Science.gov

Sample records for 2d digital subtraction

  1. Remapping of digital subtraction angiography on a standard fluoroscopy system using 2D-3D registration

    NASA Astrophysics Data System (ADS)

    Alhrishy, Mazen G.; Varnavas, Andreas; Guyot, Alexis; Carrell, Tom; King, Andrew; Penney, Graeme

    2015-03-01

    Fluoroscopy-guided endovascular interventions are being performing for more and more complex cases with longer screening times. However, X-ray is much better at visualizing interventional devices and dense structures compared to vasculature. To visualise vasculature, angiography screening is essential but requires the use of iodinated contrast medium (ICM) which is nephrotoxic. Acute kidney injury is the main life-threatening complication of ICM. Digital subtraction angiography (DSA) is also often a major contributor to overall patient radiation dose (81% reported). Furthermore, a DSA image is only valid for the current interventional view and not the new view once the C-arm is moved. In this paper, we propose the use of 2D-3D image registration between intraoperative images and the preoperative CT volume to facilitate DSA remapping using a standard fluoroscopy system. This allows repeated ICM-free DSA and has the potential to enable a reduction in ICM usage and radiation dose. Experiments were carried out using 9 clinical datasets. In total, 41 DSA images were remapped. For each dataset, the maximum and averaged remapping accuracy error were calculated and presented. Numerical results showed an overall averaged error of 2.50 mm, with 7 patients scoring averaged errors < 3 mm and 2 patients < 6 mm.

  2. Pediatric digital subtraction angiography

    SciTech Connect

    Amundson, G.M.; Wesenberg, R.L.; Mueller, D.L.; Reid, R.H.

    1984-12-01

    Experience with intravenous digital subtraction angiography (DSA) in infants and children is limited, although its relative rate of performance, low complication rate, and diagnostic accuracy indicate great potential. The authors performed 87 DSA examinations (74 patients) and obtained sufficient detail to facilitate diagnosis in most cases. The major problems of patient movement and overlapping vessels can be minimized by judicious use of sedation and strict attention to technique. Exposure of patients to radiation has not been a limiting factor since our system uses low exposure factors. Our results demonstrate that DSA has wide applicability to many organ systems and is especially useful in intracranial disease and for preoperative evaluation of neoplasms.

  3. Digital subtraction angiography in children

    SciTech Connect

    Wagner, M.L.; Singleton, E.B.; Egan, M.E.

    1983-01-01

    Preliminary results with digital subtraction angiography in infants and children have shown this to be an excellent screening procedure and often diagnostic. The examination can be performed satisfactorily on outpatients. Sixty patients have undergone this examination for evaluation of suspected abnormalities of the aortic arch and its branches, intracranial arteries, pulmonary arteries, abdominal aorta and its branches, and peripheral vessels. Adequate sedation is mandatory to prevent motion artifacts. While the literature reports increasing use of central venous catheters for delivery of contrast material, the use of short catheters placed in an antecubital vein is satisfactory for the pediatric patient. Techniques of the procedures are described along with seven appropriate case examples.

  4. Digital subtraction angiography of the heart and lungs

    SciTech Connect

    Moodie, D.S.; Yiannikas, J.

    1986-01-01

    This book contains 12 chapters. Some of the chapter titles are: Physical Principles of Cardiac Digital Subtraction Angiography, The Use of Intravenous Digital Subtraction Angiography in Evaluating Patients with Complex Congenital Heart Disease, Exercise Intravenous Digital Subtraction Angiograpny, Cardiomyopathic and Cardiac Neoplastic Disease, Digital Subtraction Angiography in the Catheterization Laboratory, and Cardiac Digital Subtraction Angiography - Future Directions.

  5. Children's Use of Subtraction by Addition on Large Single-Digit Subtractions

    ERIC Educational Resources Information Center

    Peters, Greet; De Smedt, Bert; Torbeyns, Joke; Ghesquiere, Pol; Verschaffel, Lieven

    2012-01-01

    Subtractions of the type M - S = ? can be solved by various strategies, including subtraction by addition. In this study, we investigated children's use of subtraction by addition by means of reaction time analyses. We presented 106 third to sixth graders with 32 large non-tie single-digit problems in both subtraction (12 - 9 = .) and addition…

  6. Digital subtraction angiography of the thoracic aorta

    SciTech Connect

    Grossman, L.B.; Buonocore, E.; Modic, M.T.; Meaney, T.F.

    1984-02-01

    Forty-three patients with acquired and congenital abnormalities of the thoracic aorta were studied using digital subtraction angiography (DSA) after an intravenous bolus injection of 40 ml of contrast material. Abnormalities studied included coarctation, pseudocoarctation, Marfan syndrome, cervical aorta, double aortic arch, aneurysm, dissection, and tumor. Twenty-four patients also had conventional angiography. DSA was accurate in 95% of cases; in the other 5%, involving patients with acute type I dissection, the coronary arteries could not be seen. The authors concluded that in 92% of their patients, DSA could have replaced the standard aortogram.

  7. Digital subtraction angiography of the kidney.

    PubMed

    Gattoni, F; Avogadro, A; Baldini, U; Pozzato, C; Bonfanti, M T; Gandini, D; Franch, L; Uslenghi, C

    1988-09-01

    Intravenous and intra-arterial digital subtraction angiography (DSA) was performed in 88 patients: 34 with tumours, 10 with renal trauma, 26 with suspected renovascular hypertension, 6 with vascular impression on the renal pelvis, 8 with nephrolithiasis and 4 with sonographically abnormal kidneys. Venous and arterial DSA always gave diagnostically useful images. Intravenous DSA is valuable in patients with suspected renovascular hypertension or after vascular surgery, percutaneous transluminal angioplasty and transcatheter embolisation. Arterial DSA is preferable to venous DSA in other clinical situations, particularly in the evaluation of renal tumours, and may be recommended in preference to conventional angiography.

  8. [Myocardial perfusion imaging by digital subtraction angiography].

    PubMed

    Kadowaki, H; Ishikawa, K; Ogai, T; Katori, R

    1986-03-01

    Several methods of digital subtraction angiography (DSA) were compared to determine which could better visualize regional myocardial perfusion using coronary angiography in seven patients with myocardial infarction, two with angina pectoris and five with normal coronary arteries. Satisfactory DSA was judged to be achieved if the shape of the heart on the mask film was identical to that on the live film and if both films were exactly superimposed. To obtain an identical mask film in the shape of each live film, both films were selected from the following three phases of the cardiac cycle; at the R wave of the electrocardiogram, 100 msec before the R wave, and 200 msec before the R wave. The last two were superior for obtaining mask and live films which were similar in shape, because the cardiac motion in these phases was relatively small. Using these mask and live films, DSA was performed either with the continuous image mode (CI mode) or the time interval difference mode (TID mode). The overall perfusion of contrast medium through the artery to the vein was adequately visualized using the CI mode. Passage of contrast medium through the artery, capillary and vein was visualized at each phase using TID mode. Subtracted images were displayed and photographed, and the density of the contrast medium was adequate to display contour lines as in a relief map. Using this DSA, it was found that regional perfusion of the contrast medium was not always uniform in normal subjects, depending on the typography of the coronary artery.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Digital subtraction angiography: principles and pitfalls of image improvement techniques.

    PubMed

    Levin, D C; Schapiro, R M; Boxt, L M; Dunham, L; Harrington, D P; Ergun, D L

    1984-09-01

    The technology of imaging methods in digital subtraction angiography (DSA) is discussed in detail. Areas covered include function of the video camera in both interlaced and sequential scan modes, digitization by the analog-to-digital converter, logarithmic signal processing, dose rates, and acquisition of images using frame integration and pulsed-sequential techniques. Also discussed are various methods of improving image content and quality by both hardware and software modifications. These include the development of larger image intensifiers, larger matrices, video camera improvements, reregistration, hybrid subtraction, matched filtering, recursive filtering, DSA tomography, and edge enhancement.

  10. Digital subtraction angiography in pediatric cerebrovascular occlusive disease

    SciTech Connect

    Faerber, E.N.; Griska, L.A.B.; Swartz, J.D.; Capitanio, M.A.; Popky, G.L.

    1984-08-01

    While conventional angiography has been used to demonstrate cerebrovascular occlusive disease in the past, digital subtraction angiography (DSA) is capable of showing progressive vascular involvement with ease, simplicity, and extremely low morbidity, making it particularly well suited for children and outpatients either alone or coordinated with computed tomography. The authors discuss the usefulness and advantages of DSA as demonstrated in 7 infants and children with hemiplegia, 4 of whom had sickle-cell disease.

  11. Digital Subtraction Fluoroscopic System With Tandem Video Processing Units

    NASA Astrophysics Data System (ADS)

    Gould, Robert G.; Lipton, Martin J.; Mengers, Paul; Dahlberg, Roger

    1981-07-01

    A real-time digital fluoroscopic system utilizing two video processing units (Quantex) in tandem to produce continuous subtraction images of peripheral and internal vessels following intravenous contrast media injection has been inves-tigated. The first processor subtracts a mask image consisting of an exponentially weighted moving average of N1 frames (N1 = 2k where k = 0.7) from each incoming video frame, divides by N1, and outputs the resulting difference image to the second processor. The second unit continuously averages N2 incoming frames (N2 = 2k) and outputs to a video monitor and analog disc recorder. The contrast of the subtracted images can be manipulated by changing gain or by a non-linear output transform. After initial equipment adjustments, a subtraction sequence can be produced without operator interaction with the processors. Alternatively, the operator can freeze the mask and/or the subtracted output image at any time during the sequence. Raw data is preserved on a wide band video tape recorder permitting retrospective viewing of an injection sequence with different processor settings. The advantage of the tandem arrangement is that it has great flexibility in varying the duration and the time of both the mask and injection images thereby minimizing problems of registration between them. In addition, image noise is reduced by compiling video frames rather than by using a large radiation dose for a single frame, which requires a wide dynamic range video camera riot commonly available in diagnostic x-ray equipment. High quality subtraction images of arteries have been obtained in 15 anesthetized dogs using relatively low exposure rates (10-12 μR/video frame) modest volumes of contrast medium (0.5-1 ml/kg), and low injection flow rates (6-10 ml/sec). The results/ achieved so far suggest that this system has direct clinical applications.

  12. Quantitative Digital Subtraction Angiography in Pediatric Moyamoya Disease

    PubMed Central

    2015-01-01

    Moyamoya disease is a unique cerebrovascular disorder characterized by idiopathic progressive stenosis at the terminal portion of the internal carotid artery (ICA) and fine vascular network. The aim of this review is to present the clinical application of quantitative digital subtraction angiography (QDSA) in pediatric moyamoya disease. Using conventional angiographic data and postprocessing software, QDSA provides time-contrast intensity curves and then displays the peak time (Tmax) and area under the curve (AUC). These parameters of QDSA can be used as surrogate markers for the hemodynamic evaluation of disease severity and quantification of postoperative neovascularization in moyamoya disease. PMID:26180611

  13. Using a digital signal processor as a data stream controller for digital subtraction angiography

    SciTech Connect

    Meng, J.D.; Katz, J.E.

    1991-10-01

    High speed, flexibility, and good arithmetic abilities make digital signal processors (DSP) a good choice as input/output controllers for real time applications. The DSP can be made to pre-process data in real time to reduce data volume, to open early windows on what is being acquired and to implement local servo loops. We present an example of a DSP as an input/output controller for a digital subtraction angiographic imaging system. The DSP pre-processes the raw data, reducing data volume by a factor of two, and is potentially capable of producing real-time subtracted images for immediate display.

  14. Motion compensation in digital subtraction angiography using graphics hardware.

    PubMed

    Deuerling-Zheng, Yu; Lell, Michael; Galant, Adam; Hornegger, Joachim

    2006-07-01

    An inherent disadvantage of digital subtraction angiography (DSA) is its sensitivity to patient motion which causes artifacts in the subtraction images. These artifacts could often reduce the diagnostic value of this technique. Automated, fast and accurate motion compensation is therefore required. To cope with this requirement, we first examine a method explicitly designed to detect local motions in DSA. Then, we implement a motion compensation algorithm by means of block matching on modern graphics hardware. Both methods search for maximal local similarity by evaluating a histogram-based measure. In this context, we are the first who have mapped an optimizing search strategy on graphics hardware while paralleling block matching. Moreover, we provide an innovative method for creating histograms on graphics hardware with vertex texturing and frame buffer blending. It turns out that both methods can effectively correct the artifacts in most case, as the hardware implementation of block matching performs much faster: the displacements of two 1024 x 1024 images can be calculated at 3 frames/s with integer precision or 2 frames/s with sub-pixel precision. Preliminary clinical evaluation indicates that the computation with integer precision could already be sufficient.

  15. Multinuclide digital subtraction imaging in symptomatic prostnetic joints

    SciTech Connect

    Chafetz, N.; Hattner, R.S.; Ruarke, W.C.; Helms, C.A.; Genant, H.K.; Murray, W.R.

    1985-06-01

    One hundred eleven patients with symptomatic prosthetic joints (86 hips, 23 knees, and two shoulders) were evaluated for prosthetic loosening and infection by combined technetium-99m-MDP/gallium-67 digital subtraction imaging. Clinical correlation was based on the assessment of loosening and bacterial cultures obtained at the time of surgery in 54 patients, joint aspiration cultures obtained in 37 patients, and long-term clinical follow-up for greater than 1.5 years in an additional 15 patients. Results revealed an 80-90% predictive value of a positive test for loosening, and a 95% predictive value of a negative test for infection. However, because of the low sensitivities and specificities observed, this approach to the evaluation of symptomatic prosthetic joints does not seem cost effective.

  16. Digital subtraction angiography for preoperative evaluation of extremity tumors

    SciTech Connect

    Paushter, D.M.; Borkowski, G.R.; Buonocore, E.; Belhobek, G.H.; Marks, K.E.

    1983-07-01

    A retrospective study was undertaken to evaluate the role of digital subtraction angiography (DSA) in the surgical planning of musculoskeletal neoplasms. Thirteen patients with primary bone and soft-tissue tumors were examined by CT and DSA. Three patients also had conventional angiography. DSA yielded surgically useful information in 10 patients, comparable to that expected from conventional angiography. DSA was most helpful in demonstrating the presence or absence of major vessel involvement by tumor when this could not be ascertained definitely on CT. Demonstration of mass extent by CT was accurate in 11 patients. Results of this study suggest that the combination of CT and DSA is useful in the preoperative evaluation of selected extremity tumors and should diminish the need for conventional angiography.

  17. Efficiency and Flexibility of Indirect Addition in the Domain of Multi-Digit Subtraction

    ERIC Educational Resources Information Center

    Torbeyns, Joke; Ghesquiere, Pol; Verschaffel, Lieven

    2009-01-01

    This article discusses the characteristics of the indirect addition strategy (IA) in the domain of multi-digit subtraction. In two studies, adults' use of IA on three-digit subtractions with a small, medium, or large difference between the integers was analysed using the choice/no-choice method. Results from both studies indicate that adults…

  18. How Do Manipulatives Help Students Communicate Their Understanding of Double-Digit Subtraction?

    ERIC Educational Resources Information Center

    Abi-Hanna, Rabab

    2016-01-01

    Multi-digit subtraction is difficult for students to learn. The purpose of this study is to explore how second-grade students communicate their understanding of double-digit subtraction through the use of manipulatives/tools. This qualitative study reports on six case studies of second-grade students where clinical interviews were the main source…

  19. Digit ratio (2D:4D), salivary testosterone, and handedness.

    PubMed

    Beaton, Alan A; Rudling, Nick; Kissling, Christian; Taurines, Regine; Thome, Johannes

    2011-03-01

    The length of the index finger relative to that of the ring finger, the 2D:4D ratio, has been taken to be a marker of the amount of testosterone (T) that was present in the foetal environment (Manning, Scutt, Wilson, & Lewis-Jones, 1998). It has also been suggested (Geschwind & Galaburda, 1987) that elevated levels of foetal T are associated with left-handedness and that adult levels of circulating T might relate to foetal levels (Jamison, Meier, & Campbell, 1993). We used multiple regression analyses to investigate whether there is any relationship between either left or right hand 2D:4D ratio and handedness. We also examined whether adult levels of salivary T (or cortisol, used as a control hormone) predict digit ratio and/or handedness. Although the 2D:4D ratio of neither the left nor the right hand was related to handedness, the difference between the digit ratios of the right and left hands, D(R-L), was a significant predictor of handedness and of the performance difference between the hands on a peg-moving task, supporting previous findings (Manning & Peters, 2009; Manning et al., 1998; Manning, Trivers, Thornhill, & Singh, 2000; Stoyanov, Marinov, & Pashalieva, 2009). Adult circulating T levels did not predict the digit ratio of the left or right hand; nor was there a significant relationship between concentrations of salivary T (or cortisol) and either hand preference or asymmetry in manual skill. We suggest that the association between D(R-L) and hand preference arises because D(R-L) is a correlate of sensitivity to T in the developing foetus.

  20. Mental Computation or Standard Algorithm? Children's Strategy Choices on Multi-Digit Subtractions

    ERIC Educational Resources Information Center

    Torbeyns, Joke; Verschaffel, Lieven

    2016-01-01

    This study analyzed children's use of mental computation strategies and the standard algorithm on multi-digit subtractions. Fifty-eight Flemish 4th graders of varying mathematical achievement level were individually offered subtractions that either stimulated the use of mental computation strategies or the standard algorithm in one choice and two…

  1. [Development of a digital chest phantom for studies on energy subtraction techniques].

    PubMed

    Hayashi, Norio; Taniguchi, Anna; Noto, Kimiya; Shimosegawa, Masayuki; Ogura, Toshihiro; Doi, Kunio

    2014-03-01

    Digital chest phantoms continue to play a significant role in optimizing imaging parameters for chest X-ray examinations. The purpose of this study was to develop a digital chest phantom for studies on energy subtraction techniques under ideal conditions without image noise. Computed tomography (CT) images from the LIDC (Lung Image Database Consortium) were employed to develop a digital chest phantom. The method consisted of the following four steps: 1) segmentation of the lung and bone regions on CT images; 2) creation of simulated nodules; 3) transformation to attenuation coefficient maps from the segmented images; and 4) projection from attenuation coefficient maps. To evaluate the usefulness of digital chest phantoms, we determined the contrast of the simulated nodules in projection images of the digital chest phantom using high and low X-ray energies, soft tissue images obtained by energy subtraction, and "gold standard" images of the soft tissues. Using our method, the lung and bone regions were segmented on the original CT images. The contrast of simulated nodules in soft tissue images obtained by energy subtraction closely matched that obtained using the gold standard images. We thus conclude that it is possible to carry out simulation studies based on energy subtraction techniques using the created digital chest phantoms. Our method is potentially useful for performing simulation studies for optimizing the imaging parameters in chest X-ray examinations.

  2. Digital subtraction cisternography: a new approach to fistula localisation in cerebrospinal fluid rhinorrhoea.

    PubMed Central

    Byrne, J V; Ingram, C E; MacVicar, D; Sullivan, F M; Uttley, D

    1990-01-01

    Positive contrast cisternography with digital subtraction of fluoroscopy images before computed tomography (CT) was employed in the investigation of eight patients with cerebrospinal fluid (CSF) rhinorrhoea. Fistulae were visualised by preliminary digital subtraction cisternography (DSC) in six patients and in five patients the sites of leakage were confirmed at surgery. Fluoroscopy facilitated interpretation of CT in all the positive studies and in two patients provided information which could not be deduced from CT cisternography (CTC) alone. The combined technique is recommended for the investigation of patients with recurrent and post operative CSF rhinorrhoea and when CTC alone fails to identify the site of leakage. Images PMID:2292701

  3. Videodensitometric ejection fraction from intravenous digital subtraction right ventriculograms: correlation with first pass radionuclide ejection fraction

    SciTech Connect

    Detrano, R.; MacIntyre, W.; Salcedo, E.E.; O'Donnell, J.; Underwood, D.A.; Simpfendorfer, C.; Go, R.T.; Butters, K.; Withrow, S.

    1985-06-01

    Thirty-one consecutive patients undergoing intravenous blurred mask digital subtraction right ventriculography were submitted to first pass radionuclide angiography. Second order mask resubtraction of end-diastolic and end-systolic right ventricular digital image frames was executed using preinjection end-diastolic and end-systolic frames to rid the digital subtraction images of mis-registration artifact. End-diastolic and end-systolic perimeters were drawn manually by two independent observers with a light pen. Ejection fractions calculated from the integrated videodensitometric counts within these perimeters correlated well with those derived from the first pass radionuclide right ventriculogram (r = 0.84) and the interobserver correlation was acceptable (r = 0.91). Interobserver differences occurred more frequently in patients with atrial fibrillation and in those whose tricuspid valve planes were difficult to discern on the digital subtraction right ventriculograms. These results suggest that videodensitometric analysis of digital subtraction right ventriculograms is an accurate method of determining right ventricular ejection fraction and may find wide clinical applicability.

  4. [The improved design of table operating box of digital subtraction angiography device].

    PubMed

    Qi, Xianying; Zhang, Minghai; Han, Fengtan; Tang, Feng; He, Lemin

    2009-12-01

    In this paper are analyzed the disadvantages of CGO-3000 digital subtraction angiography table Operating Box. The authors put forward a communication control scheme between single-chip microcomputer(SCM) and programmable logic controller(PLC). The details of hardware and software of communication are given.

  5. Comparison of digital breast tomosynthesis and 2D digital mammography using a hybrid performance test

    NASA Astrophysics Data System (ADS)

    Cockmartin, Lesley; Marshall, Nicholas W.; Van Ongeval, Chantal; Aerts, Gwen; Stalmans, Davina; Zanca, Federica; Shaheen, Eman; De Keyzer, Frederik; Dance, David R.; Young, Kenneth C.; Bosmans, Hilde

    2015-05-01

    This paper introduces a hybrid method for performing detection studies in projection image based modalities, based on image acquisitions of target objects and patients. The method was used to compare 2D mammography and digital breast tomosynthesis (DBT) in terms of the detection performance of spherical densities and microcalcifications. The method starts with the acquisition of spheres of different glandular equivalent densities and microcalcifications of different sizes immersed in a homogeneous breast tissue simulating medium. These target objects are then segmented and the subsequent templates are fused in projection images of patients and processed or reconstructed. This results in hybrid images with true mammographic anatomy and clinically relevant target objects, ready for use in observer studies. The detection study of spherical densities used 108 normal and 178 hybrid 2D and DBT images; 156 normal and 321 hybrid images were used for the microcalcifications. Seven observers scored the presence/absence of the spheres/microcalcifications in a square region via a 5-point confidence rating scale. Detection performance in 2D and DBT was compared via ROC analysis with sub-analyses for the density of the spheres, microcalcification size, breast thickness and z-position. The study was performed on a Siemens Inspiration tomosynthesis system using patient acquisitions with an average age of 58 years and an average breast thickness of 53 mm providing mean glandular doses of 1.06 mGy (2D) and 2.39 mGy (DBT). Study results showed that breast tomosynthesis (AUC = 0.973) outperformed 2D (AUC = 0.831) for the detection of spheres (p  <  0.0001) and this applied for all spherical densities and breast thicknesses. By way of contrast, DBT was worse than 2D for microcalcification detection (AUC2D = 0.974, AUCDBT = 0.838, p  <  0.0001), with significant differences found for all sizes (150-354 µm), for breast thicknesses above 40 mm and for heights

  6. Comparison of digital breast tomosynthesis and 2D digital mammography using a hybrid performance test.

    PubMed

    Cockmartin, Lesley; Marshall, Nicholas W; Van Ongeval, Chantal; Aerts, Gwen; Stalmans, Davina; Zanca, Federica; Shaheen, Eman; De Keyzer, Frederik; Dance, David R; Young, Kenneth C; Bosmans, Hilde

    2015-05-21

    This paper introduces a hybrid method for performing detection studies in projection image based modalities, based on image acquisitions of target objects and patients. The method was used to compare 2D mammography and digital breast tomosynthesis (DBT) in terms of the detection performance of spherical densities and microcalcifications. The method starts with the acquisition of spheres of different glandular equivalent densities and microcalcifications of different sizes immersed in a homogeneous breast tissue simulating medium. These target objects are then segmented and the subsequent templates are fused in projection images of patients and processed or reconstructed. This results in hybrid images with true mammographic anatomy and clinically relevant target objects, ready for use in observer studies. The detection study of spherical densities used 108 normal and 178 hybrid 2D and DBT images; 156 normal and 321 hybrid images were used for the microcalcifications. Seven observers scored the presence/absence of the spheres/microcalcifications in a square region via a 5-point confidence rating scale. Detection performance in 2D and DBT was compared via ROC analysis with sub-analyses for the density of the spheres, microcalcification size, breast thickness and z-position. The study was performed on a Siemens Inspiration tomosynthesis system using patient acquisitions with an average age of 58 years and an average breast thickness of 53 mm providing mean glandular doses of 1.06 mGy (2D) and 2.39 mGy (DBT). Study results showed that breast tomosynthesis (AUC = 0.973) outperformed 2D (AUC = 0.831) for the detection of spheres (p  <  0.0001) and this applied for all spherical densities and breast thicknesses. By way of contrast, DBT was worse than 2D for microcalcification detection (AUC2D = 0.974, AUCDBT = 0.838, p  <  0.0001), with significant differences found for all sizes (150-354 µm), for breast thicknesses above 40 mm and for heights

  7. Classification-based summation of cerebral digital subtraction angiography series for image post-processing algorithms

    NASA Astrophysics Data System (ADS)

    Schuldhaus, D.; Spiegel, M.; Redel, T.; Polyanskaya, M.; Struffert, T.; Hornegger, J.; Doerfler, A.

    2011-03-01

    X-ray-based 2D digital subtraction angiography (DSA) plays a major role in the diagnosis, treatment planning and assessment of cerebrovascular disease, i.e. aneurysms, arteriovenous malformations and intracranial stenosis. DSA information is increasingly used for secondary image post-processing such as vessel segmentation, registration and comparison to hemodynamic calculation using computational fluid dynamics. Depending on the amount of injected contrast agent and the duration of injection, these DSA series may not exhibit one single DSA image showing the entire vessel tree. The interesting information for these algorithms, however, is usually depicted within a few images. If these images would be combined into one image the complexity of segmentation or registration methods using DSA series would drastically decrease. In this paper, we propose a novel method automatically splitting a DSA series into three parts, i.e. mask, arterial and parenchymal phase, to provide one final image showing all important vessels with less noise and moving artifacts. This final image covers all arterial phase images, either by image summation or by taking the minimum intensities. The phase classification is done by a two-step approach. The mask/arterial phase border is determined by a Perceptron-based method trained from a set of DSA series. The arterial/parenchymal phase border is specified by a threshold-based method. The evaluation of the proposed method is two-sided: (1) comparison between automatic and medical expert-based phase selection and (2) the quality of the final image is measured by gradient magnitudes inside the vessels and signal-to-noise (SNR) outside. Experimental results show a match between expert and automatic phase separation of 93%/50% and an average SNR increase of up to 182% compared to summing up the entire series.

  8. An automatic fuzzy-based multi-temporal brain digital subtraction angiography image fusion algorithm using curvelet transform and content selection strategy.

    PubMed

    Momeni, Saba; Pourghassem, Hossein

    2014-08-01

    Recently image fusion has prominent role in medical image processing and is useful to diagnose and treat many diseases. Digital subtraction angiography is one of the most applicable imaging to diagnose brain vascular diseases and radiosurgery of brain. This paper proposes an automatic fuzzy-based multi-temporal fusion algorithm for 2-D digital subtraction angiography images. In this algorithm, for blood vessel map extraction, the valuable frames of brain angiography video are automatically determined to form the digital subtraction angiography images based on a novel definition of vessel dispersion generated by injected contrast material. Our proposed fusion scheme contains different fusion methods for high and low frequency contents based on the coefficient characteristic of wrapping second generation of curvelet transform and a novel content selection strategy. Our proposed content selection strategy is defined based on sample correlation of the curvelet transform coefficients. In our proposed fuzzy-based fusion scheme, the selection of curvelet coefficients are optimized by applying weighted averaging and maximum selection rules for the high frequency coefficients. For low frequency coefficients, the maximum selection rule based on local energy criterion is applied to better visual perception. Our proposed fusion algorithm is evaluated on a perfect brain angiography image dataset consisting of one hundred 2-D internal carotid rotational angiography videos. The obtained results demonstrate the effectiveness and efficiency of our proposed fusion algorithm in comparison with common and basic fusion algorithms.

  9. Use of Caval Subtraction 2D Phase-Contrast MR Imaging to Measure Total Liver and Hepatic Arterial Blood Flow: Preclinical Validation and Initial Clinical Translation.

    PubMed

    Chouhan, Manil D; Mookerjee, Rajeshwar P; Bainbridge, Alan; Walker-Samuel, Simon; Davies, Nathan; Halligan, Steve; Lythgoe, Mark F; Taylor, Stuart A

    2016-09-01

    Purpose To validate caval subtraction two-dimensional (2D) phase-contrast magnetic resonance (MR) imaging measurements of total liver blood flow (TLBF) and hepatic arterial fraction in an animal model and evaluate consistency and reproducibility in humans. Materials and Methods Approval from the institutional ethical committee for animal care and research ethics was obtained. Fifteen Sprague-Dawley rats underwent 2D phase-contrast MR imaging of the portal vein (PV) and infrahepatic and suprahepatic inferior vena cava (IVC). TLBF and hepatic arterial flow were estimated by subtracting infrahepatic from suprahepatic IVC flow and PV flow from estimated TLBF, respectively. Direct PV transit-time ultrasonography (US) and fluorescent microsphere measurements of hepatic arterial fraction were the standards of reference. Thereafter, consistency of caval subtraction phase-contrast MR imaging-derived TLBF and hepatic arterial flow was assessed in 13 volunteers (mean age, 28.3 years ± 1.4) against directly measured phase-contrast MR imaging PV and proper hepatic arterial inflow; reproducibility was measured after 7 days. Bland-Altman analysis of agreement and coefficient of variation comparisons were undertaken. Results There was good agreement between PV flow measured with phase-contrast MR imaging and that measured with transit-time US (mean difference, -3.5 mL/min/100 g; 95% limits of agreement [LOA], ±61.3 mL/min/100 g). Hepatic arterial fraction obtained with caval subtraction agreed well with those with fluorescent microspheres (mean difference, 4.2%; 95% LOA, ±20.5%). Good consistency was demonstrated between TLBF in humans measured with caval subtraction and direct inflow phase-contrast MR imaging (mean difference, -1.3 mL/min/100 g; 95% LOA, ±23.1 mL/min/100 g). TLBF reproducibility at 7 days was similar between the two methods (95% LOA, ±31.6 mL/min/100 g vs ±29.6 mL/min/100 g). Conclusion Caval subtraction phase-contrast MR imaging is a simple and clinically

  10. The association between children's numerical magnitude processing and mental multi-digit subtraction.

    PubMed

    Linsen, Sarah; Verschaffel, Lieven; Reynvoet, Bert; De Smedt, Bert

    2014-01-01

    Children apply various strategies to mentally solve multi-digit subtraction problems and the efficient use of some of them may depend more or less on numerical magnitude processing. For example, the indirect addition strategy (solving 72-67 as "how much do I have to add up to 67 to get 72?"), which is particularly efficient when the two given numbers are close to each other, requires to determine the proximity of these two numbers, a process that may depend on numerical magnitude processing. In the present study, children completed a numerical magnitude comparison task and a number line estimation task, both in a symbolic and nonsymbolic format, to measure their numerical magnitude processing. We administered a multi-digit subtraction task, in which half of the items were specifically designed to elicit indirect addition. Partial correlational analyses, controlling for intellectual ability and motor speed, revealed significant associations between numerical magnitude processing and mental multi-digit subtraction. Additional analyses indicated that numerical magnitude processing was particularly important for those items for which the use of indirect addition is expected to be most efficient. Although this association was observed for both symbolic and nonsymbolic tasks, the strongest associations were found for the symbolic format, and they seemed to be more prominent on numerical magnitude comparison than on number line estimation.

  11. Digit ratio (2D:4D) and hand preference for writing in the BBC Internet Study.

    PubMed

    Manning, J T; Peters, M

    2009-09-01

    The ratio of the length of the second to the fourth digit (2D:4D) may be negatively correlated with prenatal testosterone. Hand preference has been linked with prenatal testosterone and 2D:4D. Here we show that 2D:4D is associated with hand preference for writing in a large internet sample (n>170,000) in which participants self-reported their finger lengths. We replicated a significant association between right 2D:4D and writing hand preference (low right 2D:4D associated with left hand preference) as well as a significant correlation between writing hand preference and the difference between left and right 2D:4D or Dr-l (low Dr-l associated with left hand preference). A new significant correlation between left 2D:4D and writing hand preference was also shown (high left 2D:4D associated with left hand preference). There was a clear interaction between writing hand preference and 2D:4D: The left 2D:4D was significantly larger than the right 2D:4D in male and female left-handed writers, and the right hand 2D:4D was significantly larger than the left hand 2D:4D in male and female right-handed writers.

  12. Strategies for Human Tumor Virus Discoveries: From Microscopic Observation to Digital Transcriptome Subtraction

    PubMed Central

    Mirvish, Ezra D.; Shuda, Masahiro

    2016-01-01

    Over 20% of human cancers worldwide are associated with infectious agents, including viruses, bacteria, and parasites. Various methods have been used to identify human tumor viruses, including electron microscopic observations of viral particles, immunologic screening, cDNA library screening, nucleic acid hybridization, consensus PCR, viral DNA array chip, and representational difference analysis. With the Human Genome Project, a large amount of genetic information from humans and other organisms has accumulated over the last decade. Utilizing the available genetic databases, Feng et al. (2007) developed digital transcriptome subtraction (DTS), an in silico method to sequentially subtract human sequences from tissue or cellular transcriptome, and discovered Merkel cell polyomavirus (MCV) from Merkel cell carcinoma. Here, we review the background and methods underlying the human tumor virus discoveries and explain how DTS was developed and used for the discovery of MCV. PMID:27242703

  13. Digital Subtraction Phonocardiography (DSP) applied to the detection and characterization of heart murmurs

    PubMed Central

    2011-01-01

    Background During the cardiac cycle, the heart normally produces repeatable physiological sounds. However, under pathologic conditions, such as with heart valve stenosis or a ventricular septal defect, blood flow turbulence leads to the production of additional sounds, called murmurs. Murmurs are random in nature, while the underlying heart sounds are not (being deterministic). Innovation We show that a new analytical technique, which we call Digital Subtraction Phonocardiography (DSP), can be used to separate the random murmur component of the phonocardiogram from the underlying deterministic heart sounds. Methods We digitally recorded the phonocardiogram from the anterior chest wall in 60 infants and adults using a high-speed USB interface and the program Gold Wave http://www.goldwave.com. The recordings included individuals with cardiac structural disease as well as recordings from normal individuals and from individuals with innocent heart murmurs. Digital Subtraction Analysis of the signal was performed using a custom computer program called Murmurgram. In essence, this program subtracts the recorded sound from two adjacent cardiac cycles to produce a difference signal, herein called a "murmurgram". Other software used included Spectrogram (Version 16), GoldWave (Version 5.55) as well as custom MATLAB code. Results Our preliminary data is presented as a series of eight cases. These cases show how advanced signal processing techniques can be used to separate heart sounds from murmurs. Note that these results are preliminary in that normal ranges for obtained test results have not yet been established. Conclusions Cardiac murmurs can be separated from underlying deterministic heart sounds using DSP. DSP has the potential to become a reliable and economical new diagnostic approach to screening for structural heart disease. However, DSP must be further evaluated in a large series of patients with well-characterized pathology to determine its clinical potential

  14. Anatomic and functional imaging of congenital heart disease with digital subtraction angiography

    SciTech Connect

    Buonocore, E.; Pavlicek, W.; Modic, M.T.; Meaney, T.F.; O'Donovan, P.B.; Grossman, L.B.; Moodie, D.S.; Yiannikas, J.

    1983-06-01

    Digital subtraction angiography (DSA) of the heart was performed in 54 patients for the evaluation of congenital heart diagnostic images and accurate physiologic shunt data that compared favorably with catheter angiography and nuclear medicine studies. Retrospective analysis of this series of patients indicated that DSA studies contributed sufficient informantion to shorten significantly or modify cardiac catheterization in 85% (79/93) of the defects that were identified. Interatrial septal defects were particularly well diagnosed, with identification occurring in 10 of 10 cases, wheseas intraventricular septal defects were identified in only 6 of 9 patients. Evaluation of postsurgical patients was accurate in 19 of 20 cases.

  15. Digital subtraction angiography of the pulmonary arteries for the diagnosis of pulmonary embolism

    SciTech Connect

    Ludwig, J.W.; Verhoeven, L.A.J.; Kersbergen, J.J.; Overtoom, T.T.C.

    1983-06-01

    A comparative study of radionuclide scanning (perfusion studies in all 18 patients and ventilation studies in 9) and digital subtraction angiography (DSA) was performed in 18 patients with suspected pulmonary thromboembolism. In 17 patients good visualization of the arteries was obtained with DSA; 10 of these patients had no pre-existing lung disease, and 7 had chronic obstructive pulmonary disease (COPD). The information provided by DSA in this small group was equal to or better than that of scintigraphy, especially in patients with COPD, and the reliability of DSA was superior to that of the radionuclide scintigraphy. Methods for preventing motion artifacts with DSA are also described.

  16. Cerebrovascular disease: evaluation with transbrachial intraarterial digital subtraction angiography using a 4-F catheter.

    PubMed

    Hicks, M E; Kreipke, D L; Becker, G J; Edwards, M K; Holden, R W; Jackson, V P; Bendick, P J; Kuehn, D S

    1986-11-01

    Three hundred sixty-one patients underwent intraarterial digital subtraction angiography for definite or probable occlusive vascular disease of the carotid arteries. Examinations were performed with 65-cm-long, 4-F aortic catheters. A transbrachial approach was used. Images were good or excellent in nearly all cases. No postprocedural neurologic deficits or hematomas occurred. Permanent pulse deficit occurred in two patients, and temporary deficit occurred in three patients, an improvement over the frequency found in previous transbrachial series using 6-8-F catheters. While these results establish the efficacy of this technique, they also indicate a possible greater relative safety in men than in women.

  17. The Relationship Between Digit Ratio (2D:4D) and Sexual Orientation in Men from China.

    PubMed

    Xu, Yin; Zheng, Yong

    2016-04-01

    We examined the relationship between 2D:4D digit ratio and sexual orientation in men from China and analyzed the influences of the components used to assess sexual orientation and the criteria used to classify individuals as homosexual on this relationship. A total of 309 male and 110 female participants took part in a web-based survey. Our results showed that heterosexual men had a significantly lower 2D:4D than heterosexual women and exclusively homosexual men had a significantly higher left 2D:4D than heterosexual men whereas only exclusively homosexual men had a significantly higher right 2D:4D than heterosexual men when sexual orientation was assessed via sexual attraction. The left 2D:4D showed a significant positive correlation with sexual identity, sexual attraction, and sexual behavior, and the right 2D:4D showed a significant positive correlation with sexual attraction. The effect sizes for differences in 2D:4D between homosexual and heterosexual men varied according to criteria used to classify individuals as homosexual and sexual orientation components; the more stringent the criteria (scores closer to the homosexual category), the larger the effect sizes; further, sexual attraction yielded the largest effect size. There were no significant effects of age and latitude on Chinese 2D:4D. This study contributes to the current understanding of the relationship between 2D:4D and male sexual orientation.

  18. How number line estimation skills relate to neural activations in single digit subtraction problems.

    PubMed

    Berteletti, I; Man, G; Booth, J R

    2015-02-15

    The Number Line (NL) task requires judging the relative numerical magnitude of a number and estimating its value spatially on a continuous line. Children's skill on this task has been shown to correlate with and predict future mathematical competence. Neurofunctionally, this task has been shown to rely on brain regions involved in numerical processing. However, there is no direct evidence that performance on the NL task is related to brain areas recruited during arithmetical processing and that these areas are domain-specific to numerical processing. In this study, we test whether 8- to 14-year-old's behavioral performance on the NL task is related to fMRI activation during small and large single-digit subtraction problems. Domain-specific areas for numerical processing were independently localized through a numerosity judgment task. Results show a direct relation between NL estimation performance and the amount of the activation in key areas for arithmetical processing. Better NL estimators showed a larger problem size effect than poorer NL estimators in numerical magnitude (i.e., intraparietal sulcus) and visuospatial areas (i.e., posterior superior parietal lobules), marked by less activation for small problems. In addition, the direction of the activation with problem size within the IPS was associated with differences in accuracies for small subtraction problems. This study is the first to show that performance in the NL task, i.e. estimating the spatial position of a number on an interval, correlates with brain activity observed during single-digit subtraction problem in regions thought to be involved in numerical magnitude and spatial processes.

  19. Effects of Cognitive Styles on 2D Drafting and Design Performance in Digital Media

    ERIC Educational Resources Information Center

    Pektas, Sule Tasli

    2010-01-01

    This paper investigates the interactions between design students' cognitive styles, as measured by Riding's Cognitive Styles Analysis, and performance in 2D drafting and design tasks in digital media. An empirical research revealed that Imager students outperformed Verbalisers in both drafting and creativity scores. Wholist-Analytic cognitive…

  20. Is digit ratio (2D:4D) a reliable pointer to speech laterality?

    PubMed

    Hudson, John M; Hodgson, Jessica C

    2016-03-15

    The relative length of the second and fourth digits (2D:4D ratio) is sexually dimorphic and a retrospective biomarker of prenatal hormonal exposure. Low ratios indicate higher prenatal testosterone (pT) and lower estrogen exposure, whereas the reverse pattern is associated with high ratios. Elevated levels of pT exposure have long been thought to modulate hemispheric specialisation; subsequently many studies use the 2D:4D ratio as a proxy index for pT to examine the effects of prenatal hormonal exposure on lateralised cognitive abilities. Here we used Transcranial Doppler ultrasonography and digit ratio to investigate whether pT has an influence on speech laterality. We tested 34 right and 14 left handed adults. Our results indicate that speech representation is unrelated to digit characteristics and therefore purportedly pT. We discuss these findings in relation to androgen theories of lateralisation.

  1. Digit ratio (2D:4D), lateral preferences, and performance in fencing.

    PubMed

    Voracek, Martin; Reimer, Barbara; Ertl, Clara; Dressler, Stefan G

    2006-10-01

    The second to fourth digit ratio (2D:4D) is a sexually dimorphic trait (men tend to have lower values than women) and a likely biomarker for the organizational (permanent) effects of prenatal androgens on the human brain and body. Prenatal testosterone, as reflected by 2D:4D, has many extragenital effects, including its relevance for the formation of an efficient cardiovascular system. Previous research, reviewed here, has therefore investigated possible associations of 2D:4D with sport performance. Several studies found more masculinized digit ratio patterns (low 2D:4D values or a negative right-minus-left difference in 2D:4D) to be related to high performance in running, soccer, and skiing. The present research tested this hypothesis in a sample of 54 tournament fencers, predominantly from Austria. For men, negative right-left differences in 2D:4D corresponded significantly to better current as well as highest national fencing rankings, independent of training intensity and fencing experience. The mean 2D:4D values of these fencers were significantly lower and the proportion of left-handers was elevated relative to the local general population. For the right hand, the ratio was somewhat lower in male sabre fencers than in male epée and foil fencers combined and significantly lower in left-handed compared to right-handed fencers. Although nonsignificant due to low statistical power, effect sizes suggested that crossed versus congruent hand-eye and hand-foot preferences might also be related to fencing performance. The present findings add to the evidence that 2D:4D might be a performance indicator for men across a variety of sports.

  2. Scientometric analysis and bibliography of digit ratio (2D:4D) research, 1998-2008.

    PubMed

    Voracek, Martin; Loibl, Lisa Mariella

    2009-06-01

    A scientometric analysis of modern research on the second-to-fourth digit ratio (2D:4D), a widely studied putative marker for prenatal androgen action, is presented. In early 2009, this literature totalled more than 300 publications and, since its initiation in 1998, has grown at a rate slightly faster than linear. Key findings included evidence of publication bias and citation bias, incomplete coverage and outdatedness of existing reviews, and a dearth of meta-analyses in this field. 2D:4D research clusters noticeably in terms of researchers, institutions, countries, and journals involved. Although 2D:4D is an anthropometric trait, most of the research has been conducted at psychology departments, not anthropology departments. However, 2D:4D research has not been predominantly published in core and specialized journals of psychology, but rather in more broadly scoped journals of the behavioral sciences, biomedical social sciences, and neurosciences. Total citation numbers of 2D:4D papers for the most part were not larger than their citation counts within 2D:4D research, indicating that until now, only a few 2D:4D studies have attained broader interest outside this specific field. Comparative citation analyses show that 2D:4D research presently is commensurate in size and importance to evolutionary psychological jealousy research, but has grown faster than the latter field. In contrast, it is much smaller and has spread more slowly than research about the Implicit Association Test Fifteen conjectures about anticipated trends in 2D:4D research are outlined, appendixed by a first-time bibliography of the entirety of the published 2D:4D literature.

  3. The Reduction Of Motion Artifacts In Digital Subtraction Angiography By Geometrical Image Transformation

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, J. Michael; Pickens, David R.; Mandava, Venkateswara R.; Grefenstette, John J.

    1988-06-01

    In the diagnosis of arteriosclerosis, radio-opaque dye is injected into the interior of the arteries to make them visible. Because of its increased contrast sensitivity, digital subtraction angiography has the potential for providing diagnostic images of arteries with reduced dye volumes. In the conventional technique, a mask image, acquired before the introduction of the dye, is subtracted from the contrast image, acquired after the dye is introduced, to produce a difference image in which only the dye in the arteries is visible. The usefulness of this technique has been severely limited by the image degradation caused by patient motion during image acquisition. This motion produces artifacts in the difference image that obscure the arteries. One technique for dealing with this problem is to reduce the degradation by means of image registration. The registration is carried out by means of a geometrical transformation of the mask image before subtraction so that it is in registration with the contrast image. This paper describes our technique for determining an optimal transformation. We employ a one-to-one elastic mapping and the Jacobian of that mapping to produce a geometrical image transformation. We choose a parameterized class of such mappings and use a heuristic search algorithm to optimize the parameters to minimize the severity of the motion artifacts. To increase the speed of the optimization process we use a statistical image comparison technique that provides a quick approximate evaluation of each image transformation. We present the experimental results of the application of our registration system to mask-contrast pairs, for images acquired from a specially designed phantom (described in a companion paper), and for clinical images.

  4. Parametric Imaging Of Digital Subtraction Angiography Studies For Renal Transplant Evaluation

    NASA Astrophysics Data System (ADS)

    Gallagher, Joe H.; Meaney, Thomas F.; Flechner, Stuart M.; Novick, Andrew C.; Buonocore, Edward

    1981-11-01

    A noninvasive method for diagnosing acute tubular necrosis and rejection would be an important tool for the management of renal transplant patients. From a sequence of digital subtraction angiographic images acquired after an intravenous injection of radiographic contrast material, the parametric images of the maximum contrast, the time when the maximum contrast is reached, and two times the time at which one half of the maximum contrast is reached are computed. The parametric images of the time when the maximum is reached clearly distinguish normal from abnormal renal function. However, it is the parametric image of two times the time when one half of the maximum is reached which provides some assistance in differentiating acute tubular necrosis from rejection.

  5. All-optical digital logic: Full addition or subtraction on a three-state system

    SciTech Connect

    Remacle, F.; Levine, R. D.

    2006-03-15

    Stimulated Raman adiabatic passage (STIRAP) is a well-studied pump-probe control scheme for manipulating the population of quantum states of atoms or molecules. By encoding the digits to be operated on as 'on' or 'off' laser input signals we show how STIRAP can be used to implement a finite-state logic machine. The physical conditions required for an effective STIRAP operation are related to the physical conditions expected for a logic machine. In particular, a condition is derived on the mean number of photons that represent an on pulse. A finite-state machine computes Boolean expressions that depend both on the input and on the present state of the machine. With two input signals we show how to implement a full adder where the carry-in digit is stored in the state of the machine. Furthermore, we show that it is possible to store the carry-out digit as the next state and thereby return the machine to a state ready for the next full addition. Such a machine operates as a cyclical full adder. We further show how this full adder can equally well be operated as a full subtractor. To the best of our knowledge this is the first example of a nanosized system that implements a full subtraction.

  6. Digital phase-stepping holographic interferometry in measuring 2-D density fields

    NASA Astrophysics Data System (ADS)

    Lanen, T. A. W. M.; Nebbeling, C.; van Ingen, J. L.

    1990-06-01

    This paper presents a holographic interferometer technique for measuring transparent (2-D or quasi 2-D) density fields. To be able to study the realization of such a field at a certain moment of time, the field is “frozen” on a holographic plate. During the reconstruction of the density field from the hologram the length of the path traversed by the reconstruction beam is diminished in equal steps by applying a computer controlled voltage to a piezo-electric crystal that translates a mirror. Four phase-stepped interferograms resulting from this pathlength variation are digitized and serve as input to an algorithm for computing the phase surface. The method is illustrated by measuring the basically 2-D density field existing around a heated horizontal cylinder in free convection.

  7. A multiple digital watermarking algorithm based on 1D and 2D chaotic sequences

    NASA Astrophysics Data System (ADS)

    Ji, Zhen; Jiang, Lai; Jin, Jing; Zhang, Jihong

    2003-09-01

    Multiple digital watermarking is attracting more and more researchers because it is more valuable in the practical applications than single watermarking. In this paper, a multiple watermarking algorithm based on 1-D and 2-D chaotic sequences is proposed. The chaotic sequences have the advantages of massive, high security, and weakest correlation. The massive and independent digital watermark signals are generated through 1-D chaotic maps, which are determined by different initial conditions and parameters. The chaotic digital watermark signals effectively resolve the construction of massive watermarks with good performance. The embedding of multiple watermakrs is more complex than the single watermarking scheme. In this paper, each watermark is added to the middle frequency coefficients of wavelet domain randomly by exploiting 2-D chaotic system, so the embedding and extracting of each watermark would not disturb each other. Considering the parameters of 2-D chaotic systsem as the key to embedding procedure can prevent the watermarks to be removed maliciously, therefore the performance of security is better. The capacity of the multiple watermarking is also analyzed in this paper. The experimental results demonstrate that this proposed watermarking algorithm is robust to many common attacks and it is a reliable copyright protection for multiple legal owners.

  8. Evaluation of chronic periapical lesions by digital subtraction radiography by using Adobe Photoshop CS: a technical report.

    PubMed

    Carvalho, Fabiola B; Gonçalves, Marcelo; Tanomaru-Filho, Mário

    2007-04-01

    The purpose of this study was to describe a new technique by using Adobe Photoshop CS (San Jose, CA) image-analysis software to evaluate the radiographic changes of chronic periapical lesions after root canal treatment by digital subtraction radiography. Thirteen upper anterior human teeth with pulp necrosis and radiographic image of chronic periapical lesion were endodontically treated and radiographed 0, 2, 4, and 6 months after root canal treatment by using a film holder. The radiographic films were automatically developed and digitized. The radiographic images taken 0, 2, 4, and 6 months after root canal therapy were submitted to digital subtraction in pairs (0 and 2 months, 2 and 4 months, and 4 and 6 months) choosing "image," "calculation," "subtract," and "new document" tools from Adobe Photoshop CS image-analysis software toolbar. The resulting images showed areas of periapical healing in all cases. According to this methodology, the healing or expansion of periapical lesions can be evaluated by means of digital subtraction radiography by using Adobe Photoshop CS software.

  9. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde

    2011-12-15

    Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated

  10. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  11. Conceptual design of an 8 Tesla superconducting wiggler for a dedicated digital subtraction angiography source

    SciTech Connect

    Blum, E.B.

    1993-09-01

    One of the most important techniques used to diagnose heart disease is coronary angiography. Coronary angiography is only used when it is absolutely essential because of the risk of fatalities and other serious complications arising from the insertion of the catheter. The technique also exposes the patients to large amounts of x-rays. Research, begun at SSRL and continued on the X17 beam line at NSLS, demonstrated the feasibility of imaging human coronary arteries following venous injection of the contrast agent. The technique, caged digital subtraction angiography (DSA), uses two monochromatic beams of x-rays, one slightly above and one slightly below the iodine K absorption edge (33.169 KeV) to collect simultaneous images. When the two images are subtracted, the contrast agent, contained primarily in the blood vessels, is revealed and the background that is common to both images is suppressed. The images must be collected during a single heartbeat to avoid blurring from motion of the blood vessels. Conventional x-ray sources are too weak to provide the intense flux that is required in the narrow energy bandwidth of the beams. Only the most powerful synchrotron radiation beams from wiggler magnet sources can provide the intensity required in the short exposure time. Although DSA experiments have shown promise, they have been conducted at large, research synchrotron radiation facilities. A small, dedicated source will be needed before DSA can be used as a standard medical procedure. Such x-ray sources as laser backscattering, Cherenkov radiation, parametric x-radiation, and channeling radiation have been suggested for hospital based DSA sources but none of them appear to produce enough flux to be useful. Barring the discovery of a new source of intense x-rays, only synchrotron radiation seems to meet the requirements for DSA. This report briefly describes the preliminary design of a high field, superconducting wiggler magnet that can be used as a DSA source.

  12. A comparison of 2D and 3D digital image correlation for a membrane under inflation

    PubMed Central

    Murienne, Barbara J.; Nguyen, Thao D.

    2015-01-01

    Three-dimensional (3D) digital image correlation (DIC) is becoming widely used to characterize the behavior of structures undergoing 3D deformations. However, the use of 3D-DIC can be challenging under certain conditions, such as high magnification, and therefore small depth of field, or a highly controlled environment with limited access for two-angled cameras. The purpose of this study is to compare 2D-DIC and 3D-DIC for the same inflation experiment and evaluate whether 2D-DIC can be used when conditions discourage the use of a stereo-vision system. A latex membrane was inflated vertically to 5.41 kPa (reference pressure), then to 7.87 kPa (deformed pressure). A two-camera stereo-vision system acquired top-down images of the membrane, while a single camera system simultaneously recorded images of the membrane in profile. 2D-DIC and 3D-DIC were used to calculate horizontal (in the membrane plane) and vertical (out of the membrane plane) displacements, and meridional strain. Under static conditions, the baseline uncertainty in horizontal displacement and strain were smaller for 3D-DIC than 2D-DIC. However, the opposite was observed for the vertical displacement, for which 2D-DIC had a smaller baseline uncertainty. The baseline absolute error in vertical displacement and strain were similar for both DIC methods, but it was larger for 2D-DIC than 3D-DIC for the horizontal displacement. Under inflation, the variability in the measurements were larger than under static conditions for both DIC methods. 2D-DIC showed a smaller variability in displacements than 3D-DIC, especially for the vertical displacement, but a similar strain uncertainty. The absolute difference in the average displacements and strain between 3D-DIC and 2D-DIC were in the range of the 3D-DIC variability. Those findings suggest that 2D-DIC might be used as an alternative to 3D-DIC to study the inflation response of materials under certain conditions. PMID:26543296

  13. A comparison of 2D and 3D digital image correlation for a membrane under inflation.

    PubMed

    Murienne, Barbara J; Nguyen, Thao D

    2016-02-01

    Three-dimensional (3D) digital image correlation (DIC) is becoming widely used to characterize the behavior of structures undergoing 3D deformations. However, the use of 3D-DIC can be challenging under certain conditions, such as high magnification, and therefore small depth of field, or a highly controlled environment with limited access for two-angled cameras. The purpose of this study is to compare 2D-DIC and 3D-DIC for the same inflation experiment and evaluate whether 2D-DIC can be used when conditions discourage the use of a stereo-vision system. A latex membrane was inflated vertically to 5.41 kPa (reference pressure), then to 7.87 kPa (deformed pressure). A two-camera stereo-vision system acquired top-down images of the membrane, while a single camera system simultaneously recorded images of the membrane in profile. 2D-DIC and 3D-DIC were used to calculate horizontal (in the membrane plane) and vertical (out of the membrane plane) displacements, and meridional strain. Under static conditions, the baseline uncertainty in horizontal displacement and strain were smaller for 3D-DIC than 2D-DIC. However, the opposite was observed for the vertical displacement, for which 2D-DIC had a smaller baseline uncertainty. The baseline absolute error in vertical displacement and strain were similar for both DIC methods, but it was larger for 2D-DIC than 3D-DIC for the horizontal displacement. Under inflation, the variability in the measurements were larger than under static conditions for both DIC methods. 2D-DIC showed a smaller variability in displacements than 3D-DIC, especially for the vertical displacement, but a similar strain uncertainty. The absolute difference in the average displacements and strain between 3D-DIC and 2D-DIC were in the range of the 3D-DIC variability. Those findings suggest that 2D-DIC might be used as an alternative to 3D-DIC to study the inflation response of materials under certain conditions.

  14. A comparison of 2D and 3D digital image correlation for a membrane under inflation

    NASA Astrophysics Data System (ADS)

    Murienne, Barbara J.; Nguyen, Thao D.

    2016-02-01

    Three-dimensional (3D) digital image correlation (DIC) is becoming widely used to characterize the behavior of structures undergoing 3D deformations. However, the use of 3D-DIC can be challenging under certain conditions, such as high magnification, and therefore small depth of field, or a highly controlled environment with limited access for two-angled cameras. The purpose of this study is to compare 2D-DIC and 3D-DIC for the same inflation experiment and evaluate whether 2D-DIC can be used when conditions discourage the use of a stereo-vision system. A latex membrane was inflated vertically to 5.41 kPa (reference pressure), then to 7.87 kPa (deformed pressure). A two-camera stereo-vision system acquired top-down images of the membrane, while a single camera system simultaneously recorded images of the membrane in profile. 2D-DIC and 3D-DIC were used to calculate horizontal (in the membrane plane) and vertical (out of the membrane plane) displacements, and meridional strain. Under static conditions, the baseline uncertainty in horizontal displacement and strain were smaller for 3D-DIC than 2D-DIC. However, the opposite was observed for the vertical displacement, for which 2D-DIC had a smaller baseline uncertainty. The baseline absolute error in vertical displacement and strain were similar for both DIC methods, but it was larger for 2D-DIC than 3D-DIC for the horizontal displacement. Under inflation, the variability in the measurements were larger than under static conditions for both DIC methods. 2D-DIC showed a smaller variability in displacements than 3D-DIC, especially for the vertical displacement, but a similar strain uncertainty. The absolute difference in the average displacements and strain between 3D-DIC and 2D-DIC were in the range of the 3D-DIC variability. Those findings suggest that 2D-DIC might be used as an alternative to 3D-DIC to study the inflation response of materials under certain conditions.

  15. Improved Visualization of Intracranial Vessels with Intraoperative Coregistration of Rotational Digital Subtraction Angiography and Intraoperative 3D Ultrasound

    PubMed Central

    Podlesek, Dino; Meyer, Tobias; Morgenstern, Ute; Schackert, Gabriele; Kirsch, Matthias

    2015-01-01

    Introduction Ultrasound can visualize and update the vessel status in real time during cerebral vascular surgery. We studied the depiction of parent vessels and aneurysms with a high-resolution 3D intraoperative ultrasound imaging system during aneurysm clipping using rotational digital subtraction angiography as a reference. Methods We analyzed 3D intraoperative ultrasound in 39 patients with cerebral aneurysms to visualize the aneurysm intraoperatively and the nearby vascular tree before and after clipping. Simultaneous coregistration of preoperative subtraction angiography data with 3D intraoperative ultrasound was performed to verify the anatomical assignment. Results Intraoperative ultrasound detected 35 of 43 aneurysms (81%) in 39 patients. Thirty-nine intraoperative ultrasound measurements were matched with rotational digital subtraction angiography and were successfully reconstructed during the procedure. In 7 patients, the aneurysm was partially visualized by 3D-ioUS or was not in field of view. Post-clipping intraoperative ultrasound was obtained in 26 and successfully reconstructed in 18 patients (69%) despite clip related artefacts. The overlap between 3D-ioUS aneurysm volume and preoperative rDSA aneurysm volume resulted in a mean accuracy of 0.71 (Dice coefficient). Conclusions Intraoperative coregistration of 3D intraoperative ultrasound data with preoperative rotational digital subtraction angiography is possible with high accuracy. It allows the immediate visualization of vessels beyond the microscopic field, as well as parallel assessment of blood velocity, aneurysm and vascular tree configuration. Although spatial resolution is lower than for standard angiography, the method provides an excellent vascular overview, advantageous interpretation of 3D-ioUS and immediate intraoperative feedback of the vascular status. A prerequisite for understanding vascular intraoperative ultrasound is image quality and a successful match with preoperative

  16. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT.

    PubMed

    Badea, Cristian T; Hedlund, Laurence W; Johnson, G Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging.

  17. [Digital subtraction angiography with carbon dioxide in severe arterial ischemia and allergy to iodinated compounds].

    PubMed

    Calvo Cascallo, J; Mundi Salvadó, N; Cardona Fontanet, M

    1993-01-01

    When in some selected patients, a direct arterial surgery (DAS) procedure or an endoluminal surgery (ES) are required for a chronic arterial ischemia (III or IV degrees), and an arteriography with contrast is absolutely contraindicated (because of severe renal failure without hemodialysis program or a severe congestive heart failure or a hyperthyroidism or a seriously demonstrated hypersensibility against the contrast agents); an angiography by digital subtraction with carbon dioxide (DIVAS-CO2) is indicated. This technique provides good quality images with minimal risks for the patient and an adequate study for ulterior treatment. We report a case of a 67-years-old woman, with diabetes-II, ischemic cardiopathy, arterial hypertension and a demonstrated hypersensibility against the iodide compounds. The patient was admitted because of a chronic ischemia (IV degree) with ischemic ulcerations on some fingers from the left foot. High doses of analgesic drugs were needed. Because the hypersensibility against the iodide compounds, an angiography with CO2 was carried out. The good quality images provided by this technique showed the factibility of a revascularization.

  18. Comparison of CT angiography and digital subtraction angiography in the diagnosis of aortic coarctation.

    PubMed

    Miabi, Zinat; Pourfathi, Hojjat; Midia, Mehran; Midia, Ramin; Parvizi, Rezayat

    2011-01-01

    There are several methods for the diagnosis and evaluation of coarctation of the aorta. Digital Subtraction Angiography (DSA) is the standard detection method, though it entails complications and side-effects. The aim of the present study was to compare Computed Tomography (CT) angiography with DSA for diagnosing aortic coarctation. We performed a cross-sectional study of 15 patients (11 males and four females aged between two and 30 years) referred to Tabriz Shahid Madani Hospital and Imaging Center between August 2005 and February 2006 with suspected aortic coarctation. All patients were subjected to DSA and CT angiography for diagnosis of aortic coarctation. The mean age of the patients was 14.6 years; 11 were male (74.4%) and four (26.6%) were female. The DSA and CT angiography results were comparable in all patients in terms of diagnosis and the detection of complications, particularly cardiovascular complications. However, CT angiography was less time-consuming to perform than DSA (p < 0.0001). In conclusion, CT angiography, comparableto DSA, diagnosed coarctation of aorta in all the patients. However, CT angiography is a non-invasive, cost effective procedure that takes significantly less time to carry out than DSA. Therefore, CT angiography is recommended as an appropriate method for diagnosing the coarctation of aorta.

  19. Accurate registration of coronary arteries for volumetric CT digital subtraction angiography

    NASA Astrophysics Data System (ADS)

    Razeto, Marco; Matthews, James; Masood, Saad; Steel, Jill; Arakita, Kazumasa

    2013-03-01

    In the diagnosis of coronary artery disease with coronary computed tomography angiography, accurate evaluation remains challenging in the presence of calcifications or stents. Volumetric CT Digital Subtraction Angiography is a novel method that may become a powerful tool to overcome these limitations. However, precise registration of structures is essential, as even small misalignments can produce striking and disruptive bright and dark artefacts. Moreover, for clinical acceptance, the tool should require minimal user interaction and fast turnaround, thereby raising several challenges. In this paper we address the problem with a registration method based on a global non- rigid step, followed by local rigid refinement. In our quantitative analysis based on 10 datasets, each consisting of a pair of pre- and post-contrast scans of the same patient, we achieve an average Target Registration Error of 0.45 mm. Runtimes are less than 90 seconds for the global step, while each local refinement takes less than 15 seconds to run. Initial clinical evaluation shows good results in cases of moderate calcification, and indicates that around 50% of severely calcified and previously non-interpretable cases have been made interpretable by application of our method.

  20. Failing Hemodialysis Arteriovenous Fistula and Percutaneous Treatment: Imaging with CT, MRI and Digital Subtraction Angiography

    SciTech Connect

    Cavagna, Enrico; D'Andrea, Paolo; Schiavon, Francesco; Tarroni, Giovanni

    2000-07-15

    Purpose: To evaluate failing hemodialysis arteriovenous fistulas with helical CT angiography (CTA), MR angiography (MRA), and digital subtraction angiography (DSA), and to compare the efficacy of the three techniques in detecting the number, location, grade, and extent of stenoses and in assessing the technical results of percutaneous transluminal angioplasty (PTA) and stenting.Methods: Thirteen patients with Brescia-Cimino arteriovenous fistula malfunction underwent MRA and CTA of the fistula and, within 1 week, DSA. A total of 11 PTAs were performed; in three cases an MR-compatible stent was placed. DSA served as the gold standard for comparison in all patients. The presence, site, and number of stenoses or occlusions and the technical results of percutaneous procedures were assessed with DSA, CTA, and MRA.Results: MRA underestimated a single stenosis in one patient; CTA and MRA did not overestimate any stenosis. Significant artifacts related to stent geometry and/or underlying metal were seen in MRA sequences in two cases.Conclusions: CT and MRI can provide information regarding the degree of vascular impairment, helping to stratify patients into those who can have PTA (single or multiple stenoses) versus those who require an operative procedure (occlusion). Conventional angiography can be reserved for candidates for percutaneous intervention.

  1. In Vivo Small Animal Imaging using Micro-CT and Digital Subtraction Angiography

    PubMed Central

    Badea, C.T.; Drangova, M.; Holdsworth, D.W.; Johnson, G.A.

    2009-01-01

    Small animal imaging has a critical role in phenotyping, drug discovery, and in providing a basic understanding of mechanisms of disease. Translating imaging methods from humans to small animals is not an easy task. The purpose of this work is to review in vivo X-ray based small animal imaging, with a focus on in vivo micro-computed tomography (micro-CT) and digital subtraction angiography (DSA). We present the principles, technologies, image quality parameters and types of applications. We show that both methods can be used not only to provide morphological, but also functional information, such as cardiac function estimation or perfusion. Compared to other modalities, x-ray based imaging is usually regarded as being able to provide higher throughput at lower cost and adequate resolution. The limitations are usually associated with the relatively poor contrast mechanisms and potential radiation damage due to ionizing radiation, although the use of contrast agents and careful design of studies can address these limitations. We hope that the information will effectively address how x-ray based imaging can be exploited for successful in vivo preclinical imaging. PMID:18758005

  2. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT

    PubMed Central

    Badea, Cristian T.; Hedlund, Laurence W.; Johnson, G. Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging. PMID:27006920

  3. Breast density measurement: 3D cone beam computed tomography (CBCT) images versus 2D digital mammograms

    NASA Astrophysics Data System (ADS)

    Han, Tao; Lai, Chao-Jen; Chen, Lingyun; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Yang, Wei T.; Shaw, Chris C.

    2009-02-01

    Breast density has been recognized as one of the major risk factors for breast cancer. However, breast density is currently estimated using mammograms which are intrinsically 2D in nature and cannot accurately represent the real breast anatomy. In this study, a novel technique for measuring breast density based on the segmentation of 3D cone beam CT (CBCT) images was developed and the results were compared to those obtained from 2D digital mammograms. 16 mastectomy breast specimens were imaged with a bench top flat-panel based CBCT system. The reconstructed 3D CT images were corrected for the cupping artifacts and then filtered to reduce the noise level, followed by using threshold-based segmentation to separate the dense tissue from the adipose tissue. For each breast specimen, volumes of the dense tissue structures and the entire breast were computed and used to calculate the volumetric breast density. BI-RADS categories were derived from the measured breast densities and compared with those estimated from conventional digital mammograms. The results show that in 10 of 16 cases the BI-RADS categories derived from the CBCT images were lower than those derived from the mammograms by one category. Thus, breasts considered as dense in mammographic examinations may not be considered as dense with the CBCT images. This result indicates that the relation between breast cancer risk and true (volumetric) breast density needs to be further investigated.

  4. Accurate, fully-automated registration of coronary arteries for volumetric CT digital subtraction angiography

    NASA Astrophysics Data System (ADS)

    Razeto, Marco; Mohr, Brian; Arakita, Kazumasa; Schuijf, Joanne D.; Fuchs, Andreas; Kühl, J. Tobias; Chen, Marcus Y.; Kofoed, Klaus F.

    2014-03-01

    Diagnosis of coronary artery disease with Coronary Computed Tomography Angiography (CCTA) is complicated by the presence of signi cant calci cation or stents. Volumetric CT Digital Subtraction Angiography (CTDSA) has recently been shown to be e ective at overcoming these limitations. Precise registration of structures is essential as any misalignment can produce artifacts potentially inhibiting clinical interpretation of the data. The fully-automated registration method described in this paper addresses the problem by combining a dense deformation eld with rigid-body transformations where calci cations/stents are present. The method contains non-rigid and rigid components. Non-rigid registration recovers the majority of motion artifacts and produces a dense deformation eld valid over the entire scan domain. Discrete domains are identi ed in which rigid registrations very accurately align each calci cation/stent. These rigid-body transformations are combined within the immediate area of the deformation eld using a distance transform to minimize distortion of the surrounding tissue. A recent interim analysis of a clinical feasibility study evaluated reader con dence and diagnostic accuracy in conventional CCTA and CTDSA registered using this method. Conventional invasive coronary angiography was used as the reference. The study included 27 patients scanned with a second-generation 320-row CT detector in which 41 lesions were identi ed. Compared to conventional CCTA, CTDSA improved reader con dence in 13/36 (36%) of segments with severe calci cation and 3/5 (60%) of segments with coronary stents. Also, the false positive rate of CTDSA was reduced compared to conventional CCTA from 18% (24/130) to 14% (19/130).

  5. Quantitative blood flow measurements in the small animal cardiopulmonary system using digital subtraction angiography

    SciTech Connect

    Lin Mingde; Marshall, Craig T.; Qi, Yi; Johnston, Samuel M.; Badea, Cristian T.; Piantadosi, Claude A.; Johnson, G. Allan

    2009-11-15

    Purpose: The use of preclinical rodent models of disease continues to grow because these models help elucidate pathogenic mechanisms and provide robust test beds for drug development. Among the major anatomic and physiologic indicators of disease progression and genetic or drug modification of responses are measurements of blood vessel caliber and flow. Moreover, cardiopulmonary blood flow is a critical indicator of gas exchange. Current methods of measuring cardiopulmonary blood flow suffer from some or all of the following limitations--they produce relative values, are limited to global measurements, do not provide vasculature visualization, are not able to measure acute changes, are invasive, or require euthanasia. Methods: In this study, high-spatial and high-temporal resolution x-ray digital subtraction angiography (DSA) was used to obtain vasculature visualization, quantitative blood flow in absolute metrics (ml/min instead of arbitrary units or velocity), and relative blood volume dynamics from discrete regions of interest on a pixel-by-pixel basis (100x100 {mu}m{sup 2}). Results: A series of calibrations linked the DSA flow measurements to standard physiological measurement using thermodilution and Fick's method for cardiac output (CO), which in eight anesthetized Fischer-344 rats was found to be 37.0{+-}5.1 ml/min. Phantom experiments were conducted to calibrate the radiographic density to vessel thickness, allowing a link of DSA cardiac output measurements to cardiopulmonary blood flow measurements in discrete regions of interest. The scaling factor linking relative DSA cardiac output measurements to the Fick's absolute measurements was found to be 18.90xCO{sub DSA}=CO{sub Fick}. Conclusions: This calibrated DSA approach allows repeated simultaneous visualization of vasculature and measurement of blood flow dynamics on a regional level in the living rat.

  6. Estimation of percentage breast tissue density: comparison between digital mammography (2D full field digital mammography) and digital breast tomosynthesis according to different BI-RADS categories

    PubMed Central

    Cavagnetto, F; Calabrese, M; Houssami, N

    2013-01-01

    Objective: To compare breast density estimated from two-dimensional full-field digital mammography (2D FFDM) and from digital breast tomosynthesis (DBT) according to different Breast Imaging–Reporting and Data System (BI-RADS) categories, using automated software. Methods: Institutional review board approval and written informed patient consent were obtained. DBT and 2D FFDM were performed in the same patients to allow within-patient comparison. A total of 160 consecutive patients (mean age: 50±14 years; mean body mass index: 22±3) were included to create paired data sets of 40 patients for each BI-RADS category. Automatic software (MedDensity©, developed by Giulio Tagliafico) was used to compare the percentage breast density between DBT and 2D FFDM. The estimated breast percentage density obtained using DBT and 2D FFDM was examined for correlation with the radiologists' visual BI-RADS density classification. Results: The 2D FFDM differed from DBT by 16.0% in BI-RADS Category 1, by 11.9% in Category 2, by 3.5% in Category 3 and by 18.1% in Category 4. These differences were highly significant (p<0.0001). There was a good correlation between the BI-RADS categories and the density evaluated using 2D FFDM and DBT (r=0.56, p<0.01 and r=0.48, p<0.01, respectively). Conclusion: Using DBT, breast density values were lower than those obtained using 2D FFDM, with a non-linear relationship across the BI-RADS categories. These data are relevant for clinical practice and research studies using density in determining the risk. Advances in knowledge: On DBT, breast density values were lower than with 2D FFDM, with a non-linear relationship across the classical BI-RADS categories. PMID:24029631

  7. Estimating breast thickness for dual-energy subtraction in contrast-enhanced digital mammography using calibration phantoms

    NASA Astrophysics Data System (ADS)

    Lau, Kristen C.; Kwon, Young Joon; Aziz, Moez Karim; Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2016-04-01

    Dual-energy contrast-enhanced digital mammography (DE CE-DM) uses an iodinated contrast agent to image the perfusion and vasculature of the breast. DE images are obtained by a weighted logarithmic subtraction of the high-energy (HE) and low-energy (LE) image pairs. We hypothesized that the optimal DE subtraction weighting factor is thickness-dependent, and developed a method for determining breast tissue composition and thickness in DE CE-DM. Phantoms were constructed using uniform blocks of 100% glandular-equivalent and 100% adipose-equivalent material. The thickness of the phantoms ranged from 3 to 8 cm, in 1 cm increments. For a given thickness, the glandular-adipose composition of the phantom was varied using different combinations of blocks. The logarithmic LE and logarithmic HE signal intensities were measured; they decrease linearly with increasing glandularity for a given thickness. The signals decrease with increasing phantom thickness and the x-ray signal decreases linearly with thickness for a given glandularity. As the thickness increases, the attenuation difference per additional glandular block decreases, indicating beam hardening. From the calibration mapping, we have demonstrated that we can predict percent glandular tissue and thickness when given two distinct signal intensities. Our results facilitate the subtraction of tissue at the boundaries of the breast, and aid in discriminating between contrast agent uptake in glandular tissue and subtraction artifacts.

  8. Single-shot and phase-shifting digital holographic microscopy using a 2-D grating.

    PubMed

    Yang, Taeseok Daniel; Kim, Hyung-Jin; Lee, Kyoung J; Kim, Beop-Min; Choi, Youngwoon

    2016-05-02

    We demonstrate digital holographic microscopy that, while being based on phase-shifting interferometry, is capable of single-shot measurements. A two-dimensional (2-D) diffraction grating placed in a Fourier plane of a standard in-line holographic phase microscope generates multiple copies of a sample image on a camera sensor. The identical image copies are spatially separated with different overall phase shifts according to the diffraction orders. The overall phase shifts are adjusted by controlling the lateral position of the grating. These phase shifts are then set to be multiples of π/2. Interferograms composed of four image copies combined with a parallel reference beam are acquired in a single shot. The interferograms are processed through a phase-shifting algorithm to produce a single complex image. By taking advantage of the higher sampling capacity of the in-line holography, we can increase the imaging information density by a factor of 3 without compromising the imaging acquisition speed.

  9. GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.

    PubMed

    Dorgham, Osama M; Laycock, Stephen D; Fisher, Mark H

    2012-09-01

    Recent advances in programming languages for graphics processing units (GPUs) provide developers with a convenient way of implementing applications which can be executed on the CPU and GPU interchangeably. GPUs are becoming relatively cheap, powerful, and widely available hardware components, which can be used to perform intensive calculations. The last decade of hardware performance developments shows that GPU-based computation is progressing significantly faster than CPU-based computation, particularly if one considers the execution of highly parallelisable algorithms. Future predictions illustrate that this trend is likely to continue. In this paper, we introduce a way of accelerating 2-D/3-D image registration by developing a hybrid system which executes on the CPU and utilizes the GPU for parallelizing the generation of digitally reconstructed radiographs (DRRs). Based on the advancements of the GPU over the CPU, it is timely to exploit the benefits of many-core GPU technology by developing algorithms for DRR generation. Although some previous work has investigated the rendering of DRRs using the GPU, this paper investigates approximations which reduce the computational overhead while still maintaining a quality consistent with that needed for 2-D/3-D registration with sufficient accuracy to be clinically acceptable in certain applications of radiation oncology. Furthermore, by comparing implementations of 2-D/3-D registration on the CPU and GPU, we investigate current performance and propose an optimal framework for PC implementations addressing the rigid registration problem. Using this framework, we are able to render DRR images from a 256×256×133 CT volume in ~24 ms using an NVidia GeForce 8800 GTX and in ~2 ms using NVidia GeForce GTX 580. In addition to applications requiring fast automatic patient setup, these levels of performance suggest image-guided radiation therapy at video frame rates is technically feasible using relatively low cost PC

  10. Multimodality evaluation of dural arteriovenous fistula with CT angiography, MR with arterial spin labeling, and digital subtraction angiography: case report.

    PubMed

    Alexander, Matthew; McTaggart, Ryan; Santarelli, Justin; Fischbein, Nancy; Marks, Michael; Zaharchuk, Greg; Do, Huy

    2014-01-01

    Dural arteriovenous fistulae (DAVF) are cerebrovascular lesions with pathologic shunting into the venous system from arterial feeders. Digital subtraction angiography (DSA) has long been considered the gold standard for diagnosis, but advances in noninvasive imaging techniques now play a role in the diagnosis of these complex lesions. Herein, we describe the case of a patient with right-side pulsatile tinnitus and DAVF diagnosed using computed tomography angiography, magnetic resonance with arterial spin labeling, and DSA. Implications for imaging analysis of DAVFs and further research are discussed.

  11. Investigating digit ratio (2D:4D) in a highly male-dominated occupation: the case of firefighters.

    PubMed

    Voracek, Martin; Pum, Ulrike; Dressler, Stefan G

    2010-04-01

    Second-to-fourth digit ratio (2D:4D), a widely studied putative marker for masculinization through prenatal androgen exposure, is lower (more masculinized) in athletes than in general population controls, and athletes with lower 2D:4D have higher sporting success. Occupations differ markedly in perceived masculinity and actual maleness (sex ratios), but these givens have not yet been picked up and utilized in 2D:4D research. Accordingly, this study extended existing accounts on 2D:4D in athletes to a novel approach: 2D:4D and possible relationships to a variety of candidate variables (demographic, fertility-related, psychological, and other) were investigated in firefighters, a highly male-dominated occupation. Contrary to expectation, 2D:4D in firefighters (N = 134) was not lower than in local male population controls. Lower 2D:4D corresponded to lower service ranks. Replicating previous findings either unequivocally or partly, lower 2D:4D was associated with larger family size, later sibling position, left-handedness, and higher scores in the disinhibition component of sensation seeking. Not replicating prior evidence, 2D:4D was unrelated to body-mass index, offspring sex ratio, and sporting performance level. Novel findings included low 2D:4D in those with low relationship satisfaction and in cigarette smokers, especially among heavy smokers. Absolute finger length, a positive correlate of pubertal-adolescent androgen levels, was also considered. This marker showed negative associations with relationship consensus and satisfaction and positive ones with perceived quality of relationship alternatives and the experience seeking component of sensation seeking. The merits of this additional marker, relative to 2D:4D, for supplementing studies of possible sex-hormonal effects on personality and directions for future inquiry along these lines are discussed.

  12. Damage Assessment and Digital 2D-3D Documentation of PetraTreasury

    NASA Astrophysics Data System (ADS)

    Bala'awi, Fadi; Alshawabkeh, Yahya; Alawneh, Firas; Masri, Eyed al

    The treasury is the icon monument of the world heritage site of ancient Petra city. Unfortunately, this important part of the world's cultural heritage is gradually being diminished due to weathering and erosion problems. This give rise to the need to have a comprehensive study and full documentation of the monument in order to evaluate its status. In this research a comprehensive approach utilizing 2D-3D documentation of the structure using laser scanner and photogrammetry is carried parallel with a laboratory analysis and a correlation study of the salt content and the surface weathering forms. In addition, the research extends to evaluate a set of chemical and physical properties of the case study monument. Studies of stone texture and spatial distribution of soluble salts were carried out at the monument in order to explain the mechanism of the weathering problem. Then a series of field work investigations and laboratory work were undertaken to study the effect of relative humidity, temperature, and wind are the main factors in the salt damage process. The 3D modelling provides accurate geometric and radiometric properties of the damage shape. In order to support the visual quality of 3D surface details and cracks, a hybrid approach combining data from the laser scanner and the digital imagery was developed. Based on the findings, salt damage appears to be one of the main problems at this monument. Although, the total soluble salt content are quite low, but the salts contamination is all over the tested samples in all seasons, with higher concentrations at deep intervals. The thermodynamic calculations carried out by this research have also shown that salt damage could be minimised by controlling the surrounding relative humidity conditions. This measure is undoubtedly the most challenging of all, and its application, if deemed feasible, should be carried out in parallel with other conservation measures.

  13. Digit ratio (2D:4D), dominance, reproductive success, asymmetry, and sociosexuality in the BBC Internet Study.

    PubMed

    Manning, John T; Fink, Bernhard

    2008-01-01

    Digit ratio (2D:4D) may be a correlate of prenatal sex steroids, and has been linked to traits, which are influenced by fetal testosterone and estrogen. Here we consider such links in a large Internet study of sex differences (the BBC Internet Study) in which finger lengths were self-measured. Consistent with lab-based findings the 2D:4D in this study shows sexual dimorphism, ethnic differences and higher dimorphism of right 2D:4D than left, thereby indicating that 2D:4D does measure real between-participant variation. High error in self-measurement of fingers reduces effect sizes. However, the large sample size gives assurance that significant effects are likely to be real. We controlled for ethnicity and sexual orientation by considering White heterosexuals only (153,429 participants). Sexual dimorphism was confirmed in 2D:4D and for the difference of right-left 2D:4D. After Bonferroni correction we found highly significant relationships with low effect sizes as follows. In males and females there were negative associations between 2D:4D and dominance. In males there were negative associations between 2D:4D and family size and factors associated with reproductive success. For females these associations were positive. For asymmetry we found U-shaped relationships with 2D:4D in both males and females. We found no relationship between 2D:4D and promiscuity (sociosexuality). In total, we considered 48 relationships and found 29 to be significant. We compare our findings with a similar study reported by Putz et al. (2004), which found only 2 out of 57 correlations to be significant and discuss possible reasons for the discrepancies between the studies.

  14. Second to fourth digit ratio (2D:4D) and concentrations of circulating sex hormones in adulthood

    PubMed Central

    2011-01-01

    Background The second to fourth digit ratio (2D:4D) is used as a marker of prenatal sex hormone exposure. The objective of this study was to examine whether circulating concentrations of sex hormones and SHBG measured in adulthood was associated with 2D:4D. Methods This analysis was based on a random sample from the Melbourne Collaborative Cohort Study. The sample consisted of of 1036 men and 620 post-menopausal women aged between 39 and 70 at the time of blood draw. Concentrations of circulating sex hormones were measured from plasma collected at baseline (1990-1994), while digit length was measured from hand photocopies taken during a recent follow-up (2003-2009). The outcome measures were circulating concentrations of testosterone, oestradiol, dehydroepiandrosterone sulphate, androstenedione, Sex Hormone Binding Globulin, androstenediol glucoronide for men only and oestrone sulphate for women only. Free testosterone and oestradiol were estimated using standard formulae derived empirically. Predicted geometric mean hormone concentrations (for tertiles of 2D:4D) and conditional correlation coefficients (for continuous 2D:4D) were obtained using mixed effects linear regression models. Results No strong associations were observed between 2D:4D measures and circulating concentrations of hormones for men or women. For males, right 2D:4D was weakly inversely associated with circulating testosterone (predicted geometric mean testosterone was 15.9 and 15.0 nmol/L for the lowest and highest tertiles of male right 2D:4D respectively (P-trend = 0.04). There was a similar weak association between male right 2D:4D and the ratio of testosterone to oestradiol. These associations were not evident in analyses of continuous 2D:4D. Conclusions There were no strong associations between any adult circulating concentration of sex hormone or SHGB and 2D:4D. These results contribute to the growing body of evidence indicating that 2D:4D is unrelated to adult sex hormone concentrations

  15. Building a 2.5D Digital Elevation Model from 2D Imagery

    NASA Technical Reports Server (NTRS)

    Padgett, Curtis W.; Ansar, Adnan I.; Brennan, Shane; Cheng, Yang; Clouse, Daniel S.; Almeida, Eduardo

    2013-01-01

    When projecting imagery into a georeferenced coordinate frame, one needs to have some model of the geographical region that is being projected to. This model can sometimes be a simple geometrical curve, such as an ellipse or even a plane. However, to obtain accurate projections, one needs to have a more sophisticated model that encodes the undulations in the terrain including things like mountains, valleys, and even manmade structures. The product that is often used for this purpose is a Digital Elevation Model (DEM). The technology presented here generates a high-quality DEM from a collection of 2D images taken from multiple viewpoints, plus pose data for each of the images and a camera model for the sensor. The technology assumes that the images are all of the same region of the environment. The pose data for each image is used as an initial estimate of the geometric relationship between the images, but the pose data is often noisy and not of sufficient quality to build a high-quality DEM. Therefore, the source imagery is passed through a feature-tracking algorithm and multi-plane-homography algorithm, which refine the geometric transforms between images. The images and their refined poses are then passed to a stereo algorithm, which generates dense 3D data for each image in the sequence. The 3D data from each image is then placed into a consistent coordinate frame and passed to a routine that divides the coordinate frame into a number of cells. The 3D points that fall into each cell are collected, and basic statistics are applied to determine the elevation of that cell. The result of this step is a DEM that is in an arbitrary coordinate frame. This DEM is then filtered and smoothed in order to remove small artifacts. The final step in the algorithm is to take the initial DEM and rotate and translate it to be in the world coordinate frame [such as UTM (Universal Transverse Mercator), MGRS (Military Grid Reference System), or geodetic] such that it can be saved in

  16. Digit ratio (2D:4D) predicts sporting success among female fencers independent from physical, experience, and personality factors.

    PubMed

    Voracek, M; Reimer, B; Dressler, S G

    2010-12-01

    Research particularly focusing on male athletes and popular sports (running and soccer) suggests associations of lower (masculinized) second-to-fourth digit ratio (2D:4D), a putative marker of prenatal androgen action, with better sports performance. Studies focusing on women, non-mainstream sports, or controlling for covariates relevant for sporting success are still sparse. This study examined associations between 2D:4D and performance of both male and female athletes active in fencing (a non-mainstream sport dominated by male participants), while controlling for covariates. National fencing rankings and 2D:4D of 58 male and 41 female Austrian tournament fencers (mean age 24 years) were correlated. Among female, but not male, fencers, lower 2D:4D was related to better national fencing rankings. 2D:4D still accounted for incremental variance (12%) in fencing success, when the effects of salient performance factors (age, body mass index, years of fencing, training intensity, and the personality variables achievement, control, harm avoidance, and social potency) were controlled for (totaling 35% attributable variance). Athletes active in the most aggressive form (the sabre) had lower 2D:4D than those active in the other forms (épée and foil fencing). Sporting success in adult life might be partly prenatally programmed via long-lasting extragenital effects of testosterone.

  17. Digit ratio (2D:4D) and male facial attractiveness: new data and a meta-analysis.

    PubMed

    Hönekopp, Johannes

    2013-10-01

    Digit ratio (2D:4D) appears to correlate negatively with prenatal testosterone (T) effects in humans. As T probably increases facial masculinity, which in turn might be positively related to male facial attractiveness, a number of studies have looked into the relationship between 2D:4D and male facial attractiveness, showing equivocal results. Here, I present the largest and third largest samples so far, which investigate the relationship between 2D:4D and male facial attractiveness in adolescents (n = 115) and young men (n = 80). I then present random-effects meta-analyses of the available data (seven to eight samples, overall n = 362 to 469). These showed small (r ≈ -.09), statistically non-significant relationships between 2D:4D measures and male facial attractiveness. Thus, 2D:4D studies offer no convincing evidence at present that prenatal T has a positive effect on male facial attractiveness. However, a consideration of confidence intervals shows that, at present, a theoretically meaningful relationship between 2D:4D and male facial attractiveness cannot be ruled out either.

  18. Matching of projection imaging and tomographic imaging: application to digital subtracted angiography (DSA) and magnetic resonance angiography (MRA)

    NASA Astrophysics Data System (ADS)

    Vermandel, Maximilien; Kulik, Carine; Leclerc, Xavier; Rousseau, Jean; Vasseur, Christian

    2002-05-01

    This study proposes a new method for matching vascular imaging modalities without the use of external frame or external landmarks. We first perform a 3D reconstruction of a piece of the cerebral vascular tree using Magnetic Resonance Angiography (MRA). Then, this structure is projected on the Digital Subtracted Angiography (DSA) images until its best position and orientation are found. As the 3D structure is known in the MRA referential, this method enables us to match information from DSA and MRA. The complete matching of all the DSA images in many incidences and the MRA set have been obtained. For the DSA images, the epipolar constraint has been verified between all the incidences. This new approach in medical imaging brings a very original method, making easier and more efficient visualization and quantification of vascular information.

  19. A critical review of the research on the extreme male brain theory and digit ratio (2D:4D).

    PubMed

    Teatero, Missy L; Netley, Charles

    2013-11-01

    Boys are more likely than girls to be diagnosed with an autism spectrum disorder (ASD). The extreme male brain (EMB) theory of ASD suggests that fetal testosterone (FT) exposure may underlie sex differences in autistic traits. A link between the organizational effects of FT on the brain and ASD is often drawn based on research using digit ratio (2D:4D), a putative biomarker, without a full survey of the findings. This paper critically and quantitatively reviews the research on the relationship between 2D:4D and ASD as well as autism spectrum, empathizing, and systemizing measures in neurotypical populations. Overall, there is some support for the EMB theory in all four areas, particularly the 2D:4D-ASD relationship. Recommendations for future research are provided.

  20. Hard Copy to Digital Transfer: 3D Models that Match 2D Maps

    ERIC Educational Resources Information Center

    Kellie, Andrew C.

    2011-01-01

    This research describes technical drawing techniques applied in a project involving digitizing of existing hard copy subsurface mapping for the preparation of three dimensional graphic and mathematical models. The intent of this research was to identify work flows that would support the project, ensure the accuracy of the digital data obtained,…

  1. Suppression of high-density artifacts in x-ray CT images using temporal digital subtraction with application to cryotherapy

    NASA Astrophysics Data System (ADS)

    Baissalov, Roustem; Sandison, George A.; Donnelly, Bryan J.; Saliken, John C.; Muldrew, Ken; Rewcastle, John C.

    2000-06-01

    Image guidance of cryotherapy is usually performed using ultrasound or x-ray CT. Despite the ability of CT to display the full 3D structure of the iceball, including frozen and unfrozen regions, the quality of the images is compromised by the presence of high density streak artifacts. To suppress these artifacts we applied Temporal Digital Subtraction (TDS). This TDS method has the added advantage of improving the gray scale contrast between frozen and unfrozen tissue in the CT images. Two sets of CT images were taken of a phantom material, cryoprobes and a urethral warmer (UW) before and during the cryoprobe freeze cycle. The high density artifacts persisted in both image sets. TDS was performed on these two image sets using the corresponding mask image of unfrozen material and the same geometrical configuration of the cryoprobes and the UW. The resultant difference image had a significantly reduced content of the artifacts. This TDS can be used in x-ray CT assisted cryotherapy to significantly suppress or eliminate high density x-ray CT streak artifacts by digitally processing x-ray CT images. Applying TDS in cryotherapy will facilitate estimation of the amount and location of all frozen and unfrozen regions, potentially making cryotherapy safer and less operator dependent.

  2. Volumetric limiting spatial resolution analysis of four dimensional digital subtraction angiography (4D-DSA)

    NASA Astrophysics Data System (ADS)

    Davis, Brian; Oberstar, Erick; Royalty, Kevin; Schafer, Sebastian; Strother, Charles; Mistretta, Charles

    2015-03-01

    Static C-Arm CT 3D FDK baseline reconstructions (3D-DSA) are unable to provide temporal information to radiologists. 4D-DSA provides a time series of 3D volumes implementing a constrained image, thresholded 3D-DSA, reconstruction utilizing temporal dynamics in the 2D projections. Volumetric limiting spatial resolution (VLSR) of 4DDSA is quantified and compared to a 3D-DSA reconstruction using the same 3D-DSA parameters. Investigated were the effects of varying over significant ranges the 4D-DSA parameters of 2D blurring kernel size applied to the projection and threshold applied to the 3D-DSA when generating the constraining image of a scanned phantom (SPH) and an electronic phantom (EPH). The SPH consisted of a 76 micron tungsten wire encased in a 47 mm O.D. plastic radially concentric thin walled support structure. An 8-second/248-frame/198° scan protocol acquired the raw projection data. VLSR was determined from averaged MTF curves generated from each 2D transverse slice of every (248) 4D temporal frame (3D). 4D results for SPH and EPH were compared to the 3D-DSA. Analysis of the 3D-DSA resulted in a VLSR of 2.28 and 1.69 lp/mm for the EPH and SPH respectively. Kernel (2D) sizes of either 10x10 or 20x20 pixels with a threshold of 10% of the 3D-DSA as a constraining image provided 4D-DSA VLSR nearest to the 3D-DSA. 4D-DSA algorithms yielded 2.21 and 1.67 lp/mm with a percent error of 3.1% and 1.2% for the EPH and SPH respectively as compared to the 3D-DSA. This research indicates 4D-DSA is capable of retaining the resolution of the 3D-DSA.

  3. Temporal Subtraction of Digital Breast Tomosynthesis Images for Improved Mass Detection

    DTIC Science & Technology

    2007-10-01

    Hoeschen, U. Fill, M. Zankl, et al., "A High-Resolution Voxel Phantom of the Breast for Dose Calculations in Mammography," Radiation Protection ...34, Acta radiologica 41 (1), 52 (2000). 11 M.P. Callaway, C.R.M. Boggis, S.A. Astley, and I. Hutt, "The influence of previous films on screening...properties of digital mammograms using a computer simulation", Radiation Protection Dosimetry 114, 395 (2005). 75 P. Bakic, M. Albert, D. Brzakovic, and A

  4. The contributions of Hans-Dieter Rösler: pioneer of digit ratio (2D:4D) research.

    PubMed

    Voracek, Martin; Dressler, Stefan G; Loibl, Lisa Mariella

    2008-12-01

    Over the past decade, the second-to-fourth digit ratio (2D:4D), a putative biomarker for the organizational (permanent) effects of prenatal androgens on the human brain, body, and behavior, has received extensive research attention in psychology. This account makes more widely accessible the contributions of the German psychologist, Hans-Dieter Rösler, an early, for a long time unnoticed, predecessor of modern 2D:4D research. In the mid-1950s, Rösler collected a massive sample of hand outline drawings, totalling nearly 7,000 individuals, ranging in age from 1 mo. to 70 yr. With regard to the distal finger-extent pattern, Rösler differentiated radial (longer index than ring finger), ulnar (reversed pattern), and intermediate hand types, which reflect higher (more female-typical), lower (more male-typical), and intermediate 2D:4D, respectively. Here is summarized Rösler's research. In a series of investigations into the hand types, he reported on their anatomical bases, unsuitability for paternity testing, developmental changes, heritability, sex, side, and occupational group differences, and associations with left-handedness, manual dexterity, mental retardation, and clinodactyly. Based on new data from 313 male and 316 female adults, hand type is further shown to be only a weak proxy of actual 2D:4D, leaving 75% of the interindividual variation in 2D:4D unexplained. Notwithstanding these shortcomings of the hand-type method, Rösler's work from the 1950s still has the potential to inform modern 2D:4D research, as it contains a multitude of testable hypotheses not yet picked up by current research.

  5. Revealing Invisible Beauty, Ultra Detailed: The Influence of Low Cost UV Exposure on Natural History Specimens in 2D+ Digitization

    PubMed Central

    Brecko, Jonathan; Mathys, Aurore; Dekoninck, Wouter; De Ceukelaire, Marleen; VandenSpiegel, Didier; Semal, Patrick

    2016-01-01

    Digitization of the natural history specimens usually occurs by taking detailed pictures from different sides or producing 3D models. Additionally this is normally limited to imaging the specimen while exposed by light of the visual spectrum. However many specimens can see in or react to other spectra as well. Fluorescence is a well known reaction to the ultraviolet (UV) spectrum by animals, plants, minerals etc. but rarely taken into account while examining natural history specimens. Our tests show that museum specimens still fluoresce when exposed to UV light of 395 nm and 365 nm, even after many years of preservation. When the UV exposure is used in the digitization of specimens using our low cost focus stacking (2D+) setup, the resulting pictures reveal more detail than the conventional 2D+ images. Differences in fluorescence using 395 nm or 365 nm UV lights were noticed, however there isn’t a preferred wavelength as some specimens react more to the first, while others have better results with the latter exposure. Given the increased detail and the low cost of the system, UV exposure should be considered while digitizing natural history museum collections. PMID:27536993

  6. Revealing Invisible Beauty, Ultra Detailed: The Influence of Low Cost UV Exposure on Natural History Specimens in 2D+ Digitization.

    PubMed

    Brecko, Jonathan; Mathys, Aurore; Dekoninck, Wouter; De Ceukelaire, Marleen; VandenSpiegel, Didier; Semal, Patrick

    2016-01-01

    Digitization of the natural history specimens usually occurs by taking detailed pictures from different sides or producing 3D models. Additionally this is normally limited to imaging the specimen while exposed by light of the visual spectrum. However many specimens can see in or react to other spectra as well. Fluorescence is a well known reaction to the ultraviolet (UV) spectrum by animals, plants, minerals etc. but rarely taken into account while examining natural history specimens. Our tests show that museum specimens still fluoresce when exposed to UV light of 395 nm and 365 nm, even after many years of preservation. When the UV exposure is used in the digitization of specimens using our low cost focus stacking (2D+) setup, the resulting pictures reveal more detail than the conventional 2D+ images. Differences in fluorescence using 395 nm or 365 nm UV lights were noticed, however there isn't a preferred wavelength as some specimens react more to the first, while others have better results with the latter exposure. Given the increased detail and the low cost of the system, UV exposure should be considered while digitizing natural history museum collections.

  7. A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging.

    PubMed

    Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto

    2015-01-01

    Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies.

  8. A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging

    PubMed Central

    Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto

    2015-01-01

    Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies. PMID:26545097

  9. Multi-imaging capabilities of a 2D diffraction grating in combination with digital holography.

    PubMed

    Paturzo, Melania; Merola, Francesco; Ferraro, Pietro

    2010-04-01

    In this Letter we report on an alternative approach to get multiple images in microscopy, exploiting the capabilities of both a lithium niobate diffraction grating and digital holographic technique. We demonstrate that multi-imaging can be achieved in a lensless configuration by using a hexagonal diffraction grating but overcoming, thanks to digital holography (DH), the many constrains imposed by the grating parameters in multi-imaging with Talbot effect or Talbot array illuminators. In fact, DH permits the numerical reconstruction of the optical field diffracted by the grating, thus obtaining in-focus multiple images in a plane different from the fractional or entire Talbot ones.

  10. Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation

    SciTech Connect

    Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; Puretzky, Alexander A.; McGuire, Michael A.; Srijanto, Bernadeta R.; Xiao, Kai; Eres, Gyula; Duscher, Gerd; Geohegan, David B.

    2014-10-19

    Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substrate by pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.

  11. Digital 2D-photogrammetry and direct anthropometry--a comparing study on test accomplishment and measurement data.

    PubMed

    Franke-Gromberg, Christine; Schüler, Grit; Hermanussen, Michael; Scheffler, Christiane

    2010-01-01

    The aim of this methodological anthropometric study was to compare direct anthropometry and digital two-dimensional photogrammetry in 18 male and 27 female subjects, aged 24 to 65 years, from Potsdam, Germany. In view of the rising interest in reliable biometric kephalofacial data, we focussed on head and face measurements. Out of 34 classic facial anatomical landmarks, 27 landmarks were investigated both by direct anthropometry and 2D-photogrammetry; 7 landmarks could not be localized by 2D-photogrammetry. Twenty-six kephalofacial distances were analysed both by direct anthropometry and digital 2D-photogrammetry. Kephalofacial distances are on average 7.6% shorter when obtained by direct anthropometry. The difference between the two techniques is particularly evident in total head height (vertex-gnathion) due to the fact that vertex is usually covered by hair and escapes from photogrammetry. Also the distances photographic sellion-gnathion (1.3 cm, i. e. 11.6%) and nasal-gnathion (1.2 cm, i. e. 9.4%) differ by more than one centimetre. Differences below 0.5 cm between the two techniques were found when measuring mucosa-lip-height (2.2%), gonia (3.0%), glabella-stomion (3.9%), and nose height (glabella-subnasal) (4.0%). Only the estimates of forehead width were significantly narrower when obtained by 2D-photogrammetry (-1.4 cm, -13.1%). The methodological differences increased with increasing magnitude of the kephalometric distance. Apart from these limitations, both techniques are similarly valid and may replace each other.

  12. Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation

    DOE PAGES

    Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; ...

    2014-10-19

    Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substrate bymore » pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.« less

  13. Cerebral Circulation Time is Prolonged and Not Correlated with EDSS in Multiple Sclerosis Patients: A Study Using Digital Subtracted Angiography

    PubMed Central

    Monti, Lucia; Donati, Donatella; Menci, Elisabetta; Cioni, Samuele; Bellini, Matteo; Grazzini, Irene; Leonini, Sara; Galluzzi, Paolo; Severi, Sauro; Burroni, Luca; Casasco, Alfredo; Morbidelli, Lucia; Santarnecchi, Emiliano; Piu, Pietro

    2015-01-01

    Literature has suggested that changes in brain flow circulation occur in patients with multiple sclerosis. In this study, digital subtraction angiography (DSA) was used to measure the absolute CCT value in MS patients and to correlate its value to age at disease onset and duration, and to expand disability status scale (EDSS). DSA assessment was performed on eighty MS patients and on a control group of forty-four age-matched patients. CCT in MS and control groups was calculated by analyzing the angiographic images. Lesion and brain volumes were calculated in a representative group of MS patients. Statistical correlations among CCT and disease duration, age at disease onset, lesion load, brain volumes and EDSS were considered. A significant difference between CCT in MS patients (mean = 4.9s; sd = 1.27s) and control group (mean = 2.8s; sd = 0.51s) was demonstrated. No significant statistical correlation was found between CCT and the other parameters in all MS patients. Significantly increased CCT value in MS patients suggests the presence of microvascular dysfunctions, which do not depend on clinical and MRI findings. Hemodynamic changes may not be exclusively the result of a late chronic inflammatory process. PMID:25679526

  14. Development and evaluation of a digital subtraction angiography system using a large-area flat panel detector

    NASA Astrophysics Data System (ADS)

    Ikeda, Shigeyuki; Suzuki, Katsumi; Ishikawa, Ken; Colbeth, Richard E.; Webb, Chris; Tanaka, Saori; Okusako, Kenji

    2003-06-01

    We developed prototype Digital Subtraction Angiography (DSA) System with a new large area FPD. Dynamic range, MTF, Contrast ratio and line noise were much improved. The improved FPD is a scintillator-type detector, and has a 40 x 30 cm active area, 2048 x 1536 matrix with 194um pixel pitch. The Prototype DSA system has two x-ray detectors, the FPD and the I.I.-CCD camera, and we can choose them on demand. All images captured from both detectors at 3 frames/sec in DSA mode and 30 frames/sec in Fluoroscopy mode are forwarded to our image-processing unit. We applied the new DSA system to more than 150 studies and compared the results with images from the I.I.-CCD. In DSA mode, FPD System, which has a wide dynamic range, large detecting area, and good contrast ratio yielded superior angiogram images compared with the I.I-CCD system. In Fluoroscopy mode, we improved line noise and increased the contrast of catheters and guide wires with a new image processing technique. With these improvements, the image quality of the FPD System is superior to the I.I.-CCD system at the exposure range of over 2uR/frame (17.4 nGy/frame).

  15. Computed tomography angiography versus digital subtraction angiography in vascular mapping for planning of microsurgical reconstruction of the mandible.

    PubMed

    Lell, Michael; Tomandl, Bernd F; Anders, Katharina; Baum, Ulrich; Nkenke, Emeka

    2005-08-01

    The aim of this work was to compare the potential of computed tomography angiography (CTA) with that of digital subtraction angiography (DSA) in vascular mapping of the external carotid artery (ECA) branches for planning of microvascular reconstructions of the mandible with osteomyocutaneous flaps. In 15 patients CTA and DSA were performed prior to surgery. Selective common carotid angiograms were acquired in two projection for both sides of the neck. Sixteen-slice spiral computed tomography was performed with a dual-phase protocol, using the arterial phase images for 3D CTA reconstruction. Thin-slab maximum intensity projections and volume rendering were employed for postprocessing of CTA data. The detectability of the different ECA branches in CTA and DSA was evaluated by two examiners. No statistically significant differences between CTA and DSA (p=0.097) were found for identifying branches relevant for microsurgery. DSA was superior to CTA if more peripheral ECA branches were included (P=0.030). CTA proved to be a promising alternative to DSA in vascular mapping for planning of microvascular reconstruction of the mandible.

  16. Multislice CT Angiography in Renal Artery Stent Evaluation: Prospective Comparison with Intra-Arterial Digital Subtraction Angiography

    SciTech Connect

    Raza, Syed A.; Chughtai, Aamer R.; Wahba, Mona; Cowling, Mark G.; Taube, David; Wright, Andrew R.

    2004-01-15

    Purpose: To assess the role of multislice computed tomography angiography (MCTA) in the evaluation of renal artery stents, using intra-arterial digital subtraction angiography (DSA) as the gold standard. Methods: Twenty consecutive patients (15 men, 5 women) with 23 renal artery stents prospectively underwent both MCTA and DSA. Axial images, multiplanar reconstructions and maximum intensity projection images were used for diagnosis. The MCTA and DSA images were each interpreted without reference to the result of the other investigation. Results:The three cases of restenosis on DSA were detected correctly by MCTA; in 19 cases where MCTA showed a fully patent stent, the DSA was also negative. Sensitivity and negative predictive value (NPV) of MCTA were therefore 100%. In four cases, MCTA showed apparently minimal disease which was not shown on DSA. These cases are taken as false positive giving a specificity of 80% and a positive predictive value of 43%. Conclusion: The high sensitivity and NPV suggest MCTA may be useful as a noninvasive screen for renal artery stentrestenosis. MCTA detected mild disease in a few patients which was not confirmed on angiography.

  17. Cerebral circulation time is prolonged and not correlated with EDSS in multiple sclerosis patients: a study using digital subtracted angiography.

    PubMed

    Monti, Lucia; Donati, Donatella; Menci, Elisabetta; Cioni, Samuele; Bellini, Matteo; Grazzini, Irene; Leonini, Sara; Galluzzi, Paolo; Bracco, Sandra; Severi, Sauro; Burroni, Luca; Casasco, Alfredo; Morbidelli, Lucia; Santarnecchi, Emiliano; Piu, Pietro

    2015-01-01

    Literature has suggested that changes in brain flow circulation occur in patients with multiple sclerosis. In this study, digital subtraction angiography (DSA) was used to measure the absolute CCT value in MS patients and to correlate its value to age at disease onset and duration, and to expand disability status scale (EDSS). DSA assessment was performed on eighty MS patients and on a control group of forty-four age-matched patients. CCT in MS and control groups was calculated by analyzing the angiographic images. Lesion and brain volumes were calculated in a representative group of MS patients. Statistical correlations among CCT and disease duration, age at disease onset, lesion load, brain volumes and EDSS were considered. A significant difference between CCT in MS patients (mean = 4.9s; sd = 1.27 s) and control group (mean = 2.8s; sd = 0.51 s) was demonstrated. No significant statistical correlation was found between CCT and the other parameters in all MS patients. Significantly increased CCT value in MS patients suggests the presence of microvascular dysfunctions, which do not depend on clinical and MRI findings. Hemodynamic changes may not be exclusively the result of a late chronic inflammatory process.

  18. Initial testing of a 3D printed perfusion phantom using digital subtraction angiography

    PubMed Central

    Khobragade, Parag; Ying, Leslie; Snyder, Kenneth; Wack, David; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.

    2015-01-01

    Perfusion imaging is the most applied modality for the assessment of acute stroke. Parameters such as Cerebral Blood Flow (CBF), Cerebral Blood volume (CBV) and Mean Transit Time (MTT) are used to distinguish the tissue infarct core and ischemic penumbra. Due to lack of standardization these parameters vary significantly between vendors and software even when provided with the same data set. There is a critical need to standardize the systems and make them more reliable. We have designed a uniform phantom to test and verify the perfusion systems. We implemented a flow loop with different flow rates (250, 300, 350 ml/min) and injected the same amount of contrast. The images of the phantom were acquired using a Digital Angiographic system. Since this phantom is uniform, projection images obtained using DSA is sufficient for initial validation. To validate the phantom we measured the contrast concentration at three regions of interest (arterial input, venous output, perfused area) and derived time density curves (TDC). We then calculated the maximum slope, area under the TDCs and flow. The maximum slope calculations were linearly increasing with increase in flow rate, the area under the curve decreases with increase in flow rate. There was 25% error between the calculated flow and measured flow. The derived TDCs were clinically relevant and the calculated flow, maximum slope and areas under the curve were sensitive to the measured flow. We have created a systematic way to calibrate existing perfusion systems and assess their reliability. PMID:26633914

  19. Initial testing of a 3D printed perfusion phantom using digital subtraction angiography

    NASA Astrophysics Data System (ADS)

    Wood, Rachel P.; Khobragade, Parag; Ying, Leslie; Snyder, Kenneth; Wack, David; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.

    2015-03-01

    Perfusion imaging is the most applied modality for the assessment of acute stroke. Parameters such as Cerebral Blood Flow (CBF), Cerebral Blood volume (CBV) and Mean Transit Time (MTT) are used to distinguish the tissue infarct core and ischemic penumbra. Due to lack of standardization these parameters vary significantly between vendors and software even when provided with the same data set. There is a critical need to standardize the systems and make them more reliable. We have designed a uniform phantom to test and verify the perfusion systems. We implemented a flow loop with different flow rates (250, 300, 350 ml/min) and injected the same amount of contrast. The images of the phantom were acquired using a Digital Angiographic system. Since this phantom is uniform, projection images obtained using DSA is sufficient for initial validation. To validate the phantom we measured the contrast concentration at three regions of interest (arterial input, venous output, perfused area) and derived time density curves (TDC). We then calculated the maximum slope, area under the TDCs and flow. The maximum slope calculations were linearly increasing with increase in flow rate, the area under the curve decreases with increase in flow rate. There was 25% error between the calculated flow and measured flow. The derived TDCs were clinically relevant and the calculated flow, maximum slope and areas under the curve were sensitive to the measured flow. We have created a systematic way to calibrate existing perfusion systems and assess their reliability.

  20. Impact of lens distortions on strain measurements obtained with 2D digital image correlation

    NASA Astrophysics Data System (ADS)

    Lava, P.; Van Paepegem, W.; Coppieters, S.; De Baere, I.; Wang, Y.; Debruyne, D.

    2013-05-01

    The determination of strain fields based on displacements obtained via digital image correlation (DIC) at the micro-strain level (≤1000 μm/m) is still a cumbersome task. In particular when high-strain gradients are involved, e.g. in composite materials with multidirectional fibre reinforcement, uncertainties in the experimental setup and errors in the derivation of the displacement fields can substantially hamper the strain identification process. In this contribution, the aim is to investigate the impact of lens distortions on strain measurements. To this purpose, we first perform pure rigid body motion experiments, revealing the importance of precise correction of lens distortions. Next, a uni-axial tensile test on a textile composite with spatially varying high strain gradients is performed, resulting in very accurately determined strains along the fibers of the material.

  1. Experimental validation of 2D uncertainty quantification for digital image correlation.

    SciTech Connect

    Reu, Phillip L.

    2010-03-01

    Because digital image correlation (DIC) has become such an important and standard tool in the toolbox of experimental mechanicists, a complete uncertainty quantification of the method is needed. It should be remembered that each DIC setup and series of images will have a unique uncertainty based on the calibration quality and the image and speckle quality of the analyzed images. Any pretest work done with a calibrated DIC stereo-rig to quantify the errors using known shapes and translations, while useful, do not necessarily reveal the uncertainty of a later test. This is particularly true with high-speed applications where actual test images are often less than ideal. Work has previously been completed on the mathematical underpinnings of DIC uncertainty quantification and is already published, this paper will present corresponding experimental work used to check the validity of the uncertainty equations.

  2. Intra-Arterial MR Perfusion Imaging of Meningiomas: Comparison to Digital Subtraction Angiography and Intravenous MR Perfusion Imaging

    PubMed Central

    Martin, Alastair J.; Alexander, Matthew D.; McCoy, David B.; Cooke, Daniel L.; Lillaney, Prasheel; Moftakhar, Parham; Amans, Matthew R.; Settecase, Fabio; Nicholson, Andrew; Dowd, Christopher F.; Halbach, Van V.; Higashida, Randall T.; McDermott, Michael W.; Saloner, David; Hetts, Steven W.

    2016-01-01

    Background and Purpose To evaluate the ability of IA MR perfusion to characterize meningioma blood supply. Methods Studies were performed in a suite comprised of an x-ray angiography unit and 1.5T MR scanner that permitted intraprocedural patient movement between the imaging modalities. Patients underwent intra-arterial (IA) and intravenous (IV) T2* dynamic susceptibility MR perfusion immediately prior to meningioma embolization. Regional tumor arterial supply was characterized by digital subtraction angiography and classified as external carotid artery (ECA) dural, internal carotid artery (ICA) dural, or pial. MR perfusion data regions of interest (ROIs) were analyzed in regions with different vascular supply to extract peak height, full-width at half-maximum (FWHM), relative cerebral blood flow (rCBF), relative cerebral blood volume (rCBV), and mean transit time (MTT). Linear mixed modeling was used to identify perfusion curve parameter differences for each ROI for IA and IV MR imaging techniques. IA vs. IV perfusion parameters were also directly compared for each ROI using linear mixed modeling. Results 18 ROIs were analyzed in 12 patients. Arterial supply was identified as ECA dural (n = 11), ICA dural (n = 4), or pial (n = 3). FWHM, rCBV, and rCBF showed statistically significant differences between ROIs for IA MR perfusion. Peak Height and FWHM showed statistically significant differences between ROIs for IV MR perfusion. RCBV and MTT were significantly lower for IA perfusion in the Dural ECA compared to IV perfusion. Relative CBF in IA MR was found to be significantly higher in the Dural ICA region and MTT significantly lower compared to IV perfusion. PMID:27802268

  3. Effect of injection technique on temporal parametric imaging derived from digital subtraction angiography in patient specific phantoms

    NASA Astrophysics Data System (ADS)

    Ionita, Ciprian N.; Garcia, Victor L.; Bednarek, Daniel R.; Snyder, Kenneth V.; Siddiqui, Adnan H.; Levy, Elad I.; Rudin, Stephen

    2014-03-01

    Parametric imaging maps (PIM's) derived from digital subtraction angiography (DSA) for the cerebral arterial flow assessment in clinical settings have been proposed, but experiments have yet to determine the reliability of such studies. For this study, we have observed the effects of different injection techniques on PIM's. A flow circuit set to physiologic conditions was created using an internal carotid artery phantom. PIM's were derived for two catheter positions, two different contrast bolus injection volumes (5ml and 10 ml), and four injection rates (5, 10, 15 and 20 ml/s). Using a gamma variate fitting approach, we derived PIM's for mean-transit-time (MTT), time-to-peak (TTP) and bolus-arrivaltime (BAT). For the same injection rates, a larger bolus resulted in an increased MTT and TTP, while a faster injection rate resulted in a shorter MTT, TTP, and BAT. In addition, the position of the catheter tip within the vasculature directly affected the PIM. The experiment showed that the PIM is strongly correlated with the injection conditions, and, therefore, they have to be interpreted with caution. PIM images must be taken from the same patient to be able to be meaningfully compared. These comparisons can include pre- and post-treatment images taken immediately before and after an interventional procedure or simultaneous arterial flow comparisons through the left and right cerebral hemispheres. Due to the strong correlation between PIM and injection conditions, this study indicates that this assessment method should be used only to compare flow changes before and after treatment within the same patient using the same injection conditions.

  4. Effect of injection technique on temporal parametric imaging derived from digital subtraction angiography in patient specific phantoms

    PubMed Central

    Ionita, Ciprian N; Garcia, Victor L.; Bednarek, Daniel R; Snyder, Kenneth V; Siddiqui, Adnan H; Levy, Elad I; Rudin, Stephen

    2014-01-01

    Parametric imaging maps (PIM’s) derived from digital subtraction angiography (DSA) for the cerebral arterial flow assessment in clinical settings have been proposed, but experiments have yet to determine the reliability of such studies. For this study, we have observed the effects of different injection techniques on PIM’s. A flow circuit set to physiologic conditions was created using an internal carotid artery phantom. PIM’s were derived for two catheter positions, two different contrast bolus injection volumes (5ml and 10 ml), and four injection rates (5, 10, 15 and 20 ml/s). Using a gamma variate fitting approach, we derived PIM’s for mean-transit-time (MTT), time-to-peak (TTP) and bolus-arrivaltime (BAT). For the same injection rates, a larger bolus resulted in an increased MTT and TTP, while a faster injection rate resulted in a shorter MTT, TTP, and BAT. In addition, the position of the catheter tip within the vasculature directly affected the PIM. The experiment showed that the PIM is strongly correlated with the injection conditions, and, therefore, they have to be interpreted with caution. PIM images must be taken from the same patient to be able to be meaningfully compared. These comparisons can include pre- and post-treatment images taken immediately before and after an interventional procedure or simultaneous arterial flow comparisons through the left and right cerebral hemispheres. Due to the strong correlation between PIM and injection conditions, this study indicates that this assessment method should be used only to compare flow changes before and after treatment within the same patient using the same injection conditions. PMID:25302010

  5. Computed Tomographic Angiography as an Adjunct to Digital Subtraction Angiography for the Pre-Operative Assessment of Cerebral Aneurysms

    PubMed Central

    Farsad, Khashayar; Mamourian, Alexander C; Eskey, Clifford J; Friedman, Jonathan A

    2009-01-01

    Objectives: Computerized tomographic angiography (CTA) has emerged as a valuable diagnostic tool for the management of patients with cerebrovascular disease. The use of CTA in lieu of, or as an adjunct to, conventional cerebral angiography in the management of cerebral aneurysms awaits further experience. In this study, we evaluated the role of CTA specifically for the pre-operative assessment and planning of cerebral aneurysm surgery. Patients and Methods: We reviewed the relevant neuroimaging of all patients treated at Dartmouth Hitchcock Medical Center between January, 2001 and December, 2004 with a diagnosis of cerebral aneurysm and diagnostic evaluation with both CTA and conventional digital subtraction angiography (DSA) using standard imaging protocols. 32 patients underwent both CTA and DSA during the study period for a total of 36 aneurysms. Images were independently re-assesed by two neurosurgeons for information valuable for pre-operative surgical planning. Results: In 26 of 36 aneurysms (72%), the CTA was felt to provide the best image quality in defining the morphology of the aneurysm. In 14 aneurysms (39%), CTA provided clinically valuable anatomic detail not demonstrated on DSA, largely due to better visualization of parent and perforating vessel relationships at the aneurysm neck. There were no instances where a lesion was seen on DSA but missed on CTA. The DSA was of most clinical value in determining flow dynamics, such as the arterial supply of an anterior communicating artery aneurysm and distal anterior cerebral branches via the two A1 segments. Conclusion: CTA with three-dimensional reconstructions is a valuable adjunct to the preoperative evaluation of cerebral aneurysms. We advocate routine use of CTA in all patients in whom surgical aneurysm repair is planned, even when DSA has already been performed. PMID:19452029

  6. Color-Coded Digital Subtraction Angiography in the Management of a Rare Case of Middle Cerebral Artery Pure Arterial Malformation

    PubMed Central

    Feliciano, Caleb E; Pamias-Portalatin, Eva; Mendoza-Torres, Jorge; Effio, Euclides; Moran, Yadira; Rodriguez-Mercado, Rafael

    2014-01-01

    Summary The advent of flow dynamics and the recent availability of perfusion analysis software have provided new diagnostic tools and management possibilities for cerebrovascular patients. To this end, we provide an example of the use of color-coded angiography and its application in a rare case of a patient with a pure middle cerebral artery (MCA) malformation. A 42-year-old male chronic smoker was evaluated in the emergency room due to sudden onset of severe headache, nausea, vomiting and left-sided weakness. Head computed tomography revealed a right basal ganglia hemorrhage. Cerebral digital subtraction angiography (DSA) showed a right middle cerebral artery malformation consisting of convoluted and ectatic collateral vessels supplying the distal middle cerebral artery territory-M1 proximally occluded. An associated medial lenticulostriate artery aneurysm was found. Brain single-photon emission computed tomography with and without acetazolamide failed to show problems in vascular reserve that would indicate the need for flow augmentation. Twelve months after discharge, the patient recovered from the left-sided weakness and did not present any similar events. A follow-up DSA and perfusion study using color-coded perfusion analysis showed perforator aneurysm resolution and adequate, albeit delayed perfusion in the involved vascular territory. We propose a combined congenital and acquired mechanism involving M1 occlusion with secondary dysplastic changes in collateral supply to the distal MCA territory. Angiographic and cerebral perfusion work-up was used to exclude the need for flow augmentation. Nevertheless, the natural course of this lesion remains unclear and long-term follow-up is warranted. PMID:25496681

  7. Effect of injection technique on temporal parametric imaging derived from digital subtraction angiography in patient specific phantoms.

    PubMed

    Ionita, Ciprian N; Garcia, Victor L; Bednarek, Daniel R; Snyder, Kenneth V; Siddiqui, Adnan H; Levy, Elad I; Rudin, Stephen

    2014-03-13

    Parametric imaging maps (PIM's) derived from digital subtraction angiography (DSA) for the cerebral arterial flow assessment in clinical settings have been proposed, but experiments have yet to determine the reliability of such studies. For this study, we have observed the effects of different injection techniques on PIM's. A flow circuit set to physiologic conditions was created using an internal carotid artery phantom. PIM's were derived for two catheter positions, two different contrast bolus injection volumes (5ml and 10 ml), and four injection rates (5, 10, 15 and 20 ml/s). Using a gamma variate fitting approach, we derived PIM's for mean-transit-time (MTT), time-to-peak (TTP) and bolus-arrivaltime (BAT). For the same injection rates, a larger bolus resulted in an increased MTT and TTP, while a faster injection rate resulted in a shorter MTT, TTP, and BAT. In addition, the position of the catheter tip within the vasculature directly affected the PIM. The experiment showed that the PIM is strongly correlated with the injection conditions, and, therefore, they have to be interpreted with caution. PIM images must be taken from the same patient to be able to be meaningfully compared. These comparisons can include pre- and post-treatment images taken immediately before and after an interventional procedure or simultaneous arterial flow comparisons through the left and right cerebral hemispheres. Due to the strong correlation between PIM and injection conditions, this study indicates that this assessment method should be used only to compare flow changes before and after treatment within the same patient using the same injection conditions.

  8. Digital breast tomosynthesis: application of 2D digital mammography CAD to detection of microcalcification clusters on planar projection image

    NASA Astrophysics Data System (ADS)

    Samala, Ravi K.; Chan, Heang-Ping; Lu, Yao; Hadjiiski, Lubomir; Wei, Jun; Helvie, Mark

    2015-03-01

    Computer-aided detection (CAD) has the potential to aid radiologists in detection of microcalcification clusters (MCs). CAD for digital breast tomosynthesis (DBT) can be developed by using the reconstructed volume, the projection views or other derivatives as input. We have developed a novel method of generating a single planar projection (PPJ) image from a regularized DBT volume to emphasize the high contrast objects such as microcalcifications while removing the anatomical background and noise. In this work, we adapted a CAD system developed for digital mammography (CADDM) to the PPJ image and compared its performance with our CAD system developed for DBT volumes (CADDBT) in the same set of cases. For microcalcification detection in the PPJ image using the CADDM system, the background removal preprocessing step designed for DM was not needed. The other methods and processing steps in the CADDM system were kept without modification while the parameters were optimized with a training set. The linear discriminant analysis classifier using cluster based features was retrained to generate a discriminant score to be used as decision variable. For view-based FROC analysis, at 80% sensitivity, an FP rate of 1.95/volume and 1.54/image were achieved, respectively, for CADDBT and CADDM in an independent test set. At a threshold of 1.2 FPs per image or per DBT volume, the nonparametric analysis of the area under the FROC curve shows that the optimized CADDM for PPJ is significantly better than CADDBT. However, the performance of CADDM drops at higher sensitivity or FP rate, resulting in similar overall performance between the two CAD systems. The higher sensitivity of the CADDM in the low FP rate region and vice versa for the CADDBT indicate that a joint CAD system combining detection in the DBT volume and the PPJ image has the potential to increase the sensitivity and reduce the FP rate.

  9. Multichannel response analysis on 2D projection views for detection of clustered microcalcifications in digital breast tomosynthesis

    SciTech Connect

    Wei, Jun Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Lu, Yao; Zhou, Chuan; Samala, Ravi

    2014-04-15

    Purpose: To investigate the feasibility of a new two-dimensional (2D) multichannel response (MCR) analysis approach for the detection of clustered microcalcifications (MCs) in digital breast tomosynthesis (DBT). Methods: With IRB approval and informed consent, a data set of two-view DBTs from 42 breasts containing biopsy-proven MC clusters was collected in this study. The authors developed a 2D approach for MC detection using projection view (PV) images rather than the reconstructed three-dimensional (3D) DBT volume. Signal-to-noise ratio (SNR) enhancement processing was first applied to each PV to enhance the potential MCs. The locations of MC candidates were then identified with iterative thresholding. The individual MCs were decomposed with Hermite–Gaussian (HG) and Laguerre–Gaussian (LG) basis functions and the channelized Hotelling model was trained to produce the MCRs for each MC on the 2D images. The MCRs from the PVs were fused in 3D by a coincidence counting method that backprojects the MC candidates on the PVs and traces the coincidence of their ray paths in 3D. The 3D MCR was used to differentiate the true MCs from false positives (FPs). Finally a dynamic clustering method was used to identify the potential MC clusters in the DBT volume based on the fact that true MCs of clinical significance appear in clusters. Using two-fold cross validation, the performance of the 3D MCR for classification of true and false MCs was estimated by the area under the receiver operating characteristic (ROC) curve and the overall performance of the MCR approach for detection of clustered MCs was assessed by free response receiver operating characteristic (FROC) analysis. Results: When the HG basis function was used for MCR analysis, the detection of MC cluster achieved case-based test sensitivities of 80% and 90% at the average FP rates of 0.65 and 1.55 FPs per DBT volume, respectively. With LG basis function, the average FP rates were 0.62 and 1.57 per DBT volume at

  10. Evolution of sexual dimorphism in the digit ratio 2D:4D--relationships with body size and microhabitat use in iguanian lizards.

    PubMed

    Gomes, Camilla M; Kohlsdorf, Tiana

    2011-01-01

    The ratio between lengths of digit II and IV (digit ratio 2D:4D) is a morphological feature that likely affects tetrapod locomotor performances in different microhabitats. Modifications of this trait may be triggered by changes in steroids concentrations during embryo development, which might reflect direct selection acting on digit ratio or be solely a consequence of hormonal differences related for example to body size. Here we apply both conventional and phylogenetic analyses on morphological data from 25 lizard species of 3 families of Iguania (Iguanidae, Polychrotidae, and Tropiduridae), in order to verify whether selective pressures related to locomotion in different microhabitats could override the prenatal developmental cues imposed on the digit ratio 2D:4D by differences in body size between males and females. Data suggest that this trait evolved in association with ecological divergence in the species studied, despite the clear effect of body size on the digit ratio 2D:4D. The ecological associations of size-corrected digit ratios were restricted to one sex, and females of species that often use perches exhibited small digit ratios in the front limbs, which translated into larger sexual dimorphism indexes of arboreal species. The results, together with the subsequent discussion, provide outlines for further investigation about possible developmental mechanisms related to the evolution of adaptive changes in digit lengths that may have occurred during the evolution of ecological divergence in squamates.

  11. Evolution of Sexual Dimorphism in the Digit Ratio 2D:4D - Relationships with Body Size and Microhabitat Use in Iguanian Lizards

    PubMed Central

    Gomes, Camilla M.; Kohlsdorf, Tiana

    2011-01-01

    The ratio between lengths of digit II and IV (digit ratio 2D:4D) is a morphological feature that likely affects tetrapod locomotor performances in different microhabitats. Modifications of this trait may be triggered by changes in steroids concentrations during embryo development, which might reflect direct selection acting on digit ratio or be solely a consequence of hormonal differences related for example to body size. Here we apply both conventional and phylogenetic analyses on morphological data from 25 lizard species of 3 families of Iguania (Iguanidae, Polychrotidae, and Tropiduridae), in order to verify whether selective pressures related to locomotion in different microhabitats could override the prenatal developmental cues imposed on the digit ratio 2D:4D by differences in body size between males and females. Data suggest that this trait evolved in association with ecological divergence in the species studied, despite the clear effect of body size on the digit ratio 2D:4D. The ecological associations of size-corrected digit ratios were restricted to one sex, and females of species that often use perches exhibited small digit ratios in the front limbs, which translated into larger sexual dimorphism indexes of arboreal species. The results, together with the subsequent discussion, provide outlines for further investigation about possible developmental mechanisms related to the evolution of adaptive changes in digit lengths that may have occurred during the evolution of ecological divergence in squamates. PMID:22162772

  12. Comparison of C-arm Computed Tomography and Digital Subtraction Angiography in Patients with Chronic Thromboembolic Pulmonary Hypertension

    SciTech Connect

    Hinrichs, Jan B. Marquardt, Steffen Falck, Christian von; Hoeper, Marius M. Olsson, Karen M.; Wacker, Frank K. Meyer, Bernhard C.

    2016-01-15

    PurposeTo assess the feasibility and diagnostic performance of contrast-enhanced, C-arm computed tomography (CACT) of the pulmonary arteries compared to digital subtraction angiography (DSA) in patients suffering from chronic thromboembolic pulmonary hypertension (CTEPH).MaterialsFifty-two patients with CTEPH underwent ECG-gated DSA and contrast-enhanced CACT. Two readers (R1, R2) independently evaluated pulmonary artery segments and their sub-segmental branching using DSA and CACT for optimal image quality. Afterwards, the diagnostic findings, i.e., intraluminal filling defects, stenosis, and occlusion, were compared. Inter-modality and inter-observer agreement was calculated, and subsequently consensus reading was done and correlated to a reference standard representing the overall consensus of both modalities. Fisher’s exact test and Cohen’s Kappa were applied.ResultsA total of 1352 pulmonary segments were evaluated, of which 1255 (92.8 %) on DSA and 1256 (92.9 %) on CACT were rated to be fully diagnostic. The main causes of the non-diagnostic image quality were motion artifacts on CACT (R1:37, R2:78) and insufficient contrast enhancement on DSA (R1:59, R2:38). Inter-observer agreement was good for DSA (κ = 0.74) and CACT (κ = 0.75), while inter-modality agreement was moderate (R1: κ = 0.46, R2: κ = 0.47). Compared to the reference standard, the inter-modality agreement for CACT was excellent (κ = 0.96), whereas it was inferior for DSA (κ = 0.61) due to the higher number of abnormal consensus findings read as normal on DSA.ConclusionCACT of the pulmonary arteries is feasible and provides additional information to DSA. CACT has the potential to improve the diagnostic work-up of patients with CTEPH and may be particularly useful prior to surgical or interventional treatment.

  13. Digit ratio (2D:4D), sex differences, allometry, and finger length of 12-30-year olds: evidence from the British Broadcasting Corporation (BBC) Internet study.

    PubMed

    Manning, John T

    2010-01-01

    Many studies have reported digit ratio (2D:4D) to be sexually dimorphic, (males lower 2D:4D than females). However, Kratochvíl and Flegr ([2009]: Biol Lett 5:643-646) have suggested that 2D regressed on 4D has an allometric regression line with nonzero Y-intercept that is shared by males and females. Thus, 2D is shorter than expected when 4D is long, and males have lower 2D:4D than females because they have longer fingers. In this study, it is shown that this suggestion may be incorrect because sex differences in slope were not considered. Participants were recruited in an Internet study and had an age range of 12-30 years. The expected sex difference in 2D:4D was found, and the regression of 2D on 4D showed a significant sex difference in slope (males lower than females). A comparison of 10 age groups (12 years, 13 years..., 21-30 years) showed that sexual dimorphism for fingers was age dependent, varying from monomorphic to very dimorphic. Changes in sexual dimorphism of 2D:4D were much less marked, but there was a significant reduction in mean 2D:4D with age. The tendency for slopes of 2D regressed on 4D to be lower in males compared with females was significant in eight age groups. Sex difference in 2D:4D varied across the age groups and was positively related to the magnitude of the difference in female and male slopes. In contrast to the report of Kratochvíl and Flegr, it was found that the regression of 2D on 4D showed sex differences in slope, and such differences gave rise to the sexual dimorphism in 2D:4D.

  14. Calcification content quantification by dual-energy x-ray absorptiometry with a 2D digital radiographic detector

    NASA Astrophysics Data System (ADS)

    Dinten, Jean M.; Robert-Coutant, Christine; Darboux, Michel; Gonon, Georges; Bordy, Thomas

    2003-06-01

    In a previous paper (SPIE Medical Imaging 2001), a dual energy method for bone densitometry using a 2D digital radiographic detector has been presented. In this paper, calcium content quantification performance of the approach is precised. The main challenge is to achieve quantification using scatter-corrected dual energy acquisitions. Therefore a scatter estimation approach, based on an expression of scatter as a functional of the primary flux, has been developed. This expression is derived from the Klein and Nishina equation and includes tabulated scatter level values. The calcium quantification performances are validated on two configurations. A first one is issued from criteria developed by the French "Groupe de Recherche et d'Information sur les Osteoporoses." It is based on the use of a phantom made of five 3mm thick PVC sheets in the form of five steps, representing five different bone mineral density values, included in a lucite container filled with water. Additional lucite plates can be put over the phantom. This phantom has been used for evaluation of quantification robustness versus patient thickness and composition variations, and for accuracy evaluation. The second configuration, composed of small calcified objects (representative of lung nodules), is used for evaluating capacities to differentiate calcified from non calcified nodules and to test calcium content quantification performance.

  15. Digit ratio (2D:4D) in Lithuania once and now: testing for sex differences, relations with eye and hair color, and a possible secular change.

    PubMed

    Voracek, Martin; Bagdonas, Albinas; Dressler, Stefan G

    2007-09-01

    The second-to-fourth digit ratio (2D:4D) is a sexually dimorphic somatic trait and has been proposed as a biomarker for the organizational, i.e., permanent, effects of prenatal testosterone on the human brain. Accordingly, recent research has related 2D:4D to a variety of sex-dependent, hormonally influenced traits and phenotypes. The geographical variation in typical 2D:4D is marked and presently poorly understood. This study presents the first investigation into the 2D:4D ratio in a Baltic country. A contemporary sample of 109 Lithuanian men and women was compared with data from a historical sample of 100 Lithuanian men and women, collected and published in the 1880s and rediscovered only now. The findings included the following lines of evidence: (i) seen in an international perspective, the average 2D:4D in Lithuania is low; (ii) there was a sex difference in 2D:4D in the expected direction in both samples; (iii) a previously adduced hypothesis of an association of lighter eye and hair color with higher, i.e., more feminized, 2D:4D received no support in both samples; and (iv) the average 2D:4D in the contemporary sample was higher than in the historical sample. In view of a hypothesized increase in 2D:4D in modern populations, owing to increased environmental levels of endocrine disruptors such as xenoestrogens, this latter finding appears to be of particular notice. However, because finger-length measurement methods differed across the samples, it cannot be safely ruled out that the apparent time trend in Lithuanian 2D:4D in truth is an artifact. The puzzling geographical pattern seen in the 2D:4D ratio and the question of possible time trends therein deserve further investigations.

  16. Applying a 2D based CAD scheme for detecting micro-calcification clusters using digital breast tomosynthesis images: an assessment

    NASA Astrophysics Data System (ADS)

    Park, Sang Cheol; Zheng, Bin; Wang, Xiao-Hui; Gur, David

    2008-03-01

    Digital breast tomosynthesis (DBT) has emerged as a promising imaging modality for screening mammography. However, visually detecting micro-calcification clusters depicted on DBT images is a difficult task. Computer-aided detection (CAD) schemes for detecting micro-calcification clusters depicted on mammograms can achieve high performance and the use of CAD results can assist radiologists in detecting subtle micro-calcification clusters. In this study, we compared the performance of an available 2D based CAD scheme with one that includes a new grouping and scoring method when applied to both projection and reconstructed DBT images. We selected a dataset involving 96 DBT examinations acquired on 45 women. Each DBT image set included 11 low dose projection images and a varying number of reconstructed image slices ranging from 18 to 87. In this dataset 20 true-positive micro-calcification clusters were visually detected on the projection images and 40 were visually detected on the reconstructed images, respectively. We first applied the CAD scheme that was previously developed in our laboratory to the DBT dataset. We then tested a new grouping method that defines an independent cluster by grouping the same cluster detected on different projection or reconstructed images. We then compared four scoring methods to assess the CAD performance. The maximum sensitivity level observed for the different grouping and scoring methods were 70% and 88% for the projection and reconstructed images with a maximum false-positive rate of 4.0 and 15.9 per examination, respectively. This preliminary study demonstrates that (1) among the maximum, the minimum or the average CAD generated scores, using the maximum score of the grouped cluster regions achieved the highest performance level, (2) the histogram based scoring method is reasonably effective in reducing false-positive detections on the projection images but the overall CAD sensitivity is lower due to lower signal-to-noise ratio

  17. The second to fourth digit ratio (2D:4D) in a Japanese twin sample: heritability, prenatal hormone transfer, and association with sexual orientation.

    PubMed

    Hiraishi, Kai; Sasaki, Shoko; Shikishima, Chizuru; Ando, Juko

    2012-06-01

    The second to fourth digit ratio has been argued to reflect prenatal hormonal influences and is reportedly associated with various psychological and behavioral traits, such as sexual orientation, cognitive abilities, and personality. We examined genetic and environmental influences on the second to fourth digit ratio (2D:4D) using a Japanese twin sample (N=300). The genetic analysis showed substantial additive genetic influences for both right and left hand 2D:4D. The rest of the variance was explained mainly by environmental influences not shared within twin pairs. These findings were, in general, in accordance with preceding studies with primarily Caucasian twin samples. The bivariate genetic analysis revealed that the additive genetic influences were largely shared between the right and left hand, while the non-shared environmental influences were largely unique to each hand. Results from a comparison of opposite-sex and same-sex twins were not significant, although they were in the predicted direction according to the prenatal hormone transfer hypothesis. Female monozygotic twin pairs discordant in sexual orientation showed significant within-pair differences in left hand 2D:4D, where non-heterosexual twins had lower (more masculinized) 2D:4D. In addition, we found that non-heterosexual male MZ twins had larger (more feminized) 2D:4D than their heterosexual co-twins. These results suggest the existence of non-shared environmental influences that affect both 2D:4D and sexual orientation.

  18. Use digital subtraction images of blue-light and near-infrared autofluorescence for the assessment of irregular foveal contour.

    PubMed

    Hua, Rui; Gangwani, Rita; Liu, Limin; Chen, Lei

    2015-01-01

    The aims of this study are to generate subtraction images of blue-light autofluorescence (BL-AF) and near-infrared autofluorescence (NIR-AF) from normal eyes, eyes with full thickness macular holes, and eyes with irregular foveal contour, and to compare their autofluorescence patterns. This retrospective study included 44 normal eyes of 22 health individuals, 32 eyes with full thickness macular holes of 32 patients, and 36 eyes with irregular foveal contour of 36 patients. BL-AF and NIR-AF were obtained from all patients and used to generate subtraction images using the Image J software. The decreased signal of central patch was recorded. The central foveal thickness (CFT) and outer nucleus layer (ONL) thickness of fovea were measured to calculate the ONL thickness/CFT ratio. The subtraction images showed regularly increased signal in the central macula of all normal eyes. In contrast, decreased signal of central patch was detected in all full thickness macular holes eyes and 26 out of 36 eyes with irregular foveal contour. No significant difference of the ONL thickness/CFT ratio (F = 2.32, P = 0.113) was observed between normal and irregular foveal contour eyes with or without decreased signal of central patch. Both regularly increased signal and decreased signal of central patch were detected in the eyes with irregular foveal contour. Our results suggest that subtraction images are useful for the assessment of certain macular conditions by providing supplementary information to the green-light autofluorescence and BL-AF.

  19. Digitized crime scene forensics: automated trace separation of toolmarks on high-resolution 2D/3D CLSM surface data

    NASA Astrophysics Data System (ADS)

    Clausing, Eric; Vielhauer, Claus

    2015-03-01

    Locksmith forensics is an important and very challenging part of classic crime scene forensics. In prior work, we propose a partial transfer to the digital domain, to effectively support forensic experts and present approaches for a full process chain consisting of five steps: Trace positioning, 2D/3D acquisition with a confocal 3D laser scanning microscope, detection by segmentation, trace type determination, and determination of the opening method. In particular the step of trace segmentation on high-resolution 3D surfaces thereby turned out to be the part most difficult to implement. The reason for that is the highly structured and complex surfaces to be analyzed. These surfaces are cluttered with a high number of toolmarks, which overlap and distort each other. In Clausing et al., we present an improved approach for a reliable segmentation of relevant trace regions but without the possibility of separating single traces out of segmented trace regions. However, in our past research, especially features based on shape and dimension turned out to be highly relevant for a fully automated analysis and interpretation. In this paper, we consequently propose an approach for this separation. To achieve this goal, we use our segmentation approach and expand it with a combination of the watershed algorithm with a graph-based analysis. Found sub-regions are compared based on their surface character and are connected or divided depending on their similarity. We evaluate our approach with a test set of about 1,300 single traces on the exemplary locking cylinder component 'key pin' and thereby are able of showing the high suitability of our approach.

  20. Maternal corticosterone but not testosterone level is associated with the ratio of second-to-fourth digit length (2D:4D) in field vole offspring (Microtus agrestis).

    PubMed

    Lilley, Thomas; Laaksonen, Toni; Huitu, Otso; Helle, Samuli

    2010-03-30

    The steroid environment encountered by a foetus can strongly affect its post-natal physiology and behaviour. It has been proposed that steroid concentrations experienced in utero could be estimated from adults by measuring their second-to-fourth digit length ratio (2D:4D). However, there is still little direct evidence that intra-uterine steroid levels affect individual 2D:4D. We examined whether maternal pre-pregnancy testosterone and corticosterone levels (as estimates of intra-uterine testosterone and corticosterone exposure) affected the 2D:4D of pups in non-domesticated field voles (Microtus agrestis), measured by X-rays at the age of weaning (21 days). Furthermore, for the first time in a non-human species, we studied whether testosterone and corticosterone levels correlated with 2D:4D in adult females. We found that the maternal pre-pregnancy level of testosterone was not associated with offspring 2D:4D in either the left or the right paw. Instead, maternal pre-pregnancy corticosterone level was positively correlated with offspring 2D:4D in the right paw, but unrelated to 2D:4D in the left paw. In addition, the 2D:4D of adult females was not associated with either their circulating testosterone or corticosterone levels. Our results suggest that in field voles maternally administered testosterone is not a major determinant of offspring 2D:4D, whereas maternal stress appears to account for some of the variation in the 2D:4D of their offspring.

  1. Tuckshop Subtraction

    ERIC Educational Resources Information Center

    Duke, Roger; Graham, Alan; Johnston-Wilder, Sue

    2007-01-01

    This article describes a recent and successful initiative on teaching place value and the decomposition method of subtraction to pupils having difficulty with this technique in the 9-12-year age range. The aim of the research was to explore whether using the metaphor of selling chews (i.e., sweets) in a tuck shop and developing this into an iconic…

  2. Your fate is in your hands? Handedness, digit ratio (2D:4D), and selection to a national talent development system.

    PubMed

    Baker, Joseph; Kungl, Ann-Marie; Pabst, Jan; Strauß, Bernd; Büsch, Dirk; Schorer, Jörg

    2013-01-01

    Over the past decade a small evidence base has highlighted the potential importance of seemingly innocuous variables related to one's hands, such as hand dominance and the relative length of the second and fourth digits (2D:4D ratio), to success in sport. This study compared 2D:4D digit ratio and handedness among handball players selected to advance in a national talent development system with those not selected. Participants included 480 youth handball players (240 females and 240 males) being considered as part of the talent selection programme for the German Youth National team. Hand dominance and digit ratio were compared to age-matched control data using standard t-tests. There was a greater proportion of left-handers compared to the normal population in males but not in females. There was also a lower digit ratio in both females and males. However, there were no differences between those selected for the next stage of talent development and those not selected on either handedness or digit ratio. These results add support for general effects for both digit ratio and handedness in elite handball; however, these factors seem inadequate to explain talent selection decisions at this level.

  3. Digit ratio (2D:4D) in twins: heritability estimates and evidence for a masculinized trait expression in women from opposite-sex pairs.

    PubMed

    Voracek, Martin; Dressler, Stefan G

    2007-02-01

    The second-to-fourth digit ratio (2D:4D) is sexually dimorphic in humans, such that men on average have a lower 2D:4D than women. This somatic trait has been proposed as a biomarker for the organizational (permanent) effects of prenatal testosterone on the brain and behavior. Over the past few years, an accumulating research program has shown 2D:4D to be related to a multitude of sex-dependent, hormonally influenced psychological and behavioral traits. The present study investigated the 2D:4D ratio of 44 men and 70 women from 36 identical and 21 fraternal twin pairs. Both basic and advanced approaches for estimating heritability concordantly suggested that the trait is substantially heritable. The best-fitting structural equation model indicated that the contributions to individual differences in 2D:4D are 81% additively genetic, 19% nonshared environmental, and 0% shared environmental. Supplemental analyses showed that, consistent with a prediction from sex-hormone transfer theory, women from opposite-sex fraternal twin pairs had significantly lower (more male-typical) 2D:4D than women from same-sex fraternal twin pairs. Directions for research are discussed, such as investigating possible influences of the sex chromosomes on the expression of 2D:4D. Further family studies will be needed to test whether the transmission mode of 2D:4D is consistent with X-linked or Y-linked inheritance. The study of sex chromosome aberrations should indicate whether the presence of additional X or Y chromosomes is associated with 2D:4D levels.

  4. Hand asymmetry in heterosexual and homosexual men and women: relationship to 2D:4D digit ratios and other sexually dimorphic anatomical traits.

    PubMed

    Martin, James T; Puts, David A; Breedlove, S Marc

    2008-02-01

    Sexual differentiation leads to the development of distinctive anatomical structures (e.g., gonads and genitalia); it also produces less obvious anatomical shifts in brain, bones, muscles, etc. This study is a retrospective analysis of growth patterns in the hands in relation to sex and sexual orientation. Using data from three published studies, we analyzed four hand traits in adults: hand width, hand length, second digit length, and fourth digit length. Using these measurements, we derived estimates of trait laterality (directional asymmetry or DA) and developmental instability (fluctuating asymmetry or FA). High FA is a putative indicator of interference with the cellular and molecular mechanisms regulating development. We focused on how these derived variables were related to sex, sexual orientation, and putative markers of early sex steroid exposure (e.g., the second to fourth digit ratio or 2D:4D). Our data point to three principal conclusions. First, individual differences in DA appeared to be a major source of variation in the 2D:4D ratio. The 2D:4D ratios of heterosexual men differed depending on whether they had leftward or rightward DA in their digits. Homosexual women showed the same pattern. Individuals with leftward DA in both digits had lower 2D:4D ratios than those with rightward DA. This effect was absent in heterosexual women and homosexual men. This led to sex differences in 2D:4D and sexual orientation differences in 2D:4D in the leftward DA group, but not in the rightward DA group. The second conclusion was that DA in digit length and hand width varied with sex; women were more likely to have rightward asymmetry than men. Homosexual men and women were generally sex typical in DA. The third conclusion was that homosexuality is unlikely to be a result of increased developmental instability. Although limited in scope, the present evidence actually suggests that homosexuals have lower FA than heterosexuals, raising the question of whether the

  5. A novel approach to background subtraction in contrast-enhanced dual-energy digital mammography with commercially available mammography devices: Polychromaticity correction

    SciTech Connect

    Contillo, Adriano Di Domenico, Giovanni; Cardarelli, Paolo; Gambaccini, Mauro; Taibi, Angelo

    2015-11-15

    Purpose: Contrast-enhanced digital mammography is an image subtraction technique that is able to improve the detectability of lesions in dense breasts. One of the main sources of error, when the technique is performed by means of commercial mammography devices, is represented by the intrinsic polychromaticity of the x-ray beams. The aim of the work is to propose an iterative procedure, which only assumes the knowledge of a small set of universal quantities, to take into account the polychromaticity and correct the subtraction results accordingly. Methods: In order to verify the procedure, it has been applied to an analytical simulation of a target containing a contrast medium and to actual radiographs of a breast phantom containing cavities filled with a solution of the same medium. Results: The reconstructed densities of contrast medium were compared, showing very good agreement between the theoretical predictions and the experimental results already after the first iteration. Furthermore, the convergence of the iterative procedure was studied, showing that only a small number of iterations is necessary to reach limiting values. Conclusions: The proposed procedure represents an efficient solution to the polychromaticity issue, qualifying therefore as a viable alternative to inverse-map functions.

  6. Elementary subtraction.

    PubMed

    Seyler, Donald J; Kirk, Elizabeth P; Ashcraft, Mark H

    2003-11-01

    Four experiments examined performance on the 100 "basic facts" of subtraction and found a discontinuous "stair step" function for reaction times and errors beginning with 11 - n facts. Participants' immediate retrospective reports of nonretrieval showed the same pattern in Experiment 3. The degree to which elementary subtraction depends on working memory (WM) was examined in a dual-task paradigm in Experiment 4. The reconstructive processing used with larger basic facts was strongly associated with greater WM disruption, as evidenced by errors in the secondary task: this was especially the case for participants with lower WM spans. The results support the R. S. Siegler and E. Jenkins (1989) distribution of associations model, although discriminating among the alternative solution processes appears to be a serious challenge.

  7. The effect of system geometry and dose on the threshold detectable calcification diameter in 2D-mammography and digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Hadjipanteli, Andria; Elangovan, Premkumar; Mackenzie, Alistair; Looney, Padraig T.; Wells, Kevin; Dance, David R.; Young, Kenneth C.

    2017-02-01

    Digital breast tomosynthesis (DBT) is under consideration to replace or to be used in combination with 2D-mammography in breast screening. The aim of this study was the comparison of the detection of microcalcification clusters by human observers in simulated breast images using 2D-mammography, narrow angle (15°/15 projections) and wide angle (50°/25 projections) DBT. The effects of the cluster height in the breast and the dose to the breast on calcification detection were also tested. Simulated images of 6 cm thick compressed breasts were produced with and without microcalcification clusters inserted, using a set of image modelling tools for 2D-mammography and DBT. Image processing and reconstruction were performed using commercial software. A series of 4-alternative forced choice (4AFC) experiments was conducted for signal detection with the microcalcification clusters as targets. Threshold detectable calcification diameter was found for each imaging modality with standard dose: 2D-mammography: 2D-mammography (165  ±  9 µm), narrow angle DBT (211  ±  11 µm) and wide angle DBT (257  ±  14 µm). Statistically significant differences were found when using different doses, but different geometries had a greater effect. No differences were found between the threshold detectable calcification diameters at different heights in the breast. Calcification clusters may have a lower detectability using DBT than 2D imaging.

  8. Tests of variable-band multilayers designed for investigating optimal signal-to-noise vs artifact signal ratios in Dual-Energy Digital Subtraction Angiography (DDSA) imaging systems

    SciTech Connect

    Boyers, D.; Ho, A.; Li, Q.; Piestrup, M.; Rice, M.; Tatchyn, R.

    1993-08-01

    In recent work, various design techniques were applied to investigate the feasibility of controlling the bandwidth and bandshape profiles of tungsten/boron-carbon (W/B{sub 4}C) and tungsten/silicon (W/Si) multilayers for optimizing their performance in synchrotron radiation based angiographical imaging systems at 33 keV. Varied parameters included alternative spacing geometries, material thickness ratios, and numbers of layer pairs. Planar optics with nominal design reflectivities of 30%--94% and bandwidths ranging from 0.6%--10% were designed at the Stanford Radiation Laboratory, fabricated by the Ovonic Synthetic Materials Company, and characterized on Beam Line 4-3 at the Stanford Synchrotron Radiation Laboratory, in this paper we report selected results of these tests and review the possible use of the multilayers for determining optimal signal to noise vs. artifact signal ratios in practical Dual-Energy Digital Subtraction Angiography systems.

  9. Behavior subtraction.

    PubMed

    Jodoin, Pierre-Marc; Saligrama, Venkatesh; Konrad, Janusz

    2012-09-01

    Background subtraction has been a driving engine for many computer vision and video analytics tasks. Although its many variants exist, they all share the underlying assumption that photometric scene properties are either static or exhibit temporal stationarity. While this works in many applications, the model fails when one is interested in discovering changes in scene dynamics instead of changes in scene's photometric properties; the detection of unusual pedestrian or motor traffic patterns are but two examples. We propose a new model and computational framework that assume the dynamics of a scene, not its photometry, to be stationary, i.e., a dynamic background serves as the reference for the dynamics of an observed scene. Central to our approach is the concept of an event, which we define as short-term scene dynamics captured over a time window at a specific spatial location in the camera field of view. Unlike in our earlier work, we compute events by time-aggregating vector object descriptors that can combine multiple features, such as object size, direction of movement, speed, etc. We characterize events probabilistically, but use low-memory, low-complexity surrogates in a practical implementation. Using these surrogates amounts to behavior subtraction, a new algorithm for effective and efficient temporal anomaly detection and localization. Behavior subtraction is resilient to spurious background motion, such as due to camera jitter, and is content-blind, i.e., it works equally well on humans, cars, animals, and other objects in both uncluttered and highly cluttered scenes. Clearly, treating video as a collection of events rather than colored pixels opens new possibilities for video analytics.

  10. The Left Hand Second to Fourth Digit Ratio (2D:4D) Does Not Discriminate World-Class Female Gymnasts from Age Matched Sedentary Girls

    PubMed Central

    Peeters, Maarten W.; Claessens, Albrecht L.

    2012-01-01

    Introduction The second to fourth-digit-ratio (2D:4D), a putative marker of prenatal androgen action and a sexually dimorphic trait, has been suggested to be related with sports performance, although results are not univocal. If this relation exists, it is most likely to be detected by comparing extreme groups on the continuum of sports performance. Methods In this study the 2D:4D ratio of world-class elite female artistic gymnasts (n = 129), competing at the 1987 Rotterdam World-Championships was compared to the 2D:4D ratio of sedentary age-matched sedentary girls (n = 129), alongside with other anthropometric characteristics including other sexually dimorphic traits such as an androgyny index (Bayer & Bayley) and Heath-Carter somatotype components (endomorphy, mesomorphy, ectomorphy) using AN(C)OVA. 2D:4D was measured on X-rays of the left hand. Results Left hand 2D:4D digit ratio in world class elite female gymnasts (0.921±0.020) did not differ significantly from 2D:4D in age-matched sedentary girls (0.924±0.018), either with or without inclusion of potentially confounding covariates such as skeletal age, height, weight, somatotype components or androgyny index. Height (161.9±6.4 cm vs 155.4±6.6 cm p<0.01), weight (53.9±7.6 kg vs 46.2 6.3 kg p<0.01), BMI (20.51±2.41 kg/m2 vs 19.05±1.56 kg/m2), skeletal age (15.2±1.1 y vs 14.5±1.2 y p>0.01), somatotype components (4.0/3.0/2.9 vs 1.7/3.7/3.2 for endomorphy (p<0.01), mesomorphy (p<0.01) and ectomorphy (p<0.05) respectively) all differed significantly between sedentary girls and elite gymnasts. As expressed by the androgyny index, gymnasts have, on average, broader shoulders relative to their hips, compared to the reference sample. Correlations between the 2D:4D ratio and chronological age, skeletal age, and the anthropometric characteristics are low and not significant. Conclusion Although other anthropometric characteristics of sexual dimorphism were significantly different between the two samples

  11. SEX DIFFERENCES IN DIGIT RATIO (2D:4D) AMONG MILITARY AND CIVIL COHORTS AT A MILITARY ACADEMY IN WROCŁAW, POLAND.

    PubMed

    Kociuba, Marek; Kozieł, Slawomir; Chakraborty, Raja

    2016-09-01

    The ratio of second-to-fourth digit length (2D:4D), which is generally higher in women compared with men, is a putative marker of prenatal testosterone (PT) exposure. Lower 2D:4D is linked with greater physical ability and strength, better sporting performance and a propensity towards jobs demanding greater physical ability. The objectives of this paper were to examine the sexual dimorphism in 2D:4D in both hands 1and compare this dimorphism in the students of military and civil courses at the General Kuściuszko Military Academy of Land Forces in Wrocław. The cross-sectional study compared 59 female and 118 male students from the military courses and 53 females and 64 male students from the civil courses. Besides calculating 2D:4D (2D/4D) for each hand, height and weight were also recorded. Physical fitness and endurance were assessed using Eurofit tests. Handgrip strength was measured using a standardized isometric dynamometer. In almost all physical tests, students in the military cohort showed highly significant greater physical ability and strength (e.g. handgrip strength) when compared with the civil cohort. Male participants had a significantly lower 2D:4D than females for each hand, as well as for the average value for both hands. The sexual dimorphism was, however, a little more pronounced in the right hand than in the left. Both sex and course type were significant predictors of 2D:4D. There were significant interactions between sex and the student type. Among females, but not in males, the military cohort had a significantly lower, i.e. more 'masculine', 2D:4D for the left hand and right hand and average for both hands (t=3.290, p<0.001) than the civil cohort. This was not the case in males. However, the sex difference in 2D:4D was only significant among the civil students, and not among the military cadets. In conclusion, higher PT exposure, as represented by a lower 2D:4D, among the Polish females might be an indicator of relatively increased physical

  12. Real-time out-of-plane artifact subtraction tomosynthesis imaging using prior CT for scanning beam digital x-ray system

    SciTech Connect

    Wu, Meng; Fahrig, Rebecca

    2014-11-01

    Purpose: The scanning beam digital x-ray system (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis in multiple planes. This system could be used for image guidance during lung nodule biopsy. However, the reconstructed images suffer from strong out-of-plane artifact due to the small tomographic angle of the system. Methods: The authors propose an out-of-plane artifact subtraction tomosynthesis (OPAST) algorithm that utilizes a prior CT volume to augment the run-time image processing. A blur-and-add (BAA) analytical model, derived from the project-to-backproject physical model, permits the generation of tomosynthesis images that are a good approximation to the shift-and-add (SAA) reconstructed image. A computationally practical algorithm is proposed to simulate images and out-of-plane artifacts from patient-specific prior CT volumes using the BAA model. A 3D image registration algorithm to align the simulated and reconstructed images is described. The accuracy of the BAA analytical model and the OPAST algorithm was evaluated using three lung cancer patients’ CT data. The OPAST and image registration algorithms were also tested with added nonrigid respiratory motions. Results: Image similarity measurements, including the correlation coefficient, mean squared error, and structural similarity index, indicated that the BAA model is very accurate in simulating the SAA images from the prior CT for the SBDX system. The shift-variant effect of the BAA model can be ignored when the shifts between SBDX images and CT volumes are within ±10 mm in the x and y directions. The nodule visibility and depth resolution are improved by subtracting simulated artifacts from the reconstructions. The image registration and OPAST are robust in the presence of added respiratory motions. The dominant artifacts in the subtraction images are caused by the mismatches between the real object and the prior CT

  13. A Critical Review of the Research on the Extreme Male Brain Theory and Digit Ratio (2D:4D)

    ERIC Educational Resources Information Center

    Teatero, Missy L.; Netley, Charles

    2013-01-01

    Boys are more likely than girls to be diagnosed with an autism spectrum disorder (ASD). The extreme male brain (EMB) theory of ASD suggests that fetal testosterone (FT) exposure may underlie sex differences in autistic traits. A link between the organizational effects of FT on the brain and ASD is often drawn based on research using digit ratio…

  14. High-accuracy 2D digital image correlation measurements using low-cost imaging lenses: implementation of a generalized compensation method

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Yu, Liping; Wu, Dafang

    2014-02-01

    The ideal pinhole imaging model commonly assumed for an ordinary two-dimensional digital image correlation (2D-DIC) system is neither perfect nor stable because of the existence of small out-of-plane motion of the test sample surface that occurred after loading, small out-of-plane motion of the sensor target due to temperature variation of a camera and unavoidable geometric distortion of an imaging lens. In certain cases, these disadvantages can lead to significant errors in the measured displacements and strains. Although a high-quality bilateral telecentric lens has been strongly recommended to be used in the 2D-DIC system as an essential optical component to achieve high-accuracy measurement, it is not generally applicable due to its fixed field of view, limited depth of focus and high cost. To minimize the errors associated with the imperfectness and instability of a common 2D-DIC system using a low-cost imaging lens, a generalized compensation method using a non-deformable reference sample is proposed in this work. With the proposed method, the displacement of the reference sample rigidly attached behind the test sample is first measured using 2D-DIC, and then it is fitted using a parametric model. The fitted parametric model is then used to correct the displacements of the deformed sample to remove the influences of these unfavorable factors. The validity of the proposed compensation method is first verified using out-of-plane translation, out-of-plane rotation, in-plane translation tests and their combinations. Uniaxial tensile tests of an aluminum specimen were also performed to quantitatively examine the strain accuracy of the proposed compensation method. Experiments show that the proposed compensation method is an easy-to-implement yet effective technique for achieving high-accuracy deformation measurement using an ordinary 2D-DIC system.

  15. A fully-automatic locally adaptive thresholding algorithm for blood vessel segmentation in 3D digital subtraction angiography.

    PubMed

    Boegel, Marco; Hoelter, Philip; Redel, Thomas; Maier, Andreas; Hornegger, Joachim; Doerfler, Arnd

    2015-01-01

    Subarachnoid hemorrhage due to a ruptured cerebral aneurysm is still a devastating disease. Planning of endovascular aneurysm therapy is increasingly based on hemodynamic simulations necessitating reliable vessel segmentation and accurate assessment of vessel diameters. In this work, we propose a fully-automatic, locally adaptive, gradient-based thresholding algorithm. Our approach consists of two steps. First, we estimate the parameters of a global thresholding algorithm using an iterative process. Then, a locally adaptive version of the approach is applied using the estimated parameters. We evaluated both methods on 8 clinical 3D DSA cases. Additionally, we propose a way to select a reference segmentation based on 2D DSA measurements. For large vessels such as the internal carotid artery, our results show very high sensitivity (97.4%), precision (98.7%) and Dice-coefficient (98.0%) with our reference segmentation. Similar results (sensitivity: 95.7%, precision: 88.9% and Dice-coefficient: 90.7%) are achieved for smaller vessels of approximately 1mm diameter.

  16. Contexts for Column Addition and Subtraction

    ERIC Educational Resources Information Center

    Lopez Fernandez, Jorge M.; Velazquez Estrella, Aileen

    2011-01-01

    In this article, the authors discuss their approach to column addition and subtraction algorithms. Adapting an original idea of Paul Cobb and Erna Yackel's from "A Contextual Investigation of Three-Digit Addition and Subtraction" related to packing and unpacking candy in a candy factory, the authors provided an analogous context by…

  17. Efficacy of sclerotherapy with radio-opaque foam guided by digital subtraction angiography for the treatment of complex venous malformations of the head and neck.

    PubMed

    Chen, A-W; Liu, Y-R; Li, K; Zhang, K; Wang, T; Liu, S-H

    2015-11-01

    Our aim was to evaluate the efficacy of sclerotherapy using radio-opaque foam and guided by digital subtraction angiography (DSA) for complex venous malformations in the head and neck in 11 selected patients between 2011 and 2013. The sclerosing foam was manufactured by the classic Tessari method and consisted of air, 1% polidocanol, and radio-opaque media iopromide (Ultravist(®)300) in a ratio of 7:2:1. We recorded the site and size of the lesion, time and duration of treatment, and therapeutic response. The lesions were on the face, cheek, temporal region, parotid region, neck, tongue, floor of the mouth, parapharyngeal space, and soft palate. The sclerosing foam was radio-opaque under DSA, and the mean (range) dose was 21 (3-65) ml. A mean (range) of 4 (2-7) treatments was required, and 10 of the 11 patients responded well. In 4 of the 11 cases the lesion resolved completely and in 6 there was a good response. Only one lesion recurred. Early complications included immediate swelling in injected areas, snoring, and pain on swallowing, but there were no air emboli or signs of cutaneous necrosis, and the complications were self-limiting. DSA-guided sclerotherapy with radio-opaque foam was safe and effective for the treatment of complex vascular malformations of the head and neck.

  18. Flow modification in canine intracranial aneurysm model by an asymmetric stent: studies using digital subtraction angiography (DSA) and image-based computational fluid dynamics (CFD) analyses

    NASA Astrophysics Data System (ADS)

    Hoi, Yiemeng; Ionita, Ciprian N.; Tranquebar, Rekha V.; Hoffmann, Kenneth R.; Woodward, Scott H.; Taulbee, Dale B.; Meng, Hui; Rudin, Stephen

    2006-03-01

    An asymmetric stent with low porosity patch across the intracranial aneurysm neck and high porosity elsewhere is designed to modify the flow to result in thrombogenesis and occlusion of the aneurysm and yet to reduce the possibility of also occluding adjacent perforator vessels. The purposes of this study are to evaluate the flow field induced by an asymmetric stent using both numerical and digital subtraction angiography (DSA) methods and to quantify the flow dynamics of an asymmetric stent in an in vivo aneurysm model. We created a vein-pouch aneurysm model on the canine carotid artery. An asymmetric stent was implanted at the aneurysm, with 25% porosity across the aneurysm neck and 80% porosity elsewhere. The aneurysm geometry, before and after stent implantation, was acquired using cone beam CT and reconstructed for computational fluid dynamics (CFD) analysis. Both steady-state and pulsatile flow conditions using the measured waveforms from the aneurysm model were studied. To reduce computational costs, we modeled the asymmetric stent effect by specifying a pressure drop over the layer across the aneurysm orifice where the low porosity patch was located. From the CFD results, we found the asymmetric stent reduced the inflow into the aneurysm by 51%, and appeared to create a stasis-like environment which favors thrombus formation. The DSA sequences also showed substantial flow reduction into the aneurysm. Asymmetric stents may be a viable image guided intervention for treating intracranial aneurysms with desired flow modification features.

  19. NOTE: Suppression of high-density artefacts in x-ray CT images using temporal digital subtraction with application to cryotherapy

    NASA Astrophysics Data System (ADS)

    Baissalov, R.; Sandison, G. A.; Donnelly, B. J.; Saliken, J. C.; McKinnon, J. G.; Muldrew, K.; Rewcastle, J. C.

    2000-05-01

    Image guidance in cryotherapy is usually performed using ultrasound. Although not currently in routine clinical use, x-ray CT imaging is an alternative means of guidance that can display the full 3D structure of the iceball, including frozen and unfrozen regions. However, the quality of x-ray CT images is compromised by the presence of high-density streak artefacts. To suppress these artefacts we applied temporal digital subtraction (TDS). This TDS method has the added advantage of improving the grey-scale contrast between frozen and unfrozen tissue in the CT images. Two sets of CT images were taken of a phantom material, cryoprobes and a urethral warmer (UW) before and during the cryoprobe freeze cycle. The high-density artefacts persisted in both image sets. TDS was performed on these two image sets using the corresponding mask image of unfrozen material and the same geometrical configuration of the cryoprobes and the UW. The resultant difference image had a significantly reduced artefact content. Thus TDS can be used to significantly suppress or eliminate high-density CT streak artefacts without reducing the metallic content of the cryoprobes. In vivo study needs to be conducted to establish the utility of this TDS procedure for CT assisted prostate or liver cryotherapy. Applying TDS in x-ray CT guided cryotherapy will facilitate estimation of the number and location of all frozen and unfrozen regions, potentially making cryotherapy safer and less operator dependent.

  20. Effect of image processing version on detection of non-calcification cancers in 2D digital mammography imaging

    NASA Astrophysics Data System (ADS)

    Warren, L. M.; Cooke, J.; Given-Wilson, R. M.; Wallis, M. G.; Halling-Brown, M.; Mackenzie, A.; Chakraborty, D. P.; Bosmans, H.; Dance, D. R.; Young, K. C.

    2013-03-01

    Image processing (IP) is the last step in the digital mammography imaging chain before interpretation by a radiologist. Each manufacturer has their own IP algorithm(s) and the appearance of an image after IP can vary greatly depending upon the algorithm and version used. It is unclear whether these differences can affect cancer detection. This work investigates the effect of IP on the detection of non-calcification cancers by expert observers. Digital mammography images for 190 patients were collected from two screening sites using Hologic amorphous selenium detectors. Eighty of these cases contained non-calcification cancers. The images were processed using three versions of IP from Hologic - default (full enhancement), low contrast (intermediate enhancement) and pseudo screen-film (no enhancement). Seven experienced observers inspected the images and marked the location of regions suspected to be non-calcification cancers assigning a score for likelihood of malignancy. This data was analysed using JAFROC analysis. The observers also scored the clinical interpretation of the entire case using the BSBR classification scale. This was analysed using ROC analysis. The breast density in the region surrounding each cancer and the number of times each cancer was detected were calculated. IP did not have a significant effect on the radiologists' judgment of the likelihood of malignancy of individual lesions or their clinical interpretation of the entire case. No correlation was found between number of times each cancer was detected and the density of breast tissue surrounding that cancer.

  1. TU-CD-207-03: Time Evolution of Texture Parameters of Subtracted Images Obtained by Contrast-Enhanced Digital Mammography (CEDM)

    SciTech Connect

    Mateos, M-J; Brandan, M-E; Gastelum, A; Marquez, J

    2015-06-15

    Purpose: To evaluate the time evolution of texture parameters, based on the gray level co-occurrence matrix (GLCM), in subtracted images of 17 patients (10 malignant and 7 benign) subjected to contrast-enhanced digital mammography (CEDM). The goal is to determine the sensitivity of texture to iodine uptake at the lesion, and its correlation (or lack of) with mean-pixel-value (MPV). Methods: Acquisition of clinical images followed a single-energy CEDM protocol using Rh/Rh/48 kV plus external 0.5 cm Al from a Senographe DS unit. Prior to the iodine-based contrast medium (CM) administration a mask image was acquired; four CM images were obtained 1, 2, 3, and 5 minutes after CM injection. Temporal series were obtained by logarithmic subtraction of registered CM minus mask images.Regions of interest (ROI) for the lesion were drawn by a radiologist and the texture was analyzed. GLCM was evaluated at a 3 pixel distance, 0° angle, and 64 gray-levels. Pixels identified as registration errors were excluded from the computation. 17 texture parameters were chosen, classified according to similarity into 7 groups, and analyzed. Results: In all cases the texture parameters within a group have similar dynamic behavior. Two texture groups (associated to cluster and sum mean) show a strong correlation with MPV; their average correlation coefficient (ACC) is r{sup 2}=0.90. Other two groups (contrast, homogeneity) remain constant with time, that is, a low-sensitivity to CM uptake. Three groups (regularity, lacunarity and diagonal moment) are sensitive to CM uptake but less correlated with MPV; their ACC is r{sup 2}=0.78. Conclusion: This analysis has shown that, at least groups associated to regularity, lacunarity and diagonal moment offer dynamical information additional to the mean pixel value due to the presence of CM at the lesion. The next step will be the analysis in terms of the lesion pathology. Authors thank PAPIIT-IN105813 for support. Consejo Nacional de Ciencia Y

  2. Polygenic inheritance of Tourette syndrome, stuttering, attention deficit hyperactivity, conduct, and oppositional defiant disorder: The additive and subtractive effect of the three dopaminergic genes - DRD2, D{beta}H, and DAT1

    SciTech Connect

    Comings, D.E.; Wu, S.; Chiu, C.; Ring, R.H.; Gade, R.; Ahn, C.; Dietz, G.; Muhleman, D.

    1996-05-31

    Polymorphisms of three different dopaminergic genes, dopamine D{sub 2} receptor (DRD2), dopamine {beta}-hydroxylase (D{beta}H), and dopamine transporter (DAT1), were examined in Tourette syndrome (TS) probands, their relatives, and controls. Each gene individually showed a significant correlation with various behavioral variables in these subjects. The additive and subtractive effects of the three genes were examined by genotyping all three genes in the same set of subjects. For 9 of 20 TS associated comorbid behaviors there was a significant linear association between the degree of loading for markers of three genes and the mean behavior scores. The behavior variables showing the significant associations were, in order, attention deficit hyperactivity disorder (ADHD), stuttering, oppositional defiant, tics, conduct, obsessive-compulsive, mania, alcohol abuse, and general anxiety - behaviors that constitute the most overt clinical aspects of TS. For 16 of the 20 behavior scores there was a linear progressive decrease in the mean score with progressively lesser loading for the three gene markers. These results suggest that TS, ADHD, stuttering, oppositional defiant and conduct disorder, and other behaviors associated with TS, are polygenic, due in part to these three dopaminergic genes, and that the genetics of other polygenic psychiatric disorders may be deciphered using this technique. 144 refs., 2 figs., 13 tabs.

  3. Value of Single-Dose Contrast-Enhanced Magnetic Resonance Angiography Versus Intraarterial Digital Subtraction Angiography in Therapy Indications in Abdominal and Iliac Arteries

    SciTech Connect

    Schaefer, Philipp J. Schaefer, Fritz K. W.; Mueller-Huelsbeck, Stefan; Both, Markus; Heller, Martin; Jahnke, Thomas

    2007-06-15

    The objective of the study was to prove the value of single-dose contrast-enhanced magnetic resonance angiography [three-dimensional (3D) ceMRA] in abdominal and iliac arteries versus the reference standard intra-arterial digital subtraction angiography (i.a.DSA) when indicating a therapy. Patients suspected of having abdominal or iliac artery stenosis were included in this study. A positive vote of the local Ethics Committee was given. After written informed consent was obtained, 37 patients were enrolled, of which 34 were available for image evaluation. Both 3D ceMRA and i.a. DSA were performed for each patient. The dosage for 3D ceMRA was 0.1 mmol/kg body weight in a 1.5-T scanner with a phased-array coil. The parameters of the 3D-FLASH sequence were as follows: TR/TE 4.6/1.8 ms, effective thickness 3.5 mm, matrix 512 x 200, flip angle 30{sup o}, field of view 420 mm, TA 23 s, coronal scan orientation. Totally, 476 vessel segments were evaluated for stenosis degree by two radiologists in a consensus fashion in a blinded read. For each patient, a therapy was proposed, if clinically indicated. Sensitivity, specificity, positive and negative predictive values, and accuracy for stenoses {>=}50% were 68%, 92%, 44%, 97%, and 90%, respectively. In 13/34 patients, a discrepancy was found concerning therapy decisions based on MRA findings versus therapy decisions based on the reference standard DSA. The results showed that the used MRA imaging technique of abdominal and iliac arteries is not competitive to i.a. DSA, with a high rate of misinterpretation of the MRAs resulting in incorrect therapies.

  4. Implication of cerebral circulation time in intracranial stenosis measured by digital subtraction angiography on cerebral blood flow estimation measured by arterial spin labeling

    PubMed Central

    Jann, Kay; Hauf, Martinus; Kellner-Weldon, Frauke; El-Koussy, Marwan; Kiefer, Claus; Federspiel, Andrea; Schroth, Gerhard

    2016-01-01

    PURPOSE Arterial spin labeling (ASL) magnetic resonance imaging to assess cerebral blood flow (CBF) is of increasing interest in basic research and in diagnostic applications, since ASL provides similar information to positron emission tomography about perfusion in vascular territories. However, in patients with steno-occlusive arterial disease (SOAD), CBF as measured by ASL might be underestimated due to delayed bolus arrival, and thus increased spin relaxation. We aimed to estimate the extent to which bolus arrival time (BAT) was delayed in patients with SOAD and whether this resulted in underestimation of CBF. METHODS BAT was measured using digital subtraction angiography (DSA) in ten patients with high-grade stenosis of the middle carotid artery (MCA). Regional CBF was assessed with pseudocontinuous ASL. RESULTS BATs were nonsignificantly prolonged in the stenotic hemisphere 4.1±2.0 s compared with the healthy hemisphere 3.3±0.9 s; however, there were substantial individual differences on the stenotic side. CBF in the anterior and posterior MCA territories were significantly reduced on the stenotic hemisphere. Severe stenosis was correlated with longer BAT and lower quantified CBF. CONCLUSION ASL-based perfusion measurement involves a race between the decay of the spins and the delivery of labeled blood to the region of interest. Special caution is needed when interpreting CBF values quantified in individuals with altered blood flow and delayed circulation times. However, from a clinician’s point of view, an accentuation of hypoperfusion (even if caused by underestimation of CBF due to prolonged BATs) might be desirable since it indexes potentially harmful physiologic deficits. PMID:27411297

  5. Structural and functional changes relevant to maxillary arterial flow observed during computed tomography and nonselective digital subtraction angiography in cats with the mouth closed and opened.

    PubMed

    Scrivani, Peter V; Martin-Flores, Manuel; van Hatten, Ruth; Bezuidenhout, Abraham J

    2014-01-01

    Some cats develop blindness during procedures with mouth gags, which possibly relates to maxillary arterial occlusion by opening the mouth. Our first aim was to use computed tomography (CT) to describe how vascular compression is possible based on morphologic differences between mouth positions. Our second aim was to use nonselective digital subtraction angiography to assess whether opening the mouth induces collateral circulation. Six healthy cats were examined. During CT, the maxillary artery coursed between the angular process of the mandible and the rostrolateral wall of the tympanic bulla. The median distance between these structures was shorter when the mouth was opened (left, 4.3 mm; right, 3.6 mm) vs. closed (left, 6.9 mm; right, 7.1 mm). Additionally, the distance was shorter on the side ipsilateral to the gag (P = 0.03). During nonselective angiography, with the mouth closed, there was strong sequential opacification of the external carotid arteries, maxillary arteries, maxillary retia mirabilia, cerebral arterial circle, and basilar artery. Additionally, there was uniform opacification of the cerebrum and cerebellum. With the mouth opened, opacification of the maxillary arteries (rostral to the angular processes) was reduced in all cats, the cerebral arterial circle and basilar artery had simultaneous opacification in four of six (67%) cats, and the cerebrum had reduced opacification compared to the cerebellum in four of six (67%). In conclusion, the maxillary arteries are situated such that they can be compressed when opening the mouth. Opening the mouth did not consistently induce collateral circulation sufficient to produce comparable cerebral opacification as when the mouth was closed.

  6. Comparison of extracranial artery stenosis and cerebral blood flow, assessed by quantitative magnetic resonance, using digital subtraction angiography as the reference standard

    PubMed Central

    Cai, Jingjing; Wu, Dan; Mo, Yongqian; Wang, Anxin; Hu, Shiyu; Ren, Lijie

    2016-01-01

    Abstract Extracranial arteriosclerosis usually indicates a high risk of ischemic stroke. In the past, a clinical decision following diagnosis was dependent on the percentage of vessel stenosis determined by an invasive technique. We aimed to develop a quantitative magnetic resonance (QMR) technique to evaluate artery structure and cerebral hemodynamics noninvasively. QMR and digital subtraction angiography (DSA) were performed in 67 patients with suspected cerebral vascular disease at our hospital. Accuracy, sensitivity, positive predictive values (PPVs), negative predictive values (NPVs), and Pearson correlation coefficient of QMR were calculated and compared for the detection and measurement of vascular stenoses using DSA as a gold standard. For patients with unilateral artery stenosis, quantitative cerebral blood flow (CBF) was measured by QMR in ipsilateral and contralateral hemispheres. Among 67 subjects (male 54, female 12), 201 stenoses were detected by QMR and DSA. QMR measuring the degree of stenosis and lesion length was in good correlation with the results obtained by DSA (r2 = 0.845, 0.721, respectively). As for artery stenosis, PPV and NPV of QMR were 89.55% and 95.71%, respectively. As for severe stenosis, sensitivity and specificity of QMR were 82.3% and 86.0% with DSA as a reference. For subjects with unilateral carotid stenosis, CBF in basal ganglia decreased significantly (P < 0.001) compared with the contralateral one in symptomatic and asymptomatic groups. For subjects with moderate stenosis (50–79%), CBF of temporal and basal ganglia was decreased compared with the contralateral ganglia. However, CBF in subjects with severe stenosis or occlusion in the basal ganglia was mildly elevated compared with the contralateral ganglia (P < 0.001). In our study, a good correlation was found between QMR and DSA when measuring artery stenosis and CBF. QMR may become an important method for measuring artery stenosis and cerebral hemodynamics in

  7. Value of single-dose contrast-enhanced magnetic resonance angiography versus intraarterial digital subtraction angiography in therapy indications in abdominal and iliac arteries.

    PubMed

    Schaefer, Philipp J; Schaefer, Fritz K W; Mueller-Huelsbeck, Stefan; Both, Markus; Heller, Martin; Jahnke, Thomas

    2007-01-01

    The objective of the study was to prove the value of single-dose contrast-enhanced magnetic resonance angiography [three-dimensional (3D) ceMRA] in abdominal and iliac arteries versus the reference standard intra-arterial digital subtraction angiography (i.a.DSA) when indicating a therapy. Patients suspected of having abdominal or iliac artery stenosis were included in this study. A positive vote of the local Ethics Committe was given. After written informed consent was obtained, 37 patients were enrolled, of which 34 were available for image evaluation. Both 3D ceMRA and i.a. DSA were performed for each patient. The dosage for 3D ceMRA was 0.1 mmol/kg body weight in a 1.5-T scanner with a phased-array coil. The parameters of the 3D-FLASH sequence were as follows: TR/TE 4.6/1.8 ms, effective thickness 3.5 mm, matrix 512 x 200, flip angle 30 degrees , field of view 420 mm, TA 23 s, coronal scan orientation. Totally, 476 vessel segments were evaluated for stenosis degree by two radiologists in a consensus fashion in a blinded read. For each patient, a therapy was proposed, if clinically indicated. Sensitivity, specificity, positive and negative predictive values, and accuracy for stenoses > or = 50% were 68%, 92%, 44%, 97%, and 90%, respectively. In 13/34 patients, a discrepancy was found concerning therapy decisions based on MRA findings versus therapy decisions based on the reference standard DSA. The results showed that the used MRA imaging technique of abdominal and iliac arteries is not competitive to i.a. DSA, with a high rate of misinterpretation of the MRAs resulting in incorrect therapies.

  8. Nonenhanced peripheral MR-angiography (MRA) at 3 Tesla: evaluation of quiescent-interval single-shot MRA in patients undergoing digital subtraction angiography.

    PubMed

    Wagner, Moritz; Knobloch, Gesine; Gielen, Martin; Lauff, Marie-Teres; Romano, Valentina; Hamm, Bernd; Kröncke, Thomas

    2015-04-01

    Quiescent-interval single-shot MRA (QISS-MRA) is a promising nonenhanced imaging technique for assessment of peripheral arterial disease (PAD). Previous studies at 3 Tesla included only very limited numbers of patients for correlation of QISS-MRA with digital subtraction angiography (DSA) as standard of reference (SOR). The aim of this prospective institutional review board-approved study was to compare QISS-MRA at 3 Tesla with DSA in a larger patient group. Our study included 32 consecutive patients who underwent QISS-MRA, contrast-enhanced MRA (CE-MRA), and DSA. Two readers independently performed a per-segment evaluation of QISS-MRA and CE-MRA for image quality and identification of non-significant stenosis (<50%) versus significant stenosis (50-100%). The final dataset included 1,027 vessel segments. Reader 1 and 2 rated image quality as diagnostic in 96.8 and 98.0% of the vessel segments on QISS-MRA and in 99.3 and 98.4% of the vessel segments on CE-MRA, respectively. DSA was available for 922 segments and detected significant stenosis in 133 segments (14.4%). Consensus reading yielded the following diagnostic parameters for QISS-MRA versus CE-MRA: sensitivity: 83.5% (111/133) versus 82.7% (110/133), p = 0.80; specificity: 93.9% (741/789) versus 95.7% (755/789), p = 0.25; and diagnostic accuracy: 92.4% (852/922) versus 93.8% (865/922), p = 0.35. In conclusion, using DSA as SOR, QISS-MRA and CE-MRA at 3 Tesla showed similar diagnostic accuracy in the assessment of PAD. A limitation of QISS-MRA was the lower rate of assessable vessel segments compared to CE-MRA.

  9. Computer-aided detection of masses in digital tomosynthesis mammography: combination of 3D and 2D detection information

    NASA Astrophysics Data System (ADS)

    Chan, Heang-Ping; Wei, Jun; Zhang, Yiheng; Moore, Richard H.; Kopans, Daniel B.; Hadjiiski, Lubomir; Sahiner, Berkman; Roubidoux, Marilyn A.; Helvie, Mark A.

    2007-03-01

    We are developing a computer-aided detection (CAD) system for masses on digital breast tomosynthesis mammograms (DBTs). The CAD system includes two parallel processes. In the first process, mass detection and feature analysis are performed in the reconstructed 3D DBT volume. A mass likelihood score is estimated for each mass candidate using a linear discriminant (LDA) classifier. In the second process, mass detection and feature analysis are applied to the individual projection view (PV) images. A mass likelihood score is estimated for each mass candidate using another LDA classifier. The mass likelihood images derived from the PVs are back-projected to the breast volume to estimate the 3D spatial distribution of the mass likelihood scores. The mass likelihood scores estimated by the two processes at the corresponding 3D location are then merged and evaluated using FROC analysis. In this preliminary study, a data set of 52 DBT cases acquired with a GE prototype system at the Massachusetts General Hospital was used. The LDA classifiers with stepwise feature selection were designed with leave-one-case-out resampling. In an FROC analysis, the CAD system for detection in the DBT volume alone achieved test sensitivities of 80% and 90% at an average FP rate of 1.6 and 3.0 per breast, respectively. In comparison, the average FP rates of the combined system were 1.2 and 2.3 per breast, respectively, at the same sensitivities. The combined system is a promising approach to improving mass detection on DBTs.

  10. A prospective feasibility study of duplex ultrasound arterial mapping, digital-subtraction angiography, and magnetic resonance angiography in management of critical lower limb ischemia by endovascular revascularization.

    PubMed

    Lowery, A J; Hynes, N; Manning, B J; Mahendran, M; Tawfik, S; Sultan, S

    2007-07-01

    Duplex ultrasound arterial mapping (DUAM) allows precise evaluation of peripheral vascular disease (PVD). However, magnetic resonance angiography (MRA) and digital-subtraction angiography (DSA) are the diagnostic tools used most frequently prior to intervention. Our aim was to compare clinical pragmatism, hemodynamic outcomes, and cost-effectiveness when using DUAM alone compared to DSA or MRA as preoperative assessment tools for endovascular revascularization (EvR) in critical lower limb ischemia (CLI). From 2002 through 2005, 465 patients were referred with PVD. Of these, 199 had CLI and 137 required EvR. Preoperative diagnostic evaluation included DUAM (n = 41), DSA (n = 50), or MRA (n = 46). EvR was aortoiliac in 27% of cases and infrainguinal in 73%. Patients were assessed at day 1, 6 weeks, 3 months, and 6 months. Composite end points were relief of rest pain, ulcer/gangrene healing, and increase in perfusion pressure, as measured by ankle-brachial index (ABI) and digital pressures. Patency by DUAM, limb salvage, morbidity, mortality, length of stay, and cost-effectiveness were compared between groups using nonparametric t-test, analysis of variance, and Kaplan-Meier analysis. The three groups were comparable in terms of age, sex, comorbidity, and Society for Vascular Surgery/International Society of Cardiovascular Surgery clinical classification. Six-month mean improvement in ABI in the DUAM group was comparable to that in the DSA group (P = 0.25) and significantly better than that in the MRA group (P < 0.05). Six-month patency rates for the DUAM group were comparable to those in the DSA group (P = 0.68, relative risk [RR] = 0.74, 95% confidence interval [CI] 0.18-2.99) and superior to that in the MRA group (P = 0.022, RR = 0.255, 95% CI 0.09-0.71). Length of hospital stay was lower in the DUAM group compared with the DSA group (P < 0.0001) and the MRA group (P = 0.0003). The cost of DUAM is lower than that of both DSA and MRA. DUAM accurately identified the

  11. Cerebral laterality for language is related to adult salivary testosterone levels but not digit ratio (2D:4D) in men: A functional transcranial Doppler ultrasound study.

    PubMed

    Papadatou-Pastou, Marietta; Martin, Maryanne

    2017-03-01

    The adequacy of three competing theories of hormonal effects on cerebral laterality are compared using functional transcranial Doppler sonography (fTCD). Thirty-three adult males participated in the study (21 left-handers). Cerebral lateralization was measured by fTCD using an extensively validated word generation task. Adult salivary testosterone (T) and cortisol (C) concentrations were measured by luminescence immunoassay and prenatal T exposure was indirectly estimated by the somatic marker of 2nd to 4th digit length ratio (2D:4D). A significant quadratic relationship between degree of cerebral laterality for language and adult T concentrations was observed, with enhanced T levels for strong left hemisphere dominance and strong right hemisphere dominance. No systematic effects on laterality were found for cortisol or 2D:4D. Findings suggest that higher levels of T are associated with a relatively attenuated degree of interhemispheric sharing of linguistic information, providing support for the callosal and the sexual differentiation hypotheses rather than the Geschwind, Behan and Galaburda (GBG) hypothesis.

  12. Diagnostic yield and accuracy of CT angiography, MR angiography, and digital subtraction angiography for detection of macrovascular causes of intracerebral haemorrhage: prospective, multicentre cohort study

    PubMed Central

    Velthuis, Birgitta K; Rinkel, Gabriël J E; Algra, Ale; de Kort, Gérard A P; Witkamp, Theo D; de Ridder, Johanna C M; van Nieuwenhuizen, Koen M; de Leeuw, Frank-Erik; Schonewille, Wouter J; de Kort, Paul L M; Dippel, Diederik W; Raaymakers, Theodora W M; Hofmeijer, Jeannette; Wermer, Marieke J H; Kerkhoff, Henk; Jellema, Korné; Bronner, Irene M; Remmers, Michel J M; Bienfait, Henri Paul; Witjes, Ron J G M; Greving, Jacoba P; Klijn, Catharina J M

    2015-01-01

    Study question What are the diagnostic yield and accuracy of early computed tomography (CT) angiography followed by magnetic resonance imaging/angiography (MRI/MRA) and digital subtraction angiography (DSA) in patients with non-traumatic intracerebral haemorrhage? Methods This prospective diagnostic study enrolled 298 adults (18-70 years) treated in 22 hospitals in the Netherlands over six years. CT angiography was performed within seven days of haemorrhage. If the result was negative, MRI/MRA was performed four to eight weeks later. DSA was performed when the CT angiography or MRI/MRA results were inconclusive or negative. The main outcome was a macrovascular cause, including arteriovenous malformation, aneurysm, dural arteriovenous fistula, and cavernoma. Three blinded neuroradiologists independently evaluated the images for macrovascular causes of haemorrhage. The reference standard was the best available evidence from all findings during one year’s follow-up. Study answer and limitations A macrovascular cause was identified in 69 patients (23%). 291 patients (98%) underwent CT angiography; 214 with a negative result underwent additional MRI/MRA and 97 with a negative result for both CT angiography and MRI/MRA underwent DSA. Early CT angiography detected 51 macrovascular causes (yield 17%, 95% confidence interval 13% to 22%). CT angiography with MRI/MRA identified two additional macrovascular causes (18%, 14% to 23%) and these modalities combined with DSA another 15 (23%, 18% to 28%). This last extensive strategy failed to detect a cavernoma, which was identified on MRI during follow-up (reference strategy). The positive predictive value of CT angiography was 72% (60% to 82%), of additional MRI/MRA was 35% (14% to 62%), and of additional DSA was 100% (75% to 100%). None of the patients experienced complications with CT angiography or MRI/MRA; 0.6% of patients who underwent DSA experienced permanent sequelae. Not all patients with negative CT angiography and

  13. Analysis and Visualization of 2D and 3D Grain and Pore Size ofFontainebleau Sandstone Using Digital Rock Physics

    NASA Astrophysics Data System (ADS)

    Latief, FDE

    2016-08-01

    Fontainebleau sandstone is sandstone found in one of the cities in France. This sandstone has unique characteristics, which is a clean-fme sandstone, composed of 99% quartz, virtually devoid of clay, with the grain size of about 200 μm. Fontainebleau sandstone is widely used as a reference in the study of rock microstructure analysis and modelling. In this work analysis regarding the grain and pore size of Fontainebleau is presented. Calculation of 2D pore size and grain size distribution were done on the 299 slice of digital image of the Fontainebleau sandstone using Feret's diameters, equivalent diameters (d = 4A/P), and by means of local thickness/separation using plate model. For the 3D grain and pore size distribution, calculation of local thickness and local separation of the structure were used. Two dimensional analysis by means of Feret's diameter and equivalent diameter reveal that both grain and pore size distributions are in the form of reverse-J shaped (right skewed) while the local thickness/separation approach produces almost similar to symmetric Gaussian distribution. Three dimensional analysis produces fairly symmetric Gaussian distribution for both the grain and pore size. Further image processing were conducted and were succeed in producing three dimensional visual of the colour coded structure thickness (grain related) and structure separation (pore related).

  14. Second to fourth digit length ratio (2D:4D) and adult sex hormone levels: new data and a meta-analytic review.

    PubMed

    Hönekopp, Johannes; Bartholdt, Luise; Beier, Lothar; Liebert, Andreas

    2007-05-01

    The relative length of the second (index) to the fourth (ring) finger (2D:4D) is a putative negative correlate of prenatal testosterone (T) exposure. Therefore, 2D:4D (and to a lesser extent D(r-l), the difference between 2D:4D in the right hand and in the left hand) has often been used to study effects of prenatal androgenization on human behavior and cognition. However, evidence suggests that 2D:4D may also be related to levels of circulating sex hormones in adults. This would question the validity of 2D:4D as a means of studying the effects of prenatal sex hormones. Here we present new data from two non-clinical samples (64 women and 102 men) regarding the relationships of 2D:4D and D(r-l) with circulating sex hormone levels. We then present a meta-analytic review of all the present evidence regarding this issue. The results suggest that, in the normal population, 2D:4D and D(r-l) are not associated with adult sex hormone levels. The findings from this current study add to the growing body of evidence demonstrating that 2D:4D is a suitable tool to study the effects of prenatal androgenization on human behavior and cognition.

  15. Can Sex Differences in Science Be Tied to the Long Reach of Prenatal Hormones? Brain Organization Theory, Digit Ratio (2D/4D), and Sex Differences in Preferences and Cognition

    PubMed Central

    Valla, Jeffrey; Ceci, Stephen J.

    2011-01-01

    Brain organization theory posits a cascade of physiological and behavioral changes initiated and shaped by prenatal hormones. Recently, this theory has been associated with outcomes including gendered toy preference, 2D/4D digit ratio, personality characteristics, sexual orientation, and cognitive profile (spatial, verbal, and mathematical abilities). We examine the evidence for this claim, focusing on 2D/4D and its putative role as a biomarker for organizational features that influence cognitive abilities/interests predisposing males toward mathematically and spatially intensive careers. Although massive support exists for early brain organization theory overall, there are myriad inconsistencies, alternative explanations, and outright contradictions that must be addressed while still taking the entire theory into account. Like a fractal within the larger theory, the 2D/4D hypothesis mirrors this overall support on a smaller scale while likewise suffering from inconsistencies (positive, negative, and sex-dependent correlations), alternative explanations (2D/4D related to spatial preferences rather than abilities per se), and contradictions (feminine 2D/4D in men associated with higher spatial ability). Using the debate over brain organization theory as the theoretical stage, we focus on 2D/4D evidence as an increasingly important player on this stage, a demonstrative case in point of the evidential complexities of the broader debate, and an increasingly important topic in its own right. PMID:22164187

  16. Effect of color coding and subtraction on the accuracy of contrast echocardiography

    NASA Technical Reports Server (NTRS)

    Pasquet, A.; Greenberg, N.; Brunken, R.; Thomas, J. D.; Marwick, T. H.

    1999-01-01

    BACKGROUND: Contrast echocardiography may be used to assess myocardial perfusion. However, gray scale assessment of myocardial contrast echocardiography (MCE) is difficult because of variations in regional backscatter intensity, difficulties in distinguishing varying shades of gray, and artifacts or attenuation. We sought to determine whether the assessment of rest myocardial perfusion by MCE could be improved with subtraction and color coding. METHODS AND RESULTS: MCE was performed in 31 patients with previous myocardial infarction with a 2nd generation agent (NC100100, Nycomed AS), using harmonic triggered or continuous imaging and gain settings were kept constant throughout the study. Digitized images were post processed by subtraction of baseline from contrast data and colorized to reflect the intensity of myocardial contrast. Gray scale MCE alone, MCE images combined with baseline and subtracted colorized images were scored independently using a 16 segment model. The presence and severity of myocardial contrast abnormalities were compared with perfusion defined by rest MIBI-SPECT. Segments that were not visualized by continuous (17%) or triggered imaging (14%) after color processing were excluded from further analysis. The specificity of gray scale MCE alone (56%) or MCE combined with baseline 2D (47%) was significantly enhanced by subtraction and color coding (76%, p<0.001) of triggered images. The accuracy of the gray scale approaches (respectively 52% and 47%) was increased to 70% (p<0.001). Similarly, for continuous images, the specificity of gray scale MCE with and without baseline comparison was 23% and 42% respectively, compared with 60% after post processing (p<0.001). The accuracy of colorized images (59%) was also significantly greater than gray scale MCE (43% and 29%, p<0.001). The sensitivity of MCE for both acquisitions was not altered by subtraction. CONCLUSION: Post-processing with subtraction and color coding significantly improves the accuracy

  17. The relationship between second-to-fourth digit (2D:4D) ratios and problematic and pathological Internet use among Turkish university students.

    PubMed

    Canan, Fatih; Karaca, Servet; Düzgün, Melike; Erdem, Ayşe Merve; Karaçaylı, Esranur; Topan, Nur Begüm; Lee, Sang-Kyu; Zhai, Zu Wei; Kuloğlu, Murat; Potenza, Marc N

    2017-03-01

    Background and aims The ratio of the second and fourth fingers (2D:4D ratio) is a sexually dimorphic trait, with men tending to have lower values than women. This ratio has been related to prenatal testosterone concentrations and addictive behaviors including problematic video-gaming. We aimed to investigate the possible association between 2D:4D ratios and Internet addiction and whether such a relationship would be independent of impulsivity. Methods A total of 652 university students (369 women, 283 men), aged 17-27 years, were enrolled in the study. Problematic and pathological Internet use (PPIU) was assessed using the Internet Addiction Test (IAT). The participants also completed the Barratt Impulsiveness Scale (version 11; BIS-11) and had their 2D:4D ratios measured. Results 2D:4D ratios were not significantly different in women with PPIU and in those with adaptive Internet use (AIU). Men with PPIU exhibited lower 2D:4D ratios on both hands when compared with those with AIU. Correlation analysis revealed that 2D:4D ratios on both hands were negatively correlated with IAT scores among men, but not among women. The multiple linear regression analysis revealed that age, duration of weekly Internet use, impulsiveness, and 2D:4D ratios on the right hand were independently associated with IAT scores among men, and impulsivity did not mediate the relationship between 2D:4D ratios and PPIU. Conclusions For men, 2D:4D ratios on the right hand were inversely correlated with Internet addiction severity even after controlling for individual differences in impulsivity. These findings suggest that high prenatal testosterone levels may contribute to the occurrence of PPIU among men.

  18. Strategies in Subtraction Problem Solving in Children

    ERIC Educational Resources Information Center

    Barrouillet, Pierre; Mignon, Mathilde; Thevenot, Catherine

    2008-01-01

    The aim of this study was to investigate the strategies used by third graders in solving the 81 elementary subtractions that are the inverses of the one-digit additions with addends from 1 to 9 recently studied by Barrouillet and Lepine. Although the pattern of relationship between individual differences in working memory, on the one hand, and…

  19. The Ratio of Second to Fourth Digit Length (2D:4D) and Coronary Artery Disease in a Han Chinese Population

    PubMed Central

    Wu, Xing-li; Yang, Ding-you; Chai, Wen-hui; Jin, Ming-lei; Zhou, Xing-chun; Peng, Li; Zhao, Yu-sheng

    2013-01-01

    Background: The association between index finger to ring finger length ratio (2D:4D) and cardiac disorders has been reported, however it has not been discussed in terms of coronary artery disease (CAD). We investigated whether 2D:4D could be used as a marker for predisposition to CAD as assessed by coronary angiography in Chinese men and women. Methods: This study included 1764 persons divided into 4 groups, 441 cases with CAD and 441 persons without CAD as control in each sex of the same age. Finger lengths were measured twice for both hands using electronic calipers. Student t test was used to detect the difference of 2D:4D among groups. The receiver operator characteristic curves (ROCs) were used to detect the diagnostic effect of 2D:4D for CAD. Results: There were no significant differences in age among the four groups. A significant difference of 2D:4D ratios between right and left hand were observed only in men in both control and CAD groups. On the right hand in the control group and on both hands in the CAD group, the 2D:4D ratios were higher in women than in men (all, P < 0.001). In men with CAD, mean 2D:4D was higher than mean 2D:4D in control men (right hand 0.962±0.042:0.927±0.038; left hand 0.950±0.044:0.934±0.048; both hands, P < 0.001), but this was not observed in women. No relationship was found between 2D:4D and age (all, P >0.05). The area under the curve of right hand 2D:4D in male was 0.72 (95% CI 0.683-0.753, p<0.001), while it was 0.602 (95% CI 0.565-0.639, p<0.001) in left hand. Conclusions: The present study showed an association between high 2D:4D ratio and CAD in both hands in men. There were no significant differences in mean 2D:4D between women with CAD and controls. PMID:24046536

  20. Age at menarche and digit ratio (2D:4D): relationships with body dissatisfaction, drive for thinness, and bulimia symptoms in women.

    PubMed

    Oinonen, Kirsten A; Bird, Jessica L

    2012-03-01

    This study examined the hypothesis that lower prenatal androgen exposure and earlier puberty are associated with more dysfunctional eating attitudes and behaviors. Relationships between both age at menarche (AAM) and 2D:4D (a marker of prenatal androgen exposure), and EDI-2-Body Dissatisfaction, EDI-2-Drive for Thinness, and EDI-2-Bulimia scores, were examined in women using correlations and regressions. Earlier menarche was associated with higher drive for thinness after controlling for BMI and negative affect, but only in women who were not exclusively heterosexual. Higher 2D:4D was associated with higher Bulimia and Body Dissatisfaction scores, but only in exclusively heterosexual women, and relationships disappeared when covariates were controlled. Later AAM and higher 2D:4D were unique predictors of higher Bulimia scores for exclusive heterosexuals when BMI was controlled. These findings suggest future research should examine sexual orientation as a mediator or moderator of prenatal and postnatal organizational hormonal effects on women's disordered eating attitudes and behaviors.

  1. Suppression subtractive hybridization.

    PubMed

    Ghorbel, Mohamed T; Murphy, David

    2011-01-01

    Comparing two RNA populations that differ from the effects of a single independent variable, such as a drug treatment or a specific genetic defect, can establish differences in the abundance of specific transcripts that vary in a population dependent manner. There are different methods for identifying differentially expressed genes. These methods include microarray, Serial Analysis of Gene Expression (SAGE), and quantitative Reverse-Transcriptase Polymerase Chain Reaction (qRT-PCR). Herein, the protocol describes an easy and cost-effective alternative that does not require prior knowledge of the transcriptomes under examination. It is specifically relevant when low levels of RNA starting material are available. This protocol describes the use of Switching Mechanism At RNA Termini Polymerase Chain Reaction (SMART-PCR) to amplify cDNA from small amounts of RNA. The amplified cDNA populations under comparison are then subjected to Suppression Subtractive Hybridization (SSH-PCR). SSH-PCR is a technique that couples subtractive hybridization with suppression PCR to selectively amplify fragments of differentially expressed genes. The resulting products are cDNA populations enriched for significantly overrepresented transcripts in either of the two input RNAs. These cDNA populations can then be cloned to generate subtracted cDNA library. Microarrays made with clones from the subtracted forward and reverse cDNA libraries are then screened for differentially expressed genes using targets generated from tester and driver total RNAs.

  2. Subtraction at NNLO

    NASA Astrophysics Data System (ADS)

    Frixione, Stefano; Grazzini, Massimiliano

    2005-06-01

    We propose a framework for the implementation of a subtraction formalism at NNLO in QCD, based on an observable- and process-independent cancellation of infrared singularities. As a first simple application, we present the calculation of the contribution to the e+e- dijet cross section proportional to CFTR.

  3. Liquid-Crystal-Television Image Subtracters

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Liu, Hua-Kuang

    1988-01-01

    Two image-subtraction systems from output images that show differences between input images of two objects. First: differences appear as bright regions in otherwise dark output image. Second: differences and similarities shown by colors. All parts of two images processed simultaneously by optical components only; digital electronic processing of data not required. Concept offers potential for rapid, inexpensive comparison of images in such applications as automatic inspection, medical diagnosis, and robotic vision.

  4. Visualization and quantitation of coronary arteries using multiple-view energy subtraction digital radiography. Interim report 30 September 1983-29 September 1984

    SciTech Connect

    Macovski, A.

    1984-08-27

    The authors have studied a general approach to the imaging of coronary arteries using minimally invasive intravenous administration of contrast material. Using conventional DSA techniques this visualization would fail due to motion, low SNR, and intervening iodinated structures. The authors have implemented the digital fluoroscopy system with a rotating gantry and tested it on phantoms. Evaluation of stenosis in coronary arteries is difficult with low SNR images. The authors have studied and implemented a vessel outlining system using a global estimation procedure. The most recent approach has significantly improved computational efficiency. The processing of multiple-energy data to eliminate the moving soft tissue results in a noise penalty. The authors have studied and implemented an approach to restore the original SNR by deriving the high frequency components from a non-selective image. The authors have also implemented a scatter-cancellation system for minimizing this source of error.

  5. Pilot Study on the Detection of Simulated Lesions Using a 2D and 3D Digital Full-Field Mammography System with a Newly Developed High Resolution Detector Based on Two Shifts of a-Se.

    PubMed

    Schulz-Wendtland, R; Bani, M; Lux, M P; Schwab, S; Loehberg, C R; Jud, S M; Rauh, C; Bayer, C M; Beckmann, M W; Uder, M; Fasching, P A; Adamietz, B; Meier-Meitinger, M

    2012-05-01

    Purpose: Experimental study of a new system for digital 2D and 3D full-field mammography (FFDM) using a high resolution detector based on two shifts of a-Se. Material and Methods: Images were acquired using the new FFDM system Amulet® (FujiFilm, Tokio, Japan), an a-Se detector (receptor 24 × 30 cm(2), pixel size 50 µm, memory depth 12 bit, spatial resolution 10 lp/mm, DQE > 0.50). Integrated in the detector is a new method for data transfer, based on optical switch technology. The object of investigation was the Wisconsin Mammographic Random Phantom, Model 152A (Radiation Measurement Inc., Middleton, WI, USA) and the same parameters and exposure data (Tungsten, 100 mAs, 30 kV) were consistently used. We acquired 3 different pairs of images in the c-c and ml planes (2D) and in the c-c and c-c planes with an angle of 4 degrees (3D). Five radiologists experienced in mammography (experience ranging from 3 months to more than 5 years) analyzed the images (monitoring) which had been randomly encoded (random generator) with regard to the recognition of details such as specks of aluminum oxide (200-740 µm), nylon fibers (0.4-1.6 mm) and round lesions/masses (diameters 5-14 mm), using special linear glasses for 3D visualization, and compared the results. Results: A total of 225 correct positive decisions could be detected: we found 222 (98.7 %) correct positive results for 2D and 3D visualization in each case. Conclusion: The results of this phantom study showed the same detection rates for both 2D and 3D imaging using full field digital mammography. Our results must be confirmed in further clinical trials.

  6. Techniques to improve the accuracy of noise power spectrum measurements in digital x-ray imaging based on background trends removal

    SciTech Connect

    Zhou Zhongxing; Gao Feng; Zhao Huijuan; Zhang Lixin

    2011-03-15

    Purpose: Noise characterization through estimation of the noise power spectrum (NPS) is a central component of the evaluation of digital x-ray systems. Extensive works have been conducted to achieve accurate and precise measurement of NPS. One approach to improve the accuracy of the NPS measurement is to reduce the statistical variance of the NPS results by involving more data samples. However, this method is based on the assumption that the noise in a radiographic image is arising from stochastic processes. In the practical data, the artifactuals always superimpose on the stochastic noise as low-frequency background trends and prevent us from achieving accurate NPS. The purpose of this study was to investigate an appropriate background detrending technique to improve the accuracy of NPS estimation for digital x-ray systems. Methods: In order to achieve the optimal background detrending technique for NPS estimate, four methods for artifactuals removal were quantitatively studied and compared: (1) Subtraction of a low-pass-filtered version of the image, (2) subtraction of a 2-D first-order fit to the image, (3) subtraction of a 2-D second-order polynomial fit to the image, and (4) subtracting two uniform exposure images. In addition, background trend removal was separately applied within original region of interest or its partitioned sub-blocks for all four methods. The performance of background detrending techniques was compared according to the statistical variance of the NPS results and low-frequency systematic rise suppression. Results: Among four methods, subtraction of a 2-D second-order polynomial fit to the image was most effective in low-frequency systematic rise suppression and variances reduction for NPS estimate according to the authors' digital x-ray system. Subtraction of a low-pass-filtered version of the image led to NPS variance increment above low-frequency components because of the side lobe effects of frequency response of the boxcar filtering

  7. 3D-2D registration of cerebral angiograms based on vessel directions and intensity gradients

    NASA Astrophysics Data System (ADS)

    Mitrovic, Uroš; Špiclin, Žiga; Štern, Darko; Markelj, Primož; Likar, Boštjan; Miloševic, Zoran; Pernuš, Franjo

    2012-02-01

    Endovascular treatment of cerebral aneurysms and arteriovenous malformations (AVM) involves navigation of a catheter through the femoral artery and vascular system to the site of pathology. Intra-interventional navigation is done under the guidance of one or at most two two-dimensional (2D) X-ray fluoroscopic images or 2D digital subtracted angiograms (DSA). Due to the projective nature of 2D images, the interventionist needs to mentally reconstruct the position of the catheter in respect to the three-dimensional (3D) patient vasculature, which is not a trivial task. By 3D-2D registration of pre-interventional 3D images like CTA, MRA or 3D-DSA and intra-interventional 2D images, intra-interventional tools such as catheters can be visualized on the 3D model of patient vasculature, allowing easier and faster navigation. Such a navigation may consequently lead to the reduction of total ionizing dose and delivered contrast medium. In the past, development and evaluation of 3D-2D registration methods for endovascular treatments received considerable attention. The main drawback of these methods is that they have to be initialized rather close to the correct position as they mostly have a rather small capture range. In this paper, a novel registration method that has a higher capture range and success rate is proposed. The proposed method and a state-of-the-art method were tested and evaluated on synthetic and clinical 3D-2D image-pairs. The results on both databases indicate that although the proposed method was slightly less accurate, it significantly outperformed the state-of-the-art 3D-2D registration method in terms of robustness measured by capture range and success rate.

  8. Technical innovation: Multidimensional computerized software enabled subtraction computed tomographic angiography.

    PubMed

    Bhatia, Mona; Rosset, Antoine; Platon, Alexandra; Didier, Dominique; Becker, Christoph D; Poletti, Pierre-Alexandre

    2010-01-01

    Computed tomographic angiography (CTA) is a frequent noninvasive alternative to digital subtraction angiography. We previously reported the development of a new subtraction software to overcome limitations of adjacent bone and calcification in CT angiographic subtraction. Our aim was to further develop and improve this fast and automated computerized software, universally available for free use and compatible with most CT scanners, thus enabling better delineation of vascular structures, artifact reduction, and shorter reading times with potential clinical benefits. This computer-based free software will be available as an open source in the next release of OsiriX at the Web site http://www.osirix-viewer.com.

  9. Gradient-based 3D-2D registration of cerebral angiograms

    NASA Astrophysics Data System (ADS)

    Mitrović, Uroš; Markelj, Primož; Likar, Boštjan; Miloševič, Zoran; Pernuš, Franjo

    2011-03-01

    Endovascular treatment of cerebral aneurysms and arteriovenous malformations (AVM) involves navigation of a catheter through the femoral artery and vascular system into the brain and into the aneurysm or AVM. Intra-interventional navigation utilizes digital subtraction angiography (DSA) to visualize vascular structures and X-ray fluoroscopy to localize the endovascular components. Due to the two-dimensional (2D) nature of the intra-interventional images, navigation through a complex three-dimensional (3D) structure is a demanding task. Registration of pre-interventional MRA, CTA, or 3D-DSA images and intra-interventional 2D DSA images can greatly enhance visualization and navigation. As a consequence of better navigation in 3D, the amount of required contrast medium and absorbed dose could be significantly reduced. In the past, development and evaluation of 3D-2D registration methods received considerable attention. Several validation image databases and evaluation criteria were created and made publicly available in the past. However, applications of 3D-2D registration methods to cerebral angiograms and their validation are rather scarce. In this paper, the 3D-2D robust gradient reconstruction-based (RGRB) registration algorithm is applied to CTA and DSA images and analyzed. For the evaluation purposes five image datasets, each comprised of a 3D CTA and several 2D DSA-like digitally reconstructed radiographs (DRRs) generated from the CTA, with accurate gold standard registrations were created. A total of 4000 registrations on these five datasets resulted in mean mTRE values between 0.07 and 0.59 mm, capture ranges between 6 and 11 mm and success rates between 61 and 88% using a failure threshold of 2 mm.

  10. ProgRes 3000: a digital color camera with a 2-D array CCD sensor and programmable resolution up to 2994 x 2320 picture elements

    NASA Astrophysics Data System (ADS)

    Lenz, Reimar K.; Lenz, Udo

    1990-11-01

    A newly developed imaging principle two dimensional microscanning with Piezo-controlled Aperture Displacement (PAD) allows for high image resolutions. The advantages of line scanners (high resolution) are combined with those of CCD area sensors (high light sensitivity geometrical accuracy and stability easy focussing illumination control and selection of field of view by means of TV real-time imaging). A custom designed sensor optimized for small sensor element apertures and color fidelity eliminates the need for color filter revolvers or mechanical shutters and guarantees good color convergence. By altering the computer controlled microscan patterns spatial and temporal resolution become interchangeable their product being a constant. The highest temporal resolution is TV real-time (50 fields/sec) the highest spatial resolution is 2994 x 2320 picture elements (Pels) for each of the three color channels (28 MBytes of raw image data in 8 see). Thus for the first time it becomes possible to take 35mm slide quality still color images of natural 3D scenes by purely electronic means. Nearly " square" Pels as well as hexagonal sampling schemes are possible. Excellent geometrical accuracy and low noise is guaranteed by sensor element (Sel) synchronous analog to digital conversion within the camera head. The cameras principle of operation and the procedure to calibrate the two-dimensional piezo-mechanical motion with an accuracy of better than O. 2. tm RMSE in image space is explained. The remaining positioning inaccuracy may be further

  11. Comparison of intra-arterial digital subtraction angiography using carbon dioxide by 'home made' delivery system and conventional iodinated contrast media in the evaluation of peripheral arterial occlusive disease of the lower limbs.

    PubMed

    Madhusudhan, K S; Sharma, S; Srivastava, D N; Thulkar, S; Mehta, S N; Prasad, G; Seenu, V; Agarwal, S

    2009-02-01

    To prospectively compare the feasibility, safety and diagnostic role of carbon dioxide (CO(2)) digital subtraction angiography (DSA) using a 'home made' delivery system with iodinated contrast medium (ICM) DSA in the evaluation of peripheral arterial occlusive diseases (PAOD) of lower limbs. Twenty-one patients (27 limbs; all men; mean age, 47.6 years) who presented with PAOD of lower limbs underwent DSA using both intra-arterial CO(2) and ICM. Conventional ICM DSA was performed first and used as gold standard. Carbon dioxide was then injected by hand using a locally improvised home made plastic bag delivery system. Patient tolerance was assessed subjectively. Arteries from aortic bifurcation to the ankle were independently evaluated by two radiologists and graded for stenosis using a five-point scale. For each patient, the quality of CO(2) DSA images were compared with the corresponding images of ICM DSA and an overall grade of 'good', 'acceptable' or 'poor' was assigned. Cohen's kappa coefficient was used to determine inter-observer agreement. Carbon dioxide opacified 86.2% (188/195) of major arteries and depicted stenosis adequately in 84.5% (191/226) of arterial segments. A good or acceptable image quality of CO(2) DSA was obtained in over 95% of patients. Infrapopliteal arteries were inadequately visualized. Mild pain was seen in six (28.6%) patients with both contrast agents; one patient developed severe pain during CO(2) DSA. Inter-observer agreement was good (k > 0.75) at 70% of the segments. Administration of CO(2) into lower limb arteries is well tolerated. Carbon dioxide DSA using the locally improvised home made delivery system is a feasible and safe alternative to ICM DSA in the evaluation of PAOD. It provides adequate imaging of arteries of lower extremities except infrapopliteal segments.

  12. Validation of a computer analysis to determine 3-D rotations and translations of the rib cage in upright posture from three 2-D digital images

    PubMed Central

    Harrison, Deed E.; Janik, Tadeusz J.; Cailliet, Rene; Normand, Martin C.; Perron, Denise L.; Ferrantelli, Joseph R

    2006-01-01

    Since thoracic cage posture affects lumbar spine coupling and loads on the spinal tissues and extremities, a scientific analysis of upright posture is needed. Common posture analyzers measure human posture as displacements from a plumb line, while the PosturePrint™ claims to measure head, rib cage, and pelvic postures as rotations and translations. In this study, it was decided to evaluate the validity of the PosturePrint™ Internet computer system’s analysis of thoracic cage postures. In a university biomechanics laboratory, photographs of a mannequin thoracic cage were obtained in different postures on a stand in front of a digital camera. For each mannequin posture, three photographs were obtained (left lateral, right lateral, and AP). The mannequin thoracic cage was placed in 68 different single and combined postures (requiring 204 photographs) in five degrees of freedom: lateral translation (Tx), lateral flexion (Rz), axial rotation (Ry), flexion–extension (Rx), and anterior–posterior translation (Tz). The PosturePrint™ system requires 13 reflective markers to be placed on the subject (mannequin) during photography and 16 additional “click-on” markers via computer mouse before a set of three photographs is analyzed by the PosturePrint™ computer system over the Internet. Errors were the differences between the positioned mannequin and the calculated positions from the computer system. Average absolute value errors were obtained by comparing the exact inputted posture to the PosturePrint™’s computed values. Mean and standard deviation of computational errors for sagittal displacements of the thoracic cage were Rx=0.3±0.1°, Tz=1.6±0.7 mm, and for frontal view displacements were Ry=1.2±1.0°, Rz=0.6±0.4°, and Tx=1.5±0.6 mm. The PosturePrint™ system is sufficiently accurate in measuring thoracic cage postures in five degrees of freedom on a mannequin indicating the need for a further study on human subjects. PMID:16547756

  13. 2D Rotational Angiography for Fast and Standardized Evaluation of Peripheral and Visceral Artery Stenoses

    SciTech Connect

    Katoh, Marcus Opitz, Armin; Minko, Peter; Massmann, Alexander; Berlich, Joachim; Buecker, Arno

    2011-06-15

    Purpose: To investigate the value of rotational digital subtraction angiography (rDSA) for evaluation of peripheral and visceral artery stenoses compared to conventional digital subtraction angiography (cDSA). Methods: A phantom study was performed comparing the radiation dose of cDSA with two projections and rDSA by means of the 2D Dynavision technique (Siemens Medical Solutions, Forchheim, Germany). Subsequently, 33 consecutive patients (18 women, 15 men; mean {+-} SD age 67 {+-} 15 years) were examined by both techniques. In total, 63 vessel segments were analyzed by two observers with respect to stenoses, image contrast, and vessel sharpness. Results: Radiation dose was significantly lower with rDSA. cDSA and rDSA revealed 21 and 24 flow-relevant stenotic lesions and vessel occlusions (70-100%), respectively. The same stenosis grade was assessed in 45 segments. By means of rDSA, 10 lesions were judged to have a higher and 8 lesions a lower stenosis grade compared to cDSA. rDSA yielded additive information regarding the vessel anatomy and pathology in 29 segments. However, a tendency toward better image quality and sharper vessel visualization was seen with cDSA. Conclusion: rDSA allows for multiprojection assessment of peripheral and visceral arteries and provides additional clinically relevant information after a single bolus of contrast medium. At the same time, radiation dose can be significantly reduced compared to cDSA.

  14. Pulse subtraction Doppler

    NASA Astrophysics Data System (ADS)

    Mahue, Veronique; Mari, Jean Martial; Eckersley, Robert J.; Caro, Colin G.; Tang, Meng-Xing

    2010-01-01

    Recent advances have demonstrated the feasibility of molecular imaging using targeted microbubbles and ultrasound. One technical challenge is to selectively detect attached bubbles from those freely flowing bubbles and surrounding tissue. Pulse Inversion Doppler is an imaging technique enabling the selective detection of both static and moving ultrasound contrast agents: linear scatterers generate a single band Doppler spectrum, while non-linear scatterers generate a double band spectrum, one being uniquely correlated with the presence of contrast agents and non-linear tissue signals. We demonstrate that similar spectrums, and thus the same discrimination, can be obtained through a Doppler implementation of Pulse Subtraction. This is achieved by reconstructing a virtual echo using the echo generated from a short pulse transmission. Moreover by subtracting from this virtual echo the one generated from a longer pulse transmission, it is possible to fully suppress the echo from linear scatterers, while for non-linear scatterers, a signal will remain, allowing classical agent detection. Simulations of a single moving microbubble and a moving linear scatterer subject to these pulses show that when the virtual echo and the long pulse echo are used to perform pulsed Doppler, the power Doppler spectrum allows separation of linear and non-linear moving scattering. Similar results are obtained on experimental data acquired on a flow containing either microbubble contrast agents or linear blood mimicking fluid. This new Doppler method constitutes an alternative to Pulse Inversion Doppler and preliminary results suggest that similar dual band spectrums could be obtained by the combination of any non-linear detection technique with Doppler demodulation.

  15. Whole Number Subtraction -- An Analysis.

    ERIC Educational Resources Information Center

    Gilpin, John B.

    This document is intended as a resource for persons using, designing, or evaluating instructional materials in whole number subtraction. Its purpose is to provide conceptual machinery: (1) for describing/specifying subtraction tests and exercises and (2) for formulating related questions and conjectures. It is mainly a logical analysis subject to…

  16. On the Standard Rounding Rule for Addition and Subtraction.

    ERIC Educational Resources Information Center

    Lee, Wei; Mulliss, Christopher L.; Chu, Hung-Chih

    2000-01-01

    Investigates the commonly suggested rounding rule for addition and subtraction including its derivation from a basic assumption. Uses Monte-Carlo simulations to show that this rule predicts the minimum number of significant digits needed to preserve precision 100% of the time. (Author/KHR)

  17. Enriching Addition and Subtraction Fact Mastery through Games

    ERIC Educational Resources Information Center

    Bay-Williams, Jennifer M.; Kling, Gina

    2014-01-01

    The learning of "basic facts"--single-digit combinations for addition, subtraction, multiplication, and division--has long been a focus of elementary school mathematics. Many people remember completing endless worksheets, timed tests, and flash card drills as they attempted to "master" their basic facts as children. However,…

  18. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  19. Inverse reference in subtraction performance: an analysis from arithmetic word problems.

    PubMed

    Orrantia, Josetxu; Rodríguez, Laura; Múñez, David; Vicente, Santiago

    2012-01-01

    Studies of elementary calculation have shown that adults solve basic subtraction problems faster with problems presented in addition format (e.g., 6 ± = 13) than in standard subtraction format (e.g., 13 - 6 = ). Therefore, it is considered that adults solve subtraction problems by reference to the inverse operation (e.g., for 13 - 6 = 7, "I know that 13 is 6 + 7") because presenting the subtraction problem in addition format does not require the mental rearrangement of the problem elements into the addition format. In two experiments, we examine whether adults' use of addition to solve subtractions is modulated by the arrangement of minuend and subtrahend, regardless of format. To this end, we used arithmetic word problems since single-digit problems in subtraction format would not allow the subtrahend to appear before the minuend. In Experiment 1, subtractions were presented by arranging minuend and subtrahend according to previous research. In Experiment 2, operands were reversed. The overall results showed that participants benefited from word problems where the subtrahend appears before the minuend, including subtractions in standard subtraction format. These findings add to a growing body of literature that emphasizes the role of inverse reference in adults' performance on subtractions.

  20. 2D semiconductor optoelectronics

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  1. Color Addition and Subtraction Apps

    NASA Astrophysics Data System (ADS)

    Ruiz, Frances; Ruiz, Michael J.

    2015-10-01

    Color addition and subtraction apps in HTML5 have been developed for students as an online hands-on experience so that they can more easily master principles introduced through traditional classroom demonstrations. The evolution of the additive RGB color model is traced through the early IBM color adapters so that students can proceed step by step in understanding mathematical representations of RGB color. Finally, color addition and subtraction are presented for the X11 colors from web design to illustrate yet another real-life application of color mixing.

  2. 2D discrete Fourier transform on sliding windows.

    PubMed

    Park, Chun-Su

    2015-03-01

    Discrete Fourier transform (DFT) is the most widely used method for determining the frequency spectra of digital signals. In this paper, a 2D sliding DFT (2D SDFT) algorithm is proposed for fast implementation of the DFT on 2D sliding windows. The proposed 2D SDFT algorithm directly computes the DFT bins of the current window using the precalculated bins of the previous window. Since the proposed algorithm is designed to accelerate the sliding transform process of a 2D input signal, it can be directly applied to computer vision and image processing applications. The theoretical analysis shows that the computational requirement of the proposed 2D SDFT algorithm is the lowest among existing 2D DFT algorithms. Moreover, the output of the 2D SDFT is mathematically equivalent to that of the traditional DFT at all pixel positions.

  3. Color Addition and Subtraction Apps

    ERIC Educational Resources Information Center

    Ruiz, Frances; Ruiz, Michael J.

    2015-01-01

    Color addition and subtraction apps in HTML5 have been developed for students as an online hands-on experience so that they can more easily master principles introduced through traditional classroom demonstrations. The evolution of the additive RGB color model is traced through the early IBM color adapters so that students can proceed step by step…

  4. "Subtractive" Bilingualism in Northern Belize.

    ERIC Educational Resources Information Center

    Rubinstein, Robert A.

    "Subtractive" bilingualism in Northern Belize is analyzed based on an extension of a model by Wallace Lambert. The impact of English language instruction on Spanish speaking children in Corozal Town, the northernmost urban center in the British colony of Belize, Central America, is described. This description extends an earlier account…

  5. Preschoolers' Understanding of Subtraction-Related Principles

    ERIC Educational Resources Information Center

    Baroody, Arthur J.; Lai, Meng-lung; Li, Xia; Baroody, Alison E.

    2009-01-01

    Little research has focused on an informal understanding of subtractive negation (e.g., 3 - 3 = 0) and subtractive identity (e.g., 3 - 0 = 3). Previous research indicates that preschoolers may have a fragile (i.e., unreliable or localized) understanding of the addition-subtraction inverse principle (e.g., 2 + 1 - 1 = 2). Recognition of a small…

  6. Sky subtraction with fiber spectrographs

    NASA Astrophysics Data System (ADS)

    Lissandrini, C.; Cristiani, S.; La Franca, F.

    1994-11-01

    The sky-subtraction performance of multifiber spectrographs is discussed, analyzing in detail the case of the OPTOPUS system at the 3.6-m European Space Observatory (ESO) telescope at La Silla. A standard technique, based on flat fields obtained with a uniformly illuminated screen on the dome, provides poor results. A new method has been developed, using the (O I) emission line at 5577 A as a calibrator of the fiber transmittance, taking into account the diffuse light and the influence of each fiber on the adjacent ones, and correcting for the effects of the image distortions on the sky sampling. In this way the accuracy of the sky subtraction improves from 2%-8% to 1.3%-1.6%.

  7. Locally adaptive 2D-3D registration using vascular structure model for liver catheterization.

    PubMed

    Kim, Jihye; Lee, Jeongjin; Chung, Jin Wook; Shin, Yeong-Gil

    2016-03-01

    Two-dimensional-three-dimensional (2D-3D) registration between intra-operative 2D digital subtraction angiography (DSA) and pre-operative 3D computed tomography angiography (CTA) can be used for roadmapping purposes. However, through the projection of 3D vessels, incorrect intersections and overlaps between vessels are produced because of the complex vascular structure, which makes it difficult to obtain the correct solution of 2D-3D registration. To overcome these problems, we propose a registration method that selects a suitable part of a 3D vascular structure for a given DSA image and finds the optimized solution to the partial 3D structure. The proposed algorithm can reduce the registration errors because it restricts the range of the 3D vascular structure for the registration by using only the relevant 3D vessels with the given DSA. To search for the appropriate 3D partial structure, we first construct a tree model of the 3D vascular structure and divide it into several subtrees in accordance with the connectivity. Then, the best matched subtree with the given DSA image is selected using the results from the coarse registration between each subtree and the vessels in the DSA image. Finally, a fine registration is conducted to minimize the difference between the selected subtree and the vessels of the DSA image. In experimental results obtained using 10 clinical datasets, the average distance errors in the case of the proposed method were 2.34±1.94mm. The proposed algorithm converges faster and produces more correct results than the conventional method in evaluations on patient datasets.

  8. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined

  9. New generation transistor technologies enabled by 2D crystals

    NASA Astrophysics Data System (ADS)

    Jena, D.

    2013-05-01

    The discovery of graphene opened the door to 2D crystal materials. The lack of a bandgap in 2D graphene makes it unsuitable for electronic switching transistors in the conventional field-effect sense, though possible techniques exploiting the unique bandstructure and nanostructures are being explored. The transition metal dichalcogenides have 2D crystal semiconductors, which are well-suited for electronic switching. We experimentally demonstrate field effect transistors with current saturation and carrier inversion made from layered 2D crystal semiconductors such as MoS2, WS2, and the related family. We also evaluate the feasibility of such semiconducting 2D crystals for tunneling field effect transistors for low-power digital logic. The article summarizes the current state of new generation transistor technologies either proposed, or demonstrated, with a commentary on the challenges and prospects moving forward.

  10. Addition and Subtraction, and Algorithms in General

    ERIC Educational Resources Information Center

    Fielker, David

    2007-01-01

    The juxtaposition of articles by Ian Thompson and Ian Sugarman in "MT202" on addition and subtraction respectively engendered some bemused thoughts in this author, who for some years has been sheltered from controversy by retirement. In this article, Fielker shares some thoughts on addition and subtraction raised by Thompson and Sugarman in their…

  11. A geometric approach to spectral subtraction

    PubMed Central

    Lu, Yang; Loizou, Philipos C.

    2008-01-01

    The traditional power spectral subtraction algorithm is computationally simple to implement but suffers from musical noise distortion. In addition, the subtractive rules are based on incorrect assumptions about the cross terms being zero. A new geometric approach to spectral subtraction is proposed in the present paper that addresses these shortcomings of the spectral subtraction algorithm. A method for estimating the cross terms involving the phase differences between the noisy (and clean) signals and noise is proposed. Analysis of the gain function of the proposed algorithm indicated that it possesses similar properties as the traditional MMSE algorithm. Objective evaluation of the proposed algorithm showed that it performed significantly better than the traditional spectral subtractive algorithm. Informal listening tests revealed that the proposed algorithm had no audible musical noise. PMID:19122867

  12. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  13. Helping Students to Connect Subtraction Strategies Improves Mathematical Reasoning for Students and Teachers

    ERIC Educational Resources Information Center

    Sci, Eve

    2011-01-01

    After administering an end of unit assessment written by the school's math program, teachers of three second grade classes in a New York City school noticed a majority of the students had not demonstrated mastery of subtracting two, two-digit numbers. The teachers worked with the school's math coach to implement an instructional unit that required…

  14. Highly crystalline 2D superconductors

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-12-01

    Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.

  15. Extensions of 2D gravity

    SciTech Connect

    Sevrin, A.

    1993-06-01

    After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.

  16. Entanglement entropy of subtracted geometry black holes

    NASA Astrophysics Data System (ADS)

    Cvetič, Mirjam; Saleem, Zain H.; Satz, Alejandro

    2014-09-01

    We compute the entanglement entropy of minimally coupled scalar fields on subtracted geometry black hole backgrounds, focusing on the logarithmic corrections. We notice that matching between the entanglement entropy of original black holes and their subtracted counterparts is only at the order of the area term. The logarithmic correction term is not only different but also, in general, changes sign in the subtracted case. We apply Harrison transformations to the original black holes and find out the choice of the Harrison parameters for which the logarithmic corrections vanish.

  17. [The backgroud sky subtraction around [OIII] line in LAMOST QSO spectra].

    PubMed

    Shi, Zhi-Xin; Comte, Georges; Luo, A-Li; Tu, Liang-Ping; Zhao, Yong-Heng; Wu, Fu-Chao

    2014-11-01

    At present, most sky-subtraction methods focus on the full spectrum, not the particular location, especially for the backgroud sky around [OIII] line which is very important to low redshift quasars. A new method to precisely subtract sky lines in local region is proposed in the present paper, which sloves the problem that the width of Hβ-[OIII] line is effected by the backgroud sky subtraction. The exprimental results show that, for different redshift quasars, the spectral quality has been significantly improved using our method relative to the original batch program by LAMOST. It provides a complementary solution for the small part of LAMOST spectra which are not well handled by LAMOST 2D pipeline. Meanwhile, This method has been used in searching for candidates of double-peaked Active Galactic Nuclei.

  18. Reconstruction-based 3D/2D image registration.

    PubMed

    Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

    2005-01-01

    In this paper we present a novel 3D/2D registration method, where first, a 3D image is reconstructed from a few 2D X-ray images and next, the preoperative 3D image is brought into the best possible spatial correspondence with the reconstructed image by optimizing a similarity measure. Because the quality of the reconstructed image is generally low, we introduce a novel asymmetric mutual information similarity measure, which is able to cope with low image quality as well as with different imaging modalities. The novel 3D/2D registration method has been evaluated using standardized evaluation methodology and publicly available 3D CT, 3DRX, and MR and 2D X-ray images of two spine phantoms, for which gold standard registrations were known. In terms of robustness, reliability and capture range the proposed method outperformed the gradient-based method and the method based on digitally reconstructed radiographs (DRRs).

  19. WE-AB-BRA-07: Quantitative Evaluation of 2D-2D and 2D-3D Image Guided Radiation Therapy for Clinical Trial Credentialing, NRG Oncology/RTOG

    SciTech Connect

    Giaddui, T; Yu, J; Xiao, Y; Jacobs, P; Manfredi, D; Linnemann, N

    2015-06-15

    Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance

  20. 2D:4D Ratio and its Implications in Medicine

    PubMed Central

    Jeevanandam, Saravanakumar

    2016-01-01

    Digit ratios, especially 2D:4D ratio, a potential proxy marker for prenatal androgen exposure shows sexual dimorphism. Existing literature and recent research show accumulating evidence on 2D:4D ratio showing correlations with various phenotypic traits in humans. Ratio of 2D:4D is found to correlate negatively to testosterone and positively to oestrogen in the foetus. Interestingly, it is constant since birth and not influenced by the adult hormone levels. Usually, males have lower ratios when compared to females. Prenatal androgen exposure and therefore, digit ratios have been reported to be associated with numerical competencies, spatial skills, handedness, cognitive abilities, academic performance, sperm counts, personalities and prevalence of obesity, migraine, eating disorders, depression, myopia, autism etc. The authors have attempted to write a brief account on the digit ratios and the dimorphism observed in various physiological, psychological and behavioural traits. Also, the authors have discussed the relevant molecular basics and the methods of measurement of digit ratios. PMID:28208851

  1. Minimal subtraction and momentum subtraction in quantum chromodynamics at two-loop order

    SciTech Connect

    Braaten, E.; Leveille, J.P.

    1981-09-01

    The momentum-subtraction coupling constant ..cap alpha../sub MOM/ yields consistently smaller one-loop corrections to many quantum-chromodynamics (QCD) processes than the minimal-subtraction couplings ..cap alpha../sub MS/ and ..cap alpha../sub M/S. By shifting the renormalization scale ..mu.. of ..cap alpha../sub MS/(..mu..), we obtain a minimal-subtraction coupling with the same small one-loop corrections. It is shown, by studying the effective charges of QCD, that at two-loop order this coupling constant will continue to yield corrections to physical quantities that are comparable to those obtained by momentum subtraction. We also introduce a momentum-subtraction scheme which treats the triple-gluon, quark, and ghost vertices equally at one-loop order and is more convenient for higher-order calculations than the MOM scheme.

  2. Digital Subtraction MR Angiography Roadmapping for Magnetic Steerable Catheter Tracking

    PubMed Central

    Martin, Alastair J.; Lillaney, Prasheel; Saeed, Maythem; Losey, Aaron D.; Settecase, Fabio; Evans, Lee; Arenson, Ronald L.; Wilson, Mark W.; Hetts, Steven W.

    2014-01-01

    Purpose To develop a high temporal resolution MR imaging technique that could be employed with magnetically-assisted remote control (MARC) endovascular catheters. Materials and Methods A technique is proposed based on selective intra-arterial injections of dilute MR contrast at the beginning of a fluoroscopic MR angiography acquisition. The initial bolus of contrast is used to establish a vascular roadmap upon which MARC catheters can be tracked. The contrast to noise ratio of the achieved roadmap was assessed in phantoms and in a swine animal model. The ability of the technique to permit navigation of activated MARC catheters through arterial branch points was evaluated. Results The roadmapping mode proved effective in phantoms for tracking objects and achieved a contrast to noise ratio of 35.7 between the intra and extra-vascular space. In vivo, the intra-arterial enhancement strategy produced roadmaps with a contrast to noise ratio of 42.0. The artifact produced by MARC catheter activation provided signal enhancement patterns on the roadmap that experienced interventionalists could track through vascular structures. Conclusion A roadmapping approach with intra-arterial CE-MRA is introduced for navigating the MARC catheter. The technique mitigates the artifact produced by the MARC catheter, greatly limits the required SAR, permits regular roadmap updates due to the low contrast agent requirements, and proved effective in the in vivo setting. PMID:24797218

  3. 2D quasiperiodic plasmonic crystals

    PubMed Central

    Bauer, Christina; Kobiela, Georg; Giessen, Harald

    2012-01-01

    Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871

  4. Valleytronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Schaibley, John R.; Yu, Hongyi; Clark, Genevieve; Rivera, Pasqual; Ross, Jason S.; Seyler, Kyle L.; Yao, Wang; Xu, Xiaodong

    2016-11-01

    Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.

  5. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  6. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  7. Quantum coherence selective 2D Raman-2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-03-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  8. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    PubMed

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  9. Subtraction CT angiography for the detection of intracranial aneurysms: A meta-analysis

    PubMed Central

    FENG, TIAN-YING; HAN, XUE-FENG; LANG, RUI; WANG, FEI; WU, QIONG

    2016-01-01

    The aim of this meta-analysis was to investigate the accuracy of subtraction computed tomography angiography (CTA) for diagnosing intracranial aneurysms. A systematic literature search up to January 1, 2013 was performed in PubMed. Two independent reviewers selected 8 studies that compared subtraction CTA with digital subtraction angiography. Data from the studies were used to construct a 2×2 contingency table on a per-patient basis in ≥5 diseased and 5 non-diseased patients, with additional data on a per-aneurysm basis. Overall, subtraction CTA had a pooled sensitivity of 99% [95% confidence interval (CI), 95–100%] and specificity of 94% (95% CI, 86–97%) for detecting and ruling out cerebral aneurysms, respectively, on a per-patient basis. On a per-aneurysm basis, the pooled sensitivity was 96% (95% CI, 90–99%), and the specificity was 91% (95% CI, 85–95%). In conclusion, subtraction CTA is a highly sensitive, specific and non-invasive method for the diagnosis and evaluation of intracranial aneurysms. PMID:27168830

  10. Additive-subtractive phase-modulated electronic speckle interferometry: analysis of fringe visibility.

    PubMed

    Pouet, B F; Krishnaswamy, S

    1994-10-01

    Fringe-visibility issues of additive-subtractive phase-modulated (ASPM) electronic speckle pattern interferometry (ESPI) are explored. ASPM ESPI is a three-step method in which additive-speckle images are acquired rapidly in an analog fashion in every frame of a video sequence, a speckle phase modulation is intentionally introduced between frames, and a digital subtraction of consecutive pairs of additive-speckle images is performed. We show that this scheme has the good high-frequency noise immunity associated with additive-ESPI techniques as well as the good fringe visibility associated with subtractive-ESPI techniques. The method has better fringe visibility than can be obtained with purely additive ESPI and also does not suffer from the fringe distortions that can occur with subtractive ESPI in the presence of high-frequency noise. We show that even if full speckle decorrelation were to occur between the two additive speckle images that are to be subtracted, the visibility of ASPM ESPI fringes can be made to approach unity by suitable adjustment of the reference-to-object beam-intensity ratio.

  11. Magnitude subtraction vs. complex subtraction in dynamic contrast-enhanced 3D-MR angiography: basic experiments and clinical evaluation.

    PubMed

    Naganawa, S; Ito, T; Iwayama, E; Fukatsu, H; Ishiguchi, T; Ishigaki, T; Ichinose, N

    1999-11-01

    Magnitude subtraction and complex subtraction in dynamic contrast-enhanced three-dimensional magnetic resonance (3D-MR) angiography were compared using a phantom and 23 human subjects. In phantom studies, complex subtraction showed far better performance than magnitude subtraction, especially for longer echo times, with thicker slices, and without fat suppression. With complex subtraction, non-fat-suppressed studies showed contrast-to-noise ratios comparable to those in fat-suppressed studies. In human subjects, complex subtraction was superior to magnitude subtraction in 9 subjects, but comparable to magnitude subtraction in 14 subjects. There were no cases in which magnitude subtraction was superior to complex subtraction. Although the differences observed in human studies when complex subtraction was applied with thinner slices, shorter echo times, and the fat-suppression technique were not as pronounced as those seen in phantom studies, complex subtraction should be performed in dynamic contrast-enhanced 3D-MR angiography because there are no drawbacks in complex subtraction. Further research is necessary to assess the feasibility of dynamic contrast-enhanced 3D-MR angiography without fat suppression in human subjects using complex subtraction, as suggested by the results of phantom studies. If it is found to be feasible, dynamic contrast-enhanced 3D-MR angiography without fat suppression using complex subtraction may prove to be a robust technique that eliminates the need for shimming and can reduce the acquisition time. J. Magn. Reson. Imaging 1999;10:813-820.

  12. Perception-based reversible watermarking for 2D vector maps

    NASA Astrophysics Data System (ADS)

    Men, Chaoguang; Cao, Liujuan; Li, Xiang

    2010-07-01

    This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.

  13. Report of the 1988 2-D Intercomparison Workshop, chapter 3

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Brasseur, Guy; Soloman, Susan; Guthrie, Paul D.; Garcia, Rolando; Yung, Yuk L.; Gray, Lesley J.; Tung, K. K.; Ko, Malcolm K. W.; Isaken, Ivar

    1989-01-01

    Several factors contribute to the errors encountered. With the exception of the line-by-line model, all of the models employ simplifying assumptions that place fundamental limits on their accuracy and range of validity. For example, all 2-D modeling groups use the diffusivity factor approximation. This approximation produces little error in tropospheric H2O and CO2 cooling rates, but can produce significant errors in CO2 and O3 cooling rates at the stratopause. All models suffer from fundamental uncertainties in shapes and strengths of spectral lines. Thermal flux algorithms being used in 2-D tracer tranport models produce cooling rates that differ by as much as 40 percent for the same input model atmosphere. Disagreements of this magnitude are important since the thermal cooling rates must be subtracted from the almost-equal solar heating rates to derive the net radiative heating rates and the 2-D model diabatic circulation. For much of the annual cycle, the net radiative heating rates are comparable in magnitude to the cooling rate differences described. Many of the models underestimate the cooling rates in the middle and lower stratosphere. The consequences of these errors for the net heating rates and the diabatic circulation will depend on their meridional structure, which was not tested here. Other models underestimate the cooling near 1 mbar. Suchs errors pose potential problems for future interactive ozone assessment studies, since they could produce artificially-high temperatures and increased O3 destruction at these levels. These concerns suggest that a great deal of work is needed to improve the performance of thermal cooling rate algorithms used in the 2-D tracer transport models.

  14. Simple circuit performs binary addition and subtraction

    NASA Technical Reports Server (NTRS)

    Cliff, R. A.; Schaefer, D. H.

    1965-01-01

    Ripple adder reduces the number of logic circuits required to preform binary addition and subtraction. The adder uses dual input and delayed output flip-flops in one register. The contents of this register are summed with those of a standard register through conventional AND/gates.

  15. Polygon Subtraction in 2 or 3 Dimensions

    SciTech Connect

    Wilson, John E.

    2013-10-01

    When searching for computer code to perform the ubiquitous task of subtracting one polygon from another, it is difficult to find real examples and detailed explanations. This paper outlines the step-by-step process necessary to accomplish this basic task.

  16. Children's Understanding of Addition and Subtraction Concepts

    ERIC Educational Resources Information Center

    Robinson, Katherine M.; Dube, Adam K.

    2009-01-01

    After the onset of formal schooling, little is known about the development of children's understanding of the arithmetic concepts of inversion and associativity. On problems of the form a+b-b (e.g., 3+26-26), if children understand the inversion concept (i.e., that addition and subtraction are inverse operations), then no calculations are needed…

  17. An experimental implementation of chemical subtraction.

    PubMed

    Chen, Shao-Nong; Turner, Allison; Jaki, Birgit U; Nikolic, Dejan; van Breemen, Richard B; Friesen, J Brent; Pauli, Guido F

    2008-03-13

    A preparative analytical method was developed to selectively remove ("chemically subtract") a single compound from a complex mixture, such as a natural extract or fraction, in a single step. The proof of concept is demonstrated by the removal of pure benzoic acid (BA) from cranberry (Vaccinium macrocarpon Ait.) juice fractions that exhibit anti-adhesive effects versus uropathogenic Escherichia coli. Chemical subtraction of BA, representing a major constituent of the fractions, eliminates the potential in vitro interference of the bacteriostatic effect of BA on the E. coli anti-adherence action measured in bioassays. Upon BA removal, the anti-adherent activity of the fraction was fully retained, 36% inhibition of adherence in the parent fraction at 100mug/mL increased to 58% in the BA-free active fraction. The method employs countercurrent chromatography (CCC) and operates loss-free for both the subtracted and the retained portions as only liquid-liquid partitioning is involved. While the high purity (97.47% by quantitative (1)H NMR) of the subtracted BA confirms the selectivity of the method, one minor impurity was determined to be scopoletin by HR-ESI-MS and (q)HNMR and represents the first coumarin reported from cranberries. A general concept for the selective removal of phytoconstituents by CCC is presented, which has potential broad applicability in the biological evaluation of medicinal plant extracts and complex pharmaceutical preparations.

  18. Diagnosis of Subtraction Bugs Using Bayesian Networks

    ERIC Educational Resources Information Center

    Lee, Jihyun; Corter, James E.

    2011-01-01

    Diagnosis of misconceptions or "bugs" in procedural skills is difficult because of their unstable nature. This study addresses this problem by proposing and evaluating a probability-based approach to the diagnosis of bugs in children's multicolumn subtraction performance using Bayesian networks. This approach assumes a causal network relating…

  19. Children's Profiles of Addition and Subtraction Understanding

    ERIC Educational Resources Information Center

    Canobi, Katherine H.

    2005-01-01

    The current research explored children's ability to recognize and explain different concepts both with and without reference to physical objects so as to provide insight into the development of children's addition and subtraction understanding. In Study 1, 72 7- to 9-year-olds judged and explained a puppet's activities involving three conceptual…

  20. Transactional Algorithm for Subtracting Fractions: Go Shopping

    ERIC Educational Resources Information Center

    Pinckard, James Seishin

    2009-01-01

    The purpose of this quasi-experimental research study was to examine the effects of an alternative or transactional algorithm for subtracting mixed numbers within the middle school setting. Initial data were gathered from the student achievement of four mathematics teachers at three different school sites. The results indicated students who…

  1. Digit ratio in birds.

    PubMed

    Lombardo, Michael P; Thorpe, Patrick A; Brown, Barbara M; Sian, Katie

    2008-12-01

    The Homeobox (Hox) genes direct the development of tetrapod digits. The expression of Hox genes may be influenced by endogenous sex steroids during development. Manning (Digit ratio. New Brunswick, NJ: Rutgers University Press, 2002) predicted that the ratio between the lengths of digits 2 (2D) and 4 (4D) should be sexually dimorphic because prenatal exposure to estrogens and androgens positively influence the lengths of 2D and 4D, respectively. We measured digits and other morphological traits of birds from three orders (Passeriformes, house sparrow, Passer domesticus; tree swallow, Tachycineta bicolor; Pscittaciformes, budgerigar, Melopsittacus undulates; Galliformes, chicken, Gallus domesticus) to test this prediction. None were sexually dimorphic for 2D:4D and there were no associations between 2D:4D and other sexually dimorphic traits. When we pooled data from all four species after we averaged right and left side digits from each individual and z-transformed the resulting digit ratios, we found that males had significantly larger 2D:4D than did females. Tetrapods appear to be sexually dimorphic for 2D:4D with 2D:4D larger in males as in some birds and reptiles and 2D:4D smaller in males as in some mammals. The differences between the reptile and mammal lineages in the directionality of 2D:4D may be related to the differences between them in chromosomal sex determination. We suggest that (a) natural selection for a perching foot in the first birds may have overridden the effects of hormones on the development of digit ratio in this group of vertebrates and (b) caution be used in making inferences about prenatal exposure to hormones and digit ratio in birds.

  2. The Effects of Computer-Assisted Instruction on Student Achievement in Addition and Subtraction at First Grade Level.

    ERIC Educational Resources Information Center

    Spivey, Patsy M.

    This study was conducted to determine whether the traditional classroom approach to instruction involving the addition and subtraction of number facts (digits 0-6) is more or less effective than the traditional classroom approach plus a commercially-prepared computer game. A pretest-posttest control group design was used with two groups of first…

  3. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  4. Hardware Implementation of a Bilateral Subtraction Filter

    NASA Technical Reports Server (NTRS)

    Huertas, Andres; Watson, Robert; Villalpando, Carlos; Goldberg, Steven

    2009-01-01

    A bilateral subtraction filter has been implemented as a hardware module in the form of a field-programmable gate array (FPGA). In general, a bilateral subtraction filter is a key subsystem of a high-quality stereoscopic machine vision system that utilizes images that are large and/or dense. Bilateral subtraction filters have been implemented in software on general-purpose computers, but the processing speeds attainable in this way even on computers containing the fastest processors are insufficient for real-time applications. The present FPGA bilateral subtraction filter is intended to accelerate processing to real-time speed and to be a prototype of a link in a stereoscopic-machine- vision processing chain, now under development, that would process large and/or dense images in real time and would be implemented in an FPGA. In terms that are necessarily oversimplified for the sake of brevity, a bilateral subtraction filter is a smoothing, edge-preserving filter for suppressing low-frequency noise. The filter operation amounts to replacing the value for each pixel with a weighted average of the values of that pixel and the neighboring pixels in a predefined neighborhood or window (e.g., a 9 9 window). The filter weights depend partly on pixel values and partly on the window size. The present FPGA implementation of a bilateral subtraction filter utilizes a 9 9 window. This implementation was designed to take advantage of the ability to do many of the component computations in parallel pipelines to enable processing of image data at the rate at which they are generated. The filter can be considered to be divided into the following parts (see figure): a) An image pixel pipeline with a 9 9- pixel window generator, b) An array of processing elements; c) An adder tree; d) A smoothing-and-delaying unit; and e) A subtraction unit. After each 9 9 window is created, the affected pixel data are fed to the processing elements. Each processing element is fed the pixel value for

  5. Continuous Representations of Digital Images.

    DTIC Science & Technology

    1985-10-01

    adjacency topology on a 2D digital image S is well represented by the standard Euclidean topology on F (S ) (resp. U (S )). The topological spaces F(S) and U...space R as primitive approximation of a 2D digital image S by con- tinuous topological spaces . This space F (S) is not new. In fact, it has always been

  6. Subtractive Structural Modification of Morpho Butterfly Wings.

    PubMed

    Shen, Qingchen; He, Jiaqing; Ni, Mengtian; Song, Chengyi; Zhou, Lingye; Hu, Hang; Zhang, Ruoxi; Luo, Zhen; Wang, Ge; Tao, Peng; Deng, Tao; Shang, Wen

    2015-11-11

    Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings.

  7. Ambient-Light-Canceling Camera Using Subtraction of Frames

    NASA Technical Reports Server (NTRS)

    Morookian, John Michael

    2004-01-01

    The ambient-light-canceling camera (ALCC) is a proposed near-infrared electronic camera that would utilize a combination of (1) synchronized illumination during alternate frame periods and (2) subtraction of readouts from consecutive frames to obtain images without a background component of ambient light. The ALCC is intended especially for use in tracking the motion of an eye by the pupil center corneal reflection (PCCR) method. Eye tracking by the PCCR method has shown potential for application in human-computer interaction for people with and without disabilities, and for noninvasive monitoring, detection, and even diagnosis of physiological and neurological deficiencies. In the PCCR method, an eye is illuminated by near-infrared light from a lightemitting diode (LED). Some of the infrared light is reflected from the surface of the cornea. Some of the infrared light enters the eye through the pupil and is reflected from back of the eye out through the pupil a phenomenon commonly observed as the red-eye effect in flash photography. An electronic camera is oriented to image the user's eye. The output of the camera is digitized and processed by algorithms that locate the two reflections. Then from the locations of the centers of the two reflections, the direction of gaze is computed. As described thus far, the PCCR method is susceptible to errors caused by reflections of ambient light. Although a near-infrared band-pass optical filter can be used to discriminate against ambient light, some sources of ambient light have enough in-band power to compete with the LED signal. The mode of operation of the ALCC would complement or supplant spectral filtering by providing more nearly complete cancellation of the effect of ambient light. In the operation of the ALCC, a near-infrared LED would be pulsed on during one camera frame period and off during the next frame period. Thus, the scene would be illuminated by both the LED (signal) light and the ambient (background) light

  8. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  9. Micro-structural Fluctuations in 2D Dusty Plasma Liquids

    SciTech Connect

    I Lin; Huang, Y.-H.; Teng, L.-W.

    2007-07-13

    We address structural fluctuations in a cold 2D dusty plasma liquid which is self-organized through the strong Coulomb coupling of the negatively charged micro-meter sized dust particles suspending in weakly ionized discharges. The 2D liquids consist of triangular type ordered domains surrounded by defect clusters, which can be reorganized through avalanche type hopping under the interplay of strong Coulomb coupling and thermal fluctuations. The spatio-temporal evolutions of the local bond-orientational order are directly tracked through digital optical microscopy. The power law scaling of the temporal persistence length of fluctuations is obtained for the cold liquid. The measurement of the conditional probability of the persistence lengths of the successive fluctuating cycles suggests certain types of the persistence length combinations are more preferred. The memory of persistence lasts a few fluctuating cycles.

  10. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array.

    PubMed

    Shrestha, Vivek R; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2014-11-12

    Nanophotonic devices enabled by aluminum plasmonics are saliently advantageous in terms of their low cost, outstanding sustainability, and affordable volume production. We report, for the first time, aluminum plasmonics based highly transmissive polarization-independent subtractive color filters, which are fabricated just with single step electron-beam lithography. The filters feature selective suppression in the transmission spectra, which is realized by combining the propagating and nonpropagating surface plasmons mediated by an array of opaque and physically thin aluminum nanopatches. A broad palette of bright, high-contrast subtractive colors is successfully demonstrated by simply varying the pitches of the nanopatches. These subtractive color filters have twice the photon throughput of additive counterparts, ultimately providing elevated optical transmission and thus stronger color signals. Moreover, the filters are demonstrated to conspicuously feature a dual-mode operation, both transmissive and reflective, in conjunction with a capability to exhibit micron-scale colors in arbitrary shapes. They are anticipated to be diversely applied to digital display, digital imaging, color printing, and sensing.

  11. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  12. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  13. Dynamic powerline interference subtraction from biosignals.

    PubMed

    Christov, I I

    2000-01-01

    The performance of a previously developed and widely used method for powerline interference subtraction from the ECG is slightly reduced in the presence of continuous well-expressed EMG noise. Applying automatic adaptation of the 'linearity criterion' value in accordance to the ECG/noise ratio, the best conditions for application of the procedure can be obtained. The proposed method allows for reduction of possible distortions when applied on noise-free ECG and enhances its efficiency in the presence of non-powerline noise. Apart from ECG, it is applicable to impedance-cardiogram, plethysmogram, EEG and other biosignals.

  14. 2D/3D Image Registration using Regression Learning

    PubMed Central

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-01-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278

  15. A Mathematical Model for Suppression Subtractive Hybridization

    PubMed Central

    Gadgil, Chetan; Rink, Anette; Beattie, Craig

    2002-01-01

    Suppression subtractive hybridization (SSH) is frequently used to unearth differentially expressed genes on a whole-genome scale. Its versatility is based on combining cDNA library subtraction and normalization, which allows the isolation of sequences of varying degrees of abundance and differential expression. SSH is a complex process with many adjustable parameters that affect the outcome of gene isolation.We present a mathematical model of SSH based on DNA hybridization kinetics for assessing the effect of various parameters to facilitate its optimization. We derive an equation for the probability that a particular differentially expressed species is successfully isolated and use this to quantify the effect of the following parameters related to the cDNA sample: (a) mRNA abundance; (b) partial sequence complementarity to other species; and (3) degree of differential expression. We also evaluate the effect of parameters related to the process, including: (a) reaction times; and (b) extent of driver excess used in the two hybridization reactions. The optimum set of process parameters for successful isolation of differentially expressed species depends on transcript abundance. We show that the reaction conditions have a significant effect on the occurrence of false-positives and formulate strategies to isolate specific subsets of differentially expressed genes. We also quantify the effect of non-specific hybridization on the false-positive results and present strategies for spiking cDNA sequences to address this problem. PMID:18629052

  16. Additive and subtractive transparent depth displays

    NASA Astrophysics Data System (ADS)

    Kooi, Frank L.; Toet, Alexander

    2003-09-01

    Image fusion is the generally preferred method to combine two or more images for visual display on a single screen. We demonstrate that perceptual image separation may be preferable over perceptual image fusion for the combined display of enhanced and synthetic imagery. In this context image separation refers to the simultaneous presentation of images on different depth planes of a single display. Image separation allows the user to recognize the source of the information that is displayed. This can be important because synthetic images are more liable to flaws. We have examined methods to optimize perceptual image separation. A true depth difference between enhanced and synthetic imagery works quite well. A standard stereoscopic display based on convergence is less suitable since the two images tend to interfere: the image behind is masked (occluded) by the image in front, which results in poor viewing comfort. This effect places 3D systems based on 3D glasses, as well as most autostereoscopic displays, at a serious disadvantage. A 3D display based on additive or subtractive transparency is acceptable: both the perceptual separation and the viewing comfort are good, but the color of objects depends on the color in the other depth layer(s). A combined additive and subtractive transparent display eliminates this disadvantage and is most suitable for the combined display of enhanced and synthetic imagery. We suggest that the development of such a display system is of a greater practical value than increasing the number of depth planes in autostereoscopic displays.

  17. Children's understanding of addition and subtraction concepts.

    PubMed

    Robinson, Katherine M; Dubé, Adam K

    2009-08-01

    After the onset of formal schooling, little is known about the development of children's understanding of the arithmetic concepts of inversion and associativity. On problems of the form a+b-b (e.g., 3+26-26), if children understand the inversion concept (i.e., that addition and subtraction are inverse operations), then no calculations are needed to solve the problem. On problems of the form a+b-c (e.g., 3+27-23), if children understand the associativity concept (i.e., that the addition and subtraction can be solved in any order), then the second part of the problem can be solved first. Children in Grades 2, 3, and 4 solved both types of problems and then were given a demonstration of how to apply both concepts. Approval of each concept and preference of a conceptual approach versus an algorithmic approach were measured. Few grade differences were found on either task. Conceptual understanding was greater for inversion than for associativity on both tasks. Clusters of participants in all grades showed that some had strong understanding of both concepts, some had strong understanding of the inversion concept only, and others had weak understanding of both concepts. The findings highlight the lack of developmental increases and the large individual differences in conceptual understanding on two arithmetic concepts during the early school years.

  18. Low 2D:4D Values Are Associated with Video Game Addiction

    PubMed Central

    Kornhuber, Johannes; Zenses, Eva-Maria; Lenz, Bernd; Stoessel, Christina; Bouna-Pyrrou, Polyxeni; Rehbein, Florian; Kliem, Sören; Mößle, Thomas

    2013-01-01

    Androgen-dependent signaling regulates the growth of the fingers on the human hand during embryogenesis. A higher androgen load results in lower 2D:4D (second digit to fourth digit) ratio values. Prenatal androgen exposure also impacts brain development. 2D:4D values are usually lower in males and are viewed as a proxy of male brain organization. Here, we quantified video gaming behavior in young males. We found lower mean 2D:4D values in subjects who were classified according to the CSAS-II as having at-risk/addicted behavior (n = 27) compared with individuals with unproblematic video gaming behavior (n = 27). Thus, prenatal androgen exposure and a hyper-male brain organization, as represented by low 2D:4D values, are associated with problematic video gaming behavior. These results may be used to improve the diagnosis, prediction, and prevention of video game addiction. PMID:24236143

  19. Low 2D:4D values are associated with video game addiction.

    PubMed

    Kornhuber, Johannes; Zenses, Eva-Maria; Lenz, Bernd; Stoessel, Christina; Bouna-Pyrrou, Polyxeni; Rehbein, Florian; Kliem, Sören; Mößle, Thomas

    2013-01-01

    Androgen-dependent signaling regulates the growth of the fingers on the human hand during embryogenesis. A higher androgen load results in lower 2D:4D (second digit to fourth digit) ratio values. Prenatal androgen exposure also impacts brain development. 2D:4D values are usually lower in males and are viewed as a proxy of male brain organization. Here, we quantified video gaming behavior in young males. We found lower mean 2D:4D values in subjects who were classified according to the CSAS-II as having at-risk/addicted behavior (n = 27) compared with individuals with unproblematic video gaming behavior (n = 27). Thus, prenatal androgen exposure and a hyper-male brain organization, as represented by low 2D:4D values, are associated with problematic video gaming behavior. These results may be used to improve the diagnosis, prediction, and prevention of video game addiction.

  20. Influence of Elevation Data Source on 2D Hydraulic Modelling

    NASA Astrophysics Data System (ADS)

    Bakuła, Krzysztof; StĘpnik, Mateusz; Kurczyński, Zdzisław

    2016-08-01

    The aim of this paper is to analyse the influence of the source of various elevation data on hydraulic modelling in open channels. In the research, digital terrain models from different datasets were evaluated and used in two-dimensional hydraulic models. The following aerial and satellite elevation data were used to create the representation of terrain-digital terrain model: airborne laser scanning, image matching, elevation data collected in the LPIS, EuroDEM, and ASTER GDEM. From the results of five 2D hydrodynamic models with different input elevation data, the maximum depth and flow velocity of water were derived and compared with the results of the most accurate ALS data. For such an analysis a statistical evaluation and differences between hydraulic modelling results were prepared. The presented research proved the importance of the quality of elevation data in hydraulic modelling and showed that only ALS and photogrammetric data can be the most reliable elevation data source in accurate 2D hydraulic modelling.

  1. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  2. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  3. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  4. 2D/3D switchable displays

    NASA Astrophysics Data System (ADS)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  5. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L. A.; Hallquist, J. O.

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  6. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  7. Shear viscosity measurements in a 2D Yukawa liquid

    NASA Astrophysics Data System (ADS)

    Nosenko, Volodymyr

    2005-03-01

    Shear viscosity was measured for a 2D strongly-coupled Yukawa liquid. First, we formed a dilute monolayer suspension of microspheres in a partially-ionized rarefied gas, i.e., a dusty plasma. In the absence of manipulation, the suspension forms a 2D triangular lattice. We used a new in-situ method of applying a shear stress using the scattering forces applied by counter-propagating laser beams. The lattice melted and a shear flow formed. Using digital video microscopy for direct imaging and particle tracking, the microscopic dynamics of the shear flow are observed. Averaging the velocities of individual microspheres, a velocity flow profile was calculated. Using the Navier-Stokes equation with an additional frictional term to account for gas drag, we fit the velocity profile. The fit yielded the value of the shear viscosity. The kinematic viscosity of our particle suspension is of order 1 mm^2s-1, which is comparable to that for liquid water. We believe this is the first report of a rheological measurement in a 2D dusty plasma. This talk is based on V. Nosenko and J. Goree, PRL 93, 155004 (2004).

  8. Astronomical Image Subtraction by Cross-Convolution

    NASA Astrophysics Data System (ADS)

    Yuan, Fang; Akerlof, Carl W.

    2008-04-01

    In recent years, there has been a proliferation of wide-field sky surveys to search for a variety of transient objects. Using relatively short focal lengths, the optics of these systems produce undersampled stellar images often marred by a variety of aberrations. As participants in such activities, we have developed a new algorithm for image subtraction that no longer requires high-quality reference images for comparison. The computational efficiency is comparable with similar procedures currently in use. The general technique is cross-convolution: two convolution kernels are generated to make a test image and a reference image separately transform to match as closely as possible. In analogy to the optimization technique for generating smoothing splines, the inclusion of an rms width penalty term constrains the diffusion of stellar images. In addition, by evaluating the convolution kernels on uniformly spaced subimages across the total area, these routines can accommodate point-spread functions that vary considerably across the focal plane.

  9. Renormalization of quark bilinear operators in a momentum-subtraction scheme with a nonexceptional subtraction point

    SciTech Connect

    Sturm, C.; Soni, A.; Aoki, Y.; Christ, N. H.; Izubuchi, T.; Sachrajda, C. T. C.

    2009-07-01

    We extend the Rome-Southampton regularization independent momentum-subtraction renormalization scheme (RI/MOM) for bilinear operators to one with a nonexceptional, symmetric subtraction point. Two-point Green's functions with the insertion of quark bilinear operators are computed with scalar, pseudoscalar, vector, axial-vector and tensor operators at one-loop order in perturbative QCD. We call this new scheme RI/SMOM, where the S stands for 'symmetric'. Conversion factors are derived, which connect the RI/SMOM scheme and the MS scheme and can be used to convert results obtained in lattice calculations into the MS scheme. Such a symmetric subtraction point involves nonexceptional momenta implying a lattice calculation with substantially suppressed contamination from infrared effects. Further, we find that the size of the one-loop corrections for these infrared improved kinematics is substantially decreased in the case of the pseudoscalar and scalar operator, suggesting a much better behaved perturbative series. Therefore it should allow us to reduce the error in the determination of the quark mass appreciably.

  10. Evolutionary Processes in the Development of Errors in Subtraction Algorithms

    ERIC Educational Resources Information Center

    Fernandez, Ricardo Lopez; Garcia, Ana B. Sanchez

    2008-01-01

    The study of errors made in subtraction is a research subject approached from different theoretical premises that affect different components of the algorithmic process as triggers of their generation. In the following research an attempt has been made to investigate the typology and nature of errors which occur in subtractions and their evolution…

  11. Developing a Model to Support Students in Solving Subtraction

    ERIC Educational Resources Information Center

    Murdiyani, Nila Mareta; Zulkardi; Putri, Ratu Ilma Indra; van Eerde, Dolly; van Galen, Frans

    2013-01-01

    Subtraction has two meanings and each meaning leads to the different strategies. The meaning of "taking away something" suggests a direct subtraction, while the meaning of "determining the difference between two numbers" is more likely to be modeled as indirect addition. Many prior researches found that the second meaning and…

  12. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  13. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  14. Orthotropic Piezoelectricity in 2D Nanocellulose.

    PubMed

    García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M

    2016-10-06

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V(-1), ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  15. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  16. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  17. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  18. Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.

    PubMed

    Fang, Yuan; Yushmanov, Pavel V; Furó, István

    2016-12-08

    Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  19. 2D Distributed Sensing Via TDR

    DTIC Science & Technology

    2007-11-02

    plate VEGF CompositeSensor Experimental Setup Air 279 mm 61 78 VARTM profile: slope RTM profile: rectangle 22 1 Jul 2003© 2003 University of Delaware...2003 University of Delaware All rights reserved Vision: Non-contact 2D sensing ü VARTM setup constructed within TL can be sensed by its EM field: 2D...300.0 mm/ns. 1 2 1 Jul 2003© 2003 University of Delaware All rights reserved Model Validation “ RTM Flow” TDR Response to 139 mm VEGC

  20. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  1. Fully adiabatic 31P 2D-CSI with reduced chemical shift displacement error at 7 T--GOIA-1D-ISIS/2D-CSI.

    PubMed

    Chmelík, M; Kukurová, I Just; Gruber, S; Krššák, M; Valkovič, L; Trattnig, S; Bogner, W

    2013-05-01

    A fully adiabatic phosphorus (31P) two-dimensional (2D) chemical shift spectroscopic imaging sequence with reduced chemical shift displacement error for 7 T, based on 1D-image-selected in vivo spectroscopy, combined with 2D-chemical shift spectroscopic imaging selection, was developed. Slice-selective excitation was achieved by a spatially selective broadband GOIA-W(16,4) inversion pulse with an interleaved subtraction scheme before nonselective adiabatic excitation, and followed by 2D phase encoding. The use of GOIA-W(16,4) pulses (bandwidth 4.3-21.6 kHz for 10-50 mm slices) reduced the chemical shift displacement error in the slice direction ∼1.5-7.7 fold, compared to conventional 2D-chemical shift spectroscopic imaging with Sinc3 selective pulses (2.8 kHz). This reduction was experimentally demonstrated with measurements of an MR spectroscopy localization phantom and with experimental evaluation of pulse profiles. In vivo experiments in clinically acceptable measurement times were demonstrated in the calf muscle (nominal voxel volume, 5.65 ml in 6 min 53 s), brain (10 ml, 6 min 32 s), and liver (8.33 ml, 8 min 14 s) of healthy volunteers at 7 T. High reproducibility was found in the calf muscle at 7 T. In combination with adiabatic excitation, this sequence is insensitive to the B1 inhomogeneities associated with surface coils. This sequence, which is termed GOIA-1D-ISIS/2D-CSI (goISICS), has the potential to be applied in both clinical research and in the clinical routine.

  2. Animal experiments by K-edge subtraction angiography by using SR (abstract)

    NASA Astrophysics Data System (ADS)

    Anno, I.; Akisada, M.; Takeda, T.; Sugishita, Y.; Kakihana, M.; Ohtsuka, S.; Nishimura, K.; Hasegawa, S.; Takenaka, E.; Hyodo, K.; Ando, M.

    1989-07-01

    Ischemic heart disease is one of the most popular and lethal diseases for aged peoples in the world, and is usually diagnosed by transarterial selective coronary arteriography. However, it is rather invasive and somewhat dangerous, so that the selective coronary arteriography is not feasible for prospective screening of coronary occlusive heart disease. Conventional digital subtraction angiography (DSA) is widely known as a relatively noninvasive and useful technique is making a diagnosis of arterial occlusive disease, especially in making the diagnosis of ischemic heart disease. Conventional intravenous subtraction angiography by temporal subtraction, however, has several problems when applying to the moving objects. Digital subtraction method using high-speed switching above and below the K edge could be the ideal approach to this solution. We intend to make a synchrotron radiation digital K-edge subtraction angiography in the above policy, and to apply it to the human coronary ischemic disease on an outpatient basis. The principles and experimental systems have already been described in detail by our coworkers. Our prototype experimental system is situated at the AR (accumulation ring) for TRISTAN project of high energy physics. The available beam size is 70 mm by 120 mm. The electron energy of AR is 6.5 GeV and average beam current is approximately 10 mA. This paper will show the animal experiments of our K-edge subtraction system, and discuss some problems and technical difficulties. Three dogs, weighing approximately 15 kg, were examined to evaluate the ability of our prototype synchrotron radiation DSA unit, that we are now constructing. The dogs were anaesthetized with pentobarbital sodium, intravenously (30 mg/kg). Six french-sized (1.52 mm i.d.) pigtail catheter with multiple side holes were introduced via the right femoral vein into the right atrium by the cutdown technique under conventional x-ray fluoroscopic control. Respiration of the dogs was

  3. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  4. The basics of 2D DIGE.

    PubMed

    Beckett, Phil

    2012-01-01

    The technique of two-dimensional (2D) gel electrophoresis is a powerful tool for separating complex mixtures of proteins, but since its inception in the mid 1970s, it acquired the stigma of being a very difficult application to master and was generally used to its best effect by experts. The introduction of commercially available immobilized pH gradients in the early 1990s provided enhanced reproducibility and easier protocols, leading to a pronounced increase in popularity of the technique. However gel-to-gel variation was still difficult to control without the use of technical replicates. In the mid 1990s (at the same time as the birth of "proteomics"), the concept of multiplexing fluorescently labeled proteins for 2D gel separation was realized by Jon Minden's group and has led to the ability to design experiments to virtually eliminate gel-to-gel variation, resulting in biological replicates being used for statistical analysis with the ability to detect very small changes in relative protein abundance. This technology is referred to as 2D difference gel electrophoresis (2D DIGE).

  5. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; ...

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  6. 2D Transducer Array for High-Speed 3D Imaging System

    DTIC Science & Technology

    2007-11-02

    low voltage differential signaling ( LVDS ) interface and a peripheral component interconnect (PCI) bus. The maximum numbers of transmission and...32-channel analog to digital converter (ADC) was attached to the developed transducer array. LVDS 2D Array Front End D a t a A c q u i s i t i o

  7. Taking Away and Determining the Difference--A Longitudinal Perspective on Two Models of Subtraction and the Inverse Relation to Addition

    ERIC Educational Resources Information Center

    Selter, Christoph; Prediger, Susanne; Nuhrenborger, Marcus; Hussmann, Stephan

    2012-01-01

    Subtraction can be understood by two basic models--taking away (ta) and determining the difference (dd)--and by its inverse relation to addition. Epistemological analyses and empirical examples show that the two models are not relevant only in single-digit arithmetic. As curricula should be developed in a longitudinal perspective on mathematics…

  8. Digitized synchronous demodulator

    NASA Technical Reports Server (NTRS)

    Woodhouse, Christopher E. (Inventor)

    1990-01-01

    A digitized synchronous demodulator is constructed entirely of digital components including timing logic, an accumulator, and means to digitally filter the digital output signal. Indirectly, it accepts, at its input, periodic analog signals which are converted to digital signals by traditional analog-to-digital conversion techniques. Broadly, the input digital signals are summed to one of two registers within an accumulator, based on the phase of the input signal and medicated by timing logic. At the end of a predetermined number of cycles of the inputted periodic signals, the contents of the register that accumulated samples from the negative half cycle is subtracted from the accumulated samples from the positive half cycle. The resulting difference is an accurate measurement of the narrow band amplitude of the periodic input signal during the measurement period. This measurement will not include error sources encountered in prior art synchronous demodulators using analog techniques such as offsets, charge injection errors, temperature drift, switching transients, settling time, analog to digital converter missing code, and linearity errors.

  9. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  10. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  11. Interactive 2D to 3D stereoscopic image synthesis

    NASA Astrophysics Data System (ADS)

    Feldman, Mark H.; Lipton, Lenny

    2005-03-01

    Advances in stereoscopic display technologies, graphic card devices, and digital imaging algorithms have opened up new possibilities in synthesizing stereoscopic images. The power of today"s DirectX/OpenGL optimized graphics cards together with adapting new and creative imaging tools found in software products such as Adobe Photoshop, provide a powerful environment for converting planar drawings and photographs into stereoscopic images. The basis for such a creative process is the focus of this paper. This article presents a novel technique, which uses advanced imaging features and custom Windows-based software that utilizes the Direct X 9 API to provide the user with an interactive stereo image synthesizer. By creating an accurate and interactive world scene with moveable and flexible depth map altered textured surfaces, perspective stereoscopic cameras with both visible frustums and zero parallax planes, a user can precisely model a virtual three-dimensional representation of a real-world scene. Current versions of Adobe Photoshop provide a creative user with a rich assortment of tools needed to highlight elements of a 2D image, simulate hidden areas, and creatively shape them for a 3D scene representation. The technique described has been implemented as a Photoshop plug-in and thus allows for a seamless transition of these 2D image elements into 3D surfaces, which are subsequently rendered to create stereoscopic views.

  12. Prokaryotic suppression subtractive hybridization PCR cDNA subtraction, a targeted method to identify differentially expressed genes.

    PubMed

    De Long, Susan K; Kinney, Kerry A; Kirisits, Mary Jo

    2008-01-01

    Molecular biology tools can be used to monitor and optimize biological treatment systems, but the application of nucleic acid-based tools has been hindered by the lack of available sequences for environmentally relevant biodegradation genes. The objective of our work was to extend an existing molecular method for eukaryotes to prokaryotes, allowing us to rapidly identify differentially expressed genes for subsequent sequencing. Suppression subtractive hybridization (SSH) PCR cDNA subtraction is a technique that can be used to identify genes that are expressed under specific conditions (e.g., growth on a given pollutant). While excellent methods for eukaryotic SSH PCR cDNA subtraction are available, to our knowledge, no methods previously existed for prokaryotes. This work describes our methodology for prokaryotic SSH PCR cDNA subtraction, which we validated using a model system: Pseudomonas putida mt-2 degrading toluene. cDNA from P. putida mt-2 grown on toluene (model pollutant) or acetate (control substrate) was subjected to our prokaryotic SSH PCR cDNA subtraction protocol to generate subtraction clone libraries. Over 90% of the sequenced clones contained gene fragments encoding toluene-related enzymes, and 20 distinct toluene-related genes from three key operons were sequenced. Based on these results, prokaryotic SSH PCR cDNA subtraction shows promise as a targeted method for gene identification.

  13. Compatible embedding for 2D shape animation.

    PubMed

    Baxter, William V; Barla, Pascal; Anjyo, Ken-Ichi

    2009-01-01

    We present new algorithms for the compatible embedding of 2D shapes. Such embeddings offer a convenient way to interpolate shapes having complex, detailed features. Compared to existing techniques, our approach requires less user input, and is faster, more robust, and simpler to implement, making it ideal for interactive use in practical applications. Our new approach consists of three parts. First, our boundary matching algorithm locates salient features using the perceptually motivated principles of scale-space and uses these as automatic correspondences to guide an elastic curve matching algorithm. Second, we simplify boundaries while maintaining their parametric correspondence and the embedding of the original shapes. Finally, we extend the mapping to shapes' interiors via a new compatible triangulation algorithm. The combination of our algorithms allows us to demonstrate 2D shape interpolation with instant feedback. The proposed algorithms exhibit a combination of simplicity, speed, and accuracy that has not been achieved in previous work.

  14. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  15. Extrinsic Cation Selectivity of 2D Membranes

    PubMed Central

    2017-01-01

    From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333

  16. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  17. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  18. Quasiparticle interference in unconventional 2D systems

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-01

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  19. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  20. 2D Metals by Repeated Size Reduction.

    PubMed

    Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui

    2016-10-01

    A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers.

  1. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  2. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  3. Irreversibility-inversions in 2D turbulence

    NASA Astrophysics Data System (ADS)

    Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido

    2016-11-01

    We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.

  4. Soft-collinear factorization and zero-bin subtractions

    SciTech Connect

    Chiu Juiyu; Fuhrer, Andreas; Kelley, Randall; Manohar, Aneesh V.; Hoang, Andre H.

    2009-03-01

    We study the Sudakov form factor for a spontaneously broken gauge theory using a (new) {delta}-regulator. To be well defined, the effective theory requires zero-bin subtractions for the collinear sectors. The zero-bin subtractions depend on the gauge boson mass M and are not scaleless. They have both finite and 1/{epsilon} contributions and are needed to give the correct anomalous dimension and low-scale matching contributions. We also demonstrate the necessity of zero-bin subtractions for soft-collinear factorization. We find that after zero-bin subtractions the form factor is the sum of the collinear contributions minus a soft mass-mode contribution, in agreement with a previous result of Idilbi and Mehen in QCD. This appears to conflict with the method-of-regions approach, where one gets the sum of contributions from different regions.

  5. Improvements in floating point addition/subtraction operations

    DOEpatents

    Farmwald, P.M.

    1984-02-24

    Apparatus is described for decreasing the latency time associated with floating point addition and subtraction in a computer, using a novel bifurcated, pre-normalization/post-normalization approach that distinguishes between differences of floating point exponents.

  6. 2D superconductivity by ionic gating

    NASA Astrophysics Data System (ADS)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  7. Fragile watermarking using the VW2D watermark

    NASA Astrophysics Data System (ADS)

    Wolfgang, Raymond B.; Delp, Edward J., III

    1999-04-01

    Two classes of digital watermarks have been developed to protect the copyright ownership of digital images. Robust watermarks are designed to withstand attacks on an image (such as compression or scaling), while fragile watermarks are designed to detect minute changes in an image. Fragile marks can also identify where an image has been altered. This paper compares two fragile watermarks. The first method uses a hash function to obtain a digest of the image. An altered or forged version of the original image is then hashed and the digest is compared to the digest of the original image. If the image has changed the digests will be different. We will describe how images can be hashed so that any changes can be spatially localized. The second method uses the Variable-Watermark Two- Dimensional algorithm (VW2D). The sensitivity to changes is user-specific. Either no changes can be permitted (similar to a hard hash function), or an image can be altered and still be labeled authentic. Latter algorithms are known as semi-fragile watermarks. We will describe the performance of these two techniques and discuss under what circumstances one would use a particular technique.

  8. Photorealistic image synthesis and camera validation from 2D images

    NASA Astrophysics Data System (ADS)

    Santos Ferrer, Juan C.; González Chévere, David; Manian, Vidya

    2014-06-01

    This paper presents a new 3D scene reconstruction technique using the Unity 3D game engine. The method presented here allow us to reconstruct the shape of simple objects and more complex ones from multiple 2D images, including infrared and digital images from indoor scenes and only digital images from outdoor scenes and then add the reconstructed object to the simulated scene created in Unity 3D, these scenes are then validated with real world scenes. The method used different cameras settings and explores different properties in the reconstructions of the scenes including light, color, texture, shapes and different views. To achieve the highest possible resolution, it was necessary the extraction of partial textures from visible surfaces. To recover the 3D shapes and the depth of simple objects that can be represented by the geometric bodies, there geometric characteristics were used. To estimate the depth of more complex objects the triangulation method was used, for this the intrinsic and extrinsic parameters were calculated using geometric camera calibration. To implement the methods mentioned above the Matlab tool was used. The technique presented here also let's us to simulate small simple videos, by reconstructing a sequence of multiple scenes of the video separated by small margins of time. To measure the quality of the reconstructed images and video scenes the Fast Low Band Model (FLBM) metric from the Video Quality Measurement (VQM) software was used. Low bandwidth perception based features include edges and motion.

  9. Silicene: silicon conquers the 2D world

    NASA Astrophysics Data System (ADS)

    Le Lay, Guy; Salomon, Eric; Angot, Thierry

    2016-01-01

    We live in the digital age based on the silicon chip and driven by Moore's law. Last July, IBM created a surprise by announcing the fabrication of a 7 nm test chip with functional transistors using, instead of just silicon, a silicon-germanium alloy. Will silicon be dethroned?

  10. Advanced Background Subtraction Applied to Aeroacoustic Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Bahr, Christopher J.; Horne, William C.

    2015-01-01

    An advanced form of background subtraction is presented and applied to aeroacoustic wind tunnel data. A variant of this method has seen use in other fields such as climatology and medical imaging. The technique, based on an eigenvalue decomposition of the background noise cross-spectral matrix, is robust against situations where isolated background auto-spectral levels are measured to be higher than levels of combined source and background signals. It also provides an alternate estimate of the cross-spectrum, which previously might have poor definition for low signal-to-noise ratio measurements. Simulated results indicate similar performance to conventional background subtraction when the subtracted spectra are weaker than the true contaminating background levels. Superior performance is observed when the subtracted spectra are stronger than the true contaminating background levels. Experimental results show limited success in recovering signal behavior for data where conventional background subtraction fails. They also demonstrate the new subtraction technique's ability to maintain a proper coherence relationship in the modified cross-spectral matrix. Beam-forming and de-convolution results indicate the method can successfully separate sources. Results also show a reduced need for the use of diagonal removal in phased array processing, at least for the limited data sets considered.

  11. Surface and internal multiple attenuation by prediction and subtraction: case studies

    NASA Astrophysics Data System (ADS)

    Benaïssa, Zahia; Bouchakour, Imene; Karcouche, Sakina; Benaïssa, Abdelkader; Boudella, Amar; Ouadfeul, Sid Ali

    2015-04-01

    In seismic records, there are coherent noises that we can better attenuate with the technological headway (algorithms and computer equipments). Multiples remain a complicated coherent noise to attenuate, particularly the internal multiples. The techniques based on velocity discrimination or statistical methods showed their limits. For that purpose, a new approach known as SRME/IME (Surface-Related or Internal Multiple Elimination) was elaborated; the multiples are modeled and then adaptively subtracted from seismic data. A model corresponding to multiples is predicted from seismic record that makes it more credible. These last years, this technique showed its efficiency in the industry and the algorithms are more and more improved with the progress of computers power. It is becoming a standard technique. In this study, two applications were performed in order to attenuate internal multiples which remain problematic in seismic land data preprocessing. The first one is on 2D Algerian onshore seismic data, using the Omega software module called IMP, and the second one on 3D Algerian onshore seismic data, using the Omega software module called XIMP (Extended Interbed Multiple Prediction), designed for marine data but whose corresponding workflow we had adapted for our land data. Both approaches worked well and gave good results. Key words: Internal multiple - Surface multiple - SRME/IME - Land seismic - Adaptive subtraction.

  12. Can exposure to prenatal sex hormones (2D:4D) predict cognitive reflection?

    PubMed

    Bosch-Domènech, Antoni; Brañas-Garza, Pablo; Espín, Antonio M

    2014-05-01

    The Cognitive Reflection Test (CRT) is a test introduced by Frederick (2005). The task is designed to measure the tendency to override an intuitive response that is incorrect and to engage in further reflection that leads to the correct response. The consistent sex differences in CRT performance may suggest a role for prenatal sex hormones. A now widely studied putative marker for relative prenatal testosterone is the second-to-fourth digit ratio (2D:4D). This paper tests to what extent 2D:4D, as a proxy for the prenatal ratio of testosterone/estrogens, can predict CRT scores in a sample of 623 students. After controlling for sex, we observe that a lower 2D:4D (reflecting a relative higher exposure to testosterone) is significantly associated with a higher number of correct answers. The result holds for both hands' 2D:4Ds. In addition, the effect appears to be stronger for females than for males. We also control for patience and math proficiency, which are significantly related to performance in the CRT. But the effect of 2D:4D on performance in CRT is not reduced with these controls, implying that these variables are not mediating the relationship between digit ratio and CRT.

  13. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  14. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  15. Codon Constraints on Closed 2D Shapes,

    DTIC Science & Technology

    2014-09-26

    19843$ CODON CONSTRAINTS ON CLOSED 2D SHAPES Go Whitman Richards "I Donald D. Hoffman’ D T 18 Abstract: Codons are simple primitives for describing plane...RSONAL AUT"ORtIS) Richards, Whitman & Hoffman, Donald D. 13&. TYPE OF REPORT 13b. TIME COVERED N/A P8 AT F RRrT t~r. Ago..D,) is, PlE COUNT Reprint...outlines, if figure and ground are ignored. Later, we will address the problem of indexing identical codon descriptors that have different figure

  16. Digital computer processing of X-ray photos

    NASA Technical Reports Server (NTRS)

    Nathan, R.; Selzer, R. H.

    1967-01-01

    Digital computers correct various distortions in medical and biological photographs. One of the principal methods of computer enhancement involves the use of a two-dimensional digital filter to modify the frequency spectrum of the picture. Another computer processing method is image subtraction.

  17. Comparison of iodine K-edge subtraction and fluorescence subtraction imaging in an animal system

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhu, Y.; Bewer, B.; Zhang, L.; Korbas, M.; Pickering, I. J.; George, G. N.; Gupta, M.; Chapman, D.

    2008-09-01

    K-Edge Subtraction (KES) utilizes the discontinuity in the X-ray absorption across the absorption edge of the selected contrast element and creates an image of the projected density of the contrast element from two images acquired just above and below the K-edge of the contrast element. KES has proved to be powerful in coronary angiography, micro-angiography, bronchography, and lymphatic imaging. X-ray fluorescence imaging is a successful technique for the detection of dilute quantities of elements in specimens. However, its application at high X-ray energies (e.g. at the iodine K-edge) is complicated by significant Compton background, which may enter the energy window set for the contrast material's fluorescent X-rays. Inspired by KES, Fluorescence Subtraction Imaging (FSI) is a technique for high-energy (>20 keV) fluorescence imaging using two different incident beam energies just above and below the absorption edge of a contrast element (e.g. iodine). The below-edge image can be assumed as a "background" image, which includes Compton scatter and fluorescence from other elements. The above-edge image will contain nearly identical spectral content as the below-edge image but will contain the additional fluorescence of the contrast element. This imaging method is especially promising with thick objects with dilute contrast materials, significant Compton background, and/or competing fluorescence lines from other materials. A quality factor is developed to facilitate the comparison. The theoretical value of the quality factor sets the upper limit that an imaging method can achieve when the noise is Poisson limited. The measured value of this factor makes two or more imaging methods comparable. Using the Hard X-ray Micro-Analysis (HXMA) beamline at the Canadian Light Source (CLS), the techniques of FSI and KES were critically compared, with reference to radiation dose, image acquisition time, resolution, signal-to-noise ratios, and quality factor.

  18. Remarks on thermalization in 2D CFT

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Engelhardt, Dalit

    2016-12-01

    We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.

  19. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  20. The 2D:4D ratio of the hand and schizotypal personality traits in schizophrenia patients and healthy control persons.

    PubMed

    Zhu, Yi-Kang; Li, Chun-Bo; Jin, Jin; Wang, Ji-Jun; Lachmann, Bernd; Sariyska, Rayna; Montag, Christian

    2014-06-01

    Prenatal estrogen/testosterone exposure is known to be involved in early brain development. In this context, the ratio of the index finger to ring finger length (2D:4D) has been put forward as an indicator of the intrauterine sex hormonal level. A previous study by Collinson et al. (2010) examined 2D:4D ratios in Asian patients with schizophrenia and found an increased 2D:4D pattern in male patients compared to male healthy controls. In the current study, we tried to replicate the result of this study on the 2D:4D ratio in schizophrenia patients and controls in a Chinese sample. Moreover, we investigated the link between 2D:4D ratios and schizotypal personality traits in the participants of the study. No significant difference between cases and controls in 2D:4D ratios for both hands could be observed. However, a positive association between right 2D:4D ratio and schizotypal personality traits was found in healthy controls (both in the male and female subsamples) suggesting that a high 2D:4D ratio could represent a vulnerability factor for schizophrenia in healthy males and females. Same results were observed for the digit ratio of the left hand and the SPQ in the healthy total and healthy female subsample. Therefore, the inclusion of personality measures to study the link between the digit ratio and schizophrenia might help to provide insights in a potential continuum from healthy to schizophrenic behavior.

  1. Digital Radiography: A Technology Overview

    NASA Astrophysics Data System (ADS)

    Arnold, Ben A.

    1982-12-01

    Digital radiography, a term hardly recognized two years ago, has grown to become the talk of the radiology community and the excitement of many commercial companies. M2st of this attention has been directed toward digital subtraction intravenous angiography), although during this same time period, a variety of digital radiography apparatus and image processing techniques have been under development. In November of 1980 at the RSNA Conference in Chicago, three commercial digital angiography systems were announced by Philips, Technicare and ADAC Corporations. During this same time period, the University of Arizona was discussing the concept of a photo electronic radiology department2, the University of Pittsburg and Stanford University were investigating line scan radiography3,4 and approximately five laboratories were carrying out clinical IV angiography with digital video systems.5-9 These developments followed basic research programs in digital electronic and computerized imaging at various locations around the world. 10-18 In the spring of 1981 we attempted to review the state of digital radiography, focusing on the various detector systems and image acquisition approaches.19 Since that time, rapid advancements in digital radiography have occurred. A major conference was held on digital radiography at Stanford UniversityzO, a new area detector system for digital radiography was announced by Fuji Film Corporation, clinical testing began on the Picker line scan digital chest unit21, and improvements were made in selenium detectors for digital radiography. Several additional companies announced digital video angiography systems, bringing the total now to approximately 15 companies worldwide. Digital video subtraction angiography is now well established as an important clinical diagnostic procedure and a variety of improvements and extensions of digital angiography systems are now ongoing. Digital acquisition and storage systems are increasing in both speed and

  2. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  3. A positioning QA procedure for 2D/2D (kV/MV) and 3D/3D (CT/CBCT) image matching for radiotherapy patient setup.

    PubMed

    Guan, Huaiqun; Hammoud, Rabih; Yin, Fang-Fang

    2009-10-06

    A positioning QA procedure for Varian's 2D/2D (kV/MV) and 3D/3D (planCT/CBCT) matching was developed. The procedure was to check: (1) the coincidence of on-board imager (OBI), portal imager (PI), and cone beam CT (CBCT)'s isocenters (digital graticules) to a linac's isocenter (to a pre-specified accuracy); (2) that the positioning difference detected by 2D/2D (kV/MV) and 3D/3D(planCT/CBCT) matching can be reliably transferred to couch motion. A cube phantom with a 2 mm metal ball (bb) at the center was used. The bb was used to define the isocenter. Two additional bbs were placed on two phantom surfaces in order to define a spatial location of 1.5 cm anterior, 1.5 cm inferior, and 1.5 cm right from the isocenter. An axial scan of the phantom was acquired from a multislice CT simulator. The phantom was set at the linac's isocenter (lasers); either AP MV/R Lat kV images or CBCT images were taken for 2D/2D or 3D/3D matching, respectively. For 2D/2D, the accuracy of each device's isocenter was obtained by checking the distance between the central bb and the digital graticule. Then the central bb in orthogonal DRRs was manually moved to overlay to the off-axis bbs in kV/MV images. For 3D/3D, CBCT was first matched to planCT to check the isocenter difference between the two CTs. Manual shifts were then made by moving CBCT such that the point defined by the two off-axis bbs overlay to the central bb in planCT. (PlanCT can not be moved in the current version of OBI1.4.) The manual shifts were then applied to remotely move the couch. The room laser was used to check the accuracy of the couch movement. For Trilogy (or Ix-21) linacs, the coincidence of imager and linac's isocenter was better than 1 mm (or 1.5 mm). The couch shift accuracy was better than 2 mm.

  4. Blind Source Separation Algorithms for PSF Subtraction from Direct Imaging

    NASA Astrophysics Data System (ADS)

    Shapiro, Jacob; Ranganathan, Nikhil; Savransky, Dmitry; Ruffio, Jean-Baptise; Macintosh, Bruce; GPIES Team

    2017-01-01

    The principal difficulty with detecting planets via direct imaging is that the target signal is similar in magnitude, or fainter, than the noise sources in the image. To compensate for this, several methods exist to subtract the PSF of the host star and other confounding noise sources. One of the most effective methods is Karhunen-Loève Image Processing (KLIP). The core algorithm within KLIP is Principal Component Analysis, which is a member of a class of algorithms called Blind Source Separation (BSS).We examine three other BSS algorithms that may potentially also be used for PSF subtraction: Independent Component Analysis, Stationary Subspace Analysis, and Common Spatial Pattern Filtering. The underlying principles of each of the algorithms is discussed, as well as the processing steps needed to achieve PSF subtraction. The algorithms are examined both as primary PSF subtraction techniques, as well as additional postprocessing steps used with KLIP.These algorithms have been used on data from the Gemini Planet Imager, analyzing images of β Pic b. To build a reference library, both Angular Differential Imaging and Spectral Differential Imaging were used. To compare to KLIP, three major metrics are examined: computation time, signal-to-noise ratio, and astrometric and photometric biases in different image regimes (e.g., speckle-dominated compared to Poisson-noise dominated). Preliminary results indicate that these BSS algorithms improve performance when used as an enhancement for KLIP, and that they can achieve similar SNR when used as the primary method of PSF subtraction.

  5. Transition to turbulence: 2D directed percolation

    NASA Astrophysics Data System (ADS)

    Chantry, Matthew; Tuckerman, Laurette; Barkley, Dwight

    2016-11-01

    The transition to turbulence in simple shear flows has been studied for well over a century, yet in the last few years has seen major leaps forward. In pipe flow, this transition shows the hallmarks of (1 + 1) D directed percolation, a universality class of continuous phase transitions. In spanwisely confined Taylor-Couette flow the same class is found, suggesting the phenomenon is generic to shear flows. However in plane Couette flow the largest simulations and experiments to-date find evidence for a discrete transition. Here we study a planar shear flow, called Waleffe flow, devoid of walls yet showing the fundamentals of planar transition to turbulence. Working with a quasi-2D yet Navier-Stokes derived model of this flow we are able to attack the (2 + 1) D transition problem. Going beyond the system sizes previously possible we find all of the required scalings of directed percolation and thus establish planar shears flow in this class.

  6. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  7. Simulation of Yeast Cooperation in 2D.

    PubMed

    Wang, M; Huang, Y; Wu, Z

    2016-03-01

    Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse.

  8. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  9. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  10. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  11. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  12. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  13. Proposed smart integrated-optical preprocessor using holographic subtraction

    NASA Technical Reports Server (NTRS)

    Verber, C. M.; Vahey, D. W.

    1979-01-01

    The paper presents a proposed integrated-optical preprocessor with a holographic subtraction. It is based on an optical analog of a set of N analog voltages formed by passing an optical plane wave, confined in an electrooptic waveguide, under a set of N electrodes to which the voltages are applied; in the limit in which diffraction is ignored, the wavefront of the emerging guided wave will have superimposed upon it N discrete phase shifts. Processors which operate upon voltages encoded in this manner are being fabricated; they include a comparator in which incoming data are compared to a holographic record of the optical analog of a reference set, and a 'smart' system based upon holographic self-subtraction, in which the processor can independently adapt to changes in background information. The preprocessor operation is described in the screening, identification, and the self-subtraction modes, and implementation of devices in an integrated optical configuration is discussed.

  14. Sky background subtraction with fiber-fed spectrographs

    NASA Astrophysics Data System (ADS)

    Puech, M.; Rodrigues, M.; Yang, Y.; Flores, H.; Royer, F.; Disseau, K.; Gonçalves, T.; Hammer, F.; Cirasuolo, M.; Evans, C. J.; Li Causi, G.; Maiolino, R.; Melo, C.

    2014-08-01

    Fiber-fed spectrographs can now have throughputs equivalent to slit spectrographs. However, the sky subtraction accuracy that can be reached on such instruments has often been pinpointed as one of their major issues, in relation to difficulties in scattered light and flat-field corrections or throughput losses associated with fibers. Using technical time observations with FLAMES-GIRAFFE, two observing techniques, namely dual staring and cross beam switching modes, were tested and the resulting sky subtraction accuracy reached in both cases was quantified. Results indicate that an accuracy of 0.6% on the sky subtraction can be reached, provided that the cross beam switching mode is used. This is very encouraging regarding the detection of very faint sources with future fiber-fed spectrographs such as VLT/MOONS or E-ELT/MOSAIC.

  15. pyKLIP: PSF Subtraction for Exoplanets and Disks

    NASA Astrophysics Data System (ADS)

    Wang, Jason J.; Ruffio, Jean-Baptise; De Rosa, Robert J.; Aguilar, Jonathan; Wolff, Schuyler G.; Pueyo, Laurent

    2015-06-01

    pyKLIP subtracts out the stellar PSF to search for directly-imaged exoplanets and disks using a Python implementation of the Karhunen-Loève Image Projection (KLIP) algorithm. pyKLIP supports ADI, SDI, and ADI+SDI to model the stellar PSF and offers a large array of PSF subtraction parameters to optimize the reduction. pyKLIP relies on a minimal amount of dependencies (numpy, scipy, and astropy) and parallelizes the KLIP algorithm to speed up the reduction. pyKLIP supports GPI and P1640 data and can interface with other data sources with the addition of new modules. It also can inject simulated planets and disks as well as automatically search for point sources in PSF-subtracted data.

  16. Predictors of Morbidity and Cleavage Plane in Surgical Resection of Pure Convexity Meningiomas Using Cerebrospinal Fluid Sensitive Image Subtraction Magnetic Resonance Imaging

    PubMed Central

    THENIER-VILLA, José LUIS; CAMPOVERDE, Raúl ALEJANDRO GALÁRRAGA; DE LA LAMA ZARAGOZA, Adolfo RAMÓN; ALONSO, Cesáreo CONDE

    2017-01-01

    Meningiomas are the most common primary intracranial tumors. Since the adhesions in the plane of dissection are of interest in surgical planning, we suggest that digital image subtraction of FLAIR data from the T2 sequence of MRI may represent better the CSF spaces in the brain–tumor interface and may be a predictor of the intraoperative cleavage plane. From 2006 to 2016, 83 convexity meningiomas were resected in the Department of Neurosurgery of the University Hospital Complex of Vigo, an analysis of preoperative MRI was performed to assess peritumoral edema (PTE), tumor volume, among others; a digital subtraction of T2-FLAIR sequences was performed and analyzed in relationship to the cleavage plane described in the intraoperative report and postoperative neurological deficits. Simpson grade 1 resection was achieved in 85.54%, the overall 5-year PFS was 93.75%. Our rate of permanent new neurological deficit was 4.82% and the overall complication rate of 14.46%. The grade of PTE was proportional to tumor volume, 20 ± 2.8, 30 ± 5.3, and 34 ± 4.3 cm3 for grades 1, 2, and 3, respectively, positive cleft sign on image subtraction was predictive of good intraoperative cleavage plane and low grade cleavage plane (P = 0.04), and was a protective factor for postoperative neurological deficit (P = 0.02). Positive cleft sign in T2-FLAIR digital subtraction image is an independent predictor of good intraoperative cleavage plane, PTE is an independent predictor of the bad cleavage plane. Negative cleft sign in the image subtraction and a bad intraoperative cleavage plane are predictors of postoperative neurological deficit. PMID:27580930

  17. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes

    PubMed Central

    Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun

    2016-01-01

    By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes. PMID:27019849

  18. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes.

    PubMed

    Zhong, Zichun; Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun; Mao, Weihua

    2016-01-01

    By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  19. Persistence Measures for 2d Soap Froth

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Ruskin, H. J.; Zhu, B.

    Soap froths as typical disordered cellular structures, exhibiting spatial and temporal evolution, have been studied through their distributions and topological properties. Recently, persistence measures, which permit representation of the froth as a two-phase system, have been introduced to study froth dynamics at different length scales. Several aspects of the dynamics may be considered and cluster persistence has been observed through froth experiment. Using a direct simulation method, we have investigated persistent properties in 2D froth both by monitoring the persistence of survivor cells, a topologically independent measure, and in terms of cluster persistence. It appears that the area fraction behavior for both survivor and cluster persistence is similar for Voronoi froth and uniform froth (with defects). Survivor and cluster persistent fractions are also similar for a uniform froth, particularly when geometries are constrained, but differences observed for the Voronoi case appear to be attributable to the strong topological dependency inherent in cluster persistence. Survivor persistence, on the other hand, depends on the number rather than size and position of remaining bubbles and does not exhibit the characteristic decay to zero.

  20. SEM signal emulation for 2D patterns

    NASA Astrophysics Data System (ADS)

    Sukhov, Evgenii; Muelders, Thomas; Klostermann, Ulrich; Gao, Weimin; Braylovska, Mariya

    2016-03-01

    The application of accurate and predictive physical resist simulation is seen as one important use model for fast and efficient exploration of new patterning technology options, especially if fully qualified OPC models are not yet available at an early pre-production stage. The methodology of using a top-down CD-SEM metrology to extract the 3D resist profile information, such as the critical dimension (CD) at various resist heights, has to be associated with a series of presumptions which may introduce such small, but systematic CD errors. Ideally, the metrology effects should be carefully minimized during measurement process, or if possible be taken into account through proper metrology modeling. In this paper we discuss the application of a fast SEM signal emulation describing the SEM image formation. The algorithm is applied to simulated resist 3D profiles and produces emulated SEM image results for 1D and 2D patterns. It allows estimating resist simulation quality by comparing CDs which were extracted from the emulated and from the measured SEM images. Moreover, SEM emulation is applied for resist model calibration to capture subtle error signatures through dose and defocus. Finally, it should be noted that our SEM emulation methodology is based on the approximation of physical phenomena which are taking place in real SEM image formation. This approximation allows achieving better speed performance compared to a fully physical model.

  1. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  2. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  3. 2D/3D registration algorithm for lung brachytherapy

    SciTech Connect

    Zvonarev, P. S.; Farrell, T. J.; Hunter, R.; Wierzbicki, M.; Hayward, J. E.; Sur, R. K.

    2013-02-15

    Purpose: A 2D/3D registration algorithm is proposed for registering orthogonal x-ray images with a diagnostic CT volume for high dose rate (HDR) lung brachytherapy. Methods: The algorithm utilizes a rigid registration model based on a pixel/voxel intensity matching approach. To achieve accurate registration, a robust similarity measure combining normalized mutual information, image gradient, and intensity difference was developed. The algorithm was validated using a simple body and anthropomorphic phantoms. Transfer catheters were placed inside the phantoms to simulate the unique image features observed during treatment. The algorithm sensitivity to various degrees of initial misregistration and to the presence of foreign objects, such as ECG leads, was evaluated. Results: The mean registration error was 2.2 and 1.9 mm for the simple body and anthropomorphic phantoms, respectively. The error was comparable to the interoperator catheter digitization error of 1.6 mm. Preliminary analysis of data acquired from four patients indicated a mean registration error of 4.2 mm. Conclusions: Results obtained using the proposed algorithm are clinically acceptable especially considering the complications normally encountered when imaging during lung HDR brachytherapy.

  4. Simultaneous 2D Doppler backscattering from edge turbulence

    NASA Astrophysics Data System (ADS)

    Thomas, David; Brunner, Kai; Freethy, Simon; Huang, Billy; Shevchenko, Vladimir; Vann, Roddy

    2015-11-01

    The Synthetic Aperture Microwave Imaging (SAMI) diagnostic (previously at MAST and now at NSTX-U) actively probes the plasma edge using a wide (80 degree beam width) and broadband (10-34.5 GHz) beam. It digitizes the phase and amplitude of the Doppler backscattered signal using a receiving array of eight antennas which can be focused in any direction post shot to an angular range of 6-24 degree FWHM. This allows Doppler BackScattering (DBS) experiments to be conducted in every direction within the field of view simultaneously. This capability is unique to SAMI and is a novel way of conducting DBS experiments. SAMI has measured the magnetic pitch angle in the edge for the first time using a backscattering diagnostic. This is possible with simultaneous 2D DBS because the maximum backscattered power is perpendicular to the turbulence and turbulence is elongated along the magnetic field. SAMI has also studied the effect of NBI and the L-H transition on turbulent velocity, and turbulence suppression in the edge during H-mode. Initial results from all of these studies will be presented. This work is supported by the Engineering and Physical Sciences Research Council Grants EP/K504178 and EP/H016732.

  5. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  6. Isolation of ultrasonic scattering by wavefield baseline subtraction

    NASA Astrophysics Data System (ADS)

    Dawson, Alexander J.; Michaels, Jennifer E.; Michaels, Thomas E.

    2016-03-01

    Wavefield imaging generally refers to the measurement of signals over a two-dimensional rectilinear grid that originate from a spatially fixed source. Subtraction of such wavefields is investigated as a means of separating scattered signals from the total wavefield; that is, baseline wavefield data acquired from a defect-free specimen are subtracted from analogous data acquired after introduction of a defect. The wavefields considered here are generated by a 5 MHz angle-beam probe and measured over an area of the accessible specimen surface using a laser vibrometer. The primary challenge in isolating the scattered waves is imperfect temporal and spatial alignment of the two wavefields. Two methods for aligning the wavefields in space and time prior to performing baseline subtraction are presented and their efficacy is evaluated using data acquired before and after introducing notches that originate from a through-hole. Although perfect baseline subtraction is not achieved, the improvement in performance after alignment using either method allows for scattered waves from small defects to be separated and visualized, even when their amplitudes are much smaller than those of the incident waves.

  7. Teaching Addition and Subtraction Facts: A Chinese Perspective.

    ERIC Educational Resources Information Center

    Sun, Wei; Zhang, Joanne Y.

    2001-01-01

    Presents an issue that arises in every country: How can teachers best help children master basic addition and subtraction facts? Discusses how this is handled in China and highlights the impact that language has on how children think about numbers. (KHR)

  8. Teaching Children about the Inverse Relation between Addition and Subtraction

    ERIC Educational Resources Information Center

    Nunes, Terezinha; Bryant, Peter; Hallett, Darcy; Bell, Daniel; Evans, Deborah

    2009-01-01

    Two intervention studies are described. Both were designed to study the effects of teaching children about the inverse relation between addition and subtraction. The interventions were successful with 8-year-old children in Study 1 and to a limited extent with 5-year-old children in Study 2. In Study 1 teaching children about inversion increased…

  9. Children's Understanding of the Addition/Subtraction Complement Principle

    ERIC Educational Resources Information Center

    Torbeyns, Joke; Peters, Greet; De Smedt, Bert; Ghesquière, Pol; Verschaffel, Lieven

    2016-01-01

    Background: In the last decades, children's understanding of mathematical principles has become an important research topic. Different from the commutativity and inversion principles, only few studies have focused on children's understanding of the addition/subtraction complement principle (if a - b = c, then c + b = a), mainly relying on verbal…

  10. Addition and Subtraction by Students with Down Syndrome

    ERIC Educational Resources Information Center

    Herrera, Aurelia Noda; Bruno, Alicia; Gonzalez, Carina; Moreno, Lorenzo; Sanabria, Hilda

    2011-01-01

    We present a research report on addition and subtraction conducted with Down syndrome students between the ages of 12 and 31. We interviewed a group of students with Down syndrome who executed algorithms and solved problems using specific materials and paper and pencil. The results show that students with Down syndrome progress through the same…

  11. A New Sky Subtraction Technique for Low Surface Brightness Data

    NASA Astrophysics Data System (ADS)

    Katkov, I. Y.; Chilingarian, I. V.

    2011-07-01

    We present a new approach to the sky subtraction for long-slit spectra that is suitable for low-surface brightness objects based on the controlled reconstruction of the night sky spectrum in the Fourier space using twilight or arc-line frames as references. It can be easily adopted for FLAMINGOS-type multi-slit data. Compared to existing sky subtraction algorithms, our technique is taking into account variations of the spectral line spread along the slit thus qualitatively improving the sky subtraction quality for extended targets. As an example, we show how the stellar metallicity and stellar velocity dispersion profiles in the outer disc of the spiral galaxy NGC5440 are affected by the sky subtraction quality. Our technique is used in the survey of early-type galaxies carried out at the Russian 6-m telescope, and it strongly increases the scientific potential of large amounts of long-slit data for nearby galaxies available in major data archives.

  12. Children's Understanding of the Relationship between Addition and Subtraction

    ERIC Educational Resources Information Center

    Gilmore, Camilla K.; Spelke, Elizabeth S.

    2008-01-01

    In learning mathematics, children must master fundamental logical relationships, including the inverse relationship between addition and subtraction. At the start of elementary school, children lack generalized understanding of this relationship in the context of exact arithmetic problems: they fail to judge, for example, that 12 + 9 - 9 yields…

  13. The Use of Taught and Invented Methods of Subtraction.

    ERIC Educational Resources Information Center

    Perry, A. D.; Stacey, Kaye

    1994-01-01

    Attempted to establish the incidence of using taught algorithms versus invented methods of subtraction in (n=1,370) male secondary school students and to relate the use of invented methods to age, mathematical achievement, and lateral thinking ability. Use of invented algorithms increased with age. (23 references) (MKR)

  14. Adding and Subtracting Vectors: The Problem with the Arrow Representation

    ERIC Educational Resources Information Center

    Heckler, Andrew F.; Scaife, Thomas M.

    2015-01-01

    A small number of studies have investigated student understanding of vector addition and subtraction in generic or introductory physics contexts, but in almost all cases the questions posed were in the vector arrow representation. In a series of experiments involving over 1000 students and several semesters, we investigated student understanding…

  15. "Abuelita" Epistemologies: Counteracting Subtractive Schools in American Education

    ERIC Educational Resources Information Center

    Gonzales, Sandra M.

    2015-01-01

    This autoethnographic inquiry examines the intersection of elder epistemology and subtractive education, exploring how one "abuelita" countered her granddaughter's divestment of Mexican-ness. I demonstrate how the grandmother used "abuelita" epistemologies to navigate this tension and resist the assimilative pressures felt…

  16. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1989-03-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  17. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1988-08-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculation assumes local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  18. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  19. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  20. NIKE2D96. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Raboin, P.; Engelmann, B.; Halquist, J.O.

    1992-01-24

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  1. Robust 2D principal component analysis: a structured sparsity regularized approach.

    PubMed

    Yipeng Sun; Xiaoming Tao; Yang Li; Jianhua Lu

    2015-08-01

    Principal component analysis (PCA) is widely used to extract features and reduce dimensionality in various computer vision and image/video processing tasks. Conventional approaches either lack robustness to outliers and corrupted data or are designed for one-dimensional signals. To address this problem, we propose a robust PCA model for two-dimensional images incorporating structured sparse priors, referred to as structured sparse 2D-PCA. This robust model considers the prior of structured and grouped pixel values in two dimensions. As the proposed formulation is jointly nonconvex and nonsmooth, which is difficult to tackle by joint optimization, we develop a two-stage alternating minimization approach to solve the problem. This approach iteratively learns the projection matrices by bidirectional decomposition and utilizes the proximal method to obtain the structured sparse outliers. By considering the structured sparsity prior, the proposed model becomes less sensitive to noisy data and outliers in two dimensions. Moreover, the computational cost indicates that the robust two-dimensional model is capable of processing quarter common intermediate format video in real time, as well as handling large-size images and videos, which is often intractable with other robust PCA approaches that involve image-to-vector conversion. Experimental results on robust face reconstruction, video background subtraction data set, and real-world videos show the effectiveness of the proposed model compared with conventional 2D-PCA and other robust PCA algorithms.

  2. The Relationship between the Second-to-Fourth Digit Ratio and Behavioral Sexual Dimorphism in School-Aged Children

    PubMed Central

    Mitsui, Takahiko; Araki, Atsuko; Miyashita, Chihiro; Ito, Sachiko; Ikeno, Tamiko; Sasaki, Seiko; Kitta, Takeya; Moriya, Kimihiko; Cho, Kazutoshi; Morioka, Keita; Kishi, Reiko; Shinohara, Nobuo; Takeda, Masayuki; Nonomura, Katsuya

    2016-01-01

    Sexually dimorphic brain development and behavior are known to be influenced by sex hormones exposure in prenatal periods. On the other hand, second-to forth digit ratio (2D/4D) has been used as an indirect method to investigate the putative effects of prenatal exposure to androgen. In the present study, we herein investigated the relationship between gender-role play behavior and the second-to-fourth digit ratio (2D/4D), which has been used as an indirect method to investigate the putative effects of prenatal exposure to androgens, in school-aged children. Among 4981 children who became 8 years old by November 2014 and were contactable for this survey by The Hokkaido Study of Environment and Children's Health, 1631 (32.7%), who had data for 2D/4D and Pre-school Activities Inventory (PSAI) as well as data for the survey at baseline, were available for analysis. Parents sent reports of PSAI on the sex-typical characteristics, preferred toys, and play activities of children, and black and white photocopies of the left and right hand palms via mail. PSAI consisted of 12 masculine items and 12 feminine items, and a composite score was created by subtracting the feminine score from the masculine score, with higher scores representing masculine-typical behavior. While composite scores in PSAI were significantly higher in boys than in girls, 2D/4D was significantly lower in boys than in girls. Although the presence or absence of brothers or sisters affected the composite, masculine, and feminine scored of PSAI, a multivariate regression model revealed that 2D/4D negatively correlated with the composite scores of PSAI in boys, whereas no correlation was found in girls. Although 2D/4D negatively correlated with the masculine score in boys and girls, no correlation was observed between 2D/4D and the feminine score. In conclusion, although social factors, such as the existence of brother or sisters, affect dimorphic brain development and behavior in childhood, the present

  3. No Association between the 2D:4D Fetal Testosterone Marker and Multidimensional Attentional Abilities in Children with ADHD

    ERIC Educational Resources Information Center

    Lemiere, Jurgen; Boets, Bart; Danckaerts, Marina

    2010-01-01

    Aim: It has been suggested that high levels of prenatal testosterone exposure are implied in the aetiology of attention-deficit-hyperactivity disorder (ADHD). This study examined the association between the ratio of the length of the second and fourth digits (2D:4D ratio), a marker of fetal testosterone exposure, and the presence of ADHD-related…

  4. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  5. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  6. Number Words in Young Children's Conceptual and Procedural Knowledge of Addition, Subtraction and Inversion

    ERIC Educational Resources Information Center

    Canobi, Katherine H.; Bethune, Narelle E.

    2008-01-01

    Three studies addressed children's arithmetic. First, 50 3- to 5-year-olds judged physical demonstrations of addition, subtraction and inversion, with and without number words. Second, 20 3- to 4-year-olds made equivalence judgments of additions and subtractions. Third, 60 4- to 6-year-olds solved addition, subtraction and inversion problems that…

  7. Subtraction of Positive and Negative Numbers: The Difference and Completion Approaches with Chips

    ERIC Educational Resources Information Center

    Flores, Alfinio

    2008-01-01

    Diverse contexts such as "take away," comparison," and "completion" give rise to subtraction problems. The take-away interpretation of subtraction has been explored using two-colored chips to help students understand addition and subtraction of integers. This article illustrates how the difference and completion (or missing addend) interpretations…

  8. Residual lens effects in 2D mode of auto-stereoscopic lenticular-based switchable 2D/3D displays

    NASA Astrophysics Data System (ADS)

    Sluijter, M.; IJzerman, W. L.; de Boer, D. K. G.; de Zwart, S. T.

    2006-04-01

    We discuss residual lens effects in multi-view switchable auto-stereoscopic lenticular-based 2D/3D displays. With the introduction of a switchable lenticular, it is possible to switch between a 2D mode and a 3D mode. The 2D mode displays conventional content, whereas the 3D mode provides the sensation of depth to the viewer. The uniformity of a display in the 2D mode is quantified by the quality parameter modulation depth. In order to reduce the modulation depth in the 2D mode, birefringent lens plates are investigated analytically and numerically, by ray tracing. We can conclude that the modulation depth in the 2D mode can be substantially decreased by using birefringent lens plates with a perfect index match between lens material and lens plate. Birefringent lens plates do not disturb the 3D performance of a switchable 2D/3D display.

  9. Self-mixing differential vibrometer based on electronic channel subtraction.

    PubMed

    Donati, Silvano; Norgia, Michele; Giuliani, Guido

    2006-10-01

    An instrument for noncontact measurement of differential vibrations is developed, based on the self-mixing interferometer. As no reference arm is available in the self-mixing configuration, the differential mode is obtained by electronic subtraction of signals from two (nominally equal) vibrometer channels, taking advantage that channels are servo stabilized and thus insensitive to speckle and other sources of amplitude fluctuation. We show that electronic subtraction is nearly as effective as field superposition. Common-mode suppression is 25-30 dB, the dynamic range (amplitude) is in excess of 100 microm, and the minimum measurable (differential) amplitude is 20 nm on a B = 10 kHz bandwidth. The instrument has been used to measure vibrations of two metal samples kept in contact, revealing the hysteresis cycle in the microslip and gross-slip regimes, which are of interest in the study of friction induced vibration damping of gas turbine blades for aircraft applications.

  10. Removing Cardiac Artefacts in Magnetoencephalography with Resampled Moving Average Subtraction

    PubMed Central

    Ahlfors, Seppo P.; Hinrichs, Hermann

    2016-01-01

    Magnetoencephalography (MEG) signals are commonly contaminated by cardiac artefacts (CAs). Principle component analysis and independent component analysis have been widely used for removing CAs, but they typically require a complex procedure for the identification of CA-related components. We propose a simple and efficient method, resampled moving average subtraction (RMAS), to remove CAs from MEG data. Based on an electrocardiogram (ECG) channel, a template for each cardiac cycle was estimated by a weighted average of epochs of MEG data over consecutive cardiac cycles, combined with a resampling technique for accurate alignment of the time waveforms. The template was subtracted from the corresponding epoch of the MEG data. The resampling reduced distortions due to asynchrony between the cardiac cycle and the MEG sampling times. The RMAS method successfully suppressed CAs while preserving both event-related responses and high-frequency (>45 Hz) components in the MEG data. PMID:27503196

  11. ZAP - enhanced PCA sky subtraction for integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Soto, Kurt T.; Lilly, Simon J.; Bacon, Roland; Richard, Johan; Conseil, Simon

    2016-05-01

    We introduce Zurich Atmosphere Purge (ZAP), an approach to sky subtraction based on principal component analysis (PCA) that we have developed for the Multi Unit Spectrographic Explorer (MUSE) integral field spectrograph. ZAP employs filtering and data segmentation to enhance the inherent capabilities of PCA for sky subtraction. Extensive testing shows that ZAP reduces sky emission residuals while robustly preserving the flux and line shapes of astronomical sources. The method works in a variety of observational situations from sparse fields with a low density of sources to filled fields in which the target source fills the field of view. With the inclusion of both of these situations, the method is generally applicable to many different science cases and should also be useful for other instrumentation. ZAP is available for download at http://muse-vlt.eu/science/tools.

  12. Robust Background Subtraction with Foreground Validation for Urban Traffic Video

    SciTech Connect

    Cheung, S S; Kamath, C

    2004-01-15

    Identifying moving objects in a video sequence is a fundamental and critical task in many computer-vision applications. Background subtraction techniques are commonly used to separate foreground moving objects from the background. Most background subtraction techniques assume a single rate of adaptation, which is inadequate for complex scenes such as a traffic intersection where objects are moving at different and varying speeds. In this paper, we propose a foreground validation algorithm that first builds a foreground mask using a slow-adapting Kalman filter, and then validates individual foreground pixels by a simple moving object model, built using both the foreground and background statistics as well as the frame difference. Ground-truth experiments with urban traffic sequences show that our proposed algorithm significantly improves upon results using only Kalman filter or frame-differencing, and outperforms other techniques based on mixture of Gaussians, median filter, and approximated media filter.

  13. Realization of arithmetic addition and subtraction in a quantum system

    NASA Astrophysics Data System (ADS)

    Um, Mark; Zhang, Junhua; Lv, Dingshun; Lu, Yao; An, Shuoming; Zhang, Jing-Ning; Kim, Kihwan; Kim, M. S.; Nha, Hyunchul

    2015-05-01

    We report an experimental realization of the conventional arithmetic on a bosonic system, in particular, phonons of a 171Yb+ ion trapped in a harmonic potential. The conventional addition and subtraction are totally different from the quantum operations of creation ↠and annihilation â that have the modification of √{ n } factor due to the symmetric nature of bosons. In our realization, the addition and subtraction do not depend on the number of particles originally in the system and nearly deterministically bring a classical state into a non-classical state. We implement such operations by applying the scheme of transitionless shortcuts to adiabaticity on anti-Jaynes-Cummings transition. This technology enables quantum state engineering and can be applied to many other experimental platforms. This work was supported by the National Basic Research Program of China under Grants No. 2011CBA00300 (No. 2011CBA00301), the National Natural Science Foundation of China 11374178.

  14. Differential CYP 2D6 metabolism alters primaquine pharmacokinetics.

    PubMed

    Potter, Brittney M J; Xie, Lisa H; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T; Bandara Herath, H M T; Dhammika Nanayakkara, N P; Tekwani, Babu L; Walker, Larry A; Nolan, Christina K; Sciotti, Richard J; Zottig, Victor E; Smith, Philip L; Paris, Robert M; Read, Lisa T; Li, Qigui; Pybus, Brandon S; Sousa, Jason C; Reichard, Gregory A; Marcsisin, Sean R

    2015-04-01

    Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity.

  15. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  16. Subtraction Radiography for the Diagnosis of Bone Lesions in Dogs.

    DTIC Science & Technology

    1984-05-31

    Avail ander Journal of Periodontology Dist Special Ř 211 East Chicago Avenue Room 924 Chicago, IL 60611 Dear Sirs: I m submitting an original...research article titled "Subtraction Radiography for the Diagnosis of Bone Lesions in Dogs" solely to the Journal of Periodontology for review and... clinical practice in our area. 60-70 Kvp would have produced more contrast in the radiographic films used for the conventional technique, but likely

  17. Subtractive Renormalization Group Invariance: Pionless EFT at NLO

    SciTech Connect

    Timoteo, Varese S.; Szpigel, Sergio; Duraes, Francisco O.

    2010-11-12

    We show some results concerning the renormalization group (RG) invariance of the nucleon-nucleon (NN) interaction in pionless effective field theory at next-to-leading order (NLO), using a non-relativistic Callan-Symanzik equation (NRCS) for the driving term of the Lippmann-Schwinger (LS) equation with three recursive subtractions. The phase-shifts obtained for the RG evolved potential are same as those for the original potential, apart from relative differences of order 10{sup -15}.

  18. Subtractive Renormalization Group Invariance: Pionless EFT at NLO

    NASA Astrophysics Data System (ADS)

    Timóteo, Varese S.; Szpigel, Sérgio; Durães, Francisco O.

    2010-11-01

    We show some results concerning the renormalization group (RG) invariance of the nucleon-nucleon (NN) interaction in pionless effective field theory at next-to-leading order (NLO), using a non-relativistic Callan-Symanzik equation (NRCS) for the driving term of the Lippmann-Schwinger (LS) equation with three recursive subtractions. The phase-shifts obtained for the RG evolved potential are same as those for the original potential, apart from relative differences of order 10-15.

  19. ROBUST TECHNIQUES FOR BACKGROUND SUBTRACTION IN URBAN TRAFFIC VIDEO

    SciTech Connect

    Kamath, C; Cheung, S S

    2003-10-28

    Identifying moving objects from a video sequence is a fundamental and critical task in many computer-vision applications. A common approach is to perform background subtraction, which identifies moving objects from the portion of a video frame that differs significantly from a background model. There are many challenges in developing a good background subtraction algorithm. First, it must be robust against changes in illumination. Second, it should avoid detecting non-stationary background objects such as swinging leaves, rain, snow, and shadow cast by moving objects. Finally, its internal background model should react quickly to changes in background such as starting and stopping of vehicles. In this paper, we compare various background subtraction algorithms for detecting moving vehicles and pedestrians in urban traffic video sequences. We consider approaches varying from simple techniques such as frame differencing and adaptive median filtering, to more sophisticated probabilistic modeling techniques. While complicated techniques often produce superior performance, our experiments show that simple techniques such as adaptive median filtering can produce good results with much lower computational complexity.

  20. Addition and subtraction in wild New Zealand robins.

    PubMed

    Garland, Alexis; Low, Jason

    2014-11-01

    This experiment aimed to investigate proto-arithmetic ability in a wild population of New Zealand robins. We investigated numerical competence from the context of computation: behavioural responses to arithmetic operations over small numbers of prey objects (mealworms). Robins' behavioural responses (such as search time) to the simple addition and subtraction problems presented in a Violation of Expectancy (VoE) paradigm were measured. Either a congruent (expected) or incongruent (unexpected) quantity of food items were hidden in a trap door out of view of the subject. Within view of the subject, a quantity of items were added into (and in some cases subtracted from) the apparatus which was either the same as that hidden, or different. Robins were then allowed them to find a quantity that either preserved or violated addition and subtraction outcomes. Robins searched around the apparatus longer when presented with an incongruent scenario violating arithmetic rules, demonstrating potential proto-arithmetic awareness of changes in prey quantity. This article is part of a Special Issue entitled: Cognition in the wild.

  1. Artifacts in digital coincidence timing

    SciTech Connect

    Moses, W. W.; Peng, Q.

    2014-10-16

    Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into a time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator.All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e. the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the 'optimal' method. In conclusion, the purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization.

  2. Artifacts in Digital Coincidence Timing

    PubMed Central

    Moses, W. W.; Peng, Q.

    2014-01-01

    Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into a time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator. All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e., the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the “optimal” method. The purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization. PMID:25321885

  3. The 2D:4D-Ratio and Neuroticism Revisited: Empirical Evidence from Germany and China

    PubMed Central

    Sindermann, Cornelia; Li, Mei; Sariyska, Rayna; Lachmann, Bernd; Duke, Éilish; Cooper, Andrew; Warneck, Lidia; Montag, Christian

    2016-01-01

    The 2D:4D-Ratio, as an indirect measure of the fetal testosterone to estradiol ratio, is potentially very important for understanding and explaining different personality traits. It was the aim of the present study to replicate the findings from Fink et al. (2004) about the relation between individual differences in 2D:4D-Ratios and the Five Factor Model in different cultural groups. Therefore a sample of n = 78 Chinese and n = 370 German participants was recruited. Every participant provided hand scans of both hands, from which 2D:4D-Ratios were computed. Moreover, all participants filled in the NEO Five Factor Inventory (NEO-FFI). Significant sex differences were found for ratios of both hands in the expected direction, with females showing higher ratios than males. With respect to links between personality and the digit ratio, a positive association was observed between 2D:4D-Ratio and Neuroticism in females, as shown in the earlier study. These findings were observed in both female subsamples from China and Germany, as well as in the full sample of participants. But in contrast to the results for the whole and the German female sample, where 2D:4D-Ratio of both hands were related to Neuroticism, in the Chinese female sample only left hand 2D:4D-Ratio was significantly and positively related to Neuroticism. There were no significant correlations found in any of the male samples. Thus, prenatal exposure to sex steroids appears to influence the personality factor Neuroticism in females specifically. This finding potentially has implications for mental health, as Neuroticism has been shown to be a risk factor for various forms of psychopathology. PMID:27375513

  4. The 2D:4D-Ratio and Neuroticism Revisited: Empirical Evidence from Germany and China.

    PubMed

    Sindermann, Cornelia; Li, Mei; Sariyska, Rayna; Lachmann, Bernd; Duke, Éilish; Cooper, Andrew; Warneck, Lidia; Montag, Christian

    2016-01-01

    The 2D:4D-Ratio, as an indirect measure of the fetal testosterone to estradiol ratio, is potentially very important for understanding and explaining different personality traits. It was the aim of the present study to replicate the findings from Fink et al. (2004) about the relation between individual differences in 2D:4D-Ratios and the Five Factor Model in different cultural groups. Therefore a sample of n = 78 Chinese and n = 370 German participants was recruited. Every participant provided hand scans of both hands, from which 2D:4D-Ratios were computed. Moreover, all participants filled in the NEO Five Factor Inventory (NEO-FFI). Significant sex differences were found for ratios of both hands in the expected direction, with females showing higher ratios than males. With respect to links between personality and the digit ratio, a positive association was observed between 2D:4D-Ratio and Neuroticism in females, as shown in the earlier study. These findings were observed in both female subsamples from China and Germany, as well as in the full sample of participants. But in contrast to the results for the whole and the German female sample, where 2D:4D-Ratio of both hands were related to Neuroticism, in the Chinese female sample only left hand 2D:4D-Ratio was significantly and positively related to Neuroticism. There were no significant correlations found in any of the male samples. Thus, prenatal exposure to sex steroids appears to influence the personality factor Neuroticism in females specifically. This finding potentially has implications for mental health, as Neuroticism has been shown to be a risk factor for various forms of psychopathology.

  5. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  6. Synthetic Covalent and Non-Covalent 2D Materials.

    PubMed

    Boott, Charlotte E; Nazemi, Ali; Manners, Ian

    2015-11-16

    The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.

  7. 2D:4D Asymmetry and Gender Differences in Academic Performance

    PubMed Central

    Nye, John V. C.; Androuschak, Gregory; Desierto, Desirée; Jones, Garett; Yudkevich, Maria

    2012-01-01

    Exposure to prenatal androgens affects both future behavior and life choices. However, there is still relatively limited evidence on its effects on academic performance. Moreover, the predicted effect of exposure to prenatal testosterone (T)–which is inversely correlated with the relative length of the second to fourth finger lengths (2D:4D)–would seem to have ambiguous effects on academic achievement since traits like aggressiveness or risk-taking are not uniformly positive for success in school. We provide the first evidence of a non-linear, quadratic, relationship between 2D:4D and academic achievement using samples from Moscow and Manila. We also find that there is a gender differentiated link between various measures of academic achievement and measured digit ratios. These effects are different depending on the field of study, choice of achievement measure, and use of the right hand or left digit ratios. The results seem to be asymmetric between Moscow and Manila where the right (left) hand generates inverted-U (U-shaped) curves in Moscow while the pattern for hands reverses in Manila. Drawing from unusually large and detailed samples of university students in two countries not studied in the digit literature, our work is the first to have a large cross country comparison that includes two groups with very different ethnic compositions. PMID:23056282

  8. 2D:4D asymmetry and gender differences in academic performance.

    PubMed

    Nye, John V C; Androuschak, Gregory; Desierto, Desirée; Jones, Garett; Yudkevich, Maria

    2012-01-01

    Exposure to prenatal androgens affects both future behavior and life choices. However, there is still relatively limited evidence on its effects on academic performance. Moreover, the predicted effect of exposure to prenatal testosterone (T)-which is inversely correlated with the relative length of the second to fourth finger lengths (2D:4D)-would seem to have ambiguous effects on academic achievement since traits like aggressiveness or risk-taking are not uniformly positive for success in school. We provide the first evidence of a non-linear, quadratic, relationship between 2D:4D and academic achievement using samples from Moscow and Manila. We also find that there is a gender differentiated link between various measures of academic achievement and measured digit ratios. These effects are different depending on the field of study, choice of achievement measure, and use of the right hand or left digit ratios. The results seem to be asymmetric between Moscow and Manila where the right (left) hand generates inverted-U (U-shaped) curves in Moscow while the pattern for hands reverses in Manila. Drawing from unusually large and detailed samples of university students in two countries not studied in the digit literature, our work is the first to have a large cross country comparison that includes two groups with very different ethnic compositions.

  9. Temporal subtraction contrast-enhanced dedicated breast CT

    NASA Astrophysics Data System (ADS)

    Gazi, Peymon M.; Aminololama-Shakeri, Shadi; Yang, Kai; Boone, John M.

    2016-09-01

    The development of a framework of deformable image registration and segmentation for the purpose of temporal subtraction contrast-enhanced breast CT is described. An iterative histogram-based two-means clustering method was used for the segmentation. Dedicated breast CT images were segmented into background (air), adipose, fibroglandular and skin components. Fibroglandular tissue was classified as either normal or contrast-enhanced then divided into tiers for the purpose of categorizing degrees of contrast enhancement. A variant of the Demons deformable registration algorithm, intensity difference adaptive Demons (IDAD), was developed to correct for the large deformation forces that stemmed from contrast enhancement. In this application, the accuracy of the proposed method was evaluated in both mathematically-simulated and physically-acquired phantom images. Clinical usage and accuracy of the temporal subtraction framework was demonstrated using contrast-enhanced breast CT datasets from five patients. Registration performance was quantified using normalized cross correlation (NCC), symmetric uncertainty coefficient, normalized mutual information (NMI), mean square error (MSE) and target registration error (TRE). The proposed method outperformed conventional affine and other Demons variations in contrast enhanced breast CT image registration. In simulation studies, IDAD exhibited improvement in MSE (0-16%), NCC (0-6%), NMI (0-13%) and TRE (0-34%) compared to the conventional Demons approaches, depending on the size and intensity of the enhancing lesion. As lesion size and contrast enhancement levels increased, so did the improvement. The drop in the correlation between the pre- and post-contrast images for the largest enhancement levels in phantom studies is less than 1.2% (150 Hounsfield units). Registration error, measured by TRE, shows only submillimeter mismatches between the concordant anatomical target points in all patient studies. The algorithm was

  10. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.

    PubMed

    Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios

    2016-09-07

    van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs.

  11. Three-dimensional vascular network projective reconstruction from uncalibrated and non-subtracted x-ray rotational angiography image sequence

    NASA Astrophysics Data System (ADS)

    Chakchouk, Moez; Sevestre-Ghalila, Sylvie; Ghorbel, Faouzi; Tenzekhti, Faouzi; Hamza, Radhi

    2002-05-01

    X-ray rotational angiography has recently gained increasing interest for computer-assisted quantitative analysis. It provides more accurate assessment of vascular diseases and precise inspection of complex structure of the arterial network via three-dimensional (3D) vascular reconstruction. The 3D spatial information can be obtained via a stereoscopic analysis of the two-dimensional (2D) projections of the opacified blood vessels. In this work, we focus on the problem of automatic 3D reconstruction of blood vessel networks for telediagnostic applications and therefore from uncalibrated X-ray rotational angiography image sequence. Three main issues are addressed: 1) automatic accurate subpixel vascular median axis network detection from non-subtracted 2D angiography images, 2) robust matching of the extracted features by using an original method based on statistical tests, and 3) three-dimensional reconstruction through epipolar geometry determination from uncalibrated 2D images. Our reconstruction method has the advantage to be independent of the angiography acquisition system. It is therefore interesting for telemedicine and specially for telediagnostic systems.

  12. Preliminary work of real-time ultrasound imaging system for 2-D array transducer.

    PubMed

    Li, Xu; Yang, Jiali; Ding, Mingyue; Yuchi, Ming

    2015-01-01

    Ultrasound (US) has emerged as a non-invasive imaging modality that can provide anatomical structure information in real time. To enable the experimental analysis of new 2-D array ultrasound beamforming methods, a pre-beamformed parallel raw data acquisition system was developed for 3-D data capture of 2D array transducer. The transducer interconnection adopted the row-column addressing (RCA) scheme, where the columns and rows were active in sequential for transmit and receive events, respectively. The DAQ system captured the raw data in parallel and the digitized data were fed through the field programmable gate array (FPGA) to implement the pre-beamforming. Finally, 3-D images were reconstructed through the devised platform in real-time.

  13. Circular photogalvanic effect caused by the transitions between edge and 2D states in a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Magarill, L. I.; Entin, M. V.

    2016-12-01

    The electron absorption and the edge photocurrent of a 2D topological insulator are studied for transitions between edge states to 2D states. The circular polarized light is found to produce the edge photocurrent, the direction of which is determined by light polarization and edge orientation. It is shown that the edge-state current is found to exceed the 2D current owing to the topological protection of the edge states.

  14. Analog current mode analog/digital converter

    NASA Technical Reports Server (NTRS)

    Hadidi, Khayrollah (Inventor)

    1996-01-01

    An improved subranging or comparator circuit is provided for an analog-to-digital converter. As a subranging circuit, the circuit produces a residual signal representing the difference between an analog input signal and an analog of a digital representation. This is achieved by subdividing the digital representation into two or more parts and subtracting from the analog input signal analogs of each of the individual digital portions. In another aspect of the present invention, the subranging circuit comprises two sets of differential input pairs in which the transconductance of one differential input pair is scaled relative to the transconductance of the other differential input pair. As a consequence, the same resistor string may be used for two different digital-to-analog converters of the subranging circuit.

  15. Generation of 2D Land Cover Maps for Urban Areas Using Decision Tree Classification

    NASA Astrophysics Data System (ADS)

    Höhle, J.

    2014-09-01

    A 2D land cover map can automatically and efficiently be generated from high-resolution multispectral aerial images. First, a digital surface model is produced and each cell of the elevation model is then supplemented with attributes. A decision tree classification is applied to extract map objects like buildings, roads, grassland, trees, hedges, and walls from such an "intelligent" point cloud. The decision tree is derived from training areas which borders are digitized on top of a false-colour orthoimage. The produced 2D land cover map with six classes is then subsequently refined by using image analysis techniques. The proposed methodology is described step by step. The classification, assessment, and refinement is carried out by the open source software "R"; the generation of the dense and accurate digital surface model by the "Match-T DSM" program of the Trimble Company. A practical example of a 2D land cover map generation is carried out. Images of a multispectral medium-format aerial camera covering an urban area in Switzerland are used. The assessment of the produced land cover map is based on class-wise stratified sampling where reference values of samples are determined by means of stereo-observations of false-colour stereopairs. The stratified statistical assessment of the produced land cover map with six classes and based on 91 points per class reveals a high thematic accuracy for classes "building" (99 %, 95 % CI: 95 %-100 %) and "road and parking lot" (90 %, 95 % CI: 83 %-95 %). Some other accuracy measures (overall accuracy, kappa value) and their 95 % confidence intervals are derived as well. The proposed methodology has a high potential for automation and fast processing and may be applied to other scenes and sensors.

  16. Energy Efficiency of D2D Multi-User Cooperation.

    PubMed

    Zhang, Zufan; Wang, Lu; Zhang, Jie

    2017-03-28

    The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency.

  17. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  18. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

  19. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  20. Digital Noise Reduction: An Overview

    PubMed Central

    Bentler, Ruth; Chiou, Li-Kuei

    2006-01-01

    Digital noise reduction schemes are being used in most hearing aids currently marketed. Unlike the earlier analog schemes, these manufacturer-specific algorithms are developed to acoustically analyze the incoming signal and alter the gain/output characteristics according to their predetermined rules. Although most are modulation-based schemes (ie, differentiating speech from noise based on temporal characteristics), spectral subtraction techniques are being applied as well. The purpose of this article is to overview these schemes in terms of their differences and similarities. PMID:16959731

  1. Tomographic image via background subtraction using an x-ray projection image and a priori computed tomography

    PubMed Central

    Zhang, Jin; Yi, Byongyong; Lasio, Giovanni; Suntharalingam, Mohan; Yu, Cedric

    2009-01-01

    Kilovoltage x-ray projection images (kV images for brevity) are increasingly available in image guided radiotherapy (IGRT) for patient positioning. These images are two-dimensional (2D) projections of a three-dimensional (3D) object along the x-ray beam direction. Projecting a 3D object onto a plane may lead to ambiguities in the identification of anatomical structures and to poor contrast in kV images. Therefore, the use of kV images in IGRT is mainly limited to bony landmark alignments. This work proposes a novel subtraction technique that isolates a slice of interest (SOI) from a kV image with the assistance of a priori information from a previous CT scan. The method separates structural information within a preselected SOI by suppressing contributions to the unprocessed projection from out-of-SOI-plane structures. Up to a five-fold increase in the contrast-to-noise ratios (CNRs) was observed in selected regions of the isolated SOI, when compared to the original unprocessed kV image. The tomographic image via background subtraction (TIBS) technique aims to provide a quick snapshot of the slice of interest with greatly enhanced image contrast over conventional kV x-ray projections for fast and accurate image guidance of radiation therapy. With further refinements, TIBS could, in principle, provide real-time tumor localization using gantry-mounted x-ray imaging systems without the need for implanted markers. PMID:19928074

  2. 2D-CELL: image processing software for extraction and analysis of 2-dimensional cellular structures

    NASA Astrophysics Data System (ADS)

    Righetti, F.; Telley, H.; Leibling, Th. M.; Mocellin, A.

    1992-01-01

    2D-CELL is a software package for the processing and analyzing of photographic images of cellular structures in a largely interactive way. Starting from a binary digitized image, the programs extract the line network (skeleton) of the structure and determine the graph representation that best models it. Provision is made for manually correcting defects such as incorrect node positions or dangling bonds. Then a suitable algorithm retrieves polygonal contours which define individual cells — local boundary curvatures are neglected for simplicity. Using elementary analytical geometry relations, a range of metric and topological parameters describing the population are then computed, organized into statistical distributions and graphically displayed.

  3. Digital Libraries.

    ERIC Educational Resources Information Center

    Fox, Edward A.; Urs, Shalini R.

    2002-01-01

    Provides an overview of digital libraries research, practice, and literature. Highlights include new technologies; redefining roles; historical background; trends; creating digital content, including conversion; metadata; organizing digital resources; services; access; information retrieval; searching; natural language processing; visualization;…

  4. Regulation of ligands for the NKG2D activating receptor

    PubMed Central

    Raulet, David H.; Gasser, Stephan; Gowen, Benjamin G.; Deng, Weiwen; Jung, Heiyoun

    2014-01-01

    NKG2D is an activating receptor expressed by all NK cells and subsets of T cells. It serves as a major recognition receptor for detection and elimination of transformed and infected cells and participates in the genesis of several inflammatory diseases. The ligands for NKG2D are self-proteins that are induced by pathways that are active in certain pathophysiological states. NKG2D ligands are regulated transcriptionally, at the level of mRNA and protein stability, and by cleavage from the cell surface. In some cases, ligand induction can be attributed to pathways that are activated specifically in cancer cells or infected cells. We review the numerous pathways that have been implicated in the regulation of NKG2D ligands, discuss the pathologic states in which those pathways are likely to act, and attempt to synthesize the findings into general schemes of NKG2D ligand regulation in NK cell responses to cancer and infection. PMID:23298206

  5. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  6. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice.

    PubMed

    Pan, Xian; Jeong, Hyunyoung

    2015-07-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼ 50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter.

  7. Sexual Dimorphism in Digit Ratios Derived from Dorsal Digit Length among Adults and Children

    PubMed Central

    Kumar, Sanjay; Voracek, Martin; Singh, Maharaj

    2017-01-01

    Sexual dimorphism in ventrally measured digit ratios (2D:4D and other) has been related to prenatal sex-hormone levels. In the present series of three studies, we measured all digit lengths (excluding the thumb) on the dorsal, rather than the ventral, side of left and right hands and investigated the sexual dimorphism in digit ratios in three independent samples, two of them comprising adults (Study I, N = 104; Study II, N = 154), and one further, comprising kindergarten children (Study III, N = 64). Results show that men have lower digit-ratio values compared to women in digit ratios that include digit 5 as one of the constituents of the ratio (i.e., the 4D:5D, 3D:5D, and 2D:5D ratios). Boys have lower values compared to girls for the 4D:5D and 3D:5D ratios, and there is a similar trend of sexual dimorphism in the 2D:5D ratio. Thus, based on the evidence from dorsally measured digit ratios, the present findings from three samples are consistent with the idea that early sex-hormonal effects might be stronger for digit ratios involving digit 5, as compared to the classic, and frequently studied, ventrally measured 2D:4D ratio. PMID:28321205

  8. Contrast-Medium-Enhanced Digital Mammography: Contrast vs. Iodine Concentration Phantom Calibration

    SciTech Connect

    Rosado-Mendez, I.; Brandan, M. E.; Villasenor, Y.; Benitez-Bribiesca, L.

    2008-08-11

    This work deals with the application of the contrast-medium-enhanced digital subtraction mammography technique in order to calibrate the contrast level in subtracted phantom images as function of iodine concentration to perform dynamic studies of the contrast-medium uptake in the breast. Previously optimized dual-energy temporal subtraction modalities were used (a) to determine radiological parameters for a dynamic clinical study composed of 1 mask+3 post-contrast images limiting the total mean glandular dose to 2.5 mGy, and (b) to perform a contrast vs iodine concentration calibration using a custom-made phantom. Calculated exposure values were applied using a commercial full-field digital mammography unit. Contrast in subtracted phantom images (one mask and one post-CM) is linear as function of iodine concentration, although the sensitivity (contrast per iodine concentration) decreases beyond 8 mg/mL. This calibration seems to apply only to thin and normal thickness breasts.

  9. Optical Multiplications With Single Element 2-D Acousto-Optic Laser Beam Deflector

    NASA Astrophysics Data System (ADS)

    Soos, Jolanta I.; Leepa, Douglas C.; Rosemeier, Ronald G.

    1989-05-01

    With the current need for developing very fast computers in comparison to conventional digital chip based systems, the future for optical based signal processing is very bright. Attention has turned to a different application of optics utilizing mathematical operations, in which case operations are numerical, sometimes discrete, and often algebraic in nature. Interest has been so vigorous that many view it as a small revolution in optics, whereby optical signal processing is beginning to encompass what is frequently described as optical computing. The term is fully intended to imply a close comparison with the operations performed by scientific digital canputers. This paper will describe the applications of single element 2-D acousto-optic deflectors for optical multiplication systems.

  10. Maternal MCG Interference Cancellation Using Splined Independent Component Subtraction

    PubMed Central

    Yu, Suhong

    2011-01-01

    Signal distortion is commonly observed when using independent component analysis (ICA) to remove maternal cardiac interference from the fetal magnetocardiogram. This can be seen even in the most conservative case where only the independent components dominated by maternal interference are subtracted from the raw signal, a procedure we refer to as independent component subtraction (ICS). Distortion occurs when the subspaces of the fetal and maternal signals have appreciable overlap. To overcome this problem, we employed splining to remove the fetal signal from the maternal source component. The maternal source components were downsampled and then interpolated to their original sampling rate using a cubic spline. A key aspect of the splining procedure is that the maternal QRS complexes are downsampled much less than the rest of the maternal signal so that they are not distorted, despite their higher bandwidth. The splined maternal source components were projected back onto the magnetic field measurement space and then subtracted from the raw signal. The method was evaluated using data from 24 subjects. We compared the results of conventional, i.e., unsplined, ICS with our method, splined ICS, using matched filtering as a reference. Correlation and subjective assessment of the P-wave and QRS complex were used to assess the performance. Using ICS, we found that the P-wave was adversely affected in 7 of 24 (29%) subjects, all having correlations less than 0.8. Splined ICS showed negligible distortion and improved the signal fidelity to some extent in all subjects. We also demonstrated that maternal T-wave interference could be problematic when the fetal and maternal heartbeats were synchronous. In these instances, splined ICS was more effective than matched filtering. PMID:21712157

  11. Suppressive Subtractive Hybridization Detects Extensive Genomic Diversity in Thermotoga maritima

    PubMed Central

    Nesbø, Camilla L.; Nelson, Karen E.; Doolittle, W. Ford

    2002-01-01

    Comparisons between genomes of closely related bacteria often show large variations in gene content, even between strains of the same species. Such studies have focused mainly on pathogens; here, we examined Thermotoga maritima, a free-living hyperthermophilic bacterium, by using suppressive subtractive hybridization. The genome sequence of T. maritima MSB8 is available, and DNA from this strain served as a reference to obtain strain-specific sequences from Thermotoga sp. strain RQ2, a very close relative (∼96% identity for orthologous protein-coding genes, 99.7% identity in the small-subunit rRNA sequence). Four hundred twenty-six RQ2 subtractive clones were sequenced. One hundred sixty-six had no DNA match in the MSB8 genome. These differential clones comprise, in sum, 48 kb of RQ2-specific DNA and match 72 genes in the GenBank database. From the number of identical clones, we estimated that RQ2 contains 350 to 400 genes not found in MSB8. Assuming a similar genome size, this corresponds to 20% of the RQ2 genome. A large proportion of the RQ2-specific genes were predicted to be involved in sugar transport and polysaccharide degradation, suggesting that polysaccharides are more important as nutrients for this strain than for MSB8. Several clones encode proteins involved in the production of surface polysaccharides. RQ2 encodes multiple subunits of a V-type ATPase, while MSB8 possesses only an F-type ATPase. Moreover, an RQ2-specific MutS homolog was found among the subtractive clones and appears to belong to a third novel archaeal type MutS lineage. Southern blot analyses showed that some of the RQ2 differential sequences are found in some other members of the order Thermotogales, but the distribution of these variable genes is patchy, suggesting frequent lateral gene transfer within the group. PMID:12142418

  12. Adding and subtracting vectors: The problem with the arrow representation

    NASA Astrophysics Data System (ADS)

    Heckler, Andrew F.; Scaife, Thomas M.

    2015-06-01

    A small number of studies have investigated student understanding of vector addition and subtraction in generic or introductory physics contexts, but in almost all cases the questions posed were in the vector arrow representation. In a series of experiments involving over 1000 students and several semesters, we investigated student understanding of vector addition and subtraction in both the arrow and algebraic notation (using i ^, j ^, k ^) in generic mathematical and physics contexts. First, we replicated a number of previous findings of student difficulties in the arrow format and discovered several additional difficulties, including the finding that different relative arrow orientations can prompt different solution paths and different kinds of mistakes, which suggests that students need to practice with a variety of relative orientations. Most importantly, we found that average performance in the i j k format was typically excellent and often much better than performance in the arrow format in either the generic or physics contexts. Further, while we find that the arrow format tends to prompt students to a more physically intuitive solution path, we also find that, when prompted, student solutions in the i j k format also display significant physical insights into the problem. We also find a hierarchy in correct answering between the two formats, with correct answering in the i j k format being more fundamental than for the arrow format. Overall, the results suggest that many student difficulties with these simple vector problems lie with the arrow representation itself. For instruction, these results imply that introducing the i j k notation (or some equivalent) with the arrow notation concurrently may be a very useful way to improve student performance as well as help students to learn physics concepts involving vector addition and subtraction.

  13. Peripheral NN scattering from subtractive renormalization of chiral interactions

    SciTech Connect

    Batista, E. F.; Szpigel, S.; Timóteo, V. S.

    2014-11-11

    We apply five subtractions in the Lippman-Schwinger (LS) equation in order to perform a non-perturbative renormalization of chiral N3LO nucleon-nucleon interactions. Here we compute the phase shifts for the uncoupled peripheral waves at renormalization scales between 0.1 fm{sup −1} and 1 fm{sup −1}. In this range, the results are scale invariant and provide an overall good agreement with the Nijmegen partial wave analysis up to at least E{sub lab} = 150 MeV, with a cutoff at Λ = 30 fm{sup −1}.

  14. WFPC2 photometry from subtraction of TinyTim PSFs

    NASA Technical Reports Server (NTRS)

    Remy, M.; Surdej, J.; Baggett, S.; Wiggs, M.

    1997-01-01

    Based upon the subtraction of TinyTim Point Spread Function (PSFs) from Principle Component Image (PC1) point-like objects, a method has been developed to determine the optimal values for the telescope jitter and the Z4 relative focus during calibration or science observations. Using these jitter and focus values, an optimal TinyTim PSF, computed over a resampled grid, is then iteratively fitted to the object, yielding an improvement in the PSF centering, more accurate photometric results and a better detection of underlying structures. Preliminary results seem to indicate that appropriate synthetic TinyTim PSFs perform as well as observed PSFs.

  15. Addition and subtraction by students with Down syndrome

    NASA Astrophysics Data System (ADS)

    Noda Herrera, Aurelia; Bruno, Alicia; González, Carina; Moreno, Lorenzo; Sanabria, Hilda

    2011-01-01

    We present a research report on addition and subtraction conducted with Down syndrome students between the ages of 12 and 31. We interviewed a group of students with Down syndrome who executed algorithms and solved problems using specific materials and paper and pencil. The results show that students with Down syndrome progress through the same procedural levels as those without disabilities though they have difficulties in reaching the most abstract level (numerical facts). The use of fingers or concrete representations (balls) appears as a fundamental process among these students. As for errors, these vary widely depending on the students, and can be attributed mostly to an incomplete knowledge of the decimal number system.

  16. Additive and subtractive scrambling in optional randomized response modeling.

    PubMed

    Hussain, Zawar; Al-Sobhi, Mashail M; Al-Zahrani, Bander

    2014-01-01

    This article considers unbiased estimation of mean, variance and sensitivity level of a sensitive variable via scrambled response modeling. In particular, we focus on estimation of the mean. The idea of using additive and subtractive scrambling has been suggested under a recent scrambled response model. Whether it is estimation of mean, variance or sensitivity level, the proposed scheme of estimation is shown relatively more efficient than that recent model. As far as the estimation of mean is concerned, the proposed estimators perform relatively better than the estimators based on recent additive scrambling models. Relative efficiency comparisons are also made in order to highlight the performance of proposed estimators under suggested scrambling technique.

  17. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-04

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  18. Directional statistics for realistic weakly interacting massive particle direct detection experiments. II. 2D readout

    NASA Astrophysics Data System (ADS)

    Morgan, Ben; Green, Anne M.

    2005-12-01

    The direction dependence of the WIMP direct detection rate provides a powerful tool for distinguishing a WIMP signal from possible backgrounds. We study the number of events required to discriminate a WIMP signal from an isotropic background for a detector with 2-d readout using nonparametric circular statistics. We also examine the number of events needed to (i) detect a deviation from rotational symmetry, due to flattening of the Milky Way halo and (ii) detect a deviation in the mean direction due to a tidal stream. If the senses of the recoils are measured then of order 20--70 events (depending on the plane of the 2-d readout and the detector location) will be sufficient to reject isotropy of the raw recoil angles at 90% confidence. If the senses can not be measured these number increase by roughly 2 orders of magnitude (compared with an increase of 1 order of magnitude for the case of full 3-d readout). The distributions of the reduced angles, with the (time-dependent) direction of solar motion subtracted, are far more anisotropic, however, and if the isotropy tests are applied to these angles then the numbers of events required are similar to the case of 3-d readout. A deviation from rotational symmetry will only be detectable if the Milky Way halo is significantly flattened. The deviation in the mean direction due to a tidal stream is potentially detectable, however, depending on the density and direction of the stream. The meridian plane (which contains the Earth’s spin axis) is, for all detector locations, the optimum readout plane for rejecting isotropy. However readout in this plane can not be used for detecting flattening of the Milky Way halo or a stream with direction perpendicular to the galactic plane. In these cases the optimum readout plane depends on the detector location.

  19. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  20. 2D vs. 3D mammography observer study

    NASA Astrophysics Data System (ADS)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  1. Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging.

    PubMed

    Wei, Hongjiang; Zhang, Yuyao; Gibbs, Eric; Chen, Nan-Kuei; Wang, Nian; Liu, Chunlei

    2017-04-01

    Quantitative susceptibility mapping (QSM) measures tissue magnetic susceptibility and typically relies on time-consuming three-dimensional (3D) gradient-echo (GRE) MRI. Recent studies have shown that two-dimensional (2D) multi-slice gradient-echo echo-planar imaging (GRE-EPI), which is commonly used in functional MRI (fMRI) and other dynamic imaging techniques, can also be used to produce data suitable for QSM with much shorter scan times. However, the production of high-quality QSM maps is difficult because data obtained by 2D multi-slice scans often have phase inconsistencies across adjacent slices and strong susceptibility field gradients near air-tissue interfaces. To address these challenges in 2D EPI-based QSM studies, we present a new data processing procedure that integrates 2D and 3D phase processing. First, 2D Laplacian-based phase unwrapping and 2D background phase removal are performed to reduce phase inconsistencies between slices and remove in-plane harmonic components of the background phase. This is followed by 3D background phase removal for the through-plane harmonic components. The proposed phase processing was evaluated with 2D EPI data obtained from healthy volunteers, and compared against conventional 3D phase processing using the same 2D EPI datasets. Our QSM results were also compared with QSM values from time-consuming 3D GRE data, which were taken as ground truth. The experimental results show that this new 2D EPI-based QSM technique can produce quantitative susceptibility measures that are comparable with those of 3D GRE-based QSM across different brain regions (e.g. subcortical iron-rich gray matter, cortical gray and white matter). This new 2D EPI QSM reconstruction method is implemented within STI Suite, which is a comprehensive shareware for susceptibility imaging and quantification. Copyright © 2016 John Wiley & Sons, Ltd.

  2. NKG2D receptor and its ligands in host defense

    PubMed Central

    Lanier, Lewis L.

    2015-01-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808

  3. NKG2D Receptor and Its Ligands in Host Defense.

    PubMed

    Lanier, Lewis L

    2015-06-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8(+) T cells, and subsets of CD4(+) T cells, invariant NKT cells (iNKT), and γδ T cells. In humans, NKG2D transmits signals by its association with the DAP10 adapter subunit, and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least eight genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and posttranslation. In general, healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyperproliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves as a mechanism for the immune system to detect and eliminate cells that have undergone "stress." Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system, and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases.

  4. 2-D Versus 3-D Magnetotelluric Data Interpretation

    NASA Astrophysics Data System (ADS)

    Ledo, Juanjo

    2005-09-01

    In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.

  5. Recent advances in 2D materials for photocatalysis.

    PubMed

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-04-07

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  6. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  7. Numerical Instability in a 2D Gyrokinetic Code Caused by Divergent E × B Flow

    NASA Astrophysics Data System (ADS)

    Byers, J. A.; Dimits, A. M.; Matsuda, Y.; Langdon, A. B.

    1994-12-01

    In this paper, a numerical instability first observed in a 2D electrostatic gyrokinetic code is described. The instability should also be present in some form in many versons of particle-in-cell simulation codes that employ guiding center drifts. A perturbation analysis of the instability is given and its results agree quantitatively with the observations from the gyrokinetic code in all respects. The basic mechanism is a false divergence of the E × B flow caused by the interpolation between the grid and the particles as coupled with the specific numerical method for calculating E - ∇φ. Stability or instability depends in detail on the specific choice of particle interpolation method and field method. One common interpolation method, subtracted dipole, is stable. Other commonly used interpolation methods, linear and quadratic, are unstable when combined with a finite difference for the electric field. Linear and quadratic interpolation can be rendered stable if combined with another method for the electric field, the analytic differential of the interpolated potential.

  8. Temporal Subtraction of Digital Breast Tomosynthesis Images for Improved Mass Detection

    DTIC Science & Technology

    2009-11-01

    imaging using two distinct methods7-15: mathematically based models defined by geometric primitives and voxelized models derived from real human...trees to complete them. We also plan to add further detail by defining the Cooper’s ligaments using geometrical NURBS surfaces. Realistic...generated model for the coronary arterial tree based on multislice CT and morphometric data," Medical Imaging 2006: Physics of Medical Imaging 6142

  9. Temporal Subtraction of Digital Breast Tomosynthesis Images for Improved Mass Detection

    DTIC Science & Technology

    2008-10-01

    K. Fishman and B. M. W. Tsui, "Development of a computer-generated model for the coronary arterial tree based on multislice CT and morphometric data...mathematical models based on geometric primitives8-22. Bakic et al created synthetic x-ray mammograms using a 3D simulated breast tissue model consisting of...utilized a combination of voxel matrices and geometric primitives to create a breast phantom that includes the breast surface, the duct system, and

  10. Robust baseline subtraction for ultrasonic full wavefield analysis

    NASA Astrophysics Data System (ADS)

    Alguri, K. Supreet; Michaels, Jennifer E.; Harley, Joel B.

    2017-02-01

    Full wavefield analysis is used to study and characterize the interaction between waves and structural damage. Yet, as wavefields are measured and as damage evolves in a structure, environmental and operational variations can significantly affect wave propagation. Several approaches, including time-stretching and optimal baseline selection methods, can reduce variations, but these methods are often limited to specific effects, are ineffective for large environmental variations, or require an impractical number of prior baseline measurements. This paper presents a robust methodology for subtracting wavefields and isolating wave-damage interactions. The method is based on dictionary learning. It is robust to multiple types of environmental and operational variations and requires only one initial baseline. We learn the dictionary, which describes wave propagation for a particular wavefield, based on multiple frequencies of a baseline wavefield. We then use the dictionary and sparse regression to create new baselines for measurements with different environmental and operational conditions. The new baseline is then subtracted from the new wavefield to isolate damage wavefield.

  11. Background Subtraction Based on Three-Dimensional Discrete Wavelet Transform.

    PubMed

    Han, Guang; Wang, Jinkuan; Cai, Xi

    2016-03-30

    Background subtraction without a separate training phase has become a critical task, because a sufficiently long and clean training sequence is usually unavailable, and people generally thirst for immediate detection results from the first frame of a video. Without a training phase, we propose a background subtraction method based on three-dimensional (3D) discrete wavelet transform (DWT). Static backgrounds with few variations along the time axis are characterized by intensity temporal consistency in the 3D space-time domain and, hence, correspond to low-frequency components in the 3D frequency domain. Enlightened by this, we eliminate low-frequency components that correspond to static backgrounds using the 3D DWT in order to extract moving objects. Owing to the multiscale analysis property of the 3D DWT, the elimination of low-frequency components in sub-bands of the 3D DWT is equivalent to performing a pyramidal 3D filter. This 3D filter brings advantages to our method in reserving the inner parts of detected objects and reducing the ringing around object boundaries. Moreover, we make use of wavelet shrinkage to remove disturbance of intensity temporal consistency and introduce an adaptive threshold based on the entropy of the histogram to obtain optimal detection results. Experimental results show that our method works effectively in situations lacking training opportunities and outperforms several popular techniques.

  12. Background Subtraction Based on Three-Dimensional Discrete Wavelet Transform

    PubMed Central

    Han, Guang; Wang, Jinkuan; Cai, Xi

    2016-01-01

    Background subtraction without a separate training phase has become a critical task, because a sufficiently long and clean training sequence is usually unavailable, and people generally thirst for immediate detection results from the first frame of a video. Without a training phase, we propose a background subtraction method based on three-dimensional (3D) discrete wavelet transform (DWT). Static backgrounds with few variations along the time axis are characterized by intensity temporal consistency in the 3D space-time domain and, hence, correspond to low-frequency components in the 3D frequency domain. Enlightened by this, we eliminate low-frequency components that correspond to static backgrounds using the 3D DWT in order to extract moving objects. Owing to the multiscale analysis property of the 3D DWT, the elimination of low-frequency components in sub-bands of the 3D DWT is equivalent to performing a pyramidal 3D filter. This 3D filter brings advantages to our method in reserving the inner parts of detected objects and reducing the ringing around object boundaries. Moreover, we make use of wavelet shrinkage to remove disturbance of intensity temporal consistency and introduce an adaptive threshold based on the entropy of the histogram to obtain optimal detection results. Experimental results show that our method works effectively in situations lacking training opportunities and outperforms several popular techniques. PMID:27043570

  13. Fast Image Subtraction Using Multi-cores and GPUs

    NASA Astrophysics Data System (ADS)

    Hartung, Steven; Shukla, H.

    2013-01-01

    Many important image processing techniques in astronomy require a massive number of computations per pixel. Among them is an image differencing technique known as Optimal Image Subtraction (OIS), which is very useful for detecting and characterizing transient phenomena. Like many image processing routines, OIS computations increase proportionally with the number of pixels being processed, and the number of pixels in need of processing is increasing rapidly. Utilizing many-core graphical processing unit (GPU) technology in a hybrid conjunction with multi-core CPU and computer clustering technologies, this work presents a new astronomy image processing pipeline architecture. The chosen OIS implementation focuses on the 2nd order spatially-varying kernel with the Dirac delta function basis, a powerful image differencing method that has seen limited deployment in part because of the heavy computational burden. This tool can process standard image calibration and OIS differencing in a fashion that is scalable with the increasing data volume. It employs several parallel processing technologies in a hierarchical fashion in order to best utilize each of their strengths. The Linux/Unix based application can operate on a single computer, or on an MPI configured cluster, with or without GPU hardware. With GPU hardware available, even low-cost commercial video cards, the OIS convolution and subtraction times for large images can be accelerated by up to three orders of magnitude.

  14. Nonclassicality and decoherence of photon-subtracted squeezed states

    NASA Astrophysics Data System (ADS)

    Biswas, Asoka; Agarwal, Girish S.

    2007-03-01

    Single-photon subtracted squeezed vacuum states are equivalent to Schrodinger kitten states and show non-Gaussian nature in phase space. Such states are useful in entanglement distillation, loophole-free test of Bell's inequality, and quantum computing. We discuss nonclassical properties of these states in terms of the sub-Poissonian statistics and the negativity of the Wigner function. We derive a compact expression for the Wigner function from which we find the region of phase space where Wigner function is negative. We find an upper bound on the squeezing parameter for the state to exhibit sub-Poissonian statistics. We then study the effect of decoherence on the single-photon subtracted squeezed states. We present results for two different models of decoherence, viz. amplitude decay model and the phase diffusion model. In each case we give analytical results for the time evolution of the state. We discuss the loss of nonclassicality as a result of decoherence. We show through the study of their phase-space properties how these states decay to vacuum due to the decay of photons. We show that phase damping leads to very slow decoherence than the photon-number decay and the state remains nonclassical at long times.

  15. Clinical Assessment of 2D/3D Registration Accuracy in 4 Major Anatomic Sites Using On-Board 2D Kilovoltage Images for 6D Patient Setup.

    PubMed

    Li, Guang; Yang, T Jonathan; Furtado, Hugo; Birkfellner, Wolfgang; Ballangrud, Åse; Powell, Simon N; Mechalakos, James

    2015-06-01

    To provide a comprehensive assessment of patient setup accuracy in 6 degrees of freedom (DOFs) using 2-dimensional/3-dimensional (2D/3D) image registration with on-board 2-dimensional kilovoltage (OB-2 DkV) radiographic images, we evaluated cranial, head and neck (HN), and thoracic and abdominal sites under clinical conditions. A fast 2D/3D image registration method using graphics processing unit GPU was modified for registration between OB-2 DkV and 3D simulation computed tomography (simCT) images, with 3D/3D registration as the gold standard for 6 DOF alignment. In 2D/3D registration, body roll rotation was obtained solely by matching orthogonal OB-2 DkV images with a series of digitally reconstructed radiographs (DRRs) from simCT with a small rotational increment along the gantry rotation axis. The window/level adjustments for optimal visualization of the bone in OB-2 DkV and DRRs were performed prior to registration. Ideal patient alignment at the isocenter was calculated and used as an initial registration position. In 3D/3D registration, cone-beam CT (CBCT) was aligned to simCT on bony structures using a bone density filter in 6DOF. Included in this retrospective study were 37 patients treated in 55 fractions with frameless stereotactic radiosurgery or stereotactic body radiotherapy for cranial and paraspinal cancer. A cranial phantom was used to serve as a control. In all cases, CBCT images were acquired for patient setup with subsequent OB-2 DkV verification. It was found that the accuracy of the 2D/3D registration was 0.0 ± 0.5 mm and 0.1° ± 0.4° in phantom. In patient, it is site dependent due to deformation of the anatomy: 0.2 ± 1.6 mm and -0.4° ± 1.2° on average for each dimension for the cranial site, 0.7 ± 1.6 mm and 0.3° ± 1.3° for HN, 0.7 ± 2.0 mm and -0.7° ± 1.1° for the thorax, and 1.1 ± 2.6 mm and -0.5° ± 1.9° for the abdomen. Anatomical deformation and presence of soft tissue in 2D/3D registration affect the consistency with

  16. Clinical Assessment of 2D/3D Registration Accuracy in 4 Major Anatomic Sites Using On-Board 2D Kilovoltage Images for 6D Patient Setup

    PubMed Central

    Li, Guang; Yang, T. Jonathan; Furtado, Hugo; Birkfellner, Wolfgang; Ballangrud, Åse; Powell, Simon N.; Mechalakos, James

    2015-01-01

    To provide a comprehensive assessment of patient setup accuracy in 6 degrees of freedom (DOFs) using 2-dimensional/3-dimensional (2D/3D) image registration with on-board 2-dimensional kilovoltage (OB-2DkV) radiographic images, we evaluated cranial, head and neck (HN), and thoracic and abdominal sites under clinical conditions. A fast 2D/3D image registration method using graphics processing unit GPU was modified for registration between OB-2DkV and 3D simulation computed tomography (simCT) images, with 3D/3D registration as the gold standard for 6DOF alignment. In 2D/3D registration, body roll rotation was obtained solely by matching orthogonal OB-2DkV images with a series of digitally reconstructed radiographs (DRRs) from simCT with a small rotational increment along the gantry rotation axis. The window/level adjustments for optimal visualization of the bone in OB-2DkV and DRRs were performed prior to registration. Ideal patient alignment at the isocenter was calculated and used as an initial registration position. In 3D/3D registration, cone-beam CT (CBCT) was aligned to simCT on bony structures using a bone density filter in 6DOF. Included in this retrospective study were 37 patients treated in 55 fractions with frameless stereotactic radiosurgery or stereotactic body radiotherapy for cranial and paraspinal cancer. A cranial phantom was used to serve as a control. In all cases, CBCT images were acquired for patient setup with subsequent OB-2DkV verification. It was found that the accuracy of the 2D/3D registration was 0.0 ± 0.5 mm and 0.1° ± 0.4° in phantom. In patient, it is site dependent due to deformation of the anatomy: 0.2 ± 1.6 mm and −0.4° ± 1.2° on average for each dimension for the cranial site, 0.7 ± 1.6 mm and 0.3° ± 1.3° for HN, 0.7 ± 2.0 mm and −0.7° ± 1.1° for the thorax, and 1.1 ± 2.6 mm and −0.5° ± 1.9° for the abdomen. Anatomical deformation and presence of soft tissue in 2D/3D registration affect the consistency with

  17. Visualization of. mu. /sub 1/ opiate receptors in rat brain by using a computerized autoradiographic subtraction technique

    SciTech Connect

    Goodman, R.R.; Pasternak, G.W.

    1985-10-01

    The authors have developed a quantitative computerized subtraction technique to demonstrate in rat brain the regional distribution of ..mu../sub 1/ sites, a common very-high-affinity binding site for both morphine and the enkephalins. Low concentrations of (D-Ala/sup 2/, D-Leu/sup 5/)enkephalin selectively inhibit the ..mu../sub 1/ binding of (/sup 3/H)dihydromorphine, leaving ..mu../sub 2/-sites, while low morphine concentrations eliminate the ..mu../sub 1/ binding of (/sup 3/H)(D-Ala/sup 2/, D-Leu/sub 5/)enkephalin, leaving sigma sites. Thus, quantitative differences between images of sections incubated in the presence and absence of these low concentrations of unlabeled opioid represent ..mu../sub 1/ binding sites. The regional distributions of ..mu../sub 1/ sites labeled with (/sup 3/H)dihydromorphine were quite similar to those determined by using (/sup 3/H)(D-Ala/sup 2/, D-Leu/sup 5/)enkephalin. High levels of ..mu../sub 1/ binding were observed in the periaqueductal gray, medial thalamus, and median raphe, consistent with the previously described role of ..mu../sub 1/ sites in analgesia. Other regions with high levels of ..mu../sub 1/ binding include the nucleus accumbens, the clusters and subcallosal streak of the striatum, hypothalamus, medial habenula, and the medial septum/diagonal band region. The proportion of total specific binding corresponding to ..mu../sub 1/ sites varied among the regions, ranging from 14% to 75% for (/sup 3/H)(D-Ala/sup 2/, D-Leu/sup 5/)enkephalin and 20% to 52% for (/sup 3/H)dihydromorphine.

  18. A task-based comparison of two reconstruction algorithms for digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Mahadevan, Ravi; Ikejimba, Lynda C.; Lin, Yuan; Samei, Ehsan; Lo, Joseph Y.

    2014-03-01

    Digital breast tomosynthesis (DBT) generates 3-D reconstructions of the breast by taking X-Ray projections at various angles around the breast. DBT improves cancer detection as it minimizes tissue overlap that is present in traditional 2-D mammography. In this work, two methods of reconstruction, filtered backprojection (FBP) and the Newton-Raphson iterative reconstruction were used to create 3-D reconstructions from phantom images acquired on a breast tomosynthesis system. The task based image analysis method was used to compare the performance of each reconstruction technique. The task simulated a 10mm lesion within the breast containing iodine concentrations between 0.0mg/ml and 8.6mg/ml. The TTF was calculated using the reconstruction of an edge phantom, and the NPS was measured with a structured breast phantom (CIRS 020) over different exposure levels. The detectability index d' was calculated to assess image quality of the reconstructed phantom images. Image quality was assessed for both conventional, single energy and dual energy subtracted reconstructions. Dose allocation between the high and low energy scans was also examined. Over the full range of dose allocations, the iterative reconstruction yielded a higher detectability index than the FBP for single energy reconstructions. For dual energy subtraction, detectability index was maximized when most of the dose was allocated to the high energy image. With that dose allocation, the performance trend for reconstruction algorithms reversed; FBP performed better than the corresponding iterative reconstruction. However, FBP performance varied very erratically with changing dose allocation. Therefore, iterative reconstruction is preferred for both imaging modalities despite underperforming dual energy FBP, as it provides stable results.

  19. Development of an affordable system for 2D kinematics and dynamics analysis of human gait

    NASA Astrophysics Data System (ADS)

    Mahyuddin, A. I.; Mihradi, S.; Dirgantara, T.; Sukmajaya, A.; Juliyad, N.; Purba, U.

    2009-12-01

    Development of a low-cost, yet reliable, system for 2D gait analysis is presented in this paper. The system consists of a home video camera with speed of 25 fps, LED markers, PC and a technical computing software, which are used for capturing and processing the digital image of markers attached to human body during motion. In the experiments, a person is instructed to walk in a specially arranged measurement area. The recorded images are then digitally processed to detect and track the 2D coordinate of the markers over time. To conduct a dynamics analysis, a mathematical formulation for human motion is constructed where the body is modeled by a system of five rigid bars connected by joints. Finally, a program is developed to plot and calculate the kinematics and dynamics data of human gait, where the markers position data over time, and other variables such as dimensions and weight of the body are used as the input in the program.

  20. Development of an affordable system for 2D kinematics and dynamics analysis of human gait

    NASA Astrophysics Data System (ADS)

    Mahyuddin, A. I.; Mihradi, S.; Dirgantara, T.; Sukmajaya, A.; Juliyad, N.; Purba, U.

    2010-03-01

    Development of a low-cost, yet reliable, system for 2D gait analysis is presented in this paper. The system consists of a home video camera with speed of 25 fps, LED markers, PC and a technical computing software, which are used for capturing and processing the digital image of markers attached to human body during motion. In the experiments, a person is instructed to walk in a specially arranged measurement area. The recorded images are then digitally processed to detect and track the 2D coordinate of the markers over time. To conduct a dynamics analysis, a mathematical formulation for human motion is constructed where the body is modeled by a system of five rigid bars connected by joints. Finally, a program is developed to plot and calculate the kinematics and dynamics data of human gait, where the markers position data over time, and other variables such as dimensions and weight of the body are used as the input in the program.

  1. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  2. Recovering 3D particle size distributions from 2D sections

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; Olson, Daniel M.

    2017-03-01

    We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible, and practical method to do this; show which of these techniques gives the most faithful conversions; and provide (online) short computer codes to calculate both 2D-3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100-300 individual measurements of apparent particle diameter.

  3. Phonon thermal conduction in novel 2D materials

    NASA Astrophysics Data System (ADS)

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-01

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.

  4. Recent developments in 2D layered inorganic nanomaterials for sensing

    NASA Astrophysics Data System (ADS)

    Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-01

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.

  5. Phonon thermal conduction in novel 2D materials.

    PubMed

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-07

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.

  6. Exact Solution of Ising Model in 2d Shortcut Network

    NASA Astrophysics Data System (ADS)

    Shanker, O.

    We give the exact solution to the Ising model in the shortcut network in the 2D limit. The solution is found by mapping the model to the square lattice model with Brascamp and Kunz boundary conditions.

  7. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  8. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-09

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

  9. Dominant 2D magnetic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1995-01-01

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.

  10. Studying Zeolite Catalysts with a 2D Model System

    SciTech Connect

    Boscoboinik, Anibal

    2016-12-07

    Anibal Boscoboinik, a materials scientist at Brookhaven’s Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.

  11. ORION96. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L.A.; Hallquist, J.O.

    1992-02-02

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  12. Emerging and potential opportunities for 2D flexible nanoelectronics

    NASA Astrophysics Data System (ADS)

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  13. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics.

    PubMed

    Nemilentsau, Andrei; Low, Tony; Hanson, George

    2016-02-12

    Motivated by the recent emergence of a new class of anisotropic 2D materials, we examine their electromagnetic modes and demonstrate that a broad class of the materials can host highly directional hyperbolic plasmons. Their propagation direction can be manipulated on the spot by gate doping, enabling hyperbolic beam reflection, refraction, and bending. The realization of these natural 2D hyperbolic media opens up a new avenue in dynamic control of hyperbolic plasmons not possible in the 3D version.

  14. RNA folding pathways and kinetics using 2D energy landscapes.

    PubMed

    Senter, Evan; Dotu, Ivan; Clote, Peter

    2015-01-01

    RNA folding pathways play an important role in various biological processes, such as (i) the hok/sok (host-killing/suppression of killing) system in E. coli to check for sufficient plasmid copy number, (ii) the conformational switch in spliced leader (SL) RNA from Leptomonas collosoma, which controls trans splicing of a portion of the '5 exon, and (iii) riboswitches--portions of the 5' untranslated region of messenger RNA that regulate genes by allostery. Since RNA folding pathways are determined by the energy landscape, we describe a novel algorithm, FFTbor2D, which computes the 2D projection of the energy landscape for a given RNA sequence. Given two metastable secondary structures A, B for a given RNA sequence, FFTbor2D computes the Boltzmann probability p(x, y) = Z(x,y)/Z that a secondary structure has base pair distance x from A and distance y from B. Using polynomial interpolationwith the fast Fourier transform,we compute p(x, y) in O(n(5)) time and O(n(2)) space, which is an improvement over an earlier method, which runs in O(n(7)) time and O(n(4)) space. FFTbor2D has potential applications in synthetic biology, where one might wish to design bistable switches having target metastable structures A, B with favorable pathway kinetics. By inverting the transition probability matrix determined from FFTbor2D output, we show that L. collosoma spliced leader RNA has larger mean first passage time from A to B on the 2D energy landscape, than 97.145% of 20,000 sequences, each having metastable structures A, B. Source code and binaries are freely available for download at http://bioinformatics.bc.edu/clotelab/FFTbor2D. The program FFTbor2D is implemented in C++, with optional OpenMP parallelization primitives.

  15. Supported and Free-Standing 2D Semimetals

    DTIC Science & Technology

    2015-01-15

    of this effort on focusing on rare- earth arsenides (RE-A), although not a van der Waals 2D solid, nonetheless, exhibits substantial 2D quantum size...this effort on focusing on rare- earth arsenides (RE- A), although not a van der Waals 20 solid, nonetheless, exhibits substantial 20 quantum size...Brongersma and S.R. Bank, "Rare- earth monopnictide alloys for tunable, epitaxial metals" in preparation. iii. S. Rahimi, E. M. Krivoy, J. Lee, M. E

  16. Application of 2-D graphical representation of DNA sequence

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Tan, Mingshu; Ding, Kequan

    2005-10-01

    Recently, we proposed a 2-D graphical representation of DNA sequence [Bo Liao, A 2-D graphical representation of DNA sequence, Chem. Phys. Lett. 401 (2005) 196-199]. Based on this representation, we consider properties of mutations and compute the similarities among 11 mitochondrial sequences belonging to different species. The elements of the similarity matrix are used to construct phylogenic tree. Unlike most existing phylogeny construction methods, the proposed method does not require multiple alignment.

  17. phase_space_cosmo_fisher: Fisher matrix 2D contours

    NASA Astrophysics Data System (ADS)

    Stark, Alejo

    2016-11-01

    phase_space_cosmo_fisher produces Fisher matrix 2D contours from which the constraints on cosmological parameters can be derived. Given a specified redshift array and cosmological case, 2D marginalized contours of cosmological parameters are generated; the code can also plot the derivatives used in the Fisher matrix. In addition, this package can generate 3D plots of qH^2 and other cosmological quantities as a function of redshift and cosmology.

  18. A simultaneous 2D/3D autostereo workstation

    NASA Astrophysics Data System (ADS)

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  19. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  20. The association between symbolic and nonsymbolic numerical magnitude processing and mental versus algorithmic subtraction in adults.

    PubMed

    Linsen, Sarah; Torbeyns, Joke; Verschaffel, Lieven; Reynvoet, Bert; De Smedt, Bert

    2016-03-01

    There are two well-known computation methods for solving multi-digit subtraction items, namely mental and algorithmic computation. It has been contended that mental and algorithmic computation differentially rely on numerical magnitude processing, an assumption that has already been examined in children, but not yet in adults. Therefore, in this study, we examined how numerical magnitude processing was associated with mental and algorithmic computation, and whether this association with numerical magnitude processing was different for mental versus algorithmic computation. We also investigated whether the association between numerical magnitude processing and mental and algorithmic computation differed for measures of symbolic versus nonsymbolic numerical magnitude processing. Results showed that symbolic, and not nonsymbolic, numerical magnitude processing was associated with mental computation, but not with algorithmic computation. Additional analyses showed, however, that the size of this association with symbolic numerical magnitude processing was not significantly different for mental and algorithmic computation. We also tried to further clarify the association between numerical magnitude processing and complex calculation by also including relevant arithmetical subskills, i.e. arithmetic facts, needed for complex calculation that are also known to be dependent on numerical magnitude processing. Results showed that the associations between symbolic numerical magnitude processing and mental and algorithmic computation were fully explained by individual differences in elementary arithmetic fact knowledge.

  1. Field depth extension of 2D barcode scanner based on wavefront coding and projection algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, Tingyu; Ye, Zi; Zhang, Wenzi; Huang, Weiwei; Yu, Feihong

    2008-03-01

    Wavefront coding (WFC) used in 2D barcode scanners can extend the depth of field into a great extent with simpler structure compared to the autofocus microscope system. With a cubic phase mask (CPM) employed in the STOP, blurred images will be obtained in charge coupled device (CCD), which can be restored by digital filters. Direct methods are used widely in real-time restoration with good computational efficiency but with details smoothed. Here, the results of direct method are firstly filtered by hard-threshold function. The positions of the steps can be detected by simple differential operators. With the positions corrected by projection algorithm, the exact barcode information is restored. A wavefront coding system with 7mm effective focal length and 6 F-number is designed as an example. Although with the different magnification, images of different object distances can be restored by one point spread function (PSF) with 200mm object distance. A QR code (Quickly Response Code) of 31mm X 27mm is used as a target object. The simulation results showed that the sharp imaging objective distance is from 80mm to 355mm. The 2D barcode scanner with wavefront coding extends field depth with simple structure, low cost and large manufacture tolerance. This combination of the direct filter and projection algorithm proposed here could get the exact 2D barcode information with good computational efficiency.

  2. A posteriori registration and subtraction of periapical radiographs for the evaluation of external apical root resorption after orthodontic treatment

    PubMed Central

    Chibinski, Ana Cláudia; Coelho, Ulisses; Wambier, Letícia Stadler; Zedebski, Rosário de Arruda Moura; de Moraes, Mari Eli Leonelli; de Moraes, Luiz Cesar

    2016-01-01

    Purpose This study employed a posteriori registration and subtraction of radiographic images to quantify the apical root resorption in maxillary permanent central incisors after orthodontic treatment, and assessed whether the external apical root resorption (EARR) was related to a range of parameters involved in the treatment. Materials and Methods A sample of 79 patients (mean age, 13.5±2.2 years) with no history of trauma or endodontic treatment of the maxillary permanent central incisors was selected. Periapical radiographs taken before and after orthodontic treatment were digitized and imported to the Regeemy software. Based on an analysis of the posttreatment radiographs, the length of the incisors was measured using Image J software. The mean EARR was described in pixels and relative root resorption (%). The patient's age and gender, tooth extraction, use of elastics, and treatment duration were evaluated to identify possible correlations with EARR. Results The mean EARR observed was 15.44±12.1 pixels (5.1% resorption). No differences in the mean EARR were observed according to patient characteristics (gender, age) or treatment parameters (use of elastics, treatment duration). The only parameter that influenced the mean EARR of a patient was the need for tooth extraction. Conclusion A posteriori registration and subtraction of periapical radiographs was a suitable method to quantify EARR after orthodontic treatment, and the need for tooth extraction increased the extent of root resorption after orthodontic treatment. PMID:27051635

  3. Regulation of NKG2D ligand gene expression.

    PubMed

    Eagle, Robert A; Traherne, James A; Ashiru, Omodele; Wills, Mark R; Trowsdale, John

    2006-03-01

    The activating immunoreceptor NKG2D has seven known host ligands encoded by the MHC class I chain-related MIC and ULBP/RAET genes. Why there is such diversity of NKG2D ligands is not known but one hypothesis is that they are differentially expressed in different tissues in response to different stresses. To explore this, we compared expression patterns and promoters of NKG2D ligand genes. ULBP/RAET genes were transcribed independent of each other in a panel of cell lines. ULBP/RAET gene expression was upregulated on infection with human cytomegalovirus; however, a clinical strain, Toledo, induced expression more slowly than did a laboratory strain, AD169. ULBP4/RAET1E was not induced by infection with either strain. To investigate the mechanisms behind the similarities and differences in NKG2D ligand gene expression a comparative sequence analysis of NKG2D ligand gene putative promoter regions was conducted. Sequence alignments demonstrated that there was significant sequence diversity; however, one region of high similarity between most of the genes is evident. This region contains a number of potential transcription factor binding sites, including those involved in shock responses and sites for retinoic acid-induced factors. Promoters of some NKG2D ligand genes are polymorphic and several sequence alterations in these alleles abolished putative transcription factor binding.

  4. CYP2D6 variability in populations from Venezuela.

    PubMed

    Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin

    2016-12-01

    CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.

  5. 2D microscopic model of graphene fracture properties

    NASA Astrophysics Data System (ADS)

    Hess, Peter

    2015-05-01

    An analytical two-dimensional (2D) microscopic fracture model based on Morse-type interaction is derived containing no adjustable parameter. From the 2D Young’s moduli and 2D intrinsic strengths of graphene measured by nanoindentation based on biaxial tension and calculated by density functional theory for uniaxial tension the widely unknown breaking force, line or edge energy, surface energy, fracture toughness, and strain energy release rate were determined. The simulated line energy agrees well with ab initio calculations and the fracture toughness of perfect graphene sheets is in good agreement with molecular dynamics simulations and the fracture toughness evaluated for defective graphene using the Griffith relation. Similarly, the estimated critical strain energy release rate agrees well with result of various theoretical approaches based on the J-integral and surface energy. The 2D microscopic model, connecting 2D and three-dimensional mechanical properties in a consistent way, provides a versatile relationship to easily access all relevant fracture properties of pristine 2D solids.

  6. Cadmium Subtraction Method for the Active Albedo Neutron Interrogation of Uranium

    SciTech Connect

    Worrall, Louise G.; Croft, Stephen

    2015-02-01

    This report describes work performed under the Next Generation Safeguards Initiative (NGSI) Cadmium Subtraction Project. The project objective was to explore the difference between the traditional cadmium (Cd) ratio signature and a proposed alternative Cd subtraction (or Cd difference) approach. The thinking behind the project was that a Cd subtraction method would provide a more direct measure of multiplication than the existing Cd ratio method. At the same time, it would be relatively insensitive to changes in neutron detection efficiency when properly calibrated. This is the first published experimental comparison and evaluation of the Cd ratio and Cd subtraction methods.

  7. 2D Hexagonal Boron Nitride (2D-hBN) Explored for the Electrochemical Sensing of Dopamine.

    PubMed

    Khan, Aamar F; Brownson, Dale A C; Randviir, Edward P; Smith, Graham C; Banks, Craig E

    2016-10-04

    Crystalline 2D hexagonal boron nitride (2D-hBN) nanosheets are explored as a potential electrocatalyst toward the electroanalytical sensing of dopamine (DA). The 2D-hBN nanosheets are electrically wired via a drop-casting modification process onto a range of commercially available carbon supporting electrodes, including glassy carbon (GC), boron-doped diamond (BDD), and screen-printed graphitic electrodes (SPEs). 2D-hBN has not previously been explored toward the electrochemical detection/electrochemical sensing of DA. We critically evaluate the potential electrocatalytic performance of 2D-hBN modified electrodes, the effect of supporting carbon electrode platforms, and the effect of "mass coverage" (which is commonly neglected in the 2D material literature) toward the detection of DA. The response of 2D-hBN modified electrodes is found to be largely dependent upon the interaction between 2D-hBN and the underlying supporting electrode material. For example, in the case of SPEs, modification with 2D-hBN (324 ng) improves the electrochemical response, decreasing the electrochemical oxidation potential of DA by ∼90 mV compared to an unmodified SPE. Conversely, modification of a GC electrode with 2D-hBN (324 ng) resulted in an increased oxidation potential of DA by ∼80 mV when compared to the unmodified electrode. We explore the underlying mechanisms of the aforementioned examples and infer that electrode surface interactions and roughness factors are critical considerations. 2D-hBN is utilized toward the sensing of DA in the presence of the common interferents ascorbic acid (AA) and uric acid (UA). 2D-hBN is found to be an effective electrocatalyst in the simultaneous detection of DA and UA at both pH 5.0 and 7.4. The peak separations/resolution between DA and UA increases by ∼70 and 50 mV (at pH 5.0 and 7.4, respectively, when utilizing 108 ng of 2D-hBN) compared to unmodified SPEs, with a particularly favorable response evident in pH 5.0, giving rise to a

  8. 2-D and 3-D Digital Analysis of Breast Calcifications: A Technique to Improve Mammographic Specificity

    DTIC Science & Technology

    2001-06-01

    the Institute of Laboratory Resources, national Research Council (NIH Publication No. 86-23, Revised 1985). X For the protection of human subjects...193-200, 1983. 23 Sigfusson BF, Andersson I, Aspegren K, et al. Clustered breast calcifications. Acta Radiologica 24: 273-281, 1983. September 19...the breast. Clin Radiol 34:193-200, 1983. 23. Sigfusson BF, Andersson I, Aspegren K, et al. Clustered breast calcifications. Acta Radiologica 24: 273

  9. Estimation of the curvature of an interface from a digital 2D image

    SciTech Connect

    Frette, O.I.; Virnovsky, G.; Silin, D.

    2008-10-15

    In this paper a method for the estimation of the curvature along a condensed phase interface is presented. In a previous paper in this journal [1] a mathematical relationship was established between this curvature and a template disk located at a given point along the interface. The portion of the computed area of the template disk covering one of the phases was shown to be asymptotically linear in the mean curvature. Instead of utilizing this relationship, an empirical approach was proposed in [1] in order to compensate for discrete uncertainties. In this paper, we show that this linear relationship can be used directly along the interface avoiding the empirical approach proposed earlier. Modifications of the algorithm are however needed, and with good data smoothing techniques, our method provides good quantitative curvature estimates.

  10. Creating a Digital Jamaican Sign Language Dictionary: A R2D2 Approach

    ERIC Educational Resources Information Center

    MacKinnon, Gregory; Soutar, Iris

    2015-01-01

    The Jamaican Association for the Deaf, in their responsibilities to oversee education for individuals who are deaf in Jamaica, has demonstrated an urgent need for a dictionary that assists students, educators, and parents with the practical use of "Jamaican Sign Language." While paper versions of a preliminary resource have been explored…

  11. Intermediate Palomar Transient Factory: Realtime Image Subtraction Pipeline

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Nugent, Peter E.; Kasliwal, Mansi M.

    2016-11-01

    A fast-turnaround pipeline for realtime data reduction plays an essential role in discovering and permitting follow-up observations to young supernovae and fast-evolving transients in modern time-domain surveys. In this paper, we present the realtime image subtraction pipeline in the intermediate Palomar Transient Factory. By using high-performance computing, efficient databases, and machine-learning algorithms, this pipeline manages to reliably deliver transient candidates within 10 minutes of images being taken. Our experience in using high-performance computing resources to process big data in astronomy serves as a trailblazer to dealing with data from large-scale time-domain facilities in the near future.

  12. Suppression Subtractive Hybridization (SSH) and its modifications in microbiological research.

    PubMed

    Huang, Xiaowei; Li, Yunxia; Niu, Qiuhong; Zhang, Keqin

    2007-09-01

    Suppression subtractive hybridization (SSH) is an effective approach to identify the genes that vary in expression levels during different biological processes. It is often used in higher eukaryotes to study the molecular regulation in complex pathogenic progress, such as tumorigenesis and other chronic multigene-associated diseases. Because microbes have relatively smaller genomes compared with eukaryotes, aside from the analysis at the mRNA level, SSH as well as its modifications have been further employed to isolate specific chromosomal locus, study genomic diversity related with exceptional bacterial secondary metabolisms or genes with special microbial function. This review introduces the SSH and its associated methods and focus on their applications to detect specific functional genes or DNA markers in microorganisms.

  13. Real-time image subtraction using phase reversal technique

    NASA Astrophysics Data System (ADS)

    Venkateswara Rao, Vuyyuru; Krishna Mohan, Nandigana K.

    1999-10-01

    A simple coherent interferometric processing method for image subtraction in real-time is presented. The proposed method is based on interferometric principle using Mach- Zehnder interferometer. The phase reversal is accomplished by varying the pressure within an air-filled quartz cell inserted in one of the arms of the interferometer. Initially, the interferometer is aligned to obtain broad interference fringes in the cell region. Then the input imageries are introduced in both the arms of the interferometer and adjusted for exact registration as seen in the plane of observation. By introducing a phase change of (pi) -rad between the two arms of the interferometer, the difference between the inputs is detected in real-time on the monitor. Phase shift calibration and information processing of the proposed method is presented with the results.

  14. Background Subtraction Based on Color and Depth Using Active Sensors

    PubMed Central

    Fernandez-Sanchez, Enrique J.; Diaz, Javier; Ros, Eduardo

    2013-01-01

    Depth information has been used in computer vision for a wide variety of tasks. Since active range sensors are currently available at low cost, high-quality depth maps can be used as relevant input for many applications. Background subtraction and video segmentation algorithms can be improved by fusing depth and color inputs, which are complementary and allow one to solve many classic color segmentation issues. In this paper, we describe one fusion method to combine color and depth based on an advanced color-based algorithm. This technique has been evaluated by means of a complete dataset recorded with Microsoft Kinect, which enables comparison with the original method. The proposed method outperforms the others in almost every test, showing more robustness to illumination changes, shadows, reflections and camouflage. PMID:23857259

  15. An Improved Spectral Background Subtraction Method Based on Wavelet Energy.

    PubMed

    Zhao, Fengkui; Wang, Jian; Wang, Aimin

    2016-12-01

    Most spectral background subtraction methods rely on the difference in frequency response of background compared with characteristic peaks. It is difficult to extract accurately the background components from the spectrum when characteristic peaks and background have overlaps in frequency domain. An improved background estimation algorithm based on iterative wavelet transform (IWT) is presented. The wavelet entropy principle is used to select the best wavelet basis. A criterion based on wavelet energy theory to determine the optimal iteration times is proposed. The case of energy dispersive X-ray spectroscopy is discussed for illustration. A simulated spectrum with a prior known background and an experimental spectrum are tested. The processing results of the simulated spectrum is compared with non-IWT and it demonstrates the superiority of the IWT. It has great significance to improve the accuracy for spectral analysis.

  16. Plasma tomographic reconstruction from tangentially viewing camera with background subtraction

    SciTech Connect

    Odstrčil, M.; Mlynář, J.; Weinzettl, V.; Háček, P.; Verdoolaege, G.; Berta, M.

    2014-01-15

    Light reflections are one of the main and often underestimated issues of plasma emissivity reconstruction in visible light spectral range. Metallic and other specular components of tokamak generate systematic errors in the optical measurements that could lead to wrong interpretation of data. Our analysis is performed at data from the tokamak COMPASS. It is a D-shaped tokamak with specular metallic vessel and possibility of the H-mode plasma. Data from fast visible light camera were used for tomographic reconstruction with background reflections subtraction to study plasma boundary. In this article, we show that despite highly specular tokamak wall, it is possible to obtain a realistic reconstruction. The developed algorithm shows robust results despite of systematic errors in the optical measurements and calibration. The motivation is to obtain an independent estimate of the plasma boundary shape.

  17. Three-dimensional labeling of newly formed bone using synchrotron radiation barium K-edge subtraction imaging

    NASA Astrophysics Data System (ADS)

    Panahifar, Arash; Swanston, Treena M.; Pushie, M. Jake; Belev, George; Chapman, Dean; Weber, Lynn; Cooper, David M. L.

    2016-07-01

    Bone is a dynamic tissue which exhibits complex patterns of growth as well as continuous internal turnover (i.e. remodeling). Tracking such changes can be challenging and thus a high resolution imaging-based tracer would provide a powerful new perspective on bone tissue dynamics. This is, particularly so if such a tracer can be detected in 3D. Previously, strontium has been demonstrated to be an effective tracer which can be detected by synchrotron-based dual energy K-edge subtraction (KES) imaging in either 2D or 3D. The use of strontium is, however, limited to very small sample thicknesses due to its low K-edge energy (16.105 keV) and thus is not suitable for in vivo application. Here we establish proof-of-principle for the use of barium as an alternative tracer with a higher K-edge energy (37.441 keV), albeit for ex vivo imaging at the moment, which enables application in larger specimens and has the potential to be developed for in vivo imaging of preclinical animal models. New bone formation within growing rats in 2D and 3D was demonstrated at the Biomedical Imaging and Therapy bending magnet (BMIT-BM) beamline of the Canadian Light Source synchrotron. Comparative x-ray fluorescence imaging confirmed those patterns of uptake detected by KES. This initial work provides a platform for the further development of this tracer and its exploration of applications for in vivo development.

  18. Theoretical analysis on the measurement errors of local 2D DIC: Part I temporal and spatial uncertainty quantification of displacement measurements

    SciTech Connect

    Wang, Yueqi; Lava, Pascal; Reu, Phillip; Debruyne, Dimitri; Van Houtte, Paul

    2015-12-23

    This study presents a theoretical uncertainty quantification of displacement measurements by subset-based 2D-digital image correlation. A generalized solution to estimate the random error of displacement measurement is presented. The obtained solution suggests that the random error of displacement measurements is determined by the image noise, the summation of the intensity gradient in a subset, the subpixel part of displacement, and the interpolation scheme. The proposed method is validated with virtual digital image correlation tests.

  19. Regulation of ligands for the activating receptor NKG2D

    PubMed Central

    Mistry, Anita R; O'Callaghan, Chris A

    2007-01-01

    The outcome of an encounter between a cytotoxic cell and a potential target cell depends on the balance of signals from inhibitory and activating receptors. Natural Killer group 2D (NKG2D) has recently emerged as a major activating receptor on T lymphocytes and natural killer cells. In both humans and mice, multiple different genes encode ligands for NKG2D, and these ligands are non-classical major histocompatibility complex class I molecules. The NKG2D–ligand interaction triggers an activating signal in the cell expressing NKG2D and this promotes cytotoxic lysis of the cell expressing the ligand. Most normal tissues do not express ligands for NKG2D, but ligand expression has been documented in tumour and virus-infected cells, leading to lysis of these cells. Tight regulation of ligand expression is important. If there is inappropriate expression in normal tissues, this will favour autoimmune processes, whilst failure to up-regulate the ligands in pathological conditions would favour cancer development or dissemination of intracellular infection. PMID:17614877

  20. Rotation invariance principles in 2D/3D registration

    NASA Astrophysics Data System (ADS)

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels C.; Jacob, Augustinus L.; Regazzoni, Pietro; Messmer, Peter

    2003-05-01

    2D/3D patient-to-computed tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 2D/3D registration is the fast that finding a registration includes sovling a minimization problem in six degrees-of-freedom in motion. This results in considerable time expenses since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations aroudn a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of its original value. The method was implemented and extensively tested on simulated x-ray images of a pelvis. We conclude that this hardware-indepenent optimization of 2D/3D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.

  1. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.

  2. 2D Materials for Optical Modulation: Challenges and Opportunities.

    PubMed

    Yu, Shaoliang; Wu, Xiaoqin; Wang, Yipei; Guo, Xin; Tong, Limin

    2017-02-21

    Owing to their atomic layer thickness, strong light-material interaction, high nonlinearity, broadband optical response, fast relaxation, controllable optoelectronic properties, and high compatibility with other photonic structures, 2D materials, including graphene, transition metal dichalcogenides and black phosphorus, have been attracting increasing attention for photonic applications. By tuning the carrier density via electrical or optical means that modifies their physical properties (e.g., Fermi level or nonlinear absorption), optical response of the 2D materials can be instantly changed, making them versatile nanostructures for optical modulation. Here, up-to-date 2D material-based optical modulation in three categories is reviewed: free-space, fiber-based, and on-chip configurations. By analysing cons and pros of different modulation approaches from material and mechanism aspects, the challenges faced by using these materials for device applications are presented. In addition, thermal effects (e.g., laser induced damage) in 2D materials, which are critical to practical applications, are also discussed. Finally, the outlook for future opportunities of these 2D materials for optical modulation is given.

  3. 2D DIGE saturation labeling for minute sample amounts.

    PubMed

    Arnold, Georg J; Fröhlich, Thomas

    2012-01-01

    The 2D DIGE technique, based on fluorophores covalently linked to amino acid side chain residues and the concept of an internal standard, has significantly improved reproducibility, sensitivity, and the dynamic range of protein quantification. In saturation DIGE, sulfhydryl groups of cysteines are labeled with cyanine dyes to completion, providing a so far unraveled sensitivity for protein detection and quantification in 2D gel-based proteomic experiments. Only a few micrograms of protein per 2D gel facilitate the analysis of about 2,000 analytes from complex mammalian cell or tissue samples. As a consequence, 2D saturation DIGE is the method of choice when only minute sample amounts are available for quantitative proteome analysis at the level of proteins rather than peptides. Since very low amounts of samples have to be handled in a reproducible manner, saturation DIGE-based proteomic experiments are technically demanding. Moreover, successful saturation DIGE approaches require a strict adherence to adequate reaction conditions at each step. This chapter is dedicated to colleagues already experienced in 2D PAGE protein separation and intends to support the establishment of this ultrasensitive technique in proteomic workgroups. We provide basic guidelines for the experimental design and discuss crucial aspects concerning labeling chemistry, sample preparation, and pitfalls caused by labeling artifacts. A detailed step-by-step protocol comprises all aspects from initial sample preparation to image analysis and statistical evaluation. Furthermore, we describe the generation of preparative saturation DIGE gels necessary for mass spectrometry-based spot identification.

  4. Mermin–Wagner fluctuations in 2D amorphous solids

    PubMed Central

    Illing, Bernd; Fritschi, Sebastian; Kaiser, Herbert; Klix, Christian L.; Maret, Georg; Keim, Peter

    2017-01-01

    In a recent commentary, J. M. Kosterlitz described how D. Thouless and he got motivated to investigate melting and suprafluidity in two dimensions [Kosterlitz JM (2016) J Phys Condens Matter 28:481001]. It was due to the lack of broken translational symmetry in two dimensions—doubting the existence of 2D crystals—and the first computer simulations foretelling 2D crystals (at least in tiny systems). The lack of broken symmetries proposed by D. Mermin and H. Wagner is caused by long wavelength density fluctuations. Those fluctuations do not only have structural impact, but additionally a dynamical one: They cause the Lindemann criterion to fail in 2D in the sense that the mean squared displacement of atoms is not limited. Comparing experimental data from 3D and 2D amorphous solids with 2D crystals, we disentangle Mermin–Wagner fluctuations from glassy structural relaxations. Furthermore, we demonstrate with computer simulations the logarithmic increase of displacements with system size: Periodicity is not a requirement for Mermin–Wagner fluctuations, which conserve the homogeneity of space on long scales. PMID:28137872

  5. Sparse radar imaging using 2D compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

  6. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  7. 2-D Clinostat for Simulated Microgravity Experiments with Arabidopsis Seedlings

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Xugang; Krause, Lars; Görög, Mark; Schüler, Oliver; Hauslage, Jens; Hemmersbach, Ruth; Kircher, Stefan; Lasok, Hanna; Haser, Thomas; Rapp, Katja; Schmidt, Jürgen; Yu, Xin; Pasternak, Taras; Aubry-Hivet, Dorothée; Tietz, Olaf; Dovzhenko, Alexander; Palme, Klaus; Ditengou, Franck Anicet

    2016-04-01

    Ground-based simulators of microgravity such as fast rotating 2-D clinostats are valuable tools to study gravity related processes. We describe here a versatile g-value-adjustable 2-D clinostat that is suitable for plant analysis. To avoid seedling adaptation to 1 g after clinorotation, we designed chambers that allow rapid fixation. A detailed protocol for fixation, RNA isolation and the analysis of selected genes is described. Using this clinostat we show that mRNA levels of LONG HYPOCOTYL 5 (HY5), MIZU-KUSSEI 1 (MIZ1) and microRNA MIR163 are down-regulated in 5-day-old Arabidopsis thaliana roots after 3 min and 6 min of clinorotation using a maximal reduced g-force of 0.02 g, hence demonstrating that this 2-D clinostat enables the characterization of early transcriptomic events during root response to microgravity. We further show that this 2-D clinostat is able to compensate the action of gravitational force as both gravitropic-dependent statolith sedimentation and subsequent auxin redistribution (monitoring D R5 r e v :: G F P reporter) are abolished when plants are clinorotated. Our results demonstrate that 2-D clinostats equipped with interchangeable growth chambers and tunable rotation velocity are suitable for studying how plants perceive and respond to simulated microgravity.

  8. Finger bone immaturity and 2D:4D ratio measurement error in the assessment of the hyperandrogenic hypothesis for the etiology of autism spectrum disorders.

    PubMed

    Bloom, Michael S; Houston, Allison S; Mills, James L; Molloy, Cynthia A; Hediger, Mary L

    2010-06-01

    Emerging hypotheses suggest a causal role for prenatal androgen exposure in some cases of autism spectrum disorders (ASD). The ratios of the lengths of the bones of the 2nd to the 4th digit (2D:4D) are purported to be markers for prenatal androgen exposure and to be established early in gestation. Elongation of the 4th digit in response to testosterone is said to reduce 2D:4D in males versus females. We examined the ratios of bones from the left hand radiographs of 75 boys and 6 girls 4-8 years of age, diagnosed with ASD, to evaluate digit ratio as a marker for gestational androgen exposure. Contrary to our expectations, girls had reduced 2D:4D compared to boys but the difference was not significant (Cohen's D 0.51-0.66, P>0.05). The limited sample size for this study and the absence of a referent group precluded providing robust estimates for girls and identifying possible statistical differences between the sexes. Tanner-Whitehouse 3 (TW3) rating of finger bone growth suggested relative immaturity of the 4th relative to the 2nd digits. Positive correlations were detected for 2D:4D ratios, body mass index (r=0.23, P=0.039), chronologic age (r=0.35, P=0.001), and skeletal age (r=0.42, P<0.0001). The TW3 ratings and associations between 2D:4D ratios and indicators of growth suggest that digits develop at different rates. This asynchronous development may produce differences in 2D:4D over time which could lead to erroneous interpretation of androgen exposure in utero among young ASD children.

  9. A self contained Linux based data acquisition system for 2D detectors with delay line readout

    NASA Astrophysics Data System (ADS)

    Beltran, D.; Toledo, J.; Klora, A. C.; Ramos-Lerate, I.; Martínez, J. C.

    2007-01-01

    This article describes a fast and self-contained data acquisition system for 2D gas-filled detectors with delay line readout. It allows the realization of time resolved experiments in the millisecond scale. The acquisition system comprises of an industrial PC running Linux, a commercial time-to-digital converter and an in-house developed histogramming PCI card. The PC provides a mass storage for images and a graphical user interface for system monitoring and control. The histogramming card builds images with a maximum count rate of 5 MHz limited by the time-to-digital converter. Histograms are transferred to the PC at 85 MB/s. This card also includes a time frame generator, a calibration channel unit and eight digital outputs for experiment control. The control software was developed for easy integration into a beamline, including scans. The system is fully operational at the Spanish beamline BM16 at the ESRF in France, the neutron beamlines Adam and Eva at the ILL in France, the Max Plank Institute in Stuttgart in Germany, the University of Copenhagen in Denmark and at the future ALBA synchrotron in Spain. Some representative collected images from synchrotron and neutron beamlines are presented.

  10. Model Evaluation and Multiple Strategies in Cognitive Diagnosis: An Analysis of Fraction Subtraction Data

    ERIC Educational Resources Information Center

    de la Torre, Jimmy; Douglas, Jeffrey A.

    2008-01-01

    This paper studies three models for cognitive diagnosis, each illustrated with an application to fraction subtraction data. The objective of each of these models is to classify examinees according to their mastery of skills assumed to be required for fraction subtraction. We consider the DINA model, the NIDA model, and a new model that extends the…

  11. Putting Essential Understanding of Addition and Subtraction into Practice: Pre-K-2

    ERIC Educational Resources Information Center

    Caldwell, Janet H.; Kobett, Beth; Karp, Karen

    2014-01-01

    Do your students have the incorrect idea that addition "makes numbers bigger" and subtraction "makes numbers smaller"? Do they believe that subtraction is always "taking away"? What tasks can you offer--what questions can you ask--to determine what your students know or don't know--and move them forward in their…

  12. Toddler Subtraction with Large Sets: Further Evidence for an Analog-Magnitude Representation of Number

    ERIC Educational Resources Information Center

    Slaughter, Virginia; Kamppi, Dorian; Paynter, Jessica

    2006-01-01

    Two experiments were conducted to test the hypothesis that toddlers have access to an analog-magnitude number representation that supports numerical reasoning about relatively large numbers. Three-year-olds were presented with subtraction problems in which initial set size and proportions subtracted were systematically varied. Two sets of cookies…

  13. Secretory pathways generating immunosuppressive NKG2D ligands

    PubMed Central

    Baragaño Raneros, Aroa; Suarez-Álvarez, Beatriz; López-Larrea, Carlos

    2014-01-01

    Natural Killer Group 2 member D (NKG2D) activating receptor, present on the surface of various immune cells, plays an important role in activating the anticancer immune response by their interaction with stress-inducible NKG2D ligands (NKG2DL) on transformed cells. However, cancer cells have developed numerous mechanisms to evade the immune system via the downregulation of NKG2DL from the cell surface, including the release of NKG2DL from the cell surface in a soluble form. Here, we review the mechanisms involved in the production of soluble NKG2DL (sNKG2DL) and the potential therapeutic strategies aiming to block the release of these immunosuppressive ligands. Therapeutically enabling the NKG2D-NKG2DL interaction would promote immunorecognition of malignant cells, thus abrogating disease progression. PMID:25050215

  14. Splashing transients of 2D plasmons launched by swift electrons

    PubMed Central

    Lin, Xiao; Kaminer, Ido; Shi, Xihang; Gao, Fei; Yang, Zhaoju; Gao, Zhen; Buljan, Hrvoje; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng; Zhang, Baile

    2017-01-01

    Launching of plasmons by swift electrons has long been used in electron energy–loss spectroscopy (EELS) to investigate the plasmonic properties of ultrathin, or two-dimensional (2D), electron systems. However, the question of how a swift electron generates plasmons in space and time has never been answered. We address this issue by calculating and demonstrating the spatial-temporal dynamics of 2D plasmon generation in graphene. We predict a jet-like rise of excessive charge concentration that delays the generation of 2D plasmons in EELS, exhibiting an analog to the hydrodynamic Rayleigh jet in a splashing phenomenon before the launching of ripples. The photon radiation, analogous to the splashing sound, accompanies the plasmon emission and can be understood as being shaken off by the Rayleigh jet–like charge concentration. Considering this newly revealed process, we argue that previous estimates on the yields of graphene plasmons in EELS need to be reevaluated. PMID:28138546

  15. Available information in 2D motional Stark effect imaging.

    PubMed

    Creese, Mathew; Howard, John

    2010-10-01

    Recent advances in imaging techniques have allowed the extension of the standard polarimetric 1D motional Stark effect (MSE) diagnostic to 2D imaging of the internal magnetic field of fusion devices [J. Howard, Plasma Phys. Controlled Fusion 50, 125003 (2008)]. This development is met with the challenge of identifying and extracting the new information, which can then be used to increase the accuracy of plasma equilibrium and current density profile determinations. This paper develops a 2D analysis of the projected MSE polarization orientation and Doppler phase shift. It is found that, for a standard viewing position, the 2D MSE imaging system captures sufficient information to allow imaging of the internal vertical magnetic field component B(Z)(r,z) in a tokamak.

  16. Microscale 2D separation systems for proteomic analysis

    PubMed Central

    Xu, Xin; Liu, Ke; Fan, Z. Hugh

    2012-01-01

    Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues. PMID:22462786

  17. 2D materials for photon conversion and nanophotonics

    NASA Astrophysics Data System (ADS)

    Tahersima, Mohammad H.; Sorger, Volker J.

    2015-09-01

    The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.

  18. Rapid-scan coherent 2D fluorescence spectroscopy.

    PubMed

    Draeger, Simon; Roeding, Sebastian; Brixner, Tobias

    2017-02-20

    We developed pulse-shaper-assisted coherent two-dimensional (2D) electronic spectroscopy in liquids using fluorescence detection. A customized pulse shaper facilitates shot-to-shot modulation at 1 kHz and is employed for rapid scanning over all time delays. A full 2D spectrum with 15 × 15 pixels is obtained in approximately 6 s of measurement time (plus further averaging if needed). Coherent information is extracted from the incoherent fluorescence signal via 27-step phase cycling. We exemplify the technique on cresyl violet in ethanol and recover literature-known oscillations as a function of population time. Signal-to-noise behavior is analyzed as a function of the amount of averaging. Rapid scanning provides a 2D spectrum with a root-mean-square error of < 0.05 after 1 min of measurement time.

  19. 2D-3D transition of gold cluster anions resolved

    NASA Astrophysics Data System (ADS)

    Johansson, Mikael P.; Lechtken, Anne; Schooss, Detlef; Kappes, Manfred M.; Furche, Filipp

    2008-05-01

    Small gold cluster anions Aun- are known for their unusual two-dimensional (2D) structures, giving rise to properties very different from those of bulk gold. Previous experiments and calculations disagree about the number of gold atoms nc where the transition to 3D structures occurs. We combine trapped ion electron diffraction and state of the art electronic structure calculations to resolve this puzzle and establish nc=12 . It is shown that theoretical studies using traditional generalized gradient functionals are heavily biased towards 2D structures. For a correct prediction of the 2D-3D crossover point it is crucial to use density functionals yielding accurate jellium surface energies, such as the Tao-Perdew-Staroverov-Scuseria (TPSS) functional or the Perdew-Burke-Ernzerhof functional modified for solids (PBEsol). Further, spin-orbit effects have to be included, and large, flexible basis sets employed. This combined theoretical-experimental approach is promising for larger gold and other metal clusters.

  20. IUPAP Award: Ion transport in 2D materials

    NASA Astrophysics Data System (ADS)

    Bao, Wenzhong

    Intercalation in 2D materials drastically influences both physical and chemical properties, which leads to a new degree of freedom for fundamental studies and expands the potential applications of 2D materials. In this talk, I will discuss our work in the past two years related to ion intercalation of 2D materials, including insertion of Li and Na ions in graphene and MoS2. We focused on both fundamental mechanism and potential application, e.g. we measured in-situ optical transmittance spectra and electrical transport properties of few-layer graphene (FLG) nanostructures upon electrochemical lithiation/delithiation. By observing a simultaneous increase of both optical transmittance and DC conductivity, strikingly different from other materials, we proposed its application as a next generation transparent electrode.

  1. 2d-retrieval For Mipas-envisat

    NASA Astrophysics Data System (ADS)

    Steck, T.; von Clarmann, T.; Grabowski, U.; Höpfner, M.

    Limb sounding of the Earth's atmosphere provides vertically high resolved profiles of geophysical parameters. The long ray path through the atmosphere makes limb sounders sensitive to even little abundant species. On the other hand, horizontal in- homogeneities, if not taken into account properly, can cause systematic errors within the retrieval process. Especially for limb emission measurements in the mid IR, at- mopheric temperature gradients result in considerable vmr retrieval errors if they are neglected. We present a dedicated method of taking full 2D fields of state parameters (indepen- dent of tangent points) into account in the forward model and in the retrieval. The basic idea is that the 2D state vector is updated sequentially for each limb scan. This method is applied to the 2D retrieval of temperature and vmr for simulated radiances as expected from MIPAS-ENVISAT.

  2. Genetics, genomics, and evolutionary biology of NKG2D ligands.

    PubMed

    Carapito, Raphael; Bahram, Seiamak

    2015-09-01

    Human and mouse NKG2D ligands (NKG2DLs) are absent or only poorly expressed by most normal cells but are upregulated by cell stress, hence, alerting the immune system in case of malignancy or infection. Although these ligands are numerous and highly variable (at genetic, genomic, structural, and biochemical levels), they all belong to the major histocompatibility complex class I gene superfamily and bind to a single, invariant, receptor: NKG2D. NKG2D (CD314) is an activating receptor expressed on NK cells and subsets of T cells that have a key role in the recognition and lysis of infected and tumor cells. Here, we review the molecular diversity of NKG2DLs, discuss the increasing appreciation of their roles in a variety of medical conditions, and propose several explanations for the evolutionary force(s) that seem to drive the multiplicity and diversity of NKG2DLs while maintaining their interaction with a single invariant receptor.

  3. Graphene based 2D-materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  4. Chemical vapour deposition: Transition metal carbides go 2D

    DOE PAGES

    Gogotsi, Yury

    2015-08-17

    Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour deposition with a highmore » crystallinity and very low defect concentration.« less

  5. Optoelectronics based on 2D TMDs and heterostructures

    NASA Astrophysics Data System (ADS)

    Huo, Nengjie; Yang, Yujue; Li, Jingbo

    2017-03-01

    2D materials including graphene and TMDs have proven interesting physical properties and promising optoelectronic applications. We reviewed the growth, characterization and optoelectronics based on 2D TMDs and their heterostructures, and demonstrated their unique and high quality of performances. For example, we observed the large mobility, fast response and high photo-responsivity in MoS2, WS2 and WSe2 phototransistors, as well as the novel performances in vdW heterostructures such as the strong interlayer coupling, am-bipolar and rectifying behaviour, and the obvious photovoltaic effect. It is being possible that 2D family materials could play an increasingly important role in the future nano- and opto-electronics, more even than traditional semiconductors such as silicon.

  6. Applications of Doppler Tomography in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Richards, M.; Budaj, J.; Agafonov, M.; Sharova, O.

    2010-12-01

    Over the past few years, the applications of Doppler tomography have been extended beyond the usual calculation of 2D velocity images of circumstellar gas flows. This technique has now been used with the new Shellspec spectrum synthesis code to demonstrate the effective modeling of the accretion disk and gas stream in the TT Hya Algol binary. The 2D tomography procedure projects all sources of emission onto a single central (Vx, Vy) velocity plane even though the gas is expected to flow beyond that plane. So, new 3D velocity images were derived with the Radioastronomical Approach method by assuming a grid of Vz values transverse to the central 2D plane. The 3D approach has been applied to the U CrB and RS Vul Algol-type binaries to reveal substantial flow structures beyond the central velocity plane.

  7. Chemical vapour deposition: Transition metal carbides go 2D

    SciTech Connect

    Gogotsi, Yury

    2015-08-17

    Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour deposition with a high crystallinity and very low defect concentration.

  8. Digital imaging.

    PubMed

    Daniel, Gregory B

    2009-07-01

    Medical imaging is rapidly moving toward a digital-based image system. An understanding of the principles of digital imaging is necessary to evaluate features of imaging systems and can play an important role in purchasing decisions.

  9. Real-time 2-D temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2010-01-01

    We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy.

  10. Towards functional assembly of 3D and 2D nanomaterials

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher B.; Wang, Kai; Ievlev, Anton V.; Muckley, Eric S.; Ivanov, Ilia N.

    2016-09-01

    Functional assemblies of materials can be realized by tuning the work function and band gap of nanomaterials by rational material selection and design. Here we demonstrate the structural assembly of 2D and 3D nanomaterials and show that layering a 2D material monolayer on a 3D metal oxide leads to substantial alteration of both the surface potential and optical properties of the 3D material. A 40 nm thick film of polycrystalline NiO was produced by room temperature rf-sputtering, resulting in a 3D nanoparticle assembly. Chemical vapor deposition (CVD) grown 10-30 μm WS2 flakes (2D material) were placed on the NiO surface using a PDMS stamp transfer technique. The 2D/3D WS2/NiO assembly was characterized using confocal micro Raman spectroscopy to evaluate the vibrational properties and using Kelvin probe force microscopy (KPFM) to evaluate the surface potential. Raman maps of the 2D/3D assembly show spatial non-uniformity of the A1g mode ( 418 cm-1) and the disorder-enhanced longitudinal acoustic mode, 2LA(M) ( 350 cm-1), suggesting that the WS2 exists in a strained condition on when transferred onto 3D polycrystalline NiO. KPFM measurements show that single layer WS2 on SiO2 has a surface potential 75 mV lower than that of SiO2, whereas the surface potential of WS2 on NiO is 15 mV higher than NiO, indicating that WS2 could act as electron donor or acceptor depending on the 3D material it is interfaced with. Thus 2D and 3D materials can be organized into functional assemblies with electron flow controlled by the WS2 either as the electron donor or acceptor.

  11. Artifacts in digital coincidence timing

    DOE PAGES

    Moses, W. W.; Peng, Q.

    2014-10-16

    Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into amore » time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator.All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e. the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the 'optimal' method. In conclusion, the purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization.« less

  12. Insect Wing Displacement Measurement Using Digital Holography

    SciTech Connect

    Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la; Caloca Mendez, Cristian I.

    2008-04-15

    Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame rate digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement.

  13. Laboratory Experiments On Continually Forced 2d Turbulence

    NASA Astrophysics Data System (ADS)

    Wells, M. G.; Clercx, H. J. H.; Van Heijst, G. J. F.

    There has been much recent interest in the advection of tracers by 2D turbulence in geophysical flows. While there is a large body of literature on decaying 2D turbulence or forced 2D turbulence in unbounded domains, there have been very few studies of forced turbulence in bounded domains. In this study we present new experimental results from a continuously forced quasi 2D turbulent field. The experiments are performed in a square Perspex tank filled with water. The flow is made quasi 2D by a steady background rotation. The rotation rate of the tank has a small (<8 %) sinusoidal perturbation which leads to the periodic formation of eddies in the corners of the tank. When the oscillation period of the perturbation is greater than an eddy roll-up time-scale, dipole structures are observed to form. The dipoles can migrate away from the walls, and the interior of the tank is continually filled with vortexs. From experimental visualizations the length scale of the vortexs appears to be largely controlled by the initial formation mechanism and large scale structures are not observed to form at large times. Thus the experiments provide a simple way of cre- ating a continuously forced 2D turbulent field. The resulting structures are in contrast with most previous laboratory experiments on 2D turbulence which have investigated decaying turbulence and have observed the formations of large scale structure. In these experiments, decaying turbulence had been produced by a variety of methods such as the decaying turbulence in the wake of a comb of rods (Massen et al 1999), organiza- tion of vortices in thin conducting liquids (Cardoso et al 1994) or in rotating systems where there are sudden changes in angular rotation rate (Konijnenberg et al 1998). Results of dye visualizations, particle tracking experiments and a direct numerical simulation will be presented and discussed in terms of their oceanographic application. Bibliography Cardoso,O. Marteau, D. &Tabeling, P

  14. 2dF grows up: Echidna for the AAT

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew; Barden, Sam; Miziarski, Stan; Rambold, William; Smith, Greg

    2008-07-01

    We present the concept design of a new fibre positioner and spectrograph system for the Anglo-Australian Telescope, as a proposed enhancement to the Anglo-Australian Observatory's well-known 2dF facility. A four-fold multiplex enhancement is accomplished by replacing the 400-fibre 2dF fibre positioning robot with a 1600-fibre Echidna unit, feeding three clones of the AAOmega optical spectrograph. Such a facility has the capability of a redshift 1 survey of a large fraction of the southern sky, collecting five to ten thousand spectra per night for a million-galaxy survey.

  15. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  16. Evaluation of 2D ceramic matrix composites in aeroconvective environments

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza

    1992-01-01

    An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.

  17. Radiative heat transfer in 2D Dirac materials.

    PubMed

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-06-03

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  18. Quantum process tomography by 2D fluorescence spectroscopy

    SciTech Connect

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  19. Radiative heat transfer in 2D Dirac materials

    DOE PAGES

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  20. Experimental validation of equations for 2D DIC uncertainty quantification.

    SciTech Connect

    Reu, Phillip L.; Miller, Timothy J.

    2010-03-01

    Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.