A 2D Electromechanical Model of Human Atrial Tissue Using the Discrete Element Method
Brocklehurst, Paul; Adeniran, Ismail; Yang, Dongmin; Sheng, Yong; Zhang, Henggui; Ye, Jianqiao
2015-01-01
Cardiac tissue is a syncytium of coupled cells with pronounced intrinsic discrete nature. Previous models of cardiac electromechanics often ignore such discrete properties and treat cardiac tissue as a continuous medium, which has fundamental limitations. In the present study, we introduce a 2D electromechanical model for human atrial tissue based on the discrete element method (DEM). In the model, single-cell dynamics are governed by strongly coupling the electrophysiological model of Courtemanche et al. to the myofilament model of Rice et al. with two-way feedbacks. Each cell is treated as a viscoelastic body, which is physically represented by a clump of nine particles. Cell aggregations are arranged so that the anisotropic nature of cardiac tissue due to fibre orientations can be modelled. Each cell is electrically coupled to neighbouring cells, allowing excitation waves to propagate through the tissue. Cell-to-cell mechanical interactions are modelled using a linear contact bond model in DEM. By coupling cardiac electrophysiology with mechanics via the intracellular Ca2+ concentration, the DEM model successfully simulates the conduction of cardiac electrical waves and the tissue's corresponding mechanical contractions. The developed DEM model is numerically stable and provides a powerful method for studying the electromechanical coupling problem in the heart. PMID:26583141
Carbonate fracture stratigraphy: An integrated outcrop and 2D discrete element modelling study
NASA Astrophysics Data System (ADS)
Spence, Guy; Finch, Emma
2013-04-01
Constraining fracture stratigraphy is important as natural fractures control primary fluid flow in low matrix permeability naturally fractured carbonate hydrocarbon reservoirs. Away from the influence of folds and faults, stratigraphic controls are known to be the major control on fracture networks. The fracture stratigraphy of carbonate nodular-chert rhythmite successions are investigated using a Discrete Element Modelling (DEM) technique and validated against observations from outcrops. Comparisons are made to the naturally fractured carbonates of the Eocene Thebes Formation exposed in the west central Sinai of Egypt, which form reservoir rocks in the nearby East Ras Budran Field. DEM allows mechanical stratigraphy to be defined as the starting conditions from which forward numerical modelling can generate fracture stratigraphy. DEM can incorporate both stratigraphic and lateral heterogeneity, and enable mechanical and fracture stratigraphy to be characterised separately. Stratally bound stratified chert nodules below bedding surfaces generate closely spaced lateral heterogeneity in physical properties at stratigraphic mechanical interfaces. This generates extra complexity in natural fracture networks in addition to that caused by bed thickness and lithological physical properties. A series of representative geologically appropriate synthetic mechanical stratigraphic models were tested. Fracture networks generated in 15 DEM experiments designed to isolate and constrain the effects of nodular chert rhythmites on carbonate fracture stratigraphy are presented. The discrete element media used to model the elastic strengths of rocks contain 72,866 individual elements. Mechanical stratigraphies and the fracture networks generated are placed in a sequence stratigraphic framework. Nodular chert rhythmite successions are shown to be a distinct type of naturally fractured carbonate reservoir. Qualitative stratigraphic rules for predicting the distribution, lengths, spacing
Bailey, T S; Adams, M L; Chang, J H
2008-10-01
We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional cylindrical (RZ) geometry for arbitrary polygonal meshes. This discretization is a discontinuous finite element method that utilizes the piecewise linear basis functions developed by Stone and Adams. We describe an asymptotic analysis that shows this method to be accurate for many problems in the thick diffusion limit on arbitrary polygons, allowing this method to be applied to radiative transfer problems with these types of meshes. We also present numerical results for multiple problems on quadrilateral grids and compare these results to the well-known bi-linear discontinuous finite element method.
NASA Astrophysics Data System (ADS)
Palha, A.; Gerritsma, M.
2017-01-01
In this work we present a mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations that in the limit of vanishing dissipation exactly preserves mass, kinetic energy, enstrophy and total vorticity on unstructured triangular grids. The essential ingredients to achieve this are: (i) a velocity-vorticity formulation in rotational form, (ii) a sequence of function spaces capable of exactly satisfying the divergence free nature of the velocity field, and (iii) a conserving time integrator. Proofs for the exact discrete conservation properties are presented together with numerical test cases on highly irregular triangular grids.
Morris, J; Johnson, S
2007-12-03
The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.
2D discrete Fourier transform on sliding windows.
Park, Chun-Su
2015-03-01
Discrete Fourier transform (DFT) is the most widely used method for determining the frequency spectra of digital signals. In this paper, a 2D sliding DFT (2D SDFT) algorithm is proposed for fast implementation of the DFT on 2D sliding windows. The proposed 2D SDFT algorithm directly computes the DFT bins of the current window using the precalculated bins of the previous window. Since the proposed algorithm is designed to accelerate the sliding transform process of a 2D input signal, it can be directly applied to computer vision and image processing applications. The theoretical analysis shows that the computational requirement of the proposed 2D SDFT algorithm is the lowest among existing 2D DFT algorithms. Moreover, the output of the 2D SDFT is mathematically equivalent to that of the traditional DFT at all pixel positions.
2-d Finite Element Code Postprocessor
Sanford, L. A.; Hallquist, J. O.
1996-07-15
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
ORION96. 2-d Finite Element Code Postprocessor
Sanford, L.A.; Hallquist, J.O.
1992-02-02
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
Conservative discontinuous Galerkin discretizations of the 2D incompressible Euler equation
NASA Astrophysics Data System (ADS)
Waelbroeck, Francois; Michoski, Craig; Bernard, Tess
2016-10-01
Discontinuous Galerkin (DG) methods provide local high-order adaptive numerical schemes for the solution of convection-diffusion problems. They combine the advantages of finite element and finite volume methods. In particular, DG methods automatically ensure the conservation of all first-order invariants provided that single-valued fluxes are prescribed at inter-element boundaries. For the 2D incompressible Euler equation, this implies that the discretized fluxes globally obey Gauss' and Stokes' laws exactly, and that they conserve total vorticity. Liu and Shu have shown that combining a continuous Galerkin (CG) solution of Poisson's equation with a central DG flux for the convection term leads to an algorithm that conserves the principal two quadratic invariants, namely the energy and enstrophy. Here, we present a discretization that applies the DG method to Poisson's equation as well as to the vorticity equation while maintaining conservation of the quadratic invariants. Using a DG algorithm for Poisson's equation can be advantageous when solving problems with mixed Dirichlet-Neuman boundary conditions such as for the injection of fluid through a slit (Bickley jet) or during compact toroid injection for tokamak startup.
2-D Finite Element Cable and Box IEMP Analysis
Scivner, G.J.; Turner, C.D.
1998-12-17
A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.
Discrete Element Modelling of Floating Debris
NASA Astrophysics Data System (ADS)
Mahaffey, Samantha; Liang, Qiuhua; Parkin, Geoff; Large, Andy; Rouainia, Mohamed
2016-04-01
Flash flooding is characterised by high velocity flows which impact vulnerable catchments with little warning time and as such, result in complex flow dynamics which are difficult to replicate through modelling. The impacts of flash flooding can be made yet more severe by the transport of both natural and anthropogenic debris, ranging from tree trunks to vehicles, wheelie bins and even storage containers, the effects of which have been clearly evident during recent UK flooding. This cargo of debris can have wide reaching effects and result in actual flood impacts which diverge from those predicted. A build-up of debris may lead to partial channel blockage and potential flow rerouting through urban centres. Build-up at bridges and river structures also leads to increased hydraulic loading which may result in damage and possible structural failure. Predicting the impacts of debris transport; however, is difficult as conventional hydrodynamic modelling schemes do not intrinsically include floating debris within their calculations. Subsequently a new tool has been developed using an emerging approach, which incorporates debris transport through the coupling of two existing modelling techniques. A 1D hydrodynamic modelling scheme has here been coupled with a 2D discrete element scheme to form a new modelling tool which predicts the motion and flow-interaction of floating debris. Hydraulic forces arising from flow around the object are applied to instigate its motion. Likewise, an equivalent opposing force is applied to fluid cells, enabling backwater effects to be simulated. Shock capturing capabilities make the tool applicable to predicting the complex flow dynamics associated with flash flooding. The modelling scheme has been applied to experimental case studies where cylindrical wooden dowels are transported by a dam-break wave. These case studies enable validation of the tool's shock capturing capabilities and the coupling technique applied between the two numerical
ELLIPT2D: A Flexible Finite Element Code Written Python
Pletzer, A.; Mollis, J.C.
2001-03-22
The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.
2D optical beam splitter using diffractive optical elements (DOE)
NASA Astrophysics Data System (ADS)
Wen, Fung J.; Chung, Po S.
2006-09-01
A novel approach for optical beam distribution into a 2-dimensional (2-D) packaged fiber arrays using 2-D Dammann gratings is investigated. This paper focuses on the design and fabrication of the diffractive optical element (DOE) and investigates the coupling efficiencies of the beamlets into a packaged V-grooved 2x2 fibre array. We report for the first time experimental results of a 2-D optical signal distribution into a packaged 2x2 fibre array using Dammann grating. This grating may be applicable to the FTTH network as it can support sufficient channels with good output uniformity together with low polarization dependent loss (PDL) and acceptable insertion loss. Using an appropriate optimization algorithm (the steepest descent algorithm in this case), the optimum profile for the gratings can be calculated. The gratings are then fabricated on ITO glass using electron-beam lithography. The overall performance of the design shows an output uniformity of around 0.14 dB and an insertion loss of about 12.63 dB, including the DOE, focusing lens and the packaged fiber array.
A Polar Discrete Ordinate Radiation Transport Method for 2D ALE Meshes in HYDRA
NASA Astrophysics Data System (ADS)
Chang, Britton; Marinak, Marty; Weber, Chris; Peterson, Luc
2016-10-01
The Polar Discrete Ordinate Radiation Transport Method in HYDRA has been extended to handle general 2D r-z meshes. Previously the method was only for orthogonal 2D meshes. The new method can be employed with the ALE methodology for managing mesh motion that is used to simulate Rayleigh-Taylor and Richtmyer-Meshkov instabilities on NIF capsule implosions. The results of an examination of this kind will be compared to those obtained by the corresponding diffusion method. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.
2D-3D hybrid stabilized finite element method for tsunami runup simulations
NASA Astrophysics Data System (ADS)
Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.
2016-09-01
This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.
NASA Astrophysics Data System (ADS)
Sarakorn, Weerachai
2017-04-01
In this research, the finite element (FE) method incorporating quadrilateral elements for solving 2-D MT modeling was presented. The finite element software was developed, employing a paving algorithm to generate the unstructured quadrilateral mesh. The accuracy, efficiency, reliability, and flexibility of our FE forward modeling are presented, compared and discussed. The numerical results indicate that our FE codes using an unstructured quadrilateral mesh provide good accuracy when the local mesh refinement is applied around sites and in the area of interest, with superior results when compared to other FE methods. The reliability of the developed codes was also confirmed when comparing both analytical solutions and COMMEMI2D model. Furthermore, our developed FE codes incorporating an unstructured quadrilateral mesh showed useful and powerful features such as handling irregular and complex subregions and providing local refinement of the mesh for a 2-D domain as closely as unstructured triangular mesh but it requires less number of elements in a mesh.
Sebastian Schunert; Yousry Y. Azmy; Damien Fournier
2011-05-01
We present a comprehensive error estimation of four spatial discretization schemes of the two-dimensional Discrete Ordinates (SN) equations on Cartesian grids utilizing a Method of Manufactured Solution (MMS) benchmark suite based on variants of Larsen’s benchmark featuring different orders of smoothness of the underlying exact solution. The considered spatial discretization schemes include the arbitrarily high order transport methods of the nodal (AHOTN) and characteristic (AHOTC) types, the discontinuous Galerkin Finite Element method (DGFEM) and the recently proposed higher order diamond difference method (HODD) of spatial expansion orders 0 through 3. While AHOTN and AHOTC rely on approximate analytical solutions of the transport equation within a mesh cell, DGFEM and HODD utilize a polynomial expansion to mimick the angular flux profile across each mesh cell. Intuitively, due to the higher degree of analyticity, we expect AHOTN and AHOTC to feature superior accuracy compared with DGFEM and HODD, but at the price of potentially longer grind times and numerical instabilities. The latter disadvantages can result from the presence of exponential terms evaluated at the cell optical thickness that arise from the semianalytical solution process. This work quantifies the order of accuracy and the magnitude of the error of all four discretization methods for different optical thicknesses, scattering ratios and degrees of smoothness of the underlying exact solutions in order to verify or contradict the aforementioned intuitive expectation.
A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1998-01-01
Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.
Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal
NASA Astrophysics Data System (ADS)
Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun
2013-05-01
Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.
Discrete elements for 3D microfluidics
Bhargava, Krisna C.; Thompson, Bryant; Malmstadt, Noah
2014-01-01
Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry. PMID:25246553
Discrete elements for 3D microfluidics.
Bhargava, Krisna C; Thompson, Bryant; Malmstadt, Noah
2014-10-21
Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.
A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform
Tang, Hui; Tong, Dan; Bao, Xudong; Dillenseger, Jean-Louis
2015-01-01
Purpose In digital X-ray radiography, an anti-scatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the anti-scatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods The method is as follows. The input image is first recursively decomposed into several smaller sub-images using a multi-scale 2D discrete wavelet transform (DWT). The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these sub-images using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected sub-images to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform (IDWT). Results The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1-dimensional Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time. PMID:25832061
A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform
Tang, Hui; Tong, Dan; Dong Bao, Xu; Dillenseger, Jean-Louis
2015-04-15
Purpose: In digital x-ray radiography, an antiscatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the antiscatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods: The method is as follows. The input image is first recursively decomposed into several smaller subimages using a multiscale 2D discrete wavelet transform. The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these subimages using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected subimages to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform. Results: The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1D Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions: The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time.
Optical Multiplications With Single Element 2-D Acousto-Optic Laser Beam Deflector
NASA Astrophysics Data System (ADS)
Soos, Jolanta I.; Leepa, Douglas C.; Rosemeier, Ronald G.
1989-05-01
With the current need for developing very fast computers in comparison to conventional digital chip based systems, the future for optical based signal processing is very bright. Attention has turned to a different application of optics utilizing mathematical operations, in which case operations are numerical, sometimes discrete, and often algebraic in nature. Interest has been so vigorous that many view it as a small revolution in optics, whereby optical signal processing is beginning to encompass what is frequently described as optical computing. The term is fully intended to imply a close comparison with the operations performed by scientific digital canputers. This paper will describe the applications of single element 2-D acousto-optic deflectors for optical multiplication systems.
NASA Astrophysics Data System (ADS)
Mendoza-Torres, F.; Diaz-Viera, M. A.
2015-12-01
In many natural fractured porous media, such as aquifers, soils, oil and geothermal reservoirs, fractures play a crucial role in their flow and transport properties. An approach that has recently gained popularity for modeling fracture systems is the Discrete Fracture Network (DFN) model. This approach consists in applying a stochastic boolean simulation method, also known as object simulation method, where fractures are represented as simplified geometric objects (line segments in 2D and polygons in 3D). One of the shortcomings of this approach is that it usually does not consider the dependency relationships that may exist between the geometric properties of fractures (direction, length, aperture, etc), that is, each property is simulated independently. In this work a method for modeling such dependencies by copula theory is introduced. In particular, a nonparametric model using Bernstein copulas for direction-length fracture dependency in 2D is presented. The application of this method is illustrated in a case study for a fractured rock sample from a carbonate reservoir outcrop.
Multirate-based fast parallel algorithms for 2-D DHT-based real-valued discrete Gabor transform.
Tao, Liang; Kwan, Hon Keung
2012-07-01
Novel algorithms for the multirate and fast parallel implementation of the 2-D discrete Hartley transform (DHT)-based real-valued discrete Gabor transform (RDGT) and its inverse transform are presented in this paper. A 2-D multirate-based analysis convolver bank is designed for the 2-D RDGT, and a 2-D multirate-based synthesis convolver bank is designed for the 2-D inverse RDGT. The parallel channels in each of the two convolver banks have a unified structure and can apply the 2-D fast DHT algorithm to speed up their computations. The computational complexity of each parallel channel is low and is independent of the Gabor oversampling rate. All the 2-D RDGT coefficients of an image are computed in parallel during the analysis process and can be reconstructed in parallel during the synthesis process. The computational complexity and time of the proposed parallel algorithms are analyzed and compared with those of the existing fastest algorithms for 2-D discrete Gabor transforms. The results indicate that the proposed algorithms are the fastest, which make them attractive for real-time image processing.
New discrete element models for elastoplastic problems
NASA Astrophysics Data System (ADS)
Cheng, Ming; Liu, Weifu; Liu, Kaixin
2009-10-01
The discrete element method (DEM) has attractive features for problems with severe damages, but lack of theoretical basis for continua behavior especially for nonlinear behavior has seriously restricted its application. The present study proposes a new approach to developing the DEM as a general and robust technique for modeling the elastoplastic behavior of solid materials. New types of connective links between elements are proposed, the inter-element parameters are theoretically determined based on the principle of energy equivalence and a yield criterion and a flow rule for DEM are given for describing nonlinear behavior of materials. Moreover, a numerical scheme, which can be applied to modeling the behavior of a continuum as well as the transformation from a continuum to a discontinuum, is obtained by introducing a fracture criterion and a contact model into the DEM. The elastoplastic stress wave propagations and the tensile failure process of a steel plate are simulated, and the numerical results agree well with those obtained from the finite element method (FEM) and corresponding experiment, and thus the accuracy and efficiency of the DEM scheme are demonstrated.
2D spectral element modeling of GPR wave propagation in inhomogeneous media
NASA Astrophysics Data System (ADS)
Zarei, Sajad; Oskooi, Behrooz; Amini, Navid; Dalkhani, Amin Rahimi
2016-10-01
We present a spectral element method, for simulation of ground-penetrating radar (GPR) in two dimensions. The technique is based upon a weak formulation of the equations of Maxwell and combines the flexibility of the elemental-based methods with the accuracy of the spectral based methods. The wave field on the elements is discretized using high-degree Lagrange interpolation and integration over an element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. As a result, the mass matrix and the damping matrix are always diagonal, which drastically reduces the computational cost. We first develop the formulation of 2D spectral element method (SEM) in the time-domain based on Maxwell's equations. The presented formulation is with matrix notation that simplifies the implementation of the relations in computer programs, especially in MATLAB application. We discuss the differences between spectral element method and finite-element method in the time-domain. Also, we show that the SEM numerical dispersion is much lower than FEM. To absorb waves at the edges of the modeling domain, we implement first order Clayton and Engquist absorbing boundary conditions (CE-ABC) introduced in numerical finite-difference modeling of seismic wave propagation. We used the SEM to simulate a complex model to show its abilities and limitations. As well as, one distinct advantage of SEM is that we can easily define our model features in nodal points, because the integration points and the interpolation points are similar that makes it very flexible in simulation of complex models.
NASA Astrophysics Data System (ADS)
Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.
2014-06-01
The non-hydrostatic (NH) compressible Euler equations of dry atmosphere are solved in a simplified two dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative terms and quadrature. The Euler equations used here are in a flux form based on the hydrostatic pressure vertical coordinate, which are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate is implemented in this model. We verified the model by conducting widely used standard benchmark tests: the inertia-gravity wave, rising thermal bubble, density current wave, and linear hydrostatic mountain wave. The results from those tests demonstrate that the horizontally spectral element vertically finite difference model is accurate and robust. By using the 2-D slice model, we effectively show that the combined spatial discretization method of the spectral element and finite difference method in the horizontal and vertical directions, respectively, offers a viable method for the development of a NH dynamical core.
Discrete Element Modeling for Mobility and Excavation
NASA Astrophysics Data System (ADS)
Knuth, M. A.; Hopkins, M. A.
2011-12-01
The planning and completion of mobility and excavation efforts on the moon requires a thorough understanding of the planetary regolith. In this work, a discrete element method (DEM) model is created to replicate those activities in the laboratory and for planning mission activities in the future. The crux of this work is developing a particle bed that best replicates the regolith tool/wheel interaction seen in the laboratory. To do this, a DEM geotechnical triaxial strength cell was created allowing for comparison of laboratory JSC-1a triaxial tests to DEM simulated soils. This model relies on a triangular lattice membrane covered triaxial cell for determining the macroscopic properties of the modeled granular material as well as a fast and efficient contact detection algorithm for a variety of grain shapes. Multiple grain shapes with increasing complexity (ellipsoid, poly-ellipsoid and polyhedra) have been developed and tested. This comparison gives us a basis to begin scaling DEM grain size and shape to practical values for mobility and excavation modeling. Next steps include development of a DEM scoop for percussive excavation testing as well as continued analysis of rover wheel interactions using a wide assortment of grain shape and size distributions.
Discrete Element Modeling of Triboelectrically Charged Particles
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Calle, Carlos I.; Weitzman, Peter S.; Curry, David R.
2008-01-01
Tribocharging of particles is common in many processes including fine powder handling and mixing, printer toner transport and dust extraction. In a lunar environment with its high vacuum and lack of water, electrostatic forces are an important factor to consider when designing and operating equipment. Dust mitigation and management is critical to safe and predictable performance of people and equipment. The extreme nature of lunar conditions makes it difficult and costly to carry out experiments on earth which are necessary to better understand how particles gather and transfer charge between each other and with equipment surfaces. DEM (Discrete Element Modeling) provides an excellent virtual laboratory for studying tribocharging of particles as well as for design of devices for dust mitigation and for other purposes related to handling and processing of lunar regolith. Theoretical and experimental work has been performed pursuant to incorporating screened Coulombic electrostatic forces into EDEM, a commercial DEM software package. The DEM software is used to model the trajectories of large numbers of particles for industrial particulate handling and processing applications and can be coupled with other solvers and numerical models to calculate particle interaction with surrounding media and force fields. While simple Coulombic force between two particles is well understood, its operation in an ensemble of particles is more complex. When the tribocharging of particles and surfaces due to frictional contact is also considered, it is necessary to consider longer range of interaction of particles in response to electrostatic charging. The standard DEM algorithm accounts for particle mechanical properties and inertia as a function of particle shape and mass. If fluid drag is neglected, then particle dynamics are governed by contact between particles, between particles and equipment surfaces and gravity forces. Consideration of particle charge and any tribocharging and
NASA Astrophysics Data System (ADS)
Hematiyan, M. R.
2007-03-01
A robust method is presented to evaluate 2D and 3D domain integrals without domain discretization. Each domain integral is transformed into a double integral, a boundary integral and a 1D integral. Both integrals are evaluated by adaptive Simpson quadrature method. The method can be used to evaluate domain integrals over simply or multiply connected regions with any arbitrary form of integrands. As an application of the method, domain integrals produced in boundary element formulation of potential and elastostatic problems are analyzed. Several examples are provided to show the validity and accuracy of the method.
Discrete Element Modeling of Complex Granular Flows
NASA Astrophysics Data System (ADS)
Movshovitz, N.; Asphaug, E. I.
2010-12-01
Granular materials occur almost everywhere in nature, and are actively studied in many fields of research, from food industry to planetary science. One approach to the study of granular media, the continuum approach, attempts to find a constitutive law that determines the material's flow, or strain, under applied stress. The main difficulty with this approach is that granular systems exhibit different behavior under different conditions, behaving at times as an elastic solid (e.g. pile of sand), at times as a viscous fluid (e.g. when poured), or even as a gas (e.g. when shaken). Even if all these physics are accounted for, numerical implementation is made difficult by the wide and often discontinuous ranges in continuum density and sound speed. A different approach is Discrete Element Modeling (DEM). Here the goal is to directly model every grain in the system as a rigid body subject to various body and surface forces. The advantage of this method is that it treats all of the above regimes in the same way, and can easily deal with a system moving back and forth between regimes. But as a granular system typically contains a multitude of individual grains, the direct integration of the system can be very computationally expensive. For this reason most DEM codes are limited to spherical grains of uniform size. However, spherical grains often cannot replicate the behavior of real world granular systems. A simple pile of spherical grains, for example, relies on static friction alone to keep its shape, while in reality a pile of irregular grains can maintain a much steeper angle by interlocking force chains. In the present study we employ a commercial DEM, nVidia's PhysX Engine, originally designed for the game and animation industry, to simulate complex granular flows with irregular, non-spherical grains. This engine runs as a multi threaded process and can be GPU accelerated. We demonstrate the code's ability to physically model granular materials in the three regimes
A 2D wavelet-based spectral finite element method for elastic wave propagation
NASA Astrophysics Data System (ADS)
Pahlavan, L.; Kassapoglou, C.; Suiker, A. S. J.; Gürdal, Z.
2012-10-01
A wavelet-based spectral finite element method (WSFEM) is presented that may be used for an accurate and efficient analysis of elastic wave propagation in two-dimensional (2D) structures. The approach is characterised by a temporal transformation of the governing equations to the wavelet domain using a wavelet-Galerkin approach, and subsequently performing the spatial discretisation in the wavelet domain with the finite element method (FEM). The final solution is obtained by transforming the nodal displacements computed in the wavelet domain back to the time domain. The method straightforwardly eliminates artificial temporal edge effects resulting from the discrete wavelet transform and allows for the modelling of structures with arbitrary geometries and boundary conditions. The accuracy and applicability of the method is demonstrated through (i) the analysis of a benchmark problem on axial and flexural waves (Lamb waves) propagating in an isotropic layer, and (ii) the study of a plate subjected to impact loading. The wave propagation response for the impact problem is compared to the result computed with standard FEM equipped with a direct time-integration scheme. The effect of anisotropy on the response is demonstrated by comparing the numerical result for an isotropic plate to that of an orthotropic plate, and to that of a plate made of two dissimilar materials, with and without a cut-out at one of the plate corners. The decoupling of the time-discretised equations in the wavelet domain makes the method inherently suitable for parallel computation, and thus an appealing candidate for efficiently studying high-frequency wave propagation in engineering structures with a large number of degrees of freedom.
Setting up virgin stress conditions in discrete element models
Rojek, J.; Karlis, G.F.; Malinowski, L.J.; Beer, G.
2013-01-01
In the present work, a methodology for setting up virgin stress conditions in discrete element models is proposed. The developed algorithm is applicable to discrete or coupled discrete/continuum modeling of underground excavation employing the discrete element method (DEM). Since the DEM works with contact forces rather than stresses there is a need for the conversion of pre-excavation stresses to contact forces for the DEM model. Different possibilities of setting up virgin stress conditions in the DEM model are reviewed and critically assessed. Finally, a new method to obtain a discrete element model with contact forces equivalent to given macroscopic virgin stresses is proposed. The test examples presented show that good results may be obtained regardless of the shape of the DEM domain. PMID:27087731
Wheat mill stream properties for discrete element method modeling
Technology Transfer Automated Retrieval System (TEKTRAN)
A discrete phase approach based on individual wheat kernel characteristics is needed to overcome the limitations of previous statistical models and accurately predict the milling behavior of wheat. As a first step to develop a discrete element method (DEM) model for the wheat milling process, this s...
CAST2D: A finite element computer code for casting process modeling
Shapiro, A.B.; Hallquist, J.O.
1991-10-01
CAST2D is a coupled thermal-stress finite element computer code for casting process modeling. This code can be used to predict the final shape and stress state of cast parts. CAST2D couples the heat transfer code TOPAZ2D and solid mechanics code NIKE2D. CAST2D has the following features in addition to all the features contained in the TOPAZ2D and NIKE2D codes: (1) a general purpose thermal-mechanical interface algorithm (i.e., slide line) that calculates the thermal contact resistance across the part-mold interface as a function of interface pressure and gap opening; (2) a new phase change algorithm, the delta function method, that is a robust method for materials undergoing isothermal phase change; (3) a constitutive model that transitions between fluid behavior and solid behavior, and accounts for material volume change on phase change; and (4) a modified plot file data base that allows plotting of thermal variables (e.g., temperature, heat flux) on the deformed geometry. Although the code is specialized for casting modeling, it can be used for other thermal stress problems (e.g., metal forming).
NASA Astrophysics Data System (ADS)
Hladowski, Lukasz; Galkowski, Krzysztof; Cai, Zhonglun; Rogers, Eric; Freeman, Chris T.; Lewin, Paul L.
2011-07-01
In this article a new approach to iterative learning control for the practically relevant case of deterministic discrete linear plants with uniform rank greater than unity is developed. The analysis is undertaken in a 2D systems setting that, by using a strong form of stability for linear repetitive processes, allows simultaneous consideration of both trial-to-trial error convergence and along the trial performance, resulting in design algorithms that can be computed using linear matrix inequalities (LMIs). Finally, the control laws are experimentally verified on a gantry robot that replicates a pick and place operation commonly found in a number of applications to which iterative learning control is applicable.
Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform
NASA Astrophysics Data System (ADS)
Liu, Bao-Lei; Yang, Zhao-Hua; Liu, Xia; Wu, Ling-An
2017-02-01
We propose and demonstrate a computational imaging technique that uses structured illumination based on a two-dimensional discrete cosine transform to perform imaging with a single-pixel detector. A scene is illuminated by a projector with two sets of orthogonal patterns, then by applying an inverse cosine transform to the spectra obtained from the single-pixel detector a full-color image is retrieved. This technique can retrieve an image from sub-Nyquist measurements, and the background noise is easily canceled to give excellent image quality. Moreover, the experimental setup is very simple.
Effective filtering and interpolation of 2D discrete velocity fields with Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Saumier, Louis-Philippe; Khouider, Boualem; Agueh, Martial
2016-11-01
We introduce a new variational technique to interpolate and filter a two-dimensional velocity vector field which is discretely sampled in a region of {{{R}}}2 and sampled only once at a time, on a small time-interval [0,{{Δ }}t]. The main idea is to find a solution of the Navier-Stokes equations that is closest to a prescribed field in the sense that it minimizes the l 2 norm of the difference between this solution and the target field. The minimization is performed on the initial vorticity by expanding it into radial basis functions of Gaussian type, with a fixed size expressed by a parameter ɛ. In addition, a penalty term with parameter k e is added to the minimizing functional in order to select a solution with a small kinetic energy. This additional term makes the minimizing functional strongly convex, and therefore ensures that the minimization problem is well-posed. The interplay between the parameters k e and ɛ effectively contributes to smoothing the discrete velocity field, as demonstrated by the numerical experiments on synthetic and real data.
Modeling rammed earth wall using discrete element method
NASA Astrophysics Data System (ADS)
Bui, T.-T.; Bui, Q.-B.; Limam, A.; Morel, J.-C.
2016-03-01
Rammed earth is attracting renewed interest throughout the world thanks to its "green" characteristics in the context of sustainable development. Several research studies have thus recently been carried out to investigate this material. Some of them attempted to simulate the rammed earth's mechanical behavior by using analytical or numerical models. Most of these studies assumed that there was a perfect cohesion at the interface between earthen layers. This hypothesis proved to be acceptable for the case of vertical loading, but it could be questionable for horizontal loading. To address this problem, discrete element modeling seems to be relevant to simulate a rammed earth wall. To our knowledge, no research has been conducted thus far using discrete element modeling to study a rammed earth wall. This paper presents an assessment of the discrete element modeling's robustness for rammed earth walls. Firstly, a brief description of the discrete element modeling is presented. Then the parameters necessary for discrete element modeling of the material law of the earthen layers and their interfaces law following the Mohr-Coulomb model with a tension cut-off and post-peak softening were given. The relevance of the model and the material parameters were assessed by comparing them with experimental results from the literature. The results showed that, in the case of vertical loading, interfaces did not have an important effect. In the case of diagonal loading, model with interfaces produced better results. Interface characteristics can vary from 85 to 100% of the corresponding earthen layer's characteristics.
Discrete Elements Method of Neutral Particle Transport
1983-10-01
distribution of flux which is strongly peaked along the axis of the duct. If the duct is not aligned along one of the quadrature set directions, the...rule requires knowledge of the flux in three fixed directions distributed in azimuth and three fixed directions distributed polarly, within each element...so that none of the flux would reach cells 3 and 9. However, because the SC method assumes a constant flux distribution along each cell interface
Non-fragile robust optimal guaranteed cost control of uncertain 2-D discrete state-delayed systems
NASA Astrophysics Data System (ADS)
Tandon, Akshata; Dhawan, Amit
2016-10-01
This paper is concerned with the problem of non-fragile robust optimal guaranteed cost control for a class of uncertain two-dimensional (2-D) discrete state-delayed systems described by the general model with norm-bounded uncertainties. Our attention is focused on the design of non-fragile state feedback controllers such that the resulting closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible parameter uncertainties and controller gain variations. A sufficient condition for the existence of such controllers is established under the linear matrix inequality framework. Moreover, a convex optimisation problem is proposed to select a non-fragile robust optimal guaranteed cost controller stabilising the 2-D discrete state-delayed system as well as achieving the least guaranteed cost for the resulting closed-loop system. The proposed method is compared with the previously reported criterion. Finally, illustrative examples are given to show the potential of the proposed technique.
Effective Temperature of 2D Dusty Plasma Liquids at the Discrete Level
Io, C.-W.; Chan, C.-L.; I Lin
2007-07-13
Fluctuation-dissipation theory has been used to measure the effective temperature of non-equilibrium system. In this work, using a 2D dusty plasma liquid formed by the negatively charged fine particles suspending in weakly ionized discharges and sheared by two CW counter parallel laser beams, we measure the micro-transport at the kinetic level. The effective temperatures Teff at different time scales are obtained through the Stokes-Einstein relation which relates the diffusion coefficient (D) and the viscosity ({eta}). The external energy is cascaded from the slow hopping modes to the fast caging modes through mutual coupling, which leads to the higher effective temperature of the slow hopping modes.
NASA Astrophysics Data System (ADS)
Mei, Hong-Xin; Zhang, Ting; Huang, Hua-Qi; Huang, Rong-Bin; Zheng, Lan-Sun
2016-03-01
Three mix-ligand Ag(I) coordination compounds, namely, {[Ag10(tpyz) 5(L1) 5(H2 O)2].(H2 O)4}n (1, tpyz = 2,3,4,5-tetramethylpyrazine, H2 L1 = phthalic acid), [Ag4(tpyz) 2(L2) 2(H2 O)].(H2 O)5}n (2, H2 L2 = isophthalic acid) {[Ag2(tpyz) 2(L3) (H2 O)4].(H2 O)8}n (3, H2 L3 = terephthalic acid), have been synthesized and characterized by elemental analysis, IR, PXRD and X-ray single-crystal diffraction. 1 exhibits a 2D layer which can be simplified as a (4,4) net. 2 is a 3D network which can be simplified as a (3,3)-connected 2-nodal net with a point symbol of {102.12}{102}. 3 consists of linear [Ag(tpyz) (H2 O)2]n chain. Of particular interest, discrete hexamer water clusters were observed in 1 and 2, while a 2D L10(6) water layer exists in 3. The results suggest that the benzene dicarboxylates play pivotal roles in the formation of the different host architectures as well as different water aggregations. Moreover, thermogravimetric analysis (TGA) and emissive behaviors of these compounds were investigated.
Bailey, T S; Adams, M L; Yang, B; Zika, M R
2005-07-15
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids.
Spiral waves are stable in discrete element models of two-dimensional homogeneous excitable media
NASA Technical Reports Server (NTRS)
Feldman, A. B.; Chernyak, Y. B.; Cohen, R. J.
1998-01-01
The spontaneous breakup of a single spiral wave of excitation into a turbulent wave pattern has been observed in both discrete element models and continuous reaction-diffusion models of spatially homogeneous 2D excitable media. These results have attracted considerable interest, since spiral breakup is thought to be an important mechanism of transition from the heart rhythm disturbance ventricular tachycardia to the fatal arrhythmia ventricular fibrillation. It is not known whether this process can occur in the absence of disease-induced spatial heterogeneity of the electrical properties of the ventricular tissue. Candidate mechanisms for spiral breakup in uniform 2D media have emerged, but the physical validity of the mechanisms and their applicability to myocardium require further scrutiny. In this letter, we examine the computer simulation results obtained in two discrete element models and show that the instability of each spiral is an artifact resulting from an unphysical dependence of wave speed on wave front curvature in the medium. We conclude that spiral breakup does not occur in these two models at the specified parameter values and that great care must be exercised in the representation of a continuous excitable medium via discrete elements.
Discrete element simulations of crumpling of thin sheets
NASA Astrophysics Data System (ADS)
Tallinen, T.; Åström, J. A.; Timonen, J.
2009-04-01
Forced crumpling of stiff self-avoiding sheets is studied by discrete element simulations. Simulations display stress condensation and scaling of ridge energy in agreement with theoretical expectations for elastic and frictionless sheets, and extends such behavior to elasto-plastic sheets. Crumpling of ideally elastic and frictionless sheets is compared to that of elasto-plastic sheets and sheets with friction.
Nonconforming mortar element methods: Application to spectral discretizations
NASA Technical Reports Server (NTRS)
Maday, Yvon; Mavriplis, Cathy; Patera, Anthony
1988-01-01
Spectral element methods are p-type weighted residual techniques for partial differential equations that combine the generality of finite element methods with the accuracy of spectral methods. Presented here is a new nonconforming discretization which greatly improves the flexibility of the spectral element approach as regards automatic mesh generation and non-propagating local mesh refinement. The method is based on the introduction of an auxiliary mortar trace space, and constitutes a new approach to discretization-driven domain decomposition characterized by a clean decoupling of the local, structure-preserving residual evaluations and the transmission of boundary and continuity conditions. The flexibility of the mortar method is illustrated by several nonconforming adaptive Navier-Stokes calculations in complex geometry.
NASA Astrophysics Data System (ADS)
Sirait, S. H.; Edison, R. E.; Baidillah, M. R.; Taruno, W. P.; Haryanto, F.
2016-08-01
The aim of this study is to simulate the potential distribution of 2D brain geometry based on two electrodes ECVT. ECVT (electrical capacitance tomography) is a tomography modality which produces dielectric distribution image of a subject from several capacitance electrodes measurements. This study begins by producing the geometry of 2D brain based on MRI image and then setting the boundary conditions on the boundaries of the geometry. The values of boundary conditions follow the potential values used in two electrodes brain ECVT, and for this reason the first boundary is set to 20 volt and 2.5 MHz signal and another boundary is set to ground. Poisson equation is implemented as the governing equation in the 2D brain geometry and finite element method is used to solve the equation. Simulated Hodgkin-Huxley action potential is applied as disturbance potential in the geometry. We divide this study into two which comprises simulation without disturbance potential and simulation with disturbance potential. From this study, each of time dependent potential distributions from non-disturbance and disturbance potential of the 2D brain geometry has been generated.
NASA Technical Reports Server (NTRS)
Aminpour, Mohammad A.
1989-01-01
The initial Computational Structural Mechanics (CSM) Testbed was based on Level 13 of the SPAR finite element computer program. Until recently, the element library of the Testbed has been limited to those elements in Level 13 of SPAR. The development of a generic element processor has enabled element researchers to develop, implement and assess element formulations with relative ease. An assessment of new elements as well as the existing SPAR Level 13 elements has revealed some definite shortcomings with the SPAR Level 13 2-D and 3-D elements. The SPAR S81 solid element does not pass the patch test problem proposed by MacNeal-Harder. These deficiencies are identified here. The 2-D elements, however, seem to perform well taking into account the limitations imposed by the theory used to formulate them, (i.e., thin plates only). Common deficiencies of the 2-D and 3-D elements in SPAR have to do with their adaptability to the nonlinear analysis utilities developed by Lockheed Palo Alto Research Lab. Also, the EFIL format of the SPAR element data does not conform to the standard format of the Testbed.
Determining finite volume elements for the 2D Navier-Stokes equations
Jones, D.A. . Dept. of Mathematics); Titi, E.S. . Dept. of Mathematics Cornell Univ., Ithaca, NY . Mathematical Sciences Inst.)
1991-01-01
We consider the 2D Navier-Stokes equations on a square with periodic boundary conditions. Dividing the square into N equal subsquares, we show that if the asymptotic behavior of the average of solutions on these subsquares (finite volume elements) is known, then the large time behavior of the solution itself is completely determined, provided N is large enough. We also establish a rigorous upper bound for N needed to determine the solutions to the Navier-Stokes equation in terms of the physical parameters of the problem. 34 refs.
Symplectic discretization for spectral element solution of Maxwell's equations
NASA Astrophysics Data System (ADS)
Zhao, Yanmin; Dai, Guidong; Tang, Yifa; Liu, Qinghuo
2009-08-01
Applying the spectral element method (SEM) based on the Gauss-Lobatto-Legendre (GLL) polynomial to discretize Maxwell's equations, we obtain a Poisson system or a Poisson system with at most a perturbation. For the system, we prove that any symplectic partitioned Runge-Kutta (PRK) method preserves the Poisson structure and its implied symplectic structure. Numerical examples show the high accuracy of SEM and the benefit of conserving energy due to the use of symplectic methods.
A 2D finite element wave equation solver based on triangular base elements
Van Eester, D.; Lerche, E.; Evrard, M.
2009-11-26
A finite element method based on the subdivision of the physical domain in triangular sub-domains in which simple local 'areale' coordinates are adopted is explored. The advantage of the method is that it straightforwardly allows grid refinement in regions where higher precision is required. The plasma model was kept simple for this 'proof-of-principle' exercise. Rather than accounting for the actual differential or integro-differential dielectric tensor, its locally uniform plasma equivalent was adopted for 3 possible choices: the cold plasma response, the full hot Stix/Swanson plasma tensor retaining all orders in finite Larmor radius (FLR) and the more common hot tensor, truncated at terms of second order in the Larmor radius.
The low frequency 2D vibration sensor based on flat coil element
Djamal, Mitra; Sanjaya, Edi; Islahudin; Ramli
2012-06-20
Vibration like an earthquake is a phenomenon of physics. The characteristics of these vibrations can be used as an early warning system so as to reduce the loss or damage caused by earthquakes. In this paper, we introduced a new type of low frequency 2D vibration sensor based on flat coil element that we have developed. Its working principle is based on position change of a seismic mass that put in front of a flat coil element. The flat coil is a part of a LC oscillator; therefore, the change of seismic mass position will change its resonance frequency. The results of measurements of low frequency vibration sensor in the direction of the x axis and y axis gives the frequency range between 0.2 to 1.0 Hz.
Efficient finite element modeling of scattering for 2D and 3D problems
NASA Astrophysics Data System (ADS)
Wilcox, Paul D.; Velichko, Alexander
2010-03-01
The scattering of waves by defects is central to ultrasonic NDE and SHM. In general, scattering problems must be modeled using direct numerical methods such as finite elements (FE), which is very computationally demanding. The most efficient way is to only model the scatterer itself and a minimal region of the surrounding host medium, and this was previously demonstrated for 2-dimensional (2D) bulk wave scattering problems in isotropic media. An encircling array of monopole and dipole sources is used to inject an arbitrary wavefront onto the scatterer and the scattered field is monitored by a second encircling array of monitoring points. From this data, the scattered field can be projected out to any point in space. If the incident wave is chosen to be a plane wave incident from a given angle and the scattered field is projected to distant points in the far-field of the scatterer, the far-field scattering or S-matrix may be obtained, which encodes all the available scattering information. In this paper, the technique is generalized to any elastic wave geometry in both 2D and 3D, where the latter can include guided wave scattering problems. A further refinement enables the technique to be employed with free FE meshes of triangular or tetrahedral elements.
Bailey, Teresa S. Adams, Marvin L. Yang, Brian Zika, Michael R.
2008-04-01
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses recently introduced piecewise linear weight and basis functions in the finite element approximation and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We first demonstrate some analytical properties of the PWL method and perform a simple mode analysis to compare the PWL method with Palmer's vertex-centered finite-volume method and with a bilinear continuous finite element method. We then show that this new PWL method gives solutions comparable to those from Palmer's. However, since the PWL method produces a symmetric positive-definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids.
The Wavelet Element Method. Part 2; Realization and Additional Features in 2D and 3D
NASA Technical Reports Server (NTRS)
Canuto, Claudio; Tabacco, Anita; Urban, Karsten
1998-01-01
The Wavelet Element Method (WEM) provides a construction of multiresolution systems and biorthogonal wavelets on fairly general domains. These are split into subdomains that are mapped to a single reference hypercube. Tensor products of scaling functions and wavelets defined on the unit interval are used on the reference domain. By introducing appropriate matching conditions across the interelement boundaries, a globally continuous biorthogonal wavelet basis on the general domain is obtained. This construction does not uniquely define the basis functions but rather leaves some freedom for fulfilling additional features. In this paper we detail the general construction principle of the WEM to the 1D, 2D and 3D cases. We address additional features such as symmetry, vanishing moments and minimal support of the wavelet functions in each particular dimension. The construction is illustrated by using biorthogonal spline wavelets on the interval.
Discrete Element Modeling (DEM) of Triboelectrically Charged Particles: Revised Experiments
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Calle, Carlos I.; Curry, D. R.; Weitzman, P. S.
2008-01-01
In a previous work, the addition of basic screened Coulombic electrostatic forces to an existing commercial discrete element modeling (DEM) software was reported. Triboelectric experiments were performed to charge glass spheres rolling on inclined planes of various materials. Charge generation constants and the Q/m ratios for the test materials were calculated from the experimental data and compared to the simulation output of the DEM software. In this paper, we will discuss new values of the charge generation constants calculated from improved experimental procedures and data. Also, planned work to include dielectrophoretic, Van der Waals forces, and advanced mechanical forces into the software will be discussed.
A Review of Discrete Element Method Research on Particulate Systems
NASA Astrophysics Data System (ADS)
Mahmood, A. A.; Elektorowicz, M.
2016-07-01
This paper summarizes research done using the Discrete Element Method (DEM) and explores new trends in its use on Particulate systems. The rationale for using DEM versus the traditional continuum-based approach is explained first. Then, DEM application is explored in terms of geotechnical engineering and mining engineering materials, since particulate media are mostly associated with these two disciplines. It is concluded that no research to date had addressed the issue of using the DEM to model the strength and weathering characteristics of peaty soil-slag-Portland cement-fly ash combinations.
NASA Astrophysics Data System (ADS)
Simmons, Daniel; Cools, Kristof; Sewell, Phillip
2016-11-01
Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications.
Discrete element modelling of sediment falling in water.
Wang, Dong; Ho-Minh, Dao; Tan, Danielle S
2016-11-01
The Discrete Element Method (DEM) is a discrete, particle-based method commonly used in studies involving granular media, e.g. sediment transport, and geomechanics. It is heavily dependent on particle properties, and one important component is the force model, which relates the relative positions and velocities of the simulated particles to the forces they experience. In this paper we model a collection of lightly compacted granular material, released at a short distance above a flat base in a quiescent fluid --similar to the process whereby sediment tailings are released back into the sea during nodule harvesting. We employ different typical force models, and consider how their varying components affect the simulated outcome. The results are compared with a physical experiment of similar dimensions. We find that a realistic simulation is achieved when the force model considers the local solid fraction in the drag force, and incorporates the hydrodynamic effect of neighbouring particles. The added mass effect increases the accuracy of the outcome, but does not contribute significantly in a qualitative sense.
Predicting the behavior of microfluidic circuits made from discrete elements.
Bhargava, Krisna C; Thompson, Bryant; Iqbal, Danish; Malmstadt, Noah
2015-10-30
Microfluidic devices can be used to execute a variety of continuous flow analytical and synthetic chemistry protocols with a great degree of precision. The growing availability of additive manufacturing has enabled the design of microfluidic devices with new functionality and complexity. However, these devices are prone to larger manufacturing variation than is typical of those made with micromachining or soft lithography. In this report, we demonstrate a design-for-manufacturing workflow that addresses performance variation at the microfluidic element and circuit level, in context of mass-manufacturing and additive manufacturing. Our approach relies on discrete microfluidic elements that are characterized by their terminal hydraulic resistance and associated tolerance. Network analysis is employed to construct simple analytical design rules for model microfluidic circuits. Monte Carlo analysis is employed at both the individual element and circuit level to establish expected performance metrics for several specific circuit configurations. A protocol based on osmometry is used to experimentally probe mixing behavior in circuits in order to validate these approaches. The overall workflow is applied to two application circuits with immediate use at on the bench-top: series and parallel mixing circuits that are modularly programmable, virtually predictable, highly precise, and operable by hand.
Determining Trajectory of Triboelectrically Charged Particles, Using Discrete Element Modeling
NASA Technical Reports Server (NTRS)
2008-01-01
The Kennedy Space Center (KSC) Electrostatics and Surface Physics Laboratory is participating in an Innovative Partnership Program (IPP) project with an industry partner to modify a commercial off-the-shelf simulation software product to treat the electrodynamics of particulate systems. Discrete element modeling (DEM) is a numerical technique that can track the dynamics of particle systems. This technique, which was introduced in 1979 for analysis of rock mechanics, was recently refined to include the contact force interaction of particles with arbitrary surfaces and moving machinery. In our work, we endeavor to incorporate electrostatic forces into the DEM calculations to enhance the fidelity of the software and its applicability to (1) particle processes, such as electrophotography, that are greatly affected by electrostatic forces, (2) grain and dust transport, and (3) the study of lunar and Martian regoliths.
Aorta modeling with the element-based zero-stress state and isogeometric discretization
NASA Astrophysics Data System (ADS)
Takizawa, Kenji; Tezduyar, Tayfun E.; Sasaki, Takafumi
2016-11-01
Patient-specific arterial fluid-structure interaction computations, including aorta computations, require an estimation of the zero-stress state (ZSS), because the image-based arterial geometries do not come from a ZSS. We have earlier introduced a method for estimation of the element-based ZSS (EBZSS) in the context of finite element discretization of the arterial wall. The method has three main components. 1. An iterative method, which starts with a calculated initial guess, is used for computing the EBZSS such that when a given pressure load is applied, the image-based target shape is matched. 2. A method for straight-tube segments is used for computing the EBZSS so that we match the given diameter and longitudinal stretch in the target configuration and the "opening angle." 3. An element-based mapping between the artery and straight-tube is extracted from the mapping between the artery and straight-tube segments. This provides the mapping from the arterial configuration to the straight-tube configuration, and from the estimated EBZSS of the straight-tube configuration back to the arterial configuration, to be used as the initial guess for the iterative method that matches the image-based target shape. Here we present the version of the EBZSS estimation method with isogeometric wall discretization. With isogeometric discretization, we can obtain the element-based mapping directly, instead of extracting it from the mapping between the artery and straight-tube segments. That is because all we need for the element-based mapping, including the curvatures, can be obtained within an element. With NURBS basis functions, we may be able to achieve a similar level of accuracy as with the linear basis functions, but using larger-size and much fewer elements. Higher-order NURBS basis functions allow representation of more complex shapes within an element. To show how the new EBZSS estimation method performs, we first present 2D test computations with straight
Aorta modeling with the element-based zero-stress state and isogeometric discretization
NASA Astrophysics Data System (ADS)
Takizawa, Kenji; Tezduyar, Tayfun E.; Sasaki, Takafumi
2017-02-01
Patient-specific arterial fluid-structure interaction computations, including aorta computations, require an estimation of the zero-stress state (ZSS), because the image-based arterial geometries do not come from a ZSS. We have earlier introduced a method for estimation of the element-based ZSS (EBZSS) in the context of finite element discretization of the arterial wall. The method has three main components. 1. An iterative method, which starts with a calculated initial guess, is used for computing the EBZSS such that when a given pressure load is applied, the image-based target shape is matched. 2. A method for straight-tube segments is used for computing the EBZSS so that we match the given diameter and longitudinal stretch in the target configuration and the "opening angle." 3. An element-based mapping between the artery and straight-tube is extracted from the mapping between the artery and straight-tube segments. This provides the mapping from the arterial configuration to the straight-tube configuration, and from the estimated EBZSS of the straight-tube configuration back to the arterial configuration, to be used as the initial guess for the iterative method that matches the image-based target shape. Here we present the version of the EBZSS estimation method with isogeometric wall discretization. With isogeometric discretization, we can obtain the element-based mapping directly, instead of extracting it from the mapping between the artery and straight-tube segments. That is because all we need for the element-based mapping, including the curvatures, can be obtained within an element. With NURBS basis functions, we may be able to achieve a similar level of accuracy as with the linear basis functions, but using larger-size and much fewer elements. Higher-order NURBS basis functions allow representation of more complex shapes within an element. To show how the new EBZSS estimation method performs, we first present 2D test computations with straight
NASA Astrophysics Data System (ADS)
Senapati, Rajeev; Zhang, Jianmei
2010-02-01
Advanced ceramic materials have been extensively applied in aerospace, automobile and other industries. However, the reliability of the advanced ceramics is a major concern because of the brittle nature of the materials. In this paper, combination of nondestructive testing and numerical modeling Discrete Element Method is proposed to identify the fracture origin in ceramics. The nondestructive testing—laser scattering technology is first performed on the ceramic components to reveal the machining-induced damage such as cracks and the material-inherent flaws such as voids, then followed by the four point bending test. Discrete Element software package PFC2D is used to simulate the four point bending test and try to identify where the fractures start. The numerical representation of the ceramic materials is done by generating a densely packed particle system using the specimen genesis procedure and then applying the suitable microparameters to the particle system. Simulation of four point bending test is performed on materials having no defects, materials having manufacturing-induced defects like cracks, and materials having material-inherent flaws like voids. The initiation and propagation of defects is modeled and the mean contact force on the loading ball is also plotted. The simulation prediction results are well in accordance with the nondestructive testing results.
Senapati, Rajeev; Zhang Jianmei
2010-02-22
Advanced ceramic materials have been extensively applied in aerospace, automobile and other industries. However, the reliability of the advanced ceramics is a major concern because of the brittle nature of the materials. In this paper, combination of nondestructive testing and numerical modeling Discrete Element Method is proposed to identify the fracture origin in ceramics. The nondestructive testing--laser scattering technology is first performed on the ceramic components to reveal the machining-induced damage such as cracks and the material-inherent flaws such as voids, then followed by the four point bending test. Discrete Element software package PFC{sup 2D} is used to simulate the four point bending test and try to identify where the fractures start. The numerical representation of the ceramic materials is done by generating a densely packed particle system using the specimen genesis procedure and then applying the suitable microparameters to the particle system. Simulation of four point bending test is performed on materials having no defects, materials having manufacturing-induced defects like cracks, and materials having material-inherent flaws like voids. The initiation and propagation of defects is modeled and the mean contact force on the loading ball is also plotted. The simulation prediction results are well in accordance with the nondestructive testing results.
Discrete Element Modeling Results of Proppant Rearrangement in the Cooke Conductivity Cell
Earl Mattson; Hai Huang; Michael Conway; Lisa O'Connell
2014-02-01
The study of propped fracture conductivity began in earnest with the development of the Cooke cell which later became part of the initial API standard. Subsequent developments included a patented multicell design to conduct 4 tests in a press at the same time. Other modifications have been used by various investigators. Recent studies by the Stim-Lab proppant consortium have indicated that the flow field across a Cooke proppant conductivity testing cell may not be uniform as initially believed which resulted is significantly different conductivity results. Post test analysis of low temperature metal alloy injections at the termination of proppant testing prior to the release of the applied stress suggest that higher flow is to be expected along the sides and top of the proppant pack than compared to the middle of the pack. To evaluate these experimental findings, a physics-based two-dimensional (2-D) discrete element model (DEM) was developed and applied to simulate proppant rearrangement during stress loading in the Cooke conductivity cell and the resulting porosity field. Analysis of these simulations are critical to understanding the impact of modification to the testing cell as well as understanding key proppant conductivity issues such as how these effects are manifested in proppant concentration testing results. The 2-D DEM model was constructed to represent a realistic cross section of the Cooke cell with a distribution of four material properties, three that represented the Cooke cell (steel, sandstone,square rings), and one representing the proppant. In principle, Cooke cell materials can be approximated as assemblies of independent discrete elements (particles) of various sizes and material properties that interact via cohesive interactions, repulsive forces, and frictional forces. The macroscopic behavior can then be modeled as the collective behavior of many interacting discrete elements. This DEM model is particularly suitable for modeling proppant
NASA Technical Reports Server (NTRS)
Buczek, M. B.; Gregory, M. A.; Herakovich, C. T.
1983-01-01
CLFE2D is a two dimensional generalized plane strain finite element code, using a linear, four node, general quadrilateral, isoparametric element. The program is developed to calculate the displacements, strains, stresses, and strain energy densities in a finite width composite laminate. CLFE2D offers any combination of the following load types: nodal displacements, nodal forces, uniform normal strain, or hygrothermal. The program allows the user to input one set of three dimensional orthotropic material properties. The user can then specify the angle of material principal orientation for each element in the mesh. Output includes displacements, stresses, strains and strain densities at points selected by the user. An option is also available to plot the underformed and deformed finite element meshes.
SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)
Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...
Zhu, Zongxiao; Wang, Guoyou; Liu, Jianguo; Chen, Zhong
2013-12-01
This paper initially develops the discrete-point sampling operator's concept, model, and parameters that we have previously proposed, and makes its belt-shaped regions in a discrete-point sampling map more salient and appropriate for centerline extraction. The cross-sectional features of these belt-shaped regions are then analyzed and seven types of feature points are defined to facilitate descriptions of such features. Based on these feature points, a three-level detection system is proposed, including feature points, line segments, and centerlines, to extract centerlines from the belt-shaped regions. Eight basic types of centerlines and five types of relationships among the centerlines are defined by computational geometry algorithms, and Gestalt laws are used to cluster them into groupings. If some prior information about a desired shape is available, retrieval grouping may be carried out by a discrete-point sampling map, the purpose of which is to find centerlines by best matching with prior information. Discrete-point sampling effectually overcomes the influences of interference from noise, textures, and uneven illumination, and greatly reduces the difficulty of centerline extraction. Centerline clustered groupings and retrieval grouping can offer a strong anti-interference ability with nonlinear deformations such as articulation and occlusion. This method can extract large-scale complex shapes combined of lines and planes from complex images. The wheel location results of noise test and other shape extraction experiments show that our method has a strong capability to persist with nonlinear deformations.
Discrete element crowd model for pedestrian evacuation through an exit
NASA Astrophysics Data System (ADS)
Peng, Lin; Jian, Ma; Siuming, Lo
2016-03-01
A series of accidents caused by crowds within the last decades evoked a lot of scientific interest in modeling the movement of pedestrian crowds. Based on the discrete element method, a granular dynamic model, in which the human body is simplified as a self-driven sphere, is proposed to simulate the characteristics of crowd flow through an exit. In this model, the repulsive force among people is considered to have an anisotropic feature, and the physical contact force due to body deformation is quantified by the Hertz contact model. The movement of the human body is simulated by applying the second Newton’s law. The crowd flow through an exit at different desired velocities is studied and simulation results indicated that crowd flow exhibits three distinct states, i.e., smooth state, transition state and phase separation state. In the simulation, the clogging phenomenon occurs more easily when the desired velocity is high and the exit may as a result be totally blocked at a desired velocity of 1.6 m/s or above, leading to faster-to-frozen effect. Project supported by the National Natural Science Foundation of China (Grant Nos. 71473207, 51178445, and 71103148), the Research Grant Council, Government of Hong Kong, China (Grant No. CityU119011), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2682014CX103 and 2682014RC05).
Discrete Element Model for Suppression of Coffee-Ring Effect
NASA Astrophysics Data System (ADS)
Xu, Ting; Lam, Miu Ling; Chen, Ting-Hsuan
2017-02-01
When a sessile droplet evaporates, coffee-ring effect drives the suspended particulate matters to the droplet edge, eventually forming a ring-shaped deposition. Because it causes a non-uniform distribution of solid contents, which is undesired in many applications, attempts have been made to eliminate the coffee-ring effect. Recent reports indicated that the coffee-ring effect can be suppressed by a mixture of spherical and non-spherical particles with enhanced particle-particle interaction at air-water interface. However, a model to comprehend the inter-particulate activities has been lacking. Here, we report a discrete element model (particle system) to investigate the phenomenon. The modeled dynamics included particle traveling following the capillary flow with Brownian motion, and its resultant 3D hexagonal close packing of particles along the contact line. For particles being adsorbed by air-water interface, we modeled cluster growth, cluster deformation, and cluster combination. We found that the suppression of coffee-ring effect does not require a circulatory flow driven by an inward Marangoni flow at air-water interface. Instead, the number of new cluster formation, which can be enhanced by increasing the ratio of non-spherical particles and the overall number of microspheres, is more dominant in the suppression process. Together, this model provides a useful platform elucidating insights for suppressing coffee-ring effect for practical applications in the future.
Discrete Element Model for Suppression of Coffee-Ring Effect
Xu, Ting; Lam, Miu Ling; Chen, Ting-Hsuan
2017-01-01
When a sessile droplet evaporates, coffee-ring effect drives the suspended particulate matters to the droplet edge, eventually forming a ring-shaped deposition. Because it causes a non-uniform distribution of solid contents, which is undesired in many applications, attempts have been made to eliminate the coffee-ring effect. Recent reports indicated that the coffee-ring effect can be suppressed by a mixture of spherical and non-spherical particles with enhanced particle-particle interaction at air-water interface. However, a model to comprehend the inter-particulate activities has been lacking. Here, we report a discrete element model (particle system) to investigate the phenomenon. The modeled dynamics included particle traveling following the capillary flow with Brownian motion, and its resultant 3D hexagonal close packing of particles along the contact line. For particles being adsorbed by air-water interface, we modeled cluster growth, cluster deformation, and cluster combination. We found that the suppression of coffee-ring effect does not require a circulatory flow driven by an inward Marangoni flow at air-water interface. Instead, the number of new cluster formation, which can be enhanced by increasing the ratio of non-spherical particles and the overall number of microspheres, is more dominant in the suppression process. Together, this model provides a useful platform elucidating insights for suppressing coffee-ring effect for practical applications in the future. PMID:28216639
NASA Astrophysics Data System (ADS)
Yeom, Seungcheol; Sjoblom, Kurt
2016-12-01
The mechanical nature of crust formation as a result of raindrop impacts was simulated within a discrete element modeling environment. Simulations were conducted in two-dimensions (2D) using both linear and non-linear elastic contact models. The 2D approach was found to minimize the computational effort required and maximize the number of particles in the soil profile. For the non-linear model, the effect of the coefficient of restitution (COR) for soil-rain and soil-soil was investigated. Finally, the comparison between the linear and nonlinear elastic contact model was presented. The simulation indicated that the COR for rain-soil had negligible effect on the crust development but the computational time was exponentially increased with increasing coefficient value. In contrast, the COR for soil-soil had a dominant influence on the crust development. To validate the numerical results, a micro computerized tomography (microCT) technique was applied to characterize the changes in pore structure to a USCS SP soil after exposure under a rainfall simulator. Additionally, the effect of cyclic wetting and drying (without rainfall) on the changes in porosity was investigated. The experimental results showed that the rainfall simulator sufficiently densified the soil but the effect of cyclic wetting and drying was negligible. The numerical simulations showed similar changes in porosity along the depth of the soil profile as compared with the experimental results thus validating the DEM technique to simulate crust development.
NASA Astrophysics Data System (ADS)
Carmona, A.; Clavera-Gispert, R.; Gratacós, O.; Hardy, S.
2009-04-01
Numerical modelling has recently become a fundamental tool in structural geology. Numerical models provide information which may assist the understanding of geometries, architectures and processes difficult to otherwise observe and may also be used to validate other methods. The work presented here introduces a new numerical computer programme designed to combine discrete element and process-based sedimentation models. Combining these two methods allows us to include the simulation of both sedimentation and deformation processes in a single and more effective model. The new code has been developed from two previous published works: simsafadim_clastic and discrete element modelling. The former simulates sub-aquatic clastic transport and sedimentation in three dimensions, including process of interaction, production and sedimentation of carbonates; moreover it is also powerful tool for the 3D prediction of stratigraphic structures and facies in sedimentary basins. The latter deals with the simulation of the deformation in sedimentary rocks in 2D and 3D. This deformation is a consequence of the interaction of many individual elements according to mechanical rules. Merging these two models offers a more complex and realistic study of the evolution of the structure and the deformation in sedimentary materials produced by faults and folds since better approximations of the structures and geometries in the nature are obtained as a result of the capability of the programme in reproducing these two processes simultaneously. As a result much more complex depositional structures (syntectonic geometries) can be studied, together with more complex analysis of the evolution of the deformation. Deformation of the sedimentary cover, as a consequence of tectonic movements, is included and conditioned by the presence of the new syntectonic sediments. The analysis of the evolution of the deformation of these new syntectonic materials can also be performed. As an illustrative example
NASA Astrophysics Data System (ADS)
Ruiz-Baier, Ricardo; Lunati, Ivan
2016-10-01
We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation
Parallel Finite Element Electron-Photon Transport Analysis on 2-D Unstructured Mesh
Drumm, C.R.
1999-01-01
A computer code has been developed to solve the linear Boltzmann transport equation on an unstructured mesh of triangles, from a Pro/E model. An arbitriwy arrangement of distinct material regions is allowed. Energy dependence is handled by solving over an arbitrary number of discrete energy groups. Angular de- pendence is treated by Legendre-polynomial expansion of the particle cross sections and a discrete ordinates treatment of the particle fluence. The resulting linear system is solved in parallel with a preconditioned conjugate-gradients method. The solution method is unique, in that the space-angle dependence is solved si- multaneously, eliminating the need for the usual inner iterations. Electron cross sections are obtained from a Goudsrnit-Saunderson modifed version of the CEPXS code. A one-dimensional version of the code has also been develop@ for testing and development purposes.
NASA Astrophysics Data System (ADS)
Minami, T.; Toh, H.; Oshiman, N.
2010-12-01
The San-in region of SW Japan is classified as an area of high seismicity/volcanic activity, and thus many magneto-telluric (MT) and seismic observations have been conducted. Below this region, the Philippine Sea plate and the Pacific Sea plate are subducting into shallow and deep parts respectively, which makes the subsurface electrical structures very complicated. For example, Adakite rocks from Mt. Daisen, which is the biggest volcano made in the Quaternary, appeared penetrating the alkari rocks of theTertiary(Kimura et al., 2003) In addition the epicenters shallower than 30km in this region was broad planely in the west of Daisen and along about a east-west line in the east of Daisen (Shiozaki et al., 2003). In the San-in region, such seismic/volcanic properties have been studied only using land surveys. However, the studies based on land surveys are not enough to understand the epicenter distributions and where the edge of Philippine Sea plate reaches now, because Mt. Daisen and the distributed epicenters are located near the coastline. Our group, therefore, started seafloor electromagnetic (EM) observations off the San-in region in 2006. As a result, we have obtained seafloor EM data at 10 sites to date. In this study, we compared the accuracy of EM responses calculated by different two-dimensional (2-D) FEM codes using triangular and rectangular elements in order to make a new 2-D inversion code available along sea-land array. That’s why because there are few 2-D MT inversion codes available in a region with coastline. We used Ogawa and Uchida’s (1996) code for rectangular elements and Utada’s (1987) code for triangular ones. We worked on a bathymetry with a constant inclination between the land-sea boundary whose horizontal-to-vertical ratio is 25 up to 4km depth. Using this bathymetry, we conducted 2-D transverse magnetic (TM) forward modeling for both elements and compared the apparent resistivities and phases of MT impedances. As for triangular
A discrete element modelling approach for block impacts on trees
NASA Astrophysics Data System (ADS)
Toe, David; Bourrier, Franck; Olmedo, Ignatio; Berger, Frederic
2015-04-01
These past few year rockfall models explicitly accounting for block shape, especially those using the Discrete Element Method (DEM), have shown a good ability to predict rockfall trajectories. Integrating forest effects into those models still remain challenging. This study aims at using a DEM approach to model impacts of blocks on trees and identify the key parameters controlling the block kinematics after the impact on a tree. A DEM impact model of a block on a tree was developed and validated using laboratory experiments. Then, key parameters were assessed using a global sensitivity analyse. Modelling the impact of a block on a tree using DEM allows taking into account large displacements, material non-linearities and contacts between the block and the tree. Tree stems are represented by flexible cylinders model as plastic beams sustaining normal, shearing, bending, and twisting loading. Root soil interactions are modelled using a rotation stiffness acting on the bending moment at the bottom of the tree and a limit bending moment to account for tree overturning. The crown is taken into account using an additional mass distribute uniformly on the upper part of the tree. The block is represented by a sphere. The contact model between the block and the stem consists of an elastic frictional model. The DEM model was validated using laboratory impact tests carried out on 41 fresh beech (Fagus Sylvatica) stems. Each stem was 1,3 m long with a diameter between 3 to 7 cm. Wood stems were clamped on a rigid structure and impacted by a 149 kg charpy pendulum. Finally an intensive simulation campaign of blocks impacting trees was done to identify the input parameters controlling the block kinematics after the impact on a tree. 20 input parameters were considered in the DEM simulation model : 12 parameters were related to the tree and 8 parameters to the block. The results highlight that the impact velocity, the stem diameter, and the block volume are the three input
C1 finite elements on non-tensor-product 2d and 3d manifolds
Nguyen, Thien; Karčiauskas, Kęstutis; Peters, Jörg
2015-01-01
Geometrically continuous (Gk) constructions naturally yield families of finite elements for isogeometric analysis (IGA) that are Ck also for non-tensor-product layout. This paper describes and analyzes one such concrete C1 geometrically generalized IGA element (short: gIGA element) that generalizes bi-quadratic splines to quad meshes with irregularities. The new gIGA element is based on a recently-developed G1 surface construction that recommends itself by its a B-spline-like control net, low (least) polynomial degree, good shape properties and reproduction of quadratics at irregular (extraordinary) points. Remarkably, for Poisson’s equation on the disk using interior vertices of valence 3 and symmetric layout, we observe O(h3) convergence in the L∞ norm for this family of elements. Numerical experiments confirm the elements to be effective for solving the trivariate Poisson equation on the solid cylinder, deformations thereof (a turbine blade), modeling and computing geodesics on smooth free-form surfaces via the heat equation, for solving the biharmonic equation on the disk and for Koiter-type thin-shell analysis. PMID:26594070
C(1) finite elements on non-tensor-product 2d and 3d manifolds.
Nguyen, Thien; Karčiauskas, Kęstutis; Peters, Jörg
2016-01-01
Geometrically continuous (G(k) ) constructions naturally yield families of finite elements for isogeometric analysis (IGA) that are C(k) also for non-tensor-product layout. This paper describes and analyzes one such concrete C(1) geometrically generalized IGA element (short: gIGA element) that generalizes bi-quadratic splines to quad meshes with irregularities. The new gIGA element is based on a recently-developed G(1) surface construction that recommends itself by its a B-spline-like control net, low (least) polynomial degree, good shape properties and reproduction of quadratics at irregular (extraordinary) points. Remarkably, for Poisson's equation on the disk using interior vertices of valence 3 and symmetric layout, we observe O(h(3)) convergence in the L(∞) norm for this family of elements. Numerical experiments confirm the elements to be effective for solving the trivariate Poisson equation on the solid cylinder, deformations thereof (a turbine blade), modeling and computing geodesics on smooth free-form surfaces via the heat equation, for solving the biharmonic equation on the disk and for Koiter-type thin-shell analysis.
NASA Astrophysics Data System (ADS)
Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.
2014-11-01
The non-hydrostatic (NH) compressible Euler equations for dry atmosphere were solved in a simplified two-dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, a high level of scalability can be achieved. By using vertical FDM, an easy method for coupling the dynamics and existing physics packages can be provided. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind-biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative and integral terms. For temporal integration, a time-split, third-order Runge-Kutta (RK3) integration technique was applied. The Euler equations that were used here are in flux form based on the hydrostatic pressure vertical coordinate. The equations are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate was implemented in this model. We validated the model by conducting the widely used standard tests: linear hydrostatic mountain wave, tracer advection, and gravity wave over the Schär-type mountain, as well as density current, inertia-gravity wave, and rising thermal bubble. The results from these tests demonstrated that the model using the horizontal SEM and the vertical FDM is accurate and robust provided sufficient diffusion is applied. The results with various horizontal resolutions also showed convergence of second-order accuracy due to the accuracy of the time integration scheme and that of the vertical direction, although high-order basis functions were used in the horizontal. By using the 2-D slice model, we effectively showed that the combined spatial
An efficient stabilized boundary element formulation for 2D time-domain acoustics and elastodynamics
NASA Astrophysics Data System (ADS)
Soares, D.; Mansur, W. J.
2007-07-01
The present paper describes a procedure that improves efficiency, stability and reduces artificial energy dissipation of the standard time-domain direct boundary element method (BEM) for acoustics and elastodynamics. Basically, the developed procedure modifies the boundary element convolution-related vector, being very easy to implement into existing codes. A stabilization parameter is introduced into the recent-in-time convolution operations and the operations related to the distant-in-time convolution contributions are approximated by matrix interpolations. As it is shown in the numerical examples presented at the end of the text, the proposed formulation substantially reduces the BEM computational cost, as well as its numerical instabilities.
TOPAZ - a finite element heat conduction code for analyzing 2-D solids
Shapiro, A.B.
1984-03-01
TOPAZ is a two-dimensional implicit finite element computer code for heat conduction analysis. This report provides a user's manual for TOPAZ and a description of the numerical algorithms used. Sample problems with analytical solutions are presented. TOPAZ has been implemented on the CRAY and VAX computers.
Flow transition with 2-D roughness elements in a 3-D channel
NASA Technical Reports Server (NTRS)
Liu, Zhining; Liu, Chaoquin; Mccormick, Stephen F.
1993-01-01
We develop a new numerical approach to study the spatially evolving instability of the streamwise dominant flow in the presence of roughness elements. The difficulty in handling the flow over the boundary surface with general geometry is removed by using a new conservative form of the governing equations and an analytical mapping. The numerical scheme uses second-order backward Euler in time, fourth-order central differences in all three spatial directions, and boundary-fitted staggered grids. A three-dimensional channel with multiple two-dimensional-type roughness elements is employed as the test case. Fourier analysis is used to decompose different Fourier modes of the disturbance. The results show that surface roughness leads to transition at lower Reynolds number than for smooth channels.
Evaluating avalanche generation by 2-D finite element analysis at Pico de Orizaba, Mexico
NASA Astrophysics Data System (ADS)
Concha Dimas, A.; Watters, R. J.
2003-04-01
Pico de Orizaba, at the eastern Mexican Volcanic Belt, has collapse twice during its evolution (250 ka and 20 ka ago). In case of collapse of the present day cone, the run out distance of the moving mass represents a hazard for the surrounding population. We evaluate, by using finite element, two geological aspects that have been recognized in the present cone of Pico de Orizaba as possible triggering mechanisms for avalanches: 1) Extensive hydrothermal alteration (argillic), and 2) normal faulting at the volcano basement. Two dimensional finite element analyses were carried out in a profile trending NE40SW, perpendicular to the trend of dikes and volcanic flank eruptions. We evaluate effects of extension of hydrothermal alteration and amount of fault displacement needed for triggering the avalanche. We compare the shape of failure surface (which reflects the volume of the resulting failing mass) through distribution of velocity contours and displacement vectors.
A Review of Discrete Element Method (DEM) Particle Shapes and Size Distributions for Lunar Soil
NASA Technical Reports Server (NTRS)
Lane, John E.; Metzger, Philip T.; Wilkinson, R. Allen
2010-01-01
As part of ongoing efforts to develop models of lunar soil mechanics, this report reviews two topics that are important to discrete element method (DEM) modeling the behavior of soils (such as lunar soils): (1) methods of modeling particle shapes and (2) analytical representations of particle size distribution. The choice of particle shape complexity is driven primarily by opposing tradeoffs with total number of particles, computer memory, and total simulation computer processing time. The choice is also dependent on available DEM software capabilities. For example, PFC2D/PFC3D and EDEM support clustering of spheres; MIMES incorporates superquadric particle shapes; and BLOKS3D provides polyhedra shapes. Most commercial and custom DEM software supports some type of complex particle shape beyond the standard sphere. Convex polyhedra, clusters of spheres and single parametric particle shapes such as the ellipsoid, polyellipsoid, and superquadric, are all motivated by the desire to introduce asymmetry into the particle shape, as well as edges and corners, in order to better simulate actual granular particle shapes and behavior. An empirical particle size distribution (PSD) formula is shown to fit desert sand data from Bagnold. Particle size data of JSC-1a obtained from a fine particle analyzer at the NASA Kennedy Space Center is also fitted to a similar empirical PSD function.
Bailey, T S; Chang, J H; Warsa, J S; Adams, M L
2010-12-22
We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.
Using Multi-threading for the Automatic Load Balancing of 2D Adaptive Finite Element Meshes
NASA Technical Reports Server (NTRS)
Heber, Gerd; Biswas, Rupak; Thulasiraman, Parimala; Gao, Guang R.; Saini, Subhash (Technical Monitor)
1998-01-01
In this paper, we present a multi-threaded approach for the automatic load balancing of adaptive finite element (FE) meshes The platform of our choice is the EARTH multi-threaded system which offers sufficient capabilities to tackle this problem. We implement the adaption phase of FE applications oil triangular meshes and exploit the EARTH token mechanism to automatically balance the resulting irregular and highly nonuniform workload. We discuss the results of our experiments oil EARTH-SP2, on implementation of EARTH on the IBM SP2 with different load balancing strategies that are built into the runtime system.
Ye, Xingwei; Zhang, Fangzheng; Pan, Shilong
2016-09-01
A hardware-compressive optical true time delay architecture for 2D beam steering in a planar phased array antenna is proposed using fiber-Bragg-grating-based tunable dispersive elements (TDEs). For an M×N array, the proposed system utilizes N TDEs and M wavelength-fixed optical carriers to control the time delays. Both azimuth and elevation beam steering are realized by programming the settings of the TDEs. An experiment is carried out to demonstrate the delay controlling in a 2×2 array, which is fed by a wideband pulsed signal. Radiation patterns calculated from the experimentally measured waveforms at the four antennas match well with the theoretical results.
Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation
Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; ...
1995-01-01
In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less
Stress analysis of a rectangular implant in laminated composites using 2-D and 3-D finite elements
NASA Technical Reports Server (NTRS)
Chow, Wai T.; Graves, Michael J.
1992-01-01
An analysis method using the FEM based on the Hellinger-Reissner variation principle has been developed to determine the 3-D stresses and displacements near a rectangular implant inside a laminated composite material. Three-dimensional elements are employed in regions where the interlaminar stress is considered to be significant; 2-D elements are used in other areas. Uniaxially loaded graphite-epoxy laminates have been analyzed; the implant was modeled as four plies of 3501/6 epoxy located in the middle of the laminate. It is shown that the interlaminar stresses are an order of magnitude lower than the stress representing the applied far-field load. The stress concentration factors of both the interlaminar and in-plane stresses depend on the stacking sequence of the laminate.
Dai, Ke-Zheng; Johansen, Finn-Eirik; Kolltveit, Kristin Melkevik; Aasheim, Hans-Christian; Dembic, Zlatko; Vartdal, Frode; Spurkland, Anne
2004-05-15
The SH2D2A gene, encoding the T cell-specific adapter protein (TSAd), is rapidly induced in activated T cells. In this study we investigate the regulation of the SH2D2A gene in Jurkat T cells and in primary T cells. Reporter gene assays demonstrated that the proximal 1-kb SH2D2A promoter was constitutively active in Jurkat TAg T cells and, to a lesser extent, in K562 myeloid cells, Reh B cells, and 293T fibroblast cells. The minimal SH2D2A promoter was located between position -236 and -93 bp from the first coding ATG, and transcriptional activity in primary T cells depended on a cAMP response element (CRE) centered around position -117. Nuclear extracts from Jurkat TAg cells and activated primary T cells contained binding activity to this CRE, as observed in an EMSA. Consistent with this observation, we found that a cAMP analog was a very potent inducer of SH2D2A mRNA expression in primary T cells as measured by real-time RT-PCR. Furthermore, activation of SH2D2A expression by CD3 stimulation required cAMP-dependent protein kinase activity. Thus, transcriptional regulation of the SH2D2A gene in activated T cells is critically dependent on a CRE in the proximal promoter region.
Partition of the contact force network obtained in discrete element simulations of element tests
NASA Astrophysics Data System (ADS)
Huang, Xin; O'Sullivan, Catherine; Hanley, Kevin J.; Kwok, Chung-Yee
2017-04-01
The transmission of stress within a granular material composed of rigid spheres is explored using the discrete element method. The contribution of contacts to both deviatoric stress and structural anisotropy is investigated. The influences of five factors are considered: inter-particle friction coefficient, loading regime, packing density, contact model, and boundary conditions. The data generated indicate that using the above-average normal contact force criterion to decompose the contact force network into two subsets with distinct contributions to stress transmission and structural anisotropy is not robust. The characteristic normal contact forces marking the transition from negative to positive contribution to the overall deviatoric stress and structural anisotropy are not unique values but vary during shearing. Once the critical state is attained (i.e., once shearing continues at a constant deviator stress and solid fraction), the characteristic normal contact force remains approximately constant and this critical state characteristic normal force is observed to decrease with increasing inter-particle friction. The characteristic normal contact force considering the contribution to deviatoric stress has a power-law relationship with the mean effective stress at the critical state.
Discrete-ordinates finite-element method for atmospheric radiative transfer and remote sensing
NASA Technical Reports Server (NTRS)
Gerstl, S. A. W.; Zardecki, A.
1985-01-01
The principal features of the discrete-ordinates finite-element method are reviewed, and the applicability of general-purpose discrete-ordinates codes to atmospheric radiative transfer and remote sensing problems is demonstrated. In particular, numerical results for typical problems arising in meteorology, climatology, and remote sensing are shown to be in good agreement with results from other methods and measurements. A sample two-dimensional calculation demonstrates that specific capabilities available in the discrete-ordinates code TWOTRAN can produce new results that are valuable in the characterization of atmospheric effects on remote sensing (e.g., the adjacency effect). The intrinsic limitations of the method are also considered, and it is concluded that the strengths of the discrete-ordinates finite-element method outweigh its weaknesses.
A simple discrete-element-model of Brazilian test
NASA Astrophysics Data System (ADS)
Kundu, Sumanta; Stroisz, Anna; Pradhan, Srutarshi
2016-05-01
We present a statistical model which is able to capture some interesting features exhibited in the Brazilian test of rock samples. The model is based on elements which break irreversibly when the force experienced by the elements exceed their own load capacity. If an element breaks the load capacity of the neighboring elements are decreased by a certain amount, assuming weakening effect around the defected zone. From the model we numerically investigate the stress-strain behavior, the strength of the system, how it scales with the system size and also its fluctuation for both uniform and Weibull distribution of breaking thresholds in the system. To check the validity of our statistical model we perform few Brazilian tests on Sandstone and Chalk samples. The stress-strain curve from model results agree qualitatively well with the lab-test data. Also, the damage profile right at the point when the stress-strain curve reaches its maximum is seen to mimic the crack patterns observed in our Brazilian test experiments.
General advancing front packing algorithm for the discrete element method
NASA Astrophysics Data System (ADS)
Morfa, Carlos A. Recarey; Pérez Morales, Irvin Pablo; de Farias, Márcio Muniz; de Navarra, Eugenio Oñate Ibañez; Valera, Roberto Roselló; Casañas, Harold Díaz-Guzmán
2016-11-01
A generic formulation of a new method for packing particles is presented. It is based on a constructive advancing front method, and uses Monte Carlo techniques for the generation of particle dimensions. The method can be used to obtain virtual dense packings of particles with several geometrical shapes. It employs continuous, discrete, and empirical statistical distributions in order to generate the dimensions of particles. The packing algorithm is very flexible and allows alternatives for: 1—the direction of the advancing front (inwards or outwards), 2—the selection of the local advancing front, 3—the method for placing a mobile particle in contact with others, and 4—the overlap checks. The algorithm also allows obtaining highly porous media when it is slightly modified. The use of the algorithm to generate real particle packings from grain size distribution curves, in order to carry out engineering applications, is illustrated. Finally, basic applications of the algorithm, which prove its effectiveness in the generation of a large number of particles, are carried out.
The Combined Finite-Discrete Element Method applied to the Study of Rock Fracturing Behavior in 3D
Rougier, Esteban; Bradley, Christopher R.; Broom, Scott T.; Knight, Earl E.; Munjiza, Ante; Sussman, Aviva J.; Swift, Robert P.
2011-01-01
Since its introduction the combined finite-discrete element method (FEM/DEM), has become an excellent tool to address a wide range of problems involving fracturing and fragmentation of solids. Within the context of rock mechanics, the FEM/DEM method has been applied to many complex industrial problems such as block caving, deep mining techniques, rock blasting, seismic waves, packing problems, rock crushing problems, etc. In the real world most of the problems involving fracture and fragmentation of solids are three dimensional problems. With the aim of addressing these problems an improved 2D/3D FEM/DEM capability has been developed at Los Alamos National Laboratory (LANL). These capabilities include state of the art 3D contact detection, contact interaction, constitutive material models, and fracture models. In this paper, Split Hopkinson Pressure Bar (SHPB) Brazilian experiments are simulated using this improved 2D/3D FEM/DEM approach which is implemented in LANL's MUNROU (Munjiza-Rougier) code. The results presented in this work show excellent agreement with both the SHPB experiments and previous 2D numerical simulations performed by other FEM/DEM research groups.
NASA Astrophysics Data System (ADS)
Barker, J. R.; Pasternack, G. B.; Bratovich, P.; Massa, D.; Reedy, G.; Johnson, T.
2010-12-01
Two-dimensional (depth-averaged) hydrodynamic models have existed for decades and are used to study a variety of hydrogeomorphic processes as well as to design river rehabilitation projects. Rapid computer and coding advances are revolutionizing the size and detail of 2D models. Meanwhile, advances in topo mapping and environmental informatics are providing the data inputs to drive large, detailed simulations. Million-element computational meshes are in hand. With simulations of this size and detail, the primary challenge has shifted to finding rapid and inexpensive means for testing model predictions against observations. Standard methods for collecting velocity data include boat-mounted ADCP and point-based sensors on boats or wading rods. These methods are labor intensive and often limited to a narrow flow range. Also, they generate small datasets at a few cross-sections, which is inadequate to characterize the statistical structure of the relation between predictions and observations. Drawing on the long-standing oceanographic method of using drogues to track water currents, previous studies have demonstrated the potential of small dGPS units to obtain surface velocity in rivers. However, dGPS is too inaccurate to test 2D models. Also, there is financial risk in losing drogues in rough currents. In this study, an RTK GPS unit was mounted onto a manned whitewater kayak. The boater positioned himself into the current and used floating debris to maintain a speed and heading consistent with the ambient surface flow field. RTK GPS measurements were taken ever 5 sec. From these positions, a 2D velocity vector was obtained. The method was tested over ~20 km of the lower Yuba River in California in flows ranging from 500-5000 cfs, yielding 5816 observations. To compare velocity magnitude against the 2D model-predicted depth-averaged value, kayak-based surface values were scaled down by an optimized constant (0.72), which had no negative effect on regression analysis
Discrete-Roughness-Element-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Malik, Mujeeb; Liao, Wei; Li, Fei; Choudhari, Meelan
2015-01-01
Nonlinear parabolized stability equations and secondary-instability analyses are used to provide a computational assessment of the potential use of the discrete-roughness-element technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural-laminar-flow airfoil with a leading-edge sweep angle of 34.6 deg, freestream Mach number of 0.75, and chord Reynolds numbers of 17 × 10(exp 6), 24 × 10(exp 6), and 30 × 10(exp 6) suggest that discrete roughness elements could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small-wavelength stationary crossflow disturbances (i.e., discrete roughness element) also suppresses the growth of most amplified traveling crossflow disturbances.
Discrete element thermomechanical modelling of rock cutting with valuation of tool wear
NASA Astrophysics Data System (ADS)
Rojek, Jerzy
2014-05-01
The paper presents a thermomechanical discrete element model of rock cutting process. The thermomechanical formulation of the discrete element method considers mechanical and thermal phenomena and their reciprocal influence. The thermal model developed for transient heat conduction problems takes into account conductive heat transfer at the contact between particles and convection on the free surface. The thermal and mechanical problems are coupled by consideration of: (1) heat generated due to friction which is calculated in the mechanical problem and passed to the thermal solution, (2) influence of thermal expansion on mechanical interaction between particles. Estimation of temperature dependent wear has been included into the contact model. The coupled problem is solved using the staggered scheme.The thermomechanical algorithm has been implemented in a discrete element program and applied to simulation of rock cutting with single pick of a dredge cutter head. Numerical results confirm good performance of the developed algorithm.
Osterberg, Erich C; Handley, Michael J; Sneed, Sharon B; Mayewski, Paul A; Kreutz, Karl J
2006-05-15
We present a novel ice/firn core melter system that uses fraction collectors to collect discrete, high-resolution (<1 cm/sample possible), continuous, coregistered meltwater samples for analysis of eight major ions by ion chromatography (IC), >32 trace elements by inductively coupled plasma sectorfield mass spectrometry (ICP-SMS), and stable oxygen and hydrogen isotopes by isotope ratio mass spectrometry (IRMS). The new continuous melting with discrete sampling (CMDS) system preserves an archive of each sample, reduces the problem of incomplete particle dissolution in ICP-SMS samples, and provides more precise trace element data than previous ice melter models by using longer ICP-SMS scan times and washing the instrument between samples. CMDS detection limits are similar to or lower than those published for ice melter systems coupled directly to analytical instruments and are suitable for analyses of polar and mid-low-latitude ice cores. Analysis of total calcium and sulfur by ICP-SMS and calcium ion, sulfate, and methanesulfonate by IC from the Mt. Logan Prospector-Russell Col ice core confirms data accuracy and coregistration of the split fractions from each sample. The reproducibility of all data acquired by the CMDS system is confirmed by replicate analyses of parallel sections of the GISP2 D ice core.
Level set discrete element method for three-dimensional computations with triaxial case study
NASA Astrophysics Data System (ADS)
Kawamoto, Reid; Andò, Edward; Viggiani, Gioacchino; Andrade, José E.
2016-06-01
In this paper, we outline the level set discrete element method (LS-DEM) which is a discrete element method variant able to simulate systems of particles with arbitrary shape using level set functions as a geometric basis. This unique formulation allows seamless interfacing with level set-based characterization methods as well as computational ease in contact calculations. We then apply LS-DEM to simulate two virtual triaxial specimens generated from XRCT images of experiments and demonstrate LS-DEM's ability to quantitatively capture and predict stress-strain and volume-strain behavior observed in the experiments.
Quasi-Optimal Schwarz Methods for the Conforming Spectral Element Discretization
NASA Technical Reports Server (NTRS)
Casarin, Mario
1996-01-01
Fast methods are proposed for solving the system K(sub N)x = b resulting from the discretization of self-adjoint elliptic equations in three dimensional domains by the spectral element method. The domain is decomposed into hexahedral elements, and in each of these elements the discretization space is formed by polynomials of degree N in each variable. Gauss-Lobatto-Legendre (GLL) quadrature rules replace the integrals in the Galerkin formulation. This system is solved by the preconditioned conjugate gradients method. The conforming finite element space on the GLL mesh consisting of piecewise Q(sub 1) elements produces a stiffness matrix K(sub h) that is spectrally equivalent to the spectral element stiffness matrix K(sub N). The action of the inverse of K(sub h) is expensive for large problems, and is therefore replaced by a Schwarz preconditioner B(sub h) of this finite element stiffness matrix. The preconditioned operator then becomes B(sub h)(exp -l)K(sub N). The technical difficulties stem from the nonregularity of the mesh. Tools to estimate the convergence of a large class of new iterative substructuring and overlapping Schwarz preconditioners are developed. This technique also provides a new analysis for an iterative substructuring method proposed by Pavarino and Widlund for the spectral element discretization.
Siku: A Sea Ice Discrete Element Method Model on a Spherical Earth
NASA Astrophysics Data System (ADS)
Kulchitsky, A. V.; Hutchings, J. K.; Johnson, J.
2014-12-01
Offshore oil and gas exploration and production activities in the Beaufort and Chukchi Seas can be significantly and adversely affected by sea ice. In the event of an oil spill, sea ice complicates the tracking of ice/oil trajectories and can hinder cleanup operations. There is a need for a sea ice dynamics model that can accurately simulate ice pack deformation and failure to improve the ability to track ice/oil trajectories and support oil response operations. A discrete element method (DEM) model, where each ice floe is represented by discrete elements that are initially bonded (frozen) together will be used to address the difficulty continuum modeling approaches have with representing discrete phenomena in sea ice, such as the formation of leads and ridges. Each discrete element in the DEM is a rigid body driven by environmental forcing (wind, current and Coriolis forces) and interaction forces with other discrete elements (compression, shear, tension, bond rupture and regrowth). We introduce a new DEM model ``Siku'', currently under development, to simulate ice drift of an ice floe on a spherical Earth. We will present initial free-drift results. Siku is focused on improving sea ice interaction mechanics and providing an accurate geometrical representation needed for basin scale and regional simulations. Upon completion, Siku will be an open source GNU GPL licensed user friendly program with embedded python capability for setting up simulations "scenarios" and coupling with other models to provide forcing fields. We use a unique quaternion representation for position and orientation of polygon sea-ice elements that use a second order integration scheme of sea-ice element motion on the Earth's sphere that does not depend on the location of the element and, hence, avoids numerical problems near the pole.
NASA Astrophysics Data System (ADS)
Schaa, R.; Gross, L.; du Plessis, J.
2016-04-01
We present a general finite-element solver, escript, tailored to solve geophysical forward and inverse modeling problems in terms of partial differential equations (PDEs) with suitable boundary conditions. Escript’s abstract interface allows geoscientists to focus on solving the actual problem without being experts in numerical modeling. General-purpose finite element solvers have found wide use especially in engineering fields and find increasing application in the geophysical disciplines as these offer a single interface to tackle different geophysical problems. These solvers are useful for data interpretation and for research, but can also be a useful tool in educational settings. This paper serves as an introduction into PDE-based modeling with escript where we demonstrate in detail how escript is used to solve two different forward modeling problems from applied geophysics (3D DC resistivity and 2D magnetotellurics). Based on these two different cases, other geophysical modeling work can easily be realized. The escript package is implemented as a Python library and allows the solution of coupled, linear or non-linear, time-dependent PDEs. Parallel execution for both shared and distributed memory architectures is supported and can be used without modifications to the scripts.
Spatial discrete element analysis of problem on floor buckling in underground openings
NASA Astrophysics Data System (ADS)
Klishin, SV; Revuzhenko, AF
2017-02-01
The authors analyze 3D problem on instability of a long arch cross-section opening using the method of discrete elements. Under analysis is loading by gravitational and tectonic stresses. Dilatancy, dry friction and viscosity are taken into account. It is assumed that contacting particles have an in-between elastic bonding element that fails under critical load. The article presents kinematic patterns of deformation and failure of surrounding rock mass around an underground opening.
Applications of discrete element method in modeling of grain postharvest operations
Technology Transfer Automated Retrieval System (TEKTRAN)
Grain kernels are finite and discrete materials. Although flowing grain can behave like a continuum fluid at times, the discontinuous behavior exhibited by grain kernels cannot be simulated solely with conventional continuum-based computer modeling such as finite-element or finite-difference methods...
de Munck, J C
1992-09-01
A method is presented to compute the potential distribution on the surface of a homogeneous isolated conductor of arbitrary shape. The method is based on an approximation of a boundary integral equation as a set linear algebraic equations. The potential is described as a piecewise linear or quadratic function. The matrix elements of the discretized equation are expressed as analytical formulas.
NASA Astrophysics Data System (ADS)
Blitz, Celine; Komatitsch, Dimitri; Lognonné, Philippe; Martin, Roland; Le Goff, Nicolas
The understanding of the interior structure of Near Earth Objects (NEOs) is a fundamental issue to determine their evolution and origin, and also, to design possible mitigation techniques (Walker and Huebner, 2004). Indeed, if an oncoming Potentially Hazardous Object (PHO) were to threaten the Earth, numerous methods are suggested to prevent it from colliding our planet. Such mitigation techniques may involve nuclear explosives on or below the object surface, impact by a projectile, or concentration of solar energy using giant mirrors (Holsapple, 2004). The energy needed in such mitigation techniques highly depends on the porosity of the hazardous threatening object (asteroid or comet), as suggested by Holsapple, 2004. Thus, for a given source, the seismic response of a coherent homogeneous asteroid should be very different from the seismic response of a fractured or rubble-pile asteroid. To assess this hypothesis, we performed numerical simulations of wave propagation in different interior models of the Near Earth Asteroid 433 Eros. The simulations of wave propagation required a shape model of asteroid Eros, kindly provided by A. Cheng and O. Barnouin-Jha (personal communication). A cross-section along the longest axis has been chosen to define our 2D geometrical model, and we study two models of the interior: a homogeneous one, and a complex one characterized by fault networks below the main crosscut craters, and covered by a regolith layer of thickness ranging from 50 m to 150 m. To perform the numerical simulations we use the spectral-element method, which solves the variational weak form of the seismic wave equation (Komatitsch and Tromp, 1999) on the meshes of the 2D models of asteroid Eros. The homogeneous model is composed of an elastic material characterized by a pressure wave velocity Vp = 3000 m.s-1 , a shear wave velocity Vs = 1700 m.s-1 and a density of 2700 kg.m-3 . The fractured model possesses the same characteristics except for the presence of
Comparative Results from a CFD Challenge Over a 2D Three-Element High-Lift Airfoil
NASA Technical Reports Server (NTRS)
Klausmeyer, Steven M.; Lin, John C.
1997-01-01
A high-lift workshop was held in May of 1993 at NASA Langley Research Center. A major part of the workshop centered on a blind test of various computational fluid dynamics (CFD) methods in which the flow about a two- dimensional (2D) three-element airfoil was computed without prior knowledge of the experimental data. The results of this 'blind' test revealed: (1) The Reynolds Averaged Navier-Stokes (RANS) methods generally showed less variability among codes than did potential/Euler solvers coupled with boundary-layer solution techniques. However, some of the coupled methods still provided excellent predictions. (2) Drag prediction using coupled methods agreed more closely with experiment than the RANS methods. Lift was more accurately predicted than drag for both methods. (3) The CFD methods did well in predicting lift and drag changes due to changes in Reynolds number, however, they did not perform as well when predicting lift and drag increments due to changing flap gap, (4) Pressures and skin friction compared favorably with experiment for most of the codes. (5) There was a large variability in most of the velocity profile predictions. Computational results predict a stronger siat wake than measured suggesting a missing component in turbulence modeling, perhaps curvature effects.
NASA Technical Reports Server (NTRS)
Hua, Chongyu; Volakis, John L.
1990-01-01
AUTOMESH-2D is a computer program specifically designed as a preprocessor for the scattering analysis of two dimensional bodies by the finite element method. This program was developed due to a need for reproducing the effort required to define and check the geometry data, element topology, and material properties. There are six modules in the program: (1) Parameter Specification; (2) Data Input; (3) Node Generation; (4) Element Generation; (5) Mesh Smoothing; and (5) Data File Generation.
Gilad, Ariel; Meirovithz, Elhanan; Slovin, Hamutal
2013-04-24
The neuronal mechanisms underlying perceptual grouping of discrete, similarly oriented elements are not well understood. To investigate this, we measured neural population responses using voltage-sensitive dye imaging in V1 of monkeys trained on a contour-detection task. By mapping the contour and background elements onto V1, we could study their neural processing. Population response early in time showed activation patches corresponding to the contour/background individual elements. However, late increased activity in the contour elements, along with suppressed activity in the background elements, enabled us to visualize in single trials a salient continuous contour "popping out" from a suppressed background. This modulated activity in the contour and in background extended beyond the cortical representation of individual contour or background elements. Finally, the late modulation was correlated with behavioral performance of contour saliency and the monkeys' perceptual report. Thus, opposing responses in the contour and background may underlie perceptual grouping in V1.
Bedload Transport on Steep Slopes with Coupled Modeling Based on the Discrete Element Method
NASA Astrophysics Data System (ADS)
Chauchat, J.; Maurin, R.; Chareyre, B.; Frey, P.
2014-12-01
After more than a century of research, a clear understanding of the physical processes involved in sediment transport problems is still lacking. In particular, modeling of intergranular interactions and fluid-particle interactions in bedload transport need to be improved. In this contribution, we propose a simple numerical model coupling a Discrete Element Method (DEM) for the grain dynamics with a simple 1D vertical fluid phase model inspired from the two-phase approach [1] in order to contribute to this open question. The Reynolds stress is parameterized by a mixing length model which depends on the integral of the grain volume fraction. The coupling between the grains and the fluid phase is essentially achieved through buoyancy and drag forces. The open source DEM code Yade [2] is used with a linear spring-dashpot contact law that allows the description of the behavior of the particles from the quasi-static to the dynamical state. The model is compared with classical results [3] and with particle-scale experimental results obtained in the quasi-2D flume at IRSTEA, Grenoble [4]. We discuss the closures of the model and the sensitivity to the different physical and numerical parameters. [1] Revil-Baudard, T. and J. Chauchat. A two-phase model for sheet flow regime based on dense granular flow rheology. Journal of Geophysical Research: Oceans, 118(2):619-634, 2013. [2] Šmilauer V. , E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky, J. Kozicki, C . Modenese, L. Scholtès, L. Sibille, J. Str.nský, and K. Thoeni. Yade Documentation (V. Šmilauer, ed.), The Yade Project, 1st ed., http://yade-dem.org/doc/., 2010. [3] Meyer-Peter, E. and R. Müller. Formulas for bed-load transport. In Proc. 2nd Meeting, pages 39-64. IAHR, 1948. [4] Frey, P. Particle velocity and concentration profiles in bedload experiments on a steep slope. Earth Surface Processes and Landforms, 39(5):646-655, 2014.
Application of the control volume mixed finite element method to a triangular discretization
Naff, R.L.
2012-01-01
A two-dimensional control volume mixed finite element method is applied to the elliptic equation. Discretization of the computational domain is based in triangular elements. Shape functions and test functions are formulated on the basis of an equilateral reference triangle with unit edges. A pressure support based on the linear interpolation of elemental edge pressures is used in this formulation. Comparisons are made between results from the standard mixed finite element method and this control volume mixed finite element method. Published 2011. This article is a US Government work and is in the public domain in the USA. ?? 2012 John Wiley & Sons, Ltd. This article is a US Government work and is in the public domain in the USA.
Discrete element simulation of powder compaction in cold uniaxial pressing with low pressure
NASA Astrophysics Data System (ADS)
Rojek, Jerzy; Nosewicz, Szymon; Jurczak, Kamila; Chmielewski, Marcin; Bochenek, Kamil; Pietrzak, Katarzyna
2016-11-01
This paper presents numerical studies of powder compaction in cold uniaxial pressing. The powder compaction in this work is considered as an initial stage of a hot pressing process so it is realized with relatively low pressure (up to 50 MPa). Hence the attention has been focused on the densification mechanisms at this range of pressure and models suitable for these conditions. The discrete element method employing spherical particles has been used in the numerical studies. Numerical simulations have been performed for two different contact models—the elastic Hertz-Mindlin-Deresiewicz model and the plastic Storåkers model. Numerical results have been compared with the results of laboratory tests of the die compaction of the NiAl powder. Comparisons have shown that the discrete element method is capable to represent properly the densification mechanisms by the particle rearrangement and particle deformation.
A local constitutive model for the discrete element method. Application to geomaterials and concrete
NASA Astrophysics Data System (ADS)
Oñate, Eugenio; Zárate, Francisco; Miquel, Juan; Santasusana, Miquel; Celigueta, Miguel Angel; Arrufat, Ferran; Gandikota, Raju; Valiullin, Khaydar; Ring, Lev
2015-06-01
This paper presents a local constitutive model for modelling the linear and non linear behavior of soft and hard cohesive materials with the discrete element method (DEM). We present the results obtained in the analysis with the DEM of cylindrical samples of cement, concrete and shale rock materials under a uniaxial compressive strength test, different triaxial tests, a uniaxial strain compaction test and a Brazilian tensile strength test. DEM results compare well with the experimental values in all cases.
Discrete/Finite Element Modelling of Rock Cutting with a TBM Disc Cutter
NASA Astrophysics Data System (ADS)
Labra, Carlos; Rojek, Jerzy; Oñate, Eugenio
2017-03-01
This paper presents advanced computer simulation of rock cutting process typical for excavation works in civil engineering. Theoretical formulation of the hybrid discrete/finite element model has been presented. The discrete and finite element methods have been used in different subdomains of a rock sample according to expected material behaviour, the part which is fractured and damaged during cutting is discretized with the discrete elements while the other part is treated as a continuous body and it is modelled using the finite element method. In this way, an optimum model is created, enabling a proper representation of the physical phenomena during cutting and efficient numerical computation. The model has been applied to simulation of the laboratory test of rock cutting with a single TBM (tunnel boring machine) disc cutter. The micromechanical parameters have been determined using the dimensionless relationships between micro- and macroscopic parameters. A number of numerical simulations of the LCM test in the unrelieved and relieved cutting modes have been performed. Numerical results have been compared with available data from in-situ measurements in a real TBM as well as with the theoretical predictions showing quite a good agreement. The numerical model has provided a new insight into the cutting mechanism enabling us to investigate the stress and pressure distribution at the tool-rock interaction. Sensitivity analysis of rock cutting performed for different parameters including disc geometry, cutting velocity, disc penetration and spacing has shown that the presented numerical model is a suitable tool for the design and optimization of rock cutting process.
NASA Astrophysics Data System (ADS)
Korneev, V. G.
2012-09-01
BPS is a well known an efficient and rather general domain decomposition Dirichlet-Dirichlet type preconditioner, suggested in the famous series of papers Bramble, Pasciak and Schatz (1986-1989). Since then, it has been serving as the origin for the whole family of domain decomposition Dirichlet-Dirichlet type preconditioners-solvers as for h so hp discretizations of elliptic problems. For its original version, designed for h discretizations, the named authors proved the bound O(1 + log2 H/ h) for the relative condition number under some restricting conditions on the domain decomposition and finite element discretization. Here H/ h is the maximal relation of the characteristic size H of a decomposition subdomain to the mesh parameter h of its discretization. It was assumed that subdomains are images of the reference unite cube by trilinear mappings. Later similar bounds related to h discretizations were proved for more general domain decompositions, defined by means of coarse tetrahedral meshes. These results, accompanied by the development of some special tools of analysis aimed at such type of decompositions, were summarized in the book of Toselli and Widlund (2005). This paper is also confined to h discretizations. We further expand the range of admissible domain decompositions for constructing BPS preconditioners, in which decomposition subdomains can be convex polyhedrons, satisfying some conditions of shape regularity. We prove the bound for the relative condition number with the same dependence on H/ h as in the bound given above. Along the way to this result, we simplify the proof of the so called abstract bound for the relative condition number of the domain decomposition preconditioner. In the part, related to the analysis of the interface sub-problem preconditioning, our technical tools are generalization of those used by Bramble, Pasciak and Schatz.
Mesoscale dynamic coupling of finite- and discrete-element methods for fluid-particle interactions.
Srivastava, S; Yazdchi, K; Luding, S
2014-08-06
A new method for two-way fluid-particle coupling on an unstructured mesoscopically coarse mesh is presented. In this approach, we combine a (higher order) finite-element method (FEM) on the moving mesh for the fluid with a soft sphere discrete-element method for the particles. The novel feature of the proposed scheme is that the FEM mesh is a dynamic Delaunay triangulation based on the positions of the moving particles. Thus, the mesh can be multi-purpose: it provides (i) a framework for the discretization of the Navier-Stokes equations, (ii) a simple tool for detecting contacts between moving particles, (iii) a basis for coarse-graining or upscaling, and (iv) coupling with other physical fields (temperature, electromagnetic, etc.). This approach is suitable for a wide range of dilute and dense particulate flows, because the mesh resolution adapts with particle density in a given region. Two-way momentum exchange is implemented using semi-empirical drag laws akin to other popular approaches; for example, the discrete particle method, where a finite-volume solver on a coarser, fixed grid is used. We validate the methodology with several basic test cases, including single- and double-particle settling with analytical and empirical expectations, and flow through ordered and random porous media, when compared against finely resolved FEM simulations of flow through fixed arrays of particles.
Finite Elements Analysis of a Composite Semi-Span Test Article With and Without Discrete Damage
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.; Jegley, Dawn C. (Technical Monitor)
2000-01-01
AS&M Inc. performed finite element analysis, with and without discrete damage, of a composite semi-span test article that represents the Boeing 220-passenger transport aircraft composite semi-span test article. A NASTRAN bulk data file and drawings of the test mount fixtures and semi-span components were utilized to generate the baseline finite element model. In this model, the stringer blades are represented by shell elements, and the stringer flanges are combined with the skin. Numerous modeling modifications and discrete source damage scenarios were applied to the test article model throughout the course of the study. This report details the analysis method and results obtained from the composite semi-span study. Analyses were carried out for three load cases: Braked Roll, LOG Down-Bending and 2.5G Up-Bending. These analyses included linear and nonlinear static response, as well as linear and nonlinear buckling response. Results are presented in the form of stress and strain plots. factors of safety for failed elements, buckling loads and modes, deflection prediction tables and plots, and strainage prediction tables and plots. The collected results are presented within this report for comparison to test results.
NASA Astrophysics Data System (ADS)
Casas, Guillermo; Mukherjee, Debanjan; Celigueta, Miguel Angel; Zohdi, Tarek I.; Onate, Eugenio
2017-04-01
A modular discrete element framework is presented for large-scale simulations of industrial grain-handling systems. Our framework enables us to simulate a markedly larger number of particles than previous studies, thereby allowing for efficient and more realistic process simulations. This is achieved by partitioning the particle dynamics into distinct regimes based on their contact interactions, and integrating them using different time-steps, while exchanging phase-space data between them. The framework is illustrated using numerical experiments based on fertilizer spreader applications. The model predictions show very good qualitative and quantitative agreement with available experimental data. Valuable insights are developed regarding the role of lift vs drag forces on the particle trajectories in-flight, and on the role of geometric discretization errors for surface meshing in governing the emergent behavior of a system of particles.
Discrete adaptive zone light elements (DAZLE): a new approach to adaptive imaging
NASA Astrophysics Data System (ADS)
Kellogg, Robert L.; Escuti, Michael J.
2007-09-01
New advances in Liquid Crystal Spatial Light Modulators (LCSLM) offer opportunities for large adaptive optics in the midwave infrared spectrum. A light focusing adaptive imaging system, using the zero-order diffraction state of a polarizer-free liquid crystal polarization grating modulator to create millions of high transmittance apertures, is envisioned in a system called DAZLE (Discrete Adaptive Zone Light Elements). DAZLE adaptively selects large sets of LCSLM apertures using the principles of coded masks, embodied in a hybrid Discrete Fresnel Zone Plate (DFZP) design. Issues of system architecture, including factors of LCSLM aperture pattern and adaptive control, image resolution and focal plane array (FPA) matching, and trade-offs between filter bandwidths, background photon noise, and chromatic aberration are discussed.
NASA Astrophysics Data System (ADS)
Schunert, Sebastian; Wang, Yaqi; Gleicher, Frederick; Ortensi, Javier; Baker, Benjamin; Laboure, Vincent; Wang, Congjian; DeHart, Mark; Martineau, Richard
2017-06-01
This work presents a flexible nonlinear diffusion acceleration (NDA) method that discretizes both the SN transport equation and the diffusion equation using the discontinuous finite element method (DFEM). The method is flexible in that the diffusion equation can be discretized on a coarser mesh with the only restriction that it is nested within the transport mesh and the FEM shape function orders of the two equations can be different. The consistency of the transport and diffusion solutions at convergence is defined by using a projection operator mapping the transport into the diffusion FEM space. The diffusion weak form is based on the modified incomplete interior penalty (MIP) diffusion DFEM discretization that is extended by volumetric drift, interior face, and boundary closure terms. In contrast to commonly used coarse mesh finite difference (CMFD) methods, the presented NDA method uses a full FEM discretized diffusion equation for acceleration. Suitable projection and prolongation operators arise naturally from the FEM framework. Via Fourier analysis and numerical experiments for a one-group, fixed source problem the following properties of the NDA method are established for structured quadrilateral meshes: (1) the presented method is unconditionally stable and effective in the presence of mild material heterogeneities if the same mesh and identical shape functions either of the bilinear or biquadratic type are used, (2) the NDA method remains unconditionally stable in the presence of strong heterogeneities, (3) the NDA method with bilinear elements extends the range of effectiveness and stability by a factor of two when compared to CMFD if a coarser diffusion mesh is selected. In addition, the method is tested for solving the C5G7 multigroup, eigenvalue problem using coarse and fine mesh acceleration. While NDA does not offer an advantage over CMFD for fine mesh acceleration, it reduces the iteration count required for convergence by almost a factor of two in
Svyatskiy, Daniil; Shashkov, Mikhail; Kuzmin, D
2008-01-01
A new approach to the design of constrained finite element approximations to second-order elliptic problems is introduced. This approach guarantees that the finite element solution satisfies the discrete maximum principle (DMP). To enforce these monotonicity constrains the sufficient conditions for elements of the stiffness matrix are formulated. An algebraic splitting of the stiffness matrix is employed to separate the contributions of diffusive and antidiffusive numerical fluxes, respectively. In order to prevent the formation of spurious undershoots and overshoots, a symmetric slope limiter is designed for the antidiffusive part. The corresponding upper and lower bounds are defined using an estimate of the steepest gradient in terms of the maximum and minimum solution values at surrounding nodes. The recovery of nodal gradients is performed by means of a lumped-mass L{sub 2} projection. The proposed slope limiting strategy preserves the consistency of the underlying discrete problem and the structure of the stiffness matrix (symmetry, zero row and column sums). A positivity-preserving defect correction scheme is devised for the nonlinear algebraic system to be solved. Numerical results and a grid convergence study are presented for a number of anisotropic diffusion problems in two space dimensions.
A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models
Guerra, Jorge E.; Ullrich, Paul A.
2016-06-01
Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δx) modes. Furthermore, high-order accuracy alsomore » eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less
Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models
NASA Astrophysics Data System (ADS)
Katsaga, T.; Young, P.
2009-05-01
The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the
NASA Astrophysics Data System (ADS)
Jiao, L.; Tapponnier, P.; Donze, F. V.; Scholtes, L.; Gaudemer, Y.; Huang, Z.
2015-12-01
Understanding the discontinuous nucleation, growth, and interaction of large faults within continental collision zones remains a challenge. Previous analog experiments simulating the India-Asia collision successfully modeled the development and kinematics of large strike-slip faults within the Eurasian plate. However, these 2D experiments were dynamically unscaled with gravity and did not allow the development of topographic relief. We use the YADE discrete element (DEM) code to alleviate these problems, producing a suite of 3D models. These 3D DEM models also involve the extrusion and rotation of coherent blocks by generating two large strike-slip faults. The location, size and offsets of these faults are consistent with those of the Red River and Altyn Tagh mega-faults. In addition, concurrently with strike-slip movement, the large scale deformation includes the successive formation, from South to North, of thrust faults that bound a growing plateau which may be considered analogous to the Tibet-Qinghai plateau. While based on very simplified boundary conditions and mechanical properties, such modeling results are therefore consistent with the topographic, tectonic and geological evolution of Eastern Asia in the last ~50 million years.
NASA Astrophysics Data System (ADS)
Lei, Qinghua; Latham, John-Paul; Xiang, Jiansheng
2016-12-01
An empirical joint constitutive model (JCM) that captures the rough wall interaction behaviour of individual fractures associated with roughness characteristics observed in laboratory experiments is combined with the solid mechanical model of the finite-discrete element method (FEMDEM). The combined JCM-FEMDEM formulation gives realistic fracture behaviour with respect to shear strength, normal closure, and shear dilatancy and includes the recognition of fracture length influence as seen in experiments. The validity of the numerical model is demonstrated by a comparison with the experimentally established empirical solutions. A 2D plane strain geomechanical simulation is conducted using an outcrop-based naturally fractured rock model with far-field stresses loaded in two consecutive phases, i.e. take-up of isotropic stresses and imposition of two deviatoric stress conditions. The modelled behaviour of natural fractures in response to various stress conditions illustrates a range of realistic behaviour including closure, opening, shearing, dilatancy, and new crack propagation. With the increase in stress ratio, significant deformation enhancement occurs in the vicinity of fracture tips, intersections, and bends, where large apertures can be generated. The JCM-FEMDEM model is also compared with conventional approaches that neglect the scale dependency of joint properties or the roughness-induced additional frictional resistance. The results of this paper have important implications for understanding the geomechanical behaviour of fractured rocks in various engineering activities.
Discrete Element Method Simulation of a Boulder Extraction From an Asteroid
NASA Technical Reports Server (NTRS)
Kulchitsky, Anton K.; Johnson, Jerome B.; Reeves, David M.; Wilkinson, Allen
2014-01-01
The force required to pull 7t and 40t polyhedral boulders from the surface of an asteroid is simulated using the discrete element method considering the effects of microgravity, regolith cohesion and boulder acceleration. The connection between particle surface energy and regolith cohesion is estimated by simulating a cohesion sample tearing test. An optimal constant acceleration is found where the peak net force from inertia and cohesion is a minimum. Peak pulling forces can be further reduced by using linear and quadratic acceleration functions with up to a 40% reduction in force for quadratic acceleration.
Cleary, Paul W; Prakash, Mahesh
2004-09-15
Particle-based simulation methods, such as the discrete-element method and smoothed particle hydrodynamics, have specific advantages in modelling complex three-dimensional (3D) environmental fluid and particulate flows. The theory of both these methods and their relative advantages compared with traditional methods will be discussed. Examples of 3D flows on realistic topography illustrate the environmental application of these methods. These include the flooding of a river valley as a result of a dam collapse, coastal inundation by a tsunami, volcanic lava flow and landslides. Issues related to validation and quality data availability are also discussed.
A discrete-element model for viscoelastic deformation and fracture of glacial ice
NASA Astrophysics Data System (ADS)
Riikilä, T. I.; Tallinen, T.; Åström, J.; Timonen, J.
2015-10-01
A discrete-element model was developed to study the behavior of viscoelastic materials that are allowed to fracture. Applicable to many materials, the main objective of this analysis was to develop a model specifically for ice dynamics. A realistic model of glacial ice must include elasticity, brittle fracture and slow viscous deformations. Here the model is described in detail and tested with several benchmark simulations. The model was used to simulate various ice-specific applications with resulting flow rates that were compatible with Glen's law, and produced under fragmentation fragment-size distributions that agreed with the known analytical and experimental results.
Coupled discrete element and smoothed particle hydrodynamics simulations of the die filling process
NASA Astrophysics Data System (ADS)
Breinlinger, Thomas; Kraft, Torsten
2016-11-01
Die filling is an important part of the powder compaction process chain, where defects in the final part can be introduced—or prevented. Simulation of this process is therefore a goal for many part producers and has been studied by some researchers already. In this work, we focus on the influence of the surrounding air on the powder flow. We demonstrate the implementing and coupling of the discrete element method for the granular powder and the smoothed particle hydrodynamics method for the gas flow. Application of the method to the die filling process is demonstrated.
Impact of Interaction Laws and Particle Modeling in Discrete Element Simulations
NASA Astrophysics Data System (ADS)
Cao, Hong-Phong; Renouf, Mathieu; Dubois, Frédéric
2009-06-01
To describe the evolution of divided media, Discrete Elements Methods (DEMs) appear as one of the most appropriate tools. Medium evolution is directly related to assumptions about local contact area, body deformations and contact interactions. In some circumstance such assumptions have a strong influence on the macroscopic behaviour of the media and consequently become questionable. Using the Contact Dynamics framework, the paper presents how classical assumptions could be extended to avoid numerical effects. A reflection is proposed taking into account both physical and numerical aspects. Static and dynamic configuration have been used to illustrate the paper purposes.
Single-Ray Streaming Behavior for Discontinuous Finite Element Spatial Discretizations
Smedley-Stevenson, R.P
2002-09-15
This technical note compares the results for streaming along a single-ray direction from linear discontinuous finite element discretizations of the transport equation using both Galerkin and Petrov-Galerkin weight functions. The utility of a slope limiter to remove extrema from the transport solution is investigated as an alternative to mass lumping of the removal operator; the latter procedure introduces significant numerical diffusion and can destroy the fidelity of the solution. Results are presented for single-ray propagation in slab geometry and two-dimensional planar geometry.
Damping of rotating beams with particle dampers: Discrete element method analysis
NASA Astrophysics Data System (ADS)
Els, D. N. J.
2013-06-01
The performance of particle dampers (PDs) under centrifugal loads was investigated. A test bench consisting of a rotating cantilever beam with a particle damper at the tip was developed (D. N. J. Els, AIAA Journal 49, 2228-2238 (2011)). Equal mass containers with different depths, filled with a range of uniform-sized steel ball bearings, were used as particle dampers. The experiments were duplicated numerically with a discrete element method (DEM) model, calibrated against the experimental data. The DEM model of the rotating beam with a PD at the tip captured the performance of the PD very well over a wide range of tests with different configurations and rotation velocities.
Process modeling in the pharmaceutical industry using the discrete element method.
Ketterhagen, William R; am Ende, Mary T; Hancock, Bruno C
2009-02-01
The discrete element method (DEM) is widely used to model a range of processes across many industries. This paper reviews current DEM models for several common pharmaceutical processes including material transport and storage, blending, granulation, milling, compression, and film coating. The studies described in this review yielded interesting results that provided insight into the effects of various material properties and operating conditions on pharmaceutical processes. Additionally, some basic elements common to most DEM models are overviewed. A discussion of some common model extensions such as nonspherical particle shapes, noncontact forces, and interstitial fluids is also presented. While these more complex systems have been the focus of many recent studies, considerable work must still be completed to gain a better understanding of how they can affect the processing behavior of bulk solids.
NASA Astrophysics Data System (ADS)
Zohdi, T. I.
2016-03-01
In industry, particle-laden fluids, such as particle-functionalized inks, are constructed by adding fine-scale particles to a liquid solution, in order to achieve desired overall properties in both liquid and (cured) solid states. However, oftentimes undesirable particulate agglomerations arise due to some form of mutual-attraction stemming from near-field forces, stray electrostatic charges, process ionization and mechanical adhesion. For proper operation of industrial processes involving particle-laden fluids, it is important to carefully breakup and disperse these agglomerations. One approach is to target high-frequency acoustical pressure-pulses to breakup such agglomerations. The objective of this paper is to develop a computational model and corresponding solution algorithm to enable rapid simulation of the effect of acoustical pulses on an agglomeration composed of a collection of discrete particles. Because of the complex agglomeration microstructure, containing gaps and interfaces, this type of system is extremely difficult to mesh and simulate using continuum-based methods, such as the finite difference time domain or the finite element method. Accordingly, a computationally-amenable discrete element/discrete ray model is developed which captures the primary physical events in this process, such as the reflection and absorption of acoustical energy, and the induced forces on the particulate microstructure. The approach utilizes a staggered, iterative solution scheme to calculate the power transfer from the acoustical pulse to the particles and the subsequent changes (breakup) of the pulse due to the particles. Three-dimensional examples are provided to illustrate the approach.
Combined Finite-Discrete Element Method for Simulation of Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Yan, Chengzeng; Zheng, Hong; Sun, Guanhua; Ge, Xiurun
2016-04-01
Hydraulic fracturing is widely used in the exploitation of unconventional gas (such as shale gas).Thus, the study of hydraulic fracturing is of particular importance for petroleum industry. The combined finite-discrete element method (FDEM) proposed by Munjiza is an innovative numerical technique to capture progressive damage and failure processes in rock. However, it cannot model the fracturing process of rock driven by hydraulic pressure. In this study, we present a coupled hydro-mechanical model based on FDEM for the simulation of hydraulic fracturing in complex fracture geometries, where an algorithm for updating hydraulic fracture network is proposed. The algorithm can carry out connectivity searches for arbitrarily complex fracture networks. Then, we develop a new combined finite-discrete element method numerical code (Y-flow) for the simulation of hydraulic fracturing. Finally, several verification examples are given, and the simulation results agree well with the analytical or experimental results, indicating that the newly developed numerical code can capture hydraulic fracturing process correctly and effectively.
Discrete element modeling of the faulting in the sedimentary cover above an active salt diapir
NASA Astrophysics Data System (ADS)
Yin, Hongwei; Zhang, Jie; Meng, Lingsen; Liu, Yuping; Xu, Shijing
2009-09-01
Geological mapping, seismic analyses, and analogue experiments show that active salt diapirism results in significant faulting in the overburden strata. Faults associated with active diapirism generally develop over the crest of the dome and form a radial pattern. In this study, we have created a 3-D discrete element model and used this model to investigate the fault system over active diapirs. The model reproduces some common features observed in physical experiments and natural examples. The discrete element results show that most faults initiate near the model surface and have displacement decreasing downward. In addition, model results indicate that the earliest fault, working as the master fault, has a strong influence on the subsequent fault pattern. The footwall of the master fault is mainly deformed by arc-parallel stretching and develops a subradial fault pattern, whereas the hanging wall is deformed by both arc-parallel stretching and gliding along the master fault and top of salt, and hence develops both parallel and oblique faults. Model results replicate the fault pattern and deformation mechanism of the Reitbrook dome, Germany.
Hoffman, E.L.; Ammerman, D.J.
1995-04-01
A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. During the pulse buckling tests, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. Numerical simulations of the test were performed using PRONTO, a Sandia developed transient dynamics analysis code, and ABAQUS/Explicit with both shell and continuum elements. The calculations are compared to the tests with respect to deformed shape and impact load history.
2D finite element model and microstructural changes during cutting of Ti6Al4V in dry condition
NASA Astrophysics Data System (ADS)
Imbrogno, Stano; Rinaldi, Sergio; Seara, Borja; Arrazola, Pedro J.; Rotella, Giovanna; Umbrello, Domenico
2016-10-01
The main objective of this study is to develop a FE model of the orthogonal cutting process executed on Titanium alloy (Ti6Al4V) under dry condition. In detail, the Abaqus/Explicit 2D formulation has been used to simulate the process and the results provided (temperature and strain rate) where employed to calculate the microstructural and hardness changes on surface and sub-surface. The quantitative analysis in terms of the grain refinement and hardness variation during the cutting process has been provided taking into account the Zener-Hollomon and Hall-Petch equations. The obtained results were compared with the experimental outcomes in order to understand the reliable rate of the model.
NASA Astrophysics Data System (ADS)
Wendling, A.; Daniel, J. L.; Hivet, G.; Vidal-Sallé, E.; Boisse, P.
2015-12-01
Numerical simulation is a powerful tool to predict the mechanical behavior and the feasibility of composite parts. Among the available numerical approaches, as far as woven reinforced composites are concerned, 3D finite element simulation at the mesoscopic scale leads to a good compromise between realism and complexity. At this scale, the fibrous reinforcement is modeled by an interlacement of yarns assumed to be homogeneous that have to be accurately represented. Among the numerous issues induced by these simulations, the first one consists in providing a representative meshed geometrical model of the unit cell at the mesoscopic scale. The second one consists in enabling a fast data input in the finite element software (contacts definition, boundary conditions, elements reorientation, etc.) so as to obtain results within reasonable time. Based on parameterized 3D CAD modeling tool of unit-cells of dry fabrics already developed, this paper presents an efficient strategy which permits an automated meshing of the models with 3D hexahedral elements and to accelerate of several orders of magnitude the simulation data input. Finally, the overall modeling strategy is illustrated by examples of finite element simulation of the mechanical behavior of fabrics.
Shouchun Deng; Robert Podgorney; Hai Huang
2011-02-01
Key challenges associated with the EGS reservoir development include the ability to reliably predict hydraulic fracturing and the deformation of natural fractures as well as estimating permeability evolution of the fracture network with time. We have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a network flow model. In DEM model, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external and internal load is applied. The natural fractures are represented by a series of connected line segments. Mechanical bonds that intersect with such line segments are removed from the DEM model. A network flow model using conjugate lattice to the DEM network is developed and coupled with the DEM. The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms the mechanical bonds and breaks them if the deformation reaches a prescribed threshold value. Such deformation/fracturing in turn changes the permeability of the flow network, which again changes the evolution of fluid pressure, intimately coupling the two processes. The intimate coupling between fracturing/deformation of fracture networks and fluid flow makes the meso-scale DEM- network flow simulations necessary in order to accurately evaluate the permeability evolution, as these methods have substantial advantages over conventional continuum mechanical models of elastic rock deformation. The challenges that must be overcome to simulate EGS reservoir stimulation, preliminary results, progress to date and near future research directions and opportunities will be
2014-04-01
ranges of ′θ ∈ −1.51×10−3,2.78 ×10−3⎡⎣ ⎤⎦ from the model based on 351 the spectral element and discontinuous Galerkin method. Also Li et al. (2013...2008: A study of spectral element and discontinuous Galerkin 457 methods for the Navier-Stokes equations in nonhydrostatic mesoscale 458 atmospheric...of Computational Physics, 117, 35-46. 467 468 Kelly, J. F. and F. X. Giraldo, 2012: Continuous and discontinuous Galerkin methods for a 469
The development of a robust, efficient solver for spectral and spectral-element time discretizations
NASA Astrophysics Data System (ADS)
Mundis, Nathan L.
This work examines alternative time discretizations for the Euler equations and methods for the robust and efficient solution of these discretizations. Specifically, the time-spectral method (TS), quasi-periodic time-spectral method (BDFTS), and spectral-element method in time (SEMT) are derived and examined in detail. For the two time-spectral based methods, focus is given to expanding these methods for more complicated problems than have been typically solved by other authors, including problems with spectral content in a large number of harmonics, gust response problems, and aeroelastic problems. To solve these more complicated problems, it was necessary to implement the flexible variant of the Generalized Minimal Residual method (FGMRES), utilizing the full second-order accurate spatial Jacobian, complete temporal coupling of the chosen time discretization, and fully-implicit coupling of the aeroelastic equations in the cases where they are needed. The FGMRES solver developed utilizes a block-colored Gauss-Seidel (BCGS) preconditioner augmented by a defect-correction process to increase its effectiveness. Exploration of more efficient preconditioners for the FGMRES solver is an anticipated topic for future work in this field. It was a logical extension to apply this already developed FGMRES solver to the spectral-element method in time, which has some advantages over the spectral methods already discussed. Unlike purely-spectral methods, SEMT allows for bothh- and p-refinement. This property could allow for element clustering around areas of sharp gradients and discontinuities, which in turn could make SEMT more efficient than TS for periodic problems that contain these sharp gradients and would require many time instances to produce a precise solution using the TS method. As such, a preliminary investigation of the SEMT method applied to the Euler equations is conducted and some areas for needed improvement in future work are identified. In this work, it is
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.
1998-01-01
This report details calculations for the McDonnell-Douglas 30P/30N and the NHLP-2D three-element highlift configurations. Calculations were performed with the Reynolds averaged Navier-Stokes code ISAAC to study the effects of various numerical issues on high lift predictions. These issues include the effect of numerical accuracy on the advection terms of the turbulence equations, Navier-Stokes versus the thin-layer Navier-Stokes approximation, an alternative formulation of the production term, and the performance of several turbulence models. The effect of the transition location on the NHLP-2D flow solution was investigated. Two empirical transition models were used to estimate the transition location.
A semi-discrete finite element method for a class of time-fractional diffusion equations.
Sun, HongGuang; Chen, Wen; Sze, K Y
2013-05-13
As fractional diffusion equations can describe the early breakthrough and the heavy-tail decay features observed in anomalous transport of contaminants in groundwater and porous soil, they have been commonly used in the related mathematical descriptions. These models usually involve long-time-range computation, which is a critical obstacle for their application; improvement of computational efficiency is of great significance. In this paper, a semi-discrete method is presented for solving a class of time-fractional diffusion equations that overcome the critical long-time-range computation problem. In the procedure, the spatial domain is discretized by the finite element method, which reduces the fractional diffusion equations to approximate fractional relaxation equations. As analytical solutions exist for the latter equations, the burden arising from long-time-range computation can effectively be minimized. To illustrate its efficiency and simplicity, four examples are presented. In addition, the method is used to solve the time-fractional advection-diffusion equation characterizing the bromide transport process in a fractured granite aquifer. The prediction closely agrees with the experimental data, and the heavy-tail decay of the anomalous transport process is well represented.
Discrete element method model and damping performance of bean bag dampers
NASA Astrophysics Data System (ADS)
Zhang, Chao; Chen, Tianning; Wang, Xiaopeng; Li, Yinggang
2014-11-01
Bean bag dampers (BBDs) have been widely applied in engineering to attenuate the vibration of a structural system, but the theoretical analysis on BBDs has been scarcely reported because of their nonlinear damping performance and complex mechanism. In this work, a three-dimensional model of a BBD was established based on the discrete element method (DEM); its flexible boundary was discretized. The model was verified by comparing simulation with test data. Based on the model, the selection of proper particle diameter on the flexible boundary of the BBD was discussed first, and then the effects of internal particle size of the BBD, the BBD's tightness and the gap between BBD and the inner wall of its enclosure on the energy dissipation capacity were studied. Moreover, the filling ratio of BBD (total internal particles' volume/the flexible boundary's capacity) was defined to quantitatively describe the tightness of BBD, and the effects of the internal particle size, the natural frequency of primary system and the enclosure size on the optimum tightness of the BBD were also considered. The results can be used as a guide in the design of BBDs.
NASA Astrophysics Data System (ADS)
Derakhshani, S. M.; Schott, D. L.; Lodewijks, G.
2013-06-01
Dust emissions can have significant effects on the human health, environment and industry equipment. Understanding the dust generation process helps to select a suitable dust preventing approach and also is useful to evaluate the environmental impact of dust emission. To describe these processes, numerical methods such as Computational Fluid Dynamics (CFD) are widely used, however nowadays particle based methods like Discrete Element Method (DEM) allow researchers to model interaction between particles and fluid flow. In this study, air flow over a stockpile, dust emission, erosion and surface deformation of granular material in the form of stockpile are studied by using DEM and CFD as a coupled method. Two and three dimensional simulations are respectively developed for CFD and DEM methods to minimize CPU time. The standard κ-ɛ turbulence model is used in a fully developed turbulent flow. The continuous gas phase and the discrete particle phase link to each other through gas-particle void fractions and momentum transfer. In addition to stockpile deformation, dust dispersion is studied and finally the accuracy of stockpile deformation results obtained by CFD-DEM modelling will be validated by the agreement with the existing experimental data.
NASA Astrophysics Data System (ADS)
Zhang, H. W.; Wu, J. K.; Fu, Z. D.
2010-05-01
An extended multiscale finite element method is developed for small-deformation elasto-plastic analysis of periodic truss materials. The base functions constructed numerically are employed to establish the relationship between the macroscopic displacement and the microscopic stress and strain. The unbalanced nodal forces in the micro-scale of unit cells are treated as the combined effects of macroscopic equivalent forces and microscopic perturbed forces, in which macroscopic equivalent forces are used to solve the macroscopic displacement field and microscopic perturbed forces are used to obtain the stress and strain in the micro-scale to make sure the correctness of the results obtained by the downscale computation in the elastic-plastic problems. Numerical examples are carried out and the results verify the validity and efficiency of the developed method by comparing it with the conventional finite element method.
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Paris, Isbelle L.; OBrien, T. Kevin; Minguet, Pierre J.
2004-01-01
The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane-strain elements as well as three different generalized plane strain type approaches were performed. The computed skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with delamination length. For more accurate predictions, however, a three-dimensional analysis is required.
Discrete-element model for the interaction between ocean waves and sea ice
Xu, Zhijie; Tartakovsky, Alexandre M.; Pan, Wenxiao
2012-01-05
We present a discrete element method (DEM) model to simulate the mechanical behavior of sea ice in response to ocean waves. The wave/ice interaction can potentially lead to the fracture and fragmentation of sea ice depending on the wave amplitude and period. The fracture behavior of sea ice is explicitly modeled by a DEM method, where sea ice is modeled by densely packed spherical particles with finite size. These particles are bonded together at their contact points through mechanical bonds that can sustain both tensile & compressive forces and moments. Fracturing can be naturally represented by the sequential breaking of mechanical bonds. For a given amplitude and period of incident ocean wave, the model provides information for the spatial distribution and time evolution of stress and micro-fractures and the fragment size distribution. We demonstrate that the fraction of broken bonds,, increases with increasing wave amplitude. In contrast, the ice fragment size decreases with increasing amplitude.
NASA Astrophysics Data System (ADS)
Spellings, Matthew; Marson, Ryan L.; Anderson, Joshua A.; Glotzer, Sharon C.
2017-04-01
Faceted shapes, such as polyhedra, are commonly found in systems of nanoscale, colloidal, and granular particles. Many interesting physical phenomena, like crystal nucleation and growth, vacancy motion, and glassy dynamics are challenging to model in these systems because they require detailed dynamical information at the individual particle level. Within the granular materials community the Discrete Element Method has been used extensively to model systems of anisotropic particles under gravity, with friction. We provide an implementation of this method intended for simulation of hard, faceted nanoparticles, with a conservative Weeks-Chandler-Andersen (WCA) interparticle potential, coupled to a thermodynamic ensemble. This method is a natural extension of classical molecular dynamics and enables rigorous thermodynamic calculations for faceted particles.
Flow Dynamics of green sand in the DISAMATIC moulding process using Discrete element method (DEM)
NASA Astrophysics Data System (ADS)
Hovad, E.; Larsen, P.; Walther, J. H.; Thorborg, J.; Hattel, J. H.
2015-06-01
The DISAMATIC casting process production of sand moulds is simulated with DEM (discrete element method). The main purpose is to simulate the dynamics of the flow of green sand, during the production of the sand mould with DEM. The sand shot is simulated, which is the first stage of the DISAMATIC casting process. Depending on the actual casting geometry the mould can be geometrically quite complex involving e.g. shadowing effects and this is directly reflected in the sand flow during the moulding process. In the present work a mould chamber with “ribs” at the walls is chosen as a baseline geometry to emulate some of these important conditions found in the real moulding process. The sand flow is simulated with the DEM and compared with corresponding video footages from the interior of the chamber during the moulding process. The effect of the rolling resistance and the static friction coefficient is analysed and discussed in relation to the experimental findings.
Mechanical behavior modeling of sand-rubber chips mixtures using discrete element method (DEM)
NASA Astrophysics Data System (ADS)
Eidgahee, Danial Rezazadeh; Hosseininia, Ehsan Seyedi
2013-06-01
Rubber shreds in mixture with sandy soils are widely used in geotechnical purposes due to their specific controlled compressibility characteristics and light weight. Various studies have been carried out for sand or rubber chips content in order to restrain the compressibility of the mass in different structures such as backfills, road embankments, etc. Considering different rubber contents, sand-rubber mixtures can be made which lead mechanical properties of the blend to go through changes. The aim of this paper is to study the effect of adding different rubber portions on the global engineering properties of the mixtures. This study is performed by using Discrete Element Method (DEM). The simulations showed that adding rubber up to a particular fraction can improve maximum bearing stress characteristics comparing to sand alone masses. Taking the difference between sand and rubber stiffness into account, the result interpretation can be developed to other soft and rigid particle mixtures such as powders or polymers.
Discrete element method study of fuel relocation and dispersal during loss-of-coolant accidents
NASA Astrophysics Data System (ADS)
Govers, K.; Verwerft, M.
2016-09-01
The fuel fragmentation, relocation and dispersal (FFRD) during LOCA transients today retain the attention of the nuclear safety community. The fine fragmentation observed at high burnup may, indeed, affect the Emergency Core Cooling System performance: accumulation of fuel debris in the cladding ballooned zone leads to a redistribution of the temperature profile, while dispersal of debris might lead to coolant blockage or to debris circulation through the primary circuit. This work presents a contribution, by discrete element method, towards a mechanistic description of the various stages of FFRD. The fuel fragments are described as a set of interacting particles, behaving as a granular medium. The model shows qualitative and quantitative agreement with experimental observations, such as the packing efficiency in the balloon, which is shown to stabilize at about 55%. The model is then applied to study fuel dispersal, for which experimental parametric studies are both difficult and expensive.
A hybrid mortar virtual element method for discrete fracture network simulations
NASA Astrophysics Data System (ADS)
Benedetto, Matías Fernando; Berrone, Stefano; Borio, Andrea; Pieraccini, Sandra; Scialò, Stefano
2016-02-01
The most challenging issue in performing underground flow simulations in Discrete Fracture Networks (DFN) is to effectively tackle the geometrical difficulties of the problem. In this work we put forward a new application of the Virtual Element Method combined with the Mortar method for domain decomposition: we exploit the flexibility of the VEM in handling polygonal meshes in order to easily construct meshes conforming to the traces on each fracture, and we resort to the mortar approach in order to "weakly" impose continuity of the solution on intersecting fractures. The resulting method replaces the need for matching grids between fractures, so that the meshing process can be performed independently for each fracture. Numerical results show optimal convergence and robustness in handling very complex geometries.
A Discrete Element Model of Armor Glass Fragmentation and Comminution Failure Under Compression
Xu, Wei; Sun, Xin
2016-02-15
Because of its exceptional compressive resistance and crystal-clear appearance, lightweight glass has been traditionally used in transparent armor applications. However, due to its brittle nature, glass fails differently from ductile materials in the sense that glass fragmentation occurs instantly ahead of the projectile tip upon penetration. The effective residual strength of the armor glass then inevitably relies on the damaged glass strength within such comminuted zones with confinement from the surrounding intact materials. Physical understanding of damaged glass strength therefore becomes highly critical to the further development of armor designs. In the present study, a discrete element based modeling framework has been developed to understand and predict the evolution of compressive damages and residual strength of armor glasses. With the characteristic fragmentation and comminution failures explicitly resolved, their influences on the mechanical degradation of the loaded glass materials have been evaluated. The effects of essential loading conditions and material properties have also been investigated.
Pesch, L. Vegt, J.J.W. van der
2008-05-10
Using the generalized variable formulation of the Euler equations of fluid dynamics, we develop a numerical method that is capable of simulating the flow of fluids with widely differing thermodynamic behavior: ideal and real gases can be treated with the same method as an incompressible fluid. The well-defined incompressible limit relies on using pressure primitive or entropy variables. In particular entropy variables can provide numerical methods with attractive properties, e.g. fulfillment of the second law of thermodynamics. We show how a discontinuous Galerkin finite element discretization previously used for compressible flow with an ideal gas equation of state can be extended for general fluids. We also examine which components of the numerical method have to be changed or adapted. Especially, we investigate different possibilities of solving the nonlinear algebraic system with a pseudo-time iteration. Numerical results highlight the applicability of the method for various fluids.
An overset mesh approach for 3D mixed element high-order discretizations
NASA Astrophysics Data System (ADS)
Brazell, Michael J.; Sitaraman, Jayanarayanan; Mavriplis, Dimitri J.
2016-10-01
A parallel high-order Discontinuous Galerkin (DG) method is used to solve the compressible Navier-Stokes equations in an overset mesh framework. The DG solver has many capabilities including: hp-adaption, curved cells, support for hybrid, mixed-element meshes, and moving meshes. Combining these capabilities with overset grids allows the DG solver to be used in problems with bodies in relative motion and in a near-body off-body solver strategy. The overset implementation is constructed to preserve the design accuracy of the baseline DG discretization. Multiple simulations are carried out to validate the accuracy and performance of the overset DG solver. These simulations demonstrate the capability of the high-order DG solver to handle complex geometry and large scale parallel simulations in an overset framework.
NASA Astrophysics Data System (ADS)
Han, Xuesong
2014-09-01
Machining technology about ceramics has been developed very fast over recent years due to the growing industrial demand of higher machining accuracy and better surface quality of ceramic elements, while the nature of hard and brittle ceramics makes it difficult to acquire damage-free and ultra-smooth surface. Ceramic bulk can be treated as an assemblage of discrete particles bonded together randomly as the micro-structure of ceramics consists of crystal particles and pores, and the inter-granular fracture of the ceramics can be naturally represented by the separation of particles due to breakage of bonds. Discrete element method (DEM) provides a promising approach for constructing an effective model to describe the tool-workpiece interaction and can serve as a predicting simulation tool in analyzing the complicated surface generation mechanism and is employed in this research to simulate the mechanical polishing process of ceramics and surface integrity. In this work, a densely packed particle assembly system of the polycrystalline Si3N4 has been generated using bonded-particle model to represent the ceramic workpiece numerically. The simulation results justify that the common critical depth of cut cannot be used as the effective parameters for evaluating brittle to ductile transformation in ceramic polishing process. Therefore, a generalized criterion of defining the range of ductile regime machining has been developed based on the numerical results. Furthermore, different distribution of pressure chain is observed with different depth of cut which ought to have intense relationship with special structure of ceramics. This study also justified the advantage of DEM model in its capability of revealing the mechanical behaviors of ceramics at micro-scale.
NASA Astrophysics Data System (ADS)
Vašinová Galiová, Michaela; Čopjaková, Renata; Škoda, Radek; Štěpánková, Kateřina; Vaňková, Michaela; Kuta, Jan; Prokeš, Lubomír; Kynický, Jindřich; Kanický, Viktor
2014-10-01
A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS.
NASA Astrophysics Data System (ADS)
Le Hardy, D.; Favennec, Y.; Rousseau, B.
2016-08-01
The 2D radiative transfer equation coupled with specular reflection boundary conditions is solved using finite element schemes. Both Discontinuous Galerkin and Streamline-Upwind Petrov-Galerkin variational formulations are fully developed. These two schemes are validated step-by-step for all involved operators (transport, scattering, reflection) using analytical formulations. Numerical comparisons of the two schemes, in terms of convergence rate, reveal that the quadratic SUPG scheme proves efficient for solving such problems. This comparison constitutes the main issue of the paper. Moreover, the solution process is accelerated using block SOR-type iterative methods, for which the determination of the optimal parameter is found in a very cheap way.
NASA Technical Reports Server (NTRS)
Thompson David S.; Soni, Bharat K.
2001-01-01
An integrated geometry/grid/simulation software package, ICEG2D, is being developed to automate computational fluid dynamics (CFD) simulations for single- and multi-element airfoils with ice accretions. The current version, ICEG213 (v2.0), was designed to automatically perform four primary functions: (1) generate a grid-ready surface definition based on the geometrical characteristics of the iced airfoil surface, (2) generate high-quality structured and generalized grids starting from a defined surface definition, (3) generate the input and restart files needed to run the structured grid CFD solver NPARC or the generalized grid CFD solver HYBFL2D, and (4) using the flow solutions, generate solution-adaptive grids. ICEG2D (v2.0) can be operated in either a batch mode using a script file or in an interactive mode by entering directives from a command line within a Unix shell. This report summarizes activities completed in the first two years of a three-year research and development program to address automation issues related to CFD simulations for airfoils with ice accretions. As well as describing the technology employed in the software, this document serves as a users manual providing installation and operating instructions. An evaluation of the software is also presented.
Calio, I.; Cannizzaro, F.; Marletta, M.; Panto, B.; D'Amore, E.
2008-07-08
In the present study a new discrete-element approach for the evaluation of the seismic resistance of composite reinforced concrete-masonry structures is presented. In the proposed model, unreinforced masonry panels are modelled by means of two-dimensional discrete-elements, conceived by the authors for modelling masonry structures, whereas the reinforced concrete elements are modelled by lumped plasticity elements interacting with the masonry panels through nonlinear interface elements. The proposed procedure was adopted for the assessment of the seismic response of a case study confined-masonry building which was conceived to be a typical representative of a wide class of residential buildings designed to the requirements of the 1909 issue of the Italian seismic code and widely adopted in the aftermath of the 1908 earthquake for the reconstruction of the cities of Messina and Reggio Calabria.
The semi-discrete Galerkin finite element modelling of compressible viscous flow past an airfoil
NASA Technical Reports Server (NTRS)
Meade, Andrew J., Jr.
1992-01-01
A method is developed to solve the two-dimensional, steady, compressible, turbulent boundary-layer equations and is coupled to an existing Euler solver for attached transonic airfoil analysis problems. The boundary-layer formulation utilizes the semi-discrete Galerkin (SDG) method to model the spatial variable normal to the surface with linear finite elements and the time-like variable with finite differences. A Dorodnitsyn transformed system of equations is used to bound the infinite spatial domain thereby permitting the use of a uniform finite element grid which provides high resolution near the wall and automatically follows boundary-layer growth. The second-order accurate Crank-Nicholson scheme is applied along with a linearization method to take advantage of the parabolic nature of the boundary-layer equations and generate a non-iterative marching routine. The SDG code can be applied to any smoothly-connected airfoil shape without modification and can be coupled to any inviscid flow solver. In this analysis, a direct viscous-inviscid interaction is accomplished between the Euler and boundary-layer codes, through the application of a transpiration velocity boundary condition. Results are presented for compressible turbulent flow past NACA 0012 and RAE 2822 airfoils at various freestream Mach numbers, Reynolds numbers, and angles of attack. All results show good agreement with experiment, and the coupled code proved to be a computationally-efficient and accurate airfoil analysis tool.
Herbold, E. B.; Walton, O.; Homel, M. A.
2015-10-26
This document serves as a final report to a small effort where several improvements were added to a LLNL code GEODYN-L to develop Discrete Element Method (DEM) algorithms coupled to Lagrangian Finite Element (FE) solvers to investigate powder-bed formation problems for additive manufacturing. The results from these simulations will be assessed for inclusion as the initial conditions for Direct Metal Laser Sintering (DMLS) simulations performed with ALE3D. The algorithms were written and performed on parallel computing platforms at LLNL. The total funding level was 3-4 weeks of an FTE split amongst two staff scientists and one post-doc. The DEM simulations emulated, as much as was feasible, the physical process of depositing a new layer of powder over a bed of existing powder. The DEM simulations utilized truncated size distributions spanning realistic size ranges with a size distribution profile consistent with realistic sample set. A minimum simulation sample size on the order of 40-particles square by 10-particles deep was utilized in these scoping studies in order to evaluate the potential effects of size segregation variation with distance displaced in front of a screed blade. A reasonable method for evaluating the problem was developed and validated. Several simulations were performed to show the viability of the approach. Future investigations will focus on running various simulations investigating powder particle sizing and screen geometries.
NASA Astrophysics Data System (ADS)
Sauer, Roger A.
2013-08-01
Recently an enriched contact finite element formulation has been developed that substantially increases the accuracy of contact computations while keeping the additional numerical effort at a minimum reported by Sauer (Int J Numer Meth Eng, 87: 593-616, 2011). Two enrich-ment strategies were proposed, one based on local p-refinement using Lagrange interpolation and one based on Hermite interpolation that produces C 1-smoothness on the contact surface. Both classes, which were initially considered for the frictionless Signorini problem, are extended here to friction and contact between deformable bodies. For this, a symmetric contact formulation is used that allows the unbiased treatment of both contact partners. This paper also proposes a post-processing scheme for contact quantities like the contact pressure. The scheme, which provides a more accurate representation than the raw data, is based on an averaging procedure that is inspired by mortar formulations. The properties of the enrichment strategies and the corresponding post-processing scheme are illustrated by several numerical examples considering sliding and peeling contact in the presence of large deformations.
NASA Astrophysics Data System (ADS)
Salamon, Joe
In this dissertation, I will discuss and explore the various theoretical pillars re- quired to investigate the world of discretized gauge theories in a purely classical setting, with the long-term aim of achieving a fully-fledged discretization of General Relativity (GR). I will start with a brief review of differential forms, then present some results on the geometric framework of finite element exterior calculus (FEEC); in particular, I will elaborate on integrating metric structures within the framework and categorize the dual spaces of the various spaces of polynomial differential forms P rLambdak(R n). After a brief pedagogical detour on Noether's two theorems, I will apply all of the above into discretizations of electromagnetism and linearized GR. I will conclude with an excursion into the geodesic finite element method (GFEM) as a way to generalize some of the above notions to curved manifolds.
Normal fault growth above pre-existing structures: insights from discrete element modelling
NASA Astrophysics Data System (ADS)
Wrona, Thilo; Finch, Emma; Bell, Rebecca; Jackson, Christopher; Gawthorpe, Robert; Phillips, Thomas
2016-04-01
In extensional systems, pre-existing structures such as shear zones may affect the growth, geometry and location of normal faults. Recent seismic reflection-based observations from the North Sea suggest that shear zones not only localise deformation in the host rock, but also in the overlying sedimentary succession. While pre-existing weaknesses are known to localise deformation in the host rock, their effect on deformation in the overlying succession is less well understood. Here, we use 3-D discrete element modelling to determine if and how kilometre-scale shear zones affect normal fault growth in the overlying succession. Discrete element models use a large number of interacting particles to describe the dynamic evolution of complex systems. The technique has therefore been applied to describe fault and fracture growth in a variety of geological settings. We model normal faulting by extending a 60×60×30 km crustal rift-basin model including brittle and ductile interactions and gravitation and isostatic forces by 30%. An inclined plane of weakness which represents a pre-existing shear zone is introduced in the lower section of the upper brittle layer at the start of the experiment. The length, width, orientation and dip of the weak zone are systematically varied between experiments to test how these parameters control the geometric and kinematic development of overlying normal fault systems. Consistent with our seismic reflection-based observations, our results show that strain is indeed localised in and above these weak zones. In the lower brittle layer, normal faults nucleate, as expected, within the zone of weakness and control the initiation and propagation of neighbouring faults. Above this, normal faults nucleate throughout the overlying strata where their orientations are strongly influenced by the underlying zone of weakness. These results challenge the notion that overburden normal faults simply form due to reactivation and upwards propagation of pre
Analysis of periodic 3D viscous flows using a quadratic discrete Galerkin boundary element method
NASA Astrophysics Data System (ADS)
Chan, Chiu Y.; Beris, Antony N.; Advani, Suresh G.
1994-05-01
A discrete Galerkin boundary element technique with a quadratic approximation of the variables was developed to simulate the three-dimensional (3D) viscous flow established in periodic assemblages of particles in suspensions and within a periodic porous medium. The Batchelor's unit-cell approach is used. The Galerkin formulation effectively handles the discontinuity in the traction arising in flow boundaries with edges or corners, such as the unit cell in this case. For an ellipsoidal dilute suspension over the range of aspect ratio studied (1 to 54), the numerical solutions of the rotational velocity of the particles and the viscosity correction were found to agree with the analytic values within 0.2% and 2% respectively, even with coarse meshes. In a suspension of cylindrical particles the calculated period of rotation agreed with the experimental data. However, Burgers' predictions for the correction to the suspension viscosity were found to be 30% too low and therefore the concept of the equivalent ellipsoidal ratio is judged to be inadequate. For pressure-driven flow through a fixed bed of fibers, the prediction on the permeability was shown to deviate by as much as 10% from the value calculated based on approximate permeability additivity rules using the corresponding values for planar flow past a periodic array of parallel cylinders. These applications show the versatility of the technique for studying viscous flows in complicated 3D geometries.
Discrete element simulation of charging and mixed layer formation in the ironmaking blast furnace
NASA Astrophysics Data System (ADS)
Mitra, Tamoghna; Saxén, Henrik
2016-11-01
The burden distribution in the ironmaking blast furnace plays an important role for the operation as it affects the gas flow distribution, heat and mass transfer, and chemical reactions in the shaft. This work studies certain aspects of burden distribution by small-scale experiments and numerical simulation by the discrete element method (DEM). Particular attention is focused on the complex layer-formation process and the problems associated with estimating the burden layer distribution by burden profile measurements. The formation of mixed layers is studied, and a computational method for estimating the extent of the mixed layer, as well as its voidage, is proposed and applied on the results of the DEM simulations. In studying a charging program and its resulting burden distribution, the mixed layers of coke and pellets were found to show lower voidage than the individual burden layers. The dynamic evolution of the mixed layer during the charging process is also analyzed. The results of the study can be used to gain deeper insight into the complex charging process of the blast furnace, which is useful in the design of new charging programs and for mathematical models that do not consider the full behavior of the particles in the burden layers.
Numerical sedimentation particle-size analysis using the Discrete Element Method
NASA Astrophysics Data System (ADS)
Bravo, R.; Pérez-Aparicio, J. L.; Gómez-Hernández, J. J.
2015-12-01
Sedimentation tests are widely used to determine the particle size distribution of a granular sample. In this work, the Discrete Element Method interacts with the simulation of flow using the well known one-way-coupling method, a computationally affordable approach for the time-consuming numerical simulation of the hydrometer, buoyancy and pipette sedimentation tests. These tests are used in the laboratory to determine the particle-size distribution of fine-grained aggregates. Five samples with different particle-size distributions are modeled by about six million rigid spheres projected on two-dimensions, with diameters ranging from 2.5 ×10-6 m to 70 ×10-6 m, forming a water suspension in a sedimentation cylinder. DEM simulates the particle's movement considering laminar flow interactions of buoyant, drag and lubrication forces. The simulation provides the temporal/spatial distributions of densities and concentrations of the suspension. The numerical simulations cannot replace the laboratory tests since they need the final granulometry as initial data, but, as the results show, these simulations can identify the strong and weak points of each method and eventually recommend useful variations and draw conclusions on their validity, aspects very difficult to achieve in the laboratory.
A discrete element based simulation framework to investigate particulate spray deposition processes
Mukherjee, Debanjan Zohdi, Tarek I.
2015-06-01
This work presents a computer simulation framework based on discrete element method to analyze manufacturing processes that comprise a loosely flowing stream of particles in a carrier fluid being deposited on a target surface. The individual particulate dynamics under the combined action of particle collisions, fluid–particle interactions, particle–surface contact and adhesive interactions is simulated, and aggregated to obtain global system behavior. A model for deposition which incorporates the effect of surface energy, impact velocity and particle size, is developed. The fluid–particle interaction is modeled using appropriate spray nozzle gas velocity distributions and a one-way coupling between the phases. It is found that the particle response times and the release velocity distribution of particles have a combined effect on inter-particle collisions during the flow along the spray. It is also found that resolution of the particulate collisions close to the target surface plays an important role in characterizing the trends in the deposit pattern. Analysis of the deposit pattern using metrics defined from the particle distribution on the target surface is provided to characterize the deposition efficiency, deposit size, and scatter due to collisions.
Numerical Simulation of Dry Granular Flow Impacting a Rigid Wall Using the Discrete Element Method.
Wu, Fengyuan; Fan, Yunyun; Liang, Li; Wang, Chao
2016-01-01
This paper presents a clump model based on Discrete Element Method. The clump model was more close to the real particle than a spherical particle. Numerical simulations of several tests of dry granular flow impacting a rigid wall flowing in an inclined chute have been achieved. Five clump models with different sphericity have been used in the simulations. By comparing the simulation results with the experimental results of normal force on the rigid wall, a clump model with better sphericity was selected to complete the following numerical simulation analysis and discussion. The calculation results of normal force showed good agreement with the experimental results, which verify the effectiveness of the clump model. Then, total normal force and bending moment of the rigid wall and motion process of the granular flow were further analyzed. Finally, comparison analysis of the numerical simulations using the clump model with different grain composition was obtained. By observing normal force on the rigid wall and distribution of particle size at the front of the rigid wall at the final state, the effect of grain composition on the force of the rigid wall has been revealed. It mainly showed that, with the increase of the particle size, the peak force at the retaining wall also increase. The result can provide a basis for the research of relevant disaster and the design of protective structures.
Optimizing the Pipe Diameter of the Pipe Belt Conveyor Based on Discrete Element Method
NASA Astrophysics Data System (ADS)
Guo, Yong-cun; Wang, Shuang; Hu, Kun; Li, De-yong
2016-03-01
In order to increase the transport volume of the pipe belt conveyor and reduce lateral pressure of the supporting roller set, this study aims to optimize the pipe diameter of the pipe belt conveyor. A mechanical model of the pipe belt conveyor with six supporting roller sets in the belt bearing section was built based on the infinitesimal method, and the formula for calculating the lateral pressure of each supporting roller was deduced on the basis of reasonable assumption. Simulated analysis was carried out on the operation process of the pipe belt conveyor by using the discrete element method. The result showed that, when the other conditions were certain, as the pipe diameter increased, the average lateral pressure of the supporting roller set increased, with a gradually decreasing increment, which was consistent with the calculated result of the theoretical formula. An optimized pipe diameter under the current conditions was obtained by fitting the curve of the formula for calculating the transport volume of the pipe belt conveyor and its simulation curve. It provided a certain reference value for improving the transport efficiency and prolonging the service life of the pipe belt conveyor.
Discrete-element model for the interaction between ocean waves and sea ice.
Xu, Zhijie; Tartakovsky, Alexandre M; Pan, Wenxiao
2012-01-01
We present a discrete-element method (DEM) model to simulate the mechanical behavior of sea ice in response to ocean waves. The interaction of ocean waves and sea ice potentially can lead to the fracture and fragmentation of sea ice depending on the wave amplitude and period. The fracture behavior of sea ice explicitly is modeled by a DEM method where sea ice is modeled by densely packed spherical particles with finite sizes. These particles are bonded together at their contact points through mechanical bonds that can sustain both tensile and compressive forces and moments. Fracturing naturally can be represented by the sequential breaking of mechanical bonds. For a given amplitude and period of incident ocean waves, the model provides information for the spatial distribution and time evolution of stress and microfractures and the fragment size distribution. We demonstrate that the fraction of broken bonds α increases with increasing wave amplitude. In contrast, the ice fragment size l decreases with increasing amplitude. This information is important for the understanding of the breakup of individual ice floes and floe fragment size.
Just, Sarah; Toschkoff, Gregor; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes; Knop, Klaus; Kleinebudde, Peter
2013-03-01
Coating of solid dosage forms is an important unit operation in the pharmaceutical industry. In recent years, numerical simulations of drug manufacturing processes have been gaining interest as process analytical technology tools. The discrete element method (DEM) in particular is suitable to model tablet-coating processes. For the development of accurate simulations, information on the material properties of the tablets is required. In this study, the mechanical parameters Young's modulus, coefficient of restitution (CoR), and coefficients of friction (CoF) of gastrointestinal therapeutic systems (GITS) and of active-coated GITS were measured experimentally. The dynamic angle of repose of these tablets in a drum coater was investigated to revise the CoF. The resulting values were used as input data in DEM simulations to compare simulation and experiment. A mean value of Young's modulus of 31.9 MPa was determined by the uniaxial compression test. The CoR was found to be 0.78. For both tablet-steel and tablet-tablet friction, active-coated GITS showed a higher CoF compared with GITS. According to the values of the dynamic angle of repose, the CoF was adjusted to obtain consistent tablet motion in the simulation and in the experiment. On the basis of this experimental characterization, mechanical parameters are integrated into DEM simulation programs to perform numerical analysis of coating processes.
NASA Astrophysics Data System (ADS)
Yan, Z.; Wilkinson, S. K.; Stitt, E. H.; Marigo, M.
2015-09-01
Selection or calibration of particle property input parameters is one of the key problematic aspects for the implementation of the discrete element method (DEM). In the current study, a parametric multi-level sensitivity method is employed to understand the impact of the DEM input particle properties on the bulk responses for a given simple system: discharge of particles from a flat bottom cylindrical container onto a plate. In this case study, particle properties, such as Young's modulus, friction parameters and coefficient of restitution were systematically changed in order to assess their effect on material repose angles and particle flow rate (FR). It was shown that inter-particle static friction plays a primary role in determining both final angle of repose and FR, followed by the role of inter-particle rolling friction coefficient. The particle restitution coefficient and Young's modulus were found to have insignificant impacts and were strongly cross correlated. The proposed approach provides a systematic method that can be used to show the importance of specific DEM input parameters for a given system and then potentially facilitates their selection or calibration. It is concluded that shortening the process for input parameters selection and calibration can help in the implementation of DEM.
Maginot, P. G.; Ragusa, J. C.; Morel, J. E.
2013-07-01
We examine several possible methods of mass matrix lumping for discontinuous finite element discrete ordinates transport using a Lagrange interpolatory polynomial trial space. Though positive outflow angular flux is guaranteed with traditional mass matrix lumping in a purely absorbing 1-D slab cell for the linear discontinuous approximation, we show that when used with higher degree interpolatory polynomial trial spaces, traditional lumping does yield strictly positive outflows and does not increase in accuracy with an increase in trial space polynomial degree. As an alternative, we examine methods which are 'self-lumping'. Self-lumping methods yield diagonal mass matrices by using numerical quadrature restricted to the Lagrange interpolatory points. Using equally-spaced interpolatory points, self-lumping is achieved through the use of closed Newton-Cotes formulas, resulting in strictly positive outflows in pure absorbers for odd power polynomials in 1-D slab geometry. By changing interpolatory points from the traditional equally-spaced points to the quadrature points of the Gauss-Legendre or Lobatto-Gauss-Legendre quadratures, it is possible to generate solution representations with a diagonal mass matrix and a strictly positive outflow for any degree polynomial solution representation in a pure absorber medium in 1-D slab geometry. Further, there is no inherent limit to local truncation error order of accuracy when using interpolatory points that correspond to the quadrature points of high order accuracy numerical quadrature schemes. (authors)
Study on small-strain behaviours of methane hydrate sandy sediments using discrete element method
Yu Yanxin; Cheng Yipik; Xu Xiaomin; Soga, Kenichi
2013-06-18
Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wave velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation.
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; Streett, Craig L.; Carpenter, Mark H.
2011-01-01
A combination of parabolized stability equations and secondary instability theory has been applied to a low-speed swept airfoil model with a chord Reynolds number of 7.15 million, with the goals of (i) evaluating this methodology in the context of transition prediction for a known configuration for which roughness based crossflow transition control has been demonstrated under flight conditions and (ii) of analyzing the mechanism of transition delay via the introduction of discrete roughness elements (DRE). Roughness based transition control involves controlled seeding of suitable, subdominant crossflow modes, so as to weaken the growth of naturally occurring, linearly more unstable crossflow modes. Therefore, a synthesis of receptivity, linear and nonlinear growth of stationary crossflow disturbances, and the ensuing development of high frequency secondary instabilities is desirable to understand the experimentally observed transition behavior. With further validation, such higher fidelity prediction methodology could be utilized to assess the potential for crossflow transition control at even higher Reynolds numbers, where experimental data is currently unavailable.
Zhou, Jing; Huang, Hai; Deo, Milind
2015-10-01
The interaction between hydraulic fractures (HF) and natural fractures (NF) will lead to complex fracture networks due to the branching and merging of natural and hydraulic fractures in unconventional reservoirs. In this paper, a newly developed hydraulic fracturing simulator based on discrete element method is used to predict the generation of complex fracture network in the presence of pre-existing natural fractures. By coupling geomechanics and reservoir flow within a dual lattice system, this simulator can effectively capture the poro-elastic effects and fluid leakoff into the formation. When HFs are intercepting single or multiple NFs, complex mechanisms such as direct crossing, arresting, dilating and branching can be simulated. Based on the model, the effects of injected fluid rate and viscosity, the orientation and permeability of NFs and stress anisotropy on the HF-NF interaction process are investigated. Combined impacts from multiple parameters are also examined in the paper. The numerical results show that large values of stress anisotropy, intercepting angle, injection rate and viscosity will impede the opening of NFs.
Kroupa, Martin; Vonka, Michal; Soos, Miroslav; Kosek, Juraj
2015-07-21
The coagulation process has a dramatic impact on the properties of dispersions of colloidal particles including the change of optical, rheological, as well as texture properties. We model the behavior of a colloidal dispersion with moderate particle volume fraction, that is, 5 wt %, subjected to high shear rates employing the time-dependent Discrete Element Method (DEM) in three spatial dimensions. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was used to model noncontact interparticle interactions, while contact mechanics was described by the Johnson-Kendall-Roberts (JKR) theory of adhesion. The obtained results demonstrate that the steady-state size of the produced clusters is a strong function of the applied shear rate, primary particle size, and the surface energy of the particles. Furthermore, it was found that the cluster size is determined by the maximum adhesion force between the primary particles and not the adhesion energy. This observation is in agreement with several simulation studies and is valid for the case when the particle-particle contact is elastic and no plastic deformation occurs. These results are of major importance, especially for the emulsion polymerization process, during which the fouling of reactors and piping causes significant financial losses.
Numerical Simulation of Dry Granular Flow Impacting a Rigid Wall Using the Discrete Element Method
Wu, Fengyuan; Fan, Yunyun; Liang, Li; Wang, Chao
2016-01-01
This paper presents a clump model based on Discrete Element Method. The clump model was more close to the real particle than a spherical particle. Numerical simulations of several tests of dry granular flow impacting a rigid wall flowing in an inclined chute have been achieved. Five clump models with different sphericity have been used in the simulations. By comparing the simulation results with the experimental results of normal force on the rigid wall, a clump model with better sphericity was selected to complete the following numerical simulation analysis and discussion. The calculation results of normal force showed good agreement with the experimental results, which verify the effectiveness of the clump model. Then, total normal force and bending moment of the rigid wall and motion process of the granular flow were further analyzed. Finally, comparison analysis of the numerical simulations using the clump model with different grain composition was obtained. By observing normal force on the rigid wall and distribution of particle size at the front of the rigid wall at the final state, the effect of grain composition on the force of the rigid wall has been revealed. It mainly showed that, with the increase of the particle size, the peak force at the retaining wall also increase. The result can provide a basis for the research of relevant disaster and the design of protective structures. PMID:27513661
Calibration of Discrete Element Heat Transfer Parameters by Central Composite Design
NASA Astrophysics Data System (ADS)
Deng, Zongquan; Cui, Jinsheng; Hou, Xuyan; Jiang, Shengyuan
2017-03-01
The efficiency and precision of parameter calibration in discrete element method (DEM) are not satisfactory, and parameter calibration for granular heat transfer is rarely involved. Accordingly, parameter calibration for granular heat transfer with the DEM is studied. The heat transfer in granular assemblies is simulated with DEM, and the effective thermal conductivity (ETC) of these granular assemblies is measured with the transient method in simulations. The measurement testbed is designed to test the ETC of the granular assemblies under normal pressure and a vacuum based on the steady method. Central composite design (CCD) is used to simulate the impact of the DEM parameters on the ETC of granular assemblies, and the heat transfer parameters are calibrated and compared with experimental data. The results show that, within the scope of the considered parameters, the ETC of the granular assemblies increases with an increasing particle thermal conductivity and decreases with an increasing particle shear modulus and particle diameter. The particle thermal conductivity has the greatest impact on the ETC of granular assemblies followed by the particle shear modulus and then the particle diameter. The calibration results show good agreement with the experimental results. The error is less than 4%, which is within a reasonable range for the scope of the CCD parameters. The proposed research provides high efficiency and high accuracy parameter calibration for granular heat transfer in DEM.
Nye, Ben; Kulchitsky, Anton V; Johnson, Jerome B
2014-01-01
This paper describes a new method for representing concave polyhedral particles in a discrete element method as unions of convex dilated polyhedra. This method offers an efficient way to simulate systems with a large number of (generally concave) polyhedral particles. The method also allows spheres, capsules, and dilated triangles to be combined with polyhedra using the same approach. The computational efficiency of the method is tested in two different simulation setups using different efficiency metrics for seven particle types: spheres, clusters of three spheres, clusters of four spheres, tetrahedra, cubes, unions of two octahedra (concave), and a model of a computer tomography scan of a lunar simulant GRC-3 particle. It is shown that the computational efficiency of the simulations degrades much slower than the increase in complexity of the particles in the system. The efficiency of the method is based on the time coherence of the system, and an efficient and robust distance computation method between polyhedra as particles never intersect for dilated particles. PMID:26300584
Borehole Breakouts Induced in Arkosic Sandstones and a Discrete Element Analysis
NASA Astrophysics Data System (ADS)
Lee, H.; Moon, T.; Haimson, B. C.
2016-04-01
A series of laboratory drilling experiments were conducted on two arkosic sandstones (Tenino and Tablerock) under polyaxial far-field stress conditions (σ h ≠ σ H ≠ σ v ). V-shaped breakouts, aligned with the σ h direction and revealing stress-dependent dimensions (width and length), were observed in the sandstones. The microscale damage pattern leading to the breakouts, however, is different between the two, which is attributed to the difference in their cementation. The dominant micromechanism in Tenino sandstone is intergranular microcracking occurring in clay minerals filling the spaces between clastic grains. On the other hand, intra- and transgranular microcracking taking place in the grain itself prevails in Tablerock sandstone. To capture the grain-scale damage and reproduce the failure localization observed around the borehole in the laboratory, we used a discrete element (DE) model in which a grain breakage algorithm was implemented. The microparameters needed in the numerical model were calibrated by running material tests and comparing the macroscopic responses of the model to the ones measured in the laboratory. It is shown that DE modeling is capable of simulating the microscale damage of the rock and replicating the localized damage zone observed in the laboratory. In addition, the numerically induced breakout width is determined at a very early stage of the damage localization and is not altered for the rest of the failure process.
Discrete Element Modeling of Volcanic Pyroclasts: Cone Construction and Impact Sags
NASA Astrophysics Data System (ADS)
Courtland, L. M.; Thornton, A.; Connor, C.; Bokhove, I. O.
2012-12-01
Particles ejected in Strombolian-type eruptions typically follow ballistic trajectories through the atmosphere before coming to rest at the Earth's surface. In the near field, these particles pile on top of one another, ultimately resulting in the creation of a volcanic edifice. Farther afield, particles that are able to clear the edifice often create measurable impact craters upon landing. Mercury-DPM, a discrete element model, is used to investigate each of these scenarios numerically. Once particle parameters (e.g. size, density), exit conditions (e.g. ejection angle, ejection speed), external body forces (e.g. gravity, air drag), and particle-particle interactions are defined, Mercury computes the translational and rotational evolution of particles by solving Newton's second law. Mercury-DPM includes many pre-defined paticle-particle interaction laws for granular materials like tephra, including elastic, plastic, viscous, and frictional. Once the forces are defined, the code is able to capture all stages of the eruption from initial ballistic flights to secondary avalanching of the deposited material. The code is here utilized to examine the conditions which promote granular avalanches of varying size and to calculate the geometry of these flows. Avalanche thicknesses are compared to thicknesses derived from ground penetrating radar imaging of Cerro Negro volcano, Nicaragua. Away from the edifice, Mercury-DPM is used to calculate the expected geometry of impact craters for various eruption conditions. The feasibility of utilizing these results in the field to determine the initial conditions of particle ejection is explored.
Nye, Ben; Kulchitsky, Anton V; Johnson, Jerome B
2014-06-25
This paper describes a new method for representing concave polyhedral particles in a discrete element method as unions of convex dilated polyhedra. This method offers an efficient way to simulate systems with a large number of (generally concave) polyhedral particles. The method also allows spheres, capsules, and dilated triangles to be combined with polyhedra using the same approach. The computational efficiency of the method is tested in two different simulation setups using different efficiency metrics for seven particle types: spheres, clusters of three spheres, clusters of four spheres, tetrahedra, cubes, unions of two octahedra (concave), and a model of a computer tomography scan of a lunar simulant GRC-3 particle. It is shown that the computational efficiency of the simulations degrades much slower than the increase in complexity of the particles in the system. The efficiency of the method is based on the time coherence of the system, and an efficient and robust distance computation method between polyhedra as particles never intersect for dilated particles.
NASA Astrophysics Data System (ADS)
Podlozhnyuk, Alexander; Pirker, Stefan; Kloss, Christoph
2017-01-01
Particle shape representation is a fundamental problem in the Discrete Element Method (DEM). Spherical particles with well known contact force models remain popular in DEM due to their relative simplicity in terms of ease of implementation and low computational cost. However, in real applications particles are mostly non-spherical, and more sophisticated particle shape models, like superquadric shape, must be introduced in DEM. The superquadric shape can be considered as an extension of spherical or ellipsoidal particles and can be used for modeling of spheres, ellipsoids, cylinder-like and box(dice)-like particles just varying five shape parameters. In this study we present an efficient C++ implementation of superquadric particles within the open-source and parallel DEM package LIGGGHTS. To reduce computational time several ideas are employed. In the particle-particle contact detection routine we use the minimum bounding spheres and the oriented bounding boxes to reduce the number of potential contact pairs. For the particle-wall contact an accurate analytical solution was found. We present all necessary mathematics for the contact detection and contact force calculation. The superquadric DEM code implementation was verified on test cases such as angle of repose and hopper/silo discharge. The simulation results are in good agreement with experimental data and are presented in this paper. We show adequacy of the superquadric shape model and robustness of the implemented superquadric DEM code.
High-speed laminar-turbulent boundary layer transition induced by a discrete roughness element
NASA Astrophysics Data System (ADS)
Iyer, Prahladh; Mahesh, Krishnan
2013-11-01
Direct numerical simulation (DNS) is used to study laminar to turbulent transition induced by a discrete hemispherical roughness element in a high-speed laminar boundary layer. The simulations are performed under conditions matching the experiments of Danehy et al. (AIAA Paper 2009-394, 2009) for free-stream Mach numbers of 3.37, 5.26 and 8.23. It is observed that the Mach 8.23 flow remains laminar downstream of the roughness, while the lower Mach numbers undergo transition. The Mach 3.37 flow undergoes transition closer to the bump when compared with Mach 5.26, in agreement with experimental observations. Transition is accompanied by an increase in Cf and Ch (Stanton number). Even for the case that did not undergo transition (Mach 8.23), streamwise vortices induced by the roughness cause a significant rise in Cf until 20 D downstream. The mean van Driest transformed velocity and Reynolds stress for Mach 3.37 and 5.26 show good agreement with available data. A local Reynolds number based on the wall properties is seen to correlate with the onset of transition for the cases considered. Partially supported by NASA.
Shale Fracture Analysis using the Combined Finite-Discrete Element Method
NASA Astrophysics Data System (ADS)
Carey, J. W.; Lei, Z.; Rougier, E.; Knight, E. E.; Viswanathan, H.
2014-12-01
Hydraulic fracturing (hydrofrac) is a successful method used to extract oil and gas from highly carbonate rocks like shale. However, challenges exist for industry experts estimate that for a single $10 million dollar lateral wellbore fracking operation, only 10% of the hydrocarbons contained in the rock are extracted. To better understand how to improve hydrofrac recovery efficiencies and to lower its costs, LANL recently funded the Laboratory Directed Research and Development (LDRD) project: "Discovery Science of Hydraulic Fracturing: Innovative Working Fluids and Their Interactions with Rocks, Fractures, and Hydrocarbons". Under the support of this project, the LDRD modeling team is working with the experimental team to understand fracture initiation and propagation in shale rocks. LANL's hybrid hydro-mechanical (HM) tool, the Hybrid Optimization Software Suite (HOSS), is being used to simulate the complex fracture and fragment processes under a variety of different boundary conditions. HOSS is based on the combined finite-discrete element method (FDEM) and has been proven to be a superior computational tool for multi-fracturing problems. In this work, the comparison of HOSS simulation results to triaxial core flooding experiments will be presented.
NASA Astrophysics Data System (ADS)
Sun, Zhuang; Espinoza, D. Nicolas; Balhoff, Matthew T.
2016-11-01
During CO2 injection into geological formations, petrophysical and geomechanical properties of host formations can be altered due to mineral dissolution and precipitation. Field and laboratory results have shown that sandstone and siltstone can be altered by CO2-water mixtures, but few quantitative studies have been performed to fully investigate underlying mechanisms. Based on the hypothesis that CO2-water mixtures alter the integrity of rock structure by attacking cements rather than grains, we attempt to explain the degradation of cementation due to long-term contact with CO2 and water and mechanisms for changes in rock mechanical properties. Many sandstones, including calcite-cemented quartzitic sandstone, chlorite-cemented quartzitic sandstone, and hematite-cemented quartzitic sandstone, contain interparticle cements that are more readily affected by CO2-water mixtures than grains. A model that couples the discrete element method and the bonded-particle model is used to perform simulations of indentation tests on synthetic rocks with crystal and random packings. The model is verified against the analytical cavity expansion model and validated against laboratory indentation tests on Entrada sandstone with and without CO2 alteration. Sensitivity analysis is performed for cementation microscopic parameters including stiffness, size, axial, and shear strength. The simulation results indicate that the CO2-related degradation of mechanical properties in bleached Entrada sandstone can be attributed to the reduction of cement size rather than cement strength. Our study indicates that it is possible to describe the CO2-related rock alteration through particle-scale mechanisms.
Coupled large eddy simulation and discrete element model of bedload motion
NASA Astrophysics Data System (ADS)
Furbish, D.; Schmeeckle, M. W.
2011-12-01
We combine a three-dimensional large eddy simulation of turbulence to a three-dimensional discrete element model of turbulence. The large eddy simulation of the turbulent fluid is extended into the bed composed of non-moving particles by adding resistance terms to the Navier-Stokes equations in accordance with the Darcy-Forchheimer law. This allows the turbulent velocity and pressure fluctuations to penetrate the bed of discrete particles, and this addition of a porous zone results in turbulence structures above the bed that are similar to previous experimental and numerical results for hydraulically-rough beds. For example, we reproduce low-speed streaks that are less coherent than those over smooth-beds due to the episodic outflow of fluid from the bed. Local resistance terms are also added to the Navier-Stokes equations to account for the drag of individual moving particles. The interaction of the spherical particles utilizes a standard DEM soft-sphere Hertz model. We use only a simple drag model to calculate the fluid forces on the particles. The model reproduces an exponential distribution of bedload particle velocities that we have found experimentally using high-speed video of a flat bed of moving sand in a recirculating water flume. The exponential distribution of velocity results from the motion of many particles that are nearly constantly in contact with other bed particles and come to rest after short distances, in combination with a relatively few particles that are entrained further above the bed and have velocities approaching that of the fluid. Entrainment and motion "hot spots" are evident that are not perfectly correlated with the local, instantaneous fluid velocity. Zones of the bed that have recently experienced motion are more susceptible to motion because of the local configuration of particle contacts. The paradigm of a characteristic saltation hop length in riverine bedload transport has infused many aspects of geomorphic thought, including
Hoffman, E.L.; Ammerman, D.J.
1995-04-01
A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. Four axial impact tests were performed on 4 in-diameter, 8 in-long, 304 L stainless steel cylinders with a 3/16 in wall thickness. The cylinders were struck by a 597 lb mass with an impact velocity ranging from 42.2 to 45.1 ft/sec. During the impact event, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. The instability occurred at the top of the cylinder in three tests and at the bottom in one test. Numerical simulations of the test were performed using the following codes and element types: PRONTO2D with axisymmetric four-node quadrilaterals; PRONTO3D with both four-node shells and eight-node hexahedrons; and ABAQUS/Explicit with axisymmetric two-node shells and four-node quadrilaterals, and 3D four-node shells and eight-node hexahedrons. All of the calculations are compared to the tests with respect to deformed shape and impact load history. As in the tests, the location of the instability is not consistent in all of the calculations. However, the calculations show good agreement with impact load measurements with the exception of an initial load spike which is proven to be the dynamic response of the load cell to the impact. Finally, the PRONIT02D calculation is compared to the tests with respect to strain and acceleration histories. Accelerometer data exhibited good qualitative agreement with the calculations. The strain comparisons show that measurements are very sensitive to gage placement.
NASA Astrophysics Data System (ADS)
Yoon, Jeoung Seok; Zang, Arno; Zimmermann, Günter; Stephansson, Ove
2016-04-01
Operation of fluid injection into and withdrawal from the subsurface for various purposes has been known to induce earthquakes. Such operations include hydraulic fracturing for shale gas extraction, hydraulic stimulation for Enhanced Geothermal System development and waste water disposal. Among these, several damaging earthquakes have been reported in the USA in particular in the areas of high-rate massive amount of wastewater injection [1] mostly with natural fault systems. Oil and gas production have been known to induce earthquake where pore fluid pressure decreases in some cases by several tens of Mega Pascal. One recent seismic event occurred in November 2013 near Azle, Texas where a series of earthquakes began along a mapped ancient fault system [2]. It was studied that a combination of brine production and waste water injection near the fault generated subsurface pressures sufficient to induced earthquakes on near-critically stressed faults. This numerical study aims at investigating the occurrence mechanisms of such earthquakes induced by fluid injection [3] and withdrawal by using hydro-geomechanical coupled dynamic simulator (Itasca's Particle Flow Code 2D). Generic models are setup to investigate the sensitivity of several parameters which include fault orientation, frictional properties, distance from the injection well to the fault, amount of fluid withdrawal around the injection well, to the response of the fault systems and the activation magnitude. Fault slip movement over time in relation to the diffusion of pore pressure is analyzed in detail. Moreover, correlations between the spatial distribution of pore pressure change and the locations of induced seismic events and fault slip rate are investigated. References [1] Keranen KM, Weingarten M, Albers GA, Bekins BA, Ge S, 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science 345, 448, DOI: 10.1126/science.1255802. [2] Hornbach MJ, DeShon HR
Discrete Element Method (DEM) Application to The Cone Penetration Test Using COUPi Model
NASA Astrophysics Data System (ADS)
Kulchitsky, A. V.; Johnson, J.; Wilkinson, A.; DeGennaro, A. J.; Duvoy, P.
2011-12-01
The cone penetration test (CPT) is a soil strength measurement method to determine the tip resistance and sleeve friction versus depth while pushing a cone into regolith with controlled slow quasi-static speed. This test can also be used as an excellent tool to validate the discrete element method (DEM) model by comparing tip resistance and sleeve friction from experiments to model results. DEM by nature requires significant computational resources even for a limited number of particles. Thus, it is important to find particle and ensemble parameters that produce valuable results within reasonable computation times. The Controllable Objects Unbounded Particles Interaction (COUPi) model is a general physical DEM code being developed to model machine/regolith interactions as part of a NASA Lunar Science Institute sponsored project on excavation and mobility modeling. In this work, we consider how different particle shape and size distributions defined in the DEM influence the cone tip and friction sleeve resistance in a CPT DEM simulation. The results are compared to experiments with cone penetration in JSC-1A lunar regolith simulant. The particle shapes include spherical particles, particles composed from the union of three spheres, and some simple polyhedra. This focus is driven by the soil mechanics rule of thumb that particle size and shape distributions are the two most significant factors affecting soil strength. In addition to the particle properties, the packing configuration of an ensemble strongly affects soil strength. Bulk density of the regolith is an important characteristic that significantly influences the tip resistance and sleeve friction (Figure 1). We discuss different approaches used to control granular density in the DEM, including how to obtain higher bulk densities, using numerical "shaking" techniques and varying the friction coefficient during computations.
NASA Astrophysics Data System (ADS)
Duan, K.; Kwok, C. Y.
2016-04-01
The aim of this study is to better understand the mechanisms controlling the initiation, propagation, and ultimate pattern of borehole breakouts in shale formation when drilled parallel with and perpendicular to beddings. A two-dimensional discrete element model is constructed to explicitly represent the microstructure of inherently anisotropic rocks by inserting a series of individual smooth joints into an assembly of bonded rigid discs. Both isotropic and anisotropic hollow square-shaped samples are generated to represent the wellbores drilled perpendicular to and parallel with beddings at reduced scale. The isotropic model is validated by comparing the stress distribution around borehole wall and along X axis direction with analytical solutions. Effects of different factors including the particle size distribution, borehole diameter, far-field stress anisotropy, and rock anisotropy are systematically evaluated on the stress distribution and borehole breakout propagation. Simulation results reveal that wider particle size distribution results in the local stress perturbations which cause localization of cracks. Reduction of borehole diameter significantly alters the crack failure from tensile to shear and raises the critical pressure. Rock anisotropy plays an important role on the stress state around wellbore which lead to the formation of preferred cracks under hydrostatic stress. Far-field stress anisotropy plays a dominant role in the shape of borehole breakout when drilled perpendicular to beddings while a secondary role when drilled parallel with beddings. Results from this study can provide fundamental insights on the underlying particle-scale mechanisms for previous findings in laboratory and field on borehole stability in anisotropic rock.
Investigation of Crack Propagation in Rock using Discrete Sphero-Polyhedral Element Method
NASA Astrophysics Data System (ADS)
Behraftar, S.; Galindo-torres, S. A.; Scheuermann, A.; Li, L.; Williams, D.
2014-12-01
In this study a micro-mechanical model is developed to study the fracture propagation process in rocks. The model is represented by an array of bonded particles simulated by the Discrete Sphero-Polyhedral Element Model (DSEM), which was introduced by the authors previously and has been shown to be a suitable technique to model rock [1]. It allows the modelling of particles of general shape, with no internal porosity. The motivation behind using this technique is the desire to microscopically investigate the fracture propagation process and study the relationship between the microscopic and macroscopic behaviour of rock. The DSEM method is used to model the Crack Chevron Notch Brazilian Disc (CCNBD) test suggested by the International Society of Rock Mechanics (ISRM) for determining the fracture toughness of rock specimens. CCNBD samples with different crack inclination angles, are modelled to investigate their fracture mode. The Crack Mouth Opening Displacement (CMOD) is simulated and the results are validated using experimental results obtained from a previous study [2]. Fig. 1 shows the simulated and experimental results of crack propagation for different inclination angles of CCNBD specimens. The DSEM method can be used to predict crack trajectory and quantify crack propagation during loading. References: 1. Galindo-Torres, S. A., et al. "Breaking processes in three-dimensional bonded granular materials with general shapes." Computer Physics Communications 183.2 (2012): 266-277. 2. Erarslan, N., and D. J. Williams. "Mixed-mode fracturing of rocks under static and cyclic loading." Rock mechanics and rock engineering 46.5 (2013): 1035-1052.
Fish Passage though Hydropower Turbines: Simulating Blade Strike using the Discrete Element Method
Richmond, Marshall C.; Romero Gomez, Pedro DJ
2014-12-08
mong the hazardous hydraulic conditions affecting anadromous and resident fish during their passage though turbine flows, two are believed to cause considerable injury and mortality: collision on moving blades and decompression. Several methods are currently available to evaluate these stressors in installed turbines, i.e. using live fish or autonomous sensor devices, and in reduced-scale physical models, i.e. registering collisions from plastic beads. However, a priori estimates with computational modeling approaches applied early in the process of turbine design can facilitate the development of fish-friendly turbines. In the present study, we evaluated the frequency of blade strike and nadir pressure environment by modeling potential fish trajectories with the Discrete Element Method (DEM) applied to fish-like composite particles. In the DEM approach, particles are subjected to realistic hydraulic conditions simulated with computational fluid dynamics (CFD), and particle-structure interactions—representing fish collisions with turbine blades—are explicitly recorded and accounted for in the calculation of particle trajectories. We conducted transient CFD simulations by setting the runner in motion and allowing for better turbulence resolution, a modeling improvement over the conventional practice of simulating the system in steady state which was also done here. While both schemes yielded comparable bulk hydraulic performance, transient conditions exhibited a visual improvement in describing flow variability. We released streamtraces (steady flow solution) and DEM particles (transient solution) at the same location from where sensor fish (SF) have been released in field studies of the modeled turbine unit. The streamtrace-based results showed a better agreement with SF data than the DEM-based nadir pressures did because the former accounted for the turbulent dispersion at the intake but the latter did not. However, the DEM-based strike frequency is more
Record breaking bursts in a discrete element model of compressive failure
NASA Astrophysics Data System (ADS)
Kun, F.; Pál, G.; Raischel, F.; Lennartz-Sassinek, S.; Main, I. G.
2015-12-01
We investigate the statistics of records in the time series of crackling bursts emerging during the compressive failure of porous materials. Bursts of local breaking events are generated by computer simulations of the uniaxial compression of cylindrical samples in a discrete element model. We show that the number of records grows as a decelerating power law of the number of events followed by an acceleration immediately prior to failure. The size of records has a power law distribution with an exponent significantly smaller than the one of the complete burst size distribution. The lifetime of records proved to be also power law distributed with a relatively low exponent. Analyzing the behavior of average quantities of records we show the existence of a characteristic record rank k* which separates two regimes of the time evolution of the fracture process: the beginning of the failure process is characterized by the slow-down of record breaking due to the effect of disorder. Then record breaking accelerates as macroscopic failure is approached when spatial and temporal correlations dominate. Scaling analysis revealed that the size distribution of records of different ranks has a universal form independent of the record rank. Sub-sequences of bursts enclosed by consecutive records are characterized by a power law size distribution with an exponent which decreases as failure is approached. Our analysis revealed that records have a strong effect on the structure of the surrounding time series: high rank records are preceded by bursts of increasing size and waiting time between consecutive events and they are followed by a relaxation process. In principle the results could be used to improve forecasting of catastrophic failure events, if they can be observed reliably in a single experiment in real time.
A study of unstable rock failures using finite difference and discrete element methods
NASA Astrophysics Data System (ADS)
Garvey, Ryan J.
Case histories in mining have long described pillars or faces of rock failing violently with an accompanying rapid ejection of debris and broken material into the working areas of the mine. These unstable failures have resulted in large losses of life and collapses of entire mine panels. Modern mining operations take significant steps to reduce the likelihood of unstable failure, however eliminating their occurrence is difficult in practice. Researchers over several decades have supplemented studies of unstable failures through the application of various numerical methods. The direction of the current research is to extend these methods and to develop improved numerical tools with which to study unstable failures in underground mining layouts. An extensive study is first conducted on the expression of unstable failure in discrete element and finite difference methods. Simulated uniaxial compressive strength tests are run on brittle rock specimens. Stable or unstable loading conditions are applied onto the brittle specimens by a pair of elastic platens with ranging stiffnesses. Determinations of instability are established through stress and strain histories taken for the specimen and the system. Additional numerical tools are then developed for the finite difference method to analyze unstable failure in larger mine models. Instability identifiers are established for assessing the locations and relative magnitudes of unstable failure through measures of rapid dynamic motion. An energy balance is developed which calculates the excess energy released as a result of unstable equilibria in rock systems. These tools are validated through uniaxial and triaxial compressive strength tests and are extended to models of coal pillars and a simplified mining layout. The results of the finite difference simulations reveal that the instability identifiers and excess energy calculations provide a generalized methodology for assessing unstable failures within potentially complex
Efficiency determination of an electrostatic lunar dust collector by discrete element method
NASA Astrophysics Data System (ADS)
Afshar-Mohajer, Nima; Wu, Chang-Yu; Sorloaica-Hickman, Nicoleta
2012-07-01
Lunar grains become charged by the sun's radiation in the tenuous atmosphere of the moon. This leads to lunar dust levitation and particle deposition which often create serious problems in the costly system deployed in lunar exploration. In this study, an electrostatic lunar dust collector (ELDC) is proposed to address the issue and the discrete element method (DEM) is used to investigate the effects of electrical particle-particle interactions, non-uniformity of the electrostatic field, and characteristics of the ELDC. The simulations on 20-μm-sized lunar particles reveal the electrical particle-particle interactions of the dust particles within the ELDC plates require 29% higher electrostatic field strength than that without the interactions for 100% collection efficiency. For the given ELDC geometry, consideration of non-uniformity of the electrostatic field along with electrical interactions between particles on the same ELDC geometry leads to a higher requirement of ˜3.5 kV/m to ensure 100% particle collection. Notably, such an electrostatic field is about 103 times less than required for electrodynamic self-cleaning methods. Finally, it is shown for a "half-size" system that the DEM model predicts greater collection efficiency than the Eulerian-based model at all voltages less than required for 100% efficiency. Halving the ELDC dimensions boosts the particle concentration inside the ELDC, as well as the resulting field strength for a given voltage. Though a lunar photovoltaic system was the subject, the results of this study are useful for evaluation of any system for collecting charged particles in other high vacuum environment using an electrostatic field.
Influence of mobile shale on thrust faults: Insights from discrete element simulations
NASA Astrophysics Data System (ADS)
Dean, S. L.; Morgan, J. K.
2013-12-01
We use two-dimensional discrete element method (DEM) simulations to study the effects of a two-layer mechanical stratigraphy on a gravitationally collapsing passive margin. The system consists of an upslope sedimentary wedge, overlying an extensional zone that is linked at depth with a downslope fold and thrust belt. The behavior of the system is dependent on the material properties and thickness of the competent units. The models are initially composed of a mobile shale unit overlain by a pre-delta unit. In DEM materials, the bulk rheology of the granular material is a product of the particle interactions, depending on a range of parameters, including friction and elastic moduli. Natural mobile shales underlying deltas are presumed to be viscous, and are therefore represented in DEM as very weak non-cohesive particles. The unbonded particles respond to loading by moving to areas of lower stress, i.e. out from beneath a growing sediment wedge. The bulk motion of the particles therefore flows away from the upslope extensional zone. Apparent viscosity is introduced in DEM materials due to time dependent numerical parameters such as viscous damping of particle motions. We characterized this apparent viscosity of this mobile shale unit with a series of shear box tests, with varying shear strain rates. The mobile shale particles have a viscosity of about 108 Pa*s, which is low for mobile shale. The low viscosity of our numerical materials can be compensated for by scaling time in our models, because the simulations are driven by sedimentary loading. By increasing the sedimentation rate by many orders of magnitude, we can approximate the natural values of shear stress in our simulations. Results are compared with the Niger Delta type locale for shale tectonics. The simulations succeed in creating an overall linked extensional-contractional system, as well as creating individual structures such as popups and intersecting forethrusts and backthrusts. In addition, toe
Blacker, Teddy D.
1994-01-01
An automatic quadrilateral surface discretization method and apparatus is provided for automatically discretizing a geometric region without decomposing the region. The automated quadrilateral surface discretization method and apparatus automatically generates a mesh of all quadrilateral elements which is particularly useful in finite element analysis. The generated mesh of all quadrilateral elements is boundary sensitive, orientation insensitive and has few irregular nodes on the boundary. A permanent boundary of the geometric region is input and rows are iteratively layered toward the interior of the geometric region. Also, an exterior permanent boundary and an interior permanent boundary for a geometric region may be input and the rows are iteratively layered inward from the exterior boundary in a first counter clockwise direction while the rows are iteratively layered from the interior permanent boundary toward the exterior of the region in a second clockwise direction. As a result, a high quality mesh for an arbitrary geometry may be generated with a technique that is robust and fast for complex geometric regions and extreme mesh gradations.
Romero Gomez, Pedro DJ; Richmond, Marshall C.
2014-04-17
Evaluating the consequences from blade-strike of fish on marine hydrokinetic (MHK) turbine blades is essential for incorporating environmental objectives into the integral optimization of machine performance. For instance, experience with conventional hydroelectric turbines has shown that innovative shaping of the blade and other machine components can lead to improved designs that generate more power without increased impacts to fish and other aquatic life. In this work, we used unsteady computational fluid dynamics (CFD) simulations of turbine flow and discrete element modeling (DEM) of particle motion to estimate the frequency and severity of collisions between a horizontal axis MHK tidal energy device and drifting aquatic organisms or debris. Two metrics are determined with the method: the strike frequency and survival rate estimate. To illustrate the procedure step-by-step, an exemplary case of a simple runner model was run and compared against a probabilistic model widely used for strike frequency evaluation. The results for the exemplary case showed a strong correlation between the two approaches. In the application case of the MHK turbine flow, turbulent flow was modeled using detached eddy simulation (DES) in conjunction with a full moving rotor at full scale. The CFD simulated power and thrust were satisfactorily comparable to experimental results conducted in a water tunnel on a reduced scaled (1:8.7) version of the turbine design. A cloud of DEM particles was injected into the domain to simulate fish or debris that were entrained into the turbine flow. The strike frequency was the ratio of the count of colliding particles to the crossing sample size. The fish length and approaching velocity were test conditions in the simulations of the MHK turbine. Comparisons showed that DEM-based frequencies tend to be greater than previous results from Lagrangian particles and probabilistic models, mostly because the DEM scheme accounts for both the geometric
NASA Astrophysics Data System (ADS)
Tsamados, Michel; Heorton, Harry; Feltham, Daniel; Muir, Alan; Baker, Steven
2016-04-01
The new elastic-plastic anisotropic (EAP) rheology that explicitly accounts for the sub-continuum anisotropy of the sea ice cover has been implemented into the latest version of the Los Alamos sea ice model CICE. The EAP rheology is widely used in the climate modeling scientific community (i.e. CPOM stand alone, RASM high resolution regional ice-ocean model, MetOffice fully coupled model). Early results from sensitivity studies (Tsamados et al, 2013) have shown the potential for an improved representation of the observed main sea ice characteristics with a substantial change of the spatial distribution of ice thickness and ice drift relative to model runs with the reference visco-plastic (VP) rheology. The model contains one new prognostic variable, the local structure tensor, which quantifies the degree of anisotropy of the sea ice, and two parameters that set the time scale of the evolution of this tensor. Observations from high resolution satellite SAR imagery as well as numerical simulation results from a discrete element model (DEM, see Wilchinsky, 2010) have shown that these individual floes can organize under external wind and thermal forcing to form an emergent isotropic sea ice state (via thermodynamic healing, thermal cracking) or an anisotropic sea ice state (via Coulombic failure lines due to shear rupture). In this work we use for the first time in the context of sea ice research a mathematical metric, the Tensorial Minkowski functionals (Schroeder-Turk, 2010), to measure quantitatively the degree of anisotropy and alignment of the sea ice at different scales. We apply the methodology on the GlobICE Envisat satellite deformation product (www.globice.info), on a prototype modified version of GlobICE applied on Sentinel-1 Synthetic Aperture Radar (SAR) imagery and on the DEM ice floe aggregates. By comparing these independent measurements of the sea ice anisotropy as well as its temporal evolution against the EAP model we are able to constrain the
The Effect of Loading Rate on Hydraulic Fracturing in Synthetic Granite - a Discrete Element Study
NASA Astrophysics Data System (ADS)
Tomac, I.; Gutierrez, M.
2015-12-01
Hydraulic fracture initiation and propagation from a borehole in hard synthetic rock is modeled using the two dimensional Discrete Element Method (DEM). DEM uses previously established procedure for modeling the strength and deformation parameters of quasi-brittle rocks with the Bonded Particle Model (Itasca, 2004). A series of simulations of laboratory tests on granite in DEM serve as a reference for synthetic rock behavior. Fracturing is enabled by breaking parallel bonds between DEM particles as a result of the local stress state. Subsequent bond breakage induces fracture propagation during a time-stepping procedure. Hydraulic fracturing occurs when pressurized fluid induces hoop stresses around the wellbore which cause rock fracturing and serves for geo-reservoir permeability enhancement in oil, gas and geothermal industries. In DEM, a network of fluid pipes and reservoirs is used for mathematical calculation of fluid flow through narrow channels between DEM particles, where the hydro-mechanical coupling is fully enabled. The fluid flow calculation is superimposed with DEM stress-strain calculation at each time step. As a result, the fluid pressures during borehole pressurization in hydraulic fracturing, as well as, during the fracture propagation from the borehole, can be simulated. The objective of this study is to investigate numerically a hypothesis that fluid pressurization rate, or the fluid flow rate, influences upon character, shape and velocity of fracture propagation in rock. The second objective is to better understand and define constraints which are important for successful fracture propagation in quasi-brittle rock from the perspective of flow rate, fluid density, viscosity and compressibility relative to the rock physical properties. Results from this study indicate that not only too high fluid flow rates cause fracture arrest and multiple fracture branching from the borehole, but also that the relative compressibility of fracturing fluid and
Fish passage through hydropower turbines: Simulating blade strike using the discrete element method
NASA Astrophysics Data System (ADS)
Richmond, M. C.; Romero-Gomez, P.
2014-03-01
Among the hazardous hydraulic conditions affecting anadromous and resident fish during their passage though hydro-turbines two common physical processes can lead to injury and mortality: collisions/blade-strike and rapid decompression. Several methods are currently available to evaluate these stressors in installed turbines, e.g. using live fish or autonomous sensor devices, and in reduced-scale physical models, e.g. registering collisions from plastic beads. However, a priori estimates with computational modeling approaches applied early in the process of turbine design can facilitate the development of fish-friendly turbines. In the present study, we evaluated the frequency of blade strike and rapid pressure change by modeling potential fish trajectories with the Discrete Element Method (DEM) applied to fish-like composite particles. In the DEM approach, particles are subjected to realistic hydraulic conditions simulated with computational fluid dynamics (CFD), and particle-structure interactions-representing fish collisions with turbine components such as blades-are explicitly recorded and accounted for in the calculation of particle trajectories. We conducted transient CFD simulations by setting the runner in motion and allowing for unsteady turbulence using detached eddy simulation (DES), as compared to the conventional practice of simulating the system in steady state (which was also done here for comparison). While both schemes yielded comparable bulk hydraulic performance values, transient conditions exhibited an improvement in describing flow temporal and spatial variability. We released streamtraces (in the steady flow solution) and DEM particles (transient solution) at the same locations where sensor fish (SF) were released in previous field studies of the advanced turbine unit. The streamtrace- based results showed a better agreement with SF data than the DEM-based nadir pressures did because the former accounted for the turbulent dispersion at the
NASA Astrophysics Data System (ADS)
Mandal, Sandip; Khakhar, D. V.
2016-10-01
Granular materials handled in industries are typically non-spherical in shape and understanding the flow of such materials is important. The steady flow of mono-disperse, frictional, inelastic dumbbells in two-dimensions is studied by soft sphere, discrete element method simulations for chute flow and shear cell flow. The chute flow data are in the dense flow regime, while the shear cell data span a wide range of solid fractions. Results of a detailed parametric study for both systems are presented. In chute flow, increase in the aspect ratio of the dumbbells results in significant slowing of the flow at a fixed inclination and in the shear cell it results in increase in the shear stress and pressure for a fixed shear rate. The flow is well-described by the μ-I scaling for inertial numbers as high as I = 1, corresponding to solid fractions as low as ϕ = 0.3, where μ is the effective friction (the ratio of shear stress to pressure) and I is the inertial number (a dimensionless shear rate scaled with the time scale obtained from the local pressure). For a fixed inertial number, the effective friction increases by 60%-70% when aspect ratio is increased from 1.0 (sphere) to 1.9. At low values of the inertial number, there is little change in the solid fraction with aspect ratio of the dumbbells, whereas at high values of the inertial number, there is a significant increase in solid fraction with increase in aspect ratio. The dense flow data are well-described by the Jop-Forterre-Pouliquen model [P. Jop et al., Nature 441, 727-730 (2006)] with the model parameters dependent on the dumbbell aspect ratio. The variation of μ with I over the extended range shows a maximum in the range I ∈ (0.4, 0.5), while the solid fraction shows a faster than linear decrease with inertial number. A modified version of the JFP model for μ(I) and a power law model for ϕ(I) is shown to describe the combined data over the extended range of I.
NASA Astrophysics Data System (ADS)
Weatherley, D.; Wruck, B.; Hancock, W.; Chitombo, G. P.
2012-04-01
The comminution (or breakage) of granular materials under shearing loads is conjectured to strongly influence dynamics of both natural processes (such as fault zone evolution and landslides) and man-made processes (such as underground cave mining and minerals processing). Previous laboratory [1] and numerical studies [4] have demonstrated that two distinct breakage mechanisms contribute to the comminution of granular materials under shear. The first mechanism is that of abrasion in which grinding or chipping removes small volumes of material from the surface of larger blocks. The amount of abrasion has been found to be dependent both on the total shear strain and the confining pressure applied to the granular material. The second breakage mechanism is that of bulk-splitting, in which a single block is broken into two or more smaller blocks. The degree of bulk-splitting has been shown to be largely dependent upon confining pressure, and only to a lesser extent the total shear strain. Common to previous laