2014-01-01

    X-ray free-electron lasers have opened up the possibility of structure determination of protein crystals at room temperature, free of radiation damage. The femtosecond-duration pulses of these sources enable diffraction signals to be collected from samples at doses of 1000 MGy or higher. The sample is vaporized by the intense pulse, but not before the scattering that gives rise to the diffraction pattern takes place. Consequently, only a single flash diffraction pattern can be recorded from a crystal, giving rise to the method of serial crystallography where tens of thousands of patterns are collected from individual crystals that flow across the beam and the patterns are indexed and aggregated into a set of structure factors. The high-dose tolerance and the many-crystal averaging approach allow data to be collected from much smaller crystals than have been examined at synchrotron radiation facilities, even from radiation-sensitive samples. Here, we review the interaction of intense femtosecond X-ray pulses with materials and discuss the implications for structure determination. We identify various dose regimes and conclude that the strongest achievable signals for a given sample are attained at the highest possible dose rates, from highest possible pulse intensities. PMID:24914146

  14. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  15. Regulation of NKG2D ligand gene expression.

    PubMed

    Eagle, Robert A; Traherne, James A; Ashiru, Omodele; Wills, Mark R; Trowsdale, John

    2006-03-01

    The activating immunoreceptor NKG2D has seven known host ligands encoded by the MHC class I chain-related MIC and ULBP/RAET genes. Why there is such diversity of NKG2D ligands is not known but one hypothesis is that they are differentially expressed in different tissues in response to different stresses. To explore this, we compared expression patterns and promoters of NKG2D ligand genes. ULBP/RAET genes were transcribed independent of each other in a panel of cell lines. ULBP/RAET gene expression was upregulated on infection with human cytomegalovirus; however, a clinical strain, Toledo, induced expression more slowly than did a laboratory strain, AD169. ULBP4/RAET1E was not induced by infection with either strain. To investigate the mechanisms behind the similarities and differences in NKG2D ligand gene expression a comparative sequence analysis of NKG2D ligand gene putative promoter regions was conducted. Sequence alignments demonstrated that there was significant sequence diversity; however, one region of high similarity between most of the genes is evident. This region contains a number of potential transcription factor binding sites, including those involved in shock responses and sites for retinoic acid-induced factors. Promoters of some NKG2D ligand genes are polymorphic and several sequence alterations in these alleles abolished putative transcription factor binding.

  16. Photoelectron diffraction

    NASA Astrophysics Data System (ADS)

    Fadley, Charles S.

    1987-01-01

    The use of core-level photoelectron diffraction for structural studies of surfaces and epitaxial overlayers is discussed. Photoelectron diffraction is found to provide several direct and rather unique types of structural information, including the sites and positions of adsorbed atoms; the orientations of small molecules or fragments bound to surfaces; the orientations, layer thicknesses, vertical lattice constants, and degrees of short-range order of epitaxial or partially-epitaxial overlayers; and the presence of short-range spin order in magnetic materials. Specific systems considered are the reaction of oxygen with Ni(001), the growth of epitaxial Cu on Ni(001), the well-defined test case S on Ni(001), and short-range spin order in the antiferromagnet KMnF3. A rather straightforward single scattering cluster (SSC) model also proves capable of quantitatively describing such data, particularly for near-surface species and with corrections for spherical-wave scattering effects and correlated vibrational motion. Promising new directions in such studies also include measurements with high angular resolution and the expanded use of synchrotron radiation.

  17. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  18. Diffraction efficiency enhancement of femtosecond laser-engraved diffraction gratings due to CO2 laser polishing

    NASA Astrophysics Data System (ADS)

    Choi, Hun-Kook; Jung, Deok; Sohn, Ik-Bu; Noh, Young-Chul; Lee, Yong-Tak; Kim, Jin-Tae; Ahsan, Md. Shamim

    2014-11-01

    This research demonstrates laser-assisted fabrication of high-efficiency diffraction gratings in fused-silica glass samples. Initially, femtosecond laser pulses are used to engrave diffraction gratings on the glass surfaces. Then, these micro-patterned glass samples undergo CO2 laser polishing process. unpolished diffraction gratings encoded in the glass samples show an overall diffraction efficiency of 18.1%. diffraction gratings imprinted on the glass samples and then polished four times by using a CO2 laser beam attain a diffraction efficiency of 32.7%. We also investigate the diffraction patterns of the diffraction gratings encoded on fused-silica glass surfaces. The proposed CO2 laser polishing technique shows great potential in patterning high-efficiency diffraction gratings on the surfaces of various transparent materials.

  19. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  20. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  1. Undergraduate Experiment with Fractal Diffraction Gratings

    ERIC Educational Resources Information Center

    Monsoriu, Juan A.; Furlan, Walter D.; Pons, Amparo; Barreiro, Juan C.; Gimenez, Marcos H.

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics…

  2. Near-field diffraction of chirped gratings.

    PubMed

    Sanchez-Brea, Luis Miguel; Torcal-Milla, Francisco Jose; Morlanes, Tomas

    2016-09-01

    In this Letter, we analyze the near-field diffraction pattern produced by chirped gratings. An intuitive analytical interpretation of the generated diffraction orders is proposed. Several interesting properties of the near-field diffraction pattern can be determined, such as the period of the fringes and its visibility. Diffraction orders present different widths and also, some of them present focusing properties. The width, location, and depth of focus of the converging diffraction orders are also determined. The analytical expressions are compared to numerical simulation and experimental results, showing a high agreement.

  3. Additional evidence from x-ray powder diffraction patterns that icosahedral quasi-crystals of intermetallic compounds are twinned cubic crystals

    SciTech Connect

    Pauling, L. )

    1988-07-01

    Analysis of the measured values of Q for the weak peaks (small maxima, usually considered to be background fluctuations, noise) on the x-ray powder diffraction curves for 17 rapidly quenched alloys leads directly to the conclusion that they are formed by an 820-atom or 1012-atom primitive cubic structure that by icosahedral twinning produces the so-called icosahedral quasi-crystals.

  4. Structure of the novel ternary hydrides Li4Tt2D (Tt=Si and Ge).

    PubMed

    Wu, Hui; Hartman, Michael R; Udovic, Terrence J; Rush, John J; Zhou, Wei; Bowman, Robert C; Vajo, John J

    2007-02-01

    The crystal structures of newly discovered Li4Ge2D and Li4Si2D ternary phases were solved by direct methods using neutron powder diffraction data. Both structures can be described using a Cmmm orthorhombic cell with all hydrogen atoms occupying Li6-octahedral interstices. The overall crystal structure and the geometry of these interstices are compared with those of other related phases, and the stabilization of this novel class of ternary hydrides is discussed.

  5. Stereochemistry and solid-state structure of an intrinsically chiral meso-patterned porphyrin: case study by NMR and single-crystal X-ray diffraction analysis.

    PubMed

    Yang, Liguo; Zhou, Yang; Zhu, Mengliang; Zhao, Luyang; Wei, Liye; Bian, Yongzhong

    2013-10-04

    A C1-symmerical meso-substituted ABCD-type porphyrin, [5-phenyl-10-(2-hydroxynaphthyl)-15-(4-hydroxyphenyl)porphyrinato]zinc(II) (1), has been synthesized and characterized. The molecular structure of 1 has been determined by single-crystal X-ray diffraction analysis. The complex 1 crystallizes in a triclinic system with one pair of enantiomeric molecules per unit cell. Resolution of the racemic mixture has been achieved by chiral HPLC techniques. In particular, the absolute configurations of the enantiomers have been assigned from NMR spectroscopic analysis with L-Phe-OMe as the chiral solvating agent (CSA). The assignments have also been unambiguously confirmed by single-crystal X-ray diffraction analysis. The present results suggest that the CSA-NMR anisotropy strategy is applicable for the stereochemistry determination of chiral host-guest complexes with multiple intermolecular interactions. In addition, the multiple intermolecular interactions between the enantiomerically pure porphyrin S-1 and L-Phe-OMe are proved in the solid state by single-crystal X-ray diffraction analysis.

  6. In situ hybridization study of CYP2D mRNA in the common marmoset brain

    PubMed Central

    Shimamoto, Yoshinori; Niimi, Kimie; Kitamura, Hiroshi; Tsubakishita, Sae; Takahashi, Eiki

    2016-01-01

    The common marmoset is a non-human primate that has increasingly employed in the biomedical research including the fields of neuroscience and behavioral studies. Cytochrome P450 (CYP) 2D has been speculated to be involved in psycho-neurologic actions in the human brain. In the present study, to clarify the role of CYP2D in the marmoset brain, we investigated the expression patterns of CYP2D mRNA in the brain using in situ hybridization (ISH). In addition, to identify the gene location of CYP2D19, a well-studied CYP2D isoform in the common marmoset, a fluorescence in situ hybridization (FISH) study was performed. Consistent with findings for the human brain, CYP2D mRNA was localized in the neuronal cells of different brain regions; e.g., the cerebral cortex, hippocampus, substantia nigra, and cerebellum. FISH analysis showed that the CYP2D19 gene was located on chromosome 1q, which is homologous to human chromosome 22 on which the CYP2D6 gene exists. These results suggest that CYP2D in the marmoset brain may play the same role as human CYP2D6 in terms of brain actions, and that the CYP2D19 gene is conserved in a syntenic manner. Taken together, these findings suggest that the common marmoset is a useful model for studying psychiatric disorders related to CYP2D dysfunction in the brain. PMID:27356856

  7. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  8. Diffraction Correlation to Reconstruct Highly Strained Particles

    NASA Astrophysics Data System (ADS)

    Brown, Douglas; Harder, Ross; Clark, Jesse; Kim, J. W.; Kiefer, Boris; Fullerton, Eric; Shpyrko, Oleg; Fohtung, Edwin

    2015-03-01

    Through the use of coherent x-ray diffraction a three-dimensional diffraction pattern of a highly strained nano-crystal can be recorded in reciprocal space by a detector. Only the intensities are recorded, resulting in a loss of the complex phase. The recorded diffraction pattern therefore requires computational processing to reconstruct the density and complex distribution of the diffracted nano-crystal. For highly strained crystals, standard methods using HIO and ER algorithms are no longer sufficient to reconstruct the diffraction pattern. Our solution is to correlate the symmetry in reciprocal space to generate an a priori shape constraint to guide the computational reconstruction of the diffraction pattern. This approach has improved the ability to accurately reconstruct highly strained nano-crystals.

  9. Quantitative damage imaging using Lamb wave diffraction tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Yan; Ruan, Min; Zhu, Wen-Fa; Chai, Xiao-Dong

    2016-12-01

    In this paper, we investigate the diffraction tomography for quantitative imaging damages of partly through-thickness holes with various shapes in isotropic plates by using converted and non-converted scattered Lamb waves generated numerically. Finite element simulations are carried out to provide the scattered wave data. The validity of the finite element model is confirmed by the comparison of scattering directivity pattern (SDP) of circle blind hole damage between the finite element simulations and the analytical results. The imaging method is based on a theoretical relation between the one-dimensional (1D) Fourier transform of the scattered projection and two-dimensional (2D) spatial Fourier transform of the scattering object. A quantitative image of the damage is obtained by carrying out the 2D inverse Fourier transform of the scattering object. The proposed approach employs a circle transducer network containing forward and backward projections, which lead to so-called transmission mode (TMDT) and reflection mode diffraction tomography (RMDT), respectively. The reconstructed results of the two projections for a non-converted S0 scattered mode are investigated to illuminate the influence of the scattering field data. The results show that Lamb wave diffraction tomography using the combination of TMDT and RMDT improves the imaging effect compared with by using only the TMDT or RMDT. The scattered data of the converted A0 mode are also used to assess the performance of the diffraction tomography method. It is found that the circle and elliptical shaped damages can still be reasonably identified from the reconstructed images while the reconstructed results of other complex shaped damages like crisscross rectangles and racecourse are relatively poor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474195, 11274226, 11674214, and 51478258).

  10. Determination of the chiral indices (n,m) of carbon nanotubes by electron diffraction.

    PubMed

    Qin, Lu-Chang

    2007-01-07

    The atomic structure of a carbon nanotube can be defined by the chiral indices, (n,m), that specify its perimeter vector (chiral vector), with which the diameter and helicity are also determined. The fine electron beam available in a modern Transmission Electron Microscope (TEM) offers a unique and powerful probe to reveal the atomic structure of individual nanotubes. This article covers two aspects related to the use of the electron probe in the TEM for the study of carbon nanotubes: (i) to express the electron diffraction intensity distribution in the electron diffraction patterns of carbon nanotubes and (ii) to obtain the chiral indices (n,m) of carbon nanotubes from their electron diffraction patterns. For a nanotube of given chiral indices (n,m), the electron scattering amplitude from the carbon nanotube can be expressed analytically in closed form using the helical diffraction theory, from which its electron diffraction pattern can be calculated and understood. The reverse problem, i.e., assignment of the chiral indices (n,m) of a carbon nanotube from its electron diffraction pattern, is approached from the relationship between the electron diffraction intensity distribution and the chiral indices (n,m). The first method is to obtain indiscriminately the chiral indices (n,m) by reading directly the intensity distribution on the three principal layer lines, l(1), l(2), and l(3), which have intensities proportional to the square of the Bessel functions of orders m, n, and n + m: I(l1) proportional, variant |J(m) (pidR)|(2), I(l2) proportional, variant |J(n) (pidR)|(2), and I(l3) proportional, variant |J(n+m) (pidR)|(2). The second method is to obtain and use the ratio of the indices n/m = (2D(1)-D(2))/(2D(2)-D(1)) in which D(1) and D(2) are the spacings of principal layer lines l(1) and l(2), respectively. Examples of using these methods are also illustrated in the determination of chiral indices of isolated individual single-walled carbon nanotubes, a bundle

  11. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  12. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  13. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  14. 2D/3D switchable displays

    NASA Astrophysics Data System (ADS)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  15. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L. A.; Hallquist, J. O.

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  16. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  17. Reduced sleep duration mediates decreases in striatal D2/D3 receptor availability in cocaine abusers

    PubMed Central

    Wiers, C E; Shumay, E; Cabrera, E; Shokri-Kojori, E; Gladwin, T E; Skarda, E; Cunningham, S I; Kim, S W; Wong, T C; Tomasi, D; Wang, G-J; Volkow, N D

    2016-01-01

    Neuroimaging studies have documented reduced striatal dopamine D2/D3 receptor (D2/D3R) availability in cocaine abusers, which has been associated with impaired prefrontal activity and vulnerability for relapse. However, the mechanism(s) underlying the decreases in D2/D3R remain poorly understood. Recent studies have shown that sleep deprivation is associated with a downregulation of striatal D2/D3R in healthy volunteers. As cocaine abusers have disrupted sleep patterns, here we investigated whether reduced sleep duration mediates the relationship between cocaine abuse and low striatal D2/D3R availability. We used positron emission tomography with [11C]raclopride to measure striatal D2/D3R availability in 24 active cocaine abusers and 21 matched healthy controls, and interviewed them about their daily sleep patterns. Compared with controls, cocaine abusers had shorter sleep duration, went to bed later and reported longer periods of sleep disturbances. In addition, cocaine abusers had reduced striatal D2/D3R availability. Sleep duration predicted striatal D2/D3R availability and statistically mediated the relationship between cocaine abuse and striatal D2/D3R availability. These findings suggest that impaired sleep patterns contribute to the low striatal D2/D3R availability in cocaine abusers. As sleep impairments are similarly observed in other types of substance abusers (for example, alcohol and methamphetamine), this mechanism may also underlie reductions in D2/D3R availability in these groups. The current findings have clinical implications suggesting that interventions to improve sleep patterns in cocaine abusers undergoing detoxification might be beneficial in improving their clinical outcomes. PMID:26954979

  18. Fingerprinting ordered diffractions in multiply diffracted waves

    NASA Astrophysics Data System (ADS)

    Meles, Giovanni Angelo; Curtis, Andrew

    2014-09-01

    We show how to `fingerprint' individual diffractors inside an acoustic medium using interrogative wave energy from arrays of sources and receivers. For any recorded multiply diffracted wave observed between any source and any receiver, the set of such fingerprints is sufficient information to identify all diffractors involved in the corresponding diffraction path, and the sequential order in which diffractors are encountered. The method herein thus decomposes complex, multiply diffracted wavefields into constituent, single-diffraction interactions.

  19. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  20. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  1. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  2. Development of wide-angle 2D light scattering static cytometry

    NASA Astrophysics Data System (ADS)

    Xie, Linyan; Liu, Qiao; Shao, Changshun; Su, Xuantao

    2016-10-01

    We have recently developed a 2D light scattering static cytometer for cellular analysis in a label-free manner, which measures side scatter (SSC) light in the polar angular range from 79 to 101 degrees. Compared with conventional flow cytometry, our cytometric technique requires no fluorescent labeling of the cells, and static cytometry measurements can be performed without flow control. In this paper we present an improved label-free static cytometer that can obtain 2D light scattering patterns in a wider angular range. By illuminating the static microspheres on chip with a scanning optical fiber, wide-angle 2D light scattering patterns of single standard microspheres with a mean diameter of 3.87 μm are obtained. The 2D patterns of 3.87 μm microspheres contain both large-angle forward scatter (FSC) and SSC light in the polar angular range from 40 to 100 degrees, approximately. Experimental 2D patterns of 3.87 μm microspheres are in good agreement with Mie theory simulated ones. The wide-angle light scattering measurements may provide a better resolution for particle analysis as compared with the SSC measurements. Two dimensional light scattering patterns of HL-60 human acute leukemia cells are obtained by using our static cytometer. Compared with SSC 2D light scattering patterns, wide-angle 2D patterns contain richer information of the HL-60 cells. The obtaining of 2D light scattering patterns in a wide angular range could help to enhance the capabilities of our label-free static cytometry for cell analysis.

  3. Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.

    PubMed

    Fang, Yuan; Yushmanov, Pavel V; Furó, István

    2016-12-08

    Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  4. Optimizing sparse sampling for 2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Roeding, Sebastian; Klimovich, Nikita; Brixner, Tobias

    2017-02-01

    We present a new data acquisition concept using optimized non-uniform sampling and compressed sensing reconstruction in order to substantially decrease the acquisition times in action-based multidimensional electronic spectroscopy. For this we acquire a regularly sampled reference data set at a fixed population time and use a genetic algorithm to optimize a reduced non-uniform sampling pattern. We then apply the optimal sampling for data acquisition at all other population times. Furthermore, we show how to transform two-dimensional (2D) spectra into a joint 4D time-frequency von Neumann representation. This leads to increased sparsity compared to the Fourier domain and to improved reconstruction. We demonstrate this approach by recovering transient dynamics in the 2D spectrum of a cresyl violet sample using just 25% of the originally sampled data points.

  5. 2D Distributed Sensing Via TDR

    DTIC Science & Technology

    2007-11-02

    plate VEGF CompositeSensor Experimental Setup Air 279 mm 61 78 VARTM profile: slope RTM profile: rectangle 22 1 Jul 2003© 2003 University of Delaware...2003 University of Delaware All rights reserved Vision: Non-contact 2D sensing ü VARTM setup constructed within TL can be sensed by its EM field: 2D...300.0 mm/ns. 1 2 1 Jul 2003© 2003 University of Delaware All rights reserved Model Validation “ RTM Flow” TDR Response to 139 mm VEGC

  6. Diffraction by m-bonacci gratings

    NASA Astrophysics Data System (ADS)

    Monsoriu, Juan A.; Giménez, Marcos H.; Furlan, Walter D.; Barreiro, Juan C.; Saavedra, Genaro

    2015-11-01

    We present a simple diffraction experiment with m-bonacci gratings as a new interesting generalization of the Fibonacci ones. Diffraction by these non-conventional structures is proposed as a motivational strategy to introduce students to basic research activities. The Fraunhofer diffraction patterns are obtained with the standard equipment present in most undergraduate physics labs and are compared with those obtained with regular periodic gratings. We show that m-bonacci gratings produce discrete Fraunhofer patterns characterized by a set of diffraction peaks which positions are related to the concept of a generalized golden mean. A very good agreement is obtained between experimental and numerical results and the students’ feedback is discussed.

  7. Optical diffraction microscopy in a teaching laboratory

    NASA Astrophysics Data System (ADS)

    Thibault, Pierre; Rankenburg, Ivan C.

    2007-09-01

    We discuss an optics experiment that reproduces all important aspects of diffraction microscopy or coherent diffractive imaging. This technique is used to reconstruct an object's image from its diffraction pattern. The experimental setup is described in detail and only requires material readily available in a well-equipped optics teaching laboratory. The data analysis procedure is explained, in particular the reconstruction part, for which an iterative phase retrieval algorithm is used. The method is illustrated by showing the complex-valued reconstruction of an insect wing from a diffraction pattern measured with this setup.

  8. Visualization of post-sedimentary grain size reduction in loess sequences by calculation of laser diffraction patterns with two different optical models

    NASA Astrophysics Data System (ADS)

    Schulte, Philipp; Lehmkuhl, Frank

    2016-04-01

    Loess is predominantly accumulated during glacial periods. During interglacial and interstadial periods soils are developed. Soil formation usually results in a reduction of the particle grain size. In Loess sediments the post-depositional grain size variation is due to a reduction of the dominating coarse silt fraction in favor of an increasing of the clay fraction. The fine and medium silt fractions also increase in most cases. Generally there are two post depositional fractionation processes which are responsible for this grain size shift: (1) the chemical weathering of silt sized minerals like mica and feldspar as a result of Hydration and Hydrolysis, (2) the physical weathering of all containing minerals by cryogenic processes. There are many widely used proxies to estimate the vertical variation and the different intensities of the post-depositional weathering. However, there are uncertainties related to aeolian sorting effects, the distance to the source regions and carbonate dynamics, which reduces the sensitivity of common proxies to the chemical weathering. In this study we present a simple and quick method using laser diffraction calculations obtained by two different optical models to highlight the enrichment of fine grained material by the transformation and neoformation of pedogenic minerals.

  9. Single Photon diffraction and interference

    NASA Astrophysics Data System (ADS)

    Hodge, John

    2015-04-01

    A previous paper based on the Scalar Theory of Everything studied photon diffraction and interference (IntellectualArchive, Vol.1, No. 3, P. 20, Toronto, Canada July 2012. http://intellectualarchive.com/?link=item&id=597). Several photons were required in the experiment at the same time. Interference experiments with one photon in the experiment at a time also showed interference patterns. The previous paper with the Bohm Interpretation, models of the screen and mask, and the Transaction Interpretation of Quantum Mechanics were combined. The reverse wave required by the Transaction Interpretation was provided by a reflected plenum wave rather than a reverse time wave. The speed of the plenum wave was assumed to be much faster than the speed of photons/light. Using the assumptions of Fraunhofer diffraction resulted in the same equation for the photon distribution on a screen as the intensity pattern of the Fraunhofer diffraction. (http://myplace.frontier.com/ ~ jchodge/)

  10. Basal-plane dislocations in bilayer graphene - Peculiarities in a quasi-2D material

    NASA Astrophysics Data System (ADS)

    Butz, Benjamin

    2015-03-01

    Dislocations represent one of the most fascinating and fundamental concepts in materials science. First and foremost, they are the main carriers of plastic deformation in crystalline materials. Furthermore, they can strongly alter the local electronic or optical properties of semiconductors and ionic crystals. In layered crystals like graphite dislocation movement is restricted to the basal plane. Thus, those basal-plane dislocations cannot escape enabling their confinement in between only two atomic layers of the material. So-called bilayer graphene is the thinnest imaginable quasi-2D crystal to explore the nature and behavior of dislocations under such extreme boundary conditions. Robust graphene membranes derived from epitaxial graphene on SiC provide an ideal platform for their investigation. The presentation will give an insight in the direct observation of basal-plane partial dislocations by transmission electron microscopy and their detailed investigation by diffraction contrast analysis and atomistic simulations. The investigation reveals striking size effects. First, the absence of stacking fault energy, a unique property of bilayer graphene, leads to a characteristic dislocation pattern, which corresponds to an alternating AB <--> BA change of the stacking order. Most importantly, our experiments in combination with atomistic simulations reveal a pronounced buckling of the bilayer graphene membrane, which directly results from accommodation of strain. In fact, the buckling completely changes the strain state of the bilayer graphene and is of key importance for its electronic/spin transport properties. Due to the high degree of disorder in our quasi-2D material it is one of the very few examples for a perfect linear magnetoresistance, i.e. the linear dependency of the in-plane electrical resistance on a magnetic field applied perpendicular to the graphene sheet up to field strengths of more than 60 T. This research is financed by the German Research

  11. Diffraction Plates for Classroom Demonstrations

    ERIC Educational Resources Information Center

    Hoover, Richard B.

    1969-01-01

    Describes the computer generation of random and regular arrays of apertures on photographic film and their applications for classroom demonstrations of the Fraunhofer patterns produced by simple and complex apertures, Babinet's principle, resolution according to the Rayleigh criterion, and many other aspects of diffraction. (LC)

  12. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  13. The basics of 2D DIGE.

    PubMed

    Beckett, Phil

    2012-01-01

    The technique of two-dimensional (2D) gel electrophoresis is a powerful tool for separating complex mixtures of proteins, but since its inception in the mid 1970s, it acquired the stigma of being a very difficult application to master and was generally used to its best effect by experts. The introduction of commercially available immobilized pH gradients in the early 1990s provided enhanced reproducibility and easier protocols, leading to a pronounced increase in popularity of the technique. However gel-to-gel variation was still difficult to control without the use of technical replicates. In the mid 1990s (at the same time as the birth of "proteomics"), the concept of multiplexing fluorescently labeled proteins for 2D gel separation was realized by Jon Minden's group and has led to the ability to design experiments to virtually eliminate gel-to-gel variation, resulting in biological replicates being used for statistical analysis with the ability to detect very small changes in relative protein abundance. This technology is referred to as 2D difference gel electrophoresis (2D DIGE).

  14. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; ...

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  15. Dislocation-based plasticity model and micro-beam Laue diffraction analysis of polycrystalline Ni foil: A forward prediction

    NASA Astrophysics Data System (ADS)

    Song, Xu; Hofmann, Felix; Korsunsky, Alexander M.

    2010-10-01

    A physically-based, rate and length-scale dependent strain gradient crystal plasticity framework was employed to simulate the polycrystalline plastic deformation at the microscopic level in a large-grained, commercially pure Ni sample. The latter was characterised in terms of the grain morphology and orientation (in the bulk) by micro-beam Laue diffraction experiments carried out on beamline B16 at Diamond Light Source. The corresponding finite element model was developed using a grain-based mesh with the specific grain orientation assignment appropriate for the sample considered. Sample stretching to 2% plastic strain was simulated, and a post-processor was developed to extract the information about the local lattice misorientation (curvature), enabling forward-prediction of the Laue diffraction patterns. The 'streaking' phenomenon of the Laue spots (anisotropic broadening of two-dimensional (2D) diffraction peaks observed on the 2D detector) was correctly captured by the simulation, as constructed by direct superposition of reflections from different integration points within the diffraction gauge volume. Good agreement was found between the images collected from experiments and simulation patterns at various positions in the sample.

  16. 3D surface configuration modulates 2D symmetry detection.

    PubMed

    Chen, Chien-Chung; Sio, Lok-Teng

    2015-02-01

    We investigated whether three-dimensional (3D) information in a scene can affect symmetry detection. The stimuli were random dot patterns with 15% dot density. We measured the coherence threshold, or the proportion of dots that were the mirror reflection of the other dots in the other half of the image about a central vertical axis, at 75% accuracy with a 2AFC paradigm under various 3D configurations produced by the disparity between the left and right eye images. The results showed that symmetry detection was difficult when the corresponding dots across the symmetry axis were on different frontoparallel or inclined planes. However, this effect was not due to a difference in distance, as the observers could detect symmetry on a slanted surface, where the depth of the two sides of the symmetric axis was different. The threshold was reduced for a hinge configuration where the join of two slanted surfaces coincided with the axis of symmetry. Our result suggests that the detection of two-dimensional (2D) symmetry patterns is subject to the 3D configuration of the scene; and that coplanarity across the symmetry axis and consistency between the 2D pattern and 3D structure are important factors for symmetry detection.

  17. Determination of the size and structure of an X-pinch x-ray source from the diffraction pattern produced by microfabricated slits.

    PubMed

    Song, Byung Moo; Pikuz, Sergei A; Shelkovenko, Tatiania A; Hammer, David A

    2005-04-20

    X-pinch plasma emits subnanosecond bursts of x rays in the 3-10-keV energy range from a small source. As such, it has been used for high-resolution point-projection imaging of small, dense, rapidly changing plasmas as well as for submillimeter-thick biological samples. In addition to the effect of source size on geometric resolution, a small source size can also provide high spatial coherence of x rays, enabling the rays to be used for imaging weakly absorbing objects with excellent spatial resolution by a method called phase-contrast imaging. To determine the source size, we microfabricated gold slits and imaged them in a point-projection radiography configuration. The shape of the shadow image pattern depends on the source size and energy band of the x rays, the shape and material used for the slits, and the geometry of the experiment. Experimental results have been compared with wave-optics calculations of the expected image pattern as a function of all the parameters listed above. For example, assuming a Gaussiansource distribution, an effective source size in 2.5-4.1 A radiation (1 A = 0.1 nm) of 1.2 +/- 0.5 microm (full width at half-maximum) was determined for a 20-microm Mo wire X pinch. Characterization of the size and structure of the x-ray bursts from X pinches by the use of different wire materials and different slit structures is made.

  18. Strain Determination Using Electron Backscatter Diffraction

    SciTech Connect

    Krause, M.; Graff, A.; Altmann, F.

    2010-11-24

    In the present paper we demonstrate the use of electron backscatter diffraction (EBSD) for high resolution elastic strain determination. Here, we focus on analysis methods based on determination of small shifts in EBSD pattern with respect to a reference pattern using cross-correlation algorithms. Additionally we highlight the excellent spatial and depth resolution of EBSD and introduce the use of simulated diffraction patterns based on dynamical diffraction theory for sensitivity estimation. Moreover the potential of EBSD for strain analysis of strained thin films with particular emphasis on appropriate target preparation which respect to occurring lattice defects is demonstrated.

  19. 2D photonic crystal and its angular reflective azimuthal spectrum

    NASA Astrophysics Data System (ADS)

    Senderakova, Dagmar; Drzik, Milan; Tomekova, Juliana

    2016-12-01

    Contemporary, attention is paid to photonic crystals, which can strongly modify light propagation through them and enable a controllable light manipulation. The contribution is focused on a sub-wavelength 2D structure formed by Al2O3 layer on silicon substrate, patterned with periodic hexagonal lattice of deep air holes. Using various laser sources of light at single wavelength, azimuthal angle dependence of the mirror-like reflected light intensity was recorded photo-electrically. The results obtained can be used to sample the band-structure of leaky modes of the photonic crystal more reliably and help us to map the photonic dispersion diagram.

  20. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  1. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  2. An Intercomparison of 2-D Models Within a Common Framework

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.; Scott, Courtney J.; Jackman, Charles H.; Fleming, Eric L.; Considine, David B.; Kinnison, Douglas E.; Connell, Peter S.; Rotman, Douglas A.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    A model intercomparison among the Atmospheric and Environmental Research (AER) 2-D model, the Goddard Space Flight Center (GSFC) 2-D model, and the Lawrence Livermore National Laboratory 2-D model allows us to separate differences due to model transport from those due to the model's chemical formulation. This is accomplished by constructing two hybrid models incorporating the transport parameters of the GSFC and LLNL models within the AER model framework. By comparing the results from the native models (AER and e.g. GSFC) with those from the hybrid model (e.g. AER chemistry with GSFC transport), differences due to chemistry and transport can be identified. For the analysis, we examined an inert tracer whose emission pattern is based on emission from a High Speed Civil Transport (HSCT) fleet; distributions of trace species in the 2015 atmosphere; and the response of stratospheric ozone to an HSCT fleet. Differences in NO(y) in the upper stratosphere are found between models with identical transport, implying different model representations of atmospheric chemical processes. The response of O3 concentration to HSCT aircraft emissions differs in the models from both transport-dominated differences in the HSCT-induced perturbations of H2O and NO(y) as well as from differences in the model represent at ions of O3 chemical processes. The model formulations of cold polar processes are found to be the most significant factor in creating large differences in the calculated ozone perturbations

  3. Design Application Translates 2-D Graphics to 3-D Surfaces

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.

  4. Diffraction gratings used as identifying markers

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1991-03-26

    A finely detailed diffraction grating is applied to an object as an identifier or tag which is unambiguous, difficult to duplicate, or remove and transfer to another item, and can be read and compared with prior readings with relative ease. The exact pattern of the diffraction grating is mapped by diffraction moire techniques and recorded for comparison with future readings of the same grating. 7 figures.

  5. Fraunhofer diffraction of light by human enamel.

    PubMed

    O'Brien, W J

    1988-02-01

    Fraunhofer diffraction patterns of human enamel samples were photographed with a helium-neon laser beam (lambda = 633 nm). The first-order diffraction angle was in reasonable agreement with a prediction based upon enamel prisms acting as a two-dimensional grating. These results support the hypothesis that enamel diffracts light because of the periodic structure of enamel prisms with interprismatic spaces, which act as slits.

  6. Gold-standard performance for 2D hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.; MacVicar, B. J.

    2013-12-01

    error had a median of 2.2 to 6.2 %. Several more model performance metrics, including spatial patterns, will be presented. These exceptional performance outcomes demonstrate that 2D models have relatively minor inherent performance limitations, so the key challenge for their use in practice is to obtain the most accurate topographic representation as possible.

  7. Compatible embedding for 2D shape animation.

    PubMed

    Baxter, William V; Barla, Pascal; Anjyo, Ken-Ichi

    2009-01-01

    We present new algorithms for the compatible embedding of 2D shapes. Such embeddings offer a convenient way to interpolate shapes having complex, detailed features. Compared to existing techniques, our approach requires less user input, and is faster, more robust, and simpler to implement, making it ideal for interactive use in practical applications. Our new approach consists of three parts. First, our boundary matching algorithm locates salient features using the perceptually motivated principles of scale-space and uses these as automatic correspondences to guide an elastic curve matching algorithm. Second, we simplify boundaries while maintaining their parametric correspondence and the embedding of the original shapes. Finally, we extend the mapping to shapes' interiors via a new compatible triangulation algorithm. The combination of our algorithms allows us to demonstrate 2D shape interpolation with instant feedback. The proposed algorithms exhibit a combination of simplicity, speed, and accuracy that has not been achieved in previous work.

  8. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  9. Extrinsic Cation Selectivity of 2D Membranes

    PubMed Central

    2017-01-01

    From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333

  10. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  11. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  12. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  13. 2D Metals by Repeated Size Reduction.

    PubMed

    Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui

    2016-10-01

    A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers.

  14. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  15. Responsive ionic liquid-polymer 2D photonic crystal gas sensors.

    PubMed

    Smith, Natasha L; Hong, Zhenmin; Asher, Sanford A

    2014-12-21

    We developed novel air-stable 2D polymerized photonic crystal (2DPC) sensing materials for visual detection of gas phase analytes such as water and ammonia by utilizing a new ionic liquid, ethylguanidine perchlorate (EGP) as the mobile phase. Because of the negligible ionic liquid vapor pressure these 2DPC sensors are indefinitely air stable and, therefore, can be used to sense atmospheric analytes. 2D arrays of ~640 nm polystyrene nanospheres were attached to the surface of crosslinked poly(hydroxyethyl methacrylate) (pHEMA)-based polymer networks dispersed in EGP. The wavelength of the bright 2D photonic crystal diffraction depends sensitively on the 2D array particle spacing. The volume phase transition response of the EGP-pHEMA system to water vapor or gaseous ammonia changes the 2DPC particle spacing, enabling the visual determination of the analyte concentration. Water absorbed by EGP increases the Flory-Huggins interaction parameter, which shrinks the polymer network and causes a blue shift in the diffracted light. Ammonia absorbed by the EGP deprotonates the pHEMA-co-acrylic acid carboxyl groups, swelling the polymer which red shifts the diffracted light.

  16. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  17. Irreversibility-inversions in 2D turbulence

    NASA Astrophysics Data System (ADS)

    Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido

    2016-11-01

    We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.

  18. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, G.E.

    1996-08-29

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.

  19. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, Gary E.

    1996-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  20. Diffraction from a liquid crystal phase grating.

    PubMed

    Kashnow, R A; Bigelow, J E

    1973-10-01

    The diffraction of light by a sinusoidal perturbation of the optic axis in a nematic liquid crystal is discussed. This corresponds to experiments at the electrohydrodynamic instability thresholds. An interesting qualitative feature appears: The diffraction pattern exhibits a contribution at half of the expected spatial frequency, corresponding to nonorthogonal traversals of the thick phase grating.

  1. Diffraction experiments with infrared remote controls

    NASA Astrophysics Data System (ADS)

    Kuhn, Jochen; Vogt, Patrik

    2012-02-01

    In this paper we describe an experiment in which radiation emitted by an infrared remote control is passed through a diffraction grating. An image of the diffraction pattern is captured using a cell phone camera and then used to determine the wavelength of the radiation.

  2. 2D superconductivity by ionic gating

    NASA Astrophysics Data System (ADS)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  3. Integral equation analysis and optimization of 2D layered nanolithography masks by complex images Green's function technique in TM polarization.

    PubMed

    Haghtalab, Mohammad; Faraji-Dana, Reza

    2012-05-01

    Analysis and optimization of diffraction effects in nanolithography through multilayered media with a fast and accurate field-theoretical approach is presented. The scattered field through an arbitrary two-dimensional (2D) mask pattern in multilayered media illuminated by a TM-polarized incident wave is determined by using an electric field integral equation formulation. In this formulation the electric field is represented in terms of complex images Green's functions. The method of moments is then employed to solve the resulting integral equation. In this way an accurate and computationally efficient approximate method is achieved. The accuracy of the proposed method is vindicated through comparison with direct numerical integration results. Moreover, the comparison is made between the results obtained by the proposed method and those obtained by the full-wave finite-element method. The ray tracing method is combined with the proposed method to describe the imaging process in the lithography. The simulated annealing algorithm is then employed to solve the inverse problem, i.e., to design an optimized mask pattern to improve the resolution. Two binary mask patterns under normal incident coherent illumination are designed by this method, where it is shown that the subresolution features improve the critical dimension significantly.

  4. The Influence of Facial Characteristics on the Relation between Male 2D:4D and Dominance

    PubMed Central

    Ryckmans, Jan; Millet, Kobe; Warlop, Luk

    2015-01-01

    Although relations between 2D:4D and dominance rank in both baboons and rhesus macaques have been observed, evidence in humans is mixed. Whereas behavioral patterns in humans have been discovered that are consistent with these animal findings, the evidence for a relation between dominance and 2D:4D is weak or inconsistent. The present study provides experimental evidence that male 2D:4D is related to dominance after (fictitious) male-male interaction when the other man has a dominant, but not a submissive or neutral face. This finding provides evidence that the relationship between 2D:4D and dominance emerges in particular, predictable situations and that merely dominant facial characteristics of another person are enough to activate supposed relationships between 2D:4D and dominance. PMID:26600255

  5. Electron diffraction by plasmon waves

    NASA Astrophysics Data System (ADS)

    García de Abajo, F. J.; Barwick, B.; Carbone, F.

    2016-07-01

    An electron beam traversing a structured plasmonic field is shown to undergo diffraction with characteristic angular patterns of both elastic and inelastic outgoing electron components. In particular, a plasmonic grating (e.g., a standing wave formed by two counterpropagating plasmons in a thin film) produces diffraction orders of the same parity as the net number of exchanged plasmons. Large diffracted beam fractions are predicted to occur for realistic plasmon intensities in attainable geometries due to a combination of phase and amplitude changes locally imprinted on the passing electron wave. Our study opens vistas in the study of multiphoton exchanges between electron beams and evanescent optical fields with unexplored effects related to the transversal component of the electron wave function.

  6. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  7. Codon Constraints on Closed 2D Shapes,

    DTIC Science & Technology

    2014-09-26

    19843$ CODON CONSTRAINTS ON CLOSED 2D SHAPES Go Whitman Richards "I Donald D. Hoffman’ D T 18 Abstract: Codons are simple primitives for describing plane...RSONAL AUT"ORtIS) Richards, Whitman & Hoffman, Donald D. 13&. TYPE OF REPORT 13b. TIME COVERED N/A P8 AT F RRrT t~r. Ago..D,) is, PlE COUNT Reprint...outlines, if figure and ground are ignored. Later, we will address the problem of indexing identical codon descriptors that have different figure

  8. Observation of diffraction multifocal radiation focusing

    SciTech Connect

    Letfullin, R R; Zayakin, O A

    2001-04-30

    It is shown experimentally that by placing a flat screen with an axial hole in a diffraction field formed by the first open Fresnel zone upon diffraction of a plane electromagnetic wave from a parallel screen with a hole of a larger diameter, one can observe diffraction multifocal focusing of radiation in the near-field zone of the first screen. The diffraction pattern in the near-field zone of the first screen in focal planes represents circular nonlocalised Fresnel bands with a bright narrow peak at the centre, whose intensity is 6 - 10 greater than that of the incident wave. (nonlinear optical phenomena)

  9. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1993-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described.

  10. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, N.M.; Hawryluk, A.M.; London, R.A.; Seppala, L.G.

    1993-10-26

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described. 21 figures.

  11. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1991-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed.

  12. Measurement and modelling of magnetic properties of soft magnetic composite material under 2D vector magnetisations

    NASA Astrophysics Data System (ADS)

    Guo, Y. G.; Zhu, J. G.; Zhong, J. J.

    2006-07-01

    This paper reports the measurement and modelling of magnetic properties of SOMALOY TM 500, a soft magnetic composite (SMC) material, under different 2D vector magnetisations, such as alternating along one direction, circularly and elliptically rotating in a 2D plane. By using a 2D magnetic property tester, the B- H curves and core losses of the SMC material have been measured with different flux density patterns on a single sheet square sample. The measurements can provide useful information for modelling of the magnetic properties, such as core losses. The core loss models have been successfully applied in the design of rotating electrical machines with SMC core.

  13. Remarks on thermalization in 2D CFT

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Engelhardt, Dalit

    2016-12-01

    We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.

  14. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  15. Investigation of the partially coherent effects in a 2D Talbot interferometer.

    PubMed

    Ge, Xin; Wang, Zhili; Gao, Kun; Zhang, Kai; Hong, Youli; Wang, Dajiang; Zhu, Zhongzhu; Zhu, Peiping; Wu, Ziyu

    2011-08-01

    The recent use of a one-dimensional (1D) X-ray Talbot interferometer has triggered great interest in X-ray differential phase contrast imaging. As an improved version of a 1D interferometer, the development of two-dimensional (2D) grating interferometry strongly stimulated applications of grating-based imaging. In the framework of Fresnel diffraction theory, we investigated the self-image of 2D-phase gratings under partially coherent illumination. The fringe visibility of the self-image has been analyzed as a function of the spatial coherence length. From the viewpoint of self-image visibility, it is possible to find the optimal 2D grid for 2D X-ray grating interferometer imaging. Numerical simulations have been also carried out for quantitative evaluation. Results, in good agreement with theoretical analysis, indicate the spatial coherence requirements of the radiation illuminating a 2D grating interferometer. Moreover, our results can be used to optimize performances of a 2D grating interferometer and for further theoretical and experimental research on grating-based imaging systems.

  16. Anomalous Diffraction in Crystallographic Phase Evaluation

    PubMed Central

    Hendrickson, Wayne A.

    2014-01-01

    X-ray diffraction patterns from crystals of biological macromolecules contain sufficient information to define atomic structures, but atomic positions are inextricable without having electron-density images. Diffraction measurements provide amplitudes, but the computation of electron density also requires phases for the diffracted waves. The resonance phenomenon known as anomalous scattering offers a powerful solution to this phase problem. Exploiting scattering resonances from diverse elements, the methods of multiwavelength anomalous diffraction (MAD) and single-wavelength anomalous diffraction (SAD) now predominate for de novo determinations of atomic-level biological structures. This review describes the physical underpinnings of anomalous diffraction methods, the evolution of these methods to their current maturity, the elements, procedures and instrumentation used for effective implementation, and the realm of applications. PMID:24726017

  17. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  18. Dichroic coherent diffractive imaging.

    PubMed

    Tripathi, Ashish; Mohanty, Jyoti; Dietze, Sebastian H; Shpyrko, Oleg G; Shipton, Erik; Fullerton, Eric E; Kim, Sang Soo; McNulty, Ian

    2011-08-16

    Understanding electronic structure at the nanoscale is crucial to untangling fundamental physics puzzles such as phase separation and emergent behavior in complex magnetic oxides. Probes with the ability to see beyond surfaces on nanometer length and subpicosecond time scales can greatly enhance our understanding of these systems and will undoubtedly impact development of future information technologies. Polarized X-rays are an appealing choice of probe due to their penetrating power, elemental and magnetic specificity, and high spatial resolution. The resolution of traditional X-ray microscopes is limited by the nanometer precision required to fabricate X-ray optics. Here we present a novel approach to lensless imaging of an extended magnetic nanostructure, in which a scanned series of dichroic coherent diffraction patterns is recorded and numerically inverted to map its magnetic domain configuration. Unlike holographic methods, it does not require a reference wave or precision optics. In addition, it enables the imaging of samples with arbitrarily large spatial dimensions, at a spatial resolution limited solely by the coherent X-ray flux, wavelength, and stability of the sample with respect to the beam. It can readily be extended to nonmagnetic systems that exhibit circular or linear dichroism. We demonstrate this approach by imaging ferrimagnetic labyrinthine domains in a Gd/Fe multilayer with perpendicular anisotropy and follow the evolution of the domain structure through part of its magnetization hysteresis loop. This approach is scalable to imaging with diffraction-limited resolution, a prospect rapidly becoming a reality in view of the new generation of phenomenally brilliant X-ray sources.

  19. Dynamic photorefractive self-amplified angular-multiplex 2-D optical beam-array generation

    NASA Astrophysics Data System (ADS)

    Zhou, Shaomin; Yeh, Pochi; Liu, Hua-Kuang

    1993-01-01

    A real-time 2-D angular-multiplex beam-array holographic storage and reconstruction technique using electrically-addressed spatial light modulators(E-SLM's) and photorefractive crystals is described. Using a liquid crystal television (LCTV) spatial light modulator (SLM) for beam steering and lithium niobate photorefractive crystal for holographic recording, experimental results of generating large and complicated arrays of laser beams with high diffraction efficiency and good uniformity are presented.

  20. Transition to turbulence: 2D directed percolation

    NASA Astrophysics Data System (ADS)

    Chantry, Matthew; Tuckerman, Laurette; Barkley, Dwight

    2016-11-01

    The transition to turbulence in simple shear flows has been studied for well over a century, yet in the last few years has seen major leaps forward. In pipe flow, this transition shows the hallmarks of (1 + 1) D directed percolation, a universality class of continuous phase transitions. In spanwisely confined Taylor-Couette flow the same class is found, suggesting the phenomenon is generic to shear flows. However in plane Couette flow the largest simulations and experiments to-date find evidence for a discrete transition. Here we study a planar shear flow, called Waleffe flow, devoid of walls yet showing the fundamentals of planar transition to turbulence. Working with a quasi-2D yet Navier-Stokes derived model of this flow we are able to attack the (2 + 1) D transition problem. Going beyond the system sizes previously possible we find all of the required scalings of directed percolation and thus establish planar shears flow in this class.

  1. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  2. Simulation of Yeast Cooperation in 2D.

    PubMed

    Wang, M; Huang, Y; Wu, Z

    2016-03-01

    Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse.

  3. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  4. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  5. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  6. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  7. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  8. The effect of thin filament activation on the attachment of weak binding cross-bridges: A two-dimensional x-ray diffraction study on single muscle fibers.

    PubMed

    Kraft, T; Xu, S; Brenner, B; Yu, L C

    1999-03-01

    To study possible structural changes in weak cross-bridge attachment to actin upon activation of the thin filament, two-dimensional (2D) x-ray diffraction patterns of skinned fibers from rabbit psoas muscle were recorded at low and high calcium concentration in the presence of saturating concentrations of MgATPgammaS, a nucleotide analog for weak binding states. We also studied 2D x-ray diffraction patterns recorded under relaxing conditions at an ionic strength above and below 50 mM, because it had been proposed from solution studies that reducing ionic strength below 50 mM also induces activation of the thin filament. For this project a novel preparation had to be established that allows recording of 2D x-ray diffraction patterns from single muscle fibers instead of natural fiber bundles. This was required to minimize substrate depletion or product accumulation within the fibers. When the calcium concentration was raised, the diffraction patterns recorded with MgATPgammaS revealed small changes in meridional reflections and layer line intensities that could be attributed in part to the effects of calcium binding to the thin filament (increase in I380, decrease in first actin layer line intensity, increase in I59) and in part to small structural changes of weakly attached cross-bridges (e.g., increase in I143 and I72). Calcium-induced small-scale structural rearrangements of cross-bridges weakly attached to actin in the presence of MgATPgammaS are consistent with our previous observation of reduced rate constants for attachment and detachment of cross-bridges with MgATPgammaS at high calcium. Yet, no evidence was found that weakly attached cross-bridges change their mode of attachment toward a stereospecific conformation when the actin filament is activated by adding calcium. Similarly, reducing ionic strength to less than 50 mM does not induce a transition from nonstereospecific to stereospecific attachment.

  9. 2D Gridded Surface Data Value-Added Product

    SciTech Connect

    Tang, Q; Xie, S

    2015-08-30

    This report describes the Atmospheric Radiation Measurement (ARM) Best Estimate (ARMBE) 2-dimensional (2D) gridded surface data (ARMBE2DGRID) value-added product. Spatial variability is critically important to many scientific studies, especially those that involve processes of great spatial variations at high temporal frequency (e.g., precipitation, clouds, radiation, etc.). High-density ARM sites deployed at the Southern Great Plains (SGP) allow us to observe the spatial patterns of variables of scientific interests. The upcoming megasite at SGP with its enhanced spatial density will facilitate the studies at even finer scales. Currently, however, data are reported only at individual site locations at different time resolutions for different datastreams. It is difficult for users to locate all the data they need and requires extra effort to synchronize the data. To address these problems, the ARMBE2DGRID value-added product merges key surface measurements at the ARM SGP sites and interpolates the data to a regular 2D grid to facilitate the data application.

  10. Reconstruction of a 2D seismic wavefield by seismic gradiometry

    NASA Astrophysics Data System (ADS)

    Maeda, Takuto; Nishida, Kiwamu; Takagi, Ryota; Obara, Kazushige

    2016-12-01

    We reconstructed a 2D seismic wavefield and obtained its propagation properties by using the seismic gradiometry method together with dense observations of the Hi-net seismograph network in Japan. The seismic gradiometry method estimates the wave amplitude and its spatial derivative coefficients at any location from a discrete station record by using a Taylor series approximation. From the spatial derivatives in horizontal directions, the properties of a propagating wave packet, including the arrival direction, slowness, geometrical spreading, and radiation pattern can be obtained. In addition, by using spatial derivatives together with free-surface boundary conditions, the 2D vector elastic wavefield can be decomposed into divergence and rotation components. First, as a feasibility test, we performed an analysis with a synthetic seismogram dataset computed by a numerical simulation for a realistic 3D medium and the actual Hi-net station layout. We confirmed that the wave amplitude and its spatial derivatives were very well-reproduced for period bands longer than 25 s. Applications to a real large earthquake showed that the amplitude and phase of the wavefield were well reconstructed, along with slowness vector. The slowness of the reconstructed wavefield showed a clear contrast between body and surface waves and regional non-great-circle-path wave propagation, possibly owing to scattering. Slowness vectors together with divergence and rotation decomposition are expected to be useful for determining constituents of observed wavefields in inhomogeneous media.

  11. Improved structural quality of AlN grown on sapphire by 3D/2D alternation growth

    NASA Astrophysics Data System (ADS)

    Guo, Yanmin; Fang, Yulong; Yin, Jiayun; Zhang, Zhirong; Wang, Bo; Li, Jia; Lu, Weili; Feng, Zhihong

    2017-04-01

    Three dimensional (3D) and two dimensional (2D) alternation growth was used to grow AlN epitaxial layers on sapphire substrates. AlN samples grown using this technique have higher crystalline quality and lower dislocation density than samples grown using only 3D or 2D growth modes as witnessed by the high-resolution X-ray diffraction. Smooth atomic terraces with root mean square roughness of 0.107 nm were observed using atomic force microscopy (AFM) when the 3D and 2D AlN were 75 nm and 425 nm, respectively. This sample possesses single crystallographic orientation along the c-axis identified by Raman spectroscopy. Furthermore, the 3D/2D alternating growth mode modulates internal stress in AlN epitaxial layer by adjusting 2D AlN thickness, and the mechanism was studied in detail.

  12. Microwave Imaging with Infrared 2-D Lock-in Amplifier

    NASA Astrophysics Data System (ADS)

    Chiyo, Noritaka; Arai, Mizuki; Tanaka, Yasuhiro; Nishikata, Atsuhiro; Maeno, Takashi

    We have developed a 3-D electromagnetic field measurement system using 2-D lock-in amplifier. This system uses an amplitude modulated electromagnetic wave source to heat a resistive screen. A very small change of temperature on a screen illuminated with the modulated electromagnetic wave is measured using an infrared thermograph camera. In this paper, we attempted to apply our system to microwave imaging. By placing conductor patches in front of the resistive screen and illuminating with microwave, the shape of each conductor was clearly observed as the temperature difference image of the screen. In this way, the conductor pattern inside the non-contact type IC card could be visualized. Moreover, we could observe the temperature difference image reflecting the shape of a Konnyaku (a gelatinous food made from devil's-tonge starch) or a dried fishbone, both as non-conducting material resembling human body. These results proved that our method is applicable to microwave see-through imaging.

  13. Advecting Procedural Textures for 2D Flow Animation

    NASA Technical Reports Server (NTRS)

    Kao, David; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    This paper proposes the use of specially generated 3D procedural textures for visualizing steady state 2D flow fields. We use the flow field to advect and animate the texture over time. However, using standard texture advection techniques and arbitrary textures will introduce some undesirable effects such as: (a) expanding texture from a critical source point, (b) streaking pattern from the boundary of the flowfield, (c) crowding of advected textures near an attracting spiral or sink, and (d) absent or lack of textures in some regions of the flow. This paper proposes a number of strategies to solve these problems. We demonstrate how the technique works using both synthetic data and computational fluid dynamics data.

  14. Cervical cancer cell lines expressing NKG2D-ligands are able to down-modulate the NKG2D receptor on NKL cells with functional implications

    PubMed Central

    2012-01-01

    Background Cervical cancer represents the third most commonly diagnosed cancer and the fourth leading cause of cancer-related deaths in women worldwide. Natural killer (NK) cells play an important role in the defense against viruses, intracellular bacteria and tumors. NKG2D, an activating receptor on NK cells, recognizes MHC class I chain-related molecules, such as MICA/B and members of the ULBP/RAET1 family. Tumor-derived soluble NKG2D-ligands have been shown to down-modulate the expression of NKG2D on NK cells. In addition to the down-modulation induced by soluble NKG2D-ligands, it has recently been described that persistent cell-cell contact can also down-modulate NKG2D expression. The goal of this study was to determine whether the NKG2D receptor is down-modulated by cell-cell contact with cervical cancer cells and whether this down-modulation might be associated with changes in NK cell activity. Results We demonstrate that NKG2D expressed on NKL cells is down-modulated by direct cell contact with cervical cancer cell lines HeLa, SiHa, and C33A, but not with non-tumorigenic keratinocytes (HaCaT). Moreover, this down-modulation had functional implications. We found expression of NKG2D-ligands in all cervical cancer cell lines, but the patterns of ligand distribution were different in each cell line. Cervical cancer cell lines co-cultured with NKL cells or fresh NK cells induced a marked diminution of NKG2D expression on NKL cells. Additionally, the cytotoxic activity of NKL cells against K562 targets was compromised after co-culture with HeLa and SiHa cells, while co-culture with C33A increased the cytotoxic activity of the NKL cells. Conclusions Our results suggest that differential expression of NKG2D-ligands in cervical cancer cell lines might be associated with the down-modulation of NKG2D, as well as with changes in the cytotoxic activity of NKL cells after cell-cell contact with the tumor cells. PMID:22316211

  15. 2D Seismic Reflection Data across Central Illinois

    SciTech Connect

    Smith, Valerie; Leetaru, Hannes

    2014-09-30

    In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made

  16. Fresnel Diffraction Using a He-Ne Gas Laser

    ERIC Educational Resources Information Center

    Moen, Allen L.; Vander Meulen, David L.

    1970-01-01

    Describes an advanced laboratory experiment of Fresnel diffraction which uses a He-Ne gas laser as the source and a wire as the opaque diffracting strip. A photograph of the diffraction pattern is compared with the intensity diagram predicted by the Cornu spiral method. Agreement is clear and impressive, although minor differences are detectable.…

  17. In-situ mechanical testing during X-ray diffraction

    SciTech Connect

    Van Swygenhoven, Helena Van Petegem, Steven

    2013-04-15

    Deforming metals during recording X-ray diffraction patterns is a useful tool to get a deeper understanding of the coupling between microstructure and mechanical behaviour. With the advances in flux, detector speed and focussing techniques at synchrotron facilities, in-situ mechanical testing is now possible during powder diffraction and Laue diffraction. The basic principle is explained together with illustrative examples.

  18. Spider diffraction: a comparison of curved and straight legs

    SciTech Connect

    Richter, J.L.

    1984-06-15

    It has been known for some time that, if curved legs rather than the usual straight ones are used in the spider that supports the secondary optics in certain telescopes, the visible diffraction effect is reduced. Fraunhofer theory is used to calculate the diffraction effects due to the curved leg spider. Calculated and photographic diffraction patterns are compared for straight and curved leg spiders.

  19. Persistence Measures for 2d Soap Froth

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Ruskin, H. J.; Zhu, B.

    Soap froths as typical disordered cellular structures, exhibiting spatial and temporal evolution, have been studied through their distributions and topological properties. Recently, persistence measures, which permit representation of the froth as a two-phase system, have been introduced to study froth dynamics at different length scales. Several aspects of the dynamics may be considered and cluster persistence has been observed through froth experiment. Using a direct simulation method, we have investigated persistent properties in 2D froth both by monitoring the persistence of survivor cells, a topologically independent measure, and in terms of cluster persistence. It appears that the area fraction behavior for both survivor and cluster persistence is similar for Voronoi froth and uniform froth (with defects). Survivor and cluster persistent fractions are also similar for a uniform froth, particularly when geometries are constrained, but differences observed for the Voronoi case appear to be attributable to the strong topological dependency inherent in cluster persistence. Survivor persistence, on the other hand, depends on the number rather than size and position of remaining bubbles and does not exhibit the characteristic decay to zero.

  20. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  1. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  2. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  3. Algorithmic methods in diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Thibault, Pierre

    Recent diffraction imaging techniques use properties of coherent sources (most notably x-rays and electrons) to transfer a portion of the imaging task to computer algorithms. "Diffraction microscopy" is a method which consists in reconstructing the image of a specimen from its diffraction pattern. Because only the amplitude of a wavefield incident on a detector is measured, reconstruction of the image entails to recovering the lost phases. This extension of the 'phase problem" commonly met in crystallography is solved only if additional information is available. The main topic of this thesis is the development of algorithmic techniques in diffraction microscopy. In addition to introducing new methods, it is meant to be a review of the algorithmic aspects of the field of diffractive imaging. An overview of the scattering approximations used in the interpretation of diffraction datasets is first given, as well as a numerical propagation tool useful in conditions where known approximations fail. Concepts central to diffraction microscopy---such as oversampling---are then introduced and other similar imaging techniques described. A complete description of iterative reconstruction algorithms follows, with a special emphasis on the difference map, the algorithm used in this thesis. The formalism, based on constraint sets and projection onto these sets, is then defined and explained. Simple projections commonly used in diffraction imaging are then described. The various ways experimental realities can affect reconstruction methods will then be enumerated. Among the diverse sources of algorithmic difficulties, one finds that noise, missing data and partial coherence are typically the most important. Other related difficulties discussed are the detrimental effects of crystalline domains in a specimen, and the convergence problems occurring when the support of a complex-valued specimen is not well known. The last part of this thesis presents reconstruction results; an

  4. Optical-diffraction method for determining crystal orientation

    DOEpatents

    Sopori, B.L.

    1982-05-07

    Disclosed is an optical diffraction technique for characterizing the three-dimensional orientation of a crystal sample. An arbitrary surface of the crystal sample is texture etched so as to generate a pseudo-periodic diffraction grating on the surface. A laser light beam is then directed onto the etched surface, and the reflected light forms a farfield diffraction pattern in reflection. Parameters of the diffraction pattern, such as the geometry and angular dispersion of the diffracted beam are then related to grating shape of the etched surface which is in turn related to crystal orientation. This technique may be used for examining polycrystalline silicon for use in solar cells.

  5. Electro-optic sampling for time resolving relativistic ultrafast electron diffraction

    SciTech Connect

    Scoby, C. M.; Musumeci, P.; Moody, J.; Gutierrez, M.; Tran, T.

    2009-01-22

    The Pegasus laboratory at UCLA features a state-of-the-art electron photoinjector capable of producing ultrashort (<100 fs) high-brightness electron bunches at energies of 3.75 MeV. These beams recently have been used to produce static diffraction patterns from scattering off thin metal foils, and it is foreseen to take advantage of the ultrashort nature of these bunches in future pump-probe time-resolved diffraction studies. In this paper, single shot 2-d electro-optic sampling is presented as a potential technique for time of arrival stamping of electron bunches used for diffraction. Effects of relatively low bunch charge (a few 10's of pC) and modestly relativistic beams are discussed and background compensation techniques to obtain high signal-to-noise ratio are explored. From these preliminary tests, electro-optic sampling is suitable to be a reliable nondestructive time stamping method for relativistic ultrafast electron diffraction at the Pegasus lab.

  6. 2D discrete Fourier transform on sliding windows.

    PubMed

    Park, Chun-Su

    2015-03-01

    Discrete Fourier transform (DFT) is the most widely used method for determining the frequency spectra of digital signals. In this paper, a 2D sliding DFT (2D SDFT) algorithm is proposed for fast implementation of the DFT on 2D sliding windows. The proposed 2D SDFT algorithm directly computes the DFT bins of the current window using the precalculated bins of the previous window. Since the proposed algorithm is designed to accelerate the sliding transform process of a 2D input signal, it can be directly applied to computer vision and image processing applications. The theoretical analysis shows that the computational requirement of the proposed 2D SDFT algorithm is the lowest among existing 2D DFT algorithms. Moreover, the output of the 2D SDFT is mathematically equivalent to that of the traditional DFT at all pixel positions.

  7. Robustness of Cantor diffractals.

    PubMed

    Verma, Rupesh; Sharma, Manoj Kumar; Banerjee, Varsha; Senthilkumaran, Paramasivam

    2013-04-08

    Diffractals are electromagnetic waves diffracted by a fractal aperture. In an earlier paper, we reported an important property of Cantor diffractals, that of redundancy [R. Verma et. al., Opt. Express 20, 8250 (2012)]. In this paper, we report another important property, that of robustness. The question we address is: How much disorder in the Cantor grating can be accommodated by diffractals to continue to yield faithfully its fractal dimension and generator? This answer is of consequence in a number of physical problems involving fractal architecture.

  8. Two-photon x-ray diffraction

    DOE PAGES

    Stohr, J.

    2017-01-11

    The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a “source”, consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focused beyond the diffraction limit. Furthermore, the case of cloned photon pairs is compared to and distinguished from entangled photonmore » pairs or biphotons.« less

  9. Two-Photon X-Ray Diffraction.

    PubMed

    Stöhr, J

    2017-01-13

    The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a "source," consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focussed beyond the diffraction limit. The case of cloned x-ray biphotons is compared to and distinguished from the much studied case of entangled optical biphotons.

  10. X-ray diffraction from rectangular slits.

    PubMed

    Le Bolloc'h, D; Livet, F; Bley, F; Schulli, T; Veron, M; Metzger, T H

    2002-07-01

    It is shown that for micrometre-sized beams the X-ray diffraction from slits is a source of strong parasitic background, even for slits of high quality. In order to illustrate this effect, the coherent diffraction from rectangular slits has been studied in detail. A large number of interference fringes with strong visibility have been observed using a single set of slits made of polished cylinders. For very small apertures, asymmetrical slits generate asymmetrical patterns. This pattern is calculated from the theory of electromagnetic field propagation and compared with experiment in the far-field regime. The use of guard slits to remove Fraunhofer diffraction from the beam-defining slits is treated theoretically. Numerical simulations yield the optimum aperture of the guard slits with respect to the distance to the primary slits. Diffraction theory is shown to be essential to understand how to reduce the background-to-signal ratio in high-resolution experiments.

  11. Beam diffraction by planar and parabolic reflectors

    NASA Astrophysics Data System (ADS)

    Suedan, Gibreel A.; Jull, Edward V.

    1991-04-01

    In the complex source point (CSP) technique, an omnidirectional source diffraction solution becomes that for a directive beam when the coordinates of the source position are given appropriate complex values. This is applied to include feed directivity in reflector edge diffraction. Solutions and numerical examples for planar strip and parabolic cylinder reflectors are given, including an offset parabolic reflector. The main beams of parabolic reflectors are calculated by aperture integration and the edge diffracted fields by uniform diffraction theory. In both cases, a complex source point feed in the near or far field of the reflector may be used in the pattern calculation, with improvements in accuracy in the lateral and spillover pattern lobes.

  12. Two-Photon X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Stöhr, J.

    2017-01-01

    The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a "source," consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focussed beyond the diffraction limit. The case of cloned x-ray biphotons is compared to and distinguished from the much studied case of entangled optical biphotons.

  13. Coherence and sampling requirements for diffractive imaging.

    PubMed

    Spence, J C H; Weierstall, U; Howells, M

    2004-11-01

    Coherent Diffractive Imaging (CDI) allows images to be reconstructed from diffraction patterns by solving the non-crystallographic phase problem for isolated nanostructures. We show that the Shannon sampling of diffraction intensities needed in CDI requires a coherence width about twice the lateral dimensions of the object, and that the linear number of detector pixels fixes the energy spread needed in the beam. The Shannon sampling, defined by the transform of the periodically repeated autocorrelation of the object, is related to Bragg scattering from an equivalent crystal, and shown to be consistent with the sampling of Young's fringes established by scattering from extreme points in the object. The results are relevant to the design of diffraction cameras for CDI and plans for femotosecond X-ray diffraction from individual proteins.

  14. 2D Electrically Tuneable EBG Integrated Circuits

    DTIC Science & Technology

    2014-04-01

    Esselle, L. Matekovits, M. Heimlich, “ Reconfigurable half- width microstrip leaky-wave antenna for fixed-frequency beam scanning”, Proceedings of 7th...Thalakotuna, K. Esselle, M. Heimlich, L. Matekovits “A leaky-wave antenna for beam steering in forward and backward directions ”, IEEE Region 10 Spring...to exhibit antenna -like characteristics across two independent variables. Holding frequency constant and varying the EBG switch pattern , we would

  15. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1989-03-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  16. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1988-08-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculation assumes local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  17. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  18. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  19. NIKE2D96. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Raboin, P.; Engelmann, B.; Halquist, J.O.

    1992-01-24

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  20. Phase Aberrations in Diffraction Microscopy

    SciTech Connect

    Marchesini, S; Chapman, H N; Barty, A; Howells, M R; Spence, J H; Cui, C; Weierstall, U; Minor, A M

    2005-09-29

    In coherent X-ray diffraction microscopy the diffraction pattern generated by a sample illuminated with coherent x-rays is recorded, and a computer algorithm recovers the unmeasured phases to synthesize an image. By avoiding the use of a lens the resolution is limited, in principle, only by the largest scattering angles recorded. However, the imaging task is shifted from the experiment to the computer, and the algorithm's ability to recover meaningful images in the presence of noise and limited prior knowledge may produce aberrations in the reconstructed image. We analyze the low order aberrations produced by our phase retrieval algorithms. We present two methods to improve the accuracy and stability of reconstructions.

  1. 2D to 3D transition of polymeric carbon nitride nanosheets

    SciTech Connect

    Chamorro-Posada, Pedro; Vázquez-Cabo, José; Martín-Ramos, Pablo; Martín-Gil, Jesús; Navas-Gracia, Luis M.; Dante, Roberto C.

    2014-11-15

    The transition from a prevalent turbostratic arrangement with low planar interactions (2D) to an array of polymeric carbon nitride nanosheets with stronger interplanar interactions (3D), occurring for samples treated above 650 °C, was detected by terahertz-time domain spectroscopy (THz-TDS). The simulated 3D material made of stacks of shifted quasi planar sheets composed of zigzagged polymer ribbons, delivered a XRD simulated pattern in relatively good agreement with the experimental one. The 2D to 3D transition was also supported by the simulation of THz-TDS spectra obtained from quantum chemistry calculations, in which the same broad bands around 2 THz and 1.5 THz were found for 2D and 3D arrays, respectively. This transition was also in accordance with the tightening of the interplanar distance probably due to an interplanar π bond contribution, as evidenced also by a broad absorption around 2.6 eV in the UV–vis spectrum, which appeared in the sample treated at 650 °C, and increased in the sample treated at 700 °C. The band gap was calculated for 1D and 2D cases. The value of 3.374 eV for the 2D case is, within the model accuracy and precision, in a relative good agreement with the value of 3.055 eV obtained from the experimental results. - Graphical abstract: 2D lattice mode vibrations and structural changes correlated with the so called “2D to 3D transition”. - Highlights: • A 2D to 3D transition has been detected for polymeric carbon nitride. • THz-TDS allowed us to discover and detect the 2D to 3D transition of polymeric carbon nitride. • We propose a structure for polymeric carbon nitride confirming it with THz-TDS.

  2. Bragg's Law diffraction simulations for electron backscatter diffraction analysis.

    PubMed

    Kacher, Josh; Landon, Colin; Adams, Brent L; Fullwood, David

    2009-08-01

    In 2006, Angus Wilkinson introduced a cross-correlation-based electron backscatter diffraction (EBSD) texture analysis system capable of measuring lattice rotations and elastic strains to high resolution. A variation of the cross-correlation method is introduced using Bragg's Law-based simulated EBSD patterns as strain free reference patterns that facilitates the use of the cross-correlation method with polycrystalline materials. The lattice state is found by comparing simulated patterns to collected patterns at a number of regions on the pattern using the cross-correlation function and calculating the deformation from the measured shifts of each region. A new pattern can be simulated at the deformed state, and the process can be iterated a number of times to converge on the absolute lattice state. By analyzing an iteratively rotated single crystal silicon sample and recovering the rotation, this method is shown to have an angular resolution of approximately 0.04 degrees and an elastic strain resolution of approximately 7e-4. As an example of applications, elastic strain and curvature measurements are used to estimate the dislocation density in a single grain of a compressed polycrystalline Mg-based AZ91 alloy.

  3. 2D light scattering label-free cytometry using light-sheet illumination

    NASA Astrophysics Data System (ADS)

    Lin, Meiai; Su, Xuantao

    2016-10-01

    Two-dimensional (2D) light scattering cytometry has been demonstrated as an effective label-free technology for cell analysis. Here we develop the light-sheet illumination in 2D light scattering static cytometry. In our cytometer, a cylindrical lens is used to form the light-sheet for better excitation of the static cells under an inverted microscope. The thickness of the light-sheet measured in fluorescent solution is about 13 μm. Two-dimensional light scattering patterns of standard microspheres and yeast cells are obtained by using a complementary metal oxide semiconductor (CMOS) detector via a low numerical aperture (NA 0.4) optical objective. The experimental patterns characterized with fringe structures agree well with Mie theory simulated ones. Our results suggest that the light-sheet illumination is an effective excitation method for 2D light scattering label-free cytometry.

  4. Electron Diffraction of Wet Phospholipid Bilayers

    PubMed Central

    Hui, S. W.; Parsons, D. F.; Cowden, M.

    1974-01-01

    The structure of fully hydrated dipalmitoyl lecithin single bilayers, and monolayers deposited on Formvar substrates are studied by electron diffraction, using a hydration stage fitted to an electron microscope. Selective area diffraction patterns of these films indicate that there are domains consisting of mosaics of crystallites of hexagonally packed lipid chains. The size of these domains are typically several μm in diameter. The diffraction intensity agrees with that calculated from the electron scattering factor of the hydrocarbon chains of the lipid molecule. Images PMID:4531037

  5. Controlled double-slit electron diffraction

    NASA Astrophysics Data System (ADS)

    Bach, Roger; Pope, Damian; Liou, Sy-Hwang; Batelaan, Herman

    2013-03-01

    Double-slit diffraction is a corner stone of quantum mechanics. It illustrates key features of quantum mechanics: interference and the particle-wave duality of matter. In 1965, Richard Feynman presented a thought experiment to show these features. Here we demonstrate the full realization of his famous thought experiment. By placing a movable mask in front of a double-slit to control the transmission through the individual slits, probability distributions for single- and double-slit arrangements were observed. Also, by recording single electron detection events diffracting through a double-slit, a diffraction pattern was built up from individual events.

  6. Diffraction Results from CDF

    SciTech Connect

    Goulianos, Konstantin

    2012-04-01

    We present final results by the CDF II collaboration on diffractive W and Z production, report on the status of ongoing analyses on diffractive dijet production and on rapidity gaps between jets, and briefly summarize results obtained on exclusive production pointing to their relevance to calibrating theoretical models used to predict exclusive Higgs-boson production at the LHC.

  7. Diffraction of entangled particles by light gratings

    SciTech Connect

    Sancho, Pedro

    2015-04-15

    We analyze the diffraction regime of the Kapitza–Dirac effect for particles entangled in momentum. The detection patterns show two-particle interferences. In the single-mode case we identify a discontinuity in the set of joint detection probabilities, associated with the disconnected character of the space of non-separable states. For Gaussian multi-mode states we derive the diffraction patterns, providing an example of the dependence of the light–matter interaction on entanglement. When the particles are identical, we can explore the relation between exchange and entanglement effects. We find a complementary behavior between overlapping and Schmidt’s number. In particular, symmetric entanglement can cancel the exchange effects. - Highlights: • Kapitza–Dirac diffraction of entangled particles shows multiparticle interference. • There is a discontinuity in the set of joint detection patterns of entangled states. • We find a complementary behavior between overlapping and Schmidt’s number. • Symmetric entanglement can cancel the exchange effects.

  8. Domain-size effects in optical diffraction from polymer/composite microparticles

    SciTech Connect

    Ford, J.V.; Sumpter, B.G.; Noid, D.W.; Barnes, M.D.; Hill, S.C.; Hillis, D.B.

    2000-01-27

    Poly(ethylene glycol) [PEG] microparticles were doped with ceramic or latex nanoparticles in order to examine domain-size and refractive index effects of nanometer-sized guest inclusions on two-dimensional diffraction patterns. Composite microparticles were examined for different inclusion sizes and polymer/nanoparticle weight ratios in order to determine the size and number-density threshold of detection for guest nanoparticles within the polymer host as indicated by fringe distortion in 2-D angular scattering. PEG host particles having a 10 {micro}m (nominal) diameter were formed with three different guest nanoparticles (Al{sub 2}O{sub 3}, TiO{sub 2}, and latex nanospheres with respective sizes of 46, 29, and 14 nm). For the ceramic nanoparticle inclusions, distortion was observed at relative guest-host weight fractions of 5--10%. For the 14 nm latex inclusions, no distortion was observed at any weight fraction. A perturbation method was used to simulate the effect of nanometer-size inclusions on 2-D optical diffraction from polymer host microparticles and to suggest how the distortions should vary with inclusion size, refractive index, and number.

  9. Coherent x-ray diffraction from quantum dots

    SciTech Connect

    Vartanyants, I.A.; Robinson, I. K.; Onken, J.D.; Pfeifer, M.A.; Williams, G.J.; Pfeiffer, F.; Metzger, H.; Zhong, Z.; Bauer, G.

    2005-06-15

    Coherent x-ray diffraction is a new experimental method for studying perfect and imperfect crystals. Instead of incoherent averaging, a coherent sum of amplitudes produces a coherent diffraction pattern originating from the real space arrangement of the sample. We applied this method for studying quantum dot samples that were specially fabricated GeSi islands of nanometer size and in a regular array embedded into a Si substrate. A coherent beam was focused by special Kirkpatric-Baez optics to a micrometer size. In the experiment it was observed that such a microfocused coherent beam produced coherent diffraction pattern with Bragg spots and broad diffuse maxima. The diffuse peak breaks up into a fine speckle pattern. The grazing incidence diffraction pattern has a typical shape resulting from the periodic array of identical islands. We used this diffraction pattern to reconstruct the average shape of the islands using a model independent approach.

  10. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  11. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  12. Molecular beam epitaxy of 2D-layered gallium selenide on GaN substrates

    NASA Astrophysics Data System (ADS)

    Lee, Choong Hee; Krishnamoorthy, Sriram; O'Hara, Dante J.; Brenner, Mark R.; Johnson, Jared M.; Jamison, John S.; Myers, Roberto C.; Kawakami, Roland K.; Hwang, Jinwoo; Rajan, Siddharth

    2017-03-01

    Large area epitaxy of two-dimensional (2D) layered materials with high material quality is a crucial step in realizing novel device applications based on 2D materials. In this work, we report high-quality, crystalline, large-area gallium selenide (GaSe) films grown on bulk substrates such as c-plane sapphire and gallium nitride (GaN) using a valved cracker source for Se. (002)-Oriented GaSe with random in-plane orientation of domains was grown on sapphire and GaN substrates at a substrate temperature of 350-450 °C with complete surface coverage. Higher growth temperature (575 °C) resulted in the formation of single-crystalline ɛ-GaSe triangular domains with six-fold symmetry confirmed by in-situ reflection high electron energy diffraction and off-axis x-ray diffraction. A two-step growth method involving high temperature nucleation of single crystalline domains and low temperature growth to enhance coalescence was adopted to obtain continuous (002)-oriented GaSe with an epitaxial relationship with the substrate. While six-fold symmetry was maintained in the two step growth, β-GaSe phase was observed in addition to the dominant ɛ-GaSe in cross-sectional scanning transmission electron microscopy images. This work demonstrates the potential of growing high quality 2D-layered materials using molecular beam epitaxy and can be extended to the growth of other transition metal chalcogenides.

  13. Optical diffraction analysis of petrographic thin sections.

    PubMed

    Power, P C; Pincus, H J

    1974-10-18

    Diffraction patterns that are highly reproducible, of useful quality, and consistent with the input generating them can be easily obtained with a microscope system. The input can be either a reduced photograph or a thin section. With two exceptions, the relationships between a thin section and its diffraction pattern produced by a petrographic microscope are the same as the relationships between a photographic input and its diffraction pattern produced by a conventional ODA system. The exceptions are that the diffraction patterns generated directly by the thin sections may be asymmetrical or, if the thin section is sufficiently heterogeneous, may be smeared. The microscope system is generally more useful than a conventional ODA system for the analysis of microfabric in thin sections. One can readily use the microscope system to analyze elements of widely varying spatial frequency simply by changing the objectives. The diffraction patterns can be magnified by changing to a higherpower ocular. In most cases the microscope-generated diffraction pattern transmits the useful spatial information in the thin section more completely than the conventionally produced diffraction pattern; the photographic inputs for the conventionally produced diffraction pattern emphasize lower-frequency spatial information. This property, combined with the microscope system's better response to twinning, makes the microscope more sensitive to commonly used microfabric elements. For the analysis of thin sections, a conventional ODA system is superior to the microscope system in only three cases. First, if one wants to analyze the entire thin section at one time, a conventional system must be used with a photographic input of the thin section. Second, if the thin section is extremely heterogeneous (crystallographically or mineralogically), the microscope-generated diffraction pattern may exhibit gross smearing even with the highestpower objectives available. Finally, the thin section may

  14. PLAN2D - A PROGRAM FOR ELASTO-PLASTIC ANALYSIS OF PLANAR FRAMES

    NASA Technical Reports Server (NTRS)

    Lawrence, C.

    1994-01-01

    PLAN2D is a FORTRAN computer program for the plastic analysis of planar rigid frame structures. Given a structure and loading pattern as input, PLAN2D calculates the ultimate load that the structure can sustain before collapse. Element moments and plastic hinge rotations are calculated for the ultimate load. The location of hinges required for a collapse mechanism to form are also determined. The program proceeds in an iterative series of linear elastic analyses. After each iteration the resulting elastic moments in each member are compared to the reserve plastic moment capacity of that member. The member or members that have moments closest to their reserve capacity will determine the minimum load factor and the site where the next hinge is to be inserted. Next, hinges are inserted and the structural stiffness matrix is reformulated. This cycle is repeated until the structure becomes unstable. At this point the ultimate collapse load is calculated by accumulating the minimum load factor from each previous iteration and multiplying them by the original input loads. PLAN2D is based on the program STAN, originally written by Dr. E.L. Wilson at U.C. Berkeley. PLAN2D has several limitations: 1) Although PLAN2D will detect unloading of hinges it does not contain the capability to remove hinges; 2) PLAN2D does not allow the user to input different positive and negative moment capacities and 3) PLAN2D does not consider the interaction between axial and plastic moment capacity. Axial yielding and buckling is ignored as is the reduction in moment capacity due to axial load. PLAN2D is written in FORTRAN and is machine independent. It has been tested on an IBM PC and a DEC MicroVAX. The program was developed in 1988.

  15. Digit ratio (2D:4D), lateral preferences, and performance in fencing.

    PubMed

    Voracek, Martin; Reimer, Barbara; Ertl, Clara; Dressler, Stefan G

    2006-10-01

    The second to fourth digit ratio (2D:4D) is a sexually dimorphic trait (men tend to have lower values than women) and a likely biomarker for the organizational (permanent) effects of prenatal androgens on the human brain and body. Prenatal testosterone, as reflected by 2D:4D, has many extragenital effects, including its relevance for the formation of an efficient cardiovascular system. Previous research, reviewed here, has therefore investigated possible associations of 2D:4D with sport performance. Several studies found more masculinized digit ratio patterns (low 2D:4D values or a negative right-minus-left difference in 2D:4D) to be related to high performance in running, soccer, and skiing. The present research tested this hypothesis in a sample of 54 tournament fencers, predominantly from Austria. For men, negative right-left differences in 2D:4D corresponded significantly to better current as well as highest national fencing rankings, independent of training intensity and fencing experience. The mean 2D:4D values of these fencers were significantly lower and the proportion of left-handers was elevated relative to the local general population. For the right hand, the ratio was somewhat lower in male sabre fencers than in male epée and foil fencers combined and significantly lower in left-handed compared to right-handed fencers. Although nonsignificant due to low statistical power, effect sizes suggested that crossed versus congruent hand-eye and hand-foot preferences might also be related to fencing performance. The present findings add to the evidence that 2D:4D might be a performance indicator for men across a variety of sports.

  16. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  17. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  18. Residual lens effects in 2D mode of auto-stereoscopic lenticular-based switchable 2D/3D displays

    NASA Astrophysics Data System (ADS)

    Sluijter, M.; IJzerman, W. L.; de Boer, D. K. G.; de Zwart, S. T.

    2006-04-01

    We discuss residual lens effects in multi-view switchable auto-stereoscopic lenticular-based 2D/3D displays. With the introduction of a switchable lenticular, it is possible to switch between a 2D mode and a 3D mode. The 2D mode displays conventional content, whereas the 3D mode provides the sensation of depth to the viewer. The uniformity of a display in the 2D mode is quantified by the quality parameter modulation depth. In order to reduce the modulation depth in the 2D mode, birefringent lens plates are investigated analytically and numerically, by ray tracing. We can conclude that the modulation depth in the 2D mode can be substantially decreased by using birefringent lens plates with a perfect index match between lens material and lens plate. Birefringent lens plates do not disturb the 3D performance of a switchable 2D/3D display.

  19. Fabrication method and microstructural characteristics of coal-tar-pitch-based 2D carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Esmaeeli, Mohammad; Khosravi, Hamed; Mirhabibi, Alireza

    2015-02-01

    The lignin-cellulosic texture of wood was used to produce two-dimensional (2D) carbon/carbon (C/C) composites using coal tar pitch. Ash content tests were conducted to select two samples among the different kinds of woods present in Iran, including walnut, white poplar, cherry, willow, buttonwood, apricots, berry, and blue wood. Walnut and white poplar with ash contents of 1.994wt% and 0.351wt%, respectively, were selected. The behavior of these woods during pyrolysis was investigated by differential thermal analysis (DTA) and thermo gravimetric (TG) analysis. The bulk density and open porosity were measured after carbonization and densification. The microstructural characteristics of samples were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy. The results indicate that the density of both the walnut and white poplar is increased, and the open porosity is decreased with the increasing number of carbonization cycles. The XRD patterns of the wood charcoal change gradually with increasing pyrolysis temperature, possibly as a result of the ultra-structural changes in the charcoal or the presence of carbonized coal tar pitch in the composite's body.

  20. Differential CYP 2D6 metabolism alters primaquine pharmacokinetics.

    PubMed

    Potter, Brittney M J; Xie, Lisa H; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T; Bandara Herath, H M T; Dhammika Nanayakkara, N P; Tekwani, Babu L; Walker, Larry A; Nolan, Christina K; Sciotti, Richard J; Zottig, Victor E; Smith, Philip L; Paris, Robert M; Read, Lisa T; Li, Qigui; Pybus, Brandon S; Sousa, Jason C; Reichard, Gregory A; Marcsisin, Sean R

    2015-04-01

    Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity.

  1. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  2. MEMS-based diffractive optical-beam-steering technology

    NASA Astrophysics Data System (ADS)

    Winick, David A.; Duewer, Bruce E.; Chaudhury, Som; Wilson, John M.; Tucker, John; Eksi, Umut; Franzon, Paul D.

    1998-03-01

    This paper presents some results from phase-1 research into developing a beam steerer based on micro-mechanical diffractive elements. The position of these elements is electrostatically controlled, to allow dynamic programming of a 2D phase function. Feasibility prototypes were constructed in the MUMPs polysilicon surface micromachine process.

  3. Bridging the gap: from 2D cell culture to 3D microengineered extracellular matrices

    PubMed Central

    Li, Yanfen

    2016-01-01

    Historically the culture of mammalian cells in the laboratory has been performed on planar substrates with media cocktails that are optimized to maintain phenotype. However, it is becoming increasingly clear that much of biology discerned from 2D studies does not translate well to the 3D microenvironment. Over the last several decades, 2D and 3D microengineering approaches have been developed that better recapitulate the complex architecture and properties of in vivo tissue. Inspired by the infrastructure of the microelectronics industry, lithographic patterning approaches have taken center stage because of the ease in which cell-sized features can be engineered on surfaces and within a broad range of biocompatible materials. Patterning and templating techniques enable precise control over extracellular matrix properties including: composition, mechanics, geometry, cell-cell contact, and diffusion. In this review article we will explore how the field of engineered extracellular matrices has evolved with the development of new hydrogel chemistry and the maturation of micro- and nano- fabrication. Guided by the spatiotemporal regulation of cell state in developing tissues, we will review the maturation of micropatterning in 2D, pseudo-3D systems, and patterning within 3D hydrogels in the context of translating the information gained from 2D systems to synthetic engineered 3D tissues. PMID:26592366

  4. Fraunhofer Diffraction and Polarization.

    ERIC Educational Resources Information Center

    Fortin, E.

    1979-01-01

    Describes an experiment for the intermediate undergraduate optics laboratory designed to illustrate simultaneously some aspects of the phenomena of diffraction; interference, coherence, apodization, the Fresnel-Arago law; as well as of the interrelations between these concepts. (HM)

  5. Diffraction with CMS

    SciTech Connect

    Pereira, Antonio Vilela

    2011-07-15

    The observation of diffraction at LHC with the CMS detector at {radical}(s) = 900 and 2360 GeV is presented, along with a comparison of the data with the predictions of the PYTHIA and PHOJET generators.

  6. Fresnel Coherent Diffractive Imaging

    SciTech Connect

    Williams, G. J.; Quiney, H. M.; Dhal, B. B.; Tran, C. Q.; Nugent, K. A.; Peele, A. G.; Paterson, D.; Jonge, M. D. de

    2006-07-14

    We present an x-ray coherent diffractive imaging experiment utilizing a nonplanar incident wave and demonstrate success by reconstructing a nonperiodic gold sample at 24 nm resolution. Favorable effects of the curved beam illumination are identified.

  7. Electrochemical fabrication of 2D and 3D nickel nanowires using porous anodic alumina templates

    NASA Astrophysics Data System (ADS)

    Mebed, A. M.; Abd-Elnaiem, Alaa M.; Al-Hosiny, Najm M.

    2016-06-01

    Mechanically stable nickel (Ni) nanowires array and nanowires network were synthesized by pulse electrochemical deposition using 2D and 3D porous anodic alumina (PAA) templates. The structures and morphologies of as-prepared films were characterized by X-ray diffraction and scanning electron microscopy, respectively. The grown Ni nanowire using 3D PAA revealed more strength and larger surface area than has grown Ni use 2D PAA template. The prepared nanowires have a face-centered cubic crystal structure with average grain size 15 nm, and the preferred orientation of the nucleation of the nanowires is (111). The diameter of the nanowires is about 50-70 nm with length 3 µm. The resulting 3D Ni nanowire lattice, which provides enhanced mechanical stability and an increased surface area, benefits energy storage and many other applications which utilize the large surface area.

  8. Self-organized 2D periodic arrays of nanostructures in silicon by nanosecond laser irradiation.

    PubMed

    Nayak, Barada K; Sun, Keye; Rothenbach, Christian; Gupta, Mool C

    2011-06-01

    We report a phenomenon of spontaneous formation of self-organized 2D periodic arrays of nanostructures (protrusions) by directly exposing a silicon surface to multiple nanosecond laser pulses. These self-organized 2D periodic nanostructures are produced toward the edge as an annular region around the circular laser spot. The heights of these nanostructures are around 500 nm with tip diameter ~100 nm. The period of the nanostructures is about 1064 nm, the wavelength of the incident radiation. In the central region of the laser spot, nanostructures are destroyed because of the higher laser intensity (due to the Gaussian shape of the laser beam) and accumulation of large number of laser pulses. Optical diffraction from these nanostructures indicates a threefold symmetry, which is in accordance with the observed morphological symmetries of these nanostructures.

  9. Reflective diffraction grating

    DOEpatents

    Lamartine, Bruce C.

    2003-06-24

    Reflective diffraction grating. A focused ion beam (FIB) micromilling apparatus is used to store color images in a durable medium by milling away portions of the surface of the medium to produce a reflective diffraction grating with blazed pits. The images are retrieved by exposing the surface of the grating to polychromatic light from a particular incident bearing and observing the light reflected by the surface from specified reception bearing.

  10. Anomalous diffraction approximation limits

    NASA Astrophysics Data System (ADS)

    Videen, Gorden; Chýlek, Petr

    It has been reported in a recent article [Liu, C., Jonas, P.R., Saunders, C.P.R., 1996. Accuracy of the anomalous diffraction approximation to light scattering by column-like ice crystals. Atmos. Res., 41, pp. 63-69] that the anomalous diffraction approximation (ADA) accuracy does not depend on particle refractive index, but instead is dependent on the particle size parameter. Since this is at odds with previous research, we thought these results warranted further discussion.

  11. Diffraction as tunneling

    NASA Technical Reports Server (NTRS)

    Nussenzveig, H. M.; Wiscombe, W. J.

    1987-01-01

    A new approximation to the short-wavelength scattering amplitude from an impenetrable sphere is presented. It is uniform in the scattering angle and it is more accurate than previously known approximations (including Fock's theory of diffraction) by up to several orders of magnitude. It remains valid in the transition to long-wavelength scattering. It leads to a new physical picture of diffraction, as tunneling through an inertial barrier.

  12. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  13. Synthetic Covalent and Non-Covalent 2D Materials.

    PubMed

    Boott, Charlotte E; Nazemi, Ali; Manners, Ian

    2015-11-16

    The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.

  14. X-ray diffraction: instrumentation and applications.

    PubMed

    Bunaciu, Andrei A; Udriştioiu, Elena Gabriela; Aboul-Enein, Hassan Y

    2015-01-01

    X-ray diffraction (XRD) is a powerful nondestructive technique for characterizing crystalline materials. It provides information on structures, phases, preferred crystal orientations (texture), and other structural parameters, such as average grain size, crystallinity, strain, and crystal defects. X-ray diffraction peaks are produced by constructive interference of a monochromatic beam of X-rays scattered at specific angles from each set of lattice planes in a sample. The peak intensities are determined by the distribution of atoms within the lattice. Consequently, the X-ray diffraction pattern is the fingerprint of periodic atomic arrangements in a given material. This review summarizes the scientific trends associated with the rapid development of the technique of X-ray diffraction over the past five years pertaining to the fields of pharmaceuticals, forensic science, geological applications, microelectronics, and glass manufacturing, as well as in corrosion analysis.

  15. Atomic resolution 3D electron diffraction microscopy

    SciTech Connect

    Miao, Jianwei; Ohsuna, Tetsu; Terasaki, Osamu; O'Keefe, Michael A.

    2002-03-01

    Electron lens aberration is the major barrier limiting the resolution of electron microscopy. Here we describe a novel form of electron microscopy to overcome electron lens aberration. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a 2 x 2 x 2 unit cell nano-crystal (framework of LTA [Al12Si12O48]8) can be ab initio determined at the resolution of 1 Angstrom from a series of simulated noisy diffraction pattern projections with rotation angles ranging from -70 degrees to +70 degrees in 5 degrees increments along a single rotation axis. This form of microscopy (which we call 3D electron diffraction microscopy) does not require any reference waves, and can image the 3D structure of nanocrystals, as well as non-crystalline biological and materials science samples, with the resolution limited only by the quality of sample diffraction.

  16. Geometrical-numerical approach to diffraction phenomena.

    PubMed

    Bosch, S; Ferré-Borrull, J

    2001-02-15

    The calculation of diffracted fields is considered by means of a geometrical analysis of the incoming wave into semiperiodic zones in the aperture plane, followed by a numerical process for addition of the contributions corresponding to the semiperiodic zones. This general approach constitutes a novel interpretation of diffraction phenomena that permits exact evaluation of the mathematical expressions of diffraction theory and overcomes the limitations of any approximation. The method is illustrated by analysis of two important configuration in optics: the pinhole camera, for which we deduce the optimum radius for imaging, and the diffraction of a spherical converging wave through a circular aperture, from which we determine the limit of the validity of the Fraunhofer approximation (i.e., of the Airy pattern) and the influence of the obliquity factor.

  17. Sensitivity of 2-D complex resistivity measurements to subsurface anisotropy

    NASA Astrophysics Data System (ADS)

    Kenkel, J.; Kemna, A.

    2016-11-01

    In general, the complex electrical resistivity in the subsurface is anisotropic. Despite this, algorithms for the tomographic inversion of complex resistivity data commonly assume isotropy, mainly due to the lack of anisotropic modelling and inversion schemes, potentially leading to artifacts in the inversion results in the presence of anisotropy. The development of an effective anisotropic complex resistivity inversion algorithm which utilizes the gradient information of some cost function benefits from understanding the characteristics of the problem's sensitivities, i.e., the partial derivative of impedance data with respect to the complex conductivities in the different spatial directions, as well as with respect to the different ratios of complex conductivities, i.e., the different anisotropy ratios. We here derive expressions for these sensitivities and, based on a 2.5-D finite-element modelling algorithm, we compute and discuss sensitivity distributions as well as measurement response curves of typical surface and cross-borehole measurement configurations for 2-D subsurface anisotropic complex resistivity distributions. Depending on the electrode layout and measurement configuration, the sensitivity with respect to the conductivity in a particular direction shows a unique pattern, while for other directions sensitivity patterns are qualitatively similar. These sensitivity characteristics translate into important equivalences between impedance responses of local anisotropic and isotropic anomalies, for both magnitude and phase. Accordingly, with collinear surface arrays only the complex conductivity in the direction of the electrode layout can be unambiguously resolved, and with cross-borehole arrays only the conductivity in the vertical direction, provided an in-hole current injection is used. Nevertheless, anisotropy ratios involving these resolvable conductivity components are likewise detectable. The distinct shape of the measurement response curves

  18. Tunable diffraction-free array in nonlinear photonic crystal

    NASA Astrophysics Data System (ADS)

    Liu, Dongmei; Wei, Dunzhao; Zhang, Yong; Chen, Zhenhua; Ni, Rui; Yang, Bo; Hu, Xiaopeng; Qin, Y. Q.; Zhu, S. N.; Xiao, Min

    2017-01-01

    Diffraction-free beams have attracted increasing research interests because of their unique performances and broad applications in various fields. Although many methods have been developed to produce such beams, it is still challenging to realize a tunable non-diffracting beam. Here, we report the generation of a tunable diffraction-free array through second-harmonic generation in a nonlinear photonic crystal, i.e., a 2D periodically-poled LiTaO3 crystal. In such a crystal, the second-harmonic wave is engineered by properly designing the domain structure based on the Huygens-Fresnel principle. The characteristics of the generated diffraction-free array including its period, propagation length, and wavelength can be tuned by simply changing the input wavelength. Our observation not only enriches the diffraction-free optics, but also has potential applications for photolithography and imaging.

  19. Tunable diffraction-free array in nonlinear photonic crystal

    PubMed Central

    Liu, Dongmei; Wei, Dunzhao; Zhang, Yong; Chen, Zhenhua; Ni, Rui; Yang, Bo; Hu, Xiaopeng; Qin, Y. Q.; Zhu, S. N.; Xiao, Min

    2017-01-01

    Diffraction-free beams have attracted increasing research interests because of their unique performances and broad applications in various fields. Although many methods have been developed to produce such beams, it is still challenging to realize a tunable non-diffracting beam. Here, we report the generation of a tunable diffraction-free array through second-harmonic generation in a nonlinear photonic crystal, i.e., a 2D periodically-poled LiTaO3 crystal. In such a crystal, the second-harmonic wave is engineered by properly designing the domain structure based on the Huygens-Fresnel principle. The characteristics of the generated diffraction-free array including its period, propagation length, and wavelength can be tuned by simply changing the input wavelength. Our observation not only enriches the diffraction-free optics, but also has potential applications for photolithography and imaging. PMID:28098213

  20. Nonlinear standing waves in 2-D acoustic resonators.

    PubMed

    Cervenka, Milan; Bednarik, Michal

    2006-12-22

    This paper deals with 2-D simulation of finite-amplitude standing waves behavior in rectangular acoustic resonators. Set of three partial differential equations in third approximation formulated in conservative form is derived from fundamental equations of gas dynamics. These equations form a closed set for two components of acoustic velocity vector and density, the equations account for external driving force, gas dynamic nonlinearities and thermoviscous dissipation. Pressure is obtained from solution of the set by means of an analytical formula. The equations are formulated in the Cartesian coordinate system. The model equations set is solved numerically in time domain using a central semi-discrete difference scheme developed for integration of sets of convection-diffusion equations with two or more spatial coordinates. Numerical results show various patterns of acoustic field in resonators driven using vibrating piston with spatial distribution of velocity. Excitation of lateral shock-wave mode is observed when resonant conditions are fulfilled for longitudinal as well as for transversal direction along the resonator cavity.

  1. Steady propagation of Bingham plugs in 2D channels

    NASA Astrophysics Data System (ADS)

    Zamankhan, Parsa; Takayama, Shuichi; Grotberg, James

    2009-11-01

    The displacement of the yield-stress liquid plugs in channels and tubes occur in many biological systems and industrial processes. Among them is the propagation of mucus plugs in the respiratory tracts as may occur in asthma, cystic fibrosis, or emphysema. In this work the steady propagation of mucus plugs in a 2D channel is studied numerically, assuming that the mucus is a pure Bingham fluid. The governing equations are solved by a mixed-discontinuous finite element formulation and the free surface is resolved with the method of spines. The constitutive equation for a pure Bingham fluid is modeled by a regularization method. Fluid inertia is neglected, so the controlling parameters in a steady displacement are; the capillary number, Ca, Bingham number ,Bn, and the plug length. According to the numerical results, the yield stress behavior of the plug modifies the plug shape, the pattern of the streamlines and the distribution of stresses in the plug domain and along the walls in a significant way. The distribution along the walls is a major factor in studying cell injuries. This work is supported through the grant NIH HL84370.

  2. Topological Toughening of graphene and other 2D materials

    NASA Astrophysics Data System (ADS)

    Gao, Huajian

    It has been claimed that graphene, with the elastic modulus of 1TPa and theoretical strength as high as 130 GPa, is the strongest material. However, from an engineering point of view, it is the fracture toughness that determines the actual strength of materials, as crack-like flaws (i.e., cracks, holes, notches, corners, etc.) are inevitable in the design, fabrication, and operation of practical devices and systems. Recently, it has been demonstrated that graphene has very low fracture toughness, in fact close to that of ideally brittle solids. These findings have raised sharp questions and are calling for efforts to explore effective methods to toughen graphene. Recently, we have been exploring the potential use of topological effects to enhance the fracture toughness of graphene. For example, it has been shown that a sinusoidal graphene containing periodically distributed disclination quadrupoles can achieve a mode I fracture toughness nearly twice that of pristine graphene. Here we report working progresses on further studies of topological toughening of graphene and other 2D materials. A phase field crystal method is adopted to generate the atomic coordinates of material with specific topological patterns. We then perform molecular dynamics simulations of fracture in the designed samples, and observe a variety of toughening mechanisms, including crack tip blunting, crack trapping, ligament bridging, crack deflection and daughter crack initiation and coalescence.

  3. Self-leveling 2D DPN probe arrays

    NASA Astrophysics Data System (ADS)

    Haaheim, Jason R.; Val, Vadim; Solheim, Ed; Bussan, John; Fragala, J.; Nelson, Mike

    2010-02-01

    Dip Pen Nanolithography® (DPN®) is a direct write scanning probe-based technique which operates under ambient conditions, making it suitable to deposit a wide range of biological and inorganic materials. Precision nanoscale deposition is a fundamental requirement to advance nanoscale technology in commercial applications, and tailoring chemical composition and surface structure on the sub-100 nm scale benefits researchers in areas ranging from cell adhesion to cell-signaling and biomimetic membranes. These capabilities naturally suggest a "Desktop Nanofab" concept - a turnkey system that allows a non-expert user to rapidly create high resolution, scalable nanostructures drawing upon well-characterized ink and substrate pairings. In turn, this system is fundamentally supported by a portfolio of MEMS devices tailored for microfluidic ink delivery, directed placement of nanoscale materials, and cm2 tip arrays for high-throughput nanofabrication. Massively parallel two-dimensional nanopatterning is now commercially available via NanoInk's 2D nano PrintArray™, making DPN a high-throughput (>3×107 μm2 per hour), flexible and versatile method for precision nanoscale pattern formation. However, cm2 arrays of nanoscopic tips introduce the nontrivial problem of getting them all evenly touching the surface to ensure homogeneous deposition; this requires extremely precise leveling of the array. Herein, we describe how we have made the process simple by way of a selfleveling gimbal attachment, coupled with semi-automated software leveling routines which bring the cm^2 chip to within 0.002 degrees of co-planarity. This excellent co-planarity yields highly homogeneous features across a square centimeter, with <6% feature size standard deviation. We have engineered the devices to be easy to use, wire-free, and fully integrated with both of our patterning tools: the DPN 5000, and the NLP 2000.

  4. Fraunhofer diffraction of a partially blocked spiral phase plate.

    PubMed

    Cottrell, Don M; Davis, Jeffrey A; Hernandez, Travis J

    2011-07-04

    The Fraunhofer diffraction pattern from a partially blocked spiral phase plate (SPP) produces a partial vortex output pattern that is rotated by 90 degrees compared with the input. The rotation direction depends on whether the angular phase pattern increases in the clockwise or counterclockwise direction. In this work, we present an explanation of this effect based on careful examination of classical diffraction theory and show new experimental results. This approach is very convenient for easily determining the sign of the vortex charge.

  5. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.

    PubMed

    Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios

    2016-09-07

    van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs.

  6. A Large-Area Transferable Wide Band Gap 2D Silicon Dioxide Layer.

    PubMed

    Büchner, Christin; Wang, Zhu-Jun; Burson, Kristen M; Willinger, Marc-Georg; Heyde, Markus; Schlögl, Robert; Freund, Hans-Joachim

    2016-08-23

    An atomically smooth silica bilayer is transferred from the growth substrate to a new support via mechanical exfoliation at millimeter scale. The atomic structure and morphology are maintained perfectly throughout the process. A simple heating treatment results in complete removal of the transfer medium. Low-energy electron diffraction, Auger electron spectroscopy, scanning tunneling microscopy, and environmental scanning electron microscopy show the success of the transfer steps. Excellent chemical and thermal stability result from the absence of dangling bonds in the film structure. By adding this wide band gap oxide to the toolbox of 2D materials, possibilities for van der Waals heterostructures will be broadened significantly.

  7. Role of 2-D periodic symmetrical nanostructures in improving efficiency of thin film solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Jiang, Liyong; Li, Xiangyin

    2016-01-01

    We systematically investigated several different nanostructures in crystalline silicon (c-Si) thin film solar cells and then proposed a brand-new structure with two dimensional (2-D) periodic dielectric cylinders on the top and annular metal columns on bottom surface to enhance the optical harvesting. The periodic symmetrical nanostructures affect the solar cell efficiency due to the grating diffraction effect of dielectric columns and surface plasmon polaritons (SPPs) effect induced by metal nanostructures at the dielectric-metal interface. About 52.1% more optical absorption and 33.3% more power conversion efficiency are obtained, and the maximum short current reaches to 33.24 mA/cm2.

  8. Fabrication and magnetic behaviour of 2D ordered Fe/SiO2 nanodots array

    NASA Astrophysics Data System (ADS)

    Liu, W.; Zhong, W.; Qiu, L. J.; Lü, L. Y.; Du, Y. W.

    2006-06-01

    We have demonstrated a simple and universal morphology-controlled growth of 2D ordered Fe/SiO2 magnetic nanodots array, which was based on 2D colloidal monolayer template composed of polystyrene (PS) spheres and one-step sol-gel spin-coating technique. The Fe/SiO2 nanodots have a well-ordered structure arranged in a hexagonal pattern. The dots have the shape of quasi-pyramidal tetrahedron, which reside in the interstitial region between three PS spheres and the substrate. Magnetic measurements reveal that the nanodots array exhibits the in-plane easy magnetization direction. Compared with the unpatterned Fe/SiO2 thin film, the dots array has lower saturated field, higher remanence and coercivity. The present method is applicable to 2D ordered nanodots array of other magnetic materials.

  9. Single-shot and phase-shifting digital holographic microscopy using a 2-D grating.

    PubMed

    Yang, Taeseok Daniel; Kim, Hyung-Jin; Lee, Kyoung J; Kim, Beop-Min; Choi, Youngwoon

    2016-05-02

    We demonstrate digital holographic microscopy that, while being based on phase-shifting interferometry, is capable of single-shot measurements. A two-dimensional (2-D) diffraction grating placed in a Fourier plane of a standard in-line holographic phase microscope generates multiple copies of a sample image on a camera sensor. The identical image copies are spatially separated with different overall phase shifts according to the diffraction orders. The overall phase shifts are adjusted by controlling the lateral position of the grating. These phase shifts are then set to be multiples of π/2. Interferograms composed of four image copies combined with a parallel reference beam are acquired in a single shot. The interferograms are processed through a phase-shifting algorithm to produce a single complex image. By taking advantage of the higher sampling capacity of the in-line holography, we can increase the imaging information density by a factor of 3 without compromising the imaging acquisition speed.

  10. Atomic diffraction under oblique incidence: An analytical expression

    NASA Astrophysics Data System (ADS)

    Debiossac, Maxime; Roncin, Philippe

    2014-11-01

    The semiclassical perturbation method developed by Henkel et al. [J. Phys. II 4, 1955 (1994), 10.1051/jp2:1994242] to model cold-atom diffraction by optical standing waves, is applied to the diffraction of fast atoms on crystal surfaces at grazing incidence (GIFAD or FAD). We first show that the interaction time and interaction length embedded in the obliquity factor is well suited to explain the transition from three-dimensional to two-dimensional (2D) diffraction. The situation of a slightly misaligned primary beam, corresponding to oblique incidence in the effective 2D system, is addressed pointing out discrepancies such as the absence of net deflection of the atomic beam. Guided by time-reversal considerations, we propose an arbitrarily symmetrized form significantly improving the agreement with experimental data recorded in oblique incidence.

  11. Circular photogalvanic effect caused by the transitions between edge and 2D states in a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Magarill, L. I.; Entin, M. V.

    2016-12-01

    The electron absorption and the edge photocurrent of a 2D topological insulator are studied for transitions between edge states to 2D states. The circular polarized light is found to produce the edge photocurrent, the direction of which is determined by light polarization and edge orientation. It is shown that the edge-state current is found to exceed the 2D current owing to the topological protection of the edge states.

  12. Diffraction light analysis method for a diffraction grating imaging lens.

    PubMed

    Ando, Takamasa; Korenaga, Tsuguhiro; Suzuki, Masa-aki; Tanida, Jun

    2014-04-10

    We have developed a new method to analyze the amount and distribution of diffraction light for a diffraction grating lens. We have found that diffraction light includes each-order diffraction light and striped diffraction light. In this paper, we describe characteristics of striped diffraction light and suggest a way to analyze diffraction light. Our analysis method, which considers the structure of diffraction grating steps, can simulate the aberrations of an optical system, each-order diffraction light, and striped diffraction light simultaneously with high accuracy. A comparison between the simulation and experimental results is presented, and we also show how our analysis method can be used to optimize a diffraction grating lens with low flare light.

  13. Construction of cuprous oxide electrodes composed of 2D single-crystalline dendritic nanosheets.

    PubMed

    Jang, Ho Seong; Kim, Suk Jun; Choi, Kyoung-Shin

    2010-10-04

    An unusual anisotropic growth of Cu(2)O is stabilized via the electrochemical synthesis of Cu(2)O in the presence of Ag(+) ions, which results in the formation of Cu(2)O electrodes composed of 2D sheetlike crystals containing complex dendritic patterns. It is quite unusual for Cu(2)O to form a 2D morphology since it has a 3D isotropic cubic crystal structure where the a, b, and c axes are equivalent. Each Cu(2)O sheet is single-crystalline in nature and is grown parallel to the {110} plane, which is rarely observed in Cu(2)O crystal shapes. A various set of experiments are performed to understand the role of Ag(+) ions on the 2D growth of Cu(2)O. The results show that Ag(+) ions are deposited as silver islands on already growing Cu(2)O crystals and serve as nucleation sites for the new growth of Cu(2)O crystals. As a result, the growth direction of the newly forming Cu(2)O crystals is governed by the diffusion layer structure created by the pre-existing Cu(2)O crystals, which results in the formation of 2D dendritic patterns. The thin 2D crystal morphology can significantly increase the surface-to-volume ratio of Cu(2)O crystals, which is beneficial for enhancing various electrochemical and photoelectrochemical properties of the electrodes. The photoelectrochemical properties of the Cu(2)O electrodes composed of 2D dendritic crystals are investigated and compared to those of 3D dendritic crystals. This study provides a unique and effective route to maximize the {110} area per unit volume of Cu(2)O, which will be beneficial for any catalytic/sensing abilities that can be anisotropically enhanced by the {110} planes of Cu(2)O.

  14. Diffraction gratings used as identifying markers

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1991-01-01

    A finely detailed defraction grating is applied to an object as an identifier or tag which is unambiguous, difficult to duplicate, or remove and transfer to another item, and can be read and compared with prior readings with relative ease. The exact pattern of the defraction grating is mapped by diffraction moire techniques and recorded for comparison with future readings of the same grating.

  15. Diffraction from nonperiodic models of cellulose crystals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Powder and fiber diffraction patterns were calculated for model cellulose crystallites with chains 20 glucose units long. Model sizes ranged from four chains to 169 chains, based on cellulose I' coordinates, and were subjected to various combinations of energy minimization and molecular dynamics (M...

  16. A Simple Experiment on Fresnel Diffraction

    ERIC Educational Resources Information Center

    Haskell, Richard E.

    1970-01-01

    Describes an experiment in which the Fresnel diffraction pattern of a single slit can be displayed directly on an oscilloscope. The experiment requires a minimum amount of equipment and space. Results of the experiment are presented and compared with theoretical calculations carried out by a digital computer. (LC)

  17. Macromolecular diffractive imaging using imperfect crystals

    PubMed Central

    Ayyer, Kartik; Yefanov, Oleksandr; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Lourdu Xavier, Paulraj; Beyerlein, Kenneth R.; Schmidt, Marius; Sarrou, Iosifina; Spence, John C. H.; Weierstall, Uwe; White, Thomas A.; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S.; Robinson, Joseph S.; Koglin, Jason E.; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N.

    2016-01-01

    The three-dimensional structures of macromolecules and their complexes are predominantly elucidated by X-ray protein crystallography. A major limitation is access to high-quality crystals, to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields sufficiently high-resolution information that the crystal structure can be solved. The observation that crystals with shrunken unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks1,2 hints that crystallographic resolution for some macromolecules may be limited not by their heterogeneity but rather by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern, equal to the incoherent sum of diffraction from rigid single molecular complexes aligned along several discrete crystallographic orientations and hence with an increased information content3. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins4 —they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5 Å limit of measurable Bragg peaks, which allows us to directly phase5 the pattern. With the molecular envelope conventionally determined at 4.5 Å as a constraint, we then obtain a static image of the photosystem II dimer at 3.5 Å resolution. This result shows that continuous diffraction can be used to overcome long-supposed resolution limits of macromolecular crystallography, with a method that puts great value in commonly encountered imperfect crystals and opens up the possibility for model-free phasing6,7. PMID:26863980

  18. Macromolecular diffractive imaging using imperfect crystals

    NASA Astrophysics Data System (ADS)

    Ayyer, Kartik; Yefanov, Oleksandr M.; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Xavier, Paulraj Lourdu; Beyerlein, Kenneth R.; Schmidt, Marius; Sarrou, Iosifina; Spence, John C. H.; Weierstall, Uwe; White, Thomas A.; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S.; Robinson, Joseph S.; Koglin, Jason E.; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N.

    2016-02-01

    The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins—they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing.

  19. Graph-Based Transform for 2D Piecewise Smooth Signals With Random Discontinuity Locations.

    PubMed

    Zhang, Dong; Liang, Jie

    2017-04-01

    The graph-based block transform recently emerged as an effective tool for compressing some special signals such as depth images in 3D videos. However, in existing methods, overheads are required to describe the graph of the block, from which the decoder has to calculate the transform via time-consuming eigendecomposition. To address these problems, in this paper, we aim to develop a single graph-based transform for a class of 2D piecewise smooth signals with similar discontinuity patterns. We first consider the deterministic case with a known discontinuity location in each row. We propose a 2D first-order autoregression (2D AR1) model and a 2D graph for this type of signals. We show that the closed-form expression of the inverse of a biased Laplacian matrix of the proposed 2D graph is exactly the covariance matrix of the proposed 2D AR1 model. Therefore, the optimal transform for the signal are the eigenvectors of the proposed graph Laplacian. Next, we show that similar results hold in the random case, where the locations of the discontinuities in different rows are randomly distributed within a confined region, and we derive the closed-form expression of the corresponding optimal 2D graph Laplacian. The theory developed in this paper can be used to design both pre-computed transforms and signal-dependent transforms with low complexities. Finally, depth image coding experiments demonstrate that our methods can achieve similar performance to the state-of-the-art method, but our complexity is much lower.

  20. Multipath analysis diffraction calculations

    NASA Technical Reports Server (NTRS)

    Statham, Richard B.

    1996-01-01

    This report describes extensions of the Kirchhoff diffraction equation to higher edge terms and discusses their suitability to model diffraction multipath effects of a small satellite structure. When receiving signals, at a satellite, from the Global Positioning System (GPS), reflected signals from the satellite structure result in multipath errors in the determination of the satellite position. Multipath error can be caused by diffraction of the reflected signals and a method of calculating this diffraction is required when using a facet model of the satellite. Several aspects of the Kirchhoff equation are discussed and numerical examples, in the near and far fields, are shown. The vector form of the extended Kirchhoff equation, by adding the Larmor-Tedone and Kottler edge terms, is given as a mathematical model in an appendix. The Kirchhoff equation was investigated as being easily implemented and of good accuracy in the basic form, especially in phase determination. The basic Kirchhoff can be extended for higher accuracy if desired. A brief discussion of the method of moments and the geometric theory of diffraction is included, but seems to offer no clear advantage in implementation over the Kirchhoff for facet models.

  1. PiCode: A New Picture-Embedding 2D Barcode.

    PubMed

    Chen, Changsheng; Huang, Wenjian; Zhou, Baojian; Liu, Chenchen; Mow, Wai Ho

    2016-08-01

    Nowadays, 2D barcodes have been widely used as an interface to connect potential customers and advertisement contents. However, the appearance of a conventional 2D barcode pattern is often too obtrusive for integrating into an aesthetically designed advertisement. Besides, no human readable information is provided before the barcode is successfully decoded. This paper proposes a new picture-embedding 2D barcode, called PiCode, which mitigates these two limitations by equipping a scannable 2D barcode with a picturesque appearance. PiCode is designed with careful considerations on both the perceptual quality of the embedded image and the decoding robustness of the encoded message. Comparisons with the existing beautified 2D barcodes show that PiCode achieves one of the best perceptual qualities for the embedded image, and maintains a better tradeoff between image quality and decoding robustness in various application conditions. PiCode has been implemented in the MATLAB on a PC and some key building blocks have also been ported to Android and iOS platforms. Its practicality for real-world applications has been successfully demonstrated.

  2. Acute myocarditis with normal wall motion detected with 2D speckle tracking echocardiography

    PubMed Central

    Niel, Johannes; Aichinger, Josef; Ebner, Christian

    2016-01-01

    Summary We present the case of a 26-year-old male with acute tonsillitis who was referred for coronary angiography because of chest pain, elevated cardiac biomarkers, and biphasic T waves. The patient had no cardiovascular risk factors. Echocardiography showed no wall motion abnormalities and no pericardial effusion. 2D speckle tracking revealed distinct decreased regional peak longitudinal systolic strain in the lateral and posterior walls. Ischemic disease was extremely unlikely in view of his young age, negative family history regarding coronary artery disease, and lack of regional wall motion abnormalities on the conventional 2D echocardiogram. Coronary angiography was deferred as myocarditis was suspected. To confirm the diagnosis, cardiac magnetic resonance tomography (MRT) was performed, showing subepicardial delayed hyperenhancement in the lateral and posterior walls correlating closely with the strain pattern obtained by 2D speckle tracking echocardiography. With a working diagnosis of acute myocarditis associated with acute tonsillitis, we prescribed antibiotics and nonsteroidal anti-inflammatory drugs. The patient’s clinical signs resolved along with normalization of serum creatine kinase (CK) levels, and the patient was discharged on the third day after admission. Learning points Acute myocarditis can mimic acute coronary syndromes.Conventional 2D echocardiography lacks specific features for detection of subtle regional wall motion abnormalities.2D speckle tracking expands the scope of echocardiography in identifying myocardial dysfunction derived from edema in acute myocarditis. PMID:27249814

  3. Energy Efficiency of D2D Multi-User Cooperation.

    PubMed

    Zhang, Zufan; Wang, Lu; Zhang, Jie

    2017-03-28

    The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency.

  4. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  5. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

  6. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  7. Sensitivity of 2-D complex resistivity measurements to subsurface anisotropy

    NASA Astrophysics Data System (ADS)

    Kenkel, J.; Kemna, A.

    2017-02-01

    In general, the complex electrical resistivity in the subsurface is anisotropic. Despite this, algorithms for the tomographic inversion of complex resistivity data commonly assume isotropy, mainly due to the lack of anisotropic modelling and inversion schemes, potentially leading to artefacts in the inversion results in the presence of anisotropy. The development of an effective anisotropic complex resistivity inversion algorithm which utilizes the gradient information of some cost function benefits from understanding the characteristics of the problem's sensitivities, that is, the partial derivative of the impedance forward response with respect to the complex conductivities in the different spatial directions, as well as with respect to the different ratios of complex conductivities, that is, the different anisotropy ratios. We here derive expressions for these sensitivities and, based on a 2.5-D finite-element modelling algorithm, we compute and discuss sensitivity distributions as well as measurement response curves of typical surface and cross-borehole measurement configurations for 2-D subsurface anisotropic complex resistivity distributions. Depending on the electrode layout and measurement configuration, the sensitivity with respect to the conductivity in a particular direction shows a unique pattern, while for other directions sensitivity patterns are qualitatively similar. These sensitivity characteristics translate into important equivalences between impedance responses of local anisotropic and isotropic anomalies, for both magnitude and phase. Accordingly, with collinear surface arrays only the complex conductivity in the direction of the electrode layout can be unambiguously resolved, and with cross-borehole arrays only the conductivity in the vertical direction, provided an in-hole current injection is used. Nevertheless, anisotropy ratios involving these resolvable conductivity components are likewise detectable. The distinct shape of the measurement

  8. Regulation of ligands for the NKG2D activating receptor

    PubMed Central

    Raulet, David H.; Gasser, Stephan; Gowen, Benjamin G.; Deng, Weiwen; Jung, Heiyoun

    2014-01-01

    NKG2D is an activating receptor expressed by all NK cells and subsets of T cells. It serves as a major recognition receptor for detection and elimination of transformed and infected cells and participates in the genesis of several inflammatory diseases. The ligands for NKG2D are self-proteins that are induced by pathways that are active in certain pathophysiological states. NKG2D ligands are regulated transcriptionally, at the level of mRNA and protein stability, and by cleavage from the cell surface. In some cases, ligand induction can be attributed to pathways that are activated specifically in cancer cells or infected cells. We review the numerous pathways that have been implicated in the regulation of NKG2D ligands, discuss the pathologic states in which those pathways are likely to act, and attempt to synthesize the findings into general schemes of NKG2D ligand regulation in NK cell responses to cancer and infection. PMID:23298206

  9. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  10. New generation transistor technologies enabled by 2D crystals

    NASA Astrophysics Data System (ADS)

    Jena, D.

    2013-05-01

    The discovery of graphene opened the door to 2D crystal materials. The lack of a bandgap in 2D graphene makes it unsuitable for electronic switching transistors in the conventional field-effect sense, though possible techniques exploiting the unique bandstructure and nanostructures are being explored. The transition metal dichalcogenides have 2D crystal semiconductors, which are well-suited for electronic switching. We experimentally demonstrate field effect transistors with current saturation and carrier inversion made from layered 2D crystal semiconductors such as MoS2, WS2, and the related family. We also evaluate the feasibility of such semiconducting 2D crystals for tunneling field effect transistors for low-power digital logic. The article summarizes the current state of new generation transistor technologies either proposed, or demonstrated, with a commentary on the challenges and prospects moving forward.

  11. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice.

    PubMed

    Pan, Xian; Jeong, Hyunyoung

    2015-07-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼ 50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter.

  12. Biopolymer holographic diffraction gratings

    NASA Astrophysics Data System (ADS)

    Savić Šević, Svetlana; Pantelić, Dejan

    2008-03-01

    Surface-relief diffraction gratings are holographically recorded in dextran sensitized with ammonium dichromate (DCD). DCD was exposed with single-frequency 200 mW diode pumped ND-YAG laser, at 532 nm. The diffraction grating profiles were analyzed by atomic force microscopy (AFM). It was found that different surface profiles could be obtained. Gratings with 330 lines/mm spatial frequencies were made. Existence of higher harmonics in Fourier Transform of non-sinusoidal profiles shows that DCD is capable of recording spatial frequencies up to 1320 lines/mm (four times fundamental frequency). The measured maximum relief depth of the DCD grating is 402 nm.

  13. Discovery and development of x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Jeong, Yeuncheol; Yin, Ming; Datta, Timir

    2013-03-01

    In 1912 Max Laue at University of Munich reasoned x-rays to be short wavelength electromagnetic waves and figured interference would occur when scattered off crystals. Arnold Sommerfeld, W. Wien, Ewald and others, raised objections to Laue's idea, but soon Walter Friedrich succeeded in recording x-ray interference patterns off copper sulfate crystals. But the Laue-Ewald's 3-dimensional formula predicted excess spots. Fewer spots were observed. William Lawrence Bragg then 22 year old studying at Cambridge University heard the Munich results from father William Henry Brag, physics professor at Univ of Leeds. Lawrence figured the spots are 2-d interference of x-ray wavelets reflecting off successive atomic planes and derived a simple eponymous equation, the Bragg equation d*sin(theta) = n*lamda. 1913 onward the Braggs dominated the crystallography. Max Laue was awarded the physics Nobel in 1914 and the Braggs shared the same in 1915. Starting with Rontgen's first ever prize in 1901, the importance of x-ray techniques is evident from the four out of a total 16 physics Nobels between 1901-1917. We will outline the historical back ground and importance of x-ray diffraction giving rise to techniques that even in 2013, remain work horses in laboratories all over the globe.

  14. Optical devices combining an organic semiconductor crystal with a two-dimensional inorganic diffraction grating

    SciTech Connect

    Kitazawa, Takenori; Yamao, Takeshi Hotta, Shu

    2016-02-01

    We have fabricated optical devices using an organic semiconductor crystal as an emission layer in combination with a two-dimensional (2D) inorganic diffraction grating used as an optical cavity. We formed the inorganic diffraction grating by wet etching of aluminum-doped zinc oxide (AZO) under a 2D cyclic olefin copolymer (COC) diffraction grating used as a mask. The COC diffraction grating was fabricated by nanoimprint lithography. The AZO diffraction grating was composed of convex prominences arranged in a triangular lattice. The organic crystal placed on the AZO diffraction grating indicated narrowed peaks in its emission spectrum under ultraviolet light excitation. These are detected parallel to the crystal plane. The peaks were shifted by rotating the optical devices around the normal to the crystal plane, which reflected the rotational symmetries of the triangular lattice through 60°.

  15. Arabidopsis metacaspase 2d is a positive mediator of cell death induced during biotic and abiotic stresses.

    PubMed

    Watanabe, Naohide; Lam, Eric

    2011-06-01

    Cysteine proteases such as caspases play important roles in programmed cell death (PCD) of metazoans. Plant metacaspases (MCPs), a family of cysteine proteases structurally related to caspases, have been hypothesized to be ancestors of metazoan caspases, despite their different substrate specificity. Arabidopsis thaliana contains six type II MCP genes (AtMCP2a-f). Whether and how these individual members are involved in controlling PCD in plants remains largely unknown. Here we investigated the function and regulation of AtMCP2d, the predominant and constitutively expressed member of type II MCPs, in stress-inducible PCD. Two AtMCP2d mutants (mcp2d-1 and mcp2d-3) exhibited reduced sensitivity to PCD-inducing mycotoxin fumonisin B1 as well as oxidative stress inducers, whereas AtMCP2d over-expressors were more sensitive to these agents, and exhibited accelerated cell-death progression. We found that AtMCP2d exclusively localizes to the cytosol, and its accumulation and self-processing patterns were age-dependent in leaves. Importantly, active proteolytic processing of AtMCP2d proteins dependent on its catalytic activity was observed in mature leaves during mycotoxin-induced cell death. We also found that mcp2d-1 leaves exhibited reduced cell death in response to Pseudomonas syringae carrying avirulent gene avrRpt2, and that self-processing of AtMCP2d was also detected in wild-type leaves in response to this pathogen. Furthermore, increases in processed AtMCP2d proteins were found to correlate with conditional cell-death induction in two lesion-mimic mutants (cpr22 and ssi4) that exhibit spontaneous cell-death phenotypes. Taken together, our data strongly suggest that AtMCP2d plays a positive regulatory role in biotic and abiotic stress-induced PCD.

  16. Theoretical and computational analysis of second- and third-harmonic generation in periodically patterned graphene and transition-metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Weismann, Martin; Panoiu, Nicolae C.

    2016-07-01

    Remarkable optical and electrical properties of two-dimensional (2D) materials, such as graphene and transition-metal dichalcogenide (TMDC) monolayers, offer vast technological potential for novel and improved optoelectronic nanodevices, many of which rely on nonlinear optical effects in these 2D materials. This paper introduces a highly effective numerical method for efficient and accurate description of linear and nonlinear optical effects in nanostructured 2D materials embedded in periodic photonic structures containing regular three-dimensional (3D) optical materials, such as diffraction gratings and periodic metamaterials. The proposed method builds upon the rigorous coupled-wave analysis and incorporates the nonlinear optical response of 2D materials by means of modified electromagnetic boundary conditions. This allows one to reduce the mathematical framework of the numerical method to an inhomogeneous scattering matrix formalism, which makes it more accurate and efficient than previously used approaches. An overview of linear and nonlinear optical properties of graphene and TMDC monolayers is given and the various features of the corresponding optical spectra are explored numerically and discussed. To illustrate the versatility of our numerical method, we use it to investigate the linear and nonlinear multiresonant optical response of 2D-3D heteromaterials for enhanced and tunable second- and third-harmonic generation. In particular, by employing a structured 2D material optically coupled to a patterned slab waveguide, we study the interplay between geometric resonances associated to guiding modes of periodically patterned slab waveguides and plasmon or exciton resonances of 2D materials.

  17. The 2D:4D ratio of the hand and schizotypal personality traits in schizophrenia patients and healthy control persons.

    PubMed

    Zhu, Yi-Kang; Li, Chun-Bo; Jin, Jin; Wang, Ji-Jun; Lachmann, Bernd; Sariyska, Rayna; Montag, Christian

    2014-06-01

    Prenatal estrogen/testosterone exposure is known to be involved in early brain development. In this context, the ratio of the index finger to ring finger length (2D:4D) has been put forward as an indicator of the intrauterine sex hormonal level. A previous study by Collinson et al. (2010) examined 2D:4D ratios in Asian patients with schizophrenia and found an increased 2D:4D pattern in male patients compared to male healthy controls. In the current study, we tried to replicate the result of this study on the 2D:4D ratio in schizophrenia patients and controls in a Chinese sample. Moreover, we investigated the link between 2D:4D ratios and schizotypal personality traits in the participants of the study. No significant difference between cases and controls in 2D:4D ratios for both hands could be observed. However, a positive association between right 2D:4D ratio and schizotypal personality traits was found in healthy controls (both in the male and female subsamples) suggesting that a high 2D:4D ratio could represent a vulnerability factor for schizophrenia in healthy males and females. Same results were observed for the digit ratio of the left hand and the SPQ in the healthy total and healthy female subsample. Therefore, the inclusion of personality measures to study the link between the digit ratio and schizophrenia might help to provide insights in a potential continuum from healthy to schizophrenic behavior.

  18. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-04

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  19. 50 years of fiber diffraction.

    PubMed

    Holmes, Kenneth C

    2010-05-01

    In 1955 Ken Holmes started working on tobacco mosaic virus (TMV) as a research student with Rosalind Franklin at Birkbeck College, London. Afterward he spent 18months as a post doc with Don Caspar and Carolyn Cohen at the Children's Hospital, Boston where he continued the work on TMV and also showed that the core of the thick filament of byssus retractor muscle from mussels is made of two-stranded alpha-helical coiled-coils. Returning to England he joined Aaron Klug's group at the newly founded Laboratory of Molecular Biology in Cambridge. Besides continuing the TMV studies, which were aimed at calculating the three-dimensional density map of the virus, he collaborated with Pringle's group in Oxford to show that two conformation of the myosin cross-bridge could be identified in insect flight muscle. In 1968 he opened the biophysics department at the Max Planck Institute for Medical Research in Heidelberg, Germany. With Gerd Rosenbaum he initiated the use of synchrotron radiation as a source for X-ray diffraction. In his lab the TMV structure was pushed to 4A resolution and showed how the RNA binds to the protein. With his co-workers he solved the structure of g-actin as a crystalline complex and then solved the structure of the f-actin filament by orientating the g-actin structure so as to give the f-actin fiber diffraction pattern. He was also able to solve the structure of the complex of actin with tropomyosin from fiber diffraction.

  20. Coherent Diffractive Imaging at LCLS

    NASA Astrophysics Data System (ADS)

    Schulz, Joachim

    2010-03-01

    Soft x-ray FEL light sources produce ultrafast x-ray pulses with outstanding high peak brilliance. This might enable the structure determination of proteins that cannot be crystallized. The deposited energy would destroy the molecules completely, but owing to the short pulses the destruction will ideally only happen after the termination of the pulse. In order to address the many challenges that we face in attempting molecular diffraction, we have carried out experiments in coherent diffraction from protein nanocrystals at the Linac Coherent Light Source (LCLS) at SLAC. The periodicity of these objects gives us much higher scattering signals than uncrystallized proteins would. The crystals are filtered to sizes less than 2 micron, and delivered to the pulsed X-ray beam in a liquid jet. The effects of pulse duration and fluence on the high-resolution structure of the crystals have been studied. Diffraction patterns are recorded at a repetition rate of 30 Hz with pnCCD detectors. This allows us to take 108,000 images per hour. With 2-mega-pixel-detectors this gives a data-rate of more than 400 GB per hour. The automated sorting and evaluation of hundreds of thousands images is another challenge of this kind of experiments. Preliminary results will be presented on our first LCLS experiments. This work was carried out as part of a collaboration, for which Henry Chapman is the spokesperson. The collaboration consists of CFEL DESY, Arizona State University, SLAC, Uppsala University, LLNL, The University of Melbourne, LBNL, the Max Planck Institute for Medical Research, and the Max Planck Advanced Study Group (ASG) at the CFEL. The experiments were carried out using the CAMP apparatus, which was designed and built by the Max Planck ASG at CFEL. The LCLS is operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences.