Science.gov

Sample records for 2d digital image

  1. Topology-Preserving Rigid Transformation of 2D Digital Images.

    PubMed

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues

    2014-02-01

    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping. PMID:26270925

  2. Using Membrane Computing for Obtaining Homology Groups of Binary 2D Digital Images

    NASA Astrophysics Data System (ADS)

    Christinal, Hepzibah A.; Díaz-Pernil, Daniel; Jurado, Pedro Real

    Membrane Computing is a new paradigm inspired from cellular communication. Until now, P systems have been used in research areas like modeling chemical process, several ecosystems, etc. In this paper, we apply P systems to Computational Topology within the context of the Digital Image. We work with a variant of P systems called tissue-like P systems to calculate in a general maximally parallel manner the homology groups of 2D images. In fact, homology computation for binary pixel-based 2D digital images can be reduced to connected component labeling of white and black regions. Finally, we use a software called Tissue Simulator to show with some examples how these systems work.

  3. Breast density measurement: 3D cone beam computed tomography (CBCT) images versus 2D digital mammograms

    NASA Astrophysics Data System (ADS)

    Han, Tao; Lai, Chao-Jen; Chen, Lingyun; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Yang, Wei T.; Shaw, Chris C.

    2009-02-01

    Breast density has been recognized as one of the major risk factors for breast cancer. However, breast density is currently estimated using mammograms which are intrinsically 2D in nature and cannot accurately represent the real breast anatomy. In this study, a novel technique for measuring breast density based on the segmentation of 3D cone beam CT (CBCT) images was developed and the results were compared to those obtained from 2D digital mammograms. 16 mastectomy breast specimens were imaged with a bench top flat-panel based CBCT system. The reconstructed 3D CT images were corrected for the cupping artifacts and then filtered to reduce the noise level, followed by using threshold-based segmentation to separate the dense tissue from the adipose tissue. For each breast specimen, volumes of the dense tissue structures and the entire breast were computed and used to calculate the volumetric breast density. BI-RADS categories were derived from the measured breast densities and compared with those estimated from conventional digital mammograms. The results show that in 10 of 16 cases the BI-RADS categories derived from the CBCT images were lower than those derived from the mammograms by one category. Thus, breasts considered as dense in mammographic examinations may not be considered as dense with the CBCT images. This result indicates that the relation between breast cancer risk and true (volumetric) breast density needs to be further investigated.

  4. A comparison of 2D and 3D digital image correlation for a membrane under inflation

    NASA Astrophysics Data System (ADS)

    Murienne, Barbara J.; Nguyen, Thao D.

    2016-02-01

    Three-dimensional (3D) digital image correlation (DIC) is becoming widely used to characterize the behavior of structures undergoing 3D deformations. However, the use of 3D-DIC can be challenging under certain conditions, such as high magnification, and therefore small depth of field, or a highly controlled environment with limited access for two-angled cameras. The purpose of this study is to compare 2D-DIC and 3D-DIC for the same inflation experiment and evaluate whether 2D-DIC can be used when conditions discourage the use of a stereo-vision system. A latex membrane was inflated vertically to 5.41 kPa (reference pressure), then to 7.87 kPa (deformed pressure). A two-camera stereo-vision system acquired top-down images of the membrane, while a single camera system simultaneously recorded images of the membrane in profile. 2D-DIC and 3D-DIC were used to calculate horizontal (in the membrane plane) and vertical (out of the membrane plane) displacements, and meridional strain. Under static conditions, the baseline uncertainty in horizontal displacement and strain were smaller for 3D-DIC than 2D-DIC. However, the opposite was observed for the vertical displacement, for which 2D-DIC had a smaller baseline uncertainty. The baseline absolute error in vertical displacement and strain were similar for both DIC methods, but it was larger for 2D-DIC than 3D-DIC for the horizontal displacement. Under inflation, the variability in the measurements were larger than under static conditions for both DIC methods. 2D-DIC showed a smaller variability in displacements than 3D-DIC, especially for the vertical displacement, but a similar strain uncertainty. The absolute difference in the average displacements and strain between 3D-DIC and 2D-DIC were in the range of the 3D-DIC variability. Those findings suggest that 2D-DIC might be used as an alternative to 3D-DIC to study the inflation response of materials under certain conditions.

  5. GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.

    PubMed

    Dorgham, Osama M; Laycock, Stephen D; Fisher, Mark H

    2012-09-01

    Recent advances in programming languages for graphics processing units (GPUs) provide developers with a convenient way of implementing applications which can be executed on the CPU and GPU interchangeably. GPUs are becoming relatively cheap, powerful, and widely available hardware components, which can be used to perform intensive calculations. The last decade of hardware performance developments shows that GPU-based computation is progressing significantly faster than CPU-based computation, particularly if one considers the execution of highly parallelisable algorithms. Future predictions illustrate that this trend is likely to continue. In this paper, we introduce a way of accelerating 2-D/3-D image registration by developing a hybrid system which executes on the CPU and utilizes the GPU for parallelizing the generation of digitally reconstructed radiographs (DRRs). Based on the advancements of the GPU over the CPU, it is timely to exploit the benefits of many-core GPU technology by developing algorithms for DRR generation. Although some previous work has investigated the rendering of DRRs using the GPU, this paper investigates approximations which reduce the computational overhead while still maintaining a quality consistent with that needed for 2-D/3-D registration with sufficient accuracy to be clinically acceptable in certain applications of radiation oncology. Furthermore, by comparing implementations of 2-D/3-D registration on the CPU and GPU, we investigate current performance and propose an optimal framework for PC implementations addressing the rigid registration problem. Using this framework, we are able to render DRR images from a 256×256×133 CT volume in ~24 ms using an NVidia GeForce 8800 GTX and in ~2 ms using NVidia GeForce GTX 580. In addition to applications requiring fast automatic patient setup, these levels of performance suggest image-guided radiation therapy at video frame rates is technically feasible using relatively low cost PC

  6. Application of 2D and 3D Digital Image Correlation on CO2-like altered carbonate

    NASA Astrophysics Data System (ADS)

    zinsmeister, Louis; Dautriat, Jérémie; Dimanov, Alexandre; Raphanel, Jean; Bornert, Michel

    2013-04-01

    In order to provide mechanical constitutive laws for reservoir monitoring during CO2 long term storage, we studied the mechanical properties of Lavoux limestone before and after a homogeneous alteration following the protocol of acid treatments defined by Egermann et al, (2006). The mechanical data have been analysed at the light of systematic microstructural investigations. Firstly, the alteration impact on the evolution of flow properties related to microstructural changes was studied at successive levels of alteration by classical petrophysical measurements of porosity and permeability (including NMR, mercury porosimetry and laser diffraction) and by observations of microstructures on thin sections and by SEM. Secondly, the mechanical properties of the samples were investigated by classical (macroscopic) triaxial and uniaxial tests and are discussed in terms of the structural modifications. The macroscopic tests indicate that the alteration weakens the material, according to the observed decrease of elastic moduli and Uniaxial Compressive Strengths, from 29MPa to 19MPa after 6 cycles of acid treatments. The study is further complemented by 2D full (mechanical) field measurements, thanks to Digital Image Correlation (DIC) performed on images acquired during the uniaxial tests. This technique allows for continuous quantitative micro-mechanical monitoring in terms of deformation history and localisation processes during compression. This technique was applied on both intact and altered materials and at different scales of observation: (i) cm-sized samples were compressed in a classical load frame and optically imaged, (ii) mm-sized samples were loaded with a miniaturized compression rig implemented within a Scanning Electron Microscope. At last, 3D full field measurements were performed by 3D-DIC on mm-sized samples, which were compressed "in-situ" an X-ray microtomograph thanks to a miniaturized triaxial cell allowing for confining pressures of up to 15 MPa. At

  7. Rigid 2D/3D registration of intraoperative digital x-ray images and preoperative CT and MR images

    NASA Astrophysics Data System (ADS)

    Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

    2002-05-01

    This paper describes a novel approach to register 3D computed tomography (CT) or magnetic resonance (MR) images to a set of 2D X-ray images. Such a registration may be a valuable tool for intraoperative determination of the precise position and orientation of some anatomy of interest, defined in preoperative images. The registration is based solely on the information present in 2D and 3D images. It does not require fiducial markers, X-ray image segmentation, or construction of digitally reconstructed radiographs. The originality of the approach is in using normals to bone surfaces, preoperatively defined in 3D MR or CT data, and gradients of intraoperative X-ray images, which are back-projected towards the X-ray source. The registration is then concerned with finding that rigid transformation of a CT or MR volume, which provides the best match between surface normals and back projected gradients, considering their amplitudes and orientations. The method is tested on a lumbar spine phantom. Gold standard registration is obtained by fidicual markers attached to the phantom. Volumes of interest, containing single vertebrae, are registered to different pairs of X-ray images from different starting positions, chosen randomly and uniformly around the gold standard position. Target registration errors and rotation errors are in order of 0.3 mm and 0.35 degrees for the CT to X-ray registration and 1.3 mm and 1.5 degrees for MR to X-ray registration. The registration is shown to be fast and accurate.

  8. A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging

    PubMed Central

    Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto

    2015-01-01

    Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies. PMID:26545097

  9. A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging.

    PubMed

    Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto

    2015-01-01

    Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies. PMID:26545097

  10. Experimental validation of 2D uncertainty quantification for digital image correlation.

    SciTech Connect

    Reu, Phillip L.

    2010-03-01

    Because digital image correlation (DIC) has become such an important and standard tool in the toolbox of experimental mechanicists, a complete uncertainty quantification of the method is needed. It should be remembered that each DIC setup and series of images will have a unique uncertainty based on the calibration quality and the image and speckle quality of the analyzed images. Any pretest work done with a calibrated DIC stereo-rig to quantify the errors using known shapes and translations, while useful, do not necessarily reveal the uncertainty of a later test. This is particularly true with high-speed applications where actual test images are often less than ideal. Work has previously been completed on the mathematical underpinnings of DIC uncertainty quantification and is already published, this paper will present corresponding experimental work used to check the validity of the uncertainty equations.

  11. Impact of lens distortions on strain measurements obtained with 2D digital image correlation

    NASA Astrophysics Data System (ADS)

    Lava, P.; Van Paepegem, W.; Coppieters, S.; De Baere, I.; Wang, Y.; Debruyne, D.

    2013-05-01

    The determination of strain fields based on displacements obtained via digital image correlation (DIC) at the micro-strain level (≤1000 μm/m) is still a cumbersome task. In particular when high-strain gradients are involved, e.g. in composite materials with multidirectional fibre reinforcement, uncertainties in the experimental setup and errors in the derivation of the displacement fields can substantially hamper the strain identification process. In this contribution, the aim is to investigate the impact of lens distortions on strain measurements. To this purpose, we first perform pure rigid body motion experiments, revealing the importance of precise correction of lens distortions. Next, a uni-axial tensile test on a textile composite with spatially varying high strain gradients is performed, resulting in very accurately determined strains along the fibers of the material.

  12. An automated calibration system that combines fringe projection and 2D digital image correlation

    NASA Astrophysics Data System (ADS)

    Siegmann, Philip; Felipe-Sesé, Luis A.; Díaz Garrido, Francisco; Piñeiro-Ave, José

    2015-09-01

    An optical non-contact and full-field system that allows large displacement measurements in x-, y- and z-direction is presented. The system combines 2-dimentional digital image correlation (for in-plane measurements) and fringe projection (for out-of-plane displacements) and uses only one camera. The in- and out-of-plane displacements are obtained at the same instant allowing real-time measurements thanks to a color encoding filtering procedure. The out-of-plane measurement allows the correction of the in-plane measurements and the system has to be precisely aligned by following an established alignment procedure. Furthermore, a calibration has to be done to obtain a fringe parameter k for each pixel of the specimen surface image necessary to relate the shifted phase with the out-of-plane displacements. The presented system obtains different values of k for each pixel because of the divergent and non-normal incidence of the fringe beam onto the sample surface (non zero incidence angle). The calibration is performed automatically and only has to be done once for each configuration of the system. The system is portable and can be easily adapted to measure large displacements and wide areas (using small incidence angle) or smaller distances but with higher resolutions (when increasing the incidence angle).

  13. Digital breast tomosynthesis: application of 2D digital mammography CAD to detection of microcalcification clusters on planar projection image

    NASA Astrophysics Data System (ADS)

    Samala, Ravi K.; Chan, Heang-Ping; Lu, Yao; Hadjiiski, Lubomir; Wei, Jun; Helvie, Mark

    2015-03-01

    Computer-aided detection (CAD) has the potential to aid radiologists in detection of microcalcification clusters (MCs). CAD for digital breast tomosynthesis (DBT) can be developed by using the reconstructed volume, the projection views or other derivatives as input. We have developed a novel method of generating a single planar projection (PPJ) image from a regularized DBT volume to emphasize the high contrast objects such as microcalcifications while removing the anatomical background and noise. In this work, we adapted a CAD system developed for digital mammography (CADDM) to the PPJ image and compared its performance with our CAD system developed for DBT volumes (CADDBT) in the same set of cases. For microcalcification detection in the PPJ image using the CADDM system, the background removal preprocessing step designed for DM was not needed. The other methods and processing steps in the CADDM system were kept without modification while the parameters were optimized with a training set. The linear discriminant analysis classifier using cluster based features was retrained to generate a discriminant score to be used as decision variable. For view-based FROC analysis, at 80% sensitivity, an FP rate of 1.95/volume and 1.54/image were achieved, respectively, for CADDBT and CADDM in an independent test set. At a threshold of 1.2 FPs per image or per DBT volume, the nonparametric analysis of the area under the FROC curve shows that the optimized CADDM for PPJ is significantly better than CADDBT. However, the performance of CADDM drops at higher sensitivity or FP rate, resulting in similar overall performance between the two CAD systems. The higher sensitivity of the CADDM in the low FP rate region and vice versa for the CADDBT indicate that a joint CAD system combining detection in the DBT volume and the PPJ image has the potential to increase the sensitivity and reduce the FP rate.

  14. Applying a 2D based CAD scheme for detecting micro-calcification clusters using digital breast tomosynthesis images: an assessment

    NASA Astrophysics Data System (ADS)

    Park, Sang Cheol; Zheng, Bin; Wang, Xiao-Hui; Gur, David

    2008-03-01

    Digital breast tomosynthesis (DBT) has emerged as a promising imaging modality for screening mammography. However, visually detecting micro-calcification clusters depicted on DBT images is a difficult task. Computer-aided detection (CAD) schemes for detecting micro-calcification clusters depicted on mammograms can achieve high performance and the use of CAD results can assist radiologists in detecting subtle micro-calcification clusters. In this study, we compared the performance of an available 2D based CAD scheme with one that includes a new grouping and scoring method when applied to both projection and reconstructed DBT images. We selected a dataset involving 96 DBT examinations acquired on 45 women. Each DBT image set included 11 low dose projection images and a varying number of reconstructed image slices ranging from 18 to 87. In this dataset 20 true-positive micro-calcification clusters were visually detected on the projection images and 40 were visually detected on the reconstructed images, respectively. We first applied the CAD scheme that was previously developed in our laboratory to the DBT dataset. We then tested a new grouping method that defines an independent cluster by grouping the same cluster detected on different projection or reconstructed images. We then compared four scoring methods to assess the CAD performance. The maximum sensitivity level observed for the different grouping and scoring methods were 70% and 88% for the projection and reconstructed images with a maximum false-positive rate of 4.0 and 15.9 per examination, respectively. This preliminary study demonstrates that (1) among the maximum, the minimum or the average CAD generated scores, using the maximum score of the grouped cluster regions achieved the highest performance level, (2) the histogram based scoring method is reasonably effective in reducing false-positive detections on the projection images but the overall CAD sensitivity is lower due to lower signal-to-noise ratio

  15. Effect of image processing version on detection of non-calcification cancers in 2D digital mammography imaging

    NASA Astrophysics Data System (ADS)

    Warren, L. M.; Cooke, J.; Given-Wilson, R. M.; Wallis, M. G.; Halling-Brown, M.; Mackenzie, A.; Chakraborty, D. P.; Bosmans, H.; Dance, D. R.; Young, K. C.

    2013-03-01

    Image processing (IP) is the last step in the digital mammography imaging chain before interpretation by a radiologist. Each manufacturer has their own IP algorithm(s) and the appearance of an image after IP can vary greatly depending upon the algorithm and version used. It is unclear whether these differences can affect cancer detection. This work investigates the effect of IP on the detection of non-calcification cancers by expert observers. Digital mammography images for 190 patients were collected from two screening sites using Hologic amorphous selenium detectors. Eighty of these cases contained non-calcification cancers. The images were processed using three versions of IP from Hologic - default (full enhancement), low contrast (intermediate enhancement) and pseudo screen-film (no enhancement). Seven experienced observers inspected the images and marked the location of regions suspected to be non-calcification cancers assigning a score for likelihood of malignancy. This data was analysed using JAFROC analysis. The observers also scored the clinical interpretation of the entire case using the BSBR classification scale. This was analysed using ROC analysis. The breast density in the region surrounding each cancer and the number of times each cancer was detected were calculated. IP did not have a significant effect on the radiologists' judgment of the likelihood of malignancy of individual lesions or their clinical interpretation of the entire case. No correlation was found between number of times each cancer was detected and the density of breast tissue surrounding that cancer.

  16. High-accuracy 2D digital image correlation measurements using low-cost imaging lenses: implementation of a generalized compensation method

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Yu, Liping; Wu, Dafang

    2014-02-01

    The ideal pinhole imaging model commonly assumed for an ordinary two-dimensional digital image correlation (2D-DIC) system is neither perfect nor stable because of the existence of small out-of-plane motion of the test sample surface that occurred after loading, small out-of-plane motion of the sensor target due to temperature variation of a camera and unavoidable geometric distortion of an imaging lens. In certain cases, these disadvantages can lead to significant errors in the measured displacements and strains. Although a high-quality bilateral telecentric lens has been strongly recommended to be used in the 2D-DIC system as an essential optical component to achieve high-accuracy measurement, it is not generally applicable due to its fixed field of view, limited depth of focus and high cost. To minimize the errors associated with the imperfectness and instability of a common 2D-DIC system using a low-cost imaging lens, a generalized compensation method using a non-deformable reference sample is proposed in this work. With the proposed method, the displacement of the reference sample rigidly attached behind the test sample is first measured using 2D-DIC, and then it is fitted using a parametric model. The fitted parametric model is then used to correct the displacements of the deformed sample to remove the influences of these unfavorable factors. The validity of the proposed compensation method is first verified using out-of-plane translation, out-of-plane rotation, in-plane translation tests and their combinations. Uniaxial tensile tests of an aluminum specimen were also performed to quantitatively examine the strain accuracy of the proposed compensation method. Experiments show that the proposed compensation method is an easy-to-implement yet effective technique for achieving high-accuracy deformation measurement using an ordinary 2D-DIC system.

  17. Optimal angular dose distribution to acquire 3D and extra 2D images for digital breast tomosynthesis (DBT)

    NASA Astrophysics Data System (ADS)

    Park, Hye-Suk; Kim, Ye-Seul; Lee, Haeng-Hwa; Gang, Won-Suk; Kim, Hee-Joung; Choi, Young-Wook; Choi, JaeGu

    2015-08-01

    The purpose of this study is to determine the optimal non-uniform angular dose distribution to improve the quality of the 3D reconstructed images and to acquire extra 2D projection images. In this analysis, 7 acquisition sets were generated by using four different values for the number of projections (11, 15, 21, and 29) and total angular range (±14°, ±17.5°, ±21°, and ±24.5° ). For all acquisition sets, the zero-degree projection was used as the 2D image that was close to that of standard conventional mammography (CM). Exposures used were 50, 100, 150, and 200 mR for the zero-degree projection, and the remaining dose was distributed over the remaining projection angles. To quantitatively evaluate image quality, we computed the CNR (contrast-to-noise ratio) and the ASF (artifact spread function) for the same radiation dose. The results indicate that, for microcalcifications, acquisition sets with approximately 4 times higher exposure on the zero-degree projection than the average exposure for the remaining projection angles yielded higher CNR values and were 3% higher than the uniform distribution. However, very high dose concentrations toward the zero-degree projection may reduce the quality of the reconstructed images due to increasing noise in the peripheral views. The zero-degree projection of the non-uniform dose distribution offers a 2D image similar to that of standard CM, but with a significantly lower radiation dose. Therefore, we need to evaluate the diagnostic potential of extra 2D projection image when diagnose breast cancer by using 3D images with non-uniform angular dose distributions.

  18. Estimating elastic moduli of rocks from thin sections: Digital rock study of 3D properties from 2D images

    NASA Astrophysics Data System (ADS)

    Saxena, Nishank; Mavko, Gary

    2016-03-01

    Estimation of elastic rock moduli using 2D plane strain computations from thin sections has several numerical and analytical advantages over using 3D rock images, including faster computation, smaller memory requirements, and the availability of cheap thin sections. These advantages, however, must be weighed against the estimation accuracy of 3D rock properties from thin sections. We present a new method for predicting elastic properties of natural rocks using thin sections. Our method is based on a simple power-law transform that correlates computed 2D thin section moduli and the corresponding 3D rock moduli. The validity of this transform is established using a dataset comprised of FEM-computed elastic moduli of rock samples from various geologic formations, including Fontainebleau sandstone, Berea sandstone, Bituminous sand, and Grossmont carbonate. We note that using the power-law transform with a power-law coefficient between 0.4-0.6 contains 2D moduli to 3D moduli transformations for all rocks that are considered in this study. We also find that reliable estimates of P-wave (Vp) and S-wave velocity (Vs) trends can be obtained using 2D thin sections.

  19. Body image, shape, and volumetric assessments using 3D whole body laser scanning and 2D digital photography in females with a diagnosed eating disorder: preliminary novel findings.

    PubMed

    Stewart, Arthur D; Klein, Susan; Young, Julie; Simpson, Susan; Lee, Amanda J; Harrild, Kirstin; Crockett, Philip; Benson, Philip J

    2012-05-01

    We piloted three-dimensional (3D) body scanning in eating disorder (ED) patients. Assessments of 22 ED patients (including nine anorexia nervosa (AN) patients, 12 bulimia nervosa (BN) patients, and one patient with eating disorder not otherwise specified) and 22 matched controls are presented. Volunteers underwent visual screening, two-dimensional (2D) digital photography to assess perception and dissatisfaction (via computerized image distortion), and adjunctive 3D full-body scanning. Patients and controls perceived themselves as bigger than their true shape (except in the chest region for controls and anorexia patients). All participants wished to be smaller across all body regions. Patients had poorer veridical perception and greater dissatisfaction than controls. Perception was generally poorer and dissatisfaction greater in bulimia compared with anorexia patients. 3D-volume:2D-area relationships showed that anorexia cases had least tissue on the torso and most on the arms and legs relative to frontal area. The engagement of patients with the scanning process suggests a validation study is viable. This would enable mental constructs of body image to be aligned with segmental volume of body areas, overcoming limitations, and errors associated with 2D instruments restricted to frontal (coronal) shapes. These novel data could inform the design of clinical trials in adjunctive treatments for eating disorders. PMID:22506746

  20. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  1. Tomosynthesis imaging with 2D scanning trajectories

    NASA Astrophysics Data System (ADS)

    Khare, Kedar; Claus, Bernhard E. H.; Eberhard, Jeffrey W.

    2011-03-01

    Tomosynthesis imaging in chest radiography provides volumetric information with the potential for improved diagnostic value when compared to the standard AP or LAT projections. In this paper we explore the image quality benefits of 2D scanning trajectories when coupled with advanced image reconstruction approaches. It is intuitively clear that 2D trajectories provide projection data that is more complete in terms of Radon space filling, when compared with conventional tomosynthesis using a linearly scanned source. Incorporating this additional information for obtaining improved image quality is, however, not a straightforward problem. The typical tomosynthesis reconstruction algorithms are based on direct inversion methods e.g. Filtered Backprojection (FBP) or iterative algorithms that are variants of the Algebraic Reconstruction Technique (ART). The FBP approach is fast and provides high frequency details in the image but at the same time introduces streaking artifacts degrading the image quality. The iterative methods can reduce the image artifacts by using image priors but suffer from a slow convergence rate, thereby producing images lacking high frequency details. In this paper we propose using a fast converging optimal gradient iterative scheme that has advantages of both the FBP and iterative methods in that it produces images with high frequency details while reducing the image artifacts. We show that using favorable 2D scanning trajectories along with the proposed reconstruction method has the advantage of providing improved depth information for structures such as the spine and potentially producing images with more isotropic resolution.

  2. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  3. 2D microwave imaging reflectometer electronics

    NASA Astrophysics Data System (ADS)

    Spear, A. G.; Domier, C. W.; Hu, X.; Muscatello, C. M.; Ren, X.; Tobias, B. J.; Luhmann, N. C.

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  4. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247

  5. Photorealistic image synthesis and camera validation from 2D images

    NASA Astrophysics Data System (ADS)

    Santos Ferrer, Juan C.; González Chévere, David; Manian, Vidya

    2014-06-01

    This paper presents a new 3D scene reconstruction technique using the Unity 3D game engine. The method presented here allow us to reconstruct the shape of simple objects and more complex ones from multiple 2D images, including infrared and digital images from indoor scenes and only digital images from outdoor scenes and then add the reconstructed object to the simulated scene created in Unity 3D, these scenes are then validated with real world scenes. The method used different cameras settings and explores different properties in the reconstructions of the scenes including light, color, texture, shapes and different views. To achieve the highest possible resolution, it was necessary the extraction of partial textures from visible surfaces. To recover the 3D shapes and the depth of simple objects that can be represented by the geometric bodies, there geometric characteristics were used. To estimate the depth of more complex objects the triangulation method was used, for this the intrinsic and extrinsic parameters were calculated using geometric camera calibration. To implement the methods mentioned above the Matlab tool was used. The technique presented here also let's us to simulate small simple videos, by reconstructing a sequence of multiple scenes of the video separated by small margins of time. To measure the quality of the reconstructed images and video scenes the Fast Low Band Model (FLBM) metric from the Video Quality Measurement (VQM) software was used. Low bandwidth perception based features include edges and motion.

  6. Optimal design of 2D digital filters based on neural networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-hua; He, Yi-gang; Zheng, Zhe-zhao; Zhang, Xu-hong

    2005-02-01

    Two-dimensional (2-D) digital filters are widely useful in image processing and other 2-D digital signal processing fields,but designing 2-D filters is much more difficult than designing one-dimensional (1-D) ones.In this paper, a new design approach for designing linear-phase 2-D digital filters is described,which is based on a new neural networks algorithm (NNA).By using the symmetry of the given 2-D magnitude specification,a compact express for the magnitude response of a linear-phase 2-D finite impulse response (FIR) filter is derived.Consequently,the optimal problem of designing linear-phase 2-D FIR digital filters is turned to approximate the desired 2-D magnitude response by using the compact express.To solve the problem,a new NNA is presented based on minimizing the mean-squared error,and the convergence theorem is presented and proved to ensure the designed 2-D filter stable.Three design examples are also given to illustrate the effectiveness of the NNA-based design approach.

  7. 2D/3D Image Registration using Regression Learning

    PubMed Central

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-01-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278

  8. Comparison of digital breast tomosynthesis and 2D digital mammography using a hybrid performance test

    NASA Astrophysics Data System (ADS)

    Cockmartin, Lesley; Marshall, Nicholas W.; Van Ongeval, Chantal; Aerts, Gwen; Stalmans, Davina; Zanca, Federica; Shaheen, Eman; De Keyzer, Frederik; Dance, David R.; Young, Kenneth C.; Bosmans, Hilde

    2015-05-01

    This paper introduces a hybrid method for performing detection studies in projection image based modalities, based on image acquisitions of target objects and patients. The method was used to compare 2D mammography and digital breast tomosynthesis (DBT) in terms of the detection performance of spherical densities and microcalcifications. The method starts with the acquisition of spheres of different glandular equivalent densities and microcalcifications of different sizes immersed in a homogeneous breast tissue simulating medium. These target objects are then segmented and the subsequent templates are fused in projection images of patients and processed or reconstructed. This results in hybrid images with true mammographic anatomy and clinically relevant target objects, ready for use in observer studies. The detection study of spherical densities used 108 normal and 178 hybrid 2D and DBT images; 156 normal and 321 hybrid images were used for the microcalcifications. Seven observers scored the presence/absence of the spheres/microcalcifications in a square region via a 5-point confidence rating scale. Detection performance in 2D and DBT was compared via ROC analysis with sub-analyses for the density of the spheres, microcalcification size, breast thickness and z-position. The study was performed on a Siemens Inspiration tomosynthesis system using patient acquisitions with an average age of 58 years and an average breast thickness of 53 mm providing mean glandular doses of 1.06 mGy (2D) and 2.39 mGy (DBT). Study results showed that breast tomosynthesis (AUC = 0.973) outperformed 2D (AUC = 0.831) for the detection of spheres (p  <  0.0001) and this applied for all spherical densities and breast thicknesses. By way of contrast, DBT was worse than 2D for microcalcification detection (AUC2D = 0.974, AUCDBT = 0.838, p  <  0.0001), with significant differences found for all sizes (150-354 µm), for breast thicknesses above 40 mm and for heights

  9. Optimizing the Precision for Localizing Fluorescent Proteins in Living Cells by 2D Gaussian Fitting of Digital Images: Application to COPII-Coated Endoplasmic Reticulum Exit Sites

    PubMed Central

    Spence, Peter; Gupta, Vijay; Stephens, David J.; Hudson, Andrew J.

    2008-01-01

    An insight into the operation of molecular motors has already been obtained under in vitro conditions from single-molecule tracking of proteins. It remains to analyze the effects of these motors on the position and secretion of specific organelles in the environment of the cell. For this purpose, we have investigated the accuracy of a standard algorithm to enable the tracking of particles in live-cell microscopy. The results have been applied to an example study into the role of the microtubule-motor kinesin on the function of COPII-coated secretory-cargo exit sites forming part of the mammalian endoplasmic reticulum. These exit sites are marked with multiple EYFP-tagged proteins to produce bright fluorescent particles, and a demonstration of the motility of vesicles, under different conditions in the cell, is described here. It is essential to use a low-level expression of fluorescent protein-tagged cellular components to ensure faithful replication for the behaviour of endogenous protein. However, this leads to a lower ratio for the signal-to-noise than is desired for the sub-pixel tracking of objects in digital images. This has driven the present effort to develop a computational model of the experiment in order to estimate the precision for localization of a fluorescent particle. Our work gives a greater insight, than has been managed in the past, into the accuracy and precision of particle tracking from live-cell imaging under a variety of different conditions, and it takes into consideration the current standards in digital technology for optical microscopy. PMID:18504570

  10. Design procedures for Strain Hardening Cement Composites (SHCC) and measurement of their shear properties by mechanical and 2-D Digital Image Correlation (DIC) method

    NASA Astrophysics Data System (ADS)

    Aswani, Karan

    The main objective of this study is to investigate the behaviour and applications of strain hardening cement composites (SHCC). Application of SHCC for use in slabs of common configurations was studied and design procedures are prepared by employing yield line theory and integrating it with simplified tri-linear model developed in Arizona State University by Dr. Barzin Mobasher and Dr. Chote Soranakom. Intrinsic material property of moment-curvature response for SHCC was used to derive the relationship between applied load and deflection in a two-step process involving the limit state analysis and kinematically admissible displacements. For application of SHCC in structures such as shear walls, tensile and shear properties are necessary for design. Lot of research has already been done to study the tensile properties and therefore shear property study was undertaken to prepare a design guide. Shear response of textile reinforced concrete was investigated based on picture frame shear test method. The effects of orientation, volume of cement paste per layer, planar cross-section and volume fraction of textiles were investigated. Pultrusion was used for the production of textile reinforced concrete. It is an automated set-up with low equipment cost which provides uniform production and smooth final surface of the TRC. A 3-D optical non-contacting deformation measurement technique of digital image correlation (DIC) was used to conduct the image analysis on the shear samples by means of tracking the displacement field through comparison between the reference image and deformed images. DIC successfully obtained full-field strain distribution, displacement and strain versus time responses, demonstrated the bonding mechanism from perspective of strain field, and gave a relation between shear angle and shear strain.

  11. Effects of Cognitive Styles on 2D Drafting and Design Performance in Digital Media

    ERIC Educational Resources Information Center

    Pektas, Sule Tasli

    2010-01-01

    This paper investigates the interactions between design students' cognitive styles, as measured by Riding's Cognitive Styles Analysis, and performance in 2D drafting and design tasks in digital media. An empirical research revealed that Imager students outperformed Verbalisers in both drafting and creativity scores. Wholist-Analytic cognitive…

  12. A comparative analysis of 2D and 3D CAD for calcifications in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Acciavatti, Raymond J.; Ray, Shonket; Keller, Brad M.; Maidment, Andrew D. A.; Conant, Emily F.

    2015-03-01

    Many medical centers offer digital breast tomosynthesis (DBT) and 2D digital mammography acquired under the same compression (i.e., "Combo" examination) for screening. This paper compares a conventional 2D CAD algorithm (Hologic® ImageChecker® CAD v9.4) for calcification detection against a prototype 3D algorithm (Hologic® ImageChecker® 3D Calc CAD v1.0). Due to the newness of DBT, the development of this 3D CAD algorithm is ongoing, and it is currently not FDA-approved in the United States. For this study, DBT screening cases with suspicious calcifications were identified retrospectively at the University of Pennsylvania. An expert radiologist (E.F.C.) reviewed images with both 2D and DBT CAD marks, and compared the marks to biopsy results. Control cases with one-year negative follow-up were also studied; these cases either possess clearly benign calcifications or lacked calcifications. To allow the user to alter the sensitivity for cancer detection, an operating point is assigned to each CAD mark. As expected from conventional 2D CAD, increasing the operating point in 3D CAD increases sensitivity and reduces specificity. Additionally, we showed that some cancers are occult to 2D CAD at all operating points. By contrast, 3D CAD allows for detection of some cancers that are missed on 2D CAD. We also demonstrated that some non-cancerous CAD marks in 3D are not present at analogous locations in the 2D image. Hence, there are additional marks when using both 2D and 3D CAD in combination, leading to lower specificity than with conventional 2D CAD alone.

  13. Digital Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bamberger, Casimir; Renz, Uwe; Bamberger, Andreas

    2011-06-01

    Methods to visualize the two-dimensional (2D) distribution of molecules by mass spectrometric imaging evolve rapidly and yield novel applications in biology, medicine, and material surface sciences. Most mass spectrometric imagers acquire high mass resolution spectra spot-by-spot and thereby scan the object's surface. Thus, imaging is slow and image reconstruction remains cumbersome. Here we describe an imaging mass spectrometer that exploits the true imaging capabilities by ion optical means for the time of flight mass separation. The mass spectrometer is equipped with the ASIC Timepix chip as an array detector to acquire the position, mass, and intensity of ions that are imaged by matrix-assisted laser desorption/ionization (MALDI) directly from the target sample onto the detector. This imaging mass spectrometer has a spatial resolving power at the specimen of (84 ± 35) μm with a mass resolution of 45 and locates atoms or organic compounds on a surface area up to ~2 cm2. Extended laser spots of ~5 mm2 on structured specimens allows parallel imaging of selected masses. The digital imaging mass spectrometer proves high hit-multiplicity, straightforward image reconstruction, and potential for high-speed readout at 4 kHz or more. This device demonstrates a simple way of true image acquisition like a digital photographic camera. The technology may enable a fast analysis of biomolecular samples in near future.

  14. Digital image processing.

    PubMed

    Seeram, Euclid

    2004-01-01

    Digital image processing is now commonplace in radiology, nuclear medicine and sonography. This article outlines underlying principles and concepts of digital image processing. After completing this article, readers should be able to: List the limitations of film-based imaging. Identify major components of a digital imaging system. Describe the history and application areas of digital image processing. Discuss image representation and the fundamentals of digital image processing. Outline digital image processing techniques and processing operations used in selected imaging modalities. Explain the basic concepts and visualization tools used in 3-D and virtual reality imaging. Recognize medical imaging informatics as a new area of specialization for radiologic technologists. PMID:15352557

  15. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  16. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde

    2011-12-15

    Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated

  17. High Speed 2D Hadamard Transform Spectral Imager

    SciTech Connect

    WEHLBURG, JOSEPH C.; WEHLBURG, CHRISTINE M.; SMITH, JODY L.; SPAHN, OLGA B.; SMITH, MARK W.; BONEY, CRAIG M.

    2003-02-01

    Hadamard Transform Spectrometer (HTS) approaches share the multiplexing advantages found in Fourier transform spectrometers. Interest in Hadamard systems has been limited due to data storage/computational limitations and the inability to perform accurate high order masking in a reasonable amount of time. Advances in digital micro-mirror array (DMA) technology have opened the door to implementing an HTS for a variety of applications including fluorescent microscope imaging and Raman imaging. A Hadamard transform spectral imager (HTSI) for remote sensing offers a variety of unique capabilities in one package such as variable spectral and temporal resolution, no moving parts (other than the micro-mirrors) and vibration tolerance. Two approaches to for 2D HTS systems have been investigated in this LDRD. The first approach involves dispersing the incident light, encoding the dispersed light then recombining the light. This method is referred to as spectral encoding. The other method encodes the incident light then disperses the encoded light. The second technique is called spatial encoding. After creating optical designs for both methods the spatial encoding method was selected as the method that would be implemented because the optical design was less costly to implement.

  18. Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration.

    PubMed

    de Bruin, P W; Kaptein, B L; Stoel, B C; Reiber, J H C; Rozing, P M; Valstar, E R

    2008-01-01

    Image-based Roentgen stereophotogrammetric analysis (IBRSA) integrates 2D-3D image registration and conventional RSA. Instead of radiopaque RSA bone markers, IBRSA uses 3D CT data, from which digitally reconstructed radiographs (DRRs) are generated. Using 2D-3D image registration, the 3D pose of the CT is iteratively adjusted such that the generated DRRs resemble the 2D RSA images as closely as possible, according to an image matching metric. Effectively, by registering all 2D follow-up moments to the same 3D CT, the CT volume functions as common ground. In two experiments, using RSA and using a micromanipulator as gold standard, IBRSA has been validated on cadaveric and sawbone scapula radiographs, and good matching results have been achieved. The accuracy was: |mu |< 0.083 mm for translations and |mu| < 0.023 degrees for rotations. The precision sigma in x-, y-, and z-direction was 0.090, 0.077, and 0.220 mm for translations and 0.155 degrees , 0.243 degrees , and 0.074 degrees for rotations. Our results show that the accuracy and precision of in vitro IBRSA, performed under ideal laboratory conditions, are lower than in vitro standard RSA but higher than in vivo standard RSA. Because IBRSA does not require radiopaque markers, it adds functionality to the RSA method by opening new directions and possibilities for research, such as dynamic analyses using fluoroscopy on subjects without markers and computer navigation applications. PMID:17706656

  19. Wideband aperture array using RF channelizers and massively parallel digital 2D IIR filterbank

    NASA Astrophysics Data System (ADS)

    Sengupta, Arindam; Madanayake, Arjuna; Gómez-García, Roberto; Engeberg, Erik D.

    2014-05-01

    Wideband receive-mode beamforming applications in wireless location, electronically-scanned antennas for radar, RF sensing, microwave imaging and wireless communications require digital aperture arrays that offer a relatively constant far-field beam over several octaves of bandwidth. Several beamforming schemes including the well-known true time-delay and the phased array beamformers have been realized using either finite impulse response (FIR) or fast Fourier transform (FFT) digital filter-sum based techniques. These beamforming algorithms offer the desired selectivity at the cost of a high computational complexity and frequency-dependant far-field array patterns. A novel approach to receiver beamforming is the use of massively parallel 2-D infinite impulse response (IIR) fan filterbanks for the synthesis of relatively frequency independent RF beams at an order of magnitude lower multiplier complexity compared to FFT or FIR filter based conventional algorithms. The 2-D IIR filterbanks demand fast digital processing that can support several octaves of RF bandwidth, fast analog-to-digital converters (ADCs) for RF-to-bits type direct conversion of wideband antenna element signals. Fast digital implementation platforms that can realize high-precision recursive filter structures necessary for real-time beamforming, at RF radio bandwidths, are also desired. We propose a novel technique that combines a passive RF channelizer, multichannel ADC technology, and single-phase massively parallel 2-D IIR digital fan filterbanks, realized at low complexity using FPGA and/or ASIC technology. There exists native support for a larger bandwidth than the maximum clock frequency of the digital implementation technology. We also strive to achieve More-than-Moore throughput by processing a wideband RF signal having content with N-fold (B = N Fclk/2) bandwidth compared to the maximum clock frequency Fclk Hz of the digital VLSI platform under consideration. Such increase in bandwidth is

  20. Optical imaging systems analyzed with a 2D template.

    PubMed

    Haim, Harel; Konforti, Naim; Marom, Emanuel

    2012-05-10

    Present determination of optical imaging systems specifications are based on performance values and modulation transfer function results carried with a 1D resolution template (such as the USAF resolution target or spoke templates). Such a template allows determining image quality, resolution limit, and contrast. Nevertheless, the conventional 1D template does not provide satisfactory results, since most optical imaging systems handle 2D objects for which imaging system response may be different by virtue of some not readily observable spatial frequencies. In this paper we derive and analyze contrast transfer function results obtained with 1D as well as 2D templates. PMID:22614498

  1. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    SciTech Connect

    T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-07-08

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.

  2. Sparse radar imaging using 2D compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

  3. Focusing surface wave imaging with flexible 2D array

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyuan; Fu, Junqiang; Li, Zhe; Xu, Chunguang; Xiao, Dingguo; Wang, Shaohan

    2016-04-01

    Curved surface is widely exist in key parts of energy and power equipment, such as, turbine blade cylinder block and so on. Cycling loading and harsh working condition of enable fatigue cracks appear on the surface. The crack should be found in time to avoid catastrophic damage to the equipment. A flexible 2D array transducer was developed. 2D Phased Array focusing method (2DPA), Mode-Spatial Double Phased focusing method (MSDPF) and the imaging method using the flexible 2D array probe are studied. Experiments using these focusing and imaging method are carried out. Surface crack image is obtained with both 2DPA and MSDPF focusing method. It have been proved that MSDPF can be more adaptable for curved surface and more calculate efficient than 2DPA.

  4. Real-time 2-D temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2010-01-01

    We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy. PMID:19884075

  5. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes

    PubMed Central

    Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun

    2016-01-01

    By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes. PMID:27019849

  6. Digital Image Access & Retrieval.

    ERIC Educational Resources Information Center

    Heidorn, P. Bryan, Ed.; Sandore, Beth, Ed.

    Recent technological advances in computing and digital imaging technology have had immediate and permanent consequences for visual resource collections. Libraries are involved in organizing and managing large visual resource collections. The central challenges in working with digital image collections mirror those that libraries have sought to…

  7. A 2-D ECE Imaging Diagnostic for TEXTOR

    NASA Astrophysics Data System (ADS)

    Wang, J.; Deng, B. H.; Domier, C. W.; Luhmann, H. Lu, Jr.

    2002-11-01

    A true 2-D extension to the UC Davis ECE Imaging (ECEI) concept is under development for installation on the TEXTOR tokamak in 2003. This combines the use of linear arrays with multichannel conventional wideband heterodyne ECE radiometers to provide a true 2-D imaging system. This is in contrast to current 1-D ECEI systems in which 2-D images are obtained through the use of multiple plasma discharges (varying the scanned emission frequency each discharge). Here, each array element of the 20 channel mixer array measures plasma emission at 16 simultaneous frequencies to form a 16x20 image of the plasma electron temperature Te. Correlation techniques can then be applied to any pair of the 320 image elements to study both radial and poloidal characteristics of turbulent Te fluctuations. The system relies strongly on the development of low cost, wideband (2-18 GHz) IF detection electronics for use in both ECE Imaging as well as conventional heterodyne ECE radiometry. System details, with a strong focus on the wideband IF electronics development, will be presented. *Supported by U.S. DoE Contracts DE-FG03-95ER54295 and DE-FG03-99ER54531.

  8. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples. PMID:27378648

  9. Single-shot and phase-shifting digital holographic microscopy using a 2-D grating.

    PubMed

    Yang, Taeseok Daniel; Kim, Hyung-Jin; Lee, Kyoung J; Kim, Beop-Min; Choi, Youngwoon

    2016-05-01

    We demonstrate digital holographic microscopy that, while being based on phase-shifting interferometry, is capable of single-shot measurements. A two-dimensional (2-D) diffraction grating placed in a Fourier plane of a standard in-line holographic phase microscope generates multiple copies of a sample image on a camera sensor. The identical image copies are spatially separated with different overall phase shifts according to the diffraction orders. The overall phase shifts are adjusted by controlling the lateral position of the grating. These phase shifts are then set to be multiples of π/2. Interferograms composed of four image copies combined with a parallel reference beam are acquired in a single shot. The interferograms are processed through a phase-shifting algorithm to produce a single complex image. By taking advantage of the higher sampling capacity of the in-line holography, we can increase the imaging information density by a factor of 3 without compromising the imaging acquisition speed. PMID:27137562

  10. Digital Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.

    1991-01-01

    Proposed technique for production of velocity maps from sequences of photographic video images of flows seeded with small particles. In digital image velocimetry, image analyzed by digital Fourier tranformation. Process free of noise, more precise, and consumes less time. Eliminates need to process photographs, indicates directions of velocity vectors unambiguously, and offers increased dynamic ranges. Because all processing performed electronically, eventually capable of mapping flow-velocity fields in real time.

  11. Semiregular solid texturing from 2D image exemplars.

    PubMed

    Du, Song-Pei; Hu, Shi-Min; Martin, Ralph R

    2013-03-01

    Solid textures, comprising 3D particles embedded in a matrix in a regular or semiregular pattern, are common in natural and man-made materials, such as brickwork, stone walls, plant cells in a leaf, etc. We present a novel technique for synthesizing such textures, starting from 2D image exemplars which provide cross-sections of the desired volume texture. The shapes and colors of typical particles embedded in the structure are estimated from their 2D cross-sections. Particle positions in the texture images are also used to guide spatial placement of the 3D particles during synthesis of the 3D texture. Our experiments demonstrate that our algorithm can produce higher quality structures than previous approaches; they are both compatible with the input images, and have a plausible 3D nature. PMID:22614330

  12. Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.

    2009-01-01

    VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.

  13. Real-time SPECT and 2D ultrasound image registration.

    PubMed

    Bucki, Marek; Chassat, Fabrice; Galdames, Francisco; Asahi, Takeshi; Pizarro, Daniel; Lobo, Gabriel

    2007-01-01

    In this paper we present a technique for fully automatic, real-time 3D SPECT (Single Photon Emitting Computed Tomography) and 2D ultrasound image registration. We use this technique in the context of kidney lesion diagnosis. Our registration algorithm allows a physician to perform an ultrasound exam after a SPECT image has been acquired and see in real time the registration of both modalities. An automatic segmentation algorithm has been implemented in order to display in 3D the positions of the acquired US images with respect to the organs. PMID:18044572

  14. Region-based Statistical Analysis of 2D PAGE Images

    PubMed Central

    Li, Feng; Seillier-Moiseiwitsch, Françoise; Korostyshevskiy, Valeriy R.

    2011-01-01

    A new comprehensive procedure for statistical analysis of two-dimensional polyacrylamide gel electrophoresis (2D PAGE) images is proposed, including protein region quantification, normalization and statistical analysis. Protein regions are defined by the master watershed map that is obtained from the mean gel. By working with these protein regions, the approach bypasses the current bottleneck in the analysis of 2D PAGE images: it does not require spot matching. Background correction is implemented in each protein region by local segmentation. Two-dimensional locally weighted smoothing (LOESS) is proposed to remove any systematic bias after quantification of protein regions. Proteins are separated into mutually independent sets based on detected correlations, and a multivariate analysis is used on each set to detect the group effect. A strategy for multiple hypothesis testing based on this multivariate approach combined with the usual Benjamini-Hochberg FDR procedure is formulated and applied to the differential analysis of 2D PAGE images. Each step in the analytical protocol is shown by using an actual dataset. The effectiveness of the proposed methodology is shown using simulated gels in comparison with the commercial software packages PDQuest and Dymension. We also introduce a new procedure for simulating gel images. PMID:21850152

  15. 2D luminescence imaging of pH in vivo

    PubMed Central

    Schreml, Stephan; Meier, Robert J.; Wolfbeis, Otto S.; Landthaler, Michael; Szeimies, Rolf-Markus; Babilas, Philipp

    2011-01-01

    Luminescence imaging of biological parameters is an emerging field in biomedical sciences. Tools to study 2D pH distribution are needed to gain new insights into complex disease processes, such as wound healing and tumor metabolism. In recent years, luminescence-based methods for pH measurement have been developed. However, for in vivo applications, especially for studies on humans, biocompatibility and reliability under varying conditions have to be ensured. Here, we present a referenced luminescent sensor for 2D high-resolution imaging of pH in vivo. The ratiometric sensing scheme is based on time-domain luminescence imaging of FITC and ruthenium(II)tris-(4,7-diphenyl-1,10-phenanthroline). To create a biocompatible 2D sensor, these dyes were bound to or incorporated into microparticles (aminocellulose and polyacrylonitrile), and particles were immobilized in polyurethane hydrogel on transparent foils. We show sensor precision and validity by conducting in vitro and in vivo experiments, and we show the versatility in imaging pH during physiological and chronic cutaneous wound healing in humans. Implementation of this technique may open vistas in wound healing, tumor biology, and other biomedical fields. PMID:21262842

  16. Managing digital images.

    PubMed

    Swartz, M L

    2000-09-01

    Although most orthodontists can rely on their orthodontic image software, those who have the need to go beyond just the monitor display of the images will need to get behind the scenes. Understanding a little of what makes up digital images and how to manipulate the variables will enable them to get optimum image quality as well as conserve on time, file size, and storage media. For those who import bitmapped images into digital presentations, the ability to adjust these variables can enable them to create presentation files that are manageable in size, will display without delays, and are of optimum resolution. PMID:10982939

  17. Digital Imaging in Cytopathology

    PubMed Central

    Khalbuss, Walid E.; Pantanowitz, Liron; Parwani, Anil V.

    2011-01-01

    Rapid advances are occurring in the field of cytopathology, particularly in the field of digital imaging. Today, digital images are used in a variety of settings including education (E-education), as a substitute to multiheaded sessions, multisite conferences, publications, cytopathology web pages, cytology proficiency testing, telecytology, consultation through telecytology, and automated screening of Pap test slides. The accessibility provided by digital imaging in cytopathology can improve the quality and efficiency of cytopathology services, primarily by getting the expert cytopathologist to remotely look at the slide. This improved accessibility saves time and alleviates the need to ship slides, wait for glass slides, or transport pathologists. Whole slide imaging (WSI) is a digital imaging modality that uses computerized technology to scan and convert pathology and cytology glass slides into digital images (digital slides) that can be viewed remotely on a workstation using viewing software. In spite of the many advances, challenges remain such as the expensive initial set-up costs, workflow interruption, length of time to scan whole slides, large storage size for WSI, bandwidth restrictions, undefined legal implications, professional reluctance, and lack of standardization in the imaging process. PMID:21785680

  18. 2D imaging of functional structures in perfused pig heart

    NASA Astrophysics Data System (ADS)

    Kessler, Manfred D.; Cristea, Paul D.; Hiller, Michael; Trinks, Tobias

    2002-06-01

    In 2000 by 2D-imaging we were able for the first time to visualize in subcellular space functional structures of myocardium. For these experiments we used hemoglobin-free perfused pig hearts in our lab. Step by step we learned to understand the meaning of subcellular structures. Principally, the experiment revealed that in subcellular space very fast changes of light scattering can occur. Furthermore, coefficients of different parameters were determined on the basis of multicomponent system theory.

  19. Bayesian 2D Current Reconstruction from Magnetic Images

    NASA Astrophysics Data System (ADS)

    Clement, Colin B.; Bierbaum, Matthew K.; Nowack, Katja; Sethna, James P.

    We employ a Bayesian image reconstruction scheme to recover 2D currents from magnetic flux imaged with scanning SQUIDs (Superconducting Quantum Interferometric Devices). Magnetic flux imaging is a versatile tool to locally probe currents and magnetic moments, however present reconstruction methods sacrifice resolution due to numerical instability. Using state-of-the-art blind deconvolution techniques we recover the currents, point-spread function and height of the SQUID loop by optimizing the probability of measuring an image. We obtain uncertainties on these quantities by sampling reconstructions. This generative modeling technique could be used to develop calibration protocols for scanning SQUIDs, to diagnose systematic noise in the imaging process, and can be applied to many tools beyond scanning SQUIDs.

  20. Geometrical Correlation and Matching of 2d Image Shapes

    NASA Astrophysics Data System (ADS)

    Vizilter, Y. V.; Zheltov, S. Y.

    2012-07-01

    The problem of image correspondence measure selection for image comparison and matching is addressed. Many practical applications require image matching "just by shape" with no dependence on the concrete intensity or color values. Most popular technique for image shape comparison utilizes the mutual information measure based on probabilistic reasoning and information theory background. Another approach was proposed by Pytiev (so called "Pytiev morphology") based on geometrical and algebraic reasoning. In this framework images are considered as piecewise-constant 2D functions, tessellation of image frame by the set of non-intersected connected regions determines the "shape" of image and the projection of image onto the shape of other image is determined. Morphological image comparison is performed using the normalized morphological correlation coefficients. These coefficients estimate the closeness of one image to the shape of other image. Such image analysis technique can be characterized as an ""ntensity-to-geometry" matching. This paper generalizes the Pytiev morphological approach for obtaining the pure "geometry-to-geometry" matching techniques. The generalized intensity-geometrical correlation coefficient is proposed including the linear correlation coefficient and the square of Pytiev correlation coefficient as its partial cases. The morphological shape correlation coefficient is proposed based on the statistical averaging of images with the same shape. Centered morphological correlation coefficient is obtained under the condition of intensity centering of averaged images. Two types of symmetric geometrical normalized correlation coefficients are proposed for comparison of shape-tessellations. The technique for correlation and matching of shapes with ordered intensities is proposed with correlation measures invariant to monotonous intensity transformations. The quality of proposed geometrical correlation measures is experimentally estimated in the task of

  1. Remapping of digital subtraction angiography on a standard fluoroscopy system using 2D-3D registration

    NASA Astrophysics Data System (ADS)

    Alhrishy, Mazen G.; Varnavas, Andreas; Guyot, Alexis; Carrell, Tom; King, Andrew; Penney, Graeme

    2015-03-01

    Fluoroscopy-guided endovascular interventions are being performing for more and more complex cases with longer screening times. However, X-ray is much better at visualizing interventional devices and dense structures compared to vasculature. To visualise vasculature, angiography screening is essential but requires the use of iodinated contrast medium (ICM) which is nephrotoxic. Acute kidney injury is the main life-threatening complication of ICM. Digital subtraction angiography (DSA) is also often a major contributor to overall patient radiation dose (81% reported). Furthermore, a DSA image is only valid for the current interventional view and not the new view once the C-arm is moved. In this paper, we propose the use of 2D-3D image registration between intraoperative images and the preoperative CT volume to facilitate DSA remapping using a standard fluoroscopy system. This allows repeated ICM-free DSA and has the potential to enable a reduction in ICM usage and radiation dose. Experiments were carried out using 9 clinical datasets. In total, 41 DSA images were remapped. For each dataset, the maximum and averaged remapping accuracy error were calculated and presented. Numerical results showed an overall averaged error of 2.50 mm, with 7 patients scoring averaged errors < 3 mm and 2 patients < 6 mm.

  2. Digital Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Cho, Y.-C.

    1991-01-01

    Digital image velocimetry is technique for extracting two-dimensional (in image planes) velocities of objects from multiple photographs or video images of objects. Devised to overcome disadvantages of particle-image velocimetry and laser-speckle velocimetry, both of which involve use of illuminated seed particles to make flows visible. Directions of velocity vectors determined unambiguously, and dynamic range limited only by speed of camera or, equivalently, by speed of stroboscopic illumination.

  3. Microwave Imaging with Infrared 2-D Lock-in Amplifier

    NASA Astrophysics Data System (ADS)

    Chiyo, Noritaka; Arai, Mizuki; Tanaka, Yasuhiro; Nishikata, Atsuhiro; Maeno, Takashi

    We have developed a 3-D electromagnetic field measurement system using 2-D lock-in amplifier. This system uses an amplitude modulated electromagnetic wave source to heat a resistive screen. A very small change of temperature on a screen illuminated with the modulated electromagnetic wave is measured using an infrared thermograph camera. In this paper, we attempted to apply our system to microwave imaging. By placing conductor patches in front of the resistive screen and illuminating with microwave, the shape of each conductor was clearly observed as the temperature difference image of the screen. In this way, the conductor pattern inside the non-contact type IC card could be visualized. Moreover, we could observe the temperature difference image reflecting the shape of a Konnyaku (a gelatinous food made from devil's-tonge starch) or a dried fishbone, both as non-conducting material resembling human body. These results proved that our method is applicable to microwave see-through imaging.

  4. Spot identification on 2D electrophoresis gel images

    NASA Astrophysics Data System (ADS)

    Wang, Weixing

    2006-09-01

    2-D electrophoresis gel images can be used for identifying and characterizing many forms of a particular protein encoded by a single gene. Conventional approaches to gel analysis require the three steps: (1) Spot detection on each gel; (2) Spot matching between gels; and (3) Spot quantification and comparison. Many researchers and developers attempt to automate all steps as much as possible, but errors in the detection and matching stages are common. In order to carry out gel image analysis, one first needs to accurately detect and measure the protein spots in a gel image. This paper presents the algorithms for automatically delineating gel spots. The fusion of two types of segmentation algorithms was implemented. One is edge (discontinuity) based type, and the other is region based type. The primary integration of the two types of image segmentation algorithms have been tested too, the test results clearly show that the integrated algorithm can automatically delineate gel spots not only on a simple image and also on a complex image, and it is much better that either only edge based algorithm or only region based algorithm. Based on the testing and analysis results, the fusion of edge information and region information for gel image segmentation is good for this kind of images.

  5. Symmetries of the 2D magnetic particle imaging system matrix.

    PubMed

    Weber, A; Knopp, T

    2015-05-21

    In magnetic particle imaging (MPI), the relation between the particle distribution and the measurement signal can be described by a linear system of equations. For 1D imaging, it can be shown that the system matrix can be expressed as a product of a convolution matrix and a Chebyshev transformation matrix. For multidimensional imaging, the structure of the MPI system matrix is not yet fully explored as the sampling trajectory complicates the physical model. It has been experimentally found that the MPI system matrix rows have symmetries and look similar to the tensor products of Chebyshev polynomials. In this work we will mathematically prove that the 2D MPI system matrix has symmetries that can be used for matrix compression. PMID:25919400

  6. Using 2D: 4D digit ratios to determine motor skills in children.

    PubMed

    Wang, Y; Wang, H-L; Li, Y-H; Zhu, F-L; Li, S-J; Ni, H

    2016-03-01

    In past few decades, there has an outburst of research surrounding second to fourth finger digit ratio (2D:4D) and its relation to prenatal sex steroids including both testosterone and estrogen. In utero, testosterone and estrogen are responsible for the differences in digit ratio between the genders. Recent research has tried to extend past the influence of steroids and look at the potential effect of digit ratios on fine and gross motor skills in children. We compiled the current understanding of the connection between sex hormones and the development of the 2D:4D ratio as well as the effect the ratio has on motor skills. There seems to be a significant positive correlation between 2D:4D digit ratio and precision of fine motor skill. In addition, there is a negative correlation between 2D:4D ratio and speed of fine motor activity. In this review, we will outline the use of 2D:4D ratio as a biomarker for prenatal sex steroids and through that, a proxy marker for fine and gross motor skills. PMID:27010133

  7. Image Appraisal for 2D and 3D Electromagnetic Inversion

    SciTech Connect

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  8. 2-D Drift Velocities from the IMAGE EUV Plasmaspheric Imager

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    2006-01-01

    The IMAGE Mission extreme ultraviolet imager (EW) observes He(+) plasmaspheric ions throughout the inner magnetosphere. Limited by ionizing radiation and viewing close to the Sun, images of the He(+) distribution are available every 10 minutes for many hours as the spacecraft passes through apogee in its highly elliptical orbit. As a consistent constituent at about 15%, He(+) is an excellent surrogate for monitoring all of the processes that control the dynamics of plasmaspheric plasma. In particular, the motion of He' transverse to the ambient magnetic field is a direct indication of convective electric fields. The analysis of boundary motions has already achieved new insights into the electrodynamic coupling processes taking place between energetic magnetospheric plasmas and the ionosphere. Yet to be fulfilled, however, is the original promise that global E W images of the plasmasphere might yield two-dimensional pictures of mesoscale to macro-scale electric fields in the inner magnetosphere. This work details the technique and initial application of an IMAGE EUV analysis that appears capable of following thermal plasma motion on a global basis.

  9. 2-D Drift Velocities from the IMAGE EUV Plasmaspheric Imager

    NASA Technical Reports Server (NTRS)

    Gallagher, D.; Adrian, M.

    2007-01-01

    The IMAGE Mission extreme ultraviolet imager (EUY) observes He+ plasmaspheric ions throughout the inner magnetosphere. Limited by ionizing radiation and viewing close to the Sun, images of the He+ distribution are available every 10 minutes for many hours as the spacecraft passes through apogee in its highly elliptical orbit. As a consistent constituent at about 15%, He+ is an excellent surrogate for monitoring all of the processes that control the dynamics of plasmaspheric plasma. In particular, the motion ofHe+ transverse to the ambient magnetic field is a direct indication of convective electric fields. The analysis of boundary motions has already achieved new insights into the electrodynamic coupling processes taking place between energetic magnetospheric plasmas and the ionosphere. Yet to be fulfilled, however, is the original promise that global EUY images of the plasmasphere might yield two-dimensional pictures of meso-scale to macro-scale electric fields in the inner magnetosphere. This work details the technique and initial application of an IMAGE EUY analysis that appears capable of following thermal plasma motion on a global basis.

  10. The Relationship Between Digit Ratio (2D:4D) and Sexual Orientation in Men from China.

    PubMed

    Xu, Yin; Zheng, Yong

    2016-04-01

    We examined the relationship between 2D:4D digit ratio and sexual orientation in men from China and analyzed the influences of the components used to assess sexual orientation and the criteria used to classify individuals as homosexual on this relationship. A total of 309 male and 110 female participants took part in a web-based survey. Our results showed that heterosexual men had a significantly lower 2D:4D than heterosexual women and exclusively homosexual men had a significantly higher left 2D:4D than heterosexual men whereas only exclusively homosexual men had a significantly higher right 2D:4D than heterosexual men when sexual orientation was assessed via sexual attraction. The left 2D:4D showed a significant positive correlation with sexual identity, sexual attraction, and sexual behavior, and the right 2D:4D showed a significant positive correlation with sexual attraction. The effect sizes for differences in 2D:4D between homosexual and heterosexual men varied according to criteria used to classify individuals as homosexual and sexual orientation components; the more stringent the criteria (scores closer to the homosexual category), the larger the effect sizes; further, sexual attraction yielded the largest effect size. There were no significant effects of age and latitude on Chinese 2D:4D. This study contributes to the current understanding of the relationship between 2D:4D and male sexual orientation. PMID:25957135

  11. Heritability of digit ratio (2D:4D) in rhesus macaques (Macaca mulatta).

    PubMed

    Nelson, Emma; Voracek, Martin

    2010-01-01

    The second-to-fourth digit ratio (2D:4D) is a putative biomarker for prenatal androgen effects, which has been widely employed to study androgenic-programming effects on shaping sex-linked traits and behaviours in humans. This approach is now increasingly applied to non-human species. Heritability studies of 2D:4D in both humans and zebra finches indicate substantial genetic contributions to the expression of this trait. This study examines the heritability of 2D:4D in rhesus macaques, based on the resemblance of mother-infant dyads, to see how these compare with human values. Results suggest that familial resemblance in 2D:4D is also strong in rhesus monkeys. Heritability estimates were within the range of estimates from human studies. These preliminary results suggest that the strength of heritability of 2D:4D may generalize across taxa. PMID:19882209

  12. 2D magnetic nanoparticle imaging using magnetization response second harmonic

    NASA Astrophysics Data System (ADS)

    Tanaka, Saburo; Murata, Hayaki; Oishi, Tomoya; Suzuki, Toshifumi; Zhang, Yi

    2015-06-01

    A detection method and an imaging technique for magnetic nanoparticles (MNPs) have been investigated. In MNP detection and in magnetic particle imaging (MPI), the most commonly employed method is the detection of the odd harmonics of the magnetization response. We examined the advantage of using the second harmonic response when applying an AC magnetic modulation field and a DC bias field. If the magnetization response is detected by a Cu-wound-coil detection system, the output voltage from the coil is proportional to the change in the flux, dϕ/dt. Thus, the dependence of the derivative of the magnetization, M, on an AC magnetic modulation field and a DC bias field were calculated and investigated. The calculations were in good agreement with the experimental results. We demonstrated that the use of the second harmonic response for the detection of MNPs has an advantage compared with the usage of the third harmonic response, when the Cu-wound-coil detection system is employed and the amplitude of the ratio of the AC modulation field and a knee field Hac/Hk is less than 2. We also constructed a 2D MPI scanner using a pair of permanent ring magnets with a bore of ϕ80 mm separated by 90 mm. The magnets generated a gradient of Gz=3.17 T/m transverse to the imaging bore and Gx=1.33 T/m along the longitudinal axis. An original concentrated 10 μl Resovist solution in a ϕ2×3 mm2 vessel was used as a sample, and it was imaged by the scanner. As a result, a 2D contour map image could be successfully generated using the method with a lock-in amplifier.

  13. 2D-CELL: image processing software for extraction and analysis of 2-dimensional cellular structures

    NASA Astrophysics Data System (ADS)

    Righetti, F.; Telley, H.; Leibling, Th. M.; Mocellin, A.

    1992-01-01

    2D-CELL is a software package for the processing and analyzing of photographic images of cellular structures in a largely interactive way. Starting from a binary digitized image, the programs extract the line network (skeleton) of the structure and determine the graph representation that best models it. Provision is made for manually correcting defects such as incorrect node positions or dangling bonds. Then a suitable algorithm retrieves polygonal contours which define individual cells — local boundary curvatures are neglected for simplicity. Using elementary analytical geometry relations, a range of metric and topological parameters describing the population are then computed, organized into statistical distributions and graphically displayed.

  14. Artifacts in digital images

    NASA Technical Reports Server (NTRS)

    Lorre, J. J.; Gillespie, A. R.

    1980-01-01

    Three kinds of artifacts unique to digital images are illustrated, namely aliasing caused by undersampling, interference phenomena caused by improper display of images, and harmonic overtones caused by quantization of amplitudes. Special attention is given to undersampling when the sample size and interval are the same. It is noted that this situation is important because it is typical of solid-state cameras. Quantization of image data of necessity introduces energy at harmonic overtones of the image spectrum. This energy is aliased if the frequency of the overtones is greater than 0.5 cycle/pixel. It cannot be selectively removed from the image through filtering, and the best way to suppress it is to maximize the amplification of the sensor before digital encoding.

  15. Digital Image Correlation Engine

    SciTech Connect

    Turner, Dan; Crozier, Paul; Reu, Phil

    2015-10-06

    DICe is an open source digital image correlation (DIC) tool intended for use as a module in an external application or as a standalone analysis code. It's primary capability is computing full –field displacements and strains from sequences of digital These images are typically of a material sample undergoing a materials characterization experiment, but DICe is also useful for other applications (for example, trajectory tracking). DICe is machine portable (Windows, Linux and Mac) and can be effectively deployed on a high performance computing platform. Capabilities from DICe can be invoked through a library interface, via source code integration of DICe classes or through a graphical user interface.

  16. Preliminary work of real-time ultrasound imaging system for 2-D array transducer.

    PubMed

    Li, Xu; Yang, Jiali; Ding, Mingyue; Yuchi, Ming

    2015-01-01

    Ultrasound (US) has emerged as a non-invasive imaging modality that can provide anatomical structure information in real time. To enable the experimental analysis of new 2-D array ultrasound beamforming methods, a pre-beamformed parallel raw data acquisition system was developed for 3-D data capture of 2D array transducer. The transducer interconnection adopted the row-column addressing (RCA) scheme, where the columns and rows were active in sequential for transmit and receive events, respectively. The DAQ system captured the raw data in parallel and the digitized data were fed through the field programmable gate array (FPGA) to implement the pre-beamforming. Finally, 3-D images were reconstructed through the devised platform in real-time. PMID:26405923

  17. Building a 2.5D Digital Elevation Model from 2D Imagery

    NASA Technical Reports Server (NTRS)

    Padgett, Curtis W.; Ansar, Adnan I.; Brennan, Shane; Cheng, Yang; Clouse, Daniel S.; Almeida, Eduardo

    2013-01-01

    When projecting imagery into a georeferenced coordinate frame, one needs to have some model of the geographical region that is being projected to. This model can sometimes be a simple geometrical curve, such as an ellipse or even a plane. However, to obtain accurate projections, one needs to have a more sophisticated model that encodes the undulations in the terrain including things like mountains, valleys, and even manmade structures. The product that is often used for this purpose is a Digital Elevation Model (DEM). The technology presented here generates a high-quality DEM from a collection of 2D images taken from multiple viewpoints, plus pose data for each of the images and a camera model for the sensor. The technology assumes that the images are all of the same region of the environment. The pose data for each image is used as an initial estimate of the geometric relationship between the images, but the pose data is often noisy and not of sufficient quality to build a high-quality DEM. Therefore, the source imagery is passed through a feature-tracking algorithm and multi-plane-homography algorithm, which refine the geometric transforms between images. The images and their refined poses are then passed to a stereo algorithm, which generates dense 3D data for each image in the sequence. The 3D data from each image is then placed into a consistent coordinate frame and passed to a routine that divides the coordinate frame into a number of cells. The 3D points that fall into each cell are collected, and basic statistics are applied to determine the elevation of that cell. The result of this step is a DEM that is in an arbitrary coordinate frame. This DEM is then filtered and smoothed in order to remove small artifacts. The final step in the algorithm is to take the initial DEM and rotate and translate it to be in the world coordinate frame [such as UTM (Universal Transverse Mercator), MGRS (Military Grid Reference System), or geodetic] such that it can be saved in

  18. Progressive attenuation fields: Fast 2D-3D image registration without precomputation

    SciTech Connect

    Rohlfing, Torsten; Russakoff, Daniel B.; Denzler, Joachim; Mori, Kensaku; Maurer, Calvin R. Jr.

    2005-09-15

    Computation of digitally reconstructed radiograph (DRR) images is the rate-limiting step in most current intensity-based algorithms for the registration of three-dimensional (3D) images to two-dimensional (2D) projection images. This paper introduces and evaluates the progressive attenuation field (PAF), which is a new method to speed up DRR computation. A PAF is closely related to an attenuation field (AF). A major difference is that a PAF is constructed on the fly as the registration proceeds; it does not require any precomputation time, nor does it make any prior assumptions of the patient pose or limit the permissible range of patient motion. A PAF effectively acts as a cache memory for projection values once they are computed, rather than as a lookup table for precomputed projections like standard AFs. We use a cylindrical attenuation field parametrization, which is better suited for many medical applications of 2D-3D registration than the usual two-plane parametrization. The computed attenuation values are stored in a hash table for time-efficient storage and access. Using clinical gold-standard spine image data sets from five patients, we demonstrate consistent speedups of intensity-based 2D-3D image registration using PAF DRRs by a factor of 10 over conventional ray casting DRRs with no decrease of registration accuracy or robustness.

  19. Tracking of deformable target in 2D ultrasound images

    NASA Astrophysics Data System (ADS)

    Royer, Lucas; Marchal, Maud; Le Bras, Anthony; Dardenne, Guillaume; Krupa, Alexandre

    2015-03-01

    In this paper, we propose a novel approach for automatically tracking deformable target within 2D ultrasound images. Our approach uses only dense information combined with a physically-based model and has therefore the advantage of not using any fiducial marker nor a priori knowledge on the anatomical environment. The physical model is represented by a mass-spring damper system driven by different types of forces where the external forces are obtained by maximizing image similarity metric between a reference target and a deformed target across the time. This deformation is represented by a parametric warping model where the optimal parameters are estimated from the intensity variation. This warping function is well-suited to represent localized deformations in the ultrasound images because it directly links the forces applied on each mass with the motion of all the pixels in its vicinity. The internal forces constrain the deformation to physically plausible motions, and reduce the sensitivity to the speckle noise. The approach was validated on simulated and real data, both for rigid and free-form motions of soft tissues. The results are very promising since the deformable target could be tracked with a good accuracy for both types of motion. Our approach opens novel possibilities for computer-assisted interventions where deformable organs are involved and could be used as a new tool for interactive tracking of soft tissues in ultrasound images.

  20. Is digit ratio (2D:4D) a reliable pointer to speech laterality?

    PubMed

    Hudson, John M; Hodgson, Jessica C

    2016-03-15

    The relative length of the second and fourth digits (2D:4D ratio) is sexually dimorphic and a retrospective biomarker of prenatal hormonal exposure. Low ratios indicate higher prenatal testosterone (pT) and lower estrogen exposure, whereas the reverse pattern is associated with high ratios. Elevated levels of pT exposure have long been thought to modulate hemispheric specialisation; subsequently many studies use the 2D:4D ratio as a proxy index for pT to examine the effects of prenatal hormonal exposure on lateralised cognitive abilities. Here we used Transcranial Doppler ultrasonography and digit ratio to investigate whether pT has an influence on speech laterality. We tested 34 right and 14 left handed adults. Our results indicate that speech representation is unrelated to digit characteristics and therefore purportedly pT. We discuss these findings in relation to androgen theories of lateralisation. PMID:26747206

  1. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.

    PubMed

    Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong

    2015-09-01

    Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners. PMID:26025508

  2. Detection of microcalcification clusters by 2D-mammography and narrow and wide angle digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Hadjipanteli, Andria; Elangovan, Premkumar; Looney, Padraig T.; Mackenzie, Alistair; Wells, Kevin; Dance, David R.; Young, Kenneth C.

    2016-03-01

    The aim of this study was to compare the detection of microcalcification clusters by human observers in breast images using 2D-mammography and narrow (15°/15 projections) and wide (50°/25 projections) angle digital breast tomosynthesis (DBT). Simulated microcalcification clusters with a range of microcalcification diameters (125 μm-275 μm) were inserted into 6 cm thick simulated compressed breasts. Breast images were produced with and without inserted microcalcification clusters using a set of image modelling tools, which were developed to represent clinical imaging by mammography and tomosynthesis. Commercially available software was used for image processing and image reconstruction. The images were then used in a series of 4-alternative forced choice (4AFC) human observer experiments conducted for signal detection with the microcalcification clusters as targets. The minimum detectable calcification diameter was found for each imaging modality: (i) 2D-mammography: 164+/-5 μm (ii) narrow angle DBT: 210+/-5 μm, (iii) wide angle DBT: 255+/-4 μm. A statistically significant difference was found between the minimum detectable calcification diameters that can be detected by the three imaging modalities. Furthermore, it was found that there was not a statistically significant difference between the results of the five observers that participated in this study. In conclusion, this study presents a method that quantifies the threshold diameter required for microcalcification detection, using high resolution, realistic images with observers, for the comparison of DBT geometries with 2D-mammography. 2Dmammography can visualise smaller detail diameter than both DBT imaging modalities and narrow-angle DBT can visualise a smaller detail diameter than wide-angle DBT.

  3. Anxiety, sex-linked behaviors, and digit ratios (2D:4D).

    PubMed

    Evardone, Milagros; Alexander, Gerianne M

    2009-06-01

    The second to fourth (2D:4D) digit ratio, a sexually dimorphic, phenotypic characteristic putatively associated with perinatal androgen action, has been used to evaluate the hypothesized relation between prenatal hormonal factors and a variety of sexually dimorphic behaviors, including sex-linked psychopathology. Smaller digit ratios, suggestive of stronger perinatal androgen action, have been associated with male-linked disorders (e.g., autism), and larger digit ratios, suggestive of weaker perinatal androgen action, have been associated with female-linked disorders (e.g., depression and eating disorders). To evaluate the possible relation between digit ratio and another traditionally female-linked disorder, anxiety, 2D:4D ratios were measured in a non-clinical sample (58 men, 52 women). Participants also completed a battery of anxiety and gender role measures and performed two spatial/cognitive tasks typically showing a male advantage (mental rotation and targeting) and two tasks typically showing a female advantage (location memory and spatial working memory). Men with a more feminine pattern of sex-linked traits and behaviors (including digit ratios) reported greater anxiety. In contrast, greater anxiety in women was associated with both female-typical and male-typical traits and behaviors, but and no significant association between digit ratio and anxiety was found. This pattern of results suggests that the development of anxiety is multiply determined, with contributing factors varying by sex. PMID:17943431

  4. Finger Counting and (2D:4D) Digit Ratio in Spatial-Numerical Association.

    PubMed

    Fabbri, Marco; Natale, Vincenzo

    2016-01-01

    It is reported that a canonical and cultural finger counting habit influences the spatial-numerical association. The digit ratio (the ratio between the lengths of the index and ring fingers as a putative indicator of prenatal androgen exposure) also plays an effect on space-number representation, reflecting a stronger left-to-right number representation in people with a short index finger and longer ring finger (i.e., 2D:4D ratio). It is unknown whether the finger counting habit and digit ratio have an effect on spatial-numerical association independently from each other or whether they interact with each other. In Study 1, the digit ratio and finger counting mapping were recorded in right handers. The participants performed number-to-position, digit string bisection, and physical line bisection tasks. In the number-to-position task, a finger counting effect was found, as well as a significant interaction between factors. A digit ratio effect was observed in the digit string bisection task. In Study 2, digit ratio and finger counting mapping were recorded in right and left handers. The results showed that the finger counting habit influenced the spatial biases in both numerical tasks. A significant interaction between finger counting and digit ratio was found in both numerical tasks when only the left hand was considered. The results are discussed considering the embodied nature of the spatial-numerical association. PMID:26562848

  5. Estimating mass of crushed limestone particles from 2D images

    NASA Astrophysics Data System (ADS)

    Banta, Larry E.; Cheng, Ken; Zaniewski, John P.

    2002-02-01

    In the construction of asphalt pavements, the stability of the asphalt is determined in large part by the gradation, or size distribution of the mineral aggregates that make up the matrix. Gradation is specified on the basis of sieve sizes and percent passing, where the latter is a cumulative measure of the mass of the aggregate passing the sieve as fraction of the total mass in the batch. In this paper, an approach for predicting particle mass based on 2D electronic images is explored. Images of crushed limestone aggregates were acquired using backlighting to create silhouettes. A morphological erosion process was used to separate touching and overlapping particles. Useful features of the particle silhouettes, such as area, centroid and shape descriptors were collected. Several dimensionless parameters were defined and were used as regressor variables in a multiple linear regression model to predict particle mass. Regressor coefficients were found by fitting to a sample of 501 particles ranging in size from 4.75 mm < particle sieve size < 25 mm. When tested against a different aggregate sample, the model predicted the mass of the batch to within +/- 2%.

  6. Digital imaging in dentistry.

    PubMed

    Essen, S Donovan

    2011-01-01

    Information technology is vital to operations, marketing, accounting, finance and administration. One of the most exciting and quickly evolving technologies in the modern dental office is digital applications. The dentist is often the business manager, information technology officer and strategic planning chief for his small business. The information systems triangle applies directly to this critical manager supported by properly trained ancillary staff and good equipment. With emerging technology driving all medical disciplines and the rapid pace at which it emerges, it is vital for the contemporary practitioner to keep abreast of the newest information technology developments. This article compares the strategic and operational advantages of digital applications, specifically imaging. The focus of this paper will be on digital radiography (DR), 3D computerized tomography, digital photography and digitally-driven CAD/CAM to what are now considered obsolescing modalities and contemplates what may arrive in the future. It is the purpose of this essay to succinctly evaluate the decisions involved in the role, application and implications of employing this tool in the dental environment PMID:22132658

  7. Revealing Invisible Beauty, Ultra Detailed: The Influence of Low Cost UV Exposure on Natural History Specimens in 2D+ Digitization.

    PubMed

    Brecko, Jonathan; Mathys, Aurore; Dekoninck, Wouter; De Ceukelaire, Marleen; VandenSpiegel, Didier; Semal, Patrick

    2016-01-01

    Digitization of the natural history specimens usually occurs by taking detailed pictures from different sides or producing 3D models. Additionally this is normally limited to imaging the specimen while exposed by light of the visual spectrum. However many specimens can see in or react to other spectra as well. Fluorescence is a well known reaction to the ultraviolet (UV) spectrum by animals, plants, minerals etc. but rarely taken into account while examining natural history specimens. Our tests show that museum specimens still fluoresce when exposed to UV light of 395 nm and 365 nm, even after many years of preservation. When the UV exposure is used in the digitization of specimens using our low cost focus stacking (2D+) setup, the resulting pictures reveal more detail than the conventional 2D+ images. Differences in fluorescence using 395 nm or 365 nm UV lights were noticed, however there isn't a preferred wavelength as some specimens react more to the first, while others have better results with the latter exposure. Given the increased detail and the low cost of the system, UV exposure should be considered while digitizing natural history museum collections. PMID:27536993

  8. Revealing Invisible Beauty, Ultra Detailed: The Influence of Low Cost UV Exposure on Natural History Specimens in 2D+ Digitization

    PubMed Central

    Brecko, Jonathan; Mathys, Aurore; Dekoninck, Wouter; De Ceukelaire, Marleen; VandenSpiegel, Didier; Semal, Patrick

    2016-01-01

    Digitization of the natural history specimens usually occurs by taking detailed pictures from different sides or producing 3D models. Additionally this is normally limited to imaging the specimen while exposed by light of the visual spectrum. However many specimens can see in or react to other spectra as well. Fluorescence is a well known reaction to the ultraviolet (UV) spectrum by animals, plants, minerals etc. but rarely taken into account while examining natural history specimens. Our tests show that museum specimens still fluoresce when exposed to UV light of 395 nm and 365 nm, even after many years of preservation. When the UV exposure is used in the digitization of specimens using our low cost focus stacking (2D+) setup, the resulting pictures reveal more detail than the conventional 2D+ images. Differences in fluorescence using 395 nm or 365 nm UV lights were noticed, however there isn’t a preferred wavelength as some specimens react more to the first, while others have better results with the latter exposure. Given the increased detail and the low cost of the system, UV exposure should be considered while digitizing natural history museum collections. PMID:27536993

  9. Digital Image Correlation Engine

    2015-10-06

    DICe is an open source digital image correlation (DIC) tool intended for use as a module in an external application or as a standalone analysis code. It's primary capability is computing full –field displacements and strains from sequences of digital These images are typically of a material sample undergoing a materials characterization experiment, but DICe is also useful for other applications (for example, trajectory tracking). DICe is machine portable (Windows, Linux and Mac) and canmore » be effectively deployed on a high performance computing platform. Capabilities from DICe can be invoked through a library interface, via source code integration of DICe classes or through a graphical user interface.« less

  10. Digital image velocimetry

    NASA Technical Reports Server (NTRS)

    Cho, Y.-C.

    1989-01-01

    Digital image velocimetry is proposed for the measurement of the instantaneous velocity fields of time dependent flows. This technique improves the flow measurement by eliminating some of the restrictions on existing optical methods (i.e., laser speckle velocimetry and particle image velocimetry). Among these restrictions are the limited dynamic range of the velocity measurement, directional ambiguity of the velocity vector, and the difficulty of a real-time capability. The present technique greatly enhances the dynamic range of the velocity measurement and unequivocally determines the direction of the velocity vector.

  11. Digital Image Analysis of Cereals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Image analysis is the extraction of meaningful information from images, mainly digital images by means of digital processing techniques. The field was established in the 1950s and coincides with the advent of computer technology, as image analysis is profoundly reliant on computer processing. As t...

  12. Answering Your Digital Imaging Questions.

    ERIC Educational Resources Information Center

    Koelling, Jill Marie

    1998-01-01

    Discusses two reasons why institutions should create digital image files--access and preservation. Suggests a collection survey for determining what to scan. Describes the five most important technical issues of digital imaging: resolution, file formats, storage, refreshment, and copyright. Discusses digitization of manuscript collections and…

  13. Digital imaging overview.

    PubMed

    Carrino, John A

    2003-07-01

    Digital imaging consists of digital acquisition modalities, image, and information management systems. All modalities are available to be purchased as digital acquisition devices. Image management has been the domain for PACSs. PACSs are complex systems designed to transmit, store, and display medical images. They use and rely on many types of different information and display technologies. The initial focus for PACSs has been on solving the engineering issues associated with the transfer of large image data sets and the suitability of softcopy displays for diagnosis particular to the human visual system. For operating within a centralized radiology department, these are largely solved. However, for enterprise wide dissemination and distribution, there are still challenges in the form of expedient transfer syntaxes and image quality, but these are also being effectively addressed. Information management is the domain of the RIS. One of the goals of radiology management should encompass the development of a robust practice environment that emphasizes workflow enhancements with seamless integration of decision support tools. The concept of "person-machine" systems emphasizes taking full advantage of both human and machine capabilities with a capacity to grow and change function. As the computer capabilities increase, more jobs can be relinquished to the machine. The physician can then focus on tasks that require more complex judgment and comprehension. The goal of this human-machine hybrid is to have more power than either of its components alone. This multifaceted role will most likely be embedded in the background having agents query and retrieve context specific information to be presented to the user. As augmenters of human talent, computers can turn data into information and information into knowledge. Medical imaging is a beneficiary of the information technology developments driven by the consumer and business sectors. Although these applications of

  14. A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data.

    PubMed

    Spiegel, M; Redel, T; Struffert, T; Hornegger, J; Doerfler, A

    2011-10-01

    Cerebrovascular disease is among the leading causes of death in western industrial nations. 3D rotational angiography delivers indispensable information on vessel morphology and pathology. Physicians make use of this to analyze vessel geometry in detail, i.e. vessel diameters, location and size of aneurysms, to come up with a clinical decision. 3D segmentation is a crucial step in this pipeline. Although a lot of different methods are available nowadays, all of them lack a method to validate the results for the individual patient. Therefore, we propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling. PMID:21908904

  15. A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data

    NASA Astrophysics Data System (ADS)

    Spiegel, M.; Redel, T.; Struffert, T.; Hornegger, J.; Doerfler, A.

    2011-10-01

    Cerebrovascular disease is among the leading causes of death in western industrial nations. 3D rotational angiography delivers indispensable information on vessel morphology and pathology. Physicians make use of this to analyze vessel geometry in detail, i.e. vessel diameters, location and size of aneurysms, to come up with a clinical decision. 3D segmentation is a crucial step in this pipeline. Although a lot of different methods are available nowadays, all of them lack a method to validate the results for the individual patient. Therefore, we propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling.

  16. Guide to Digital Radiographic Imaging.

    PubMed

    Mol, André; Yoon, Douglas C

    2015-09-01

    This is a resource for clinicians who are considering purchasing a digital imaging system or those already using one who want to optimize its use. It covers selected topics in digital imaging fundamentals, detector technology, image processing and quality assurance. Through a critical appraisal of the strengths and limitations of digital imaging components, the goal of this guide is to contribute to the appropriate use of these systems to maximize the health benefit for patients. PMID:26820007

  17. 3D/2D image registration using weighted histogram of gradient directions

    NASA Astrophysics Data System (ADS)

    Ghafurian, Soheil; Hacihaliloglu, Ilker; Metaxas, Dimitris N.; Tan, Virak; Li, Kang

    2015-03-01

    Three dimensional (3D) to two dimensional (2D) image registration is crucial in many medical applications such as image-guided evaluation of musculoskeletal disorders. One of the key problems is to estimate the 3D CT- reconstructed bone model positions (translation and rotation) which maximize the similarity between the digitally reconstructed radiographs (DRRs) and the 2D fluoroscopic images using a registration method. This problem is computational-intensive due to a large search space and the complicated DRR generation process. Also, finding a similarity measure which converges to the global optimum instead of local optima adds to the challenge. To circumvent these issues, most existing registration methods need a manual initialization, which requires user interaction and is prone to human error. In this paper, we introduce a novel feature-based registration method using the weighted histogram of gradient directions of images. This method simplifies the computation by searching the parameter space (rotation and translation) sequentially rather than simultaneously. In our numeric simulation experiments, the proposed registration algorithm was able to achieve sub-millimeter and sub-degree accuracies. Moreover, our method is robust to the initial guess. It can tolerate up to +/-90°rotation offset from the global optimal solution, which minimizes the need for human interaction to initialize the algorithm.

  18. Digital focusing schlieren imaging

    NASA Astrophysics Data System (ADS)

    Buckner, Benjamin D.; Trolinger, James D.; L'Esperance, Drew

    2015-09-01

    Since its invention in the 19th century, schlieren imaging has been an essential method for studying many aerodynamic effects, particularly convection and shock waves, but the classical method using parabolic mirrors is extremely difficult to set up and very expensive for large fields of view. Focusing schlieren methods have made large- area schlieren more feasible but have tended to be difficult to align and set up, limiting their utility in many applications We recently developed an alternative approach which utilizes recent advances in digital display technology to produce simpler schlieren system that yields similar sensitivity with greater flexibility.

  19. A droplet-to-digital (D2D) microfluidic device for single cell assays.

    PubMed

    Shih, Steve C C; Gach, Philip C; Sustarich, Jess; Simmons, Blake A; Adams, Paul D; Singh, Seema; Singh, Anup K

    2015-01-01

    We have developed a new hybrid droplet-to-digital microfluidic platform (D2D) that integrates droplet-in-channel microfluidics with digital microfluidics (DMF) for performing multi-step assays. This D2D platform combines the strengths of the two formats-droplets-in-channel for facile generation of droplets containing single cells, and DMF for on-demand manipulation of droplets including control of different droplet volumes (pL-μL), creation of a dilution series of ionic liquid (IL), and parallel single cell culturing and analysis for IL toxicity screening. This D2D device also allows for automated analysis that includes a feedback-controlled system for merging and splitting of droplets to add reagents, an integrated Peltier element for parallel cell culture at optimum temperature, and an impedance sensing mechanism to control the flow rate for droplet generation and preventing droplet evaporation. Droplet-in-channel is well-suited for encapsulation of single cells as it allows the careful manipulation of flow rates of aqueous phase containing cells and oil to optimize encapsulation. Once single cell containing droplets are generated, they are transferred to a DMF chip via a capillary where they are merged with droplets containing IL and cultured at 30 °C. The DMF chip, in addition to permitting cell culture and reagent (ionic liquid/salt) addition, also allows recovery of individual droplets for off-chip analysis such as further culturing and measurement of ethanol production. The D2D chip was used to evaluate the effect of IL/salt type (four types: NaOAc, NaCl, [C2mim] [OAc], [C2mim] [Cl]) and concentration (four concentrations: 0, 37.5, 75, 150 mM) on the growth kinetics and ethanol production of yeast and as expected, increasing IL concentration led to lower biomass and ethanol production. Specifically, [C2mim] [OAc] had inhibitory effects on yeast growth at concentrations 75 and 150 mM and significantly reduced their ethanol production compared to cells grown

  20. 2D and 3D registration methods for dual-energy contrast-enhanced digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Lau, Kristen C.; Roth, Susan; Maidment, Andrew D. A.

    2014-03-01

    Contrast-enhanced digital breast tomosynthesis (CE-DBT) uses an iodinated contrast agent to image the threedimensional breast vasculature. The University of Pennsylvania is conducting a CE-DBT clinical study in patients with known breast cancers. The breast is compressed continuously and imaged at four time points (1 pre-contrast; 3 postcontrast). A hybrid subtraction scheme is proposed. First, dual-energy (DE) images are obtained by a weighted logarithmic subtraction of the high-energy and low-energy image pairs. Then, post-contrast DE images are subtracted from the pre-contrast DE image. This hybrid temporal subtraction of DE images is performed to analyze iodine uptake, but suffers from motion artifacts. Employing image registration further helps to correct for motion, enhancing the evaluation of vascular kinetics. Registration using ANTS (Advanced Normalization Tools) is performed in an iterative manner. Mutual information optimization first corrects large-scale motions. Normalized cross-correlation optimization then iteratively corrects fine-scale misalignment. Two methods have been evaluated: a 2D method using a slice-by-slice approach, and a 3D method using a volumetric approach to account for out-of-plane breast motion. Our results demonstrate that iterative registration qualitatively improves with each iteration (five iterations total). Motion artifacts near the edge of the breast are corrected effectively and structures within the breast (e.g. blood vessels, surgical clip) are better visualized. Statistical and clinical evaluations of registration accuracy in the CE-DBT images are ongoing.

  1. Prenatal influences on sexual orientation: digit ratio (2D:4D) and number of older siblings.

    PubMed

    Kangassalo, Katariina; Pölkki, Mari; Rantala, Markus J

    2011-01-01

    Prenatal androgen levels are suggested to influence sexual orientation in both sexes. The 2D:4D digit ratio has been found to associate with sexual orientation, but published findings have often been contradictory, which may partly be due to the large ethnic diversity between and within studied populations. In men, number of older brothers has been found to correlate positively with homosexuality. This phenomenon has been explained with a maternal immune reaction, which is provoked only by male fetuses and which gets stronger after each pregnancy. Here we assessed the relationship of sexual orientation to 2D:4D ratios and number of older siblings in Finland, where the population is found to be genetically relatively homogeneous. As in many previous studies, heterosexual men had lower 2D:4D than non-heterosexual men, which supports the notion that non- heterosexual men experience higher androgen levels in utero than population norms. Contrary to previous reports, non-heterosexual women had higher 2D:4D than heterosexual women. Non-heterosexual men had more older brothers and older sisters than heterosexual men. The greater number of older sisters in non-heterosexual men indicates that there are other factors that contribute to the higher birth order of homosexual men than the maternal immunization. PMID:22947989

  2. Clinical Assessment of 2D/3D Registration Accuracy in 4 Major Anatomic Sites Using On-Board 2D Kilovoltage Images for 6D Patient Setup

    PubMed Central

    Li, Guang; Yang, T. Jonathan; Furtado, Hugo; Birkfellner, Wolfgang; Ballangrud, Åse; Powell, Simon N.; Mechalakos, James

    2015-01-01

    To provide a comprehensive assessment of patient setup accuracy in 6 degrees of freedom (DOFs) using 2-dimensional/3-dimensional (2D/3D) image registration with on-board 2-dimensional kilovoltage (OB-2DkV) radiographic images, we evaluated cranial, head and neck (HN), and thoracic and abdominal sites under clinical conditions. A fast 2D/3D image registration method using graphics processing unit GPU was modified for registration between OB-2DkV and 3D simulation computed tomography (simCT) images, with 3D/3D registration as the gold standard for 6DOF alignment. In 2D/3D registration, body roll rotation was obtained solely by matching orthogonal OB-2DkV images with a series of digitally reconstructed radiographs (DRRs) from simCT with a small rotational increment along the gantry rotation axis. The window/level adjustments for optimal visualization of the bone in OB-2DkV and DRRs were performed prior to registration. Ideal patient alignment at the isocenter was calculated and used as an initial registration position. In 3D/3D registration, cone-beam CT (CBCT) was aligned to simCT on bony structures using a bone density filter in 6DOF. Included in this retrospective study were 37 patients treated in 55 fractions with frameless stereotactic radiosurgery or stereotactic body radiotherapy for cranial and paraspinal cancer. A cranial phantom was used to serve as a control. In all cases, CBCT images were acquired for patient setup with subsequent OB-2DkV verification. It was found that the accuracy of the 2D/3D registration was 0.0 ± 0.5 mm and 0.1° ± 0.4° in phantom. In patient, it is site dependent due to deformation of the anatomy: 0.2 ± 1.6 mm and −0.4° ± 1.2° on average for each dimension for the cranial site, 0.7 ± 1.6 mm and 0.3° ± 1.3° for HN, 0.7 ± 2.0 mm and −0.7° ± 1.1° for the thorax, and 1.1 ± 2.6 mm and −0.5° ± 1.9° for the abdomen. Anatomical deformation and presence of soft tissue in 2D/3D registration affect the consistency with

  3. Clinical Assessment of 2D/3D Registration Accuracy in 4 Major Anatomic Sites Using On-Board 2D Kilovoltage Images for 6D Patient Setup.

    PubMed

    Li, Guang; Yang, T Jonathan; Furtado, Hugo; Birkfellner, Wolfgang; Ballangrud, Åse; Powell, Simon N; Mechalakos, James

    2015-06-01

    To provide a comprehensive assessment of patient setup accuracy in 6 degrees of freedom (DOFs) using 2-dimensional/3-dimensional (2D/3D) image registration with on-board 2-dimensional kilovoltage (OB-2 DkV) radiographic images, we evaluated cranial, head and neck (HN), and thoracic and abdominal sites under clinical conditions. A fast 2D/3D image registration method using graphics processing unit GPU was modified for registration between OB-2 DkV and 3D simulation computed tomography (simCT) images, with 3D/3D registration as the gold standard for 6 DOF alignment. In 2D/3D registration, body roll rotation was obtained solely by matching orthogonal OB-2 DkV images with a series of digitally reconstructed radiographs (DRRs) from simCT with a small rotational increment along the gantry rotation axis. The window/level adjustments for optimal visualization of the bone in OB-2 DkV and DRRs were performed prior to registration. Ideal patient alignment at the isocenter was calculated and used as an initial registration position. In 3D/3D registration, cone-beam CT (CBCT) was aligned to simCT on bony structures using a bone density filter in 6DOF. Included in this retrospective study were 37 patients treated in 55 fractions with frameless stereotactic radiosurgery or stereotactic body radiotherapy for cranial and paraspinal cancer. A cranial phantom was used to serve as a control. In all cases, CBCT images were acquired for patient setup with subsequent OB-2 DkV verification. It was found that the accuracy of the 2D/3D registration was 0.0 ± 0.5 mm and 0.1° ± 0.4° in phantom. In patient, it is site dependent due to deformation of the anatomy: 0.2 ± 1.6 mm and -0.4° ± 1.2° on average for each dimension for the cranial site, 0.7 ± 1.6 mm and 0.3° ± 1.3° for HN, 0.7 ± 2.0 mm and -0.7° ± 1.1° for the thorax, and 1.1 ± 2.6 mm and -0.5° ± 1.9° for the abdomen. Anatomical deformation and presence of soft tissue in 2D/3D registration affect the consistency with

  4. Fundamental Concepts of Digital Image Processing

    DOE R&D Accomplishments Database

    Twogood, R. E.

    1983-03-01

    The field of a digital-image processing has experienced dramatic growth and increasingly widespread applicability in recent years. Fortunately, advances in computer technology have kept pace with the rapid growth in volume of image data in these and other applications. Digital image processing has become economical in many fields of research and in industrial and military applications. While each application has requirements unique from the others, all are concerned with faster, cheaper, more accurate, and more extensive computation. The trend is toward real-time and interactive operations, where the user of the system obtains preliminary results within a short enough time that the next decision can be made by the human processor without loss of concentration on the task at hand. An example of this is the obtaining of two-dimensional (2-D) computer-aided tomography (CAT) images. A medical decision might be made while the patient is still under observation rather than days later.

  5. Automatic intensity-based 3D-to-2D registration of CT volume and dual-energy digital radiography for the detection of cardiac calcification

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Gilkeson, Robert; Fei, Baowei

    2007-03-01

    We are investigating three-dimensional (3D) to two-dimensional (2D) registration methods for computed tomography (CT) and dual-energy digital radiography (DR) for the detection of coronary artery calcification. CT is an established tool for the diagnosis of coronary artery diseases (CADs). Dual-energy digital radiography could be a cost-effective alternative for screening coronary artery calcification. In order to utilize CT as the "gold standard" to evaluate the ability of DR images for the detection and localization of calcium, we developed an automatic intensity-based 3D-to-2D registration method for 3D CT volumes and 2D DR images. To generate digital rendering radiographs (DRR) from the CT volumes, we developed three projection methods, i.e. Gaussian-weighted projection, threshold-based projection, and average-based projection. We tested normalized cross correlation (NCC) and normalized mutual information (NMI) as similarity measurement. We used the Downhill Simplex method as the search strategy. Simulated projection images from CT were fused with the corresponding DR images to evaluate the localization of cardiac calcification. The registration method was evaluated by digital phantoms, physical phantoms, and clinical data sets. The results from the digital phantoms show that the success rate is 100% with mean errors of less 0.8 mm and 0.2 degree for both NCC and NMI. The registration accuracy of the physical phantoms is 0.34 +/- 0.27 mm. Color overlay and 3D visualization of the clinical data show that the two images are registered well. This is consistent with the improvement of the NMI values from 0.20 +/- 0.03 to 0.25 +/- 0.03 after registration. The automatic 3D-to-2D registration method is accurate and robust and may provide a useful tool to evaluate the dual-energy DR images for the detection of coronary artery calcification.

  6. Automatic Intensity-based 3D-to-2D Registration of CT Volume and Dual-energy Digital Radiography for the Detection of Cardiac Calcification

    PubMed Central

    Chen, Xiang; Gilkeson, Robert; Fei, Baowei

    2013-01-01

    We are investigating three-dimensional (3D) to two-dimensional (2D) registration methods for computed tomography (CT) and dual-energy digital radiography (DR) for the detection of coronary artery calcification. CT is an established tool for the diagnosis of coronary artery diseases (CADs). Dual-energy digital radiography could be a cost-effective alternative for screening coronary artery calcification. In order to utilize CT as the “gold standard” to evaluate the ability of DR images for the detection and localization of calcium, we developed an automatic intensity-based 3D-to-2D registration method for 3D CT volumes and 2D DR images. To generate digital rendering radiographs (DRR) from the CT volumes, we developed three projection methods, i.e. Gaussian-weighted projection, threshold-based projection, and average-based projection. We tested normalized cross correlation (NCC) and normalized mutual information (NMI) as similarity measurement. We used the Downhill Simplex method as the search strategy. Simulated projection images from CT were fused with the corresponding DR images to evaluate the localization of cardiac calcification. The registration method was evaluated by digital phantoms, physical phantoms, and clinical data sets. The results from the digital phantoms show that the success rate is 100% with mean errors of less 0.8 mm and 0.2 degree for both NCC and NMI. The registration accuracy of the physical phantoms is 0.34 ± 0.27 mm. Color overlay and 3D visualization of the clinical data show that the two images are registered well. This is consistent with the improvement of the NMI values from 0.20 ± 0.03 to 0.25 ± 0.03 after registration. The automatic 3D-to-2D registration method is accurate and robust and may provide a useful tool to evaluate the dual-energy DR images for the detection of coronary artery calcification. PMID:24386527

  7. Digital imaging in anatomic pathology.

    PubMed

    O'Brien, M J; Sotnikov, A V

    1996-10-01

    Advances in computer technology continue to bring new innovations to departments of anatomic pathology. This article briefly reviews the present status of digital optical imaging, and explores the directions that this technology may lead over the next several years. Technical requirements for digital microscopic and gross imaging, and the available options for image archival and retrieval are summarized. The advantages of digital images over conventional photography in the conference room, and the usefulness of digital imaging in the frozen section suite and gross room, as an adjunct to surgical signout and as a resource for training and education, are discussed. An approach to the future construction of digital histologic sections and the computer as microscope is described. The digital technologic applications that are now available as components of the surgical pathologist's workstation are enumerated. These include laboratory information systems, computerized voice recognition, and on-line or CD-based literature searching, texts and atlases and, in some departments, on-line image databases. The authors suggest that, in addition to these resources that are already available, tomorrow's surgical pathology workstation will include network-linked digital histologic databases, on-line software for image analysis and 3-D image enhancement, expert systems, and ultimately, advanced pattern recognition capabilities. In conclusion, the authors submit that digital optical imaging is likely to have a significant and positive impact on the future development of anatomic pathology. PMID:8853053

  8. Revisiting Geschwind's hypothesis on brain lateralisation: a functional MRI study of digit ratio (2D:4D) and sex interaction effects on spatial working memory.

    PubMed

    Kalmady, Sunil Vasu; Agarwal, Sri Mahavir; Shivakumar, Venkataram; Jose, Dania; Venkatasubramanian, Ganesan; Reddy, Y C Janardhan

    2013-01-01

    The Geschwind-Behan-Galaburda (GBG) hypothesis links cerebral lateralisation with prenatal testosterone exposure. Digit ratio measures in adults have been established as potential markers of foetal sex hormonal milieu. The aim of the study was to evaluate the sex-dependent interaction of digit ratio measures and cerebral lateralization as well as their neurohemodynamic correlates using functional MRI (fMRI). Digit ratio measures-ratio of index finger (2D) length to ring finger (4D) length (2D:4D) and difference between 2D:4D of two hands, i.e., right minus left (DR-L)-were calculated using high resolution digital images in 70 right-handed participants (42 men) based on reliable and valid method. fMRI was acquired during the performance of a spatial working memory task in a subset of 25 individuals (14 men), and analysed using Statistical Parametric Mapping 8 (SPM8) and the Laterality Index toolbox for SPM8. Men had significantly less bilateral 2D:4D than women. There was a significant negative correlation between right 2D:4D and 2-Back task accuracy (2BACC) in women. A significant sex-by-right 2D:4D interaction was observed in left parahippocampal gyrus activation. Additionally, sex-by-DR-L interaction was observed in left IPL activation. DR-L showed a significant positive correlation with the whole brain Laterality Index (LI), and LI, in turn, demonstrated a significant negative correlation with 2BACC. Our study observations suggest several novel sex-differential relationships between 2D:4D measures and fMRI activation during spatial working memory task performance. Given the pre-existing background data supporting digit ratio measures as putative indicator of prenatal sex hormonal milieu, our study findings add support to the Geschwind-Behan-Galaburda (GBG) hypothesis. PMID:23458090

  9. Resolution enhancement phase-contrast imaging by microsphere digital holography

    NASA Astrophysics Data System (ADS)

    Wang, Yunxin; Guo, Sha; Wang, Dayong; Lin, Qiaowen; Rong, Lu; Zhao, Jie

    2016-05-01

    Microsphere has shown the superiority of super-resolution imaging in the traditional 2D intensity microscope. Here a microsphere digital holography approach is presented to realize the resolution enhancement phase-contrast imaging. The system is designed by combining the microsphere with the image-plane digital holography. A microsphere very close to the object can increase the resolution by transforming the object wave from the higher frequency to the lower one. The resolution enhancement amplitude and phase images can be retrieved from a single hologram. The experiments are carried on the 1D and 2D gratings, and the results demonstrate that the observed resolution has been improved, meanwhile, the phase-contrast image is obtained. The proposed method can improve the transverse resolution in all directions based on a single exposure. Furthermore, this system has extended the application of the microsphere from the conventional 2D microscopic imaging to 3D phase-contrast microscopic imaging.

  10. Antenna-coupled microbolometer based uncooled 2D array and camera for 2D real-time terahertz imaging

    NASA Astrophysics Data System (ADS)

    Simoens, F.; Meilhan, J.; Gidon, S.; Lasfargues, G.; Lalanne Dera, J.; Ouvrier-Buffet, J. L.; Pocas, S.; Rabaud, W.; Guellec, F.; Dupont, B.; Martin, S.; Simon, A. C.

    2013-09-01

    CEA-Leti has developed a monolithic large focal plane array bolometric technology optimized for 2D real-time imaging in the terahertz range. Each pixel consists in a silicon microbolometer coupled to specific antennas and a resonant quarter-wavelength cavity. First prototypes of imaging arrays have been designed and manufactured for optimized sensing in the 1-3.5THz range where THz quantum cascade lasers are delivering high optical power. NEP in the order of 1 pW/sqrt(Hz) has been assessed at 2.5 THz. This paper reports the steps of this development, starting from the pixel level, to an array associated monolithically to its CMOS ROIC and finally a stand-alone camera. For each step, modeling, technological prototyping and experimental characterizations are presented.

  11. 3D-2D registration of cerebral angiograms: a method and evaluation on clinical images.

    PubMed

    Mitrovic, Uroš; Špiclin, Žiga; Likar, Boštjan; Pernuš, Franjo

    2013-08-01

    Endovascular image-guided interventions (EIGI) involve navigation of a catheter through the vasculature followed by application of treatment at the site of anomaly using live 2D projection images for guidance. 3D images acquired prior to EIGI are used to quantify the vascular anomaly and plan the intervention. If fused with the information of live 2D images they can also facilitate navigation and treatment. For this purpose 3D-2D image registration is required. Although several 3D-2D registration methods for EIGI achieve registration accuracy below 1 mm, their clinical application is still limited by insufficient robustness or reliability. In this paper, we propose a 3D-2D registration method based on matching a 3D vasculature model to intensity gradients of live 2D images. To objectively validate 3D-2D registration methods, we acquired a clinical image database of 10 patients undergoing cerebral EIGI and established "gold standard" registrations by aligning fiducial markers in 3D and 2D images. The proposed method had mean registration accuracy below 0.65 mm, which was comparable to tested state-of-the-art methods, and execution time below 1 s. With the highest rate of successful registrations and the highest capture range the proposed method was the most robust and thus a good candidate for application in EIGI. PMID:23649179

  12. Interpreting digit ratio (2D:4D)-behavior correlations: 2D:4D sex difference, stability, and behavioral correlates and their replicability in young children.

    PubMed

    Wong, Wang I; Hines, Melissa

    2016-02-01

    The popularity of using the ratio of the second to the fourth digit (2D:4D) to study influences of early androgen exposure on human behavior relies, in part, on a report that the ratio is sex-dimorphic and stable from age 2 years (Manning etal., 1998). However, subsequent research has rarely replicated this finding. Moreover, although 2D:4D has been correlated with many behaviors, these correlations are often inconsistent. Young children's 2D:4D-behavior correlations may be more consistent than those of older individuals, because young children have experienced fewer postnatal influences. To evaluate the usefulness of 2D:4D as a biomarker of prenatal androgen exposure in studies of 2D:4D-behavior correlations, we assessed its sex difference, temporal stability, and behavioral correlates over a 6- to 8-month period in 126, 2- to 3-year-old children, providing a rare same-sample replicability test. We found a moderate sex difference on both hands and high temporal stability. However, between-sex overlap and within-sex variability were also large. Only 3 of 24 correlations with sex-typed behaviors-scores on the Preschool Activities Inventory (PSAI), preference for a boy-typical toy, preference for a girl-typical toy, were significant and in the predicted direction, all of which involved the PSAI, partially confirming findings from another study. Correlation coefficients were larger for behaviors that showed larger sex differences. But, as in older samples, the overall pattern showed inconsistency across time, sex, and hand. Therefore, although sex-dimorphic and stable, 2D:4D-behavior correlations are no more consistent for young children than for older samples. Theoretical and methodological implications are discussed. PMID:26542674

  13. Image inpainting on the basis of spectral structure from 2-D nonharmonic analysis.

    PubMed

    Hasegawa, Masaya; Kako, Takahiro; Hirobayashi, Shigeki; Misawa, Tadanobu; Yoshizawa, Toshio; Inazumi, Yasuhiro

    2013-08-01

    The restoration of images by digital inpainting is an active field of research and such algorithms are, in fact, now widely used. Conventional methods generally apply textures that are most similar to the areas around the missing region or use a large image database. However, this produces discontinuous textures and thus unsatisfactory results. Here, we propose a new technique to overcome this limitation by using signal prediction based on the nonharmonic analysis (NHA) technique proposed by the authors. NHA can be used to extract accurate spectra, irrespective of the window function, and its frequency resolution is less than that of the discrete Fourier transform. The proposed method sequentially generates new textures on the basis of the spectrum obtained by NHA. Missing regions from the spectrum are repaired using an improved cost function for 2D NHA. The proposed method is evaluated using the standard images Lena, Barbara, Airplane, Pepper, and Mandrill. The results show an improvement in MSE of about 10-20 compared with the examplar-based method and good subjective quality. PMID:23549889

  14. Multichannel response analysis on 2D projection views for detection of clustered microcalcifications in digital breast tomosynthesis

    SciTech Connect

    Wei, Jun Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Lu, Yao; Zhou, Chuan; Samala, Ravi

    2014-04-15

    Purpose: To investigate the feasibility of a new two-dimensional (2D) multichannel response (MCR) analysis approach for the detection of clustered microcalcifications (MCs) in digital breast tomosynthesis (DBT). Methods: With IRB approval and informed consent, a data set of two-view DBTs from 42 breasts containing biopsy-proven MC clusters was collected in this study. The authors developed a 2D approach for MC detection using projection view (PV) images rather than the reconstructed three-dimensional (3D) DBT volume. Signal-to-noise ratio (SNR) enhancement processing was first applied to each PV to enhance the potential MCs. The locations of MC candidates were then identified with iterative thresholding. The individual MCs were decomposed with Hermite–Gaussian (HG) and Laguerre–Gaussian (LG) basis functions and the channelized Hotelling model was trained to produce the MCRs for each MC on the 2D images. The MCRs from the PVs were fused in 3D by a coincidence counting method that backprojects the MC candidates on the PVs and traces the coincidence of their ray paths in 3D. The 3D MCR was used to differentiate the true MCs from false positives (FPs). Finally a dynamic clustering method was used to identify the potential MC clusters in the DBT volume based on the fact that true MCs of clinical significance appear in clusters. Using two-fold cross validation, the performance of the 3D MCR for classification of true and false MCs was estimated by the area under the receiver operating characteristic (ROC) curve and the overall performance of the MCR approach for detection of clustered MCs was assessed by free response receiver operating characteristic (FROC) analysis. Results: When the HG basis function was used for MCR analysis, the detection of MC cluster achieved case-based test sensitivities of 80% and 90% at the average FP rates of 0.65 and 1.55 FPs per DBT volume, respectively. With LG basis function, the average FP rates were 0.62 and 1.57 per DBT volume at

  15. Imagers for digital still photography

    NASA Astrophysics Data System (ADS)

    Bosiers, Jan; Dillen, Bart; Draijer, Cees; Manoury, Erik-Jan; Meessen, Louis; Peters, Inge

    2006-04-01

    This paper gives an overview of the requirements for, and current state-of-the-art of, CCD and CMOS imagers for use in digital still photography. Four market segments will be reviewed: mobile imaging, consumer "point-and-shoot cameras", consumer digital SLR cameras and high-end professional camera systems. The paper will also present some challenges and innovations with respect to packaging, testing, and system integration.

  16. Image appraisal for 2D and 3D electromagnetic inversion

    SciTech Connect

    Alumbaugh, D.L.; Newman, G.A.

    1998-04-01

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and model covariance matrices can be directly calculated. The columns of the model resolution matrix are shown to yield empirical estimates of the horizontal and vertical resolution throughout the imaging region. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how the estimated data noise maps into parameter error. When the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion), an iterative method can be applied to statistically estimate the model covariance matrix, as well as a regularization covariance matrix. The latter estimates the error in the inverted results caused by small variations in the regularization parameter. A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on a synthetic cross well EM data set.

  17. Multifractal analysis of 2D gray soil images

    NASA Astrophysics Data System (ADS)

    González-Torres, Ivan; Losada, Juan Carlos; Heck, Richard; Tarquis, Ana M.

    2015-04-01

    Soil structure, understood as the spatial arrangement of soil pores, is one of the key factors in soil modelling processes. Geometric properties of individual and interpretation of the morphological parameters of pores can be estimated from thin sections or 3D Computed Tomography images (Tarquis et al., 2003), but there is no satisfactory method to binarized these images and quantify the complexity of their spatial arrangement (Tarquis et al., 2008, Tarquis et al., 2009; Baveye et al., 2010). The objective of this work was to apply a multifractal technique, their singularities (α) and f(α) spectra, to quantify it without applying any threshold (Gónzalez-Torres, 2014). Intact soil samples were collected from four horizons of an Argisol, formed on the Tertiary Barreiras group of formations in Pernambuco state, Brazil (Itapirema Experimental Station). The natural vegetation of the region is tropical, coastal rainforest. From each horizon, showing different porosities and spatial arrangements, three adjacent samples were taken having a set of twelve samples. The intact soil samples were imaged using an EVS (now GE Medical. London, Canada) MS-8 MicroCT scanner with 45 μm pixel-1 resolution (256x256 pixels). Though some samples required paring to fit the 64 mm diameter imaging tubes, field orientation was maintained. References Baveye, P.C., M. Laba, W. Otten, L. Bouckaert, P. Dello, R.R. Goswami, D. Grinev, A. Houston, Yaoping Hu, Jianli Liu, S. Mooney, R. Pajor, S. Sleutel, A. Tarquis, Wei Wang, Qiao Wei, Mehmet Sezgin. Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data. Geoderma, 157, 51-63, 2010. González-Torres, Iván. Theory and application of multifractal analysis methods in images for the study of soil structure. Master thesis, UPM, 2014. Tarquis, A.M., R.J. Heck, J.B. Grau; J. Fabregat, M.E. Sanchez and J.M. Antón. Influence of Thresholding in Mass and Entropy Dimension of 3-D

  18. A 2-D imaging heat-flux gauge

    SciTech Connect

    Noel, B.W.; Borella, H.M. ); Beshears, D.L.; Sartory, W.K.; Tobin, K.W.; Williams, R.K. ); Turley, W.D. . Santa Barbara Operations)

    1991-07-01

    This report describes a new leadless two-dimensional imaging optical heat-flux gauge. The gauge is made by depositing arrays of thermorgraphic-phosphor (TP) spots onto the faces of a polymethylpentene is insulator. In the first section of the report, we describe several gauge configurations and their prototype realizations. A satisfactory configuration is an array of right triangles on each face that overlay to form squares when the gauge is viewed normal to the surface. The next section of the report treats the thermal conductivity of TPs. We set up an experiment using a comparative longitudinal heat-flow apparatus to measure the previously unknown thermal conductivity of these materials. The thermal conductivity of one TP, Y{sub 2}O{sub 3}:Eu, is 0.0137 W/cm{center dot}K over the temperature range from about 300 to 360 K. The theories underlying the time response of TP gauges and the imaging characteristics are discussed in the next section. Then we discuss several laboratory experiments to (1) demonstrate that the TP heat-flux gauge can be used in imaging applications; (2) obtain a quantum yield that enumerates what typical optical output signal amplitudes can be obtained from TP heat-flux gauges; and (3) determine whether LANL-designed intensified video cameras have sufficient sensitivity to acquire images from the heat-flux gauges. We obtained positive results from all the measurements. Throughout the text, we note limitations, areas where improvements are needed, and where further research is necessary. 12 refs., 25 figs., 4 tabs.

  19. 2D/4D marker-free tumor tracking using 4D CBCT as the reference image

    NASA Astrophysics Data System (ADS)

    Wang, Mengjiao; Sharp, Gregory C.; Rit, Simon; Delmon, Vivien; Wang, Guangzhi

    2014-05-01

    Tumor motion caused by respiration is an important issue in image-guided radiotherapy. A 2D/4D matching method between 4D volumes derived from cone beam computed tomography (CBCT) and 2D fluoroscopic images was implemented to track the tumor motion without the use of implanted markers. In this method, firstly, 3DCBCT and phase-rebinned 4DCBCT are reconstructed from cone beam acquisition. Secondly, 4DCBCT volumes and a streak-free 3DCBCT volume are combined to improve the image quality of the digitally reconstructed radiographs (DRRs). Finally, the 2D/4D matching problem is converted into a 2D/2D matching between incoming projections and DRR images from each phase of the 4DCBCT. The diaphragm is used as a target surrogate for matching instead of using the tumor position directly. This relies on the assumption that if a patient has the same breathing phase and diaphragm position as the reference 4DCBCT, then the tumor position is the same. From the matching results, the phase information, diaphragm position and tumor position at the time of each incoming projection acquisition can be derived. The accuracy of this method was verified using 16 candidate datasets, representing lung and liver applications and one-minute and two-minute acquisitions. The criteria for the eligibility of datasets were described: 11 eligible datasets were selected to verify the accuracy of diaphragm tracking, and one eligible dataset was chosen to verify the accuracy of tumor tracking. The diaphragm matching accuracy was 1.88 ± 1.35 mm in the isocenter plane and the 2D tumor tracking accuracy was 2.13 ± 1.26 mm in the isocenter plane. These features make this method feasible for real-time marker-free tumor motion tracking purposes.

  20. Development and validation of a modelling framework for simulating 2D-mammography and breast tomosynthesis images

    NASA Astrophysics Data System (ADS)

    Elangovan, Premkumar; Warren, Lucy M.; Mackenzie, Alistair; Rashidnasab, Alaleh; Diaz, Oliver; Dance, David R.; Young, Kenneth C.; Bosmans, Hilde; Strudley, Celia J.; Wells, Kevin

    2014-08-01

    Planar 2D x-ray mammography is generally accepted as the preferred screening technique used for breast cancer detection. Recently, digital breast tomosynthesis (DBT) has been introduced to overcome some of the inherent limitations of conventional planar imaging, and future technological enhancements are expected to result in the introduction of further innovative modalities. However, it is crucial to understand the impact of any new imaging technology or methodology on cancer detection rates and patient recall. Any such assessment conventionally requires large scale clinical trials demanding significant investment in time and resources. The concept of virtual clinical trials and virtual performance assessment may offer a viable alternative to this approach. However, virtual approaches require a collection of specialized modelling tools which can be used to emulate the image acquisition process and simulate images of a quality indistinguishable from their real clinical counterparts. In this paper, we present two image simulation chains constructed using modelling tools that can be used for the evaluation of 2D-mammography and DBT systems. We validate both approaches by comparing simulated images with real images acquired using the system being simulated. A comparison of the contrast-to-noise ratios and image blurring for real and simulated images of test objects shows good agreement ( < 9% error). This suggests that our simulation approach is a promising alternative to conventional physical performance assessment followed by large scale clinical trials.

  1. Automatic digital image registration

    NASA Technical Reports Server (NTRS)

    Goshtasby, A.; Jain, A. K.; Enslin, W. R.

    1982-01-01

    This paper introduces a general procedure for automatic registration of two images which may have translational, rotational, and scaling differences. This procedure involves (1) segmentation of the images, (2) isolation of dominant objects from the images, (3) determination of corresponding objects in the two images, and (4) estimation of transformation parameters using the center of gravities of objects as control points. An example is given which uses this technique to register two images which have translational, rotational, and scaling differences.

  2. Digit ratio (2D:4D), aggression, and testosterone in men exposed to an aggressive video stimulus.

    PubMed

    Kilduff, Liam P; Hopp, Renato N; Cook, Christian J; Crewther, Blair T; Manning, John T

    2013-01-01

    The relative lengths of the 2(nd) and 4(th) digits (2D:4D) is a negative biomarker for prenatal testosterone, and low 2D:4D may be associated with aggression. However, the evidence for a 2D:4D-aggression association is mixed. Here we test the hypothesis that 2D:4D is robustly linked to aggression in "challenge" situations in which testosterone is increased. Participants were exposed to an aggressive video and a control video. Aggression was measured after each video and salivary free testosterone levels before and after each video. Compared to the control video, the aggressive video was associated with raised aggression responses and a marginally significant increase in testosterone. Left 2D:4D was negatively correlated with aggression after the aggressive video and the strength of the correlation was higher in those participants who showed the greatest increases in testosterone. Left 2D:4D was also negatively correlated to the difference between aggression scores in the aggressive and control conditions. The control video did not influence testosterone concentrations and there were no associations between 2D:4D and aggression. We conclude that 2D:4D moderates the impact of an aggressive stimulus on aggression, such that an increase in testosterone resulting from a "challenge" is associated with a negative correlation between 2D:4D and aggression. PMID:24113579

  3. Imaging 2-D Structures With Receiver Functions Using Harmonic Stripping

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, V.

    2010-12-01

    I present a novel technique to image dipping and anisotropic structures using receiver functions. Receiver functions isolate phase conversions from interfaces close to the seismic station. Standard analysis assumes a quasi-flat layered structure and dampens arrivals from dipping interfaces and anisotropic layers, with attempts to extract information on such structures relying on cumbersome and nonunique forward modeling. I use a simple relationship between the radial and transverse component receiver function to detect dipping and anisotropic layers and map their depth and orientation. For dipping interfaces, layers with horizontal or plunging axis anisotropy, and point scatterers, the following relationships hold: After subtracting the azimuthally invariant portion of the radial receiver functions, the remaining signal is an azimuthally shifted version of the transverse receiver functions. The strike of the dipping interface or anisotropy is given by the azimuth of polarity reversals, and the type of structure can be inferred from the amount of phase shift between the components. For a known structure type, the phase shift between the two components provides pseudoevents from back-azimuths with little seismicity. The technique allows structural mapping at depth akin to geological mapping of rock fabric and dipping layers at the surface. It reduces complex wavefield effects to two simple and geologically meaningful parameters, similar to shear wave splitting. I demonstrate the method on the Wind River Thrust as well as other structures within the Transportable Array footprint.

  4. Imaging Excited State Dynamics with 2d Electronic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Engel, Gregory S.

    2012-06-01

    Excited states in the condensed phase have extremely high chemical potentials making them highly reactive and difficult to control. Yet in biology, excited state dynamics operate with exquisite precision driving solar light harvesting in photosynthetic complexes though excitonic transport and photochemistry through non-radiative relaxation to photochemical products. Optimized by evolution, these biological systems display manifestly quantum mechanical behaviors including coherent energy transfer, steering wavepacket trajectories through conical intersections and protection of long-lived quantum coherence. To image the underlying excited state dynamics, we have developed a new spectroscopic method allowing us to capture excitonic structure in real time. Through this method and other ultrafast multidimensional spectroscopies, we have captured coherent dynamics within photosynthetic antenna complexes. The data not only reveal how biological systems operate, but these same spectral signatures can be exploited to create new spectroscopic tools to elucidate the underlying Hamiltonian. New data on the role of the protein in photosynthetic systems indicates that the chromophores mix strongly with some bath modes within the system. The implications of this mixing for excitonic transport will be discussed along with prospects for transferring underlying design principles to synthetic systems.

  5. All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators

    NASA Astrophysics Data System (ADS)

    Moniem, Tamer A.

    2016-04-01

    The photonic crystals draw significant attention to build all-optical logic devices and are considered one of the solutions for the opto-electronic bottleneck via speed and size. The paper presents a novel optical 4 × 2 encoder based on 2D square lattice photonic crystals of silicon rods. The main realization of optical encoder is based on the photonic crystal ring resonator NOR gates. The proposed structure has four logic input ports, two output ports, and two bias input port. The photonic crystal structure has a square lattice of silicon rods with a refractive index of 3.39 in air. The structure has lattice constant 'a' equal to 630 nm and bandgap range from 0.32 to 044. The total size of the proposed 4 × 2 encoder is equal to 35 μm × 35 μm. The simulation results using the dimensional finite difference time domain and Plane Wave Expansion methods confirm the operation and the feasibility of the proposed optical encoder for ultrafast optical digital circuits.

  6. Automatic Masking for Robust 3D-2D Image Registration in Image-Guided Spine Surgery

    PubMed Central

    Ketcha, M. D.; De Silva, T.; Uneri, A.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2016-01-01

    During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies.

  7. Registration of 2D C-Arm and 3D CT Images for a C-Arm Image-Assisted Navigation System for Spinal Surgery.

    PubMed

    Chang, Chih-Ju; Lin, Geng-Li; Tse, Alex; Chu, Hong-Yu; Tseng, Ching-Shiow

    2015-01-01

    C-Arm image-assisted surgical navigation system has been broadly applied to spinal surgery. However, accurate path planning on the C-Arm AP-view image is difficult. This research studies 2D-3D image registration methods to obtain the optimum transformation matrix between C-Arm and CT image frames. Through the transformation matrix, the surgical path planned on preoperative CT images can be transformed and displayed on the C-Arm images for surgical guidance. The positions of surgical instruments will also be displayed on both CT and C-Arm in the real time. Five similarity measure methods of 2D-3D image registration including Normalized Cross-Correlation, Gradient Correlation, Pattern Intensity, Gradient Difference Correlation, and Mutual Information combined with three optimization methods including Powell's method, Downhill simplex algorithm, and genetic algorithm are applied to evaluate their performance in converge range, efficiency, and accuracy. Experimental results show that the combination of Normalized Cross-Correlation measure method with Downhill simplex algorithm obtains maximum correlation and similarity in C-Arm and Digital Reconstructed Radiograph (DRR) images. Spine saw bones are used in the experiment to evaluate 2D-3D image registration accuracy. The average error in displacement is 0.22 mm. The success rate is approximately 90% and average registration time takes 16 seconds. PMID:27018859

  8. Pediatric digital chest imaging

    SciTech Connect

    Tarver, R.D.; Cohen, M.; Broderick, N.J.; Conces, D.J. Jr. )

    1990-01-01

    The Philips Computed Radiography system performs well with pediatric portable chest radiographs, handling the throughout of a busy intensive care service 24 hours a day. Images are excellent and routinely provide a conventional (unenhanced) image and an edge-enhanced image. Radiation dose is decreased by the lowered frequency of repeat examinations and the ability of the plates to respond to a much lower dose and still provide an adequate image. The high quality and uniform density of serial PCR portable radiographs greatly enhances diagnostic content of the films. Decreased resolution has not been a problem clinically. Image manipulation and electronic transfer to remote viewing stations appear to be helpful and are currently being evaluated further. The PCR system provides a marked improvement in pediatric portable chest radiology.

  9. Recovering 3D tumor locations from 2D bioluminescence images and registration with CT images

    NASA Astrophysics Data System (ADS)

    Huang, Xiaolei; Metaxas, Dimitris N.; Menon, Lata G.; Mayer-Kuckuk, Philipp; Bertino, Joseph R.; Banerjee, Debabrata

    2006-02-01

    In this paper, we introduce a novel and efficient algorithm for reconstructing the 3D locations of tumor sites from a set of 2D bioluminescence images which are taken by a same camera but after continually rotating the object by a small angle. Our approach requires a much simpler set up than those using multiple cameras, and the algorithmic steps in our framework are efficient and robust enough to facilitate its use in analyzing the repeated imaging of a same animal transplanted with gene marked cells. In order to visualize in 3D the structure of the tumor, we also co-register the BLI-reconstructed crude structure with detailed anatomical structure extracted from high-resolution microCT on a single platform. We present our method using both phantom studies and real studies on small animals.

  10. 3-D Reconstruction From 2-D Radiographic Images and Its Application to Clinical Veterinary Medicine

    NASA Astrophysics Data System (ADS)

    Hamamoto, Kazuhiko; Sato, Motoyoshi

    3D imaging technique is very important and indispensable in diagnosis. The main stream of the technique is one in which 3D image is reconstructed from a set of slice images, such as X-ray CT and MRI. However, these systems require large space and high costs. On the other hand, a low cost and small size 3D imaging system is needed in clinical veterinary medicine, for example, in the case of diagnosis in X-ray car or pasture area. We propose a novel 3D imaging technique using 2-D X-ray radiographic images. This system can be realized by cheaper system than X-ray CT and enables to get 3D image in X-ray car or portable X-ray equipment. In this paper, a 3D visualization technique from 2-D radiographic images is proposed and several reconstructions are shown. These reconstructions are evaluated by veterinarians.

  11. A new gold-standard dataset for 2D/3D image registration evaluation

    NASA Astrophysics Data System (ADS)

    Pawiro, Supriyanto; Markelj, Primoz; Gendrin, Christelle; Figl, Michael; Stock, Markus; Bloch, Christoph; Weber, Christoph; Unger, Ewald; Nöbauer, Iris; Kainberger, Franz; Bergmeister, Helga; Georg, Dietmar; Bergmann, Helmar; Birkfellner, Wolfgang

    2010-02-01

    In this paper, we propose a new gold standard data set for the validation of 2D/3D image registration algorithms for image guided radiotherapy. A gold standard data set was calculated using a pig head with attached fiducial markers. We used several imaging modalities common in diagnostic imaging or radiotherapy which include 64-slice computed tomography (CT), magnetic resonance imaging (MRI) using T1, T2 and proton density (PD) sequences, and cone beam CT (CBCT) imaging data. Radiographic data were acquired using kilovoltage (kV) and megavoltage (MV) imaging techniques. The image information reflects both anatomy and reliable fiducial marker information, and improves over existing data sets by the level of anatomical detail and image data quality. The markers of three dimensional (3D) and two dimensional (2D) images were segmented using Analyze 9.0 (AnalyzeDirect, Inc) and an in-house software. The projection distance errors (PDE) and the expected target registration errors (TRE) over all the image data sets were found to be less than 1.7 mm and 1.3 mm, respectively. The gold standard data set, obtained with state-of-the-art imaging technology, has the potential to improve the validation of 2D/3D registration algorithms for image guided therapy.

  12. Damage Assessment and Digital 2D-3D Documentation of PetraTreasury

    NASA Astrophysics Data System (ADS)

    Bala'awi, Fadi; Alshawabkeh, Yahya; Alawneh, Firas; Masri, Eyed al

    The treasury is the icon monument of the world heritage site of ancient Petra city. Unfortunately, this important part of the world's cultural heritage is gradually being diminished due to weathering and erosion problems. This give rise to the need to have a comprehensive study and full documentation of the monument in order to evaluate its status. In this research a comprehensive approach utilizing 2D-3D documentation of the structure using laser scanner and photogrammetry is carried parallel with a laboratory analysis and a correlation study of the salt content and the surface weathering forms. In addition, the research extends to evaluate a set of chemical and physical properties of the case study monument. Studies of stone texture and spatial distribution of soluble salts were carried out at the monument in order to explain the mechanism of the weathering problem. Then a series of field work investigations and laboratory work were undertaken to study the effect of relative humidity, temperature, and wind are the main factors in the salt damage process. The 3D modelling provides accurate geometric and radiometric properties of the damage shape. In order to support the visual quality of 3D surface details and cracks, a hybrid approach combining data from the laser scanner and the digital imagery was developed. Based on the findings, salt damage appears to be one of the main problems at this monument. Although, the total soluble salt content are quite low, but the salts contamination is all over the tested samples in all seasons, with higher concentrations at deep intervals. The thermodynamic calculations carried out by this research have also shown that salt damage could be minimised by controlling the surrounding relative humidity conditions. This measure is undoubtedly the most challenging of all, and its application, if deemed feasible, should be carried out in parallel with other conservation measures.

  13. Superresolved imaging in digital holography by superposition of tilted wavefronts.

    PubMed

    Mico, Vicente; Zalevsky, Zeev; García-Martínez, Pascuala; García, Javier

    2006-02-10

    A technique based on superresolution by digital holographic microscopic imaging is presented. We used a two dimensional (2-D) vertical-cavity self-emitting laser (VCSEL) array as spherical-wave illumination sources. The method is defined in terms of an incoherent superposition of tilted wavefronts. The tilted spherical wave originating from the 2-D VCSEL elements illuminates the target in transmission mode to obtain a hologram in a Mach-Zehnder interferometer configuration. Superresolved images of the input object above the common lens diffraction limit are generated by sequential recording of the individual holograms and numerical reconstruction of the image with the extended spatial frequency range. We have experimentally tested the approach for a microscope objective with an exact 2-D reconstruction image of the input object. The proposed approach has implementation advantages for applications in biological imaging or the microelectronic industry in which structured targets are being inspected. PMID:16512523

  14. Calcification content quantification by dual-energy x-ray absorptiometry with a 2D digital radiographic detector

    NASA Astrophysics Data System (ADS)

    Dinten, Jean M.; Robert-Coutant, Christine; Darboux, Michel; Gonon, Georges; Bordy, Thomas

    2003-06-01

    In a previous paper (SPIE Medical Imaging 2001), a dual energy method for bone densitometry using a 2D digital radiographic detector has been presented. In this paper, calcium content quantification performance of the approach is precised. The main challenge is to achieve quantification using scatter-corrected dual energy acquisitions. Therefore a scatter estimation approach, based on an expression of scatter as a functional of the primary flux, has been developed. This expression is derived from the Klein and Nishina equation and includes tabulated scatter level values. The calcium quantification performances are validated on two configurations. A first one is issued from criteria developed by the French "Groupe de Recherche et d'Information sur les Osteoporoses." It is based on the use of a phantom made of five 3mm thick PVC sheets in the form of five steps, representing five different bone mineral density values, included in a lucite container filled with water. Additional lucite plates can be put over the phantom. This phantom has been used for evaluation of quantification robustness versus patient thickness and composition variations, and for accuracy evaluation. The second configuration, composed of small calcified objects (representative of lung nodules), is used for evaluating capacities to differentiate calcified from non calcified nodules and to test calcium content quantification performance.

  15. Image processing techniques for digital orthophotoquad production

    USGS Publications Warehouse

    Hood, Joy J.; Ladner, L. J.; Champion, Richard A.

    1989-01-01

    Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.

  16. Image Acquisition and Quality in Digital Radiography.

    PubMed

    Alexander, Shannon

    2016-09-01

    Medical imaging has undergone dramatic changes and technological breakthroughs since the introduction of digital radiography. This article presents information on the development of digital radiography and types of digital radiography systems. Aspects of image quality and radiation exposure control are highlighted as well. In addition, the article includes related workplace changes and medicolegal considerations in the digital radiography environment. PMID:27601691

  17. Digital imaging access library

    NASA Astrophysics Data System (ADS)

    Cook, Jay F.; Hansen, Mark; Francoise, James J.; Leckie, Robert G.; Smith, Donald V.

    1994-05-01

    The ability to access a vast array of radiological and pathologic diagnoses through computer searches of local medical facility databases is a by-product of the continued development of filmless imaging systems. The Department of Defense (DoD) Medical Diagnostic Imaging Support initiative is expanding through the addition of on-line systems at several DoD health care facilities. Madigan Army Medical Center, as the initial site, will soon be 90% filmless, with over one million images archived. Multiple other DoD medical centers are under installation. The eventual goal is an interconnected network of PACS systems of DoD medical centers and their supported medical facilities throughout the United States. To access this potential pool of medical information requires a centralized database capable of acting as a diagnostic index system. The establishment of a multi-center film library index begins with an initial analysis of issues regarding data storage and access, indexing, cross-coding with pathological files, communication formats, cost sharing, and patient confidentiality. In initiating these first steps to developing this telecommunications library these issues and their implications are discussed. The final implementation of this system will facilitate markedly improved research and teaching capabilities in both radiological and pathological fields.

  18. 2dx--user-friendly image processing for 2D crystals.

    PubMed

    Gipson, Bryant; Zeng, Xiangyan; Zhang, Zi Yan; Stahlberg, Henning

    2007-01-01

    Electron crystallography determines the structure of two-dimensional (2D) membrane protein crystals and other 2D crystal systems. Cryo-transmission electron microscopy records high-resolution electron micrographs, which require computer processing for three-dimensional structure reconstruction. We present a new software system 2dx, which is designed as a user-friendly, platform-independent software package for electron crystallography. 2dx assists in the management of an image-processing project, guides the user through the processing of 2D crystal images, and provides transparence for processing tasks and results. Algorithms are implemented in the form of script templates reminiscent of c-shell scripts. These templates can be easily modified or replaced by the user and can also execute modular stand-alone programs from the MRC software or from other image processing software packages. 2dx is available under the GNU General Public License at 2dx.org. PMID:17055742

  19. Nanophotonic filters for digital imaging

    NASA Astrophysics Data System (ADS)

    Walls, Kirsty

    There has been an increasing demand for low cost, portable CMOS image sensors because of increased integration, and new applications in the automotive, mobile communication and medical industries, amongst others. Colour reproduction remains imperfect in conventional digital image sensors, due to the limitations of the dye-based filters. Further improvement is required if the full potential of digital imaging is to be realised. In alternative systems, where accurate colour reproduction is a priority, existing equipment is too bulky for anything but specialist use. In this work both these issues are addressed by exploiting nanophotonic techniques to create enhanced trichromatic filters, and multispectral filters, all of which can be fabricated on-chip, i.e. integrated into a conventional digital image sensor, to create compact, low cost, mass produceable imaging systems with accurate colour reproduction. The trichromatic filters are based on plasmonic structures. They exploit the excitation of surface plasmon resonances in arrays of subwavelength holes in metal films to filter light. The currently-known analytical expressions are inadequate for optimising all relevant parameters of a plasmonic structure. In order to obtain arbitrary filter characteristics, an automated design procedure was developed that integrated a genetic algorithm and 3D finite-difference time-domain tool. The optimisation procedure's efficacy is demonstrated by designing a set of plasmonic filters that replicate the CIE (1931) colour matching functions, which themselves mimic the human eye's daytime colour response.

  20. 2D wavelet-analysis-based calibration technique for flat-panel imaging detectors: application in cone beam volume CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.

    1999-05-01

    The application of the newly developed flat panel x-ray imaging detector in cone beam volume CT has attracted increasing interest recently. Due to an imperfect solid state array manufacturing process, however, defective elements, gain non-uniformity and offset image unavoidably exist in all kinds of flat panel x-ray imaging detectors, which will cause severe streak and ring artifacts in a cone beam reconstruction image and severely degrade image quality. A calibration technique, in which the artifacts resulting from the defective elements, gain non-uniformity and offset image can be reduced significantly, is presented in this paper. The detection of defective elements is distinctively based upon two-dimensional (2D) wavelet analysis. Because of its inherent localizability in recognizing singularities or discontinuities, wavelet analysis possesses the capability of detecting defective elements over a rather large x-ray exposure range, e.g., 20% to approximately 60% of the dynamic range of the detector used. Three-dimensional (3D) images of a low-contrast CT phantom have been reconstructed from projection images acquired by a flat panel x-ray imaging detector with and without calibration process applied. The artifacts caused individually by defective elements, gain non-uniformity and offset image have been separated and investigated in detail, and the correlation with each other have also been exposed explicitly. The investigation is enforced by quantitative analysis of the signal to noise ratio (SNR) and the image uniformity of the cone beam reconstruction image. It has been demonstrated that the ring and streak artifacts resulting from the imperfect performance of a flat panel x-ray imaging detector can be reduced dramatically, and then the image qualities of a cone beam reconstruction image, such as contrast resolution and image uniformity are improved significantly. Furthermore, with little modification, the calibration technique presented here is also applicable

  1. Digital Images on the DIME

    NASA Technical Reports Server (NTRS)

    2003-01-01

    With NASA on its side, Positive Systems, Inc., of Whitefish, Montana, is veering away from the industry standards defined for producing and processing remotely sensed images. A top developer of imaging products for geographic information system (GIS) and computer-aided design (CAD) applications, Positive Systems is bucking traditional imaging concepts with a cost-effective and time-saving software tool called Digital Images Made Easy (DIME(trademark)). Like piecing a jigsaw puzzle together, DIME can integrate a series of raw aerial or satellite snapshots into a single, seamless panoramic image, known as a 'mosaic.' The 'mosaicked' images serve as useful backdrops to GIS maps - which typically consist of line drawings called 'vectors' - by allowing users to view a multidimensional map that provides substantially more geographic information.

  2. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    NASA Astrophysics Data System (ADS)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.

  3. Digital panoramic and extraoral imaging.

    PubMed

    Dove, S B; McDavid, W D

    1993-10-01

    Intraoral, panoramic, and extraoral radiographs are the primary means of diagnosing hard-tissue disorders of the dentomaxillofacial region. These imaging methods require the use of x-ray film and subsequent chemical processing to produce diagnostic images. A goal of recent research has been the replacement of this film-based technology with computer-based devices that use electronic or storage phosphor receptors to record the x-ray image in a digital format. This article discusses some of these emerging technologies and their potential effect on the future of panoramic and extraoral radiology. PMID:8224331

  4. Digital imaging and fabrication.

    PubMed

    Zandparsa, Roya

    2014-01-01

    Bioceramics have been adopted in dental restorations for implants, bridges, inlays, onlays, and all-ceramic crowns. Dental bioceramics include glass ceramics, reinforced porcelains, zirconias, aluminas, fiber-reinforced ceramic composites, and multilayered ceramic structures. The process of additive manufacturing is ideally suited to dentistry. Models are designed using data from a computed tomography scan or magnetic resonance imaging. Since its development in 2001, direct ceramic machining of presintered yttria tetragonal zirconia polycrystal has become increasingly popular in dentistry. There are wide variety commercially available cements for luting all-ceramic restorations. However, resin cements have lower solubility and better aesthetic characteristics. PMID:24286650

  5. Digit ratio 2D:4D in relation to autism spectrum disorders, empathizing, and systemizing: a quantitative review.

    PubMed

    Hönekopp, Johannes

    2012-08-01

    Prenatal testosterone (PT) effects have been proposed to increase systemizing (the drive to understand lawful input-output relationships), to decrease empathizing (the drive to understand others), and to cause autism via hypermasculinization of the brain. Digit ratio 2D:4D is a putative marker of PT effects in humans. An online study (n = 1896) into the relationship between the Reading the Mind in the Eyes Test (a widely used measure of empathizing) and self-measured 2D:4D in a nonclinical sample is reported. No evidence for a link between empathizing and 2D:4D in either females or males emerged. Further, three meta-analyses are presented that look into the relationships of 2D:4D with autism spectrum disorder (ASD), systemizing, and empathizing. 2D:4D was substantially lower (more masculine) in ASD-affected individuals than in normal controls (d = -0.58, P < 0.001). However, 2D:4D was found to be virtually unrelated to systemizing and empathizing in normal adults. The results support the idea that high PT is a risk factor for autism, but they challenge the view that PT substantially contributes to sex differences in systemizing and empathizing. Possibly, this pattern reflects an interaction effect, whereby PT drives ASD characteristic changes only in brains with a specific damage. PMID:22674640

  6. Digit ratio (2D:4D) predicts sporting success among female fencers independent from physical, experience, and personality factors.

    PubMed

    Voracek, M; Reimer, B; Dressler, S G

    2010-12-01

    Research particularly focusing on male athletes and popular sports (running and soccer) suggests associations of lower (masculinized) second-to-fourth digit ratio (2D:4D), a putative marker of prenatal androgen action, with better sports performance. Studies focusing on women, non-mainstream sports, or controlling for covariates relevant for sporting success are still sparse. This study examined associations between 2D:4D and performance of both male and female athletes active in fencing (a non-mainstream sport dominated by male participants), while controlling for covariates. National fencing rankings and 2D:4D of 58 male and 41 female Austrian tournament fencers (mean age 24 years) were correlated. Among female, but not male, fencers, lower 2D:4D was related to better national fencing rankings. 2D:4D still accounted for incremental variance (12%) in fencing success, when the effects of salient performance factors (age, body mass index, years of fencing, training intensity, and the personality variables achievement, control, harm avoidance, and social potency) were controlled for (totaling 35% attributable variance). Athletes active in the most aggressive form (the sabre) had lower 2D:4D than those active in the other forms (épée and foil fencing). Sporting success in adult life might be partly prenatally programmed via long-lasting extragenital effects of testosterone. PMID:19843265

  7. A 2-D orientation-adaptive prediction filter in lifting structures for image coding.

    PubMed

    Gerek, Omer N; Cetin, A Enis

    2006-01-01

    Lifting-style implementations of wavelets are widely used in image coders. A two-dimensional (2-D) edge adaptive lifting structure, which is similar to Daubechies 5/3 wavelet, is presented. The 2-D prediction filter predicts the value of the next polyphase component according to an edge orientation estimator of the image. Consequently, the prediction domain is allowed to rotate +/-45 degrees in regions with diagonal gradient. The gradient estimator is computationally inexpensive with additional costs of only six subtractions per lifting instruction, and no multiplications are required. PMID:16435541

  8. 2-D nonlinear IIR-filters for image processing - An exploratory analysis

    NASA Technical Reports Server (NTRS)

    Bauer, P. H.; Sartori, M.

    1991-01-01

    A new nonlinear IIR filter structure is introduced and its deterministic properties are analyzed. It is shown to be better suited for image processing applications than its linear shift-invariant counterpart. The new structure is obtained from causality inversion of a 2D quarterplane causal linear filter with respect to the two directions of propagation. It is demonstrated, that by using this design, a nonlinear 2D lowpass filter can be constructed, which is capable of effectively suppressing Gaussian or impulse noise without destroying important image information.

  9. Digital diagnosis of medical images

    NASA Astrophysics Data System (ADS)

    Heinonen, Tomi; Kuismin, Raimo; Jormalainen, Raimo; Dastidar, Prasun; Frey, Harry; Eskola, Hannu

    2001-08-01

    The popularity of digital imaging devices and PACS installations has increased during the last years. Still, images are analyzed and diagnosed using conventional techniques. Our research group begun to study the requirements for digital image diagnostic methods to be applied together with PACS systems. The research was focused on various image analysis procedures (e.g., segmentation, volumetry, 3D visualization, image fusion, anatomic atlas, etc.) that could be useful in medical diagnosis. We have developed Image Analysis software (www.medimag.net) to enable several image-processing applications in medical diagnosis, such as volumetry, multimodal visualization, and 3D visualizations. We have also developed a commercial scalable image archive system (ActaServer, supports DICOM) based on component technology (www.acta.fi), and several telemedicine applications. All the software and systems operate in NT environment and are in clinical use in several hospitals. The analysis software have been applied in clinical work and utilized in numerous patient cases (500 patients). This method has been used in the diagnosis, therapy and follow-up in various diseases of the central nervous system (CNS), respiratory system (RS) and human reproductive system (HRS). In many of these diseases e.g. Systemic Lupus Erythematosus (CNS), nasal airways diseases (RS) and ovarian tumors (HRS), these methods have been used for the first time in clinical work. According to our results, digital diagnosis improves diagnostic capabilities, and together with PACS installations it will become standard tool during the next decade by enabling more accurate diagnosis and patient follow-up.

  10. Approximating large convolutions in digital images.

    PubMed

    Mount, D M; Kanungo, T; Netanyahu, N S; Piatko, C; Silverman, R; Wu, A Y

    2001-01-01

    Computing discrete two-dimensional (2-D) convolutions is an important problem in image processing. In mathematical morphology, an important variant is that of computing binary convolutions, where the kernel of the convolution is a 0-1 valued function. This operation can be quite costly, especially when large kernels are involved. We present an algorithm for computing convolutions of this form, where the kernel of the binary convolution is derived from a convex polygon. Because the kernel is a geometric object, we allow the algorithm some flexibility in how it elects to digitize the convex kernel at each placement, as long as the digitization satisfies certain reasonable requirements. We say that such a convolution is valid. Given this flexibility we show that it is possible to compute binary convolutions more efficiently than would normally be possible for large kernels. Our main result is an algorithm which, given an m x n image and a k-sided convex polygonal kernel K, computes a valid convolution in O(kmn) time. Unlike standard algorithms for computing correlations and convolutions, the running time is independent of the area or perimeter of K, and our techniques do not rely on computing fast Fourier transforms. Our algorithm is based on a novel use of Bresenham's (1965) line-drawing algorithm and prefix-sums to update the convolution incrementally as the kernel is moved from one position to another across the image. PMID:18255522

  11. Separation of image parts using 2-D parallel form recursive filters.

    PubMed

    Sivaramakrishna, R

    1996-01-01

    This correspondence deals with a new technique to separate objects or image parts in a composite image. A parallel form extension of a 2-D Steiglitz-McBride method is applied to the discrete cosine transform (DCT) of the image containing the objects that are to be separated. The obtained parallel form is the sum of several filters or systems, where the impulse response of each filter corresponds to the DCT of one object in the original image. Preliminary results on an image with two objects show that the algorithm works well, even in the case where one object occludes another as well as in the case of moderate noise. PMID:18285105

  12. Gated cardiac NMR imaging and 2D echocardiography in the detection of intracardial neoplasm

    SciTech Connect

    Go, R.T.; O'Donnell, J.K.; Salcedo, E.E.; Feiglin, D.H.; Underwood, D.A.; MacIntyre, W.J.; Meaney, T.F.

    1985-05-01

    Noninvasive 2D echocardiography has replaced contrast angiography as the procedure of choice in the diagnosis of intracardiac neoplasm. The purpose of this study was to determine whether intracardiac neoplasm can be detected as well by gated cardiac NMR. Four patients with known intracardiac neoplasm previously diagnosed by 2D echocardiography had gated cardiac NMR imaging using a superconductive 0.6 Tesla magnet. All patients were performed using a Tl weighted spin echo pulse sequence with a TE of 30 msec and TR of one R-R interval. Two-dimensional planar single or multiple slice techniques were used. In one patient, imaging at different times along the R-R interval were performed for cine display. The results of the present study show detection of the intracardiac neoplasm in all four cases by gated cardiac NMR imaging and the results were comparable to 2D echocardiography. The former imaging technique showed superior spatial resolution. Despite its early stage of development, gated cardiac NMR imaging appears at least equal to 2D echocardiography in the detection of intracardiac neoplasm. The availability of multislice coupled with multiframe acquisition techniques now being developed will provide a cinematic display that will be more effective in the display of the tumor in motion within the cardiac chamber involved and facilitate visualization of the relationship of the tumor to adjacent cardiac structures.

  13. 3D reconstruction of a carotid bifurcation from 2D transversal ultrasound images.

    PubMed

    Yeom, Eunseop; Nam, Kweon-Ho; Jin, Changzhu; Paeng, Dong-Guk; Lee, Sang-Joon

    2014-12-01

    Visualizing and analyzing the morphological structure of carotid bifurcations are important for understanding the etiology of carotid atherosclerosis, which is a major cause of stroke and transient ischemic attack. For delineation of vasculatures in the carotid artery, ultrasound examinations have been widely employed because of a noninvasive procedure without ionizing radiation. However, conventional 2D ultrasound imaging has technical limitations in observing the complicated 3D shapes and asymmetric vasodilation of bifurcations. This study aims to propose image-processing techniques for better 3D reconstruction of a carotid bifurcation in a rat by using 2D cross-sectional ultrasound images. A high-resolution ultrasound imaging system with a probe centered at 40MHz was employed to obtain 2D transversal images. The lumen boundaries in each transverse ultrasound image were detected by using three different techniques; an ellipse-fitting, a correlation mapping to visualize the decorrelation of blood flow, and the ellipse-fitting on the correlation map. When the results are compared, the third technique provides relatively good boundary extraction. The incomplete boundaries of arterial lumen caused by acoustic artifacts are somewhat resolved by adopting the correlation mapping and the distortion in the boundary detection near the bifurcation apex was largely reduced by using the ellipse-fitting technique. The 3D lumen geometry of a carotid artery was obtained by volumetric rendering of several 2D slices. For the 3D vasodilatation of the carotid bifurcation, lumen geometries at the contraction and expansion states were simultaneously depicted at various view angles. The present 3D reconstruction methods would be useful for efficient extraction and construction of the 3D lumen geometries of carotid bifurcations from 2D ultrasound images. PMID:24965564

  14. Digital image analyser for autoradiography

    SciTech Connect

    Muth, R.A.; Plotnick, J.

    1985-05-01

    The most critical parameter in quantitative autoradiography for assay of tissue concentrations of tracers is the ability to obtain precise and accurate measurements of optical density of the images. Existing high precision systems for image analysis, rotating drum densitometers, are expensive, suffer from mechanical problems and are slow. More moderately priced and reliable video camera based systems are available, but their outputs generally do not have the uniformity and stability necessary for high resolution quantitative autoradiography. The authors have designed and constructed an image analyser optimized for quantitative single and multiple tracer autoradiography which the authors refer to as a memory-mapped charged-coupled device scanner (MM-CCD). The input is from a linear array of CCD's which is used to optically scan the autoradiograph. Images are digitized into 512 x 512 picture elements with 256 gray levels and the data is stored in buffer video memory in less than two seconds. Images can then be transferred to RAM memory by direct memory-mapping for further processing. Arterial blood curve data and optical density-calibrated standards data can be entered and the optical density images can be converted automatically to tracer concentration or functional images. In double tracer studies, images produced from both exposures can be stored and processed in RAM to yield ''pure'' individual tracer concentration or functional images. Any processed image can be transmitted back to the buffer memory to be viewed on a monitor and processed for region of interest analysis.

  15. Comparative study on 3D-2D convertible integral imaging systems

    NASA Astrophysics Data System (ADS)

    Choi, Heejin; Kim, Joohwan; Kim, Yunhee; Lee, Byoungho

    2006-02-01

    In spite of significant improvements in three-dimensional (3D) display fields, the commercialization of a 3D-only display system is not achieved yet. The mainstream of display market is a high performance two-dimensional (2D) flat panel display (FPD) and the beginning of the high-definition (HD) broadcasting accelerates the opening of the golden age of HD FPDs. Therefore, a 3D display system needs to be able to display a 2D image with high quality. In this paper, two different 3D-2D convertible methods based on integral imaging are compared and categorized for its applications. One method uses a point light source array and a polymer-dispersed liquid crystal and one display panel. The other system adopts two display panels and a lens array. The former system is suitable for mobile applications while the latter is for home applications such as monitors and TVs.

  16. Tensor representation of color images and fast 2D quaternion discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.

    2015-03-01

    In this paper, a general, efficient, split algorithm to compute the two-dimensional quaternion discrete Fourier transform (2-D QDFT), by using the special partitioning in the frequency domain, is introduced. The partition determines an effective transformation, or color image representation in the form of 1-D quaternion signals which allow for splitting the N × M-point 2-D QDFT into a set of 1-D QDFTs. Comparative estimates revealing the efficiency of the proposed algorithms with respect to the known ones are given. In particular, a proposed method of calculating the 2r × 2r -point 2-D QDFT uses 18N2 less multiplications than the well-known column-row method and method of calculation based on the symplectic decomposition. The proposed algorithm is simple to apply and design, which makes it very practical in color image processing in the frequency domain.

  17. Digital image inpainting and microscopy imaging.

    PubMed

    Stanciu, Stefan G; Hristu, Radu; Stanciu, George A

    2011-11-01

    A considerable amount of image processing techniques known as inpainting techniques have been recently developed aiming to provide solutions for filling in missing or damaged regions in a digital image. Typical such techniques reconstruct a defined area by using information from its neighborhood, for example, by completing inside the missing region the isophote lines arriving at its boundaries. In this article, we show that inpainting techniques have considerable potential usefulness in microscopy imaging, even though experimenting and using them in this domain has been almost entirely neglected up until now. In this purpose, we experiment the "curvature-preserving" partial differential equations as a solution to inpainting regions in images collected by several optical and scanning probe microscopy techniques. The results achieved are presented along with a discussion on typical problematic scenarios of microscopy imaging for which this type of techniques can provide a viable solution. PMID:21563264

  18. Automatic 2D-to-3D image conversion using 3D examples from the internet

    NASA Astrophysics Data System (ADS)

    Konrad, J.; Brown, G.; Wang, M.; Ishwar, P.; Wu, C.; Mukherjee, D.

    2012-03-01

    The availability of 3D hardware has so far outpaced the production of 3D content. Although to date many methods have been proposed to convert 2D images to 3D stereopairs, the most successful ones involve human operators and, therefore, are time-consuming and costly, while the fully-automatic ones have not yet achieved the same level of quality. This subpar performance is due to the fact that automatic methods usually rely on assumptions about the captured 3D scene that are often violated in practice. In this paper, we explore a radically different approach inspired by our work on saliency detection in images. Instead of relying on a deterministic scene model for the input 2D image, we propose to "learn" the model from a large dictionary of stereopairs, such as YouTube 3D. Our new approach is built upon a key observation and an assumption. The key observation is that among millions of stereopairs available on-line, there likely exist many stereopairs whose 3D content matches that of the 2D input (query). We assume that two stereopairs whose left images are photometrically similar are likely to have similar disparity fields. Our approach first finds a number of on-line stereopairs whose left image is a close photometric match to the 2D query and then extracts depth information from these stereopairs. Since disparities for the selected stereopairs differ due to differences in underlying image content, level of noise, distortions, etc., we combine them by using the median. We apply the resulting median disparity field to the 2D query to obtain the corresponding right image, while handling occlusions and newly-exposed areas in the usual way. We have applied our method in two scenarios. First, we used YouTube 3D videos in search of the most similar frames. Then, we repeated the experiments on a small, but carefully-selected, dictionary of stereopairs closely matching the query. This, to a degree, emulates the results one would expect from the use of an extremely large 3D

  19. Atherosclerosis imaging using 3D black blood TSE SPACE vs 2D TSE

    PubMed Central

    Wong, Stephanie K; Mobolaji-Iawal, Motunrayo; Arama, Leron; Cambe, Joy; Biso, Sylvia; Alie, Nadia; Fayad, Zahi A; Mani, Venkatesh

    2014-01-01

    AIM: To compare 3D Black Blood turbo spin echo (TSE) sampling perfection with application-optimized contrast using different flip angle evolution (SPACE) vs 2D TSE in evaluating atherosclerotic plaques in multiple vascular territories. METHODS: The carotid, aortic, and femoral arterial walls of 16 patients at risk for cardiovascular or atherosclerotic disease were studied using both 3D black blood magnetic resonance imaging SPACE and conventional 2D multi-contrast TSE sequences using a consolidated imaging approach in the same imaging session. Qualitative and quantitative analyses were performed on the images. Agreement of morphometric measurements between the two imaging sequences was assessed using a two-sample t-test, calculation of the intra-class correlation coefficient and by the method of linear regression and Bland-Altman analyses. RESULTS: No statistically significant qualitative differences were found between the 3D SPACE and 2D TSE techniques for images of the carotids and aorta. For images of the femoral arteries, however, there were statistically significant differences in all four qualitative scores between the two techniques. Using the current approach, 3D SPACE is suboptimal for femoral imaging. However, this may be due to coils not being optimized for femoral imaging. Quantitatively, in our study, higher mean total vessel area measurements for the 3D SPACE technique across all three vascular beds were observed. No significant differences in lumen area for both the right and left carotids were observed between the two techniques. Overall, a significant-correlation existed between measures obtained between the two approaches. CONCLUSION: Qualitative and quantitative measurements between 3D SPACE and 2D TSE techniques are comparable. 3D-SPACE may be a feasible approach in the evaluation of cardiovascular patients. PMID:24876923

  20. Parameterising root system growth models using 2D neutron radiography images

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Felderer, Bernd; Vontobel, Peter; Leitner, Daniel

    2013-04-01

    Root architecture is a key factor for plant acquisition of water and nutrients from soil. In particular in view of a second green revolution where the below ground parts of agricultural crops are important, it is essential to characterise and quantify root architecture and its effect on plant resource acquisition. Mathematical models can help to understand the processes occurring in the soil-plant system, they can be used to quantify the effect of root and rhizosphere traits on resource acquisition and the response to environmental conditions. In order to do so, root architectural models are coupled with a model of water and solute transport in soil. However, dynamic root architectural models are difficult to parameterise. Novel imaging techniques such as x-ray computed tomography, neutron radiography and magnetic resonance imaging enable the in situ visualisation of plant root systems. Therefore, these images facilitate the parameterisation of dynamic root architecture models. These imaging techniques are capable of producing 3D or 2D images. Moreover, 2D images are also available in the form of hand drawings or from images of standard cameras. While full 3D imaging tools are still limited in resolutions, 2D techniques are a more accurate and less expensive option for observing roots in their environment. However, analysis of 2D images has additional difficulties compared to the 3D case, because of overlapping roots. We present a novel algorithm for the parameterisation of root system growth models based on 2D images of root system. The algorithm analyses dynamic image data. These are a series of 2D images of the root system at different points in time. Image data has already been adjusted for missing links and artefacts and segmentation was performed by applying a matched filter response. From this time series of binary 2D images, we parameterise the dynamic root architecture model in the following way: First, a morphological skeleton is derived from the binary

  1. Digital Images and Human Vision

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Null, Cynthia H. (Technical Monitor)

    1997-01-01

    Processing of digital images destined for visual consumption raises many interesting questions regarding human visual sensitivity. This talk will survey some of these questions, including some that have been answered and some that have not. There will be an emphasis upon visual masking, and a distinction will be drawn between masking due to contrast gain control processes, and due to processes such as hypothesis testing, pattern recognition, and visual search.

  2. Digital image-based titrations.

    PubMed

    Gaiao, Edvaldo da Nobrega; Martins, Valdomiro Lacerda; Lyra, Wellington da Silva; de Almeida, Luciano Farias; da Silva, Edvan Cirino; Araújo, Mário César Ugulino

    2006-06-16

    The exploitation of digital images obtained from a CCD camera (WebCam) as a novel instrumental detection technique for titration is proposed for the first time. Named of digital image-based (DIB) titration, it also requires, as a traditional titration (for example, spectrophotometric, potentiometric, conductimetric), a discontinuity in titration curves where there is an end point, which is associated to the chemical equivalence condition. The monitored signal in the DIB titration is a RGB-based value that is calculated, for each digital image, by using a proposed procedure based on the red, green, and blue colour system. The DIB titration was applied to determine HCl and H3PO4 in aqueous solutions and total alkalinity in mineral and tap waters. Its results were compared to the spectrophotometric (SPEC) titration and, by applying the paired t-test, no statistic difference between the results of both methods was verified at the 95% confidence level. Identical standard deviations were obtained by both titrations in the determinations of HCl and H3PO4, with a slightly better precision for DIB titration in the determinations of total alkalinity. The DIB titration shows to be an efficient and promising tool for quantitative chemical analysis and, as it employs an inexpensive device (WebCam) as analytical detector, it offers an economically viable alternative to titrations that need instrumental detection. PMID:17723410

  3. Hard Copy to Digital Transfer: 3D Models that Match 2D Maps

    ERIC Educational Resources Information Center

    Kellie, Andrew C.

    2011-01-01

    This research describes technical drawing techniques applied in a project involving digitizing of existing hard copy subsurface mapping for the preparation of three dimensional graphic and mathematical models. The intent of this research was to identify work flows that would support the project, ensure the accuracy of the digital data obtained,…

  4. 2D electron temperature diagnostic using soft x-ray imaging technique

    SciTech Connect

    Nishimura, K. Sanpei, A. Tanaka, H.; Ishii, G.; Kodera, R.; Ueba, R.; Himura, H.; Masamune, S.; Ohdachi, S.; Mizuguchi, N.

    2014-03-15

    We have developed a two-dimensional (2D) electron temperature (T{sub e}) diagnostic system for thermal structure studies in a low-aspect-ratio reversed field pinch (RFP). The system consists of a soft x-ray (SXR) camera with two pin holes for two-kinds of absorber foils, combined with a high-speed camera. Two SXR images with almost the same viewing area are formed through different absorber foils on a single micro-channel plate (MCP). A 2D T{sub e} image can then be obtained by calculating the intensity ratio for each element of the images. We have succeeded in distinguishing T{sub e} image in quasi-single helicity (QSH) from that in multi-helicity (MH) RFP states, where the former is characterized by concentrated magnetic fluctuation spectrum and the latter, by broad spectrum of edge magnetic fluctuations.

  5. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2005-01-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  6. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2004-12-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  7. Digit ratio (2D:4D) predicts facial, but not voice or body odour, attractiveness in men

    PubMed Central

    Ferdenzi, Camille; Lemaître, Jean-François; Leongómez, Juan David; Roberts, S. Craig

    2011-01-01

    There is growing evidence that human second-to-fourth digit ratio (or 2D:4D) is related to facial features involved in attractiveness, mediated by in utero hormonal effects. The present study extends the investigation to other phenotypic, hormone-related determinants of human attractiveness: voice and body odour. Pictures of faces with a neutral expression, recordings of voices pronouncing vowels and axillary odour samples captured on cotton pads worn for 24 h were provided by 49 adult male donors. These stimuli were rated on attractiveness and masculinity scales by two groups of 49 and 35 females, approximately half of these in each sample using hormonal contraception. Multivariate regression analyses showed that males' lower (more masculine) right 2D:4D and lower right-minus-left 2D:4D (Dr−l) were associated with a more attractive (and in some cases more symmetrical), but not more masculine, face. However, 2D:4D and Dr−l did not predict voice and body odour masculinity or attractiveness. The results were interpreted in terms of differential effects of prenatal and circulating testosterone, male facial shape being supposedly more dependent on foetal levels (reflected by 2D:4D ratio), whereas body odour and vocal characteristics could be more dependent on variation in adult circulating testosterone levels. PMID:21508034

  8. CMOS Geiger photodiode array with integrated signal processing for imaging of 2D objects using quantum dots

    NASA Astrophysics Data System (ADS)

    Stapels, Christopher J.; Lawrence, William G.; Gurjar, Rajan S.; Johnson, Erik B.; Christian, James F.

    2008-08-01

    Geiger-mode photodiodes (GPD) act as binary photon detectors that convert analog light intensity into digital pulses. Fabrication of arrays of GPD in a CMOS environment simplifies the integration of signal-processing electronics to enhance the performance and provide a low-cost detector-on-a-chip platform. Such an instrument facilitates imaging applications with extremely low light and confined volumes. High sensitivity reading of small samples enables twodimensional imaging of DNA arrays and for tracking single molecules, and observing their dynamic behavior. In this work, we describe the performance of a prototype imaging detector of GPD pixels, with integrated active quenching for use in imaging of 2D objects using fluorescent labels. We demonstrate the integration of on-chip memory and a parallel readout interface for an array of CMOS GPD pixels as progress toward an all-digital detector on a chip. We also describe advances in pixel-level signal processing and solid-state photomultiplier developments.

  9. 3D multiple-point statistics simulation using 2D training images

    NASA Astrophysics Data System (ADS)

    Comunian, A.; Renard, P.; Straubhaar, J.

    2012-03-01

    One of the main issues in the application of multiple-point statistics (MPS) to the simulation of three-dimensional (3D) blocks is the lack of a suitable 3D training image. In this work, we compare three methods of overcoming this issue using information coming from bidimensional (2D) training images. One approach is based on the aggregation of probabilities. The other approaches are novel. One relies on merging the lists obtained using the impala algorithm from diverse 2D training images, creating a list of compatible data events that is then used for the MPS simulation. The other (s2Dcd) is based on sequential simulations of 2D slices constrained by the conditioning data computed at the previous simulation steps. These three methods are tested on the reproduction of two 3D images that are used as references, and on a real case study where two training images of sedimentary structures are considered. The tests show that it is possible to obtain 3D MPS simulations with at least two 2D training images. The simulations obtained, in particular those obtained with the s2Dcd method, are close to the references, according to a number of comparison criteria. The CPU time required to simulate with the method s2Dcd is from two to four orders of magnitude smaller than the one required by a MPS simulation performed using a 3D training image, while the results obtained are comparable. This computational efficiency and the possibility of using MPS for 3D simulation without the need for a 3D training image facilitates the inclusion of MPS in Monte Carlo, uncertainty evaluation, and stochastic inverse problems frameworks.

  10. Snapshot 2D tomography via coded aperture x-ray scatter imaging

    PubMed Central

    MacCabe, Kenneth P.; Holmgren, Andrew D.; Tornai, Martin P.; Brady, David J.

    2015-01-01

    This paper describes a fan beam coded aperture x-ray scatter imaging system which acquires a tomographic image from each snapshot. This technique exploits cylindrical symmetry of the scattering cross section to avoid the scanning motion typically required by projection tomography. We use a coded aperture with a harmonic dependence to determine range, and a shift code to determine cross-range. Here we use a forward-scatter configuration to image 2D objects and use serial exposures to acquire tomographic video of motion within a plane. Our reconstruction algorithm also estimates the angular dependence of the scattered radiance, a step toward materials imaging and identification. PMID:23842254

  11. Combining 2D synchrosqueezed wave packet transform with optimization for crystal image analysis

    NASA Astrophysics Data System (ADS)

    Lu, Jianfeng; Wirth, Benedikt; Yang, Haizhao

    2016-04-01

    We develop a variational optimization method for crystal analysis in atomic resolution images, which uses information from a 2D synchrosqueezed transform (SST) as input. The synchrosqueezed transform is applied to extract initial information from atomic crystal images: crystal defects, rotations and the gradient of elastic deformation. The deformation gradient estimate is then improved outside the identified defect region via a variational approach, to obtain more robust results agreeing better with the physical constraints. The variational model is optimized by a nonlinear projected conjugate gradient method. Both examples of images from computer simulations and imaging experiments are analyzed, with results demonstrating the effectiveness of the proposed method.

  12. Digit ratio (2D:4D) and gender inequalities across nations.

    PubMed

    Manning, John T; Fink, Bernhard; Trivers, Robert

    2014-01-01

    Gender inequality varies across nations, where such inequality is defined as the disproportionate representation of one sex over the other in desirable social, economic, and biological roles (typically male over female). Thus in Norway, 40% of parliamentarians are women, in the USA 17%, and in Saudi Arabia 0%. Some of this variation is associated with economic prosperity but there is evidence that this cause and effect can go in either direction. Here we show that within a population the average ratio of index (2D) to ring (4D) finger lengths (2D:4D)-a proxy measure of the relative degree to which offspring is exposed in utero to testosterone versus estrogen-is correlated with measures of gender inequality between nations. We compared male and female 2D:4D ratios to female parliamentary representation, labor force participation, female education level, maternal mortality rates, and juvenile pregnancy rates per nation in a sample of 29 countries. We found those nations who showed higher than expected female fetal exposure to testosterone (low 2D:4D) and lower than expected male exposure to fetal testosterone (high 2D:4D) had higher rates of female parliamentary representation, and higher female labor force participation. In short, the more similar the two sexes were in 2D:4D, the more equal were the two sexes in parliamentary and labor force participation. The other variables were not as strongly correlated. We suggest that higher than expected fetal testosterone in females and lower fetal testosterone in males may lead to high female representation in the national labor force and in parliament. PMID:25300052

  13. Digital image transformation and rectification of spacecraft and radar images

    NASA Astrophysics Data System (ADS)

    Wu, S. S. C.

    1985-12-01

    The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.

  14. Digital image transformation and rectification of spacecraft and radar images

    NASA Technical Reports Server (NTRS)

    Wu, S. S. C.

    1985-01-01

    The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.

  15. 2D Doppler backscattering using synthetic aperture microwave imaging of MAST edge plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, D. A.; Brunner, K. J.; Freethy, S. J.; Huang, B. K.; Shevchenko, V. F.; Vann, R. G. L.

    2016-02-01

    Doppler backscattering (DBS) is already established as a powerful diagnostic; its extension to 2D enables imaging of turbulence characteristics from an extended region of the cut-off surface. The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D DBS experiments of MAST edge plasma. SAMI actively probes the plasma edge using a wide (±40° vertical and horizontal) and tuneable (10-34.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24° FWHM at 10-34.5 GHz. This capability is unique to SAMI and is a novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial observations of phenomena previously measured by conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch angle to be made; preliminary results are presented. Capabilities gained through steering a beam using a phased array and the limitations of this technique are discussed.

  16. A faster method for 3D/2D medical image registration--a simulation study.

    PubMed

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels Claudius; Jacob, Augustinus Ludwig; Regazzoni, Pietro; Messmer, Peter

    2003-08-21

    3D/2D patient-to-computed-tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Iterative variation of the CT's position between rendering steps finally leads to exact registration. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 3D/2D registration is the fact that finding a registration includes solving a minimization problem in six degrees of freedom (dof) in motion. This results in considerable time requirements since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations around a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of it's original value. The method was implemented and extensively tested on simulated x-ray images of a tibia, a pelvis and a skull base. When using one projective image and a discrete full parameter space search for solving the optimization problem, average accuracy was found to be 1.0 +/- 0.6(degrees) and 4.1 +/- 1.9 (mm) for a registration in six parameters, and 1.0 +/- 0.7(degrees) and 4.2 +/- 1.6 (mm) when using the 5 + 1 dof method described in this paper. Time requirements were reduced by a factor 3.1. We conclude that this hardware-independent optimization of 3D/2D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications. PMID:12974581

  17. Digital processing of radiographic images

    NASA Technical Reports Server (NTRS)

    Bond, A. D.; Ramapriyan, H. K.

    1973-01-01

    Some techniques are presented and the software documentation for the digital enhancement of radiographs. Both image handling and image processing operations are considered. The image handling operations dealt with are: (1) conversion of format of data from packed to unpacked and vice versa; (2) automatic extraction of image data arrays; (3) transposition and 90 deg rotations of large data arrays; (4) translation of data arrays for registration; and (5) reduction of the dimensions of data arrays by integral factors. Both the frequency and the spatial domain approaches are presented for the design and implementation of the image processing operation. It is shown that spatial domain recursive implementation of filters is much faster than nonrecursive implementations using fast fourier transforms (FFT) for the cases of interest in this work. The recursive implementation of a class of matched filters for enhancing image signal to noise ratio is described. Test patterns are used to illustrate the filtering operations. The application of the techniques to radiographic images of metallic structures is demonstrated through several examples.

  18. Detecting Copy Move Forgery In Digital Images

    NASA Astrophysics Data System (ADS)

    Gupta, Ashima; Saxena, Nisheeth; Vasistha, S. K.

    2012-03-01

    In today's world several image manipulation software's are available. Manipulation of digital images has become a serious problem nowadays. There are many areas like medical imaging, digital forensics, journalism, scientific publications, etc, where image forgery can be done very easily. To determine whether a digital image is original or doctored is a big challenge. To find the marks of tampering in a digital image is a challenging task. The detection methods can be very useful in image forensics which can be used as a proof for the authenticity of a digital image. In this paper we propose the method to detect region duplication forgery by dividing the image into overlapping block and then perform searching to find out the duplicated region in the image.

  19. Simultaneous 3D–2D image registration and C-arm calibration: Application to endovascular image-guided interventions

    SciTech Connect

    Mitrović, Uroš; Pernuš, Franjo; Likar, Boštjan; Špiclin, Žiga

    2015-11-15

    Purpose: Three-dimensional to two-dimensional (3D–2D) image registration is a key to fusion and simultaneous visualization of valuable information contained in 3D pre-interventional and 2D intra-interventional images with the final goal of image guidance of a procedure. In this paper, the authors focus on 3D–2D image registration within the context of intracranial endovascular image-guided interventions (EIGIs), where the 3D and 2D images are generally acquired with the same C-arm system. The accuracy and robustness of any 3D–2D registration method, to be used in a clinical setting, is influenced by (1) the method itself, (2) uncertainty of initial pose of the 3D image from which registration starts, (3) uncertainty of C-arm’s geometry and pose, and (4) the number of 2D intra-interventional images used for registration, which is generally one and at most two. The study of these influences requires rigorous and objective validation of any 3D–2D registration method against a highly accurate reference or “gold standard” registration, performed on clinical image datasets acquired in the context of the intervention. Methods: The registration process is split into two sequential, i.e., initial and final, registration stages. The initial stage is either machine-based or template matching. The latter aims to reduce possibly large in-plane translation errors by matching a projection of the 3D vessel model and 2D image. In the final registration stage, four state-of-the-art intrinsic image-based 3D–2D registration methods, which involve simultaneous refinement of rigid-body and C-arm parameters, are evaluated. For objective validation, the authors acquired an image database of 15 patients undergoing cerebral EIGI, for which accurate gold standard registrations were established by fiducial marker coregistration. Results: Based on target registration error, the obtained success rates of 3D to a single 2D image registration after initial machine-based and

  20. Localization and tracking of aortic valve prosthesis in 2D fluoroscopic image sequences

    NASA Astrophysics Data System (ADS)

    Karar, M.; Chalopin, C.; Merk, D. R.; Jacobs, S.; Walther, T.; Burgert, O.; Falk, V.

    2009-02-01

    This paper presents a new method for localization and tracking of the aortic valve prosthesis (AVP) in 2D fluoroscopic image sequences to assist the surgeon to reach the safe zone of implantation during transapical aortic valve implantation. The proposed method includes four main steps: First, the fluoroscopic images are preprocessed using a morphological reconstruction and an adaptive Wiener filter to enhance the AVP edges. Second, a target window, defined by a user on the first image of the sequences which includes the AVP, is tracked in all images using a template matching algorithm. In a third step the corners of the AVP are extracted based on the AVP dimensions and orientation in the target window. Finally, the AVP model is generated in the fluoroscopic image sequences. Although the proposed method is not yet validated intraoperatively, it has been applied to different fluoroscopic image sequences with promising results.

  1. Application of the digital watermarking technique in 2D barcode certificate anti-counterfeit systems

    NASA Astrophysics Data System (ADS)

    Chen, MuSheng; Lin, ShunDa

    2011-06-01

    At present, two dimensional barcode has been used in many fields. The safety of information in barcode is important, so this article brings up an effective two dimensional barcode encryption technology to assure it. Either two-dimensional barcode or digital watermarking technique is one of the most important parts and research focuses in anti-counterfeit fields. This paper designs and realizes a whole set of certificate administration system based on QRcode. On this platform the digital watermarking technique based on the spatial domain is used to encrypt the two dimensional barcode. The combination of two dimensional barcode and digital watermarking can improve the security and secrecy of personal information, and realize real anti-counterfeit certificates.

  2. Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation

    SciTech Connect

    Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; Puretzky, Alexander A.; McGuire, Michael A.; Srijanto, Bernadeta R.; Xiao, Kai; Eres, Gyula; Duscher, Gerd; Geohegan, David B.

    2014-10-19

    Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substrate by pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.

  3. 2D Ultrasound and 3D MR Image Registration of the Prostate for Brachytherapy Surgical Navigation

    PubMed Central

    Zhang, Shihui; Jiang, Shan; Yang, Zhiyong; Liu, Ranlu

    2015-01-01

    Abstract Two-dimensional (2D) ultrasound (US) images are widely used in minimally invasive prostate procedure for its noninvasive nature and convenience. However, the poor quality of US image makes it difficult to be used as guiding utility. To improve the limitation, we propose a multimodality image guided navigation module that registers 2D US images with magnetic resonance imaging (MRI) based on high quality preoperative models. A 2-step spatial registration method is used to complete the procedure which combines manual alignment and rapid mutual information (MI) optimize algorithm. In addition, a 3-dimensional (3D) reconstruction model of prostate with surrounding organs is employed to combine with the registered images to conduct the navigation. Registration accuracy is measured by calculating the target registration error (TRE). The results show that the error between the US and preoperative MR images of a polyvinyl alcohol hydrogel model phantom is 1.37 ± 0.14 mm, with a similar performance being observed in patient experiments. PMID:26448009

  4. Investigation of the effect of subcutaneous fat on image quality performance of 2D conventional imaging and tissue harmonic imaging.

    PubMed

    Browne, Jacinta E; Watson, Amanda J; Hoskins, Peter R; Elliott, Alex T

    2005-07-01

    Tissue harmonic imaging (THI) has been reported to improve contrast resolution, tissue differentiation and overall image quality in clinical examinations. However, a study carried out previously by the authors (Brown et al. 2004) found improvements only in spatial resolution and not in contrast resolution or anechoic target detection. This result may have been due to the homogeneity of the phantom. Biologic tissues are generally inhomogeneous and THI has been reported to improve image quality in the presence of large amounts of subcutaneous fat. The aims of the study were to simulate the distortion caused by subcutaneous fat to image quality and thus investigate further the improvements reported in anechoic target detection and contrast resolution performance with THI compared with 2D conventional imaging. In addition, the effect of three different types of fat-mimicking layer on image quality was examined. The abdominal transducer of two ultrasound scanners with 2D conventional imaging and THI were tested, the 4C1 (Aspen-Acuson, Siemens Co., CA, USA) and the C5-2 (ATL HDI 5000, ATL/Philips, Amsterdam, The Netherlands). An ex vivo subcutaneous pig fat layer was used to replicate beam distortion and phase aberration seen clinically in the presence of subcutaneous fat. Three different types of fat-mimicking layers (olive oil, lard and lard with fish oil capsules) were evaluated. The subcutaneous pig fat layer demonstrated an improvement in anechoic target detection with THI compared with 2D conventional imaging, but no improvement was demonstrated in contrast resolution performance; a similar result was found in a previous study conducted by this research group (Brown et al. 2004) while using this tissue-mimicking phantom without a fat layer. Similarly, while using the layers of olive oil, lard and lard with fish oil capsules, improvements due to THI were found in anechoic target detection but, again, no improvements were found for contrast resolution for any of the

  5. Beam quality measurements using digitized laser beam images

    SciTech Connect

    Duncan, M.D. ); Mahon, R. )

    1989-11-01

    A method is described for measuring various laser beam characteristics with modest experimental complexity by digital processing of the near and far field images. Gaussian spot sizes, peak intensities, and spatial distributions of the images are easily found. Far field beam focusability is determined by computationally applying apertures of circular of elliptical diameters to the digitized image. Visualization of the magnitude of phase and intensity distortions is accomplished by comparing the 2-D fast Fourier transform of both smoothed and unsmoothed near field data to the actual far field data. The digital processing may be performed on current personal computers to give the experimenter unprecedented capabilities for rapid beam characteriztion at relatively low cost.

  6. Interpretation of Line-Integrated Signals from 2-D Phase Contrast Imaging on LHD

    NASA Astrophysics Data System (ADS)

    Michael, Clive; Tanaka, Kenji; Vyacheslavov, Leonid; Sanin, Andrei; Kawahata, Kazuo; Okajima, S.

    Two dimensional (2D) phase contrast imaging (PCI) is an excellent method to measure core and edge turbulence with good spatial resolution (Δρ ˜ 0.1). General analytical consideration is given to the signal interpretation of the line-integrated signals, with specific application to images from 2D PCI. It is shown that the Fourier components of fluctuations having any non-zero component propagating along the line of sight are not detected. The ramifications of this constraint are discussed, including consideration of the angle between the sight line and flux surface normal. In the experimental geometry, at the point where the flux surfaces are tangent to the sight line, it is shown that it may be possible to detect large poloidally extended (though with small radial wavelength) structures, such as GAMS. The spatial localization technique of this diagnostic is illustrated with experimental data.

  7. Radiometer uncertainty equation research of 2D planar scanning PMMW imaging system

    NASA Astrophysics Data System (ADS)

    Hu, Taiyang; Xu, Jianzhong; Xiao, Zelong

    2009-07-01

    With advances in millimeter-wave technology, passive millimeter-wave (PMMW) imaging technology has received considerable concerns, and it has established itself in a wide range of military and civil practical applications, such as in the areas of remote sensing, blind landing, precision guidance and security inspection. Both the high transparency of clothing at millimeter wavelengths and the spatial resolution required to generate adequate images combine to make imaging at millimeter wavelengths a natural approach of screening people for concealed contraband detection. And at the same time, the passive operation mode does not present a safety hazard to the person who is under inspection. Based on the description to the design and engineering implementation of a W-band two-dimensional (2D) planar scanning imaging system, a series of scanning methods utilized in PMMW imaging are generally compared and analyzed, followed by a discussion on the operational principle of the mode of 2D planar scanning particularly. Furthermore, it is found that the traditional radiometer uncertainty equation, which is derived from a moving platform, does not hold under this 2D planar scanning mode due to the fact that there is no absolute connection between the scanning rates in horizontal direction and vertical direction. Consequently, an improved radiometer uncertainty equation is carried out in this paper, by means of taking the total time spent on scanning and imaging into consideration, with the purpose of solving the problem mentioned above. In addition, the related factors which affect the quality of radiometric images are further investigated under the improved radiometer uncertainty equation, and ultimately some original results are presented and analyzed to demonstrate the significance and validity of this new methodology.

  8. Imaging collective magnonic modes in 2D arrays of magnetic nanoelements.

    PubMed

    Kruglyak, V V; Keatley, P S; Neudert, A; Hicken, R J; Childress, J R; Katine, J A

    2010-01-15

    We have used time resolved scanning Kerr microscopy to image collective spin wave modes within a 2D array of magnetic nanoelements. Long wavelength spin waves are confined within the array as if it was a continuous element of the same size but with effective material properties determined by the structure of the array and its constituent nanoelements. The array is an example of a magnonic metamaterial, the demonstration of which provides new opportunities within the emerging field of magnonics. PMID:20366622

  9. Imaging Collective Magnonic Modes in 2D Arrays of Magnetic Nanoelements

    NASA Astrophysics Data System (ADS)

    Kruglyak, V. V.; Keatley, P. S.; Neudert, A.; Hicken, R. J.; Childress, J. R.; Katine, J. A.

    2010-01-01

    We have used time resolved scanning Kerr microscopy to image collective spin wave modes within a 2D array of magnetic nanoelements. Long wavelength spin waves are confined within the array as if it was a continuous element of the same size but with effective material properties determined by the structure of the array and its constituent nanoelements. The array is an example of a magnonic metamaterial, the demonstration of which provides new opportunities within the emerging field of magnonics.

  10. Interferometry based multispectral photon-limited 2D and 3D integral image encryption employing the Hartley transform.

    PubMed

    Muniraj, Inbarasan; Guo, Changliang; Lee, Byung-Geun; Sheridan, John T

    2015-06-15

    We present a method of securing multispectral 3D photon-counted integral imaging (PCII) using classical Hartley Transform (HT) based encryption by employing optical interferometry. This method has the simultaneous advantages of minimizing complexity by eliminating the need for holography recording and addresses the phase sensitivity problem encountered when using digital cameras. These together with single-channel multispectral 3D data compactness, the inherent properties of the classical photon counting detection model, i.e. sparse sensing and the capability for nonlinear transformation, permits better authentication of the retrieved 3D scene at various depth cues. Furthermore, the proposed technique works for both spatially and temporally incoherent illumination. To validate the proposed technique simulations were carried out for both the 2D and 3D cases. Experimental data is processed and the results support the feasibility of the encryption method. PMID:26193568

  11. Gender and ethnicity specific generic elastic models from a single 2D image for novel 2D pose face synthesis and recognition.

    PubMed

    Heo, Jingu; Savvides, Marios

    2012-12-01

    In this paper, we propose a novel method for generating a realistic 3D human face from a single 2D face image for the purpose of synthesizing new 2D face images at arbitrary poses using gender and ethnicity specific models. We employ the Generic Elastic Model (GEM) approach, which elastically deforms a generic 3D depth-map based on the sparse observations of an input face image in order to estimate the depth of the face image. Particularly, we show that Gender and Ethnicity specific GEMs (GE-GEMs) can approximate the 3D shape of the input face image more accurately, achieving a better generalization of 3D face modeling and reconstruction compared to the original GEM approach. We qualitatively validate our method using publicly available databases by showing each reconstructed 3D shape generated from a single image and new synthesized poses of the same person at arbitrary angles. For quantitative comparisons, we compare our synthesized results against 3D scanned data and also perform face recognition using synthesized images generated from a single enrollment frontal image. We obtain promising results for handling pose and expression changes based on the proposed method. PMID:22201062

  12. Fully automatic detection of the vertebrae in 2D CT images

    NASA Astrophysics Data System (ADS)

    Graf, Franz; Kriegel, Hans-Peter; Schubert, Matthias; Strukelj, Michael; Cavallaro, Alexander

    2011-03-01

    Knowledge about the vertebrae is a valuable source of information for several annotation tasks. In recent years, the research community spent a considerable effort for detecting, segmenting and analyzing the vertebrae and the spine in various image modalities like CT or MR. Most of these methods rely on prior knowledge like the location of the vertebrae or other initial information like the manual detection of the spine. Furthermore, the majority of these methods require a complete volume scan. With the existence of use cases where only a single slice is available, there arises a demand for methods allowing the detection of the vertebrae in 2D images. In this paper, we propose a fully automatic and parameterless algorithm for detecting the vertebrae in 2D CT images. Our algorithm starts with detecting candidate locations by taking the density of bone-like structures into account. Afterwards, the candidate locations are extended into candidate regions for which certain image features are extracted. The resulting feature vectors are compared to a sample set of previously annotated and processed images in order to determine the best candidate region. In a final step, the result region is readjusted until convergence to a locally optimal position. Our new method is validated on a real world data set of more than 9 329 images of 34 patients being annotated by a clinician in order to provide a realistic ground truth.

  13. Image restoration using 2D autoregressive texture model and structure curve construction

    NASA Astrophysics Data System (ADS)

    Voronin, V. V.; Marchuk, V. I.; Petrosov, S. P.; Svirin, I.; Agaian, S.; Egiazarian, K.

    2015-05-01

    In this paper an image inpainting approach based on the construction of a composite curve for the restoration of the edges of objects in an image using the concepts of parametric and geometric continuity is presented. It is shown that this approach allows to restore the curved edges and provide more flexibility for curve design in damaged image by interpolating the boundaries of objects by cubic splines. After edge restoration stage, a texture restoration using 2D autoregressive texture model is carried out. The image intensity is locally modeled by a first spatial autoregressive model with support in a strongly causal prediction region on the plane. Model parameters are estimated by Yule-Walker method. Several examples considered in this paper show the effectiveness of the proposed approach for large objects removal as well as recovery of small regions on several test images.

  14. Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Li, Haolin; Wang, Di; Pan, Shumin; Zhou, Zhihong

    2015-05-01

    Most of the existing image encryption techniques bear security risks for taking linear transform or suffer encryption data expansion for adopting nonlinear transformation directly. To overcome these difficulties, a novel image compression-encryption scheme is proposed by combining 2D compressive sensing with nonlinear fractional Mellin transform. In this scheme, the original image is measured by measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the nonlinear fractional Mellin transform. The measurement matrices are controlled by chaos map. The Newton Smoothed l0 Norm (NSL0) algorithm is adopted to obtain the decryption image. Simulation results verify the validity and the reliability of this scheme.

  15. Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation

    DOE PAGESBeta

    Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; Puretzky, Alexander A.; McGuire, Michael A.; Srijanto, Bernadeta R.; Xiao, Kai; Eres, Gyula; et al

    2014-10-19

    Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substrate bymore » pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.« less

  16. Mars Digital Image Mosaic Globe

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The photomosaic that forms the base for this globe was created by merging two global digital image models (DIM's) of Mars-a medium-resolution monochrome mosaic processed to emphasize topographic features and a lower resolution color mosaic emphasizing color and albedo variations.

    The medium-resolution (1/256 or roughly 231 m/pixel) monochromatic image model was constructed from about 6,000 images having resolutions of 150-350 m/pixel and oblique illumination (Sun 20 o -45 o above the horizon). Radiometric processing was intended to suppress or remove the effects of albedo variations through the use of a high-pass divide filter, followed by photometric normalization so that the contrast of a given topographic slope would be approximately the same in all images.

    The global color mosaic was assembled at 1/64 or roughly 864 m/pixel from about 1,000 red- and green-filter images having 500-1,000 m/pixel resolution. These images were first mosaiced in groups, each taken on a single orbit of the Viking spacecraft. The orbit mosaics were then processed to remove spatially and temporally varying atmospheric haze in the overlap regions. After haze removal, the per-orbit mosaics were photometrically normalized to equalize the contrast of albedo features and mosaiced together with cosmetic seam removal. The medium-resolution DIM was used for geometric control of this color mosaic. A green-filter image was synthesized by weighted averaging of the red- and violet-filter mosaics. Finally, the product seen here was obtained by multiplying each color image by the medium-resolution monochrome image. The color balance selected for images in this map series was designed to be close to natural color for brighter, redder regions, such as Arabia Terra and the Tharsis region, but the data have been stretched so that the relatively dark regions appear darker and less red than they actually are.

    The images are presented in a projection that portrays the entire surface of Mars in a

  17. Multiple-perturbation two-dimensional (2D) correlation analysis for spectroscopic imaging data

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Hashimoto, Kosuke; Sato, Hidetoshi; Kanematsu, Wataru; Noda, Isao

    2014-07-01

    A series of data analysis techniques, including multiple-perturbation two-dimensional (2D) correlation spectroscopy and kernel analysis, were used to demonstrate how these techniques can sort out convoluted information content underlying spectroscopic imaging data. A set of Raman spectra of polymer blends consisting of poly(methyl methacrylate) (PMMA) and polyethylene glycol (PEG) were collected under varying spatial coordinates and subjected to multiple-perturbation 2D correlation analysis and kernel analysis by using the coordinates as perturbation variables. Cross-peaks appearing in asynchronous correlation spectra indicated that the change in the spectral intensity of the free Cdbnd O band of the PMMA band occurs before that of the Cdbnd O⋯Hsbnd O band arising from the molecular interaction between PMMA and PEG. Kernel matrices, generated by carrying out 2D correlation analysis on principal component analysis (PCA) score images, revealed subtle but important discrepancy between the patterns of the images, providing additional interpretation to the PCA in an intuitively understandable manner. Consequently, the results provided apparent spectroscopic evidence that PMMA and PEG in the blends are partially miscible at the molecular level, allowing the PMMAs to respond to the perturbations in different manner.

  18. Interactive digital image manipulation system

    NASA Technical Reports Server (NTRS)

    Henze, J.; Dezur, R.

    1975-01-01

    The system is designed for manipulation, analysis, interpretation, and processing of a wide variety of image data. LANDSAT (ERTS) and other data in digital form can be input directly into the system. Photographic prints and transparencies are first converted to digital form with an on-line high-resolution microdensitometer. The system is implemented on a Hewlett-Packard 3000 computer with 128 K bytes of core memory and a 47.5 megabyte disk. It includes a true color display monitor, with processing memories, graphics overlays, and a movable cursor. Image data formats are flexible so that there is no restriction to a given set of remote sensors. Conversion between data types is available to provide a basis for comparison of the various data. Multispectral data is fully supported, and there is no restriction on the number of dimensions. In this way multispectral data collected at more than one point in time may simply be treated as a data collected with twice (three times, etc.) the number of sensors. There are various libraries of functions available to the user: processing functions, display functions, system functions, and earth resources applications functions.

  19. Filters in 2D and 3D Cardiac SPECT Image Processing

    PubMed Central

    Ploussi, Agapi; Synefia, Stella

    2014-01-01

    Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT) evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP) analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast. PMID:24804144

  20. Digital Image Compression Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Serra-Ricart, M.; Garrido, L.; Gaitan, V.; Aloy, A.

    1993-01-01

    The problem of storing, transmitting, and manipulating digital images is considered. Because of the file sizes involved, large amounts of digitized image information are becoming common in modern projects. Our goal is to described an image compression transform coder based on artificial neural networks techniques (NNCTC). A comparison of the compression results obtained from digital astronomical images by the NNCTC and the method used in the compression of the digitized sky survey from the Space Telescope Science Institute based on the H-transform is performed in order to assess the reliability of the NNCTC.

  1. Image denoising with 2D scale-mixing complex wavelet transforms.

    PubMed

    Remenyi, Norbert; Nicolis, Orietta; Nason, Guy; Vidakovic, Brani

    2014-12-01

    This paper introduces an image denoising procedure based on a 2D scale-mixing complex-valued wavelet transform. Both the minimal (unitary) and redundant (maximum overlap) versions of the transform are used. The covariance structure of white noise in wavelet domain is established. Estimation is performed via empirical Bayesian techniques, including versions that preserve the phase of the complex-valued wavelet coefficients and those that do not. The new procedure exhibits excellent quantitative and visual performance, which is demonstrated by simulation on standard test images. PMID:25312931

  2. 2D image classification for 3D anatomy localization: employing deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    de Vos, Bob D.; Wolterink, Jelmer M.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana

    2016-03-01

    Localization of anatomical regions of interest (ROIs) is a preprocessing step in many medical image analysis tasks. While trivial for humans, it is complex for automatic methods. Classic machine learning approaches require the challenge of hand crafting features to describe differences between ROIs and background. Deep convolutional neural networks (CNNs) alleviate this by automatically finding hierarchical feature representations from raw images. We employ this trait to detect anatomical ROIs in 2D image slices in order to localize them in 3D. In 100 low-dose non-contrast enhanced non-ECG synchronized screening chest CT scans, a reference standard was defined by manually delineating rectangular bounding boxes around three anatomical ROIs -- heart, aortic arch, and descending aorta. Every anatomical ROI was automatically identified using a combination of three CNNs, each analyzing one orthogonal image plane. While single CNNs predicted presence or absence of a specific ROI in the given plane, the combination of their results provided a 3D bounding box around it. Classification performance of each CNN, expressed in area under the receiver operating characteristic curve, was >=0.988. Additionally, the performance of ROI localization was evaluated. Median Dice scores for automatically determined bounding boxes around the heart, aortic arch, and descending aorta were 0.89, 0.70, and 0.85 respectively. The results demonstrate that accurate automatic 3D localization of anatomical structures by CNN-based 2D image classification is feasible.

  3. Non-rigid target tracking in 2D ultrasound images using hierarchical grid interpolation

    NASA Astrophysics Data System (ADS)

    Royer, Lucas; Babel, Marie; Krupa, Alexandre

    2014-03-01

    In this paper, we present a new non-rigid target tracking method within 2D ultrasound (US) image sequence. Due to the poor quality of US images, the motion tracking of a tumor or cyst during needle insertion is considered as an open research issue. Our approach is based on well-known compression algorithm in order to make our method work in real-time which is a necessary condition for many clinical applications. Toward that end, we employed a dedicated hierarchical grid interpolation algorithm (HGI) which can represent a large variety of deformations compared to other motion estimation algorithms such as Overlapped Block Motion Compensation (OBMC), or Block Motion Algorithm (BMA). The sum of squared difference of image intensity is selected as similarity criterion because it provides a good trade-off between computation time and motion estimation quality. Contrary to the others methods proposed in the literature, our approach has the ability to distinguish both rigid and non-rigid motions which are observed in ultrasound image modality. Furthermore, this technique does not take into account any prior knowledge about the target, and limits the user interaction which usually complicates the medical validation process. Finally, a technique aiming at identifying the main phases of a periodic motion (e.g. breathing motion) is introduced. The new approach has been validated from 2D ultrasound images of real human tissues which undergo rigid and non-rigid deformations.

  4. Digital image transformation and rectification of spacecraft and radar images

    USGS Publications Warehouse

    Wu, S.S.C.

    1985-01-01

    Digital image transformation and rectification can be described in three categories: (1) digital rectification of spacecraft pictures on workable stereoplotters; (2) digital correction of radar image geometry; and (3) digital reconstruction of shaded relief maps and perspective views including stereograms. Digital rectification can make high-oblique pictures workable on stereoplotters that would otherwise not accommodate such extreme tilt angles. It also enables panoramic line-scan geometry to be used to compile contour maps with photogrammetric plotters. Rectifications were digitally processed on both Viking Orbiter and Lander pictures of Mars as well as radar images taken by various radar systems. By merging digital terrain data with image data, perspective and three-dimensional views of Olympus Mons and Tithonium Chasma, also of Mars, are reconstructed through digital image processing. ?? 1985.

  5. Authenticity and integrity of digital mammography images.

    PubMed

    Zhou, X Q; Huang, H K; Lou, S L

    2001-08-01

    Data security becomes more and more important in telemammography which uses a public high-speed wide area network connecting the examination site with the mammography expert center. Generally, security is characterized in terms of privacy, authenticity and integrity of digital data. Privacy is a network access issue and is not considered in this paper. We present a method, authenticity and integrity of digital mammography, here which can meet the requirements of authenticity and integrity for mammography image (IM) transmission. The authenticity and integrity for mammography (AIDM) consists of the following four modules. 1) Image preprocessing: To segment breast pixels from background and extract patient information from digital imaging and communication in medicine (DICOM) image header. 2) Image hashing: To compute an image hash value of the mammogram using the MD5 hash algorithm. 3) Data encryption: To produce a digital envelope containing the encrypted image hash value (digital signature) and corresponding patient information. 4) Data embedding: To embed the digital envelope into the image. This is done by replacing the least significant bit of a random pixel of the mammogram by one bit of the digital envelope bit stream and repeating for all bits in the bit stream. Experiments with digital IMs demonstrate the following. 1) In the expert center, only the user who knows the private key can open the digital envelope and read the patient information data and the digital signature of the mammogram transmitted from the examination site. 2) Data integrity can be verified by matching the image hash value decrypted from the digital signature with that computed from the transmitted image. 3) No visual quality degradation is detected in the embedded image compared with the original. Our preliminary results demonstrate that AIDM is an effective method for image authenticity and integrity in telemammography application. PMID:11513029

  6. Digital imaging applications in anatomic pathology.

    PubMed

    Leong, F Joel W-M; Leong, Anthony S-Y

    2003-03-01

    Digital imaging has progressed at a rapid rate and is likely to eventually replace chemical photography in most areas of professional and amateur digital image acquisition. In pathology, digital microscopy has implications beyond that of taking a photograph. The arguments for adopting this new medium are compelling, and given similar developments in other areas of pathology and radiologic imaging, acceptance of the digital medium should be viewed as a component of the technological evolution of the laboratory. A digital image may be stored, replicated, catalogued, employed for educational purposes, transmitted for further interpretation (telepathology), analyzed for salient features (medical vision/image analysis), or form part of a wider digital healthcare strategy. Despite advances in digital camera technology, good image acquisition still requires good microscope optics and the correct calibration of all system components, something which many neglect. The future of digital imaging in pathology is very promising and new applications in the fields of automated quantification and interpretation are likely to have profound long-term influence on the practice of anatomic pathology. This paper discusses the state of the art of digital imaging in anatomic pathology. PMID:12605090

  7. Deep Tissue Photoacoustic Imaging Using a Miniaturized 2-D Capacitive Micromachined Ultrasonic Transducer Array

    PubMed Central

    Kothapalli, Sri-Rajasekhar; Ma, Te-Jen; Vaithilingam, Srikant; Oralkan, Ömer

    2014-01-01

    In this paper, we demonstrate 3-D photoacoustic imaging (PAI) of light absorbing objects embedded as deep as 5 cm inside strong optically scattering phantoms using a miniaturized (4 mm × 4 mm × 500 µm), 2-D capacitive micromachined ultrasonic transducer (CMUT) array of 16 × 16 elements with a center frequency of 5.5 MHz. Two-dimensional tomographic images and 3-D volumetric images of the objects placed at different depths are presented. In addition, we studied the sensitivity of CMUT-based PAI to the concentration of indocyanine green dye at 5 cm depth inside the phantom. Under optimized experimental conditions, the objects at 5 cm depth can be imaged with SNR of about 35 dB and a spatial resolution of approximately 500 µm. Results demonstrate that CMUTs with integrated front-end amplifier circuits are an attractive choice for achieving relatively high depth sensitivity for PAI. PMID:22249594

  8. A software tool for automatic classification and segmentation of 2D/3D medical images

    NASA Astrophysics Data System (ADS)

    Strzelecki, Michal; Szczypinski, Piotr; Materka, Andrzej; Klepaczko, Artur

    2013-02-01

    Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided.

  9. A two-step Hilbert transform method for 2D image reconstruction.

    PubMed

    Noo, Frédéric; Clackdoyle, Rolf; Pack, Jed D

    2004-09-01

    The paper describes a new accurate two-dimensional (2D) image reconstruction method consisting of two steps. In the first step, the backprojected image is formed after taking the derivative of the parallel projection data. In the second step, a Hilbert filtering is applied along certain lines in the differentiated backprojection (DBP) image. Formulae for performing the DBP step in fanbeam geometry are also presented. The advantage of this two-step Hilbert transform approach is that in certain situations, regions of interest (ROIs) can be reconstructed from truncated projection data. Simulation results are presented that illustrate very similar reconstructed image quality using the new method compared to standard filtered backprojection, and that show the capability to correctly handle truncated projections. In particular, a simulation is presented of a wide patient whose projections are truncated laterally yet for which highly accurate ROI reconstruction is obtained. PMID:15470913

  10. 2D dose distribution images of a hybrid low field MRI-γ detector

    NASA Astrophysics Data System (ADS)

    Abril, A.; Agulles-Pedrós, L.

    2016-07-01

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the 99mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  11. Electron Microscopy: From 2D to 3D Images with Special Reference to Muscle

    PubMed Central

    2015-01-01

    This is a brief and necessarily very sketchy presentation of the evolution in electron microscopy (EM) imaging that was driven by the necessity of extracting 3-D views from the essentially 2-D images produced by the electron beam. The lens design of standard transmission electron microscope has not been greatly altered since its inception. However, technical advances in specimen preparation, image collection and analysis gradually induced an astounding progression over a period of about 50 years. From the early images that redefined tissues, cell and cell organelles at the sub-micron level, to the current nano-resolution reconstructions of organelles and proteins the step is very large. The review is written by an investigator who has followed the field for many years, but often from the sidelines, and with great wonder. Her interest in muscle ultrastructure colors the writing. More specific detailed reviews are presented in this issue. PMID:26913146

  12. Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong

    2016-08-01

    Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.

  13. A 3D Feature Descriptor Recovered from a Single 2D Palmprint Image.

    PubMed

    Zheng, Qian; Kumar, Ajay; Pan, Gang

    2016-06-01

    Design and development of efficient and accurate feature descriptors is critical for the success of many computer vision applications. This paper proposes a new feature descriptor, referred to as DoN, for the 2D palmprint matching. The descriptor is extracted for each point on the palmprint. It is based on the ordinal measure which partially describes the difference of the neighboring points' normal vectors. DoN has at least two advantages: 1) it describes the 3D information, which is expected to be highly stable under commonly occurring illumination variations during contactless imaging; 2) the size of DoN for each point is only one bit, which is computationally simple to extract, easy to match, and efficient to storage. We show that such 3D information can be extracted from a single 2D palmprint image. The analysis for the effectiveness of ordinal measure for palmprint matching is also provided. Four publicly available 2D palmprint databases are used to evaluate the effectiveness of DoN, both for identification and the verification. Our method on all these databases achieves the state-of-the-art performance. PMID:27164564

  14. 2D Imaging in a Lightweight Portable MRI Scanner without Gradient Coils

    PubMed Central

    Cooley, Clarissa Zimmerman; Stockmann, Jason P.; Armstrong, Brandon D.; Sarracanie, Mathieu; Lev, Michael H.; Rosen, Matthew S.; Wald, Lawrence L.

    2014-01-01

    Purpose As the premiere modality for brain imaging, MRI could find wider applicability if lightweight, portable systems were available for siting in unconventional locations such as Intensive Care Units, physician offices, surgical suites, ambulances, emergency rooms, sports facilities, or rural healthcare sites. Methods We construct and validate a truly portable (<100kg) and silent proof-of-concept MRI scanner which replaces conventional gradient encoding with a rotating lightweight cryogen-free, low-field magnet. When rotated about the object, the inhomogeneous field pattern is used as a rotating Spatial Encoding Magnetic field (rSEM) to create generalized projections which encode the iteratively reconstructed 2D image. Multiple receive channels are used to disambiguate the non-bijective encoding field. Results The system is validated with experimental images of 2D test phantoms. Similar to other non-linear field encoding schemes, the spatial resolution is position dependent with blurring in the center, but is shown to be likely sufficient for many medical applications. Conclusion The presented MRI scanner demonstrates the potential for portability by simultaneously relaxing the magnet homogeneity criteria and eliminating the gradient coil. This new architecture and encoding scheme shows convincing proof of concept images that are expected to be further improved with refinement of the calibration and methodology. PMID:24668520

  15. Volumetric synthetic aperture imaging with a piezoelectric 2D row-column probe

    NASA Astrophysics Data System (ADS)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann; Beers, Christopher; Lei, Anders; Stuart, Matthias Bo; Nikolov, Svetoslav Ivanov; Thomsen, Erik Vilain; Jensen, Jørgen Arendt

    2016-04-01

    The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row-column addressed transducer array. Utilizing single element transmit events, a volume rate of 90 Hz down to 14 cm deep is achieved. Data are obtained using the experimental ultrasound scanner SARUS with a 70 MHz sampling frequency and beamformed using a delay-and-sum (DAS) approach. A signal-to-noise ratio of up to 32 dB is measured on the beamformed images of a tissue mimicking phantom with attenuation of 0.5 dB cm-1 MHz-1, from the surface of the probe to the penetration depth of 300λ. Measured lateral resolution as Full-Width-at-Half-Maximum (FWHM) is between 4λ and 10λ for 18% to 65% of the penetration depth from the surface of the probe. The averaged contrast is 13 dB for the same range. The imaging performance assessment results may represent a reference guide for possible applications of such an array in different medical fields.

  16. Designing of sparse 2D arrays for Lamb wave imaging using coarray concept

    NASA Astrophysics Data System (ADS)

    Ambroziński, Łukasz; Stepinski, Tadeusz; Uhl, Tadeusz

    2015-03-01

    2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays' elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.

  17. Designing of sparse 2D arrays for Lamb wave imaging using coarray concept

    SciTech Connect

    Ambroziński, Łukasz Stepinski, Tadeusz Uhl, Tadeusz

    2015-03-31

    2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array’s aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays’ elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.

  18. Adaptive optofluidic lens(es) for switchable 2D and 3D imaging

    NASA Astrophysics Data System (ADS)

    Huang, Hanyang; Wei, Kang; Zhao, Yi

    2016-03-01

    The stereoscopic image is often captured using dual cameras arranged side-by-side and optical path switching systems such as two separate solid lenses or biprism/mirrors. The miniaturization of the overall size of current stereoscopic devices down to several millimeters is at a sacrifice of further device size shrinkage. The limited light entry worsens the final image resolution and brightness. It is known that optofluidics offer good re-configurability for imaging systems. Leveraging this technique, we report a reconfigurable optofluidic system whose optical layout can be swapped between a singlet lens with 10 mm in diameter and a pair of binocular lenses with each lens of 3 mm in diameter for switchable two-dimensional (2D) and three-dimensional (3D) imaging. The singlet and the binoculars share the same optical path and the same imaging sensor. The singlet acquires a 3D image with better resolution and brightness, while the binoculars capture stereoscopic image pairs for 3D vision and depth perception. The focusing power tuning capability of the singlet and the binoculars enable image acquisition at varied object planes by adjusting the hydrostatic pressure across the lens membrane. The vari-focal singlet and binoculars thus work interchangeably and complementarily. The device is thus expected to have applications in robotic vision, stereoscopy, laparoendoscopy and miniaturized zoom lens system.

  19. 2D and 3D visualization methods of endoscopic panoramic bladder images

    NASA Astrophysics Data System (ADS)

    Behrens, Alexander; Heisterklaus, Iris; Müller, Yannick; Stehle, Thomas; Gross, Sebastian; Aach, Til

    2011-03-01

    While several mosaicking algorithms have been developed to compose endoscopic images of the internal urinary bladder wall into panoramic images, the quantitative evaluation of these output images in terms of geometrical distortions have often not been discussed. However, the visualization of the distortion level is highly desired for an objective image-based medical diagnosis. Thus, we present in this paper a method to create quality maps from the characteristics of transformation parameters, which were applied to the endoscopic images during the registration process of the mosaicking algorithm. For a global first view impression, the quality maps are laid over the panoramic image and highlight image regions in pseudo-colors according to their local distortions. This illustration supports then surgeons to identify geometrically distorted structures easily in the panoramic image, which allow more objective medical interpretations of tumor tissue in shape and size. Aside from introducing quality maps in 2-D, we also discuss a visualization method to map panoramic images onto a 3-D spherical bladder model. Reference points are manually selected by the surgeon in the panoramic image and the 3-D model. Then the panoramic image is mapped by the Hammer-Aitoff equal-area projection onto the 3-D surface using texture mapping. Finally the textured bladder model can be freely moved in a virtual environment for inspection. Using a two-hemisphere bladder representation, references between panoramic image regions and their corresponding space coordinates within the bladder model are reconstructed. This additional spatial 3-D information thus assists the surgeon in navigation, documentation, as well as surgical planning.

  20. A Prototype Digital Image Management System

    PubMed Central

    Dwyer, Samuel J.; Templeton, Arch W.; Anderson, William H.; Tarlton, Mark A.; Hensley, Kenneth S.; Lee, Kyo Rak; Batnitzky, Solomon; Rosenthal, Stanton J.; Johnson, Joy A.; Preston, David F.

    1983-01-01

    A prototype digital image management system has been designed, implemented and is being evaluated by our department. The system satisfies two major requirements: (a) an on-line access, rapid response microcomputer network providing 9 day archiving of digital data; (b) a long-term, low demand archiving system. This paper provides an estimate of the cost of the system, the potential cost-savings, and identifies the digital data throughput using the Ethernet communications protocol. ImagesFigure 4

  1. Ethical Implications of Digital Imaging in Photojournalism.

    ERIC Educational Resources Information Center

    Terry, Danal; Lasorsa, Dominic L.

    Arguing that the news media are about to adopt digital imaging systems that will have far-reaching implications for the practice of journalism, this paper discusses how the news media is expected to adopt the new technology and explains why the marriage of journalism and digital imaging will create ethical issues with respect to photo manipulation…

  2. Digital Imaging in the Biology Laboratory

    ERIC Educational Resources Information Center

    Moxon, Terry; Wightman, Gaynor

    2005-01-01

    The advent of cheaper SLR digital cameras and associated software has allowed the rapid creation of digital images. We explain three simple techniques that allow the generation of micrographs. A further technique is described that allows the production of an image from a full section of the microscope slide. Class sets of micrographs greatly…

  3. Digital Imaging: An Adobe Photoshop Course

    ERIC Educational Resources Information Center

    Cobb, Kristine

    2007-01-01

    This article introduces digital imaging, an Adobe Photoshop course at Shrewsbury High School in Shrewsbury, Massachusetts. Students are able to earn art credits to graduate by successfully completing the course. Digital imaging must cover art criteria as well as technical skills. The course begins with tutorials created by the instructor and other…

  4. Calibration of an Ultrasound Tomography System for Medical Imaging with 2D Contrast-Source Inversion

    NASA Astrophysics Data System (ADS)

    Faucher, Gabriel Paul

    This dissertation describes two possible methods for the calibration of an ultrasound tomography system developed at University of Manitoba's Electromagnetic Imaging Laboratory for imaging with the contrast-source inversion algorithm. The calibration techniques are adapted from existing procedures employed for microwave tomography. A theoretical model of these calibration principles is developed in order to provide a rationale for the effectiveness of the proposed procedures. The applicability of such an imaging algorithm and calibration methods in the context of ultrasound are discussed. Also presented are 2D and 3D finite-difference time-domain update equations for the simulation of acoustic wave propagation in inhomogeneous media. Details regarding the application of an absorbing boundary-condition, point-source modelling and the treatment of penetrable objects are included in this document.

  5. Evaluation of the channelized Hotelling observer for signal detection in 2D tomographic imaging

    NASA Astrophysics Data System (ADS)

    LaRoque, Samuel J.; Sidky, Emil Y.; Edwards, Darrin C.; Pan, Xiaochuan

    2007-03-01

    Signal detection by the channelized Hotelling (ch-Hotelling) observer is studied for tomographic application by employing a small, tractable 2D model of a computed tomography (CT) system. The primary goal of this manuscript is to develop a practical method for evaluating the ch-Hotelling observer that can generalize to larger 3D cone-beam CT systems. The use of the ch-Hotelling observer for evaluating tomographic image reconstruction algorithms is also demonstrated. For a realistic model for CT, the ch-Hotelling observer can be a good approximation to the ideal observer. The ch-Hotelling observer is applied to both the projection data and the reconstructed images. The difference in signal-to-noise ratio for signal detection in both of these domains provides a metric for evaluating the image reconstruction algorithm.

  6. Adaptive SVD-Based Digital Image Watermarking

    NASA Astrophysics Data System (ADS)

    Shirvanian, Maliheh; Torkamani Azar, Farah

    Digital data utilization along with the increase popularity of the Internet has facilitated information sharing and distribution. However, such applications have also raised concern about copyright issues and unauthorized modification and distribution of digital data. Digital watermarking techniques which are proposed to solve these problems hide some information in digital media and extract it whenever needed to indicate the data owner. In this paper a new method of image watermarking based on singular value decomposition (SVD) of images is proposed which considers human visual system prior to embedding watermark by segmenting the original image into several blocks of different sizes, with more density in the edges of the image. In this way the original image quality is preserved in the watermarked image. Additional advantages of the proposed technique are large capacity of watermark embedding and robustness of the method against different types of image manipulation techniques.

  7. Photoacoustic imaging for deep targets in the breast using a multichannel 2D array transducer

    NASA Astrophysics Data System (ADS)

    Xie, Zhixing; Wang, Xueding; Morris, Richard F.; Padilla, Frederic R.; Lecarpentier, Gerald L.; Carson, Paul L.

    2011-03-01

    A photoacoustic (PA) imaging system was developed to achieve high sensitivity for the detection and characterization of vascular anomalies in the breast in the mammographic geometry. Signal detection from deep in the breast was achieved by a broadband 2D PVDF planar array that has a round shape with one side trimmed straight to improve fit near the chest wall. This array has 572 active elements and a -6dB bandwidth of 0.6-1.7 MHz. The low frequency enhances imaging depth and increases the size of vascular collections displayed without edge enhancement. The PA signals from all the elements go through low noise preamplifiers in the probe that are very close to the array elements for optimized noise control. Driven by 20 independent on-probe signal processing channels, imaging with both high sensitivity and good speed was achieved. To evaluate the imaging depth and the spatial resolution of this system,2.38mm I.D. artificial vessels embedded deeply in ex vivo breasts harvested from fresh cadavers and a 3mm I.D. tube in breast mimicking phantoms made of pork loin and fat tissues were imaged. Using near-infrared laser light with incident energy density within the ANSI safety limit, imaging depths of up to 49 mm in human breasts and 52 mm in phantoms were achieved. With a high power tunable laser working on multiple wavelengths, this system might contribute to 3D noninvasive imaging of morphological and physiological tissue features throughout the breast.

  8. A preliminary evaluation work on a 3D ultrasound imaging system for 2D array transducer

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoli; Li, Xu; Yang, Jiali; Li, Chunyu; Song, Junjie; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    This paper presents a preliminary evaluation work on a pre-designed 3-D ultrasound imaging system. The system mainly consists of four parts, a 7.5MHz, 24×24 2-D array transducer, the transmit/receive circuit, power supply, data acquisition and real-time imaging module. The row-column addressing scheme is adopted for the transducer fabrication, which greatly reduces the number of active channels . The element area of the transducer is 4.6mm by 4.6mm. Four kinds of tests were carried out to evaluate the imaging performance, including the penetration depth range, axial and lateral resolution, positioning accuracy and 3-D imaging frame rate. Several strong reflection metal objects , fixed in a water tank, were selected for the purpose of imaging due to a low signal-to-noise ratio of the transducer. The distance between the transducer and the tested objects , the thickness of aluminum, and the seam width of the aluminum sheet were measured by a calibrated micrometer to evaluate the penetration depth, the axial and lateral resolution, respectively. The experiment al results showed that the imaging penetration depth range was from 1.0cm to 6.2cm, the axial and lateral resolution were 0.32mm and 1.37mm respectively, the imaging speed was up to 27 frames per second and the positioning accuracy was 9.2%.

  9. Transverse Strains in Muscle Fascicles during Voluntary Contraction: A 2D Frequency Decomposition of B-Mode Ultrasound Images

    PubMed Central

    Wakeling, James M.

    2014-01-01

    When skeletal muscle fibres shorten, they must increase in their transverse dimensions in order to maintain a constant volume. In pennate muscle, this transverse expansion results in the fibres rotating to greater pennation angle, with a consequent reduction in their contractile velocity in a process known as gearing. Understanding the nature and extent of this transverse expansion is necessary to understand the mechanisms driving the changes in internal geometry of whole muscles during contraction. Current methodologies allow the fascicle lengths, orientations, and curvatures to be quantified, but not the transverse expansion. The purpose of this study was to develop and validate techniques for quantifying transverse strain in skeletal muscle fascicles during contraction from B-mode ultrasound images. Images were acquired from the medial and lateral gastrocnemii during cyclic contractions, enhanced using multiscale vessel enhancement filtering and the spatial frequencies resolved using 2D discrete Fourier transforms. The frequency information was resolved into the fascicle orientations that were validated against manually digitized values. The transverse fascicle strains were calculated from their wavelengths within the images. These methods showed that the transverse strain increases while the longitudinal fascicle length decreases; however, the extent of these strains was smaller than expected. PMID:25328509

  10. Development of ultra-fast 2D ion Doppler tomography using image intensified CMOS fast camera

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; Kuwahata, Akihiro; Yamanaka, Haruki; Inomoto, Michiaki; Ono, Yasushi; TS-group Team

    2015-11-01

    The world fastest novel time-resolved 2D ion Doppler tomography diagnostics has been developed using fast camera with high-speed gated image intensifier (frame rate: 200kfps. phosphor decay time: ~ 1 μ s). Time evolution of line-integrated spectra are diffracted from a f=1m, F/8.3 and g=2400L/mm Czerny-Turner polychromator, whose output is intensified and recorded to a high-speed camera with spectral resolution of ~0.005nm/pixel. The system can accommodate up to 36 (9 ×4) spatial points recorded at 5 μs time resolution, tomographic reconstruction is applied for the line-integrated spectra, time-resolved (5 μs/frame) local 2D ion temperature measurement has been achieved without any assumption of shot repeatability. Ion heating during intermittent reconnection event which tends to happen during high guide field merging tokamak was measured around diffusion region in UTST. The measured 2D profile shows ion heating inside the acceleration channel of reconnection outflow jet, stagnation point and downstream region where reconnected field forms thick closed flux surface as in MAST. Achieved maximum ion temperature increases as a function of Brec2 and shows good fit with MAST experiment, demonstrating promising CS-less startup scenario for spherical tokamak. This work is supported by JSPS KAKENHI Grant Number 15H05750 and 15K20921.

  11. How Digital Image Processing Became Really Easy

    NASA Astrophysics Data System (ADS)

    Cannon, Michael

    1988-02-01

    In the early and mid-1970s, digital image processing was the subject of intense university and corporate research. The research lay along two lines: (1) developing mathematical techniques for improving the appearance of or analyzing the contents of images represented in digital form, and (2) creating cost-effective hardware to carry out these techniques. The research has been very effective, as evidenced by the continued decline of image processing as a research topic, and the rapid increase of commercial companies to market digital image processing software and hardware.

  12. Digital holographic optical coherence imaging of tumor tissue

    NASA Astrophysics Data System (ADS)

    Jeong, Kwan; Turek, John J.; Nolte, David D.

    2006-02-01

    Holographic Optical Coherence Imaging (OCI) uses spatial heterodyne detection in direct analogy with the temporal heterodyne detection of time-domain OCT. The spatial demodulator can be a sensitive dynamic holographic film or can be a CCD array placed directly at the hologram plane. We show that a digital hologram captured at the Fourier plane requires only a simple 2D inverse FFT of the digital hologram to compute the real image and its conjugate. Our recording on the optical Fourier plane has an advantage for diffuse targets because the intensity distribution of diffuse targets is relatively uniform at the Fourier plane and hence uses the full dynamic range of CCD camera. We applied this technique to human liver tumor spheroids and produced depth-resolved images to depth of 1.4 mm.

  13. 2D aperture synthesis for Lamb wave imaging using co-arrays

    NASA Astrophysics Data System (ADS)

    Ambrozinski, Lukasz; Stepinski, Tadeusz; Uhl, Tadeusz

    2014-03-01

    2D ultrasonic arrays in Lamb wave based SHM systems can operate in the phased array (PA) or synthetic focusing (SF) mode. In the real-time PA approach, multiple electronically delayed signals excite transmitting elements to form the desired wave-front, whereas receiving elements are used to sense scattered waves. Due to that, the PA mode requires multi channeled hardware and multiple excitations at numerous azimuths to scan the inspected region of interest. To the contrary, the SF mode, assumes a single element excitation of subsequent transmitters and off-line processing of the acquired data. In the simplest implementation of the SF technique, a single multiplexed input and output channels are required, which results in significant hardware simplification. Performance of a 2D imaging array depends on many parameters, such as, its topology, number of its transducers and their spacing in terms of wavelength as well as the type of weighting function (apodization). Moreover, it is possible to use sparse arrays, which means that not all array elements are used for transmitting and/ or receiving. In this paper the co-array concept is applied to facilitate the synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum co-array is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual elements' locations in the sub-arrays used for imaging. The coarray framework will be presented here using two different array topologies, aID uniform linear array and a cross-shaped array that will result in a square coarray. The approach will be discussed in terms of array patterns and beam patterns of the resulting imaging systems. Both, theoretical and experimental results will be given.

  14. Visualizing 3D Objects from 2D Cross Sectional Images Displayed "In-Situ" versus "Ex-Situ"

    ERIC Educational Resources Information Center

    Wu, Bing; Klatzky, Roberta L.; Stetten, George

    2010-01-01

    The present research investigates how mental visualization of a 3D object from 2D cross sectional images is influenced by displacing the images from the source object, as is customary in medical imaging. Three experiments were conducted to assess people's ability to integrate spatial information over a series of cross sectional images in order to…

  15. Enhanced detection of the vertebrae in 2D CT-images

    NASA Astrophysics Data System (ADS)

    Graf, Franz; Greil, Robert; Kriegel, Hans-Peter; Schubert, Matthias; Cavallaro, Alexander

    2012-02-01

    In recent years, a considerable amount of methods have been proposed for detecting and reconstructing the spine and the vertebrae from CT and MR scans. The results are either used for examining the vertebrae or serve as a preprocessing step for further detection and annotation tasks. In this paper, we propose a method for reliably detecting the position of the vertebrae on a single slice of a transversal body CT scan. Thus, our method is not restricted by the available portion of the 3D scan, but even suffices with a single 2D image. A further advantage of our method is that detection does not require adjusting parameters or direct user interaction. Technically, our method is based on an imaging pipeline comprising five steps: The input image is preprocessed. The relevant region of the image is extracted. Then, a set of candidate locations is selected based on bone density. In the next step, image features are extracted from the surrounding of the candidate locations and an instance-based learning approach is used for selecting the best candidate. Finally, a refinement step optimizes the best candidate region. Our proposed method is validated on a large diverse data set of more than 8 000 images and improves the accuracy in terms of area overlap and distance from the true position significantly compared to the only other method being proposed for this task so far.

  16. Small animal bone density and morphometry analysis with a dual energy x-ray absorptiometry bone densitometer using a 2D digital radiographic detector

    NASA Astrophysics Data System (ADS)

    Boudousq, V.; Bordy, T.; Gonon, G.; Dinten, J. M.

    2005-04-01

    The LEXXOS (DMS, Montpellier, France) is the first axial and total body cone beam bone densitometer using a 2D digital radiographic detector. Technical principles and performances for BMD measurements have been presented in previous papers. Bone densitometers are also used on small animals for drug development. In this paper, we show how the LEXXOS system can be adapted to small animals examinations, and its performances are evaluated. At first, in order to take advantage of the whole area of the digital flat panel X-ray detector, the geometrical configuration has been adapted. Secondly, as small animals present low BMD, a specific dual energy calibration has been defined. This adapted system has then been evaluated on two sets of mice: six reference mice and six ovariectomized mice. Each month, these two populations have been examined and the total body BMD has been measured. This evaluation has shown that the right order of BMD magnitude has been obtained and, as expected, BMD increases on the two sets until age of puberty and after this period, decreases significantly for the ovariectomized set. Moreover, the bone image obtained by dual energy processing on LEXXOS presents a radiographic image quality providing with useful complementary information on bone morphometry and architecture.

  17. Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals

    NASA Astrophysics Data System (ADS)

    Youssefi, Bahar; Moravvej-Farshi, Mohammad Kazem; Granpayeh, Nosrat

    2012-06-01

    We have demonstrated the performance of a novel design for a single wavelength 2-bit all-optical analog-to-digital converter (ADC). This converter consists of two high efficient channel drop filters with a coupled cavity-based wavelength selective reflector in a 2D photonic crystal with total length of 15.87 μm. The A/D conversion is achieved by using nonlinear Kerr effect in the cavities. The output ports switch to state '1' at different input power levels to generate unique states preferred for an ADC. This conversion is simulated by the finite difference time domain (FDTD) method for 5 different power levels. The proposed structure can function as a two-bit ADC with a 60 mW/μm input pulse and its maximum sampling rate is found to be ~ 45 GS/s.

  18. 2D and 3D MALDI-imaging: conceptual strategies for visualization and data mining.

    PubMed

    Thiele, Herbert; Heldmann, Stefan; Trede, Dennis; Strehlow, Jan; Wirtz, Stefan; Dreher, Wolfgang; Berger, Judith; Oetjen, Janina; Kobarg, Jan Hendrik; Fischer, Bernd; Maass, Peter

    2014-01-01

    3D imaging has a significant impact on many challenges in life sciences, because biology is a 3-dimensional phenomenon. Current 3D imaging-technologies (various types MRI, PET, SPECT) are labeled, i.e. they trace the localization of a specific compound in the body. In contrast, 3D MALDI mass spectrometry-imaging (MALDI-MSI) is a label-free method imaging the spatial distribution of molecular compounds. It complements 3D imaging labeled methods, immunohistochemistry, and genetics-based methods. However, 3D MALDI-MSI cannot tap its full potential due to the lack of statistical methods for analysis and interpretation of large and complex 3D datasets. To overcome this, we established a complete and robust 3D MALDI-MSI pipeline combined with efficient computational data analysis methods for 3D edge preserving image denoising, 3D spatial segmentation as well as finding colocalized m/z values, which will be reviewed here in detail. Furthermore, we explain, why the integration and correlation of the MALDI imaging data with other imaging modalities allows to enhance the interpretation of the molecular data and provides visualization of molecular patterns that may otherwise not be apparent. Therefore, a 3D data acquisition workflow is described generating a set of 3 different dimensional images representing the same anatomies. First, an in-vitro MRI measurement is performed which results in a three-dimensional image modality representing the 3D structure of the measured object. After sectioning the 3D object into N consecutive slices, all N slices are scanned using an optical digital scanner, enabling for performing the MS measurements. Scanning the individual sections results into low-resolution images, which define the base coordinate system for the whole pipeline. The scanned images conclude the information from the spatial (MRI) and the mass spectrometric (MALDI-MSI) dimension and are used for the spatial three-dimensional reconstruction of the object performed by image

  19. Diesel combustion and emissions formation using multiple 2-D imaging diagnostics

    SciTech Connect

    Dec, J.E.

    1997-12-31

    Understanding how emissions are formed during diesel combustion is central to developing new engines that can comply with increasingly stringent emission standards while maintaining or improving performance levels. Laser-based planar imaging diagnostics are uniquely capable of providing the temporally and spatially resolved information required for this understanding. Using an optically accessible research engine, a variety of two-dimensional (2-D) imaging diagnostics have been applied to investigators of direct-injection (DI) diesel combustion and emissions formation. These optical measurements have included the following laser-sheet imaging data: Mie scattering to determine liquid-phase fuel distributions, Rayleigh scattering for quantitative vapor-phase-fuel/air mixture images, laser induced incandescence (LII) for relative soot concentrations, simultaneous LII and Rayleigh scattering for relative soot particle-size distributions, planar laser-induced fluorescence (PLIF) to obtain early PAH (polyaromatic hydrocarbon) distributions, PLIF images of the OH radical that show the diffusion flame structure, and PLIF images of the NO radical showing the onset of NO{sub x} production. In addition, natural-emission chemiluminescence images were obtained to investigate autoignition. The experimental setup is described, and the image data showing the most relevant results are presented. Then the conceptual model of diesel combustion is summarized in a series of idealized schematics depicting the temporal and spatial evolution of a reacting diesel fuel jet during the time period investigated. Finally, recent PLIF images of the NO distribution are presented and shown to support the timing and location of NO formation hypothesized from the conceptual model.

  20. Image rejects in general direct digital radiography

    PubMed Central

    Rosanowsky, Tine Blomberg; Jensen, Camilla; Wah, Kenneth Hong Ching

    2015-01-01

    Background The number of rejected images is an indicator of image quality and unnecessary imaging at a radiology department. Image reject analysis was frequent in the film era, but comparably few and small studies have been published after converting to digital radiography. One reason may be a belief that rejects have been eliminated with digitalization. Purpose To measure the extension of deleted images in direct digital radiography (DR), in order to assess the rates of rejects and unnecessary imaging and to analyze reasons for deletions, in order to improve the radiological services. Material and Methods All exposed images at two direct digital laboratories at a hospital in Norway were reviewed in January 2014. Type of examination, number of exposed images, and number of deleted images were registered. Each deleted image was analyzed separately and the reason for deleting the image was recorded. Results Out of 5417 exposed images, 596 were deleted, giving a deletion rate of 11%. A total of 51.3% were deleted due to positioning errors and 31.0% due to error in centering. The examinations with the highest percentage of deleted images were the knee, hip, and ankle, 20.6%, 18.5%, and 13.8% respectively. Conclusion The reject rate is at least as high as the deletion rate and is comparable with previous film-based imaging systems. The reasons for rejection are quite different in digital systems. This falsifies the hypothesis that digitalization would eliminates rejects. A deleted image does not contribute to diagnostics, and therefore is an unnecessary image. Hence, the high rates of deleted images have implications for management, training, education, as well as for quality. PMID:26500784

  1. Non-equilibrium partitioning tracer transport in porous media: 2-D physical modelling and imaging using a partitioning fluorescent dye.

    PubMed

    Jones, Edward H; Smith, Colin C

    2005-12-01

    This paper describes an investigation into non-equilibrium partitioning tracer transport and interaction with non-aqueous-phase liquid (NAPL) contaminated water-saturated porous media using a two-dimensional (2-D) physical modelling methodology. A fluorescent partitioning tracer is employed within a transparent porous model which when imaged by a CCD digital camera can provide full spatial tracer concentrations and tracer breakthrough curves. Quasi one-dimensional (1-D) benchmarking tests in models packed with various combinations of clean quartz sand and NAPL are described. These modelled residual NAPL saturations, S(n), of 0-15%. Results demonstrated that the fluorescent partitioning tracer was able to detect and quantify the presence of NAPL at low flow rates. At larger flow rates and/or higher NAPL saturations, the tracer increasingly underpredicted the NAPL volume as expected and this is attributed primarily to non-equilibrium partitioning. Despite little change in permeability, change in NAPL saturations from 4% to 8% resulted in significant NAPL saturation underestimates at the same flow rates implying coalescence of NAPL into wider separated but larger ganglia. A 2-D investigation of an idealised heterogeneous residual NAPL contaminated flow field indicated little permeability change in the NAPL contaminated zone and thus little flow bypassing, leading to reduced underpredictions of NAPL saturations than for equivalent quasi 1-D cases. This was attributed to increased 'sampling' of the NAPL by the tracer. The process is clearly visually identifiable from the experimental images. This rapid and relatively inexpensive experimental method is of value in laboratory studies of partitioning tracer behaviour in porous media; in particular, the ability to observe full field concentrations makes it valuable for the study of complex heterogeneous systems. PMID:16298415

  2. 2-D array for 3-D Ultrasound Imaging Using Synthetic Aperture Techniques

    PubMed Central

    Daher, Nadim M.; Yen, Jesse T.

    2010-01-01

    A 2-D array of 256 × 256 = 65,536 elements, with total area 4 × 4 = 16 cm2, serves as a flexible platform for developing acquisition schemes for 3-D rectilinear ultrasound imaging at 10 MHz using synthetic aperture techniques. This innovative system combines a simplified interconnect scheme and synthetic aperture techniques with a 2-D array for 3-D imaging. A row-column addressing scheme is used to access different elements for different transmit events. This addressing scheme is achieved through a simple interconnect, consisting of one top, one bottom single layer flex circuits, which, compared to multi-layer flex circuits, are simpler to design, cheaper to manufacture and thinner so their effect on the acoustic response is minimized. We present three designs that prioritize different design objectives: volume acquisiton time, resolution, and sensitivity, while maintaining acceptable figures for the other design objectives. For example, one design overlooks time acquisition requirements, assumes good noise conditions, and optimizes for resolution, achieving −6 dB and −20 dB beamwidths of less than 0.2 and 0.5 millimeters, respectively, for an F/2 aperture. Another design can acquire an entire volume in 256 transmit events, with −6dB and −20 dB beamwidths in the order of 0.4 and 0.8 millimeters, respectively. PMID:16764446

  3. SNARK09 - a software package for reconstruction of 2D images from 1D projections.

    PubMed

    Klukowska, Joanna; Davidi, Ran; Herman, Gabor T

    2013-06-01

    The problem of reconstruction of slices and volumes from 1D and 2D projections has arisen in a large number of scientific fields (including computerized tomography, electron microscopy, X-ray microscopy, radiology, radio astronomy and holography). Many different methods (algorithms) have been suggested for its solution. In this paper we present a software package, SNARK09, for reconstruction of 2D images from their 1D projections. In the area of image reconstruction, researchers often desire to compare two or more reconstruction techniques and assess their relative merits. SNARK09 provides a uniform framework to implement algorithms and evaluate their performance. It has been designed to treat both parallel and divergent projection geometries and can either create test data (with or without noise) for use by reconstruction algorithms or use data collected by another software or a physical device. A number of frequently-used classical reconstruction algorithms are incorporated. The package provides a means for easy incorporation of new algorithms for their testing, comparison and evaluation. It comes with tools for statistical analysis of the results and ten worked examples. PMID:23414602

  4. Fast Confocal Raman Imaging Using a 2-D Multifocal Array for Parallel Hyperspectral Detection.

    PubMed

    Kong, Lingbo; Navas-Moreno, Maria; Chan, James W

    2016-01-19

    We present the development of a novel confocal hyperspectral Raman microscope capable of imaging at speeds up to 100 times faster than conventional point-scan Raman microscopy under high noise conditions. The microscope utilizes scanning galvomirrors to generate a two-dimensional (2-D) multifocal array at the sample plane, generating Raman signals simultaneously at each focus of the array pattern. The signals are combined into a single beam and delivered through a confocal pinhole before being focused through the slit of a spectrometer. To separate the signals from each row of the array, a synchronized scan mirror placed in front of the spectrometer slit positions the Raman signals onto different pixel rows of the detector. We devised an approach to deconvolve the superimposed signals and retrieve the individual spectra at each focal position within a given row. The galvomirrors were programmed to scan different focal arrays following Hadamard encoding patterns. A key feature of the Hadamard detection is the reconstruction of individual spectra with improved signal-to-noise ratio. Using polystyrene beads as test samples, we demonstrated not only that our system images faster than a conventional point-scan method but that it is especially advantageous under noisy conditions, such as when the CCD detector operates at fast read-out rates and high temperatures. This is the first demonstration of multifocal confocal Raman imaging in which parallel spectral detection is implemented along both axes of the CCD detector chip. We envision this novel 2-D multifocal spectral detection technique can be used to develop faster imaging spontaneous Raman microscopes with lower cost detectors. PMID:26654100

  5. Constructing a Database from Multiple 2D Images for Camera Pose Estimation and Robot Localization

    NASA Technical Reports Server (NTRS)

    Wolf, Michael; Ansar, Adnan I.; Brennan, Shane; Clouse, Daniel S.; Padgett, Curtis W.

    2012-01-01

    The LMDB (Landmark Database) Builder software identifies persistent image features (landmarks) in a scene viewed multiple times and precisely estimates the landmarks 3D world positions. The software receives as input multiple 2D images of approximately the same scene, along with an initial guess of the camera poses for each image, and a table of features matched pair-wise in each frame. LMDB Builder aggregates landmarks across an arbitrarily large collection of frames with matched features. Range data from stereo vision processing can also be passed to improve the initial guess of the 3D point estimates. The LMDB Builder aggregates feature lists across all frames, manages the process to promote selected features to landmarks, and iteratively calculates the 3D landmark positions using the current camera pose estimations (via an optimal ray projection method), and then improves the camera pose estimates using the 3D landmark positions. Finally, it extracts image patches for each landmark from auto-selected key frames and constructs the landmark database. The landmark database can then be used to estimate future camera poses (and therefore localize a robotic vehicle that may be carrying the cameras) by matching current imagery to landmark database image patches and using the known 3D landmark positions to estimate the current pose.

  6. 2-D Gaussian beam imaging of multicomponent seismic data in anisotropic media

    NASA Astrophysics Data System (ADS)

    Protasov, M. I.

    2015-12-01

    An approach for true-amplitude seismic beam imaging of multicomponent seismic data in 2-D anisotropic elastic media is presented and discussed. Here, the recovered true-amplitude function is a scattering potential. This approach is a migration procedure based on the weighted summation of pre-stack data. The true-amplitude weights are computed by applying Gaussian beams (GBs). We shoot a pair of properly chosen GBs with a fixed dip and opening angles from the current imaging point towards an acquisition system. This pair of beams is used to compute a true-amplitude selective image of a rapid velocity variation. The total true-amplitude image is constructed by superimposing selective images computed for a range of available dip angles. The global regularity of the GBs allows one to disregard whether a ray field is regular or irregular. P- and S-wave GBs can be used to handle raw multicomponent data without separating the waves. The use of anisotropic GBs allows one to take into account the anisotropy of the background model.

  7. A survey among Brazilian thoracic surgeons about the use of preoperative 2D and 3D images

    PubMed Central

    Cipriano, Federico Enrique Garcia; Arcêncio, Livia; Dessotte, Lycio Umeda; Rodrigues, Alfredo José; Vicente, Walter Villela de Andrade

    2016-01-01

    Background Describe the characteristics of how the thoracic surgeon uses the 2D/3D medical imaging to perform surgical planning, clinical practice and teaching in thoracic surgery and check the initial choice and the final choice of the Brazilian Thoracic surgeon as the 2D and 3D models pictures before and after acquiring theoretical knowledge on the generation, manipulation and interactive 3D views. Methods A descriptive research type Survey cross to data provided by the Brazilian Thoracic Surgeons (members of the Brazilian Society of Thoracic Surgery) who responded to the online questionnaire via the internet on their computers or personal devices. Results Of the 395 invitations visualized distributed by email, 107 surgeons completed the survey. There was no statically difference when comparing the 2D vs. 3D models pictures for the following purposes: diagnosis, assessment of the extent of disease, preoperative surgical planning, and communication among physicians, resident training, and undergraduate medical education. Regarding the type of tomographic image display routinely used in clinical practice (2D or 3D or 2D–3D model image) and the one preferred by the surgeon at the end of the questionnaire. Answers surgeons for exclusive use of 2D images: initial choice =50.47% and preferably end =14.02%. Responses surgeons to use 3D models in combination with 2D images: initial choice =48.60% and preferably end =85.05%. There was a significant change in the final selection of 3D models used together with the 2D images (P<0.0001). Conclusions There is a lack of knowledge of the 3D imaging, as well as the use and interactive manipulation in dedicated 3D applications, with consequent lack of uniformity in the surgical planning based on CT images. These findings certainly confirm in changing the preference of thoracic surgeons of 2D views of technologies for 3D images. PMID:27621874

  8. Parallel Analog-to-Digital Image Processor

    NASA Technical Reports Server (NTRS)

    Lokerson, D. C.

    1987-01-01

    Proposed integrated-circuit network of many identical units convert analog outputs of imaging arrays of x-ray or infrared detectors to digital outputs. Converter located near imaging detectors, within cryogenic detector package. Because converter output digital, lends itself well to multiplexing and to postprocessing for correction of gain and offset errors peculiar to each picture element and its sampling and conversion circuits. Analog-to-digital image processor is massively parallel system for processing data from array of photodetectors. System built as compact integrated circuit located near local plane. Buffer amplifier for each picture element has different offset.

  9. Rotationally symmetric triangulation sensor with integrated object imaging using only one 2D detector

    NASA Astrophysics Data System (ADS)

    Eckstein, Johannes; Lei, Wang; Becker, Jonathan; Jun, Gao; Ott, Peter

    2006-04-01

    In this paper a distance measurement sensor is introduced, equipped with two integrated optical systems, the first one for rotationally symmetric triangulation and the second one for imaging the object while using only one 2D detector for both purposes. Rotationally symmetric triangulation, introduced in [1], eliminates some disadvantages of classical triangulation sensors, especially at steps or strong curvatures of the object, wherefore the measurement result depends not any longer on the angular orientation of the sensor. This is achieved by imaging the scattered light from an illuminated object point to a centered and sharp ring on a low cost area detector. The diameter of the ring is proportional to the distance of the object. The optical system consists of two off axis aspheric reflecting surfaces. This system allows for integrating a second optical system in order to capture images of the object at the same 2D detector. A mock-up was realized for the first time which consists of the reflecting optics for triangulation manufactured by diamond turning. A commercially available appropriate small lens system for imaging was mechanically integrated in the reflecting optics. Alternatively, some designs of retrofocus lens system for larger field of views were investigated. The optical designs allow overlying the image of the object and the ring for distance measurement in the same plane. In this plane a CCD detector is mounted, centered to the optical axis for both channels. A fast algorithm for the evaluation of the ring is implemented. The characteristics, i.e. the ring diameter versus object distance shows very linear behavior. For illumination of the object point for distance measurement, the beam of a red laser diode system is reflected by a wavelength bandpath filter on the axis of the optical system in. Additionally, the surface of the object is illuminated by LED's in the green spectrum. The LED's are located on the outside rim of the reflecting optics. The

  10. Digital imaging technology assessment: Digital document storage project

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An ongoing technical assessment and requirements definition project is examining the potential role of digital imaging technology at NASA's STI facility. The focus is on the basic components of imaging technology in today's marketplace as well as the components anticipated in the near future. Presented is a requirement specification for a prototype project, an initial examination of current image processing at the STI facility, and an initial summary of image processing projects at other sites. Operational imaging systems incorporate scanners, optical storage, high resolution monitors, processing nodes, magnetic storage, jukeboxes, specialized boards, optical character recognition gear, pixel addressable printers, communications, and complex software processes.

  11. Materials characterization through quantitative digital image analysis

    SciTech Connect

    J. Philliber; B. Antoun; B. Somerday; N. Yang

    2000-07-01

    A digital image analysis system has been developed to allow advanced quantitative measurement of microstructural features. This capability is maintained as part of the microscopy facility at Sandia, Livermore. The system records images digitally, eliminating the use of film. Images obtained from other sources may also be imported into the system. Subsequent digital image processing enhances image appearance through the contrast and brightness adjustments. The system measures a variety of user-defined microstructural features--including area fraction, particle size and spatial distributions, grain sizes and orientations of elongated particles. These measurements are made in a semi-automatic mode through the use of macro programs and a computer controlled translation stage. A routine has been developed to create large montages of 50+ separate images. Individual image frames are matched to the nearest pixel to create seamless montages. Results from three different studies are presented to illustrate the capabilities of the system.

  12. Digital image processing: a primer for JVIR authors and readers: part 2: digital image acquisition.

    PubMed

    LaBerge, Jeanne M; Andriole, Katherine P

    2003-11-01

    This is the second installment of a three-part series on digital image processing intended to prepare authors for online submission of manuscripts. In the first article of the series, we reviewed the fundamentals of digital image architecture. In this article, we describe the ways that an author can import digital images to the computer desktop. We explore the modern imaging network and explain how to import picture archiving and communications systems (PACS) images to the desktop. Options and techniques for producing digital hard copy film are also presented. PMID:14605101

  13. The use of digital images in pathology.

    PubMed

    Furness, P N

    1997-11-01

    Digital images are routinely used by the publishing industry, but most diagnostic pathologists are unfamiliar with the technology and its possibilities. This review aims to explain the basic principles of digital image acquisition, storage, manipulation and use, and the possibilities provided not only in research, but also in teaching and in routine diagnostic pathology. Images of natural objects are usually expressed digitally as 'bitmaps'--rectilinear arrays of small dots. The size of each dot can vary, but so can its information content in terms, for example, of colour, greyscale or opacity. Various file formats and compression algorithms are available. Video cameras connected to microscopes are familiar to most pathologists; video images can be converted directly to a digital form by a suitably equipped computer. Digital cameras and scanners are alternative acquisition tools of relevance to pathologists. Once acquired, a digital image can easily be subjected to the digital equivalent of any conventional darkroom manipulation and modern software allows much more flexibility, to such an extent that a new tool for scientific fraud has been created. For research, image enhancement and analysis is an increasingly powerful and affordable tool. Morphometric measurements are, after many predictions, at last beginning to be part of the toolkit of the diagnostic pathologist. In teaching, the potential to create dramatic yet informative presentations is demonstrated daily by the publishing industry; such methods are readily applicable to the classroom. The combination of digital images and the Internet raises many possibilities; for example, instead of seeking one expert diagnostic opinion, one could simultaneously seek the opinion of many, all around the globe. It is inevitable that in the coming years the use of digital images will spread from the laboratory to the medical curriculum and to the whole of diagnostic pathology. PMID:9422979

  14. 2D Seismic Imaging of Elastic Parameters by Frequency Domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Brossier, R.; Virieux, J.; Operto, S.

    2008-12-01

    Thanks to recent advances in parallel computing, full waveform inversion is today a tractable seismic imaging method to reconstruct physical parameters of the earth interior at different scales ranging from the near- surface to the deep crust. We present a massively parallel 2D frequency-domain full-waveform algorithm for imaging visco-elastic media from multi-component seismic data. The forward problem (i.e. the resolution of the frequency-domain 2D PSV elastodynamics equations) is based on low-order Discontinuous Galerkin (DG) method (P0 and/or P1 interpolations). Thanks to triangular unstructured meshes, the DG method allows accurate modeling of both body waves and surface waves in case of complex topography for a discretization of 10 to 15 cells per shear wavelength. The frequency-domain DG system is solved efficiently for multiple sources with the parallel direct solver MUMPS. The local inversion procedure (i.e. minimization of residuals between observed and computed data) is based on the adjoint-state method which allows to efficiently compute the gradient of the objective function. Applying the inversion hierarchically from the low frequencies to the higher ones defines a multiresolution imaging strategy which helps convergence towards the global minimum. In place of expensive Newton algorithm, the combined use of the diagonal terms of the approximate Hessian matrix and optimization algorithms based on quasi-Newton methods (Conjugate Gradient, LBFGS, ...) allows to improve the convergence of the iterative inversion. The distribution of forward problem solutions over processors driven by a mesh partitioning performed by METIS allows to apply most of the inversion in parallel. We shall present the main features of the parallel modeling/inversion algorithm, assess its scalability and illustrate its performances with realistic synthetic case studies.

  15. Embedded morphological dilation coding for 2D and 3D images

    NASA Astrophysics Data System (ADS)

    Lazzaroni, Fabio; Signoroni, Alberto; Leonardi, Riccardo

    2002-01-01

    Current wavelet-based image coders obtain high performance thanks to the identification and the exploitation of the statistical properties of natural images in the transformed domain. Zerotree-based algorithms, as Embedded Zerotree Wavelets (EZW) and Set Partitioning In Hierarchical Trees (SPIHT), offer high Rate-Distortion (RD) coding performance and low computational complexity by exploiting statistical dependencies among insignificant coefficients on hierarchical subband structures. Another possible approach tries to predict the clusters of significant coefficients by means of some form of morphological dilation. An example of a morphology-based coder is the Significance-Linked Connected Component Analysis (SLCCA) that has shown performance which are comparable to the zerotree-based coders but is not embedded. A new embedded bit-plane coder is proposed here based on morphological dilation of significant coefficients and context based arithmetic coding. The algorithm is able to exploit both intra-band and inter-band statistical dependencies among wavelet significant coefficients. Moreover, the same approach is used both for two and three-dimensional wavelet-based image compression. Finally we the algorithms are tested on some 2D images and on a medical volume, by comparing the RD results to those obtained with the state-of-the-art wavelet-based coders.

  16. Digital Image Distribution: A Study of Costs and Uses.

    ERIC Educational Resources Information Center

    Besser, Howard

    1999-01-01

    Describes a study that examined an experimental multi-site image distribution scheme among museums and universities in California, The Museum Educational Site Licensing Project, whose content was primarily digital images and metadata. Discusses barriers to using digital images; digital image distribution; comparing digital images to analog slide…

  17. Image Interpolation With Dedicated Digital Hardware

    NASA Technical Reports Server (NTRS)

    Hartenstein, R.; Wagner, G.; Simons, D.; Coulson, J.

    1986-01-01

    Algorithm for interpolating two-dimensional image data to change picture-element spacing implemented in dedicated digital hardware for high-speed execution. System interpolates 100 times as fast as generalpurpose computer. Image resampling occurs first along one image axis and then along other, using two interpolation devices implemented in series.

  18. Digital Imaging and Conservation: Model Guidelines.

    ERIC Educational Resources Information Center

    Dean, John F.

    2003-01-01

    Examines the intersection of conservation and digital imaging based on guidelines at the Cornell University (Ithaca, NY) library. Discusses the digitization of artifacts; assessing the condition prior to scanning; scanning considerations, including temperature and humidity, lighting, and security; stable storage of artifacts after scanning; and…

  19. 2D photoacoustic scanning imaging with a single pulsed laser diode excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Li, Changwei; Zeng, Lvming; Liu, Guodong; Huang, Zhen; Ren, Zhong

    2011-11-01

    A portable near-infrared photoacoustic scanning imaging system has been developed with a single pulsed laser diode, which was integrated with an optical lens system to straightforward boost the laser energy density for photoacoustic generation. The 905 nm laser diode provides a maximum energy output of 14 μJ within 100 ns pulse duration, and the pulse repetition frequency rate is 0.8 KHz. As a possible alternative light source, the preliminary 2D photoacoustic results primely correspond with the test phantoms of umbonate extravasated gore and knotted blood vessel network. The photoacoustic SNR can reach 20.6+/-1.2 dB while signal averaging reduces to 128 pulses from thousands to tens of thousands times, and the signal acquisition time accelerates to less than 0.2 s in each A-scan, especially the volume of the total radiation source is only 10 × 3 × 3 cm3. It demonstrated that the pulsed semiconductor laser could be a candidate of photoacoustic equipment for daily clinical application.

  20. 2D photoacoustic scanning imaging with a single pulsed laser diode excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Li, Changwei; Zeng, Lvming; Liu, Guodong; Huang, Zhen; Ren, Zhong

    2012-03-01

    A portable near-infrared photoacoustic scanning imaging system has been developed with a single pulsed laser diode, which was integrated with an optical lens system to straightforward boost the laser energy density for photoacoustic generation. The 905 nm laser diode provides a maximum energy output of 14 μJ within 100 ns pulse duration, and the pulse repetition frequency rate is 0.8 KHz. As a possible alternative light source, the preliminary 2D photoacoustic results primely correspond with the test phantoms of umbonate extravasated gore and knotted blood vessel network. The photoacoustic SNR can reach 20.6+/-1.2 dB while signal averaging reduces to 128 pulses from thousands to tens of thousands times, and the signal acquisition time accelerates to less than 0.2 s in each A-scan, especially the volume of the total radiation source is only 10 × 3 × 3 cm3. It demonstrated that the pulsed semiconductor laser could be a candidate of photoacoustic equipment for daily clinical application.

  1. List-Mode Likelihood: EM Algorithm and Image Quality Estimation Demonstrated on 2-D PET

    PubMed Central

    Barrett, Harrison H.

    2010-01-01

    Using a theory of list-mode maximum-likelihood (ML) source reconstruction presented recently by Barrett et al. [1], this paper formulates a corresponding expectation-maximization (EM) algorithm, as well as a method for estimating noise properties at the ML estimate. List-mode ML is of interest in cases where the dimensionality of the measurement space impedes a binning of the measurement data. It can be advantageous in cases where a better forward model can be obtained by including more measurement coordinates provided by a given detector. Different figures of merit for the detector performance can be computed from the Fisher information matrix (FIM). This paper uses the observed FIM, which requires a single data set, thus, avoiding costly ensemble statistics. The proposed techniques are demonstrated for an idealized two-dimensional (2-D) positron emission tomography (PET) [2-D PET] detector. We compute from simulation data the improved image quality obtained by including the time of flight of the coincident quanta. PMID:9688154

  2. 2D simultaneous spatial and temporal focusing multiphoton microscopy for fast volume imaging with improved sectioning ability

    NASA Astrophysics Data System (ADS)

    Song, Qiyuan; Isobe, Keisuke; Hirosawa, Kenichi; Midorikawa, Katsumi; Kannari, Fumihiko

    2015-03-01

    Simultaneous spatial and temporal focusing (SSTF) multiphoton microscopy offers us widefield imaging with sectioning ability. As extending the idea to 2D SSTF, people can utilize a 2D spectral disperser. In this study, we use a 2D spectral disperser via a virtually-imaged phased-array (VIPA) and a diffraction grating to fulfill the back aperture of objective lens with a spectrum matrix. This offers us an axial resolution enhanced by a factor of ~1.7 compared with conventional SSTF microscopy. Furthermore, the small free spectral range (FSR) of VIPA will reduce the temporal self-imaging effect around out-of-focus region and thus will reduce the out-of-focus multiphoton excited fluorescence (MPEF) signal of 2D SSTF microscopy. We experimentally show that inside a sample with dense MPEF, the contrast of the sectioning image is increased in our 2D SSTF microscope compared with SSTF microscope. In our microscope, we use a 1 kHz chirped amplification laser, a piezo stage and a sCMOS camera integrated with 2D SSTF to realize high speed volume imaging at a speed of 50 volumes per second as well as improved sectioning ability. Volume imaging of Brownian motions of fluorescent beads as small as 1μm has been demonstrated. Not only the lateral motion but also the axial motion could be traced.

  3. Development of Standard Digital Images for Pneumoconiosis

    PubMed Central

    Lee, Won-Jeong; Kim, Sung Jin; Park, Choong-Ki; Park, Jai-Soung; Tae, Seok; Hering, Kurt Georg

    2011-01-01

    We developed the standard digital images (SDIs) to be used in the classification and recognition of pneumoconiosis. From July 3, 2006 through August 31, 2007, 531 retired male workers exposed to inorganic dust were examined by digital (DR) and analog radiography (AR) on the same day, after being approved by our institutional review board and obtaining informed consent from all participants. All images were twice classified according to the International Labour Office (ILO) 2000 guidelines with reference to ILO standard analog radiographs (SARs) by four chest radiologists. After consensus reading on 349 digital images matched with the first selected analog images, 120 digital images were selected as the SDIs that considered the distribution of pneumoconiosis findings. Images with profusion category 0/1, 1, 2, and 3 were 12, 50, 40, and 15, respectively, and a large opacity were in 43 images (A = 20, B = 22, C = 1). Among pleural abnormality, costophrenic angle obliteration, pleural plaque and thickening were in 11 (9.2%), 31 (25.8%), and 9 (7.5%) images, respectively. Twenty-one of 29 symbols were present except cp, ef, ho, id, me, pa, ra, and rp. A set of 120 SDIs had more various pneumoconiosis findings than ILO SARs that were developed from adequate methods. It can be used as digital reference images for the recognition and classification of pneumoconiosis. PMID:22065894

  4. A 2D to 3D ultrasound image registration algorithm for robotically assisted laparoscopic radical prostatectomy

    NASA Astrophysics Data System (ADS)

    Esteghamatian, Mehdi; Pautler, Stephen E.; McKenzie, Charles A.; Peters, Terry M.

    2011-03-01

    Robotically assisted laparoscopic radical prostatectomy (RARP) is an effective approach to resect the diseased organ, with stereoscopic views of the targeted tissue improving the dexterity of the surgeons. However, since the laparoscopic view acquires only the surface image of the tissue, the underlying distribution of the cancer within the organ is not observed, making it difficult to make informed decisions on surgical margins and sparing of neurovascular bundles. One option to address this problem is to exploit registration to integrate the laparoscopic view with images of pre-operatively acquired dynamic contrast enhanced (DCE) MRI that can demonstrate the regions of malignant tissue within the prostate. Such a view potentially allows the surgeon to visualize the location of the malignancy with respect to the surrounding neurovascular structures, permitting a tissue-sparing strategy to be formulated directly based on the observed tumour distribution. If the tumour is close to the capsule, it may be determined that the adjacent neurovascular bundle (NVB) needs to be sacrificed within the surgical margin to ensure that any erupted tumour was resected. On the other hand, if the cancer is sufficiently far from the capsule, one or both NVBs may be spared. However, in order to realize such image integration, the pre-operative image needs to be fused with the laparoscopic view of the prostate. During the initial stages of the operation, the prostate must be tracked in real time so that the pre-operative MR image remains aligned with patient coordinate system. In this study, we propose and investigate a novel 2D to 3D ultrasound image registration algorithm to track the prostate motion with an accuracy of 2.68+/-1.31mm.

  5. Checking Fits With Digital Image Processing

    NASA Technical Reports Server (NTRS)

    Davis, R. M.; Geaslen, W. D.

    1988-01-01

    Computer-aided video inspection of mechanical and electrical connectors feasible. Report discusses work done on digital image processing for computer-aided interface verification (CAIV). Two kinds of components examined: mechanical mating flange and electrical plug.

  6. Registration of 2D to 3D joint images using phase-based mutual information

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Abugharbieh, Rafeef; Pickering, Mark; Scarvell, Jennie; Smith, Paul

    2007-03-01

    Registration of two dimensional to three dimensional orthopaedic medical image data has important applications particularly in the area of image guided surgery and sports medicine. Fluoroscopy to computer tomography (CT) registration is an important case, wherein digitally reconstructed radiographs derived from the CT data are registered to the fluoroscopy data. Traditional registration metrics such as intensity-based mutual information (MI) typically work well but often suffer from gross misregistration errors when the image to be registered contains a partial view of the anatomy visible in the target image. Phase-based MI provides a robust alternative similarity measure which, in addition to possessing the general robustness and noise immunity that MI provides, also employs local phase information in the registration process which makes it less susceptible to the aforementioned errors. In this paper, we propose using the complex wavelet transform for computing image phase information and incorporating that into a phase-based MI measure for image registration. Tests on a CT volume and 6 fluoroscopy images of the knee are presented. The femur and the tibia in the CT volume were individually registered to the fluoroscopy images using intensity-based MI, gradient-based MI and phase-based MI. Errors in the coordinates of fiducials present in the bone structures were used to assess the accuracy of the different registration schemes. Quantitative results demonstrate that the performance of intensity-based MI was the worst. Gradient-based MI performed slightly better, while phase-based MI results were the best consistently producing the lowest errors.

  7. Nonrigid 2D registration of fluoroscopic coronary artery image sequence with layered motion

    NASA Astrophysics Data System (ADS)

    Park, Taewoo; Jung, Hoyup; Yun, Il Dong

    2016-03-01

    We present a new method for nonrigid registration of coronary artery models with layered motion information. 2D nonrigid registration method is proposed that brings layered motion information into correspondence with fluoroscopic angiograms. The registered model is overlaid on top of interventional angiograms to provide surgical assistance during image-guided chronic total occlusion procedures. The proposed methodology is divided into two parts: layered structures alignments and local nonrigid registration. In the first part, inpainting method is used to estimate a layered rigid transformation that aligns layered motion information. In the second part, a nonrigid registration method is implemented and used to compensate for any local shape discrepancy. Experimental evaluation conducted on a set of 7 fluoroscopic angiograms results in a reduced target registration error, which showed the effectiveness of the proposed method over single layered approach.

  8. 3D prostate boundary segmentation from ultrasound images using 2D active shape models.

    PubMed

    Hodge, Adam C; Ladak, Hanif M

    2006-01-01

    Boundary outlining, or segmentation, of the prostate is an important task in diagnosis and treatment planning for prostate cancer. This paper describes an algorithm for semi-automatic, three-dimensional (3D) segmentation of the prostate boundary from ultrasound images based on two-dimensional (2D) active shape models (ASM) and rotation-based slicing. Evaluation of the algorithm used distance- and volume-based error metrics to compare algorithm generated boundary outlines to gold standard (manually generated) boundary outlines. The mean absolute distance between the algorithm and gold standard boundaries was 1.09+/-0.49 mm, the average percent absolute volume difference was 3.28+/-3.16%, and a 5x speed increase as compared manual planimetry was achieved. PMID:17946106

  9. Robust initialization of 2D-3D image registration using the projection-slice theorem and phase correlation

    SciTech Connect

    Bom, M. J. van der; Bartels, L. W.; Gounis, M. J.; Homan, R.; Timmer, J.; Viergever, M. A.; Pluim, J. P. W.

    2010-04-15

    Purpose: The image registration literature comprises many methods for 2D-3D registration for which accuracy has been established in a variety of applications. However, clinical application is limited by a small capture range. Initial offsets outside the capture range of a registration method will not converge to a successful registration. Previously reported capture ranges, defined as the 95% success range, are in the order of 4-11 mm mean target registration error. In this article, a relatively computationally inexpensive and robust estimation method is proposed with the objective to enlarge the capture range. Methods: The method uses the projection-slice theorem in combination with phase correlation in order to estimate the transform parameters, which provides an initialization of the subsequent registration procedure. Results: The feasibility of the method was evaluated by experiments using digitally reconstructed radiographs generated from in vivo 3D-RX data. With these experiments it was shown that the projection-slice theorem provides successful estimates of the rotational transform parameters for perspective projections and in case of translational offsets. The method was further tested on ex vivo ovine x-ray data. In 95% of the cases, the method yielded successful estimates for initial mean target registration errors up to 19.5 mm. Finally, the method was evaluated as an initialization method for an intensity-based 2D-3D registration method. The uninitialized and initialized registration experiments had success rates of 28.8% and 68.6%, respectively. Conclusions: The authors have shown that the initialization method based on the projection-slice theorem and phase correlation yields adequate initializations for existing registration methods, thereby substantially enlarging the capture range of these methods.

  10. Automatic ultrasound image enhancement for 2D semi-automatic breast-lesion segmentation

    NASA Astrophysics Data System (ADS)

    Lu, Kongkuo; Hall, Christopher S.

    2014-03-01

    Breast cancer is the fastest growing cancer, accounting for 29%, of new cases in 2012, and second leading cause of cancer death among women in the United States and worldwide. Ultrasound (US) has been used as an indispensable tool for breast cancer detection/diagnosis and treatment. In computer-aided assistance, lesion segmentation is a preliminary but vital step, but the task is quite challenging in US images, due to imaging artifacts that complicate detection and measurement of the suspect lesions. The lesions usually present with poor boundary features and vary significantly in size, shape, and intensity distribution between cases. Automatic methods are highly application dependent while manual tracing methods are extremely time consuming and have a great deal of intra- and inter- observer variability. Semi-automatic approaches are designed to counterbalance the advantage and drawbacks of the automatic and manual methods. However, considerable user interaction might be necessary to ensure reasonable segmentation for a wide range of lesions. This work proposes an automatic enhancement approach to improve the boundary searching ability of the live wire method to reduce necessary user interaction while keeping the segmentation performance. Based on the results of segmentation of 50 2D breast lesions in US images, less user interaction is required to achieve desired accuracy, i.e. < 80%, when auto-enhancement is applied for live-wire segmentation.

  11. Extending Ripley’s K-Function to Quantify Aggregation in 2-D Grayscale Images

    PubMed Central

    Amgad, Mohamed; Itoh, Anri; Tsui, Marco Man Kin

    2015-01-01

    In this work, we describe the extension of Ripley’s K-function to allow for overlapping events at very high event densities. We show that problematic edge effects introduce significant bias to the function at very high densities and small radii, and propose a simple correction method that successfully restores the function’s centralization. Using simulations of homogeneous Poisson distributions of events, as well as simulations of event clustering under different conditions, we investigate various aspects of the function, including its shape-dependence and correspondence between true cluster radius and radius at which the K-function is maximized. Furthermore, we validate the utility of the function in quantifying clustering in 2-D grayscale images using three modalities: (i) Simulations of particle clustering; (ii) Experimental co-expression of soluble and diffuse protein at varying ratios; (iii) Quantifying chromatin clustering in the nuclei of wt and crwn1 crwn2 mutant Arabidopsis plant cells, using a previously-published image dataset. Overall, our work shows that Ripley’s K-function is a valid abstract statistical measure whose utility extends beyond the quantification of clustering of non-overlapping events. Potential benefits of this work include the quantification of protein and chromatin aggregation in fluorescent microscopic images. Furthermore, this function has the potential to become one of various abstract texture descriptors that are utilized in computer-assisted diagnostics in anatomic pathology and diagnostic radiology. PMID:26636680

  12. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)

    2000-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absorption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  13. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1999-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: ##EQU1## wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  14. Web-based interactive 2D/3D medical image processing and visualization software.

    PubMed

    Mahmoudi, Seyyed Ehsan; Akhondi-Asl, Alireza; Rahmani, Roohollah; Faghih-Roohi, Shahrooz; Taimouri, Vahid; Sabouri, Ahmad; Soltanian-Zadeh, Hamid

    2010-05-01

    There are many medical image processing software tools available for research and diagnosis purposes. However, most of these tools are available only as local applications. This limits the accessibility of the software to a specific machine, and thus the data and processing power of that application are not available to other workstations. Further, there are operating system and processing power limitations which prevent such applications from running on every type of workstation. By developing web-based tools, it is possible for users to access the medical image processing functionalities wherever the internet is available. In this paper, we introduce a pure web-based, interactive, extendable, 2D and 3D medical image processing and visualization application that requires no client installation. Our software uses a four-layered design consisting of an algorithm layer, web-user-interface layer, server communication layer, and wrapper layer. To compete with extendibility of the current local medical image processing software, each layer is highly independent of other layers. A wide range of medical image preprocessing, registration, and segmentation methods are implemented using open source libraries. Desktop-like user interaction is provided by using AJAX technology in the web-user-interface. For the visualization functionality of the software, the VRML standard is used to provide 3D features over the web. Integration of these technologies has allowed implementation of our purely web-based software with high functionality without requiring powerful computational resources in the client side. The user-interface is designed such that the users can select appropriate parameters for practical research and clinical studies. PMID:20022133

  15. Absorption and Scattering 2D Volcano Images from Numerically Calculated Space-weighting functions

    NASA Astrophysics Data System (ADS)

    Del Pezzo, Edoardo; Ibañez, Jesus; Prudencio, Janire; Bianco, Francesca; De Siena, Luca

    2016-04-01

    Short period small magnitude seismograms mainly comprise scattered waves in the form of coda waves (the tail part of the seismogram, starting after S-waves and ending when the noise prevails), spanning more than 70% of the whole seismogram duration. Corresponding coda envelopes provide important information about the earth inhomogeneity, which can be stochastically modeled in terms of distribution of scatterers in a random medium. In suitable experimental conditions (i.e. high earth heterogeneity) either the two parameters describing heterogeneity (scattering coefficient), intrinsic energy dissipation (coefficient of intrinsic attenuation) or a combination of them (extinction length and seismic albedo) can be used to image Earth structures. Once a set of such parameter couples has been measured in a given area and for a number of sources and receivers, imaging their space distribution with standard methods is straightforward. However, as for finite-frequency and full-waveform tomography, the essential problem for a correct imaging is the determination of the weighting function describing the spatial sensitivity of observable data to scattering and absorption anomalies. Due to the nature of coda waves, the measured parameter-couple can be seen as a weighted space average of the real parameters characterizing the rock volumes illuminated by the scattered waves. This paper uses the Monte Carlo numerical solution of the Energy Transport Equation to find approximate but realistic 2D space-weighting functions for coda waves. Separate images for scattering and absorption based on these sensitivity functions are then compared with those obtained with commonly-used sensitivity functions in an application to data from an active seismic experiment carried out at Deception Island (Antarctica). Results show the that these novel functions are based on a reliable and physically grounded method to image magnitude and shape of scattering and absorption anomalies. Their extension to

  16. Absorption and scattering 2-D volcano images from numerically calculated space-weighting functions

    NASA Astrophysics Data System (ADS)

    Del Pezzo, Edoardo; Ibañez, Jesus; Prudencio, Janire; Bianco, Francesca; De Siena, Luca

    2016-08-01

    Short-period small magnitude seismograms mainly comprise scattered waves in the form of coda waves (the tail part of the seismogram, starting after S waves and ending when the noise prevails), spanning more than 70 per cent of the whole seismogram duration. Corresponding coda envelopes provide important information about the earth inhomogeneity, which can be stochastically modeled in terms of distribution of scatterers in a random medium. In suitable experimental conditions (i.e. high earth heterogeneity), either the two parameters describing heterogeneity (scattering coefficient), intrinsic energy dissipation (coefficient of intrinsic attenuation) or a combination of them (extinction length and seismic albedo) can be used to image Earth structures. Once a set of such parameter couples has been measured in a given area and for a number of sources and receivers, imaging their space distribution with standard methods is straightforward. However, as for finite-frequency and full-waveform tomography, the essential problem for a correct imaging is the determination of the weighting function describing the spatial sensitivity of observable data to scattering and absorption anomalies. Due to the nature of coda waves, the measured parameter couple can be seen as a weighted space average of the real parameters characterizing the rock volumes illuminated by the scattered waves. This paper uses the Monte Carlo numerical solution of the Energy Transport Equation to find approximate but realistic 2-D space-weighting functions for coda waves. Separate images for scattering and absorption based on these sensitivity functions are then compared with those obtained with commonly used sensitivity functions in an application to data from an active seismic experiment carried out at Deception Island (Antarctica). Results show that these novel functions are based on a reliable and physically grounded method to image magnitude and shape of scattering and absorption anomalies. Their

  17. 2-D traveltime and waveform inversion for improved seismic imaging: Naga Thrust and Fold Belt, India

    NASA Astrophysics Data System (ADS)

    Jaiswal, Priyank; Zelt, Colin A.; Bally, Albert W.; Dasgupta, Rahul

    2008-05-01

    Exploration along the Naga Thrust and Fold Belt in the Assam province of Northeast India encounters geological as well as logistic challenges. Drilling for hydrocarbons, traditionally guided by surface manifestations of the Naga thrust fault, faces additional challenges in the northeast where the thrust fault gradually deepens leaving subtle surface expressions. In such an area, multichannel 2-D seismic data were collected along a line perpendicular to the trend of the thrust belt. The data have a moderate signal-to-noise ratio and suffer from ground roll and other acquisition-related noise. In addition to data quality, the complex geology of the thrust belt limits the ability of conventional seismic processing to yield a reliable velocity model which in turn leads to poor subsurface image. In this paper, we demonstrate the application of traveltime and waveform inversion as supplements to conventional seismic imaging and interpretation processes. Both traveltime and waveform inversion utilize the first arrivals that are typically discarded during conventional seismic processing. As a first step, a smooth velocity model with long wavelength characteristics of the subsurface is estimated through inversion of the first-arrival traveltimes. This velocity model is then used to obtain a Kirchhoff pre-stack depth-migrated image which in turn is used for the interpretation of the fault. Waveform inversion is applied to the central part of the seismic line to a depth of ~1 km where the quality of the migrated image is poor. Waveform inversion is performed in the frequency domain over a series of iterations, proceeding from low to high frequency (11-19 Hz) using the velocity model from traveltime inversion as the starting model. In the end, the pre-stack depth-migrated image and the waveform inversion model are jointly interpreted. This study demonstrates that a combination of traveltime and waveform inversion with Kirchhoff pre-stack depth migration is a promising approach

  18. Digital image centering. II. [for astronomical photography

    NASA Technical Reports Server (NTRS)

    Auer, L. H.; Van Altena, W. F.

    1978-01-01

    Digital image centering algorithms were compared in a test involving microdensitometer raster scans of a refractor parallax series consisting of 22 stars on 26 plates. The highest accuracy in determining stellar image positions was provided by an algorithm which involved fitting of a symmetric Gaussian curve and a flat background to the image marginal density distributions. Algorithms involving transmission marginals instead of density marginals were found to be less accurate. The repeatability and computational efficiency of the digital image centering technique were also studied.

  19. Voxel-based 2-D/3-D registration of fluoroscopy images and CT scans for image-guided surgery.

    PubMed

    Weese, J; Penney, G P; Desmedt, P; Buzug, T M; Hill, D L; Hawkes, D J

    1997-12-01

    Registration of intraoperative fluoroscopy images with preoperative three-dimensional (3-D) CT images can be used for several purposes in image-guided surgery. On the one hand, it can be used to display the position of surgical instruments, which are being tracked by a localizer, in the preoperative CT scan. On the other hand, the registration result can be used to project preoperative planning information or important anatomical structures visible in the CT image onto the fluoroscopy image. For this registration task, a novel voxel-based method in combination with a new similarity measure (pattern intensity) has been developed. The basic concept of the method is explained at the example of two-dimensional (2-D)/3-D registration of a vertebra in an X-ray fluoroscopy image with a 3-D CT image. The registration method is described, and the results for a spine phantom are presented and discussed. Registration has been carried out repeatedly with different starting estimates to study the capture range. Information about registration accuracy has been obtained by comparing the registration results with a highly accurate "ground-truth" registration, which has been derived from fiducial markers attached to the phantom prior to imaging. In addition, registration results for different vertebrae have been compared. The results show that the rotation parameters and the shifts parallel to the projection plane can accurately be determined from a single projection. Because of the projection geometry, the accuracy of the height above the projection plane is significantly lower. PMID:11020832

  20. High-resolution GPR imaging using a nonstandard 2D EEMD technique

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Sung; Jeng*, Yih; Yu, Hung-Ming

    2013-04-01

    Ground Penetrating Radar (GPR) data are affected by a variety of factors. Linear and nonlinear data processing methods each have been widely applied to the GPR use in geophysical and engineering investigations. For complicated data such as the shallow earth image of urban area, a better result can be achieved by integrating both approaches. In this study, we introduce a nonstandard 2D EEMD approach, which integrates the natural logarithm transformed (NLT) ensemble empirical mode decomposition (EEMD) method with the linear filtering technique to process GPR images. The NLT converts the data into logarithmic values; therefore, it permits a wide dynamic range for the recorded GPR data to be presented. The EEMD dyadic filter bank decomposes the data into multiple components ready for image reconstruction. Consequently, the NLT EEMD method provides a new way of nonlinear energy compensating and noise filtering with results having minimal artifacts. However, horizontal noise in the GPR time-distance section may be enhanced after NLT process in some cases. To solve the dilemma, we process the data two dimensionally. At first, the vertical background noise of each GPR trace is removed by using a standard linear method, the background noise removal algorithm, or simply by performing the sliding background removal filter. After that, the NLT is applied to the data for examining the horizontal coherent energy. Next, we employ the EEMD filter bank horizontally at each time step to remove the horizontal coherent energy. After removing the vertical background noise and horizontal coherent energy, a vertical EEMD method is then applied to generate a filter bank of the GPR time-distance section for final image reconstruction. Two buried models imitating common shallow earth targets are used to verify the effectiveness of the proposed scheme. One model is a brick cistern buried in a disturbed site of poor reflection quality. The other model is a buried two-stack metallic target

  1. Applications of Digital Image Processing 11

    NASA Technical Reports Server (NTRS)

    Cho, Y. -C.

    1988-01-01

    A new technique, digital image velocimetry, is proposed for the measurement of instantaneous velocity fields of time dependent flows. A time sequence of single-exposure images of seed particles are captured with a high-speed camera, and a finite number of the single-exposure images are sampled within a prescribed period in time. The sampled images are then digitized on an image processor, enhanced, and superimposed to construct an image which is equivalent to a multiple exposure image used in both laser speckle velocimetry and particle image velocimetry. The superimposed image and a single-exposure Image are digitally Fourier transformed for extraction of information on the velocity field. A great enhancement of the dynamic range of the velocity measurement is accomplished through the new technique by manipulating the Fourier transform of both the single-exposure image and the superimposed image. Also the direction of the velocity vector is unequivocally determined. With the use of a high-speed video camera, the whole process from image acquisition to velocity determination can be carried out electronically; thus this technique can be developed into a real-time capability.

  2. Single-snapshot 2D color measurement by plenoptic imaging system

    NASA Astrophysics Data System (ADS)

    Masuda, Kensuke; Yamanaka, Yuji; Maruyama, Go; Nagai, Sho; Hirai, Hideaki; Meng, Lingfei; Tosic, Ivana

    2014-03-01

    Plenoptic cameras enable capture of directional light ray information, thus allowing applications such as digital refocusing, depth estimation, or multiband imaging. One of the most common plenoptic camera architectures contains a microlens array at the conventional image plane and a sensor at the back focal plane of the microlens array. We leverage the multiband imaging (MBI) function of this camera and develop a single-snapshot, single-sensor high color fidelity camera. Our camera is based on a plenoptic system with XYZ filters inserted in the pupil plane of the main lens. To achieve high color measurement precision of this system, we perform an end-to-end optimization of the system model that includes light source information, object information, optical system information, plenoptic image processing and color estimation processing. Optimized system characteristics are exploited to build an XYZ plenoptic colorimetric camera prototype that achieves high color measurement precision. We describe an application of our colorimetric camera to color shading evaluation of display and show that it achieves color accuracy of ΔE<0.01.

  3. Dual-energy x-ray absorptiometry using 2D digital radiography detector: application to bone densitometry

    NASA Astrophysics Data System (ADS)

    Dinten, Jean-Marc; Robert-Coutant, Christine; Darboux, Michel

    2001-06-01

    Dual Energy X-Rays Absorptiometry (DXA) is commonly used to separate soft tissues and bone contributions in radiographs. This decomposition leads to bone mineral density (BMD) measurement. Most clinical systems use pencil or fan collimated X-Rays beam with mono detectors or linear arrays. On these systems BMD is computed from bi-dimensional (2D) images obtained by scanning. Our objective is to take advantage of the newly available flat panels detectors and to propose a DXA approach without scanning, based on the use of cone beam X-Rays associated with a 2D detector. This approach yields bone densitometry systems with an equal X and Y resolution, a fast acquisition and a reduced risk of patient motion.Scatter in this case becomes an important issue. While scattering is insignificant on collimated systems, its level and geometrical structure may severely alter BMD measurement on cone beam systems. In our presentation an original DXA method taking into account scattering is proposed. This new approach leads to accurate BMD values.In order to evaluate the accuracy of our new approach, a phantom representative of the spine regions tissue composition (bone, fat , muscle) has been designed. The comparison between the expected theoretical and the reconstructed BMD values validates the accuracy of our method. Results on anthropomorphic spine and hip regions are also presented.

  4. Digital image forensics for photographic copying

    NASA Astrophysics Data System (ADS)

    Yin, Jing; Fang, Yanmei

    2012-03-01

    Image display technology has greatly developed over the past few decades, which make it possible to recapture high-quality images from the display medium, such as a liquid crystal display(LCD) screen or a printed paper. The recaptured images are not regarded as a separate image class in the current research of digital image forensics, while the content of the recaptured images may have been tempered. In this paper, two sets of features based on the noise and the traces of double JPEG compression are proposed to identify these recaptured images. Experimental results showed that our proposed features perform well for detecting photographic copying.

  5. A new lossless digital image encryption scheme

    NASA Astrophysics Data System (ADS)

    Pareek, Narendra K.; Patidar, Vinod; Sud, Krishan K.

    2011-12-01

    We propose a new lossless digital image encryption scheme based on the permutation and substitution architecture. Initially, original image is divided into squared sub-images and then three layers of pixels corresponding to additive primary colours (RGB) of each sub-image are separated. Each layer of pixels of squared sub-images are scrambled by three different ways in the permutation process whereas a simple arithmetic, mainly sorting and differencing, is performed on each layer of pixels to achieve the substitution. The results of several experiments show that the proposed image cipher provides an efficient way for image encryption with high decryption rate.

  6. Digital image envelope: method and evaluation

    NASA Astrophysics Data System (ADS)

    Huang, H. K.; Cao, Fei; Zhou, Michael Z.; Mogel, Greg T.; Liu, Brent J.; Zhou, Xiaoqiang

    2003-05-01

    Health data security, characterized in terms of data privacy, authenticity, and integrity, is a vital issue when digital images and other patient information are transmitted through public networks in telehealth applications such as teleradiology. Mandates for ensuring health data security have been extensively discussed (for example The Health Insurance Portability and Accountability Act, HIPAA) and health informatics guidelines (such as the DICOM standard) are beginning to focus on issues of data continue to be published by organizing bodies in healthcare; however, there has not been a systematic method developed to ensure data security in medical imaging Because data privacy and authenticity are often managed primarily with firewall and password protection, we have focused our research and development on data integrity. We have developed a systematic method of ensuring medical image data integrity across public networks using the concept of the digital envelope. When a medical image is generated regardless of the modality, three processes are performed: the image signature is obtained, the DICOM image header is encrypted, and a digital envelope is formed by combining the signature and the encrypted header. The envelope is encrypted and embedded in the original image. This assures the security of both the image and the patient ID. The embedded image is encrypted again and transmitted across the network. The reverse process is performed at the receiving site. The result is two digital signatures, one from the original image before transmission, and second from the image after transmission. If the signatures are identical, there has been no alteration of the image. This paper concentrates in the method and evaluation of the digital image envelope.

  7. Development of 2D imaging of SXR plasma radiation by means of GEM detectors

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Czarski, T.; Jabłoński, S.; Kowalska-Strzeciwilk, E.; Poźniak, K.; Kasprowicz, G.; Zabołotny, W.; Wojeński, A.; Byszuk, A.; Burza, M.; Juszczyk, B.; Zienkiewicz, P.

    2014-11-01

    Presented 2D gaseous detector system has been developed and designed to provide energy resolved fast dynamic plasma radiation imaging in the soft X-Ray region with 0.1 kHz exposure frequency for online, made in real time, data acquisition (DAQ) mode. The detection structure is based on triple Gas Electron Multiplier (GEM) amplification structure followed by the pixel readout electrode. The efficiency of detecting unit was adjusted for the radiation energy region of tungsten in high-temperature plasma, the main candidate for the plasma facing material for future thermonuclear reactors. Here we present preliminary laboratory results and detector parameters obtained for the developed system. The operational characteristics and conditions of the detector were designed to work in the X-Ray range of 2-17 keV. The detector linearity was checked using the fluorescence lines of different elements and was found to be sufficient for good photon energy reconstruction. Images of two sources through various screens were performed with an X-Ray laboratory source and 55Fe source showing a good imaging capability. Finally offline stream-handling data acquisition mode has been developed for the detecting system with timing down to the ADC sampling frequency rate (~13 ns), up to 2.5 MHz of exposure frequency, which could pave the way to invaluable physics information about plasma dynamics due to very good time resolving ability. Here we present results of studied spatial resolution and imaging properties of the detector for conditions of laboratory moderate counting rates and high gain.

  8. Location constraint based 2D-3D registration of fluoroscopic images and CT volumes for image-guided EP procedures

    NASA Astrophysics Data System (ADS)

    Liao, Rui; Xu, Ning; Sun, Yiyong

    2008-03-01

    Presentation of detailed anatomical structures via 3D Computed Tomographic (CT) volumes helps visualization and navigation in electrophysiology procedures (EP). Registration of the CT volume with the online fluoroscopy however is a challenging task for EP applications due to the lack of discernable features in fluoroscopic images. In this paper, we propose to use the coronary sinus (CS) catheter in bi-plane fluoroscopic images and the coronary sinus in the CT volume as a location constraint to accomplish 2D-3D registration. Two automatic registration algorithms are proposed in this study, and their performances are investigated on both simulated and real data. It is shown that compared to registration using mono-plane fluoroscopy, registration using bi-plane images results in substantially higher accuracy in 3D and enhanced robustness. In addition, compared to registering the projection of CS to the 2D CS catheter, it is more desirable to reconstruct a 3D CS catheter from the bi-plane fluoroscopy and then perform a 3D-3D registration between the CS and the reconstructed CS catheter. Quantitative validation based on simulation and visual inspection on real data demonstrates the feasibility of the proposed workflow in EP procedures.

  9. A new method of diaphragm apex motion detection from 2D projection images of mega-voltage cone beam CT.

    PubMed

    Chen, Mingqing; Bai, Junjie; Siochi, R Alfredo C

    2013-02-01

    To present a new method of estimating 3D positions of the ipsi-lateral hemi-diaphragm apex (IHDA) from 2D projection images of mega-voltage cone beam CT (MVCBCT). The detection framework reconstructs a 3D volume from all the 2D projection images. An initial estimated 3D IHDA position is determined in this volume based on an imaging processing pipeline, including Otsu thresholding, connected component labeling and template matching. This initial position is then projected onto each 2D projection image to create a region of interest (ROI). To accurately detect the IHDA position in 2D projection space, two methods, dynamic Hough transform (DHT) and a tracking approach based on a joint probability density function (PDF) are developed. Both methods utilize a double-parabola model to fit the 2D diaphragm boundary. The 3D IHDA motion in the superior-inferior (SI) direction is estimated from the initial static 3D position and the detected 2D positions in projection space. The two Hough-based detection methods are tested on 35 MVCBCT scans from 15 patients. The detection is compared to manually identified IHDA positions in 2D projection space by three clinicians. An average and standard deviation of 4.252 ± 3.354 and 2.485 ± 1.750 mm was achieved for DHT and tracking-based approaches respectively, compared with the inter-expert variance among three experts of 1.822 ± 1.106 mm. Based on the results of the scans, the PDF tracking-based approach appears more robust than the DHT. The combination of the automatic ROI localization and the tracking-based approach is a quicker and more accurate method of extracting 3D IHDA motion from 2D projection images. PMID:23321998

  10. Image microarrays (IMA): Digital pathology's missing tool

    PubMed Central

    Hipp, Jason; Cheng, Jerome; Pantanowitz, Liron; Hewitt, Stephen; Yagi, Yukako; Monaco, James; Madabhushi, Anant; Rodriguez-canales, Jaime; Hanson, Jeffrey; Roy-Chowdhuri, Sinchita; Filie, Armando C.; Feldman, Michael D.; Tomaszewski, John E.; Shih, Natalie NC.; Brodsky, Victor; Giaccone, Giuseppe; Emmert-Buck, Michael R.; Balis, Ulysses J.

    2011-01-01

    Introduction: The increasing availability of whole slide imaging (WSI) data sets (digital slides) from glass slides offers new opportunities for the development of computer-aided diagnostic (CAD) algorithms. With the all-digital pathology workflow that these data sets will enable in the near future, literally millions of digital slides will be generated and stored. Consequently, the field in general and pathologists, specifically, will need tools to help extract actionable information from this new and vast collective repository. Methods: To address this limitation, we designed and implemented a tool (dCORE) to enable the systematic capture of image tiles with constrained size and resolution that contain desired histopathologic features. Results: In this communication, we describe a user-friendly tool that will enable pathologists to mine digital slides archives to create image microarrays (IMAs). IMAs are to digital slides as tissue microarrays (TMAs) are to cell blocks. Thus, a single digital slide could be transformed into an array of hundreds to thousands of high quality digital images, with each containing key diagnostic morphologies and appropriate controls. Current manual digital image cut-and-paste methods that allow for the creation of a grid of images (such as an IMA) of matching resolutions are tedious. Conclusion: The ability to create IMAs representing hundreds to thousands of vetted morphologic features has numerous applications in education, proficiency testing, consensus case review, and research. Lastly, in a manner analogous to the way conventional TMA technology has significantly accelerated in situ studies of tissue specimens use of IMAs has similar potential to significantly accelerate CAD algorithm development. PMID:22200030

  11. On the assimilation of flood extension images into 2D shallow-water models

    NASA Astrophysics Data System (ADS)

    Monnier, J.; Couderc, F.; Dartus, D.; Madec, R.; Vila, J.

    2012-12-01

    In river hydraulics, assimilation of water level measurements at gauging stations is well controlled, while assimilation of images (e.g. from satellite) is still delicate. In the present talk, we address the richness of satellite information to constraint a 2D shallow-water model, and present also related difficulties. A preliminary study done on Mosel river is presented in [LaMo] [HoLaMoPu]. On selected parts of the image, an 0th order model flow allows to obtain some reliable water levels with quantified uncertainties (C. Puech et al.). Next, variationnal sensitivities (based on a gradient computation and adjoint equations) reveal some difficulties that a model designer have to tackle (e.g. roughness parameters at open boundaries), and allow to better understand both the model and the flow. Next, a variational data assimilation algorithm (4D-var) shows that such data lead to a better calibration of the model (e.g. roughness coefficients) and potentially allows to identify the incoming and/or outgoing flow at open boundaries, [LaMo] [HoLaMoPu]. On the other side, the flood dynamic extension is difficult to represent accurately using a 2D SW model since the wet-dry front dynamics is difficult to compute. We compare some 2nd order finite volume solvers and obtain an accurate and stable scheme at wet-dry front. Then, we present some basic rules of compatibility between data and mesh resolution in order to be reliable enough to constraint the model with flood extension data, [CoMaMoViDa]. All the algorithms are implemented into DassFlow software (Fortran, MPI, adjoint) [Da]. [CoMaMoViDa] F. Couderc, R. Madec, J. Monnier, J.-P. Vila, D. Dartus. "Sensitivity analysis and variational data assimilation for geophysical shallow water flows". Submitted. [Da] DassFlow - Data Assimilation for Free Surface Flows. Open-source computational software http://www-gmm.insa-toulouse.fr/~monnier/DassFlow/ [HoLaMoPu] R. Hostache, X. Lai, J. Monnier, C. Puech. "Assimilation of spatial

  12. Coronary arteries motion modeling on 2D x-ray images

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Sundar, Hari

    2012-02-01

    During interventional procedures, 3D imaging modalities like CT and MRI are not commonly used due to interference with the surgery and radiation exposure concerns. Therefore, real-time information is usually limited and building models of cardiac motion are difficult. In such case, vessel motion modeling based on 2-D angiography images become indispensable. Due to issues with existing vessel segmentation algorithms and the lack of contrast in occluded vessels, manual segmentation of certain branches is usually necessary. In addition, such occluded branches are the most important vessels during coronary interventions and obtaining motion models for these can greatly help in reducing the procedure time and radiation exposure. Segmenting different cardiac phases independently does not guarantee temporal consistency and is not efficient for occluded branches required manual segmentation. In this paper, we propose a coronary motion modeling system which extracts the coronary tree for every cardiac phase, maintaining the segmentation by tracking the coronary tree during the cardiac cycle. It is able to map every frame to the specific cardiac phase, thereby inferring the shape information of the coronary arteries using the model corresponding to its phase. Our experiments show that our motion modeling system can achieve promising results with real-time performance.

  13. 2D metamaterials with hexagonal structure: spatial resonances and near field imaging.

    PubMed

    Zhuromskyy, O; Shamonina, E; Solymar, L

    2005-11-14

    The current and field distribution in a 2D metamaterial consisting of resonant elements in a hexagonal arrangement are found assuming magnetic interaction between the elements. The dispersion equation of magnetoinductive (MI) waves is derived with the aid of the direct and reciprocal lattice familiar from solid state theory. A continuous model for the current variation in the elements is introduced leading to the familiar wave equation in the form of a second order differential equation. The current distributions are shown to exhibit a series of spatial resonances for rectangular, circular and hexagonal boundaries. The axial and radial components of the resulting magnetic field are compared with previously obtained experimental results on a Swiss Roll metamaterial with hexagonal boundaries. Experimental and theoretical results are also compared for the near field image of an object in the shape of the letter M followed by a more general discussion of imaging. It is concluded that a theoretical formulation based on the propagation of MI waves can correctly describe the experimental results. PMID:19503131

  14. Ultrasound 2D Strain Estimator Based on Image Registration for Ultrasound Elastography

    PubMed Central

    Yang, Xiaofeng; Torres, Mylin; Kirkpatrick, Stephanie; Curran, Walter J.; Liu, Tian

    2015-01-01

    In this paper, we present a new approach to calculate 2D strain through the registration of the pre- and post-compression (deformation) B-mode image sequences based on an intensity-based non-rigid registration algorithm (INRA). Compared with the most commonly used cross-correlation (CC) method, our approach is not constrained to any particular set of directions, and can overcome displacement estimation errors introduced by incoherent motion and variations in the signal under high compression. This INRA method was tested using phantom and in vivo data. The robustness of our approach was demonstrated in the axial direction as well as the lateral direction where the standard CC method frequently fails. In addition, our approach copes well under large compression (over 6%). In the phantom study, we computed the strain image under various compressions and calculated the signal-to-noise (SNR) and contrast-to-noise (CNS) ratios. The SNR and CNS values of the INRA method were much higher than those calculated from the CC-based method. Furthermore, the clinical feasibility of our approach was demonstrated with the in vivo data from patients with arm lymphedema. PMID:25914492

  15. Ultrasound 2D strain estimator based on image registration for ultrasound elastography

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Torres, Mylin; Kirkpatrick, Stephanie; Curran, Walter J.; Liu, Tian

    2014-03-01

    In this paper, we present a new approach to calculate 2D strain through the registration of the pre- and post-compression (deformation) B-mode image sequences based on an intensity-based non-rigid registration algorithm (INRA). Compared with the most commonly used cross-correlation (CC) method, our approach is not constrained to any particular set of directions, and can overcome displacement estimation errors introduced by incoherent motion and variations in the signal under high compression. This INRA method was tested using phantom and in vivo data. The robustness of our approach was demonstrated in the axial direction as well as the lateral direction where the standard CC method frequently fails. In addition, our approach copes well under large compression (over 6%). In the phantom study, we computed the strain image under various compressions and calculated the signal-to-noise (SNR) and contrast-to-noise (CNS) ratios. The SNR and CNS values of the INRA method were much higher than those calculated from the CC-based method. Furthermore, the clinical feasibility of our approach was demonstrated with the in vivo data from patients with arm lymphedema.

  16. Analysis of 2-d ultrasound cardiac strain imaging using joint probability density functions.

    PubMed

    Ma, Chi; Varghese, Tomy

    2014-06-01

    Ultrasound frame rates play a key role for accurate cardiac deformation tracking. Insufficient frame rates lead to an increase in signal de-correlation artifacts resulting in erroneous displacement and strain estimation. Joint probability density distributions generated from estimated axial strain and its associated signal-to-noise ratio provide a useful approach to assess the minimum frame rate requirements. Previous reports have demonstrated that bi-modal distributions in the joint probability density indicate inaccurate strain estimation over a cardiac cycle. In this study, we utilize similar analysis to evaluate a 2-D multi-level displacement tracking and strain estimation algorithm for cardiac strain imaging. The effect of different frame rates, final kernel dimensions and a comparison of radio frequency and envelope based processing are evaluated using echo signals derived from a 3-D finite element cardiac model and five healthy volunteers. Cardiac simulation model analysis demonstrates that the minimum frame rates required to obtain accurate joint probability distributions for the signal-to-noise ratio and strain, for a final kernel dimension of 1 λ by 3 A-lines, was around 42 Hz for radio frequency signals. On the other hand, even a frame rate of 250 Hz with envelope signals did not replicate the ideal joint probability distribution. For the volunteer study, clinical data was acquired only at a 34 Hz frame rate, which appears to be sufficient for radio frequency analysis. We also show that an increase in the final kernel dimensions significantly affect the strain probability distribution and joint probability density function generated, with a smaller effect on the variation in the accumulated mean strain estimated over a cardiac cycle. Our results demonstrate that radio frequency frame rates currently achievable on clinical cardiac ultrasound systems are sufficient for accurate analysis of the strain probability distribution, when a multi-level 2-D

  17. FluoRender: An Application of 2D Image Space Methods for 3D and 4D Confocal Microscopy Data Visualization in Neurobiology Research

    PubMed Central

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2013-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists’ demands for qualitative analysis of confocal microscopy data. PMID:23584131

  18. Digital in-line holography for the extraction of 3D trajectories of small particles in a 2D Benard-von Karman flow

    NASA Astrophysics Data System (ADS)

    Salah, Nebya; Allano, Daniel; Godard, Gilles; Malek, Mokrane; Lebrun, Denis; Paranthoën, P.

    2006-09-01

    Digital In-line Holography is widely used to visualize fluid flows seeded with small particles. Such holograms record directly the far-field diffraction patterns of particles on a CCD camera. From the successive reconstruction planes, the three-dimensional location of the particles can be determined. This imaging system doesn't need focusing. The principle is based on the direct analysis of the diffraction patterns by mean of space-frequency operators such as Wavelet Transformation or Fractional Fourier Transformation. This method, already tested in our laboratory, leads to a better resolution than classical holography for the estimation of 3D particle locations (50μm instead of 0.5mm in depth). In the case of moving particles, it is interesting to illuminate the sample volume by several laser pulses. This can be easily realized by controlling the input current of a modulated laser diode. Then, the CCD camera cumulates the sum of in-line particle holograms recorded at different times. By searching for the best focus plane of each particle image, the 3D coordinate of each particle can be extracted at a given time. This technique is applied to determine trajectories of small particles in a well-controlled 2D Benard-von Karman street allowing a Lagrangian approach. Preliminary results are presented.

  19. Image display device in digital TV

    DOEpatents

    Choi, Seung Jong

    2006-07-18

    Disclosed is an image display device in a digital TV that is capable of carrying out the conversion into various kinds of resolution by using single bit map data in the digital TV. The image display device includes: a data processing part for executing bit map conversion, compression, restoration and format-conversion for text data; a memory for storing the bit map data obtained according to the bit map conversion and compression in the data processing part and image data inputted from an arbitrary receiving part, the receiving part receiving one of digital image data and analog image data; an image outputting part for reading the image data from the memory; and a display processing part for mixing the image data read from the image outputting part and the bit map data converted in format from the a data processing part. Therefore, the image display device according to the present invention can convert text data in such a manner as to correspond with various resolution, carry out the compression for bit map data, thereby reducing the memory space, and support text data of an HTML format, thereby providing the image with the text data of various shapes.

  20. Digital Image Processing in Private Industry.

    ERIC Educational Resources Information Center

    Moore, Connie

    1986-01-01

    Examines various types of private industry optical disk installations in terms of business requirements for digital image systems in five areas: records management; transaction processing; engineering/manufacturing; information distribution; and office automation. Approaches for implementing image systems are addressed as well as key success…

  1. Photography/Digital Imaging: Parallel & Paradoxical Histories.

    ERIC Educational Resources Information Center

    Witte, Mary Stieglitz

    With the introduction of photography and photomechanical printing processes in the 19th century, the first age of machine pictures and reproductions emerged. The 20th century introduced computer image processing systems, creating a digital imaging revolution. Rather than concentrating on the adversarial aspects of the computer's influence on…

  2. Registration of In Vivo Prostate Magnetic Resonance Images to Digital Histopathology Images

    NASA Astrophysics Data System (ADS)

    Ward, A. D.; Crukley, C.; McKenzie, C.; Montreuil, J.; Gibson, E.; Gomez, J. A.; Moussa, M.; Bauman, G.; Fenster, A.

    Early and accurate diagnosis of prostate cancer enables minimally invasive therapies to cure the cancer with less morbidity. The purpose of this work is to non-rigidly register in vivo pre-prostatectomy prostate medical images to regionally-graded histopathology images from post-prostatectomy specimens, seeking a relationship between the multi parametric imaging and cancer distribution and aggressiveness. Our approach uses image-based registration in combination with a magnetically tracked probe to orient the physical slicing of the specimen to be parallel to the in vivo imaging planes, yielding a tractable 2D registration problem. We measured a target registration error of 0.85 mm, a mean slicing plane marking error of 0.7 mm, and a mean slicing error of 0.6 mm; these results compare favourably with our 2.2 mm diagnostic MR image thickness. Qualitative evaluation of in vivo imaging-histopathology fusion reveals excellent anatomic concordance between MR and digital histopathology.

  3. Digital Image Exploration at Maui Community College

    NASA Astrophysics Data System (ADS)

    Morzinski, K. M.; Crockett, C. J.; Crossfield, I. J.

    2010-12-01

    We designed a two-day laboratory exploration of fundamental concepts in digital images for an introductory engineering course at Maui Community College. Our objective was for the students to understand spatial vs. brightness resolution, standard file formats, image tradeoffs, and the engineering design cycle. We used open investigation, question generation, and an engineering design challenge to help our students achieve these learning goals. We also experimented with incorporating Hawaiian language and cultural awareness into our activity. We present our method, student response, and reflections on the success of our design. The 2008 re-design of this activity focused on better incorporating authentic engineering process skills, and on using a rubric for summative assessment of the students' poster presentations. A single file containing all documents and presentations used in this lesson is available online. (http://www.astro.ucla.edu/ ianc/files/digital_images_inquiry.pdf)

  4. FBI compression standard for digitized fingerprint images

    NASA Astrophysics Data System (ADS)

    Brislawn, Christopher M.; Bradley, Jonathan N.; Onyshczak, Remigius J.; Hopper, Thomas

    1996-11-01

    The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the current status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.

  5. CT Image Processing Using Public Digital Networks

    PubMed Central

    Rhodes, Michael L.; Azzawi, Yu-Ming; Quinn, John F.; Glenn, William V.; Rothman, Stephen L.G.

    1984-01-01

    Nationwide commercial computer communication is now commonplace for those applications where digital dialogues are generally short and widely distributed, and where bandwidth does not exceed that of dial-up telephone lines. Image processing using such networks is prohibitive because of the large volume of data inherent to digital pictures. With a blend of increasing bandwidth and distributed processing, network image processing becomes possible. This paper examines characteristics of a digital image processing service for a nationwide network of CT scanner installations. Issues of image transmission, data compression, distributed processing, software maintenance, and interfacility communication are also discussed. Included are results that show the volume and type of processing experienced by a network of over 50 CT scanners for the last 32 months.

  6. Reproducing 2D breast mammography images with 3D printed phantoms

    NASA Astrophysics Data System (ADS)

    Clark, Matthew; Ghammraoui, Bahaa; Badal, Andreu

    2016-03-01

    Mammography is currently the standard imaging modality used to screen women for breast abnormalities and, as a result, it is a tool of great importance for the early detection of breast cancer. Physical phantoms are commonly used as surrogates of breast tissue to evaluate some aspects of the performance of mammography systems. However, most phantoms do not reproduce the anatomic heterogeneity of real breasts. New fabrication technologies, such as 3D printing, have created the opportunity to build more complex, anatomically realistic breast phantoms that could potentially assist in the evaluation of mammography systems. The primary objective of this work is to present a simple, easily reproducible methodology to design and print 3D objects that replicate the attenuation profile observed in real 2D mammograms. The secondary objective is to evaluate the capabilities and limitations of the competing 3D printing technologies, and characterize the x-ray properties of the different materials they use. Printable phantoms can be created using the open-source code introduced in this work, which processes a raw mammography image to estimate the amount of x-ray attenuation at each pixel, and outputs a triangle mesh object that encodes the observed attenuation map. The conversion from the observed pixel gray value to a column of printed material with equivalent attenuation requires certain assumptions and knowledge of multiple imaging system parameters, such as x-ray energy spectrum, source-to-object distance, compressed breast thickness, and average breast material attenuation. A detailed description of the new software, a characterization of the printed materials using x-ray spectroscopy, and an evaluation of the realism of the sample printed phantoms are presented.

  7. Self-calibration of cone-beam CT geometry using 3D–2D image registration

    PubMed Central

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-01-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM = 0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p < 0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE = 0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p < 0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional

  8. Self-calibration of cone-beam CT geometry using 3D-2D image registration.

    PubMed

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a 'self-calibration' of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM-e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE-e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is

  9. Self-calibration of cone-beam CT geometry using 3D-2D image registration

    NASA Astrophysics Data System (ADS)

    Ouadah, S.; Stayman, J. W.; Gang, G. J.; Ehtiati, T.; Siewerdsen, J. H.

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is

  10. Quantitative analysis of digital microscope images.

    PubMed

    Wolf, David E; Samarasekera, Champika; Swedlow, Jason R

    2013-01-01

    This chapter discusses quantitative analysis of digital microscope images and presents several exercises to provide examples to explain the concept. This chapter also presents the basic concepts in quantitative analysis for imaging, but these concepts rest on a well-established foundation of signal theory and quantitative data analysis. This chapter presents several examples for understanding the imaging process as a transformation from sample to image and the limits and considerations of quantitative analysis. This chapter introduces to the concept of digitally correcting the images and also focuses on some of the more critical types of data transformation and some of the frequently encountered issues in quantization. Image processing represents a form of data processing. There are many examples of data processing such as fitting the data to a theoretical curve. In all these cases, it is critical that care is taken during all steps of transformation, processing, and quantization. PMID:23931513

  11. Resolution in digital imaging: enough already?

    PubMed

    Siegel, Daniel Mark

    2002-09-01

    Digital images have become the new currency for the exchange of information in dermatology. The main value of the digital image, its ability to be transported via the Internet, is optimal if the image can be shared by all interested parties without the need for the still relatively uncommon broadband connection. The technology behind these captured images is progressing rapidly with a resultant increase in image size and resolution. For all practical purposes in clinical dermatology, the current technology with regard to resolution has already gone beyond the needs of the clinician. This article, using freeware and commercially used software, offers proof that a single megapixel image is adequate for on screen evaluation and publication purposes. PMID:12322995

  12. Method of improving a digital image

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur (Inventor); Jobson, Daniel J. (Inventor); Woodell, Glenn A. (Inventor)

    1999-01-01

    A method of improving a digital image is provided. The image is initially represented by digital data indexed to represent positions on a display. The digital data is indicative of an intensity value I.sub.i (x,y) for each position (x,y) in each i-th spectral band. The intensity value for each position in each i-th spectral band is adjusted to generate an adjusted intensity value for each position in each i-th spectral band in accordance with ##EQU1## where S is the number of unique spectral bands included in said digital data, W.sub.n is a weighting factor and * denotes the convolution operator. Each surround function F.sub.n (x,y) is uniquely scaled to improve an aspect of the digital image, e.g., dynamic range compression, color constancy, and lightness rendition. The adjusted intensity value for each position in each i-th spectral band is filtered with a common function and then presented to a display device. For color images, a novel color restoration step is added to give the image true-to-life color that closely matches human observation.

  13. Determining ice water content from 2D crystal images in convective cloud systems

    NASA Astrophysics Data System (ADS)

    Leroy, Delphine; Coutris, Pierre; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter

    2016-04-01

    Cloud microphysical in-situ instrumentation measures bulk parameters like total water content (TWC) and/or derives particle size distributions (PSD) (utilizing optical spectrometers and optical array probes (OAP)). The goal of this work is to introduce a comprehensive methodology to compute TWC from OAP measurements, based on the dataset collected during recent HAIC (High Altitude Ice Crystals)/HIWC (High Ice Water Content) field campaigns. Indeed, the HAIC/HIWC field campaigns in Darwin (2014) and Cayenne (2015) provide a unique opportunity to explore the complex relationship between cloud particle mass and size in ice crystal environments. Numerous mesoscale convective systems (MCSs) were sampled with the French Falcon 20 research aircraft at different temperature levels from -10°C up to 50°C. The aircraft instrumentation included an IKP-2 (isokinetic probe) to get reliable measurements of TWC and the optical array probes 2D-S and PIP recording images over the entire ice crystal size range. Based on the known principle relating crystal mass and size with a power law (m=α•Dβ), Fontaine et al. (2014) performed extended 3D crystal simulations and thereby demonstrated that it is possible to estimate the value of the exponent β from OAP data, by analyzing the surface-size relationship for the 2D images as a function of time. Leroy et al. (2015) proposed an extended version of this method that produces estimates of β from the analysis of both the surface-size and perimeter-size relationships. Knowing the value of β, α then is deduced from the simultaneous IKP-2 TWC measurements for the entire HAIC/HIWC dataset. The statistical analysis of α and β values for the HAIC/HIWC dataset firstly shows that α is closely linked to β and that this link changes with temperature. From these trends, a generalized parameterization for α is proposed. Finally, the comparison with the initial IKP-2 measurements demonstrates that the method is able to predict TWC values

  14. Digitized crime scene forensics: automated trace separation of toolmarks on high-resolution 2D/3D CLSM surface data

    NASA Astrophysics Data System (ADS)

    Clausing, Eric; Vielhauer, Claus

    2015-03-01

    Locksmith forensics is an important and very challenging part of classic crime scene forensics. In prior work, we propose a partial transfer to the digital domain, to effectively support forensic experts and present approaches for a full process chain consisting of five steps: Trace positioning, 2D/3D acquisition with a confocal 3D laser scanning microscope, detection by segmentation, trace type determination, and determination of the opening method. In particular the step of trace segmentation on high-resolution 3D surfaces thereby turned out to be the part most difficult to implement. The reason for that is the highly structured and complex surfaces to be analyzed. These surfaces are cluttered with a high number of toolmarks, which overlap and distort each other. In Clausing et al., we present an improved approach for a reliable segmentation of relevant trace regions but without the possibility of separating single traces out of segmented trace regions. However, in our past research, especially features based on shape and dimension turned out to be highly relevant for a fully automated analysis and interpretation. In this paper, we consequently propose an approach for this separation. To achieve this goal, we use our segmentation approach and expand it with a combination of the watershed algorithm with a graph-based analysis. Found sub-regions are compared based on their surface character and are connected or divided depending on their similarity. We evaluate our approach with a test set of about 1,300 single traces on the exemplary locking cylinder component 'key pin' and thereby are able of showing the high suitability of our approach.

  15. Digital image processing of vascular angiograms

    NASA Technical Reports Server (NTRS)

    Selzer, R. H.; Beckenbach, E. S.; Blankenhorn, D. H.; Crawford, D. W.; Brooks, S. H.

    1975-01-01

    The paper discusses the estimation of the degree of atherosclerosis in the human femoral artery through the use of a digital image processing system for vascular angiograms. The film digitizer uses an electronic image dissector camera to scan the angiogram and convert the recorded optical density information into a numerical format. Another processing step involves locating the vessel edges from the digital image. The computer has been programmed to estimate vessel abnormality through a series of measurements, some derived primarily from the vessel edge information and others from optical density variations within the lumen shadow. These measurements are combined into an atherosclerosis index, which is found in a post-mortem study to correlate well with both visual and chemical estimates of atherosclerotic disease.

  16. Ground penetrating radar: 2-D and 3-D subsurface imaging of a coastal barrier spit, Long Beach, WA, USA

    NASA Astrophysics Data System (ADS)

    Jol, Harry M.; Lawton, Don C.; Smith, Derald G.

    2003-07-01

    The ability to effectively interpret and reconstruct geomorphic environments has been significantly aided by the subsurface imaging capabilities of ground penetrating radar (GPR). The GPR method, which is based on the propagation and reflection of pulsed high frequency electromagnetic energy, provides high resolution (cm to m scale) and shallow subsurface (0-60 m), near continuous profiles of many coarser-grained deposits (sediments of low electrical conductivity). This paper presents 2-D and 3-D GPR results from an experiment on a regressive modern barrier spit at Willapa Bay, WA, USA. The medium-grained sand spit is 38 km long, up to 2-3.5 km wide, and is influenced by a 3.7-m tidal range (spring) as well as high energy longshore transport and high wave energy depositional processes. The spit has a freshwater aquifer recharged by rainfall. The GPR acquisition system used for the test was a portable, digital pulseEKKO™ system with antennae frequency ranging from 25 to 200 MHz and transmitter voltages ranging from 400 to 1000 V. Step sizes and antennae separation varied depending on the test requirements. In addition, 100-MHz antennae were used for conducting antennae orientation tests and collecting a detailed grid of data (50×50 m sampled every meter). The 2-D digital profiles were processed and plotted using pulseEKKO™ software. The 3-D datasets, after initial processing, were entered into a LANDMARK™ workstation that allowed for unique 3-D perspectives of the subsurface. To provide depth, near-surface velocity measurements were calculated from common midpoint (CMP) surveys. Results from the present study demonstrate higher resolution from the 200-MHz antennae for the top 5-6 m, whereas the 25- and 50-MHz antennae show deeper penetration to >10 m. For the study site, 100-MHz antennae provided acceptable resolution, continuity of reflections, and penetration. The dip profiles show a shingle-like accretionary depositional pattern, whereas strike profiles

  17. Digital deformation model for fisheye image rectification.

    PubMed

    Hou, Wenguang; Ding, Mingyue; Qin, Nannan; Lai, Xudong

    2012-09-24

    Fisheye lens can provide a wide view over 180°. It then has prominence advantages in three dimensional reconstruction and machine vision applications. However, the serious deformation in the image limits fisheye lens's usage. To overcome this obstacle, a new rectification method named DDM (Digital Deformation Model) is developed based on two dimensional perspective transformation. DDM is a type of digital grid representation of the deformation of each pixel on CCD chip which is built by interpolating the difference between the actual image coordinate and pseudo-ideal coordinate of each mark on a control panel. This method obtains the pseudo-ideal coordinate according to two dimensional perspective transformation by setting four mark's deformations on image. The main advantages are that this method does not rely on the optical principle of fisheye lens and has relatively less computation. In applications, equivalent pinhole images can be obtained after correcting fisheye lens images using DDM. PMID:23037373

  18. An Archive of Digital Images.

    ERIC Educational Resources Information Center

    Fantini, M.; And Others

    1990-01-01

    Describes the architecture of the prototype of an image management system that has been used to develop an application concerning images of frescoes in the Sistina Chapel in the Vatican. Hardware and software design are described, the use of local area networks (LANs) is discussed, and data organization is explained. (15 references) (LRW)

  19. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases.

  20. 2D harmonic filtering of MR phase images in multicenter clinical setting: toward a magnetic signature of cerebral microbleeds.

    PubMed

    Kaaouana, Takoua; de Rochefort, Ludovic; Samaille, Thomas; Thiery, Nathalie; Dufouil, Carole; Delmaire, Christine; Dormont, Didier; Chupin, Marie

    2015-01-01

    Cerebral microbleeds (CMBs) have emerged as a new imaging marker of small vessel disease. Composed of hemosiderin, CMBs are paramagnetic and can be detected with MRI sequences sensitive to magnetic susceptibility (typically, gradient recalled echo T2* weighted images). Nevertheless, their identification remains challenging on T2* magnitude images because of confounding structures and lesions. In this context, T2* phase image may play a key role in better characterizing CMBs because of its direct relationship with local magnetic field variations due to magnetic susceptibility difference. To address this issue, susceptibility-based imaging techniques were proposed, such as Susceptibility Weighted Imaging (SWI) and Quantitative Susceptibility Mapping (QSM). But these techniques have not yet been validated for 2D clinical data in multicenter settings. Here, we introduce 2DHF, a fast 2D phase processing technique embedding both unwrapping and harmonic filtering designed for data acquired in 2D, even with slice-to-slice inconsistencies. This method results in internal field maps which reveal local field details due to magnetic inhomogeneity within the region of interest only. This technique is based on the physical properties of the induced magnetic field and should yield consistent results. A synthetic phantom was created for numerical simulations. It simulates paramagnetic and diamagnetic lesions within a 'brain-like' tissue, within a background. The method was evaluated on both this synthetic phantom and multicenter 2D datasets acquired in standardized clinical setting, and compared with two state-of-the-art methods. It proved to yield consistent results on synthetic images and to be applicable and robust on patient data. As a proof-of-concept, we finally illustrate that it is possible to find a magnetic signature of CMBs and CMCs on internal field maps generated with 2DHF on 2D clinical datasets that give consistent results with CT-scans in a subsample of 10 subjects

  1. Image database for digital hand atlas

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Huang, H. K.; Pietka, Ewa; Gilsanz, Vicente; Dey, Partha S.; Gertych, Arkadiusz; Pospiech-Kurkowska, Sywia

    2003-05-01

    Bone age assessment is a procedure frequently performed in pediatric patients to evaluate their growth disorder. A commonly used method is atlas matching by a visual comparison of a hand radiograph with a small reference set of old Greulich-Pyle atlas. We have developed a new digital hand atlas with a large set of clinically normal hand images of diverse ethnic groups. In this paper, we will present our system design and implementation of the digital atlas database to support the computer-aided atlas matching for bone age assessment. The system consists of a hand atlas image database, a computer-aided diagnostic (CAD) software module for image processing and atlas matching, and a Web user interface. Users can use a Web browser to push DICOM images, directly or indirectly from PACS, to the CAD server for a bone age assessment. Quantitative features on the examined image, which reflect the skeletal maturity, are then extracted and compared with patterns from the atlas image database to assess the bone age. The digital atlas method built on a large image database and current Internet technology provides an alternative to supplement or replace the traditional one for a quantitative, accurate and cost-effective assessment of bone age.

  2. Using Digital Imaging in Classroom and Outdoor Activities.

    ERIC Educational Resources Information Center

    Thomasson, Joseph R.

    2002-01-01

    Explains how to use digital cameras and related basic equipment during indoor and outdoor activities. Uses digital imaging in general botany class to identify unknown fungus samples. Explains how to select a digital camera and other necessary equipment. (YDS)

  3. Process to generate a synthetic diagnostic for microwave imaging reflectometry with the full-wave code FWR2D.

    PubMed

    Ren, X; Domier, C W; Kramer, G; Luhmann, N C; Muscatello, C M; Shi, L; Tobias, B J; Valeo, E

    2014-11-01

    A synthetic microwave imaging reflectometer (MIR) diagnostic employing the full-wave reflectometer code (FWR2D) has been developed and is currently being used to guide the design of real systems, such as the one recently installed on DIII-D. The FWR2D code utilizes real plasma profiles as input, and it is combined with optical simulation tools for synthetic diagnostic signal generation. A detailed discussion of FWR2D and the process to generate the synthetic signal are presented in this paper. The synthetic signal is also compared to a prescribed density fluctuation spectrum to quantify the imaging quality. An example is presented with H-mode-like plasma profiles derived from a DIII-D discharge, where the MIR focal is located in the pedestal region. It is shown that MIR is suitable for diagnosing fluctuations with poloidal wavenumber up to 2.0 cm(-1) and fluctuation amplitudes less than 5%. PMID:25430276

  4. Automatic localization of target vertebrae in spine surgery using fast CT-to-fluoroscopy (3D-2D) image registration

    NASA Astrophysics Data System (ADS)

    Otake, Y.; Schafer, S.; Stayman, J. W.; Zbijewski, W.; Kleinszig, G.; Graumann, R.; Khanna, A. J.; Siewerdsen, J. H.

    2012-02-01

    Localization of target vertebrae is an essential step in minimally invasive spine surgery, with conventional methods relying on "level counting" - i.e., manual counting of vertebrae under fluoroscopy starting from readily identifiable anatomy (e.g., the sacrum). The approach requires an undesirable level of radiation, time, and is prone to counting errors due to the similar appearance of vertebrae in projection images; wrong-level surgery occurs in 1 of every ~3000 cases. This paper proposes a method to automatically localize target vertebrae in x-ray projections using 3D-2D registration between preoperative CT (in which vertebrae are preoperatively labeled) and intraoperative fluoroscopy. The registration uses an intensity-based approach with a gradient-based similarity metric and the CMA-ES algorithm for optimization. Digitally reconstructed radiographs (DRRs) and a robust similarity metric are computed on GPU to accelerate the process. Evaluation in clinical CT data included 5,000 PA and LAT projections randomly perturbed to simulate human variability in setup of mobile intraoperative C-arm. The method demonstrated 100% success for PA view (projection error: 0.42mm) and 99.8% success for LAT view (projection error: 0.37mm). Initial implementation on GPU provided automatic target localization within about 3 sec, with further improvement underway via multi-GPU. The ability to automatically label vertebrae in fluoroscopy promises to streamline surgical workflow, improve patient safety, and reduce wrong-site surgeries, especially in large patients for whom manual methods are time consuming and error prone.

  5. Chronicle of Bukit Bunuh for possible complex impact crater by 2-D resistivity imaging (2-DERI) with geotechnical borehole records

    NASA Astrophysics Data System (ADS)

    Jinmin, M.; Saad, R.; Saidin, M.; Ismail, N. A.

    2015-03-01

    A 2-D resistivity imaging (2-DERI) study was conducted at Bukit Bunuh, Lenggong, Perak. Archaeological Global Research Centre, Universiti Sains Malaysia shows the field evidence of shock metamorphisms (suevite breccia) and crater morphology at Bukit Bunuh. A regional 2-DERI study focusing at Bukit Bunuh to identify the features of subsurface and detail study was then executed to verify boundary of the crater with the rebound effects at Bukit Bunuh which covered approximately 132.25 km2. 2-DERI survey used resistivity equipment by ABEM SAS4000 Terrameter and ES10-64C electrode slector with pole-dipole array. The survey lines were carried out using `roll-along' technique. The data were processed and analysed using RES2DINV, Excel and Surfer software to obtain resistivity results for qualitative interpretations. Bedrock depths were digitized from section by sections obtained. 2-DERI results gives both regional and detail study shows that the study area was divided into two main zones, overburden consists of alluvium mix with boulders embedded with resistivity value of 10-800 Ωm and granitic bedrock with resistivity value of >1500 Ωm and depth 5-50 m. The low level bedrock was circulated by high level bedrock (crater rim) was formed at the same area with few spots of high level bedrock which appeared at the centre of the rim which suspected as rebound zones (R). Assimilations of 2-DERI with boreholes are successful give valid and reliable results. The results of the study indicates geophysical method are capable to retrieve evidence of meteorite impact subsurface of the studied area.

  6. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a...

  7. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a...

  8. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a...

  9. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a...

  10. 21 CFR 892.2030 - Medical image digitizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a...

  11. The 2D versus 3D imaging trade-off: The impact of over- or under-estimating small throats for simulating permeability in porous media

    NASA Astrophysics Data System (ADS)

    Peters, C. A.; Crandell, L. E.; Um, W.; Jones, K. W.; Lindquist, W. B.

    2011-12-01

    Geochemical reactions in the subsurface can alter the porosity and permeability of a porous medium through mineral precipitation and dissolution. While effects on porosity are relatively well understood, changes in permeability are more difficult to estimate. In this work, pore-network modeling is used to estimate the permeability of a porous medium using pore and throat size distributions. These distributions can be determined from 2D Scanning Electron Microscopy (SEM) images of thin sections or from 3D X-ray Computed Tomography (CT) images of small cores. Each method has unique advantages as well as unique sources of error. 3D CT imaging has the advantage of reconstructing a 3D pore network without the inherent geometry-based biases of 2D images but is limited by resolutions around 1 μm. 2D SEM imaging has the advantage of higher resolution, and the ability to examine sub-grain scale variations in porosity and mineralogy, but is limited by the small size of the sample of pores that are quantified. A pore network model was created to estimate flow permeability in a sand-packed experimental column investigating reaction of sediments with caustic radioactive tank wastes in the context of the Hanford, WA site. Before, periodically during, and after reaction, 3D images of the porous medium in the column were produced using the X2B beam line facility at the National Synchrotron Light Source (NSLS) at Brookhaven National Lab. These images were interpreted using 3DMA-Rock to characterize the pore and throat size distributions. After completion of the experiment, the column was sectioned and imaged using 2D SEM in backscattered electron mode. The 2D images were interpreted using erosion-dilation to estimate the pore and throat size distributions. A bias correction was determined by comparison with the 3D image data. A special image processing method was developed to infer the pore space before reaction by digitally removing the precipitate. The different sets of pore

  12. Registration of 2D x-ray images to 3D MRI by generating pseudo-CT data

    NASA Astrophysics Data System (ADS)

    van der Bom, M. J.; Pluim, J. P. W.; Gounis, M. J.; van de Kraats, E. B.; Sprinkhuizen, S. M.; Timmer, J.; Homan, R.; Bartels, L. W.

    2011-02-01

    Spatial and soft tissue information provided by magnetic resonance imaging can be very valuable during image-guided procedures, where usually only real-time two-dimensional (2D) x-ray images are available. Registration of 2D x-ray images to three-dimensional (3D) magnetic resonance imaging (MRI) data, acquired prior to the procedure, can provide optimal information to guide the procedure. However, registering x-ray images to MRI data is not a trivial task because of their fundamental difference in tissue contrast. This paper presents a technique that generates pseudo-computed tomography (CT) data from multi-spectral MRI acquisitions which is sufficiently similar to real CT data to enable registration of x-ray to MRI with comparable accuracy as registration of x-ray to CT. The method is based on a k-nearest-neighbors (kNN)-regression strategy which labels voxels of MRI data with CT Hounsfield Units. The regression method uses multi-spectral MRI intensities and intensity gradients as features to discriminate between various tissue types. The efficacy of using pseudo-CT data for registration of x-ray to MRI was tested on ex vivo animal data. 2D-3D registration experiments using CT and pseudo-CT data of multiple subjects were performed with a commonly used 2D-3D registration algorithm. On average, the median target registration error for registration of two x-ray images to MRI data was approximately 1 mm larger than for x-ray to CT registration. The authors have shown that pseudo-CT data generated from multi-spectral MRI facilitate registration of MRI to x-ray images. From the experiments it could be concluded that the accuracy achieved was comparable to that of registering x-ray images to CT data.

  13. 2D/4D marker-free tumor tracking using 4D CBCT as the reference image

    PubMed Central

    Wang, Mengjiao; Rit, Simon; Delmon, Vivien; Wang, Guangzhi

    2014-01-01

    Tumor motion caused by respiration is an important issue in image guided radiotherapy. A 2D/4D matching method between 4D volumes derived from cone beam computed tomography (CBCT) and 2D fluoroscopic images was implemented to track the tumor motion without the use of implanted markers. In this method, firstly, 3DCBCT and phase-rebinned 4DCBCT are reconstructed from cone beam acquisition. Secondly, 4DCBCT volumes and streak free 3DCBCT volume are combined to improve the image quality of the DRRs. Finally, the 2D/4D matching problem is converted into a 2D/2D matching between incoming projections and DRR images from each phase of the 4DCBCT. The diaphragm is used as a target surrogate for matching instead of using the tumor position directly. This relies on the assumption that if a patient has the same breathing phase and diaphragm position as the reference 4DCBCT, then the tumor position is the same. From the matching results, the phase information, diaphragm position and tumor position at the time of each incoming projection acquisition can be derived. The accuracy of this method was verified using 16 candidate datasets, representing lung and liver applications and 1-minute and 2-minute acquisitions. The criteria for the eligibility of datasets were described: 11 eligible datasets were selected to verify the accuracy of diaphragm tracking, and one eligible dataset was chosen to verify the accuracy of tumor tracking. Diaphragm matching accuracy was 1.88±1.35mm in the isocenter plane, the 2D tumor tracking accuracy was 2.13±1.26mm in the isocenter plane. These features make this method feasible for real-time marker-free tumor motion tracking purpose. PMID:24710793

  14. A LANDSAT digital image rectification system

    NASA Technical Reports Server (NTRS)

    Vanwie, P.; Stein, M.

    1976-01-01

    DIRS is a digital image rectification system for the geometric correction of LANDSAT multispectral scanner digital image data. DIRS removes spatial distortions from the data and brings it into conformance with the Universal Transverse Mercator (UTM) map projection. Scene data in the form of landmarks are used to drive the geometric correction algorithms. Two dimensional least squares polynominal and spacecraft attitude modeling techniques for geometric mapping are provided. Entire scenes or selected quadrilaterals may be rectified. Resampling through nearest neighbor or cubic convolution at user designated intervals is available. The output products are in the form of digital tape in band interleaved, single band or CCT format in a rotated UTM projection. The system was designed and implemented on large scale IBM 360 computers.

  15. Head pose estimation from a 2D face image using 3D face morphing with depth parameters.

    PubMed

    Kong, Seong G; Mbouna, Ralph Oyini

    2015-06-01

    This paper presents estimation of head pose angles from a single 2D face image using a 3D face model morphed from a reference face model. A reference model refers to a 3D face of a person of the same ethnicity and gender as the query subject. The proposed scheme minimizes the disparity between the two sets of prominent facial features on the query face image and the corresponding points on the 3D face model to estimate the head pose angles. The 3D face model used is morphed from a reference model to be more specific to the query face in terms of the depth error at the feature points. The morphing process produces a 3D face model more specific to the query image when multiple 2D face images of the query subject are available for training. The proposed morphing process is computationally efficient since the depth of a 3D face model is adjusted by a scalar depth parameter at feature points. Optimal depth parameters are found by minimizing the disparity between the 2D features of the query face image and the corresponding features on the morphed 3D model projected onto 2D space. The proposed head pose estimation technique was evaluated on two benchmarking databases: 1) the USF Human-ID database for depth estimation and 2) the Pointing'04 database for head pose estimation. Experiment results demonstrate that head pose estimation errors in nodding and shaking angles are as low as 7.93° and 4.65° on average for a single 2D input face image. PMID:25706638

  16. Image digitizer system for bubble chamber laser

    SciTech Connect

    Haggerty, H

    1986-12-08

    An IBM PC-based image digitizer system has been assembled to monitor the laser flash used for holography at the 15 foot bubble chamber. The hardware and the operating software are outlined. For an operational test of the system, an array of LEDs was flashed with a 10 microsecond pulse and the image was grabbed by one of the operating programs and processed. (LEW)

  17. Measuring the Environment through Digital Images

    NASA Astrophysics Data System (ADS)

    Pickle, J.; Schloss, A. L.

    2009-12-01

    A network of sites for citizen scientists to take a consistent time sequence of digital photographs of the landscape and an Internet site (http://picturepost.unh.edu/) that efficiently stores and distributes the digital images creates a low-cost and sustainable resource for scientific environmental monitoring and formal and informal science education. Digital photographs taken from the same location and positioned in the same direction and orientation allow scientists to monitor a variety of environmental parameters, including plant health, growth, and phenology; erosion and deposition; water levels; and cloud and canopy cover. The PicturePost platform is simply an octagon placed in the center of a flat surface and secured to a post anchored in the ground or onto a building. The edges of the octagon allow positioning of the camera so the complete landscape may be photographed in less than a minute. A NASA-funded project, Digital Earth Watch (aka Measuring Vegetation Health, (http://mvh.sr.unh.edu) provides educational activities and background materials that help people learn about plants as environmental “green canaries” and about the basics of cameras and digital images. The website also provides free software to analyze digital images. Although this project has been in development for four years, it is only beginning to find partners in which the data support multiple efforts. A large part of this integration is a result of recent NASA funding, which has allowed a new website to be developed to archive and display the images. The developing collaborations and the development of the new website at the same time enhanced both efforts. Because the website could include tools/features that appealed to the collaborating groups, all participants contributed ideas facing fewer restrictions. PicturePost made from recycled plastic lumber.

  18. Applying robust multibit watermarks to digital images

    NASA Astrophysics Data System (ADS)

    Tsolis, Dimitrios; Nikolopoulos, Spiridon; Drossos, Lambros; Sioutas, Spyros; Papatheodorou, Theodore

    2009-05-01

    The current work is focusing on the implementation of a robust multibit watermarking algorithm for digital images, which is based on an innovative spread spectrum technique analysis. The paper presents the watermark embedding and detection algorithms, which use both wavelets and the Discrete Cosine Transform and analyzes the arising issues.

  19. The Apollo Digital Image Archive: Project Status

    NASA Astrophysics Data System (ADS)

    Paris, K. N.; Robinson, M. S.; Lawrence, S. J.; Danton, J.; Bowman-Cisneros, E.; Licht, A.; Close, W.; Ingram, R.

    2012-03-01

    Photographs acquired by the Apollo astronauts are currently being scanned at JSC and the files sent to ASU for the Apollo Digital Image Archive. The metric frames are nearing completion while the panoramic frames are in the process of being released.

  20. Digital enhancement of flow field images

    NASA Technical Reports Server (NTRS)

    Kudlinski, Robert A.; Park, Stephen K.

    1988-01-01

    Most photographs of experimentally generated fluid flow fields have inherently poor photographic quality, specifically low contrast. Thus, there is a need to establish a process for quickly and accurately enhancing these photographs to provide improved versions for physical interpretation, analysis, and publication. A sequence of digital image processing techniques which have been demonstrated to effectively enhance such photographs is described.

  1. RegStatGel: proteomic software for identifying differentially expressed proteins based on 2D gel images

    PubMed Central

    Li, Feng; Seillier-Moiseiwitsch, Françoise

    2011-01-01

    Image analysis of two-dimensional gel electrophoresis is a key step in proteomic workflow for identifying proteins that change under different experimental conditions. Since there are usually large amount of proteins and variations shown in the gel images, the use of software for analysis of 2D gel images is inevitable. We developed open-source software with graphical user interface for differential analysis of 2D gel images. The user-friendly software, RegStatGel, contains fully automated as well as interactive procedures. It was developed and has been tested under Matlab 7.01. Availability The database is available for free at http://www.mediafire.com/FengLi/2DGelsoftware PMID:21904427

  2. Effect of image scaling and segmentation in digital rock characterisation

    NASA Astrophysics Data System (ADS)

    Jones, B. D.; Feng, Y. T.

    2016-04-01

    Digital material characterisation from microstructural geometry is an emerging field in computer simulation. For permeability characterisation, a variety of studies exist where the lattice Boltzmann method (LBM) has been used in conjunction with computed tomography (CT) imaging to simulate fluid flow through microscopic rock pores. While these previous works show that the technique is applicable, the use of binary image segmentation and the bounceback boundary condition results in a loss of grain surface definition when the modelled geometry is compared to the original CT image. We apply the immersed moving boundary (IMB) condition of Noble and Torczynski as a partial bounceback boundary condition which may be used to better represent the geometric definition provided by a CT image. The IMB condition is validated against published work on idealised porous geometries in both 2D and 3D. Following this, greyscale image segmentation is applied to a CT image of Diemelstadt sandstone. By varying the mapping of CT voxel densities to lattice sites, it is shown that binary image segmentation may underestimate the true permeability of the sample. A CUDA-C-based code, LBM-C, was developed specifically for this work and leverages GPU hardware in order to carry out computations.

  3. The impact of digital imaging in the field of cytopathology

    PubMed Central

    Hornish, Maryanne; Goulart, Robert A.

    2009-01-01

    With the introduction of digital imaging, pathology is undergoing a digital transformation. In the field of cytology, digital images are being used for telecytology, automated screening of Pap test slides, training and education (e.g. online digital atlases), and proficiency testing. To date, there has been no systematic review on the impact of digital imaging on the practice of cytopathology. This article critically addresses the emerging role of computer-assisted screening and the application of digital imaging to the field of cytology, including telecytology, virtual microscopy, and the impact of online cytology resources. The role of novel diagnostic techniques like image cytometry is also reviewed. PMID:19495408

  4. Digital restoration of multichannel images

    NASA Technical Reports Server (NTRS)

    Galatsanos, Nikolas P.; Chin, Roland T.

    1989-01-01

    The Wiener solution of a multichannel restoration scheme is presented. Using matrix diagonalization and block-Toeplitz to block-circulant approximation, the inversion of the multichannel, linear space-invariant imaging system becomes feasible by utilizing a fast iterative matrix inversion procedure. The restoration uses both the within-channel (spatial) and between-channel (spectral) correlation; hence, the restored result is a better estimate than that produced by independent channel restoration. Simulations are also presented.

  5. Mid-IR hyperspectral imaging of laminar flames for 2-D scalar values.

    PubMed

    Rhoby, Michael R; Blunck, David L; Gross, Kevin C

    2014-09-01

    This work presents a new emission-based measurement which permits quantification of two-dimensional scalar distributions in laminar flames. A Michelson-based Fourier-transform spectrometer coupled to a mid-infrared camera (1.5 μm to 5.5 μm) obtained 256 × 128pixel hyperspectral flame images at high spectral (δν̃ = 0.75cm(−1)) and spatial (0.52 mm) resolutions. The measurements revealed line and band emission from H2O, CO2, and CO. Measurements were collected from a well-characterized partially-premixed ethylene (C2H4) flame produced on a Hencken burner at equivalence ratios, Φ, of 0.8, 0.9, 1.1, and 1.3. After describing the instrument and novel calibration methodology, analysis of the flames is presented. A single-layer, line-by-line radiative transfer model is used to retrieve path-averaged temperature, H2O, CO2 and CO column densities from emission spectra between 2.3 μm to 5.1 μm. The radiative transfer model uses line intensities from the latest HITEMP and CDSD-4000 spectroscopic databases. For the Φ = 1.1 flame, the spectrally estimated temperature for a single pixel 10 mm above burner center was T = (2318 ± 19)K, and agrees favorably with recently reported laser absorption measurements, T = (2348 ± 115)K, and a NASA CEA equilibrium calculation, T = 2389K. Near the base of the flame, absolute concentrations can be estimated, and H2O, CO2, and CO concentrations of (12.5 ± 1.7) %, (10.1 ± 1.0) %, and (3.8 ± 0.3) %, respectively, compared favorably with the corresponding CEA values of 12.8%, 9.9% and 4.1%. Spectrally-estimated temperatures and concentrations at the other equivalence ratios were in similar agreement with measurements and equilibrium calculations. 2-D temperature and species column density maps underscore the Φ-dependent chemical composition of the flames. The reported uncertainties are 95% confidence intervals and include both statistical fit errors and the propagation of systematic calibration errors using a Monte Carlo

  6. Parallel computation of optimized arrays for 2-D electrical imaging surveys

    NASA Astrophysics Data System (ADS)

    Loke, M. H.; Wilkinson, P. B.; Chambers, J. E.

    2010-12-01

    Modern automatic multi-electrode survey instruments have made it possible to use non-traditional arrays to maximize the subsurface resolution from electrical imaging surveys. Previous studies have shown that one of the best methods for generating optimized arrays is to select the set of array configurations that maximizes the model resolution for a homogeneous earth model. The Sherman-Morrison Rank-1 update is used to calculate the change in the model resolution when a new array is added to a selected set of array configurations. This method had the disadvantage that it required several hours of computer time even for short 2-D survey lines. The algorithm was modified to calculate the change in the model resolution rather than the entire resolution matrix. This reduces the computer time and memory required as well as the computational round-off errors. The matrix-vector multiplications for a single add-on array were replaced with matrix-matrix multiplications for 28 add-on arrays to further reduce the computer time. The temporary variables were stored in the double-precision Single Instruction Multiple Data (SIMD) registers within the CPU to minimize computer memory access. A further reduction in the computer time is achieved by using the computer graphics card Graphics Processor Unit (GPU) as a highly parallel mathematical coprocessor. This makes it possible to carry out the calculations for 512 add-on arrays in parallel using the GPU. The changes reduce the computer time by more than two orders of magnitude. The algorithm used to generate an optimized data set adds a specified number of new array configurations after each iteration to the existing set. The resolution of the optimized data set can be increased by adding a smaller number of new array configurations after each iteration. Although this increases the computer time required to generate an optimized data set with the same number of data points, the new fast numerical routines has made this practical on

  7. Improved 2-D resistivity imaging of features in covered karst terrain with arrays of implanted electrodes

    NASA Astrophysics Data System (ADS)

    Kiflu, H. G.; Kruse, S. E.; Harro, D.; Loke, M. H.; Wilkinson, P. B.

    2013-12-01

    Electrical resistivity tomography is commonly used to identify geologic features associated with sinkhole formation. In covered karst terrain, however, it can be difficult to resolve the depth to top of limestone with this method. This is due to the fact that array lengths, and hence depth of resolution, are often limited by residential or commercial lot dimensions in urban environments. Furthermore, the sediments mantling the limestone are often clay-rich and highly conductive. The resistivity method has limited sensitivity to resistive zones beneath conductive zones. This sensitivity can be improved significantly with electrodes implanted at depth in the cover sediments near the top of limestone. An array of deep electrodes is installed with direct push technology in the karst cover. When combined with a surface array in which each surface electrode is underlain by a deep electrode, the array geometry is similar to a borehole array turned on its side. This method, called the Multi-Electrode Resistivity Implant Technique (MERIT), offers the promise of significantly improved resolution of epikarst and cover collapse development zones in the overlying sediment, the limestone or at the sediment-bedrock interface in heterogeneous karst environments. With a non-traditional array design, the question of optimal array geometries arises. Optimizing array geometries is complicated by the fact that many plausible 4-electrode readings will produce negative apparent resistivity values, even in homogeneous terrain. Negative apparent resistivities cannot be used in inversions based on the logarithm of the apparent resistivity. New algorithms for seeking optimal array geometries have been developed by modifying the 'Compare R' method of Wilkinson and Loke. The optimized arrays show significantly improved resolution over basic arrays adapted from traditional 2D surface geometries. Several MERIT case study surveys have been conducted in covered karst in west-central Florida, with

  8. Digital image centering. I. [for precision astrometry

    NASA Technical Reports Server (NTRS)

    Van Altena, W. F.; Auer, L. H.

    1975-01-01

    A series of parallax plates have been measured on a PDS microdensitometer to assess the possibility of using the PDS for precision relative astrometry and to investigate centering algorithms that might be used to analyze digital images obtained with the Large Space Telescope. The basic repeatability of the PDS is found to be plus or minus 0.6 micron, with the potential for reaching plus or minus 0.2 micron. A very efficient centering algorithm has been developed which fits the marginal density distributions of the image with a Gaussian profile and a sloping background. The accuracy is comparable with the best results obtained with a photoelectric image bisector.

  9. Digital Imaging and Communications in Medicine

    NASA Astrophysics Data System (ADS)

    Onken, Michael; Eichelberg, Marco; Riesmeier, Jörg; Jensch, Peter

    Over the past 15 years Digital Imaging and Communications in Medicine (DICOM) has established itself as the international standard for medical image communication. Most medical imaging equipment uses DICOM network and media services to export image data, thus making this standard highly relevant for medical image processing. The first section of this chapter provides a basic introduction into DICOM with its more than 3,600 pages of technical documentation, followed by a section covering selected advanced topics of special interest for medical image processing. The introductory text familiarizes the reader with the standard's main concepts such as information objects and DICOM media and network services. The rendering pipeline for image display and the concept of DICOM conformance are also discussed. Specialized DICOM services such as advanced image display services that provide means for storing how an image was viewed ("Softcopy Presentation States") and how multiple images should be aligned on an output device ("Structured Display" and "Hanging Protocols") are described. We further describe DICOM's sophisticated approach ("Structured Reporting") for storing structured documents such as CAD information, which is then covered in more detail. Finally, the last section provides an insight into a newly developed DICOM service called "Application Hosting", which introduces a standardized plug-in architecture for image processing, thus permitting users to utilize cross-vendor image processing plug-ins in DICOM applications.

  10. Digital image processing: a primer for JVIR authors and readers: Part 3: Digital image editing.

    PubMed

    LaBerge, Jeanne M; Andriole, Katherine P

    2003-12-01

    This is the final installment of a three-part series on digital image processing intended to prepare authors for online submission of manuscripts. In the first two articles of the series, the fundamentals of digital image architecture were reviewed and methods of importing images to the computer desktop were described. In this article, techniques are presented for editing images in preparation for online submission. A step-by-step guide to basic editing with use of Adobe Photoshop is provided and the ethical implications of this activity are explored. PMID:14654480

  11. Prenatal programming of sporting success: associations of digit ratio (2D:4D), a putative marker for prenatal androgen action, with world rankings in female fencers.

    PubMed

    Bescos, Raul; Esteve, Marc; Porta, Jordi; Mateu, Merce; Irurtia, Alfredo; Voracek, Martin

    2009-04-01

    Associations of the second-to-fourth digit ratio (2D:4D), a putative marker for prenatal androgen action, and of absolute finger length, a putative marker for pubertal-adolescent androgen action, with sport performance were examined in a multinational sample of 87 world-class women epee fencers. Lower (masculinized) digit ratios correlated, although not significantly so, with better current and highest past world rankings. These correlations were significant for right-hand 2D:4D with controls for the most salient factors for 2D:4D (ethnicity) and world rankings (years of international experience, height, and weight). Longer (masculinized) fingers correlated strongly with better current and highest past world rankings; these correlations became insignificant with the same controls. Replicating previous evidence for fencers, left-handedness was much more prevalent in this sample (21%) than in the female general population, and left-handers had somewhat, but not significantly so, lower 2D:4D as well as better world rankings than right-handers. These findings extend related evidence suggestive of prenatal programming of aptitude across a variety of sports, especially running and soccer. Some known extragenital effects of prenatal testosterone that contribute to the development of efficient cardiovascular systems, good visuospatial abilities, physical endurance and speed, and to the propensity for rough-and-tumble play, apparently promote sporting success in adult life. PMID:19308788

  12. 3D structural measurements of the proximal femur from 2D DXA images using a statistical atlas

    NASA Astrophysics Data System (ADS)

    Ahmad, Omar M.; Ramamurthi, Krishna; Wilson, Kevin E.; Engelke, Klaus; Bouxsein, Mary; Taylor, Russell H.

    2009-02-01

    A method to obtain 3D structural measurements of the proximal femur from 2D DXA images and a statistical atlas is presented. A statistical atlas of a proximal femur was created consisting of both 3D shape and volumetric density information and then deformably registered to 2D fan-beam DXA images. After the registration process, a series of 3D structural measurements were taken on QCT-estimates generated by transforming the registered statistical atlas into a voxel volume. These measurements were compared to the equivalent measurements taken on the actual QCT (ground truth) associated with the DXA images for each of 20 human cadaveric femora. The methodology and results are presented to address the potential clinical feasibility of obtaining 3D structural measurements from limited angle DXA scans and a statistical atlas of the proximal femur in-vivo.

  13. Estimation of 3-D pore network coordination number of rocks from watershed segmentation of a single 2-D image

    NASA Astrophysics Data System (ADS)

    Rabbani, Arash; Ayatollahi, Shahab; Kharrat, Riyaz; Dashti, Nader

    2016-08-01

    In this study, we have utilized 3-D micro-tomography images of real and synthetic rocks to introduce two mathematical correlations which estimate the distribution parameters of 3-D coordination number using a single 2-D cross-sectional image. By applying a watershed segmentation algorithm, it is found that the distribution of 3-D coordination number is acceptably predictable by statistical analysis of the network extracted from 2-D images. In this study, we have utilized 25 volumetric images of rocks in order to propose two mathematical formulas. These formulas aim to approximate the average and standard deviation of coordination number in 3-D pore networks. Then, the formulas are applied for five independent test samples to evaluate the reliability. Finally, pore network flow modeling is used to find the error of absolute permeability prediction using estimated and measured coordination numbers. Results show that the 2-D images are considerably informative about the 3-D network of the rocks and can be utilized to approximate the 3-D connectivity of the porous spaces with determination coefficient of about 0.85 that seems to be acceptable considering the variety of the studied samples.

  14. An enhanced CCRTM (E-CCRTM) damage imaging technique using a 2D areal scan for composite plates

    NASA Astrophysics Data System (ADS)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-04-01

    A two-dimensional (2-D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric actuator mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region to capture the scattered wavefield in the vicinity of the PZT. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, the reflectivity coefficients of the delamination can be calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2-D areal scans and linear scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2-D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  15. Digital Image Enhancement of Indic Historical Manuscripts

    NASA Astrophysics Data System (ADS)

    Shi, Zhixin; Setlur, Srirangaraj; Govindaraju, Venu

    Historical documents in Indic scripts can be found on a wide range of media such as paper, palm leaves, and parchment. Palm leaves are believed to be one of the earliest forms of writing media and their use as writing material has been recorded in various parts of the world including India. Ancient palm leaf manuscripts relating to religion, science, medicine, astronomy are still available for reference today due to many ongoing efforts for preservation of ancient documents by libraries and universities around the world. These manuscripts typically last a few centuries but with time the leaves degrade and the writing becomes illegible. Image processing techniques can help enhance the images of these manuscripts so as to enable readability of the written text. In this chapter, we propose methods for enhancing digital images of palm leaf and other historical manuscripts. We approximate the background of a gray-scale image using piece-wise linear and nonlinear models. Normalization algorithms are used on the color channels of the palm leaf image to obtain an enhanced gray-scale image. Experimental results show significant improvement in readability. An adaptive local connectivity map is used to try to segment lines of text from the enhanced images with the objective of facilitating techniques such as keyword spotting or partial OCR and thereby making it possible to index these documents for retrieval from a digital library.

  16. Image Viewer using Digital Imaging and Communications in Medicine (DICOM)

    NASA Astrophysics Data System (ADS)

    Baraskar, Trupti N.

    2010-11-01

    Digital Imaging and Communications in Medicine is a standard for handling, storing, printing, and transmitting information in medical imaging. The National Electrical Manufacturers Association holds the copyright to this standard. It was developed by the DICOM Standards committee. The other image viewers cannot collectively store the image details as well as the patient's information. So the image may get separated from the details, but DICOM file format stores the patient's information and the image details. Main objective is to develop a DICOM image viewer. The image viewer will open .dcm i.e. DICOM image file and also will have additional features such as zoom in, zoom out, black and white inverter, magnifier, blur, B/W inverter, horizontal and vertical flipping, sharpening, contrast, brightness and .gif converter are incorporated.

  17. Digital Imaging and the Cognitive Revolution: A Media Challenge.

    ERIC Educational Resources Information Center

    Sartorius, Ute

    This paper discusses the role of digital technology within the cognitive revolution of the perception of images. It analyzes the traditional values placed on images as a source of cognition. These values are discussed in terms of the ethical and social issues raised by the use of digital image manipulation in so far as the digital era is falsely…

  18. Initial Images of the Synthetic Aperture Radiometer 2D-STAR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Initial results obtained using a new synthetic aperture radiometer, 2D-STAR, a dual polarized, L-band radiometer that employs aperture synthesis in two dimensions are presented and analyzed. This airborne instrument is the natural evolution of a previous design that employed employs aperture synthes...

  19. Digital Shaded-Relief Image of Alaska

    USGS Publications Warehouse

    Riehle, J.R.; Fleming, Michael D.; Molnia, B.F.; Dover, J.H.; Kelley, J.S.; Miller, M.L.; Nokleberg, W.J.; Plafker, George; Till, A.B.

    1997-01-01

    Introduction One of the most spectacular physiographic images of the conterminous United States, and the first to have been produced digitally, is that by Thelin and Pike (USGS I-2206, 1991). The image is remarkable for its crispness of detail and for the natural appearance of the artificial land surface. Our goal has been to produce a shaded-relief image of Alaska that has the same look and feel as the Thelin and Pike image. The Alaskan image could have been produced at the same scale as its lower 48 counterpart (1:3,500,000). But by insetting the Aleutian Islands into the Gulf of Alaska, we were able to print the Alaska map at a larger scale (1:2,500,000) and about the same physical size as the Thelin and Pike image. Benefits of the 1:2,500,000 scale are (1) greater resolution of topographic features and (2) ease of reference to the U.S. Geological Survey (USGS) (1987) Alaska Map E and the statewide geologic map (Beikman, 1980), which are both 1:2,500,000 scale. Manually drawn, shaded-relief images of Alaska's land surface have long been available (for example, Department of the Interior, 1909; Raisz, 1948). The topography depicted on these early maps is mainly schematic. Maps showing topographic contours were first available for the entire State in 1953 (USGS, 1:250,000) (J.H. Wittmann, USGS, written commun., 1996). The Alaska Map E was initially released in 1954 in both planimetric (revised in 1973 and 1987) and shaded-relief versions (revised in 1973, 1987, and 1996); topography depicted on the shaded-relief version is based on the 1:250,000-scale USGS topographic maps. Alaska Map E was later modified to include hypsometric tinting by Raven Maps and Images (1989, revised 1993) as copyrighted versions. Other shaded-relief images were produced for The National Geographic Magazine (LaGorce, 1956; 1:3,000,000) or drawn by Harrison (1970; 1:7,500,000) for The National Atlas of the United States. Recently, the State of Alaska digitally produced a shaded-relief image

  20. High-performance GPU-based rendering for real-time, rigid 2D/3D-image registration and motion prediction in radiation oncology

    PubMed Central

    Spoerk, Jakob; Gendrin, Christelle; Weber, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Furtado, Hugo; Fabri, Daniella; Bloch, Christoph; Bergmann, Helmar; Gröller, Eduard; Birkfellner, Wolfgang

    2012-01-01

    A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other malignant diseases is the compensation of periodic and aperiodic motion during dose delivery. Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam computed tomography data in the treatment room as well as the acquisition of planar radiographs during the treatment. A mid-term research goal is the compensation of tumor target volume motion by 2D/3D registration. In 2D/3D registration, spatial information on organ location is derived by an iterative comparison of perspective volume renderings, so-called digitally rendered radiographs (DRR) from computed tomography volume data, and planar reference x-rays. Currently, this rendering process is very time consuming, and real-time registration, which should at least provide data on organ position in less than a second, has not come into existence. We present two GPU-based rendering algorithms which generate a DRR of 512 × 512 pixels size from a CT dataset of 53 MB size at a pace of almost 100 Hz. This rendering rate is feasible by applying a number of algorithmic simplifications which range from alternative volume-driven rendering approaches – namely so-called wobbled splatting – to sub-sampling of the DRR-image by means of specialized raycasting techniques. Furthermore, general purpose graphics processing unit (GPGPU) programming paradigms were consequently utilized. Rendering quality and performance as well as the influence on the quality and performance of the overall registration process were measured and analyzed in detail. The results show that both methods are competitive and pave the way for fast motion compensation by rigid and possibly even non-rigid 2D/3D registration and, beyond that, adaptive filtering of motion models in IGRT. PMID:21782399

  1. High-resolution mapping of 1D and 2D dose distributions using X-band electron paramagnetic resonance imaging.

    PubMed

    Kolbun, N; Adolfsson, E; Gustafsson, H; Lund, E

    2014-06-01

    Electron paramagnetic resonance imaging (EPRI) was performed to visualise 2D dose distributions of homogenously irradiated potassium dithionate tablets and to demonstrate determination of 1D dose profiles along the height of the tablets. Mathematical correction was applied for each relative dose profile in order to take into account the inhomogeneous response of the resonator using X-band EPRI. The dose profiles are presented with the spatial resolution of 0.6 mm from the acquired 2D images; this value is limited by pixel size, and 1D dose profiles from 1D imaging with spatial resolution of 0.3 mm limited by the intrinsic line-width of potassium dithionate. In this paper, dose profiles from 2D reconstructed electron paramagnetic resonance (EPR) images using the Xepr software package by Bruker are focussed. The conclusion is that using potassium dithionate, the resolution 0.3 mm is sufficient for mapping steep dose gradients if the dosemeters are covering only ±2 mm around the centre of the resonator. PMID:24748487

  2. 2D grating simulation for X-ray phase-contrast and dark-field imaging with a Talbot interferometer

    NASA Astrophysics Data System (ADS)

    Zanette, Irene; David, Christian; Rutishauser, Simon; Weitkamp, Timm

    2010-04-01

    Talbot interferometry is a recently developed and an extremely powerful X-ray phase-contrast imaging technique. Besides giving access to ultra-high sensitivity differential phase contrast images, it also provides the dark field image, which is a map of the scattering power of the sample. In this paper we investigate the potentialities of an improved version of the interferometer, in which two dimensional gratings are used instead of standard line grids. This approach allows to overcome the difficulties that might be encountered in the images produced by a one dimensional interferometer. Among these limitations there are the phase wrapping and quantitative phase retrieval problems and the directionality of the differential phase and dark-field signals. The feasibility of the 2D Talbot interferometer has been studied with a numerical simulation on the performances of its optical components under different circumstances. The gratings can be obtained either by an ad hoc fabrication of the 2D structures or by a superposition of two perpendicular linear grids. Through this simulation it has been possible to find the best parameters for a practical implementation of the 2D Talbot interferometer.

  3. Towards real-time 2D/3D registration for organ motion monitoring in image-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Gendrin, C.; Spoerk, J.; Bloch, C.; Pawiro, S. A.; Weber, C.; Figl, M.; Markelj, P.; Pernus, F.; Georg, D.; Bergmann, H.; Birkfellner, W.

    2010-02-01

    Nowadays, radiation therapy systems incorporate kV imaging units which allow for the real-time acquisition of intra-fractional X-ray images of the patient with high details and contrast. An application of this technology is tumor motion monitoring during irradiation. For tumor tracking, implanted markers or position sensors are used which requires an intervention. 2D/3D intensity based registration is an alternative, non-invasive method but the procedure must be accelerate to the update rate of the device, which lies in the range of 5 Hz. In this paper we investigate fast CT to a single kV X-ray 2D/3D image registration using a new porcine reference phantom with seven implanted fiducial markers. Several parameters influencing the speed and accuracy of the registrations are investigated. First, four intensity based merit functions, namely Cross-Correlation, Rank Correlation, Mutual Information and Correlation Ratio, are compared. Secondly, wobbled splatting and ray casting rendering techniques are implemented on the GPU and the influence of each algorithm on the performance of 2D/3D registration is evaluated. Rendering times for a single DRR of 20 ms were achieved. Different thresholds of the CT volume were also examined for rendering to find the setting that achieves the best possible correspondence with the X-ray images. Fast registrations below 4 s became possible with an inplane accuracy down to 0.8 mm.

  4. Digital image processing system for a high-powered CO2 laser radar

    NASA Astrophysics Data System (ADS)

    Corbett, Francis J.; Groden, Michael; Dryden, Gordon L.; Pfeiffer, George; Boos, Robert; Youmans, Douglas G.

    1996-11-01

    Textron has designed and built a high-powered CO2 laser radar for long range targeting and remote sensing. This is a coherent, multi-wavelength system with a 2D, wide-band image processing capability. The digital processor produces several output products from the transmitter return signals including range, velocity, angle, and 2D range-Doppler images of hard-body targets (LADAR mode). In addition, the processor sorts and reports on data acquired from gaseous targets by wavelength and integrated path absorption (LIDAR mode). The digital processor has been developed from commercial components with a SUN SPARC 20 serving as the operator workstation and display. The digital output products are produced in real time and stored off-line for post-mission analysis and further target enhancements. This LADAR is distinguished from other designs primarily by the waveforms produced by the laser for target interrogation. The digital processing algorithms are designed to extract certain features through operation on each of the two waveforms. The waveforms are a pulse-tone and a pulse-burst designed for target acquisition and track, and 2D imaging respectively. The algorithms are categorized by function as acquisition/track, 2D imaging, integrated absorption for gaseous targets, and post mission enhancements such as tomographic reconstruction for multiple looks at targets from different perspectives. Field tests are now in process and results acquired from Feb.-June '96 will be reported on. The digital imaging system, its architecture, algorithms, simulations, and products will be described.

  5. [Digital thoracic radiology: devices, image processing, limits].

    PubMed

    Frija, J; de Géry, S; Lallouet, F; Guermazi, A; Zagdanski, A M; De Kerviler, E

    2001-09-01

    In a first part, the different techniques of digital thoracic radiography are described. Since computed radiography with phosphore plates are the most commercialized it is more emphasized. But the other detectors are also described, as the drum coated with selenium and the direct digital radiography with selenium detectors. The other detectors are also studied in particular indirect flat panels detectors and the system with four high resolution CCD cameras. In a second step the most important image processing are discussed: the gradation curves, the unsharp mask processing, the system MUSICA, the dynamic range compression or reduction, the soustraction with dual energy. In the last part the advantages and the drawbacks of computed thoracic radiography are emphasized. The most important are the almost constant good quality of the pictures and the possibilities of image processing. PMID:11567193

  6. The Left Hand Second to Fourth Digit Ratio (2D:4D) Does Not Discriminate World-Class Female Gymnasts from Age Matched Sedentary Girls

    PubMed Central

    Peeters, Maarten W.; Claessens, Albrecht L.

    2012-01-01

    Introduction The second to fourth-digit-ratio (2D:4D), a putative marker of prenatal androgen action and a sexually dimorphic trait, has been suggested to be related with sports performance, although results are not univocal. If this relation exists, it is most likely to be detected by comparing extreme groups on the continuum of sports performance. Methods In this study the 2D:4D ratio of world-class elite female artistic gymnasts (n = 129), competing at the 1987 Rotterdam World-Championships was compared to the 2D:4D ratio of sedentary age-matched sedentary girls (n = 129), alongside with other anthropometric characteristics including other sexually dimorphic traits such as an androgyny index (Bayer & Bayley) and Heath-Carter somatotype components (endomorphy, mesomorphy, ectomorphy) using AN(C)OVA. 2D:4D was measured on X-rays of the left hand. Results Left hand 2D:4D digit ratio in world class elite female gymnasts (0.921±0.020) did not differ significantly from 2D:4D in age-matched sedentary girls (0.924±0.018), either with or without inclusion of potentially confounding covariates such as skeletal age, height, weight, somatotype components or androgyny index. Height (161.9±6.4 cm vs 155.4±6.6 cm p<0.01), weight (53.9±7.6 kg vs 46.2 6.3 kg p<0.01), BMI (20.51±2.41 kg/m2 vs 19.05±1.56 kg/m2), skeletal age (15.2±1.1 y vs 14.5±1.2 y p>0.01), somatotype components (4.0/3.0/2.9 vs 1.7/3.7/3.2 for endomorphy (p<0.01), mesomorphy (p<0.01) and ectomorphy (p<0.05) respectively) all differed significantly between sedentary girls and elite gymnasts. As expressed by the androgyny index, gymnasts have, on average, broader shoulders relative to their hips, compared to the reference sample. Correlations between the 2D:4D ratio and chronological age, skeletal age, and the anthropometric characteristics are low and not significant. Conclusion Although other anthropometric characteristics of sexual dimorphism were significantly different between the two samples

  7. SEX DIFFERENCES IN DIGIT RATIO (2D:4D) AMONG MILITARY AND CIVIL COHORTS AT A MILITARY ACADEMY IN WROCŁAW, POLAND.

    PubMed

    Kociuba, Marek; Kozieł, Slawomir; Chakraborty, Raja

    2016-09-01

    The ratio of second-to-fourth digit length (2D:4D), which is generally higher in women compared with men, is a putative marker of prenatal testosterone (PT) exposure. Lower 2D:4D is linked with greater physical ability and strength, better sporting performance and a propensity towards jobs demanding greater physical ability. The objectives of this paper were to examine the sexual dimorphism in 2D:4D in both hands 1and compare this dimorphism in the students of military and civil courses at the General Kuściuszko Military Academy of Land Forces in Wrocław. The cross-sectional study compared 59 female and 118 male students from the military courses and 53 females and 64 male students from the civil courses. Besides calculating 2D:4D (2D/4D) for each hand, height and weight were also recorded. Physical fitness and endurance were assessed using Eurofit tests. Handgrip strength was measured using a standardized isometric dynamometer. In almost all physical tests, students in the military cohort showed highly significant greater physical ability and strength (e.g. handgrip strength) when compared with the civil cohort. Male participants had a significantly lower 2D:4D than females for each hand, as well as for the average value for both hands. The sexual dimorphism was, however, a little more pronounced in the right hand than in the left. Both sex and course type were significant predictors of 2D:4D. There were significant interactions between sex and the student type. Among females, but not in males, the military cohort had a significantly lower, i.e. more 'masculine', 2D:4D for the left hand and right hand and average for both hands (t=3.290, p<0.001) than the civil cohort. This was not the case in males. However, the sex difference in 2D:4D was only significant among the civil students, and not among the military cadets. In conclusion, higher PT exposure, as represented by a lower 2D:4D, among the Polish females might be an indicator of relatively increased physical

  8. The Collaborative Digital Imaging Network Project

    NASA Astrophysics Data System (ADS)

    Greberman, Melvyn; Goeringer, Fred; Shannon, Roger; Hagen, Raoul; Sweeney, Thomas; Ghaed, Victor; Thomas, Jerry

    1988-06-01

    The Digital Imaging Network (DIN) Project is a collaborative project among numerous components of the Department of Defense, Public Health Service, Veterans Administration, industry, academia, and the MITRE Corporation. The project is evaluating prototype DIN systems (DINS) at Georgetown University (in collaboration with George Washington University) in Washington, DC, and at the University of Washington in Seattle, WA. Results of the project will be used to plan DINS for implementation in fixed and deployable military medical care facilities in the 1990's.

  9. Storage and retrieval of large digital images

    DOEpatents

    Bradley, J.N.

    1998-01-20

    Image compression and viewing are implemented with (1) a method for performing DWT-based compression on a large digital image with a computer system possessing a two-level system of memory and (2) a method for selectively viewing areas of the image from its compressed representation at multiple resolutions and, if desired, in a client-server environment. The compression of a large digital image I(x,y) is accomplished by first defining a plurality of discrete tile image data subsets T{sub ij}(x,y) that, upon superposition, form the complete set of image data I(x,y). A seamless wavelet-based compression process is effected on I(x,y) that is comprised of successively inputting the tiles T{sub ij}(x,y) in a selected sequence to a DWT routine, and storing the resulting DWT coefficients in a first primary memory. These coefficients are periodically compressed and transferred to a secondary memory to maintain sufficient memory in the primary memory for data processing. The sequence of DWT operations on the tiles T{sub ij}(x,y) effectively calculates a seamless DWT of I(x,y). Data retrieval consists of specifying a resolution and a region of I(x,y) for display. The subset of stored DWT coefficients corresponding to each requested scene is determined and then decompressed for input to an inverse DWT, the output of which forms the image display. The repeated process whereby image views are specified may take the form an interaction with a computer pointing device on an image display from a previous retrieval. 6 figs.

  10. Storage and retrieval of large digital images

    DOEpatents

    Bradley, Jonathan N.

    1998-01-01

    Image compression and viewing are implemented with (1) a method for performing DWT-based compression on a large digital image with a computer system possessing a two-level system of memory and (2) a method for selectively viewing areas of the image from its compressed representation at multiple resolutions and, if desired, in a client-server environment. The compression of a large digital image I(x,y) is accomplished by first defining a plurality of discrete tile image data subsets T.sub.ij (x,y) that, upon superposition, form the complete set of image data I(x,y). A seamless wavelet-based compression process is effected on I(x,y) that is comprised of successively inputting the tiles T.sub.ij (x,y) in a selected sequence to a DWT routine, and storing the resulting DWT coefficients in a first primary memory. These coefficients are periodically compressed and transferred to a secondary memory to maintain sufficient memory in the primary memory for data processing. The sequence of DWT operations on the tiles T.sub.ij (x,y) effectively calculates a seamless DWT of I(x,y). Data retrieval consists of specifying a resolution and a region of I(x,y) for display. The subset of stored DWT coefficients corresponding to each requested scene is determined and then decompressed for input to an inverse DWT, the output of which forms the image display. The repeated process whereby image views are specified may take the form an interaction with a computer pointing device on an image display from a previous retrieval.

  11. Tracking objects outside the line of sight using 2D intensity images

    PubMed Central

    Klein, Jonathan; Peters, Christoph; Martín, Jaime; Laurenzis, Martin; Hullin, Matthias B.

    2016-01-01

    The observation of objects located in inaccessible regions is a recurring challenge in a wide variety of important applications. Recent work has shown that using rare and expensive optical setups, indirect diffuse light reflections can be used to reconstruct objects and two-dimensional (2D) patterns around a corner. Here we show that occluded objects can be tracked in real time using much simpler means, namely a standard 2D camera and a laser pointer. Our method fundamentally differs from previous solutions by approaching the problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through the scene, we determine the set of object parameters that most closely fits the measured intensity distribution. We experimentally demonstrate that this approach is capable of following the translation of unknown objects, and translation and orientation of a known object, in real time. PMID:27577969

  12. Tracking objects outside the line of sight using 2D intensity images.

    PubMed

    Klein, Jonathan; Peters, Christoph; Martín, Jaime; Laurenzis, Martin; Hullin, Matthias B

    2016-01-01

    The observation of objects located in inaccessible regions is a recurring challenge in a wide variety of important applications. Recent work has shown that using rare and expensive optical setups, indirect diffuse light reflections can be used to reconstruct objects and two-dimensional (2D) patterns around a corner. Here we show that occluded objects can be tracked in real time using much simpler means, namely a standard 2D camera and a laser pointer. Our method fundamentally differs from previous solutions by approaching the problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through the scene, we determine the set of object parameters that most closely fits the measured intensity distribution. We experimentally demonstrate that this approach is capable of following the translation of unknown objects, and translation and orientation of a known object, in real time. PMID:27577969

  13. 2-D/3-D ECE imaging data for validation of turbulence simulations

    NASA Astrophysics Data System (ADS)

    Choi, Minjun; Lee, Jaehyun; Yun, Gunsu; Lee, Woochang; Park, Hyeon K.; Park, Young-Seok; Sabbagh, Steve A.; Wang, Weixing; Luhmann, Neville C., Jr.

    2015-11-01

    The 2-D/3-D KSTAR ECEI diagnostic can provide a local 2-D/3-D measurement of ECE intensity. Application of spectral analysis techniques to the ECEI data allows local estimation of frequency spectra S (f) , wavenumber spectra S (k) , wavernumber and frequency spectra S (k , f) , and bispectra b (f1 ,f2) of ECE intensity over the 2-D/3-D space, which can be used to validate turbulence simulations. However, the minimum detectable fluctuation amplitude and the maximum detectable wavenumber are limited by the temporal and spatial resolutions of the diagnostic system, respectively. Also, the finite measurement area of the diagnostic channel could introduce uncertainty in the spectra estimation. The limitations and accuracy of the ECEI estimated spectra have been tested by a synthetic ECEI diagnostic with the model and/or fluctuations calculated by GTS. Supported by the NRF of Korea under Contract No. NRF-2014M1A7A1A03029881 and NRF-2014M1A7A1A03029865 and by U.S. DOE grant DE-FG02-99ER54524.

  14. Geometric assessment of image quality using digital image registration techniques

    NASA Technical Reports Server (NTRS)

    Tisdale, G. E.

    1976-01-01

    Image registration techniques were developed to perform a geometric quality assessment of multispectral and multitemporal image pairs. Based upon LANDSAT tapes, accuracies to a small fraction of a pixel were demonstrated. Because it is insensitive to the choice of registration areas, the technique is well suited to performance in an automatic system. It may be implemented at megapixel-per-second rates using a commercial minicomputer in combination with a special purpose digital preprocessor.

  15. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  16. Adaptive clutter filter in 2-D color flow imaging based on in vivo I/Q signal.

    PubMed

    Zhou, Xiaoming; Zhang, Congyao; Liu, Dong C

    2014-01-01

    Color flow imaging has been well applied in clinical diagnosis. For the high quality color flow images, clutter filter is important to separate the Doppler signals from blood and tissue. Traditional clutter filters, such as finite impulse response, infinite impulse response and regression filters, were applied, which are based on the hypothesis that the clutter signal is stationary or tissue moves slowly. However, in realistic clinic color flow imaging, the signals are non-stationary signals because of accelerated moving tissue. For most related papers, simulated RF signals are widely used without in vivo I/Q signal. Hence, in this paper, adaptive polynomial regression filter, which is down mixing with instantaneous clutter frequency, was proposed based on in vivo carotid I/Q signal in realistic color flow imaging. To get the best performance, the optimal polynomial order of polynomial regression filter and the optimal polynomial order for estimation of instantaneous clutter frequency respectively were confirmed. Finally, compared with the mean blood velocity and quality of 2-D color flow image, the experiment results show that adaptive polynomial regression filter, which is down mixing with instantaneous clutter frequency, can significantly enhance the mean blood velocity and get high quality 2-D color flow image. PMID:24211911

  17. Recognition of rotated images using the multi-valued neuron and rotation-invariant 2D Fourier descriptors

    NASA Astrophysics Data System (ADS)

    Aizenberg, Evgeni; Bigio, Irving J.; Rodriguez-Diaz, Eladio

    2012-03-01

    The Fourier descriptors paradigm is a well-established approach for affine-invariant characterization of shape contours. In the work presented here, we extend this method to images, and obtain a 2D Fourier representation that is invariant to image rotation. The proposed technique retains phase uniqueness, and therefore structural image information is not lost. Rotation-invariant phase coefficients were used to train a single multi-valued neuron (MVN) to recognize satellite and human face images rotated by a wide range of angles. Experiments yielded 100% and 96.43% classification rate for each data set, respectively. Recognition performance was additionally evaluated under effects of lossy JPEG compression and additive Gaussian noise. Preliminary results show that the derived rotation-invariant features combined with the MVN provide a promising scheme for efficient recognition of rotated images.

  18. Evaluating Commercial Scanners for Astronomical Image Digitization

    NASA Astrophysics Data System (ADS)

    Simcoe, R. J.

    2009-08-01

    Many organizations have been interested in understanding if commercially available scanners are adequate for scientifically useful digitization. These scanners range in price from a few hundred to a few tens of thousands of dollars (USD), often with little apparent difference in performance specifications. This paper describes why the underlying technology used in flatbed scanners tends to effectively limit resolutions to the 600-1200 dots per inch (dpi) range and how the overall system Modulation Transfer Function (MTF) can be used to evaluate the quality of the digitized data for the small feature sizes found in astronomical images. Two scanners, the Epson V750 flatbed scanner and the Nikon Cool Scan 9000ED film strip scanner, are evaluated through their Modulation Transfer Functions (MTF). The MTF of the Harvard DASCH scanner is also shown for comparison. The particular goal of this evaluation was to understand if the scanners could be used for digitizing spectral plates at the University of Toronto. The plates of primary interest were about 15 mm (5/8 inch) wide by 180 mm (7~inches) long and ˜50 mm x 80 mm (2 x 3 inches). The results of the MTF work show that the Epson scanner, despite claims of high resolution, is of limited value for scientific imaging of feature sizes below about 50 μm and therefore not a good candidate for digitizing the spectral plates and problematic for scanning direct plates. The Nikon scanner is better and, except for some frustrating limitations in its software, its performance seems to hold promise as a digitizer for spectral plates in the University of Toronto collection.

  19. APQ-102 imaging radar digital image quality study

    NASA Astrophysics Data System (ADS)

    Griffin, C. R.; Estes, J. M.

    1982-11-01

    A modified APQ-102 sidelooking radar collected synthetic aperture radar (SAR) data which was digitized and recorded on wideband magnetic tape. These tapes were then ground processed into computer compatible tapes (CCT's). The CCT's may then be processed into high resolution radar images by software on the CYBER computer.

  20. APQ-102 imaging radar digital image quality study

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1982-01-01

    A modified APQ-102 sidelooking radar collected synthetic aperture radar (SAR) data which was digitized and recorded on wideband magnetic tape. These tapes were then ground processed into computer compatible tapes (CCT's). The CCT's may then be processed into high resolution radar images by software on the CYBER computer.

  1. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging

    SciTech Connect

    Schmidgunst, C.; Ritter, D.; Lang, E.

    2007-09-15

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.

  2. Digital stain separation for histological images.

    PubMed

    Tadrous, P J

    2010-11-01

    It is often desirable to perform digital image analyses on sections prepared for human interpretation, e.g. nuclear chromatin texture analysis or three-dimensional reconstructions using sections requiring human delineation of structures of interest. Unfortunately such analyses are often more effective using stains with less complex contrast. Here an automated selective 'de-staining' method for digital images is presented. The method separates an image into its red, green and blue and hue, saturation and intensity components. A mask of stained tissue is prepared by automatic percentile thresholding. A single weighted inverted colour channel is then added to each of the three primary colour channels separately by an iterative algorithm that adjusts the weights to give minimum variance within the mask. The modified red, green and blue channels are then recombined. This method is automatic requiring no pre-definition of stain colours or special hardware. The method is demonstrated to 'de-stain' nuclei in haematoxylin and eosin (H&E) sections (and a separate haematoxylin image can be derived from this). An image of isolated brown reaction product is produced with immunoperoxidase preparations counterstained with haematoxylin. Furthermore trichrome (haematoxylin van Gieson, picrosirius red) and other common stains may be separated into their components with modifications of the same algorithm. Although other methods for colour separation do exist (e.g. spectral pathology and colour deconvolution) these require special apparatus or precise calibration and foreknowledge of pure dye colour spectra. The present method of digital stain separation is fully automatic with no such prerequisites. PMID:20946383

  3. Microphysical Analysis using Airborne 2-D Cloud and Precipitation Imaging Probe Data

    NASA Astrophysics Data System (ADS)

    Guy, N.; Jorgensen, D.; Witte, M.; Chuang, P. Y.; Black, R. A.

    2013-12-01

    The NOAA P-3 instrumented aircraft provided in-situ cloud and precipitation microphysical observations during the DYNAMO (Dynamics of the Madden-Julian Oscillation) field experiment. The Particle Measuring System 2D cloud (2D-C) and precipitation (2D-P) probes collected data for particles between 12.5 μm - 1.55 mm (25 μm resolution) and 100 μm - 6.2 mm (100 μm resolution), respectively. Spectra from each instrument were combined to provide a broad distribution of precipitation particle sizes. The 'method of moments' technique was used to analyze drop size distribution (DSD) spectra, which were modeled by fitting a three-parameter (slope, shape, and intercept) gamma distribution to the spectra. The characteristic shape of the mean spectrum compares to previous maritime measurements. DSD variability will be presented with respect to the temporal evolution of cloud populations during a Madden-Julian Oscillation (MJO) event, as well as in-situ aircraft vertical wind velocity measurements. Using the third and sixth moments, rainfall rate (R) and equivalent radar reflectivity factor (Z), respectively, were computed for each DSD. Linear regression was applied to establish a Z-R relationship for the data for the estimation of precipitation. The study indicated unique characteristics of microphysical processes for this region. These results are important to continue to define the cloud population characteristics in the climatological MJO region. Improved representation of the cloud characteristics on the microphysical scale will serve as a check to model parameterizations, helping to improve numerical simulations.

  4. Curve-based 2D-3D registration of coronary vessels for image guided procedure

    NASA Astrophysics Data System (ADS)

    Duong, Luc; Liao, Rui; Sundar, Hari; Tailhades, Benoit; Meyer, Andreas; Xu, Chenyang

    2009-02-01

    3D roadmap provided by pre-operative volumetric data that is aligned with fluoroscopy helps visualization and navigation in Interventional Cardiology (IC), especially when contrast agent-injection used to highlight coronary vessels cannot be systematically used during the whole procedure, or when there is low visibility in fluoroscopy for partially or totally occluded vessels. The main contribution of this work is to register pre-operative volumetric data with intraoperative fluoroscopy for specific vessel(s) occurring during the procedure, even without contrast agent injection, to provide a useful 3D roadmap. In addition, this study incorporates automatic ECG gating for cardiac motion. Respiratory motion is identified by rigid body registration of the vessels. The coronary vessels are first segmented from a multislice computed tomography (MSCT) volume and correspondent vessel segments are identified on a single gated 2D fluoroscopic frame. Registration can be explicitly constrained using one or multiple branches of a contrast-enhanced vessel tree or the outline of guide wire used to navigate during the procedure. Finally, the alignment problem is solved by Iterative Closest Point (ICP) algorithm. To be computationally efficient, a distance transform is computed from the 2D identification of each vessel such that distance is zero on the centerline of the vessel and increases away from the centerline. Quantitative results were obtained by comparing the registration of random poses and a ground truth alignment for 5 datasets. We conclude that the proposed method is promising for accurate 2D-3D registration, even for difficult cases of occluded vessel without injection of contrast agent.

  5. Digitally enhanced GLORIA images for petroleum exploration

    SciTech Connect

    Prindle, R.O. ); Lanz, K )

    1990-05-01

    This poster presentation graphically depicts the geological and structural information that can be derived from digitally enhanced Geological Long Range Inclined Asdic (GLORIA) sonar images. This presentation illustrates the advantages of scale enlargement as an interpreter's tool in an offshore area within the Eel River Basin, Northern California. Sonographs were produced from digital tapes originally collected for the exclusive economic zone (EEZ)-SCAN 1984 survey, which was published in the Atlas of the Western Conterminous US at a scale of 1:500,000. This scale is suitable for displaying regional offshore tectonic features but does not have the resolution required for detailed geological mapping necessary for petroleum exploration. Applications of digital enhancing techniques which utilize contrast stretching and assign false colors to wide-swath sonar imagery (approximately 40 km) with 50-m resolution enables the acquisition and interpretation of significantly more geological and structural data. This, combined with a scale enlargement to 1:100,000 and high contrast contact prints vs. the offset prints of the atlas, increases the resolution and sharpness of bathymetric features so that many more subtle features may be mapped in detail. A tectonic interpretation of these digitally enhanced GLORIA sonographs from the Eel River basin is presented, displaying anticlines, lineaments, ridge axis, pathways of sediment flow, and subtle doming. Many of these features are not present on published bathymetric maps and have not been derived from seismic data because the plan view spatial resolution is much less than that available from the GLORIA imagery.

  6. Auto-masked 2D/3D image registration and its validation with clinical cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Steininger, P.; Neuner, M.; Weichenberger, H.; Sharp, G. C.; Winey, B.; Kametriser, G.; Sedlmayer, F.; Deutschmann, H.

    2012-07-01

    Image-guided alignment procedures in radiotherapy aim at minimizing discrepancies between the planned and the real patient setup. For that purpose, we developed a 2D/3D approach which rigidly registers a computed tomography (CT) with two x-rays by maximizing the agreement in pixel intensity between the x-rays and the corresponding reconstructed radiographs from the CT. Moreover, the algorithm selects regions of interest (masks) in the x-rays based on 3D segmentations from the pre-planning stage. For validation, orthogonal x-ray pairs from different viewing directions of 80 pelvic cone-beam CT (CBCT) raw data sets were used. The 2D/3D results were compared to corresponding standard 3D/3D CBCT-to-CT alignments. Outcome over 8400 2D/3D experiments showed that parametric errors in root mean square were <0.18° (rotations) and <0.73 mm (translations), respectively, using rank correlation as intensity metric. This corresponds to a mean target registration error, related to the voxels of the lesser pelvis, of <2 mm in 94.1% of the cases. From the results we conclude that 2D/3D registration based on sequentially acquired orthogonal x-rays of the pelvis is a viable alternative to CBCT-based approaches if rigid alignment on bony anatomy is sufficient, no volumetric intra-interventional data set is required and the expected error range fits the individual treatment prescription.

  7. Auto-masked 2D/3D image registration and its validation with clinical cone-beam computed tomography.

    PubMed

    Steininger, P; Neuner, M; Weichenberger, H; Sharp, G C; Winey, B; Kametriser, G; Sedlmayer, F; Deutschmann, H

    2012-07-01

    Image-guided alignment procedures in radiotherapy aim at minimizing discrepancies between the planned and the real patient setup. For that purpose, we developed a 2D/3D approach which rigidly registers a computed tomography (CT) with two x-rays by maximizing the agreement in pixel intensity between the x-rays and the corresponding reconstructed radiographs from the CT. Moreover, the algorithm selects regions of interest (masks) in the x-rays based on 3D segmentations from the pre-planning stage. For validation, orthogonal x-ray pairs from different viewing directions of 80 pelvic cone-beam CT (CBCT) raw data sets were used. The 2D/3D results were compared to corresponding standard 3D/3D CBCT-to-CT alignments. Outcome over 8400 2D/3D experiments showed that parametric errors in root mean square were <0.18° (rotations) and <0.73 mm (translations), respectively, using rank correlation as intensity metric. This corresponds to a mean target registration error, related to the voxels of the lesser pelvis, of <2 mm in 94.1% of the cases. From the results we conclude that 2D/3D registration based on sequentially acquired orthogonal x-rays of the pelvis is a viable alternative to CBCT-based approaches if rigid alignment on bony anatomy is sufficient, no volumetric intra-interventional data set is required and the expected error range fits the individual treatment prescription. PMID:22705709

  8. Digital image management: networking, display, and archiving.

    PubMed

    Cox, G G; Templeton, A W; Dwyer, S J

    1986-01-01

    The requirements for implementing a radiology imaging network are similar to those for local area networks now being designed for other purposes to manage large data films. A radiology department serving a 500-bed hospital generates about 927 megabytes of digitally formatted data per working day. These data are expected to be on line for the patient's hospitalization period. The retrieval rate of these data among the interactive diagnosis display stations requires data throughput rates of between 2 and 5 megabits per second. This throughput rate requires signaling rates of between 20 and 50 megabits per second. Analog hard-copy generation of the images on the network is required by the referring physician for selected images that support the consultation report. Digital laser recorders using paper may be quite satisfactory. Long-term archiving must be low in cost and requires a database scheme capable of managing more than a terabyte of image data. Radiology networks must be required to bridge with other hospital information systems. PMID:3762452

  9. Digital image management: networking, display, and archiving.

    PubMed

    Cox, G G; Templeton, A W; Dwyer, S J

    1986-03-01

    The requirements for implementing a radiology imaging network are similar to those for local area networks now being designed for other purposes to manage large data films. A radiology department serving a 500-bed hospital generates about 927 megabytes of digitally formatted data per working day. These data are expected to be on line for the patient's hospitalization period. The retrieval rate of these data among the interactive diagnosis display stations requires data throughput rates of between 2 and 5 megabits per second. This throughput rate requires signaling rates of between 20 and 50 megabits per second. Analog hard-copy generation of the images on the network is required by the referring physician for selected images that support the consultation report. Digital laser recorders using paper may be quite satisfactory. Long-term archiving must be low in cost and requires a database scheme capable of managing more than a terabyte of image data. Radiology networks must be required to bridge with other hospital information systems. PMID:3961127

  10. Digit ratio (2D:4D) moderates the relationship between cortisol reactivity and self-reported externalizing behavior in young adolescent males.

    PubMed

    Portnoy, Jill; Raine, Adrian; Glenn, Andrea L; Chen, Frances R; Choy, Olivia; Granger, Douglas A

    2015-12-01

    Although reduced cortisol reactivity to stress and increased circulating testosterone level are hypothesized to be associated with higher levels of externalizing behavior, empirical findings are inconsistent. One factor that may account for the heterogeneity in these relationships is prenatal testosterone exposure. This study examined whether the second-to-fourth digit ratio (2D:4D), a putative marker of prenatal testosterone exposure, moderates the relationships of testosterone and cortisol reactivity with externalizing behavior. Left and right hand 2D:4D and self-reported externalizing behavior were measured in a sample of 353 young adolescents (M age=11.92 years; 178 females; 79.7% African American). Saliva samples were collected before and after a stress task and later assayed for cortisol. Testosterone levels were determined from an AM saliva sample. 2D:4D interacted with cortisol reactivity to predict externalizing behavior in males, but not females. In males, low cortisol reactivity was associated with higher levels of aggression and rule-breaking behavior, but only among subjects with low 2D:4D (i.e., high prenatal testosterone). Findings suggest the importance of a multi-systems approach in which interactions between multiple hormones are taken into account. Furthermore, results demonstrate the importance of considering the organizational influence of prenatal testosterone in order to understand the activational influence of circulating hormones during adolescence. PMID:26463360

  11. A Landsat Digital Image Rectification System

    NASA Technical Reports Server (NTRS)

    Van Wie, P.; Stein, M.

    1976-01-01

    DIRS is a Digital Image Rectification System for the geometric correction of Landsat Multispectral Scanner digital image data. DIRS removes spatial distortions from the data and brings it into conformance with the Universal Transverse Mercator (UTM) map projection. Scene data in the form of landmarks or Ground Control Points (GCPs) are used to drive the geometric correction algorithms. The system offers extensive capabilities for 'shade printing' to aid in the determination of GCPs. Affine, two dimensional least squares polynominal and spacecraft attitude modeling techniques for geometric mapping are provided. Entire scenes or selected quadralaterals may be rectified. Resampling through nearest neighbor or cubic convolution at user designated intervals is available. The output products are in the form of digital tape in band interleaved, single band or CCT format in a rotated UTM projection. The system was designed and implemented on large scale IBM 360 computers with at least 300-500K bytes of memory for user application programs and five nine track tapes plus direct access storage.

  12. An image adaptive, wavelet-based watermarking of digital images

    NASA Astrophysics Data System (ADS)

    Agreste, Santa; Andaloro, Guido; Prestipino, Daniela; Puccio, Luigia

    2007-12-01

    In digital management, multimedia content and data can easily be used in an illegal way--being copied, modified and distributed again. Copyright protection, intellectual and material rights protection for authors, owners, buyers, distributors and the authenticity of content are crucial factors in solving an urgent and real problem. In such scenario digital watermark techniques are emerging as a valid solution. In this paper, we describe an algorithm--called WM2.0--for an invisible watermark: private, strong, wavelet-based and developed for digital images protection and authenticity. Using discrete wavelet transform (DWT) is motivated by good time-frequency features and well-matching with human visual system directives. These two combined elements are important in building an invisible and robust watermark. WM2.0 works on a dual scheme: watermark embedding and watermark detection. The watermark is embedded into high frequency DWT components of a specific sub-image and it is calculated in correlation with the image features and statistic properties. Watermark detection applies a re-synchronization between the original and watermarked image. The correlation between the watermarked DWT coefficients and the watermark signal is calculated according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has shown to be resistant against geometric, filtering and StirMark attacks with a low rate of false alarm.

  13. 2D-3D registration for prostate radiation therapy based on a statistical model of transmission images

    SciTech Connect

    Munbodh, Reshma; Tagare, Hemant D.; Chen Zhe; Jaffray, David A.; Moseley, Douglas J.; Knisely, Jonathan P. S.; Duncan, James S.

    2009-10-15

    Purpose: In external beam radiation therapy of pelvic sites, patient setup errors can be quantified by registering 2D projection radiographs acquired during treatment to a 3D planning computed tomograph (CT). We present a 2D-3D registration framework based on a statistical model of the intensity values in the two imaging modalities. Methods: The model assumes that intensity values in projection radiographs are independently but not identically distributed due to the nonstationary nature of photon counting noise. Two probability distributions are considered for the intensity values: Poisson and Gaussian. Using maximum likelihood estimation, two similarity measures, maximum likelihood with a Poisson (MLP) and maximum likelihood with Gaussian (MLG), distribution are derived. Further, we investigate the merit of the model-based registration approach for data obtained with current imaging equipment and doses by comparing the performance of the similarity measures derived to that of the Pearson correlation coefficient (ICC) on accurately collected data of an anthropomorphic phantom of the pelvis and on patient data. Results: Registration accuracy was similar for all three similarity measures and surpassed current clinical requirements of 3 mm for pelvic sites. For pose determination experiments with a kilovoltage (kV) cone-beam CT (CBCT) and kV projection radiographs of the phantom in the anterior-posterior (AP) view, registration accuracies were 0.42 mm (MLP), 0.29 mm (MLG), and 0.29 mm (ICC). For kV CBCT and megavoltage (MV) AP portal images of the same phantom, registration accuracies were 1.15 mm (MLP), 0.90 mm (MLG), and 0.69 mm (ICC). Registration of a kV CT and MV AP portal images of a patient was successful in all instances. Conclusions: The results indicate that high registration accuracy is achievable with multiple methods including methods that are based on a statistical model of a 3D CT and 2D projection images.

  14. Infrared imaging of 2-D temperature distribution during cryogen spray cooling.

    PubMed

    Choi, Bernard; Welch, Ashley J

    2002-12-01

    Cryogen spray cooling (CSC) is used in conjunction with pulsed laser irradiation for treatment of dermatologic indications. The main goal of this study was to determine the radial temperature distribution created by CSC and evaluate the importance of radial temperature gradients upon the subsequent analysis of tissue cooling throughout the skin. Since direct measurement of surface temperatures during CSC are hindered by the formation of a liquid cryogen layer, temperature distributions were estimated using a thin, black aluminum sheet. An infrared focal plane array camera was used to determine the 2-D backside temperature distribution during a cryogen spurt, which preliminary measurements have shown is a good indicator of the front-side temperature distribution. The measured temperature distribution was approximately gaussian in shape. Next, the transient temperature distributions in skin were calculated for two cases: 1) the standard 1-D solution which assumes a uniform cooling temperature distribution, and 2) a 2-D solution using a nonuniform surface cooling temperature distribution based upon the back-side infrared temperature measurements. At the end of a 100-ms cryogen spurt, calculations showed that, for the two cases, large discrepancies in temperatures at the surface and at a 60-micron depth were found at radii greater than 2.5 mm. These results suggest that it is necessary to consider radial temperature gradients during cryogen spray cooling of tissue. PMID:12596634

  15. Iterative Stable Alignment and Clustering of 2D Transmission Electron Microscope Images

    PubMed Central

    Yang, Zhengfan; Fang, Jia; Chittuluru, Johnathan; Asturias, Francisco J.; Penczek, Pawel A.

    2012-01-01

    SUMMARY Identification of homogeneous subsets of images in a macromolecular electron microscopy (EM) image data set is a critical step in single-particle analysis. The task is handled by iterative algorithms, whose performance is compromised by the compounded limitations of image alignment and K-means clustering. Here we describe an approach, iterative stable alignment and clustering (ISAC) that, relying on a new clustering method and on the concepts of stability and reproducibility, can extract validated, homogeneous subsets of images. ISAC requires only a small number of simple parameters and, with minimal human intervention, can eliminate bias from two-dimensional image clustering and maximize the quality of group averages that can be used for ab initio three-dimensional structural determination and analysis of macromolecular conformational variability. Repeated testing of the stability and reproducibility of a solution within ISAC eliminates heterogeneous or incorrect classes and introduces critical validation to the process of EM image clustering. PMID:22325773

  16. ISAKOS classification of meniscal tears-illustration on 2D and 3D isotropic spin echo MR imaging.

    PubMed

    Wadhwa, Vibhor; Omar, Hythem; Coyner, Katherine; Khazzam, Michael; Robertson, William; Chhabra, Avneesh

    2016-01-01

    Magnetic Resonance Imaging is modality of choice for the non-invasive evaluation of meniscal tears. Accurate and uniform documentation of meniscal pathology is necessary for optimal multi-disciplinary communication, to guide treatment options and for validation of patient outcomes studies. The increasingly used ISAKOS arthroscopic meniscus tear classification system has been shown to provide sufficient interobserver reliability among the surgeons. However, the terminology is not in common use in the radiology world. In this article, the authors discuss the MR imaging appearances of meniscal tears based on ISAKOS classification on 2D and multiplanar 3D isotropic spin echo imaging techniques and illustrate the correlations of various meniscal pathologies with relevant arthroscopic images. PMID:26724644

  17. Soft-tissues Image Processing: Comparison of Traditional Segmentation Methods with 2D active Contour Methods

    NASA Astrophysics Data System (ADS)

    Mikulka, J.; Gescheidtova, E.; Bartusek, K.

    2012-01-01

    The paper deals with modern methods of image processing, especially image segmentation, classification and evaluation of parameters. It focuses primarily on processing medical images of soft tissues obtained by magnetic resonance tomography (MR). It is easy to describe edges of the sought objects using segmented images. The edges found can be useful for further processing of monitored object such as calculating the perimeter, surface and volume evaluation or even three-dimensional shape reconstruction. The proposed solutions can be used for the classification of healthy/unhealthy tissues in MR or other imaging. Application examples of the proposed segmentation methods are shown. Research in the area of image segmentation focuses on methods based on solving partial differential equations. This is a modern method for image processing, often called the active contour method. It is of great advantage in the segmentation of real images degraded by noise with fuzzy edges and transitions between objects. In the paper, results of the segmentation of medical images by the active contour method are compared with results of the segmentation by other existing methods. Experimental applications which demonstrate the very good properties of the active contour method are given.

  18. 2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability

    SciTech Connect

    Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent

    2013-09-03

    Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of

  19. Pixel-level robust digital image correlation.

    PubMed

    Cofaru, Corneliu; Philips, Wilfried; Van Paepegem, Wim

    2013-12-01

    Digital Image Correlation (DIC) is a well-established non-contact optical metrology method. It employs digital image analysis to extract the full-field displacements and strains that occur in objects subjected to external stresses. Despite recent DIC progress, many problematic areas which greatly affect accuracy and that can seldomly be avoided, received very little attention. Problems posed by the presence of sharp displacement discontinuities, reflections, object borders or edges can be linked to the analysed object's properties and deformation. Other problematic areas, such as image noise, localized reflections or shadows are related more to the image acquisition process. This paper proposes a new subset-based pixel-level robust DIC method for in-plane displacement measurement which addresses all of these problems in a straightforward and unified approach, significantly improving DIC measurement accuracy compared to classic approaches. The proposed approach minimizes a robust energy functional which adaptively weighs pixel differences in the motion estimation process. The aim is to limit the negative influence of pixels that present erroneous or inconsistent motions by enforcing local motion consistency. The proposed method is compared to the classic Newton-Raphson DIC method in terms of displacement accuracy in three experiments. The first experiment is numerical and presents three combined problems: sharp displacement discontinuities, missing image information and image noise. The second experiment is a real experiment in which a plastic specimen is developing a lateral crack due to the application of uniaxial stress. The region around the crack presents both reflections that saturate the image intensity levels leading to missing image information, as well as sharp motion discontinuities due to the plastic film rupturing. The third experiment compares the proposed and classic DIC approaches with generic computer vision optical flow methods using images from

  20. Multilevel image thresholding based on 2D histogram and maximum Tsallis entropy--a differential evolution approach.

    PubMed

    Sarkar, Soham; Das, Swagatam

    2013-12-01

    Multilevel thresholding amounts to segmenting a gray-level image into several distinct regions. This paper presents a 2D histogram based multilevel thresholding approach to improve the separation between objects. Recent studies indicate that the results obtained with 2D histogram oriented approaches are superior to those obtained with 1D histogram based techniques in the context of bi-level thresholding. Here, a method to incorporate 2D histogram related information for generalized multilevel thresholding is proposed using the maximum Tsallis entropy. Differential evolution (DE), a simple yet efficient evolutionary algorithm of current interest, is employed to improve the computational efficiency of the proposed method. The performance of DE is investigated extensively through comparison with other well-known nature inspired global optimization techniques such as genetic algorithm, particle swarm optimization, artificial bee colony, and simulated annealing. In addition, the outcome of the proposed method is evaluated using a well known benchmark--the Berkley segmentation data set (BSDS300) with 300 distinct images. PMID:23955760

  1. A Critical Review of the Research on the Extreme Male Brain Theory and Digit Ratio (2D:4D)

    ERIC Educational Resources Information Center

    Teatero, Missy L.; Netley, Charles

    2013-01-01

    Boys are more likely than girls to be diagnosed with an autism spectrum disorder (ASD). The extreme male brain (EMB) theory of ASD suggests that fetal testosterone (FT) exposure may underlie sex differences in autistic traits. A link between the organizational effects of FT on the brain and ASD is often drawn based on research using digit ratio…

  2. Implementation of a new multiple monochromatic x-ray 2D imager at NIF

    NASA Astrophysics Data System (ADS)

    Kyrala, G. A.; Martinson, D.; Polk, P. J.; Gravlin, T.; Schmitt, M. J.; Johnson, R.; Murphy, T. J.; Lopez, F. E.; Oertel, J. A.; House, A.; Wood, R.; Lee, J.; Haugh, M.

    2013-09-01

    We will describe the installation and wavelength calibration of a multiple monochromatic imager [MMI]1 to be used on mix experiments at National Ignition Facility [NIF]2. The imager works between 8 and 13 keV, has a spatial resolution of 16 micrometers and generates many images each with an energy bandwidth of ~80 eV. The images are recorded either on image plates or on gated x-ray detectors. We will describe: how we aligned the instrument on the bench using visible light, how we checked the alignment and determined the energy range using a k-alpha x-ray source, and how we installed and aligned the instrument to the NIF target chamber.

  3. Enhanced 2D-image upconversion using solid-state lasers.

    PubMed

    Pedersen, Christian; Karamehmedović, Emir; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter

    2009-11-01

    Based on enhanced upconversion, we demonstrate a highly efficient method for converting a full image from one part of the electromagnetic spectrum into a new desired wavelength region. By illuminating a metal transmission mask with a 765 nm Gaussian beam to create an image and subsequently focusing the image inside a nonlinear PPKTP crystal located in the high intra-cavity field of a 1342 nm solid-state Nd:YVO(4) laser, an upconverted image at 488 nm is generated. We have experimentally achieved an upconversion efficiency of 40% under CW conditions. The proposed technique can be further adapted for high efficiency mid-infrared image upconversion where direct and fast detection is difficult or impossible to perform with existing detector technologies. PMID:19997325

  4. Terahertz wavefront assessment based on 2D electro-optic imaging

    NASA Astrophysics Data System (ADS)

    Cahyadi, Harsono; Ichikawa, Ryuji; Degert, Jérôme; Freysz, Eric; Yasui, Takeshi; Abraham, Emmanuel

    2015-03-01

    Complete characterization of terahertz (THz) radiation becomes an interesting yet challenging study for many years. In visible optical region, the wavefront assessment has been proved as a powerful tool for the beam profiling and characterization, which consequently requires 2-dimension (2D) single-shot acquisition of the beam cross-section to provide the spatial profile in time- and frequency-domain. In THz region, the main problem is the lack of effective THz cameras to satisfy this need. In this communication, we propose a simple setup based on free-space collinear 2D electrooptic sampling in a ZnTe crystal for the characterization of THz wavefronts. In principle, we map the optically converted, time-resolved data of the THz pulse by changing the time delay between the probe pulse and the generated THz pulse. The temporal waveforms from different lens-ZnTe distances can clearly indicate the evolution of THz beam as it is converged, focused, or diverged. From the Fourier transform of the temporal waveforms, we can obtain the spectral profile of a broadband THz wave, which in this case within the 0.1-2 THz range. The spectral profile also provides the frequency dependency of the THz pulse amplitude. The comparison between experimental and theoretical results at certain frequencies (here we choose 0.285 and 1.035 THz) is in a good agreement suggesting that our system is capable of THz wavefront characterization. Furthermore, the implementation of Hartmann/Shack-Hartmann sensor principle enables the reconstruction of THz wavefront. We demonstrate the reconstruction of THz wavefronts which are changed from planar wave to spherical one due to the insertion of convex THz lens in the THz beam path. We apply and compare two different reconstruction methods: linear integration and Zernike polynomial. Roughly we conclude that the Zernike method provide smoother wavefront shape that can be elaborated later into quantitative-qualitative analysis about the wavefront

  5. Assessing 3D tunnel position in ACL reconstruction using a novel single image 3D-2D registration

    NASA Astrophysics Data System (ADS)

    Kang, X.; Yau, W. P.; Otake, Y.; Cheung, P. Y. S.; Hu, Y.; Taylor, R. H.

    2012-02-01

    The routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using a mixture of von Mises-Fisher-Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment using a plastic phantom showed accurate results with errors of (-0.43°+/-1.19°, 0.45°+/-2.17°, 0.23°+/-1.05°) and (0.03+/-0.55, -0.03+/-0.54, -2.73+/-1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained with high accuracy of 0.53+/-0.30 mm distance errors.

  6. Known-component 3D-2D registration for image guidance and quality assurance in spine surgery pedicle screw placement

    NASA Astrophysics Data System (ADS)

    Uneri, A.; Stayman, J. W.; De Silva, T.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Wolinsky, J.-P.; Gokaslan, Z. L.; Siewerdsen, J. H.

    2015-03-01

    Purpose. To extend the functionality of radiographic / fluoroscopic imaging systems already within standard spine surgery workflow to: 1) provide guidance of surgical device analogous to an external tracking system; and 2) provide intraoperative quality assurance (QA) of the surgical product. Methods. Using fast, robust 3D-2D registration in combination with 3D models of known components (surgical devices), the 3D pose determination was solved to relate known components to 2D projection images and 3D preoperative CT in near-real-time. Exact and parametric models of the components were used as input to the algorithm to evaluate the effects of model fidelity. The proposed algorithm employs the covariance matrix adaptation evolution strategy (CMA-ES) to maximize gradient correlation (GC) between measured projections and simulated forward projections of components. Geometric accuracy was evaluated in a spine phantom in terms of target registration error at the tool tip (TREx), and angular deviation (TREΦ) from planned trajectory. Results. Transpedicle surgical devices (probe tool and spine screws) were successfully guided with TREx<2 mm and TREΦ <0.5° given projection views separated by at least >30° (easily accommodated on a mobile C-arm). QA of the surgical product based on 3D-2D registration demonstrated the detection of pedicle screw breach with TREx<1 mm, demonstrating a trend of improved accuracy correlated to the fidelity of the component model employed. Conclusions. 3D-2D registration combined with 3D models of known surgical components provides a novel method for near-real-time guidance and quality assurance using a mobile C-arm without external trackers or fiducial markers. Ongoing work includes determination of optimal views based on component shape and trajectory, improved robustness to anatomical deformation, and expanded preclinical testing in spine and intracranial surgeries.

  7. Digital Image Correlation with Dynamic Subset Selection

    NASA Astrophysics Data System (ADS)

    Hassan, Ghulam Mubashar; MacNish, Cara; Dyskin, Arcady; Shufrin, Igor

    2016-09-01

    The quality of the surface pattern and selection of subset size play a critical role in achieving high accuracy in Digital Image Correlation (DIC). The subset size in DIC is normally selected by testing different subset sizes across the entire image, which is a laborious procedure. This also leads to the problem that the worst region of the surface pattern influences the performance of DIC across the entire image. In order to avoid these limitations, a Dynamic Subset Selection (DSS) algorithm is proposed in this paper to optimize the subset size for each point in an image before optimizing the correlation parameters. The proposed DSS algorithm uses the local pattern around the point of interest to calculate a parameter called the Intensity Variation Ratio (Λ), which is used to optimize the subset size. The performance of the DSS algorithm is analyzed using numerically generated images and is compared with the results of traditional DIC. Images obtained from laboratory experiments are also used to demonstrate the utility of the DSS algorithm. Results illustrate that the DSS algorithm provides a better alternative to subset size "guessing" and finds an appropriate subset size for each point of interest according to the local pattern.

  8. Digital mammography, cancer screening: Factors important for image compression

    NASA Technical Reports Server (NTRS)

    Clarke, Laurence P.; Blaine, G. James; Doi, Kunio; Yaffe, Martin J.; Shtern, Faina; Brown, G. Stephen; Winfield, Daniel L.; Kallergi, Maria

    1993-01-01

    The use of digital mammography for breast cancer screening poses several novel problems such as development of digital sensors, computer assisted diagnosis (CAD) methods for image noise suppression, enhancement, and pattern recognition, compression algorithms for image storage, transmission, and remote diagnosis. X-ray digital mammography using novel direct digital detection schemes or film digitizers results in large data sets and, therefore, image compression methods will play a significant role in the image processing and analysis by CAD techniques. In view of the extensive compression required, the relative merit of 'virtually lossless' versus lossy methods should be determined. A brief overview is presented here of the developments of digital sensors, CAD, and compression methods currently proposed and tested for mammography. The objective of the NCI/NASA Working Group on Digital Mammography is to stimulate the interest of the image processing and compression scientific community for this medical application and identify possible dual use technologies within the NASA centers.

  9. Detecting jaundice by using digital image processing

    NASA Astrophysics Data System (ADS)

    Castro-Ramos, J.; Toxqui-Quitl, C.; Villa Manriquez, F.; Orozco-Guillen, E.; Padilla-Vivanco, A.; Sánchez-Escobar, JJ.

    2014-03-01

    When strong Jaundice is presented, babies or adults should be subject to clinical exam like "serum bilirubin" which can cause traumas in patients. Often jaundice is presented in liver disease such as hepatitis or liver cancer. In order to avoid additional traumas we propose to detect jaundice (icterus) in newborns or adults by using a not pain method. By acquiring digital images in color, in palm, soles and forehead, we analyze RGB attributes and diffuse reflectance spectra as the parameter to characterize patients with either jaundice or not, and we correlate that parameters with the level of bilirubin. By applying support vector machine we distinguish between healthy and sick patients.

  10. Digital Imaging in the Introductory Astronomy Course

    NASA Astrophysics Data System (ADS)

    Marschall, Laurence A.; Hayden, Michael B.

    The availability of small, inexpensive CCD cameras is making it possible to offer non-science students in introductory astronomy courses hands-on experience in astronomical imaging. For the past three years at Gettysburg College we have been developing laboratory exercises using ST-4, ST-6, and Lynxx CCD cameras attached to 8-inch telescopes. We discuss the hardware and the procedures involved in these exercises, pointing out the benefits and limitations of digital observations with introductory students. We also offer tips for making successful observations with students, and describe plans for further development.

  11. Applications Of Digital Image Acquisition In Anthropometry

    NASA Astrophysics Data System (ADS)

    Woolford, Barbara; Lewis, James L.

    1981-10-01

    Anthropometric data on reach and mobility have traditionally been collected by time consuming and relatively inaccurate manual methods. Three dimensional digital image acquisition promises to radically increase the speed and ease of data collection and analysis. A three-camera video anthropometric system for collecting position, velocity, and force data in real time is under development for the Anthropometric Measurement Laboratory at NASA's Johnson Space Center. The use of a prototype of this system for collecting data on reach capabilities and on lateral stability is described. Two extensions of this system are planned.

  12. Hierarchical nucleus segmentation in digital pathology images

    PubMed Central

    Gao, Yi; Ratner, Vadim; Zhu, Liangjia; Diprima, Tammy; Kurc, Tahsin; Tannenbaum, Allen; Saltz, Joel

    2016-01-01

    Extracting nuclei is one of the most actively studied topic in the digital pathology researches. Most of the studies directly search the nuclei (or seeds for the nuclei) from the finest resolution available. While the richest information has been utilized by such approaches, it is sometimes difficult to address the heterogeneity of nuclei in different tissues. In this work, we propose a hierarchical approach which starts from the lower resolution level and adaptively adjusts the parameters while progressing into finer and finer resolution. The algorithm is tested on brain and lung cancers images from The Cancer Genome Atlas data set. PMID:27375315

  13. Fusion of digital breast tomosynthesis images via wavelet synthesis for improved lesion conspicuity

    NASA Astrophysics Data System (ADS)

    Hariharan, Harishwaran; Pomponiu, Victor; Zheng, Bin; Whiting, Bruce; Gur, David

    2014-03-01

    Full-field digital mammography (FFDM) is the most common screening procedure for detecting early breast cancer. However, due to complications such as overlapping breast tissue in projection images, the efficacy of FFDM reading is reduced. Recent studies have shown that digital breast tomosynthesis (DBT), in combination with FFDM, increases detection sensitivity considerably while decreasing false-positive, recall rates. There is a huge interest in creating diagnostically accurate 2-D interpretations from the DBT slices. Most of the 2-D syntheses rely on visualizing the maximum intensities (brightness) from each slice through different methods. We propose a wavelet based fusion method, where we focus on preserving holistic information from larger structures such as masses while adding high frequency information that is relevant and helpful for diagnosis. This method enables the spatial generation of a 2D image from a series of DBT images, each of which contains both smooth and coarse structures distributed in the wavelet domain. We believe that the wavelet-synthesized images, generated from their DBT image datasets, provide radiologists with improved lesion and micro-calcification conspicuity as compared with FFDM images. The potential impact of this fusion method is (1) Conception of a device-independent, data-driven modality that increases the conspicuity of lesions, thereby facilitating early detection and potentially reducing recall rates; (2) Reduction of the accompanying radiation dose to the patient.

  14. Fuzzy watershed segmentation algorithm: an enhanced algorithm for 2D gel electrophoresis image segmentation.

    PubMed

    Rashwan, Shaheera; Sarhan, Amany; Faheem, Muhamed Talaat; Youssef, Bayumy A

    2015-01-01

    Detection and quantification of protein spots is an important issue in the analysis of two-dimensional electrophoresis images. However, there is a main challenge in the segmentation of 2DGE images which is to separate overlapping protein spots correctly and to find the weak protein spots. In this paper, we describe a new robust technique to segment and model the different spots present in the gels. The watershed segmentation algorithm is modified to handle the problem of over-segmentation by initially partitioning the image to mosaic regions using the composition of fuzzy relations. The experimental results showed the effectiveness of the proposed algorithm to overcome the over segmentation problem associated with the available algorithm. We also use a wavelet denoising function to enhance the quality of the segmented image. The results of using a denoising function before the proposed fuzzy watershed segmentation algorithm is promising as they are better than those without denoising. PMID:26510287

  15. An active microwave imaging system for reconstruction of 2-D electrical property distributions.

    PubMed

    Meaney, P M; Paulsen, K D; Hartov, A; Crane, R K

    1995-10-01

    The goal of this work is to develop a microwave-based imaging system for hyperthermia treatment monitoring and assessment. Toward this end, a four transmit channel and four receive channel hardware device and concomitant image reconstruction algorithm have been realized. The hardware is designed to measure electric fields (i.e., amplitude and phase) at various locations in a phantom tank with and without the presence of various heterogeneities using standard heterodyning principles. Particular attention has been paid to designing a receiver with better than 115 dB of linear dynamic range which is necessary for imaging biological tissue which often has very high conductivity, especially for tissues with high water content. A calibration procedure has been developed to compensate for signal loss due to three-dimensional radiation in the measured data, since the reconstruction process is only two-dimensional at the present time. Results are shown which demonstrate the stability and accuracy of the measurement system, the extent to which the forward computational model agrees with the measured field distribution when the electrical properties are known, and image reconstructions of electrically unknown targets of varying diameter. In the latter case, images of both the reactive and resistive component of the electrical property distribution have been recoverable. Quantitative information on object location, size, and electrical properties results when the target is approximately one-half wavelength in size. Images of smaller objects lack the same level of quantitative information, but remain qualitatively correct. PMID:8582719

  16. A frequency-based approach to locate common structure for 2D-3D intensity-based registration of setup images in prostate radiotherapy

    SciTech Connect

    Munbodh, Reshma; Chen Zhe; Jaffray, David A.; Moseley, Douglas J.; Knisely, Jonathan P. S.; Duncan, James S.

    2007-07-15

    In many radiotherapy clinics, geometric uncertainties in the delivery of 3D conformal radiation therapy and intensity modulated radiation therapy of the prostate are reduced by aligning the patient's bony anatomy in the planning 3D CT to corresponding bony anatomy in 2D portal images acquired before every treatment fraction. In this paper, we seek to determine if there is a frequency band within the portal images and the digitally reconstructed radiographs (DRRs) of the planning CT in which bony anatomy predominates over non-bony anatomy such that portal images and DRRs can be suitably filtered to achieve high registration accuracy in an automated 2D-3D single portal intensity-based registration framework. Two similarity measures, mutual information and the Pearson correlation coefficient were tested on carefully collected gold-standard data consisting of a kilovoltage cone-beam CT (CBCT) and megavoltage portal images in the anterior-posterior (AP) view of an anthropomorphic phantom acquired under clinical conditions at known poses, and on patient data. It was found that filtering the portal images and DRRs during the registration considerably improved registration performance. Without filtering, the registration did not always converge while with filtering it always converged to an accurate solution. For the pose-determination experiments conducted on the anthropomorphic phantom with the correlation coefficient, the mean (and standard deviation) of the absolute errors in recovering each of the six transformation parameters were {theta}{sub x}:0.18(0.19) deg., {theta}{sub y}:0.04(0.04) deg., {theta}{sub z}:0.04(0.02) deg., t{sub x}:0.14(0.15) mm, t{sub y}:0.09(0.05) mm, and t{sub z}:0.49(0.40) mm. The mutual information-based registration with filtered images also resulted in similarly small errors. For the patient data, visual inspection of the superimposed registered images showed that they were correctly aligned in all instances. The results presented in this

  17. The effects of sex, sexual orientation, and digit ratio (2D:4D) on mental rotation performance.

    PubMed

    Peters, Michael; Manning, John T; Reimers, Stian

    2007-04-01

    In spite of the reduced level of experimental control, this large scale study brought some clarity into the relation between mental rotation task (MRT) performance and a number of variables where contradictory associations had previously been reported in the literature. Clear sex differences in MRT were observed for a sample of 134,317 men and 120,783 women, with men outperforming women. There were also MRT differences as a function of sexual orientation: heterosexual men performed better than homosexual men and homosexual women performed better than heterosexual women. Although bisexual men performed better than homosexual men but less well than heterosexual men, no significant differences were observed between bisexual and homosexual women. MRT performance in both men and women peaked in the 20-30 year range, and declined significantly and markedly thereafter. Both men and women showed a significant negative correlation between left and right digit finger ratio and MRT scores, such that individuals with smaller digit ratios (relatively longer ring finger than index finger) performed better than individuals with larger digit ratios. PMID:17394056

  18. Ultraviolet digital imaging for nuclear safeguards

    NASA Astrophysics Data System (ADS)

    Attas, E. Michael; Burton, G. R.; Chen, J. Dennis; Hildingsson, Lars; Nilsson, A.; Trepte, O.; Young, Gary J.

    1996-03-01

    An ultraviolet-sensitive scientific CCD camera has been tested at a power reactor facility to image the faint Cerenkov light from irradiated nuclear fuel. The instrument mates custom optical components (lens, UV-pass filter) to a commercial scientific camera (Astrocam 4100) with a coated frame-transfer CCD chip (EEV 37-10) to produce 12-bit images of 512 X 512 pixels at a near-real-time frame rate. A 250-mm f/2.6 catadioptric lens has been designed with transmissive optics optimized for this application, incorporating color correction for viewing through 10 m of water. The filter has an average transmission of 80% from 280 to 320 nm, with visible-light transmission of less than 0.01% to block artificial lighting in the fuel bay. Measurements were made with this instrument at the Ringhals Nuclear Power Plant, Varobacka, Sweden. Both fuel and non-fuel assemblies of boiling-water reactor type were studied. Performance is superior to that of the earlier Cerenkov viewing devices based on image intensifier tubes. Increased sensitivity extends the range of the Cerenkov verification technique to fuel with older discharge dates. Increased resolution allows fine details of the fuel to be examined for higher-confidence safeguards verification. Sample digital images are presented, and the advantages to irradiated-fuel verification of image quantitation, storage, transmission, and processing are discussed.

  19. Tracking contrast agents using real-time 2D photoacoustic imaging system for cardiac applications

    NASA Astrophysics Data System (ADS)

    Olafsson, Ragnar; Montilla, Leonardo; Ingram, Pier; Witte, Russell S.

    2009-02-01

    Photoacoustic (PA) imaging is a rapidly developing imaging modality that can detect optical contrast agents with high sensitivity. While detectors in PA imaging have traditionally been single element ultrasound transducers, use of array systems is desirable because they potentially provide high frame rates to capture dynamic events, such as injection and distribution of contrast in clinical applications. We present preliminary data consisting of 40 second sequences of coregistered pulse-echo (PE) and PA images acquired simultaneously in real time using a clinical ultrasonic machine. Using a 7 MHz linear array, the scanner allowed simultaneous acquisition of inphase-quadrature (IQ) data on 64 elements at a rate limited by the illumination source (Q-switched laser at 20 Hz) with spatial resolution determined to be 0.6 mm (axial) and 0.4 mm (lateral). PA images had a signal-to-noise ratio of approximately 35 dB without averaging. The sequences captured the injection and distribution of an infrared-absorbing contrast agent into a cadaver rat heart. From these data, a perfusion time constant of 0.23 s-1 was estimated. After further refinement, the system will be tested in live animals. Ultimately, an integrated system in the clinic could facilitate inexpensive molecular screening for coronary artery disease.

  20. 2D and 3D Refraction Based X-ray Imaging Suitable for Clinical and Pathological Diagnosis

    SciTech Connect

    Ando, Masami; Bando, Hiroko; Ueno, Ei

    2007-01-19

    The first observation of micro papillary (MP) breast cancer by x-ray dark-field imaging (XDFI) and the first observation of the 3D x-ray internal structure of another breast cancer, ductal carcinoma in-situ (DCIS), are reported. The specimen size for the sheet-shaped MP was 26 mm x 22 mm x 2.8 mm, and that for the rod-shaped DCIS was 3.6 mm in diameter and 4.7 mm in height. The experiment was performed at the Photon Factory, KEK: High Energy Accelerator Research Organization. We achieved a high-contrast x-ray image by adopting a thickness-controlled transmission-type angular analyzer that allows only refraction components from the object for 2D imaging. This provides a high-contrast image of cancer-cell nests, cancer cells and stroma. For x-ray 3D imaging, a new algorithm due to the refraction for x-ray CT was created. The angular information was acquired by x-ray optics diffraction-enhanced imaging (DEI). The number of data was 900 for each reconstruction. A reconstructed CT image may include ductus lactiferi, micro calcification and the breast gland. This modality has the possibility to open up a new clinical and pathological diagnosis using x-ray, offering more precise inspection and detection of early signs of breast cancer.

  1. High resolution human diffusion tensor imaging using 2-D navigated multi-shot SENSE EPI at 7 Tesla

    PubMed Central

    Jeong, Ha-Kyu; Gore, John C.; Anderson, Adam W.

    2012-01-01

    The combination of parallel imaging with partial Fourier acquisition has greatly improved the performance of diffusion-weighted single-shot EPI and is the preferred method for acquisitions at low to medium magnetic field strength such as 1.5 or 3 Tesla. Increased off-resonance effects and reduced transverse relaxation times at 7 Tesla, however, generate more significant artifacts than at lower magnetic field strength and limit data acquisition. Additional acceleration of k-space traversal using a multi-shot approach, which acquires a subset of k-space data after each excitation, reduces these artifacts relative to conventional single-shot acquisitions. However, corrections for motion-induced phase errors are not straightforward in accelerated, diffusion-weighted multi-shot EPI because of phase aliasing. In this study, we introduce a simple acquisition and corresponding reconstruction method for diffusion-weighted multi-shot EPI with parallel imaging suitable for use at high field. The reconstruction uses a simple modification of the standard SENSE algorithm to account for shot-to-shot phase errors; the method is called Image Reconstruction using Image-space Sampling functions (IRIS). Using this approach, reconstruction from highly aliased in vivo image data using 2-D navigator phase information is demonstrated for human diffusion-weighted imaging studies at 7 Tesla. The final reconstructed images show submillimeter in-plane resolution with no ghosts and much reduced blurring and off-resonance artifacts. PMID:22592941

  2. 2D and 3D Refraction Based X-ray Imaging Suitable for Clinical and Pathological Diagnosis

    NASA Astrophysics Data System (ADS)

    Ando, Masami; Bando, Hiroko; Chen, Zhihua; Chikaura, Yoshinori; Choi, Chang-Hyuk; Endo, Tokiko; Esumi, Hiroyasu; Gang, Li; Hashimoto, Eiko; Hirano, Keiichi; Hyodo, Kazuyuki; Ichihara, Shu; Jheon, SangHoon; Kim, HongTae; Kim, JongKi; Kimura, Tatsuro; Lee, ChangHyun; Maksimenko, Anton; Ohbayashi, Chiho; Park, SungHwan; Shimao, Daisuke; Sugiyama, Hiroshi; Tang, Jintian; Ueno, Ei; Yamasaki, Katsuhito; Yuasa, Tetsuya

    2007-01-01

    The first observation of micro papillary (MP) breast cancer by x-ray dark-field imaging (XDFI) and the first observation of the 3D x-ray internal structure of another breast cancer, ductal carcinoma in-situ (DCIS), are reported. The specimen size for the sheet-shaped MP was 26 mm × 22 mm × 2.8 mm, and that for the rod-shaped DCIS was 3.6 mm in diameter and 4.7 mm in height. The experiment was performed at the Photon Factory, KEK: High Energy Accelerator Research Organization. We achieved a high-contrast x-ray image by adopting a thickness-controlled transmission-type angular analyzer that allows only refraction components from the object for 2D imaging. This provides a high-contrast image of cancer-cell nests, cancer cells and stroma. For x-ray 3D imaging, a new algorithm due to the refraction for x-ray CT was created. The angular information was acquired by x-ray optics diffraction-enhanced imaging (DEI). The number of data was 900 for each reconstruction. A reconstructed CT image may include ductus lactiferi, micro calcification and the breast gland. This modality has the possibility to open up a new clinical and pathological diagnosis using x-ray, offering more precise inspection and detection of early signs of breast cancer.

  3. Integrating Digital Images into the Art and Art History Curriculum.

    ERIC Educational Resources Information Center

    Pitt, Sharon P.; Updike, Christina B.; Guthrie, Miriam E.

    2002-01-01

    Describes an Internet-based image database system connected to a flexible, in-class teaching and learning tool (the Madison Digital Image Database) developed at James Madison University to bring digital images to the arts and humanities classroom. Discusses content, copyright issues, ensuring system effectiveness, instructional impact, sharing the…

  4. The Artist, the Color Copier, and Digital Imaging.

    ERIC Educational Resources Information Center

    Witte, Mary Stieglitz

    The impact that color-copying technology and digital imaging have had on art, photography, and design are explored. Color copiers have provided new opportunities for direct and spontaneous image making an the potential for new transformations in art. The current generation of digital color copiers permits new directions in imaging, but the…

  5. Prostate boundary segmentation from ultrasound images using 2D active shape models: optimisation and extension to 3D.

    PubMed

    Hodge, Adam C; Fenster, Aaron; Downey, Dónal B; Ladak, Hanif M

    2006-12-01

    Boundary outlining, or segmentation, of the prostate is an important task in diagnosis and treatment planning for prostate cancer. This paper describes an algorithm based on two-dimensional (2D) active shape models (ASM) for semi-automatic segmentation of the prostate boundary from ultrasound images. Optimisation of the 2D ASM for prostatic ultrasound was done first by examining ASM construction and image search parameters. Extension of the algorithm to three-dimensional (3D) segmentation was then done using rotational-based slicing. Evaluation of the 3D segmentation algorithm used distance- and volume-based error metrics to compare algorithm generated boundary outlines to gold standard (manually generated) boundary outlines. Minimum description length landmark placement for ASM construction, and specific values for constraints and image search were found to be optimal. Evaluation of the algorithm versus gold standard boundaries found an average mean absolute distance of 1.09+/-0.49 mm, an average percent absolute volume difference of 3.28+/-3.16%, and a 5x speed increase versus manual segmentation. PMID:16930764

  6. Uncertainty in 2D hydrodynamic models from errors in roughness parameterization based on aerial images

    NASA Astrophysics Data System (ADS)

    Straatsma, Menno; Huthoff, Fredrik

    2011-01-01

    In The Netherlands, 2D-hydrodynamic simulations are used to evaluate the effect of potential safety measures against river floods. In the investigated scenarios, the floodplains are completely inundated, thus requiring realistic representations of hydraulic roughness of floodplain vegetation. The current study aims at providing better insight into the uncertainty of flood water levels due to uncertain floodplain roughness parameterization. The study focuses on three key elements in the uncertainty of floodplain roughness: (1) classification error of the landcover map, (2), within class variation of vegetation structural characteristics, and (3) mapping scale. To assess the effect of the first error source, new realizations of ecotope maps were made based on the current floodplain ecotope map and an error matrix of the classification. For the second error source, field measurements of vegetation structure were used to obtain uncertainty ranges for each vegetation structural type. The scale error was investigated by reassigning roughness codes on a smaller spatial scale. It is shown that classification accuracy of 69% leads to an uncertainty range of predicted water levels in the order of decimeters. The other error sources are less relevant. The quantification of the uncertainty in water levels can help to make better decisions on suitable flood protection measures. Moreover, the relation between uncertain floodplain roughness and the error bands in water levels may serve as a guideline for the desired accuracy of floodplain characteristics in hydrodynamic models.

  7. Imaging geological contact utilizing 2D resistivity method for light rail transit (LRT) track alignment

    NASA Astrophysics Data System (ADS)

    Ali, Nisa'; Saad, Rosli; Muztaza, Nordiana M.; Ismail, Noer E. H.

    2013-05-01

    The purpose of this study was to locate the geological contact using 2D resistivity method for Light Rail Transit (LRT) track alignment. The resistivity method was conducted on eight survey lines with the length of line 1 was 600m. The length of line 2, 3, 4, 5, 6, and 7 were 200m each while line 8 is 115m. All the survey used minimum electrode spacing of 5m and using Pole-dipole array with minimum current is 2mA and maximum was 20mA. The result obtained from the pseudosection showed that the area generally divided into three main zones, fill materials/residual soil with a resistivity value of <500 Ωm, saturated zone with a resistivity value of 30-100 Ωm and bedrock with a resistivity value of >2000 Ωm. Three fractured zones were detected along line L1 and a lot of boulders were detected at L1, L3, L4, L5 and L6. The geological contact was between the residual soil and granite bedrock.

  8. Accurate Angle Estimator for High-Frame-Rate 2-D Vector Flow Imaging.

    PubMed

    Villagomez Hoyos, Carlos Armando; Stuart, Matthias Bo; Hansen, Kristoffer Lindskov; Nielsen, Michael Bachmann; Jensen, Jorgen Arendt

    2016-06-01

    This paper presents a novel approach for estimating 2-D flow angles using a high-frame-rate ultrasound method. The angle estimator features high accuracy and low standard deviation (SD) over the full 360° range. The method is validated on Field II simulations and phantom measurements using the experimental ultrasound scanner SARUS and a flow rig before being tested in vivo. An 8-MHz linear array transducer is used with defocused beam emissions. In the simulations of a spinning disk phantom, a 360° uniform behavior on the angle estimation is observed with a median angle bias of 1.01° and a median angle SD of 1.8°. Similar results are obtained on a straight vessel for both simulations and measurements, where the obtained angle biases are below 1.5° with SDs around 1°. Estimated velocity magnitudes are also kept under 10% bias and 5% relative SD in both simulations and measurements. An in vivo measurement is performed on a carotid bifurcation of a healthy individual. A 3-s acquisition during three heart cycles is captured. A consistent and repetitive vortex is observed in the carotid bulb during systoles. PMID:27093598

  9. Kinematic Analysis of Healthy Hips during Weight-Bearing Activities by 3D-to-2D Model-to-Image Registration Technique

    PubMed Central

    Hara, Daisuke; Nakashima, Yasuharu; Hamai, Satoshi; Higaki, Hidehiko; Ikebe, Satoru; Shimoto, Takeshi; Hirata, Masanobu; Kanazawa, Masayuki; Kohno, Yusuke; Iwamoto, Yukihide

    2014-01-01

    Dynamic hip kinematics during weight-bearing activities were analyzed for six healthy subjects. Continuous X-ray images of gait, chair-rising, squatting, and twisting were taken using a flat panel X-ray detector. Digitally reconstructed radiographic images were used for 3D-to-2D model-to-image registration technique. The root-mean-square errors associated with tracking the pelvis and femur were less than 0.3 mm and 0.3° for translations and rotations. For gait, chair-rising, and squatting, the maximum hip flexion angles averaged 29.6°, 81.3°, and 102.4°, respectively. The pelvis was tilted anteriorly around 4.4° on average during full gait cycle. For chair-rising and squatting, the maximum absolute value of anterior/posterior pelvic tilt averaged 12.4°/11.7° and 10.7°/10.8°, respectively. Hip flexion peaked on the way of movement due to further anterior pelvic tilt during both chair-rising and squatting. For twisting, the maximum absolute value of hip internal/external rotation averaged 29.2°/30.7°. This study revealed activity dependent kinematics of healthy hip joints with coordinated pelvic and femoral dynamic movements. Kinematics' data during activities of daily living may provide important insight as to the evaluating kinematics of pathological and reconstructed hips. PMID:25506056

  10. A clinical image preference study comparing digital tomosynthesis with digital radiography for pediatric spinal imaging

    NASA Astrophysics Data System (ADS)

    King, Jenna M.; Elbakri, Idris A.; Reed, Martin; Wrogemann, Jens

    2011-03-01

    The purpose of this study was to evaluate the diagnostic quality of digital tomosynthesis (DT) images for pediatric imaging of the spine. We performed a phantom image rating study to assess the visibility of anatomical spinal structures in DT images relative to digital radiography (DR) and computed tomography (CT). We collected DT and DR images of the cervical, thoracic and lumbar spine using anthropomorphic phantoms. Four pediatric radiologists and two residents rated the visibility of structures on the DT image sets compared to DR using a four point scale (0 = not visible; 1 = visible; 2 = superior to DR; 3 = excellent, CT unnecessary). In general, the structures in the spine received ratings between 1 and 3 (cervical), or 2 and 3 (thoracic, lumbar), with a few mixed scores for structures that are usually difficult to see on diagnostic images, such as vertebrae near the cervical-thoracic joint and the apophyseal joints of the lumbar spine. The DT image sets allow most critical structures to be visualized as well or better than DR. When DR imaging is inconclusive, DT is a valuable tool to consider before sending a pediatric patient for a higher-dose CT exam.

  11. Machine Learning of Hierarchical Clustering to Segment 2D and 3D Images

    PubMed Central

    Nunez-Iglesias, Juan; Kennedy, Ryan; Parag, Toufiq; Shi, Jianbo; Chklovskii, Dmitri B.

    2013-01-01

    We aim to improve segmentation through the use of machine learning tools during region agglomeration. We propose an active learning approach for performing hierarchical agglomerative segmentation from superpixels. Our method combines multiple features at all scales of the agglomerative process, works for data with an arbitrary number of dimensions, and scales to very large datasets. We advocate the use of variation of information to measure segmentation accuracy, particularly in 3D electron microscopy (EM) images of neural tissue, and using this metric demonstrate an improvement over competing algorithms in EM and natural images. PMID:23977123

  12. Image manipulation: Fraudulence in digital dental records: Study and review

    PubMed Central

    Chowdhry, Aman; Sircar, Keya; Popli, Deepika Bablani; Tandon, Ankita

    2014-01-01

    Introduction: In present-day times, freely available software allows dentists to tweak their digital records as never before. But, there is a fine line between acceptable enhancements and scientific delinquency. Aims and Objective: To manipulate digital images (used in forensic dentistry) of casts, lip prints, and bite marks in order to highlight tampering techniques and methods of detecting and preventing manipulation of digital images. Materials and Methods: Digital image records of forensic data (casts, lip prints, and bite marks photographed using Samsung Techwin L77 digital camera) were manipulated using freely available software. Results: Fake digital images can be created either by merging two or more digital images, or by altering an existing image. Discussion and Conclusion: Retouched digital images can be used for fraudulent purposes in forensic investigations. However, tools are available to detect such digital frauds, which are extremely difficult to assess visually. Thus, all digital content should mandatorily have attached metadata and preferably watermarking in order to avert their malicious re-use. Also, computer alertness, especially about imaging software's, should be promoted among forensic odontologists/dental professionals. PMID:24696587

  13. Digital image-based classification of biodiesel.

    PubMed

    Costa, Gean Bezerra; Fernandes, David Douglas Sousa; Almeida, Valber Elias; Araújo, Thomas Souto Policarpo; Melo, Jessica Priscila; Diniz, Paulo Henrique Gonçalves Dias; Véras, Germano

    2015-07-01

    This work proposes a simple, rapid, inexpensive, and non-destructive methodology based on digital images and pattern recognition techniques for classification of biodiesel according to oil type (cottonseed, sunflower, corn, or soybean). For this, differing color histograms in RGB (extracted from digital images), HSI, Grayscale channels, and their combinations were used as analytical information, which was then statistically evaluated using Soft Independent Modeling by Class Analogy (SIMCA), Partial Least Squares Discriminant Analysis (PLS-DA), and variable selection using the Successive Projections Algorithm associated with Linear Discriminant Analysis (SPA-LDA). Despite good performances by the SIMCA and PLS-DA classification models, SPA-LDA provided better results (up to 95% for all approaches) in terms of accuracy, sensitivity, and specificity for both the training and test sets. The variables selected Successive Projections Algorithm clearly contained the information necessary for biodiesel type classification. This is important since a product may exhibit different properties, depending on the feedstock used. Such variations directly influence the quality, and consequently the price. Moreover, intrinsic advantages such as quick analysis, requiring no reagents, and a noteworthy reduction (the avoidance of chemical characterization) of waste generation, all contribute towards the primary objective of green chemistry. PMID:25882407

  14. On digital image processing technology and application in geometric measure

    NASA Astrophysics Data System (ADS)

    Yuan, Jiugen; Xing, Ruonan; Liao, Na

    2014-04-01

    Digital image processing technique is an emerging science that emerging with the development of semiconductor integrated circuit technology and computer science technology since the 1960s.The article introduces the digital image processing technique and principle during measuring compared with the traditional optical measurement method. It takes geometric measure as an example and introduced the development tendency of digital image processing technology from the perspective of technology application.

  15. Learning-based roof style classification in 2D satellite images

    NASA Astrophysics Data System (ADS)

    Zang, Andi; Zhang, Xi; Chen, Xin; Agam, Gady

    2015-05-01

    Accurately recognizing building roof style leads to a much more realistic 3D building modeling and rendering. In this paper, we propose a novel system for image based roof style classification using machine learning technique. Our system is capable of accurately recognizing four individual roof styles and a complex roof which is composed of multiple parts. We make several novel contributions in this paper. First, we propose an algorithm that segments a complex roof to parts which enable our system to recognize the entire roof based on recognition of each part. Second, to better characterize a roof image, we design a new feature extracted from a roof edge image. We demonstrate that this feature has much better performance compared to recognition results generated by Histogram of Oriented Gradient (HOG), Scale-invariant Feature Transform (SIFT) and Local Binary Patterns (LBP). Finally, to generate a classifier, we propose a learning scheme that trains the classifier using both synthetic and real roof images. Experiment results show that our classifier performs well on several test collections.

  16. Reliability-guided digital image correlation for image deformation measurement

    SciTech Connect

    Pan Bing

    2009-03-10

    A universally applicable reliability-guided digital image correlation (DIC) method is proposed for reliable image deformation measurement. The zero-mean normalized cross correlation (ZNCC) coefficient is used to identify the reliability of the point computed. The correlation calculation begins with a seed point and is then guided by the ZNCC coefficient. That means the neighbors of the point with the highest ZNCC coefficient in a queue for computed points will be processed first. Thus the calculation path is always along the most reliable direction, and possible error propagation of the conventional DIC method can be avoided. The proposed novel DIC method is universally applicable to the images with shadows, discontinuous areas, and deformation discontinuity. Two image pairs were used to evaluate the performance of the proposed technique, and the successful results clearly demonstrate its robustness and effectiveness.

  17. Application and further development of diffusion based 2D chemical imaging techniques in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Hoefer, Christoph; Santner, Jakob; Borisov, Sergey; Kreuzeder, Andreas; Wenzel, Walter; Puschenreiter, Markus

    2015-04-01

    Two dimensional chemical imaging of root processes refers to novel in situ methods to investigate and map solutes at a high spatial resolution (sub-mm). The visualization of these solutes reveals new insights in soil biogeochemistry and root processes. We derive chemical images by using data from DGT-LA-ICP-MS (Diffusive Gradients in Thin Films and Laser Ablation Inductively Coupled Plasma Mass Spectrometry) and POS (Planar Optode Sensors). Both technologies have shown promising results when applied in aqueous environment but need to be refined and improved for imaging at the soil-plant interface. Co-localized mapping using combined DGT and POS technologies and the development of new gel combinations are in our focus. DGTs are smart and thin (<0.4 mm) hydrogels; containing a binding resin for the targeted analytes (e.g. trace metals, phosphate, sulphide or radionuclides). The measurement principle is passive and diffusion based. The present analytes are diffusing into the gel and are bound by the resin. Thereby, the resin acts as zero sink. After application, DGTs are retrieved, dried, and analysed using LA-ICP-MS. The data is then normalized by an internal standard (e.g. 13C), calibrated using in-house standards and chemical images of the target area are plotted using imaging software. POS are, similar to DGT, thin sensor foils containing a fluorophore coating depending on the target analyte. The measurement principle is based on excitation of the flourophore by a specific wavelength and emission of the fluorophore depending on the presence of the analyte. The emitted signal is captured using optical filters and a DSLR camera. While DGT analysis is destructive, POS measurements can be performed continuously during the application. Both semi-quantitative techniques allow an in situ application to visualize chemical processes directly at the soil-plant interface. Here, we present a summary of results from rhizotron experiments with different plants in metal

  18. Model-based frequency response characterization of a digital-image analysis system for epifluorescence microscopy

    NASA Technical Reports Server (NTRS)

    Hazra, Rajeeb; Viles, Charles L.; Park, Stephen K.; Reichenbach, Stephen E.; Sieracki, Michael E.

    1992-01-01

    Consideration is given to a model-based method for estimating the spatial frequency response of a digital-imaging system (e.g., a CCD camera) that is modeled as a linear, shift-invariant image acquisition subsystem that is cascaded with a linear, shift-variant sampling subsystem. The method characterizes the 2D frequency response of the image acquisition subsystem to beyond the Nyquist frequency by accounting explicitly for insufficient sampling and the sample-scene phase. Results for simulated systems and a real CCD-based epifluorescence microscopy system are presented to demonstrate the accuracy of the method.

  19. Security of Color Image Data Designed by Public-Key Cryptosystem Associated with 2D-DWT

    NASA Astrophysics Data System (ADS)

    Mishra, D. C.; Sharma, R. K.; Kumar, Manish; Kumar, Kuldeep

    2014-08-01

    In present times the security of image data is a major issue. So, we have proposed a novel technique for security of color image data by public-key cryptosystem or asymmetric cryptosystem. In this technique, we have developed security of color image data using RSA (Rivest-Shamir-Adleman) cryptosystem with two-dimensional discrete wavelet transform (2D-DWT). Earlier proposed schemes for security of color images designed on the basis of keys, but this approach provides security of color images with the help of keys and correct arrangement of RSA parameters. If the attacker knows about exact keys, but has no information of exact arrangement of RSA parameters, then the original information cannot be recovered from the encrypted data. Computer simulation based on standard example is critically examining the behavior of the proposed technique. Security analysis and a detailed comparison between earlier developed schemes for security of color images and proposed technique are also mentioned for the robustness of the cryptosystem.

  20. Pre-stack depth migration for improved imaging under seafloor canyons: 2D case study of Browse Basin, Australia*

    NASA Astrophysics Data System (ADS)

    Debenham, Helen 124Westlake, Shane

    2014-06-01

    In the Browse Basin, as in many areas of the world, complex seafloor topography can cause problems with seismic imaging. This is related to complex ray paths, and sharp lateral changes in velocity. This paper compares ways in which 2D Kirchhoff imaging can be improved below seafloor canyons, using both time and depth domain processing. In the time domain, to improve on standard pre-stack time migration (PSTM) we apply removable seafloor static time shifts in order to reduce the push down effect under seafloor canyons before migration. This allows for better event continuity in the seismic imaging. However this approach does not fully solve the problem, still giving sub-optimal imaging, leaving amplitude shadows and structural distortion. Only depth domain processing with a migration algorithm that honours the paths of the seismic energy as well as a detailed velocity model can provide improved imaging under these seafloor canyons, and give confidence in the structural components of the exploration targets in this area. We therefore performed depth velocity model building followed by pre-stack depth migration (PSDM), the result of which provided a step change improvement in the imaging, and provided new insights into the area.

  1. A general framework for face reconstruction using single still image based on 2D-to-3D transformation kernel.

    PubMed

    Fooprateepsiri, Rerkchai; Kurutach, Werasak

    2014-03-01

    Face authentication is a biometric classification method that verifies the identity of a user based on image of their face. Accuracy of the authentication is reduced when the pose, illumination and expression of the training face images are different than the testing image. The methods in this paper are designed to improve the accuracy of a features-based face recognition system when the pose between the input images and training images are different. First, an efficient 2D-to-3D integrated face reconstruction approach is introduced to reconstruct a personalized 3D face model from a single frontal face image with neutral expression and normal illumination. Second, realistic virtual faces with different poses are synthesized based on the personalized 3D face to characterize the face subspace. Finally, face recognition is conducted based on these representative virtual faces. Compared with other related works, this framework has the following advantages: (1) only one single frontal face is required for face recognition, which avoids the burdensome enrollment work; and (2) the synthesized face samples provide the capability to conduct recognition under difficult conditions like complex pose, illumination and expression. From the experimental results, we conclude that the proposed method improves the accuracy of face recognition by varying the pose, illumination and expression. PMID:24529782

  2. Heterogeneity of Particle Deposition by Pixel Analysis of 2D Gamma Scintigraphy Images

    PubMed Central

    Xie, Miao; Zeman, Kirby; Hurd, Harry; Donaldson, Scott

    2015-01-01

    Abstract Background: Heterogeneity of inhaled particle deposition in airways disease may be a sensitive indicator of physiologic changes in the lungs. Using planar gamma scintigraphy, we developed new methods to locate and quantify regions of high (hot) and low (cold) particle deposition in the lungs. Methods: Initial deposition and 24 hour retention images were obtained from healthy (n=31) adult subjects and patients with mild cystic fibrosis lung disease (CF) (n=14) following inhalation of radiolabeled particles (Tc99m-sulfur colloid, 5.4 μm MMAD) under controlled breathing conditions. The initial deposition image of the right lung was normalized to (i.e., same median pixel value), and then divided by, a transmission (Tc99m) image in the same individual to obtain a pixel-by-pixel ratio image. Hot spots were defined where pixel values in the deposition image were greater than 2X those of the transmission, and cold spots as pixels where the deposition image was less than 0.5X of the transmission. The number ratio (NR) of the hot and cold pixels to total lung pixels, and the sum ratio (SR) of total counts in hot pixels to total lung counts were compared between healthy and CF subjects. Other traditional measures of regional particle deposition, nC/P and skew of the pixel count histogram distribution, were also compared. Results: The NR of cold spots was greater in mild CF, 0.221±0.047(CF) vs. 0.186±0.038 (healthy) (p<0.005) and was significantly correlated with FEV1 %pred in the patients (R=−0.70). nC/P (central to peripheral count ratio), skew of the count histogram, and hot NR or SR were not different between the healthy and mild CF patients. Conclusions: These methods may provide more sensitive measures of airway function and localization of deposition that might be useful for assessing treatment efficacy in these patients. PMID:25393109

  3. Label free biochemical 2D and 3D imaging using secondary ion mass spectrometry

    PubMed Central

    Fletcher, John S.; Vickerman, John C.; Winograd, Nicholas

    2011-01-01

    Time-of-flight Secondary ion mass spectrometry (ToF-SIMS) provides a method for the detection of native and exogenous compounds in biological samples on a cellular scale. Through the development of novel ion beams the amount of molecular signal available from the sample surface has been increased. Through the introduction of polyatomic ion beams, particularly C60, ToF-SIMS can now be used to monitor molecular signals as a function of depth as the sample is eroded thus proving the ability to generate 3D molecular images. Here we describe how this new capability has led to the development of novel instrumentation for 3D molecular imaging while also highlighting the importance of sample preparation and discuss the challenges that still need to be overcome to maximise the impact of the technique. PMID:21664172

  4. Distributed Computing Architecture for Image-Based Wavefront Sensing and 2 D FFTs

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey S.; Dean, Bruce H.; Haghani, Shadan

    2006-01-01

    Image-based wavefront sensing (WFS) provides significant advantages over interferometric-based wavefi-ont sensors such as optical design simplicity and stability. However, the image-based approach is computational intensive, and therefore, specialized high-performance computing architectures are required in applications utilizing the image-based approach. The development and testing of these high-performance computing architectures are essential to such missions as James Webb Space Telescope (JWST), Terrestial Planet Finder-Coronagraph (TPF-C and CorSpec), and Spherical Primary Optical Telescope (SPOT). The development of these specialized computing architectures require numerous two-dimensional Fourier Transforms, which necessitate an all-to-all communication when applied on a distributed computational architecture. Several solutions for distributed computing are presented with an emphasis on a 64 Node cluster of DSPs, multiple DSP FPGAs, and an application of low-diameter graph theory. Timing results and performance analysis will be presented. The solutions offered could be applied to other all-to-all communication and scientifically computationally complex problems.

  5. 2D and 3D GPR imaging of structural ceilings in historic and existing constructions

    NASA Astrophysics Data System (ADS)

    Colla, Camilla

    2014-05-01

    GPR applications in civil engineering are to date quite diversified. With respect to civil constructions and monumental buildings, detection of voids, cavities, layering in structural elements, variation of geometry, of moisture content, of materials, areas of decay, defects, cracks have been reported in timber, concrete and masonry elements. Nonetheless, many more fields of investigation remain unexplored. This contribution gives an account of a variety of examples of structural ceilings investigation by GPR radar in reflection mode, either as 2D or 3D data acquisition and visualisation. Ceilings have a pre-eminent role in buildings as they contribute to a good structural behaviour of the construction. Primarily, the following functions can be listed for ceilings: a) they carry vertical dead and live loads on floors and distribute such loads to the vertical walls; b) they oppose to external horizontal forces such as wind loads and earthquakes helping to transfer such forces from the loaded element to the other walls; c) they contribute to create the box skeleton and behaviour of a building, connecting the different load bearing walls and reducing the slenderness and flexural instability of such walls. Therefore, knowing how ceilings are made in specific buildings is of paramount importance for architects and structural engineers. According to the type of building and age of construction, ceilings may present very different solutions and materials. Moreover, in existing constructions, ceilings may have been substituted, modified or strengthened due to material decay or to change of use of the building. These alterations may often go unrecorded in technical documentation or technical drawings may be unavailable. In many cases, the position, orientation and number of the load carrying elements in ceilings may be hidden or not be in sight, due for example to the presence of false ceilings or to technical plants. GPR radar can constitute a very useful tool for

  6. EFM data mapped into 2D images of tip-sample contact potential difference and capacitance second derivative

    PubMed Central

    Lilliu, S.; Maragliano, C.; Hampton, M.; Elliott, M.; Stefancich, M.; Chiesa, M.; Dahlem, M. S.; Macdonald, J. E.

    2013-01-01

    We report a simple technique for mapping Electrostatic Force Microscopy (EFM) bias sweep data into 2D images. The method allows simultaneous probing, in the same scanning area, of the contact potential difference and the second derivative of the capacitance between tip and sample, along with the height information. The only required equipment consists of a microscope with lift-mode EFM capable of phase shift detection. We designate this approach as Scanning Probe Potential Electrostatic Force Microscopy (SPP-EFM). An open-source MATLAB Graphical User Interface (GUI) for images acquisition, processing and analysis has been developed. The technique is tested with Indium Tin Oxide (ITO) and with poly(3-hexylthiophene) (P3HT) nanowires for organic transistor applications. PMID:24284731

  7. Understanding 2D atomic resolution imaging of the calcite surface in water by frequency modulation atomic force microscopy.

    PubMed

    Tracey, John; Miyazawa, Keisuke; Spijker, Peter; Miyata, Kazuki; Reischl, Bernhard; Canova, Filippo Federici; Rohl, Andrew L; Fukuma, Takeshi; Foster, Adam S

    2016-10-14

    Frequency modulation atomic force microscopy (FM-AFM) experiments were performed on the calcite (10[Formula: see text]4) surface in pure water, and a detailed analysis was made of the 2D images at a variety of frequency setpoints. We observed eight different contrast patterns that reproducibly appeared in different experiments and with different measurement parameters. We then performed systematic free energy calculations of the same system using atomistic molecular dynamics to obtain an effective force field for the tip-surface interaction. By using this force field in a virtual AFM simulation we found that each experimental contrast could be reproduced in our simulations by changing the setpoint, regardless of the experimental parameters. This approach offers a generic method for understanding the wide variety of contrast patterns seen on the calcite surface in water, and is generally applicable to AFM imaging in liquids. PMID:27609045

  8. A Stochastic Hill Climbing Approach for Simultaneous 2D Alignment and Clustering of Cryogenic Electron Microscopy Images.

    PubMed

    Reboul, Cyril F; Bonnet, Frederic; Elmlund, Dominika; Elmlund, Hans

    2016-06-01

    A critical step in the analysis of novel cryogenic electron microscopy (cryo-EM) single-particle datasets is the identification of homogeneous subsets of images. Methods for solving this problem are important for data quality assessment, ab initio 3D reconstruction, and analysis of population diversity due to the heterogeneous nature of macromolecules. Here we formulate a stochastic algorithm for identification of homogeneous subsets of images. The purpose of the method is to generate improved 2D class averages that can be used to produce a reliable 3D starting model in a rapid and unbiased fashion. We show that our method overcomes inherent limitations of widely used clustering approaches and proceed to test the approach on six publicly available experimental cryo-EM datasets. We conclude that, in each instance, ab initio 3D reconstructions of quality suitable for initialization of high-resolution refinement are produced from the cluster centers. PMID:27184214

  9. Visualization of aerocolloidal biological particles using 2D particle image velocimetry (PIV)

    NASA Astrophysics Data System (ADS)

    Hall, Carsie A., III; Masabattula, Sree; Akyuzlu, Kazim M.; Russo, Edwin P.; Klich, Maren A.

    2003-11-01

    Recent concerns over the possible use of airborne biological particles as weapons of mass destruction have significantly increased the attention that researchers are giving to this threat. The size of these particles, ranging from a fraction of a micrometer to several tens of micrometers, allows them to travel over long distances before settling out of the airstreams carrying these particles. Furthermore, the odd shapes of many of these particles along with uncertainties about their light scattering characteristics make detection and tracking quite a challenge. In the present paper, results are reported on the visualization of airborne biological particles using two-dimensional particle image velocimetry (PIV). These initial results show the utility of PIV in illuminating and tracking airborne biological particles. A compressed air nebulizer is used to aerosolize the biological particles inside a Plexiglas test section. The biological particles prepared for the nebulizer are first inoculated and cultured onto agar media, gypsum board, and acoustic ceiling tile to achieve an abundant growth of spores. A colloidal suspension of biological particles is then made using sterilized, de-ionized water and a mild surfactant to de-agglomerate the biological particles in the suspension. The concentration of biological particles in the colloidal suspension is determined using a hemacytometer. In the visualization experiments, images are captured for polystyrene latex (PSL) test particles, liquid water droplets, and spores of the fungal species Aspergillus versicolor. During the PIV system operation, two successive images are captured with a time delay of 50 μm to develop flow field velocities of the PSL test particles, liquid water droplets, and the A. versicolor spores.

  10. Self-calibration of cone-beam CT geometry using 3D-2D image registration: development and application to tasked-based imaging with a robotic C-arm

    NASA Astrophysics Data System (ADS)

    Ouadah, S.; Stayman, J. W.; Gang, G.; Uneri, A.; Ehtiati, T.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Robotic C-arm systems are capable of general noncircular orbits whose trajectories can be driven by the particular imaging task. However obtaining accurate calibrations for reconstruction in such geometries can be a challenging problem. This work proposes a method to perform a unique geometric calibration of an arbitrary C-arm orbit by registering 2D projections to a previously acquired 3D image to determine the transformation parameters representing the system geometry. Methods: Experiments involved a cone-beam CT (CBCT) bench system, a robotic C-arm, and three phantoms. A robust 3D-2D registration process was used to compute the 9 degree of freedom (DOF) transformation between each projection and an existing 3D image by maximizing normalized gradient information with a digitally reconstructed radiograph (DRR) of the 3D volume. The quality of the resulting "self-calibration" was evaluated in terms of the agreement with an established calibration method using a BB phantom as well as image quality in the resulting CBCT reconstruction. Results: The self-calibration yielded CBCT images without significant difference in spatial resolution from the standard ("true") calibration methods (p-value >0.05 for all three phantoms), and the differences between CBCT images reconstructed using the "self" and "true" calibration methods were on the order of 10-3 mm-1. Maximum error in magnification was 3.2%, and back-projection ray placement was within 0.5 mm. Conclusion: The proposed geometric "self" calibration provides a means for 3D imaging on general noncircular orbits in CBCT systems for which a geometric calibration is either not available or not reproducible. The method forms the basis of advanced "task-based" 3D imaging methods now in development for robotic C-arms.

  11. Image quality improvement for a 3D structure exhibiting multiple 2D patterns and its implementation.

    PubMed

    Hirayama, Ryuji; Nakayama, Hirotaka; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-04-01

    A three-dimensional (3D) structure designed by our proposed algorithm can simultaneously exhibit multiple two-dimensional patterns. The 3D structure provides multiple patterns having directional characteristics by distributing the effects of the artefacts. In this study, we proposed an iterative algorithm to improve the image quality of the exhibited patterns and have verified the effectiveness of the proposed algorithm using numerical simulations. Moreover, we fabricated different 3D glass structures (an octagonal prism, a cube and a sphere) using the proposed algorithm. All 3D structures exhibit four patterns, and different patterns can be observed depending on the viewing direction. PMID:27137021

  12. Application of Compressed Sensing to 2-D Ultrasonic Propagation Imaging System data

    SciTech Connect

    Mascarenas, David D.; Farrar, Charles R.; Chong, See Yenn; Lee, J.R.; Park, Gyu Hae; Flynn, Eric B.

    2012-06-29

    The Ultrasonic Propagation Imaging (UPI) System is a unique, non-contact, laser-based ultrasonic excitation and measurement system developed for structural health monitoring applications. The UPI system imparts laser-induced ultrasonic excitations at user-defined locations on a structure of interest. The response of these excitations is then measured by piezoelectric transducers. By using appropriate data reconstruction techniques, a time-evolving image of the response can be generated. A representative measurement of a plate might contain 800x800 spatial data measurement locations and each measurement location might be sampled at 500 instances in time. The result is a total of 640,000 measurement locations and 320,000,000 unique measurements. This is clearly a very large set of data to collect, store in memory and process. The value of these ultrasonic response images for structural health monitoring applications makes tackling these challenges worthwhile. Recently compressed sensing has presented itself as a candidate solution for directly collecting relevant information from sparse, high-dimensional measurements. The main idea behind compressed sensing is that by directly collecting a relatively small number of coefficients it is possible to reconstruct the original measurement. The coefficients are obtained from linear combinations of (what would have been the original direct) measurements. Often compressed sensing research is simulated by generating compressed coefficients from conventionally collected measurements. The simulation approach is necessary because the direct collection of compressed coefficients often requires compressed sensing analog front-ends that are currently not commercially available. The ability of the UPI system to make measurements at user-defined locations presents a unique capability on which compressed measurement techniques may be directly applied. The application of compressed sensing techniques on this data holds the potential to

  13. CT cardiac imaging: evolution from 2D to 3D backprojection

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Pan, Tinsu; Sasaki, Kosuke

    2004-04-01

    The state-of-the-art multiple detector-row CT, which usually employs fan beam reconstruction algorithms by approximating a cone beam geometry into a fan beam geometry, has been well recognized as an important modality for cardiac imaging. At present, the multiple detector-row CT is evolving into volumetric CT, in which cone beam reconstruction algorithms are needed to combat cone beam artifacts caused by large cone angle. An ECG-gated cardiac cone beam reconstruction algorithm based upon the so-called semi-CB geometry is implemented in this study. To get the highest temporal resolution, only the projection data corresponding to 180° plus the cone angle are row-wise rebinned into the semi-CB geometry for three-dimensional reconstruction. Data extrapolation is utilized to extend the z-coverage of the ECG-gated cardiac cone beam reconstruction algorithm approaching the edge of a CT detector. A helical body phantom is used to evaluate the ECG-gated cone beam reconstruction algorithm"s z-coverage and capability of suppressing cone beam artifacts. Furthermore, two sets of cardiac data scanned by a multiple detector-row CT scanner at 16 x 1.25 (mm) and normalized pitch 0.275 and 0.3 respectively are used to evaluate the ECG-gated CB reconstruction algorithm"s imaging performance. As a reference, the images reconstructed by a fan beam reconstruction algorithm for multiple detector-row CT are also presented. The qualitative evaluation shows that, the ECG-gated cone beam reconstruction algorithm outperforms its fan beam counterpart from the perspective of cone beam artifact suppression and z-coverage while the temporal resolution is well maintained. Consequently, the scan speed can be increased to reduce the contrast agent amount and injection time, improve the patient comfort and x-ray dose efficiency. Based up on the comparison, it is believed that, with the transition of multiple detector-row CT into volumetric CT, ECG-gated cone beam reconstruction algorithms will

  14. Estimation of the curvature of an interface from a digital 2D image

    SciTech Connect

    Frette, O.I.; Virnovsky, G.; Silin, D.

    2008-10-15

    In this paper a method for the estimation of the curvature along a condensed phase interface is presented. In a previous paper in this journal [1] a mathematical relationship was established between this curvature and a template disk located at a given point along the interface. The portion of the computed area of the template disk covering one of the phases was shown to be asymptotically linear in the mean curvature. Instead of utilizing this relationship, an empirical approach was proposed in [1] in order to compensate for discrete uncertainties. In this paper, we show that this linear relationship can be used directly along the interface avoiding the empirical approach proposed earlier. Modifications of the algorithm are however needed, and with good data smoothing techniques, our method provides good quantitative curvature estimates.

  15. Serial grouping of 2D-image regions with object-based attention in humans.

    PubMed

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2016-01-01

    After an initial stage of local analysis within the retina and early visual pathways, the human visual system creates a structured representation of the visual scene by co-selecting image elements that are part of behaviorally relevant objects. The mechanisms underlying this perceptual organization process are only partially understood. We here investigate the time-course of perceptual grouping of two-dimensional image-regions by measuring the reaction times of human participants and report that it is associated with the gradual spread of object-based attention. Attention spreads fastest over large and homogeneous areas and is slowed down at locations that require small-scale processing. We find that the time-course of the object-based selection process is well explained by a 'growth-cone' model, which selects surface elements in an incremental, scale-dependent manner. We discuss how the visual cortical hierarchy can implement this scale-dependent spread of object-based attention, leveraging the different receptive field sizes in distinct cortical areas. PMID:27291188

  16. Body edge delineation in 2D DC resistivity imaging using differential method

    NASA Astrophysics Data System (ADS)

    Susanto, Kusnahadi; Fitrah Bahari, Mohammad

    2016-01-01

    DC resistivity is widely used to identify the kind of rock and the lithology contact. However, the image resulting from resistivity processing is shown in a contour image. There is be a problem to interpret where the edge of body location is. This study uses differential method to delineate the edge of body in DC resistivity contour. This method was applied to the boundary between gravel and underlying clay layer. The first and the second order differential method is applied to the delineation of lithology contact. The profiling curve has to be sliced and extracted from the resistivity contour before the differential method can be used. The spectral analysis shows the frequency and wavenumber of the profiling curve used to make gridding. The slicing process was conducted horizontally and vertically in order to get the mesh size which will be used in the differential method. The second order differential, the Laplace operator, is able to show the edge of body more clearly than the first order differential and shows the contact between gravel and clay.

  17. Serial grouping of 2D-image regions with object-based attention in humans

    PubMed Central

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2016-01-01

    After an initial stage of local analysis within the retina and early visual pathways, the human visual system creates a structured representation of the visual scene by co-selecting image elements that are part of behaviorally relevant objects. The mechanisms underlying this perceptual organization process are only partially understood. We here investigate the time-course of perceptual grouping of two-dimensional image-regions by measuring the reaction times of human participants and report that it is associated with the gradual spread of object-based attention. Attention spreads fastest over large and homogeneous areas and is slowed down at locations that require small-scale processing. We find that the time-course of the object-based selection process is well explained by a 'growth-cone' model, which selects surface elements in an incremental, scale-dependent manner. We discuss how the visual cortical hierarchy can implement this scale-dependent spread of object-based attention, leveraging the different receptive field sizes in distinct cortical areas. DOI: http://dx.doi.org/10.7554/eLife.14320.001 PMID:27291188

  18. Tangential 2-D Edge Imaging for GPI and Edge/Impurity Modeling

    SciTech Connect

    Dr. Ricardo Maqueda; Dr. Fred M. Levinton

    2011-12-23

    Nova Photonics, Inc. has a collaborative effort at the National Spherical Torus Experiment (NSTX). This collaboration, based on fast imaging of visible phenomena, has provided key insights on edge turbulence, intermittency, and edge phenomena such as edge localized modes (ELMs) and multi-faceted axisymmetric radiation from the edge (MARFE). Studies have been performed in all these areas. The edge turbulence/intermittency studies make use of the Gas Puff Imaging diagnostic developed by the Principal Investigator (Ricardo Maqueda) together with colleagues from PPPL. This effort is part of the International Tokamak Physics Activity (ITPA) edge, scrape-off layer and divertor group joint activity (DSOL-15: Inter-machine comparison of blob characteristics). The edge turbulence/blob study has been extended from the current location near the midplane of the device to the lower divertor region of NSTX. The goal of this effort was to study turbulence born blobs in the vicinity of the X-point region and their circuit closure on divertor sheaths or high density regions in the divertor. In the area of ELMs and MARFEs we have studied and characterized the mode structure and evolution of the ELM types observed in NSTX, as well as the study of the observed interaction between MARFEs and ELMs. This interaction could have substantial implications for future devices where radiative divertor regions are required to maintain detachment from the divertor plasma facing components.

  19. 2D x-ray imaging spectroscopic diagnostics using convex bent crystal

    NASA Astrophysics Data System (ADS)

    Papp, Daniel; Presura, Radu; Wallace, Matt; Largent, Billy; Haque, Showera; Arias, Angel; Khanal, Vijay; Ivanov, Vladimir

    2013-10-01

    A new 2-dimensional time-integrated x-ray spectroscopic diagnostics technique was developed to create multi-monochromatic images of high-energy density Al plasmas. 2-dimensional is an advanced spectroscopic tool, providing a way to determine the spatial dependence of plasma temperature and density (Te and ne) in hot plasmas. The new technique uses the strong source broadening of convex cylindrically bent KAP crystal spectrometers, which contains spatial information along the dispersive direction. The perpendicular direction is imaged using a slit. The spatial resolution of the method is improved by the deconvolution of the source broadened line profiles from the lineshapes (recorded by the convex crystal spectrometer) with lineshapes of minimum instrumental broadening. The latter spectra were recorded with a concave cylindrically bent KAP crystal spectrometer, based on the Johann geometry. Spectroscopic model of the plasma x-ray emission was developed using the PrismSPECT code. The identification of suitable spectral features allows deriving Te and ne from line intensities. We applied this model to get temperature and density distribution maps for wire array z-pinch plasmas. Work supported by the DOE/NNSA under grant DE-NA0001834 and Cooperative Agreement DE-FC52-06NA27616.

  20. SIMS of organics—Advances in 2D and 3D imaging and future outlook

    SciTech Connect

    Gilmore, Ian S.

    2013-09-15

    Secondary ion mass spectrometry (SIMS) has become a powerful technique for the label-free analysis of organics from cells to electronic devices. The development of cluster ion sources has revolutionized the field, increasing the sensitivity for organics by two or three orders of magnitude and for large clusters, such as C{sub 60} and argon clusters, allowing depth profiling of organics. The latter has provided the capability to generate stunning three dimensional images with depth resolutions of around 5 nm, simply unavailable by other techniques. Current state-of-the-art allows molecular images with a spatial resolution of around 500 nm to be achieved and future developments are likely to progress into the sub-100 nm regime. This review is intended to bring those with some familiarity with SIMS up-to-date with the latest developments for organics, the fundamental principles that underpin this and define the future progress. State-of-the-art examples are showcased and signposts to more in-depth reviews about specific topics given for the specialist.

  1. A Gaseous Compton Camera using a 2D-sensitive gaseous photomultiplier for Nuclear Medical Imaging

    NASA Astrophysics Data System (ADS)

    Azevedo, C. D. R.; Pereira, F. A.; Lopes, T.; Correia, P. M. M.; Silva, A. L. M.; Carramate, L. F. N. D.; Covita, D. S.; Veloso, J. F. C. A.

    2013-12-01

    A new Compton Camera (CC) concept based on a High Pressure Scintillation Chamber coupled to a position-sensitive Gaseous PhotoMultiplier for Nuclear Medical Imaging applications is proposed. The main goal of this work is to describe the development of a ϕ25×12 cm3 cylindrical prototype, which will be suitable for scintimammography and for small-animal imaging applications. The possibility to scale it to an useful human size device is also in study. The idea is to develop a device capable to compete with the standard Anger Camera. Despite the large success of the Anger Camera, it still presents some limitations, such as: low position resolution and fair energy resolutions for 140 keV. The CC arises a different solution as it provides information about the incoming photon direction, avoiding the use of a collimator, which is responsible for a huge reduction (10-4) of the sensitivity. The main problem of the CC's is related with the Doppler Broadening which is responsible for the loss of angular resolution. In this work, calculations for the Doppler Broadening in Xe, Ar, Ne and their mixtures are presented. Simulations of the detector performance together with discussion about the gas choice are also included .

  2. Unstructured finite element-based digital image correlation with enhanced management of quadrature and lens distortions

    NASA Astrophysics Data System (ADS)

    Pierré, J.-E.; Passieux, J.-C.; Périé, J.-N.; Bugarin, F.; Robert, L.

    2016-02-01

    Like subset-based methods, the very first finite element versions of digital image correlation were closely related to the regular structure of images, as they were based on regular quadrilateral elements corresponding to an integer number of pixels. The use of unstructured meshes, to exploit the full potential of FE-DIC in structural mechanics, is now widespread. Most of the time, the formulation, the quadrature and the definition of the region of interest still rely on the pixels grid. In this paper, a formulation in the physical coordinate system and not in the image frame is proposed for 2D digital image correlation. In addition to a more precise definition of the region of interest, it allows the use of a more accurate quadrature rule. It is also shown that lens distortions can be successfully taken into account directly with such a formalism.

  3. Digital image archiving: challenges and choices.

    PubMed

    Dumery, Barbara

    2002-01-01

    In the last five years, imaging exam volume has grown rapidly. In addition to increased image acquisition, there is more patient information per study. RIS-PACS integration and information-rich DICOM headers now provide us with more patient information relative to each study. The volume of archived digital images is increasing and will continue to rise at a steeper incline than film-based storage of the past. Many filmless facilities have been caught off guard by this increase, which has been stimulated by many factors. The most significant factor is investment in new digital and DICOM-compliant modalities. A huge volume driver is the increase in images per study from multi-slice technology. Storage requirements also are affected by disaster recovery initiatives and state retention mandates. This burgeoning rate of imaging data volume presents many challenges: cost of ownership, data accessibility, storage media obsolescence, database considerations, physical limitations, reliability and redundancy. There are two basic approaches to archiving--single tier and multi-tier. Each has benefits. With a single-tier approach, all the data is stored on a single media that can be accessed very quickly. A redundant copy of the data is then stored onto another less expensive media. This is usually a removable media. In this approach, the on-line storage is increased incrementally as volume grows. In a multi-tier approach, storage levels are set up based on access speed and cost. In other words, all images are stored at the deepest archiving level, which is also the least expensive. Images are stored on or moved back to the intermediate and on-line levels if they will need to be accessed more quickly. It can be difficult to decide what the best approach is for your organization. The options include RAIDs (redundant array of independent disks), direct attached RAID storage (DAS), network storage using RAIDs (NAS and SAN), removable media such as different types of tape, compact

  4. Feature-Based Digital Watermarking for Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Hsu, P.-H.; Chen, C.-C.

    2012-08-01

    With the rapid development of information and communication technology, people can acquire and distribute many kinds of digital data more conveniently than before. The consequence is that the "copyright protection" which prevents digital data from been duplicated illegally should be paid much more attention. Digital watermarking is the process of embedding visible or invisible information into a digital signal which may be used to verify its authenticity or the identity of its owners. In the past, digital watermarking technology has been successfully applied to the "copyright protection" of multimedia data, however the researches and applications of applying digital watermarking to geo-information data are still very inadequate. In this study, a novel digital watermarking algorithm based on the scale-space feature points is applied to the remote sensing images, and the robustness of the embedded digital watermark and the impact on satellite image quality are evaluated and analysed. This kind of feature points are commonly invariant to Image rotation, scaling and translation, therefore they naturally fit into the requirement of geometrically robust image watermarking. The experiment results show almost all extracted watermarks have high values of normal correlation and can be recognized clearly after the processing of image compression, brightness adjustment and contrast adjustment. In addition, most of the extracted watermarks are identified after the geometric attacks. Furthermore, the unsupervised image classification is implemented on the watermarked images to evaluate the image quality reduction and the results show that classification accuracy is affected slightly after embedding watermarks into the satellite images.

  5. A protocol-based evaluation of medical image digitizers.

    PubMed

    Efstathopoulos, E P; Costaridou, L; Kocsis, O; Panayiotakis, G

    2001-09-01

    Medical film digitizers play an important transitory role as digital-to-analogue bridges in radiology. Their use requires performance evaluation to assure medical image quality. A complete quality control protocol is presented, based on a set of test objects adaptable to the specification of various digitizers. The protocol includes parameters such as uniformity, input-output response, noise, geometric distortion, spatial resolution, low contrast discrimination, film slippage and light leakage, as well as associated measurement methods. The applicability of the protocol is demonstrated with two types of medical film digitizers; a charge-coupled device (CCD) digitizer and a laser digitizer. The potential value of the protocol is also discussed. PMID:11560833

  6. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration

    NASA Astrophysics Data System (ADS)

    Soto, Marcelo A.; Ramírez, Jaime A.; Thévenaz, Luc

    2016-03-01

    Distributed optical fibre sensors possess the unique capability of measuring the spatial and temporal map of environmental quantities that can be of great interest for several field applications. Although existing methods for performance enhancement have enabled important progresses in the field, they do not take full advantage of all information present in the measured data, still giving room for substantial improvement over the state-of-the-art. Here we propose and experimentally demonstrate an approach for performance enhancement that exploits the high level of similitude and redundancy contained on the multidimensional information measured by distributed fibre sensors. Exploiting conventional image and video processing, an unprecedented boost in signal-to-noise ratio and measurement contrast is experimentally demonstrated. The method can be applied to any white-noise-limited distributed fibre sensor and can remarkably provide a 100-fold improvement in the sensor performance with no hardware modification.

  7. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration

    PubMed Central

    Soto, Marcelo A.; Ramírez, Jaime A.; Thévenaz, Luc

    2016-01-01

    Distributed optical fibre sensors possess the unique capability of measuring the spatial and temporal map of environmental quantities that can be of great interest for several field applications. Although existing methods for performance enhancement have enabled important progresses in the field, they do not take full advantage of all information present in the measured data, still giving room for substantial improvement over the state-of-the-art. Here we propose and experimentally demonstrate an approach for performance enhancement that exploits the high level of similitude and redundancy contained on the multidimensional information measured by distributed fibre sensors. Exploiting conventional image and video processing, an unprecedented boost in signal-to-noise ratio and measurement contrast is experimentally demonstrated. The method can be applied to any white-noise-limited distributed fibre sensor and can remarkably provide a 100-fold improvement in the sensor performance with no hardware modification. PMID:26927698

  8. 2D turbulence imaging in DIII-D via beam emission spectroscopy

    SciTech Connect

    Fenzi, C.; Fonck, R. J.; Jakubowski, M.; Mc Kee, G. R.

    2001-01-01

    Two-dimensional measurements of density fluctuations have been performed in DIII-D using the beam emission spectroscopy diagnostic. The 32 spatial channels are arranged to image a 5x6cm{sup 2} (radialxpoloidal) region in the plasma cross section, at a nominal 1 cm spatial resolution and separation. The typical decorrelation time, poloidal and radial correlation lengths, as well as a time-averaged flow field plot are obtained from spatial and temporal correlation analyses. A biorthogonal decomposition algorithm is applied to expand the data set into a set of modes that are orthogonal in time and in space, thus providing a simultaneous analysis of the space and time dependencies of fluctuation data.

  9. Classroom multispectral imaging using inexpensive digital cameras.

    NASA Astrophysics Data System (ADS)

    Fortes, A. D.

    2007-12-01

    The proliferation of increasingly cheap digital cameras in recent years means that it has become easier to exploit the broad wavelength sensitivity of their CCDs (360 - 1100 nm) for classroom-based teaching. With the right tools, it is possible to open children's eyes to the invisible world of UVA and near-IR radiation either side of our narrow visual band. The camera-filter combinations I describe can be used to explore the world of animal vision, looking for invisible markings on flowers, or in bird plumage, for example. In combination with a basic spectroscope (such as the Project-STAR handheld plastic spectrometer, 25), it is possible to investigate the range of human vision and camera sensitivity, and to explore the atomic and molecular absorption lines from the solar and terrestrial atmospheres. My principal use of the cameras has been to teach multispectral imaging of the kind used to determine remotely the composition of planetary surfaces. A range of camera options, from 50 circuit-board mounted CCDs up to $900 semi-pro infrared camera kits (including mobile phones along the way), and various UV-vis-IR filter options will be presented. Examples of multispectral images taken with these systems are used to illustrate the range of classroom topics that can be covered. Particular attention is given to learning about spectral reflectance curves and comparing images from Earth and Mars taken using the same filter combination that it used on the Mars Rovers.

  10. Counterfeit deterrence and digital imaging technology

    NASA Astrophysics Data System (ADS)

    Church, Sara E.; Fuller, Reese H.; Jaffe, Annette B.; Pagano, Lorelei W.

    2000-04-01

    The US government recognizes the growing problem of counterfeiting currency using digital imaging technology, as desktop systems become more sophisticated, less expensive and more prevalent. As the rate of counterfeiting with this type of equipment has grown, the need for specific prevention methods has become apparent to the banknote authorities. As a result, the Treasury Department and Federal Reserve have begun to address issues related specifically to this type of counterfeiting. The technical representatives of these agencies are taking a comprehensive approach to minimize counterfeiting using digital technology. This approach includes identification of current technology solutions for banknote recognition, data stream intervention and output marking, outreach to the hardware and software industries and enhancement of public education efforts. Other aspects include strong support and cooperation with existing international efforts to prevent counterfeiting, review and amendment of existing anti- counterfeiting legislation and investigation of currency design techniques to make faithful reproduction more difficult. Implementation of these steps and others are to lead to establishment of a formal, permanent policy to address and prevent the use of emerging technologies to counterfeit currency.

  11. A new regularity-based algorithm for characterizing heterogeneities from digitized core image

    NASA Astrophysics Data System (ADS)

    Gaci, Said; Zaourar, Naima; Hachay, Olga

    2014-05-01

    The two-dimensional multifractional Brownian motion (2D-mBm) is receiving an increasing interest in image processing. However, one difficulty inherent to this fractal model is the estimation of its local Hölderian regularity function. In this paper, we suggest a new estimator of the local Hölder exponent of 2D-mBm paths. The suggested algorithm has been first tested on synthetic 2D-mBm paths, then implemented on digitized image data of a core extracted from an Algerian borehole. The obtained regularity map shows a clear correlation with the geological features observed on the investigated core. These lithological discontinuities are reflected by local variations of the Hölder exponent value. However, no clear relationship can be drawn between regularity and digitized data. To conclude, the suggested algorithm may be a powerful tool for exploring heterogeneities from core images using the regularity exponents. Keywords: core image, two-dimensional multifractional Brownian motion, fractal, regularity.

  12. FISH digital imaging microscopy in mosquito genomics.

    PubMed

    Ferguson, M L; Brown, S E; Knudson, D L

    1996-03-01

    The yellow fever mosquito, Aedes aegypti, transmits pathogens that affect both humans and livestock, and has been the focus of extensive research to identify genetic loci that may be useful in control strategies. Fluorescence in situ hybridization (FISH) and digital imaging microscopy have provided a rapid mechanism to populate the physical map with probes derived from genetic markers, cDNAs and recombinant genomic libraries. When the physical and genetic linkage maps are aligned, map-based cloning will allow the rapid isolation of target genomic sequences. The strategy of FISH mapping and the results of initial hybridization studies are reviewed here by Martin Ferguson, Susan Brown and Dennis Knudson. An Ae. aegypti-specific genomic database, which collates data from mapping studies, sequences, references and other relevant information, is also discussed. PMID:15275237

  13. Advanced digital detectors for neutron imaging.

    SciTech Connect

    Doty, F. Patrick

    2003-12-01

    Neutron interrogation provides unique information valuable for Nonproliferation & Materials Control and other important applications including medicine, airport security, protein crystallography, and corrosion detection. Neutrons probe deep inside massive objects to detect small defects and chemical composition, even through high atomic number materials such as lead. However, current detectors are bulky gas-filled tubes or scintillator/PM tubes, which severely limit many applications. Therefore this project was undertaken to develop new semiconductor radiation detection materials to develop the first direct digital imaging detectors for neutrons. The approach relied on new discovery and characterization of new solid-state sensor materials which convert neutrons directly to electronic signals via reactions BlO(n,a)Li7 and Li6(n,a)T.

  14. Improvement of the detection rate in digital watermarked images against image degradation caused by image processing

    NASA Astrophysics Data System (ADS)

    Nishio, Masato; Ando, Yutaka; Tsukamoto, Nobuhiro; Kawashima, Hironao; Nakamura, Shinya

    2004-04-01

    In the current environment of medical information disclosure, the general-purpose image format such as JPEG/BMP which does not require special software for viewing, is suitable for carrying and managing medical image information individually. These formats have no way to know patient and study information. We have therefore developed two kinds of ID embedding methods: one is Bit-swapping method for embedding Alteration detection ID and the other is data-imposing method in Fourier domain using Discrete Cosine Transform (DCT) for embedding Original image source ID. We then applied these two digital watermark methods to four modality images (Chest X-ray, Head CT, Abdomen CT, Bone scintigraphy). However, there were some cases where the digital watermarked ID could not be detected correctly due to image degradation caused by image processing. In this study, we improved the detection rate in digital watermarked image using several techniques, which are Error correction method, Majority correction method, and Scramble location method. We applied these techniques to digital watermarked images against image processing (Smoothing) and evaluated the effectiveness. As a result, Majority correction method is effective to improve the detection rate in digital watermarked image against image degradation.

  15. Image resolution in the digital era: notion and clinical implications.

    PubMed

    Rakhshan, Vahid

    2014-12-01

    Digital radiographs need additional metadata in order to be accurate when being converted to analog media. Resolution is a major reason of failures in proper printing or digitizing the images. This letter shortly explains the overlooked pitfalls of digital radiography and photography in dental practice, and briefly instructs the reader how to avoid or rectify common problems associated with resolution calibration of digital radiographs. PMID:25469352

  16. X-ray imaging using digital cameras

    NASA Astrophysics Data System (ADS)

    Winch, Nicola M.; Edgar, Andrew

    2012-03-01

    The possibility of using the combination of a computed radiography (storage phosphor) cassette and a semiprofessional grade digital camera for medical or dental radiography is investigated. We compare the performance of (i) a Canon 5D Mk II single lens reflex camera with f1.4 lens and full-frame CMOS array sensor and (ii) a cooled CCD-based camera with a 1/3 frame sensor and the same lens system. Both systems are tested with 240 x 180 mm cassettes which are based on either powdered europium-doped barium fluoride bromide or needle structure europium-doped cesium bromide. The modulation transfer function for both systems has been determined and falls to a value of 0.2 at around 2 lp/mm, and is limited by light scattering of the emitted light from the storage phosphor rather than the optics or sensor pixelation. The modulation transfer function for the CsBr:Eu2+ plate is bimodal, with a high frequency wing which is attributed to the light-guiding behaviour of the needle structure. The detective quantum efficiency has been determined using a radioisotope source and is comparatively low at 0.017 for the CMOS camera and 0.006 for the CCD camera, attributed to the poor light harvesting by the lens. The primary advantages of the method are portability, robustness, digital imaging and low cost; the limitations are the low detective quantum efficiency and hence signal-to-noise ratio for medical doses, and restricted range of plate sizes. Representative images taken with medical doses are shown and illustrate the potential use for portable basic radiography.

  17. Digital camera with apparatus for authentication of images produced from an image file

    NASA Technical Reports Server (NTRS)

    Friedman, Gary L. (Inventor)

    1993-01-01

    A digital camera equipped with a processor for authentication of images produced from an image file taken by the digital camera is provided. The digital camera processor has embedded therein a private key unique to it, and the camera housing has a public key that is so uniquely based upon the private key that digital data encrypted with the private key by the processor may be decrypted using the public key. The digital camera processor comprises means for calculating a hash of the image file using a predetermined algorithm, and second means for encrypting the image hash with the private key, thereby producing a digital signature. The image file and the digital signature are stored in suitable recording means so they will be available together. Apparatus for authenticating at any time the image file as being free of any alteration uses the public key for decrypting the digital signature, thereby deriving a secure image hash identical to the image hash produced by the digital camera and used to produce the digital signature. The apparatus calculates from the image file an image hash using the same algorithm as before. By comparing this last image hash with the secure image hash, authenticity of the image file is determined if they match, since even one bit change in the image hash will cause the image hash to be totally different from the secure hash.

  18. Push-broom hyperspectral image calibration and enhancement by 2D deconvolution with a variant response function estimate.

    PubMed

    Jemec, Jurij; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2014-11-01

    In this paper, we propose a novel method for spectral and spatial calibration and resolution enhancement of hyperspectral images by a two-step procedure. The spectral and spatial variability of the hyperspectral imaging system response function is characterized by a global parametric model, which is derived from a pair of calibration images corresponding to an exactly defined calibration target and a set of gas-discharge lamps. A 2D Richardson-Lucy deconvolution-based algorithm is used to remove the distortions and enhance the resolution of subsequently acquired hyperspectral images. The results of the characterization and deconvolution process obtained by the proposed method are thoroughly evaluated by an independent set of exactly defined calibration and spectral targets, and compared to the existing state-of-the-art characterization method. The proposed method significantly improves the spectral and spatial coregistration and provides more than five-fold resolution enhancement in the spatial and two-fold resolution enhancement in the spectral domain. PMID:25401909

  19. Digital Archival Image Collections: Who Are the Users?

    ERIC Educational Resources Information Center

    Herold, Irene M. H.

    2010-01-01

    Archival digital image collections are a relatively new phenomenon in college library archives. Digitizing archival image collections may make them accessible to users worldwide. There has been no study to explore whether collections on the Internet lead to users who are beyond the institution or a comparison of users to a national or…

  20. User-Driven Planning for Digital-Image Delivery

    ERIC Educational Resources Information Center

    Pisciotta, Henry; Halm, Michael J.; Dooris, Michael J.

    2006-01-01

    This article draws on two projects funded by the Andrew W. Mellon Foundation concerning the ways colleges and universities can support the legitimate sharing of digital learning resources for scholarly use. The 2001-03 Visual Image User Study (VIUS) assessed the scholarly needs of digital image users-faculty, staff, and students. That study led to…

  1. Imaging properties of digital magnification radiography

    SciTech Connect

    Boyce, Sarah J.; Samei, Ehsan

    2006-04-15

    Flat panel detectors exhibit improved signal-to-noise ratio (SNR) and display capabilities compared to film. This improvement necessitates a new evaluation of optimal geometry for conventional projection imaging applications such as digital projection mammography as well as for advanced x-ray imaging applications including cone-beam computed tomography (CT), tomosynthesis, and mammotomography. Such an evaluation was undertaken in this study to examine the effects of x-ray source distribution, inherent detector resolution, magnification, scatter rejection, and noise characteristics including noise aliasing. A model for x-ray image acquisition was used to develop generic results applicable to flat panel detectors with similar x-ray absorption characteristics. The model assumed a Gaussian distribution for the focal spot and a rectangular distribution for a pixel. A generic model for the modulated transfer function (MTF) of indirect flat panel detectors was derived by a nonlinear fit of empirical receptor data to the Burgess model for phosphor MTFs. Noise characteristics were investigated using a generic noise power spectrum (NPS) model for indirect phosphor-based detectors. The detective quantum efficiency (DQE) was then calculated from the MTF and NPS models. The results were examined as a function of focal spot size (0.1, 0.3, and 0.6 mm) and pixel size (50, 100, 150, and 200 {mu}m) for magnification ranges 1 to 3. Mammography, general radiography (also applicable to mammotomography), and chest radiography applications were explored using x-ray energies of 28, 74, and 120 kVp, respectively. Nodule detection was examined using the effective point source scatter model, effective DQE, a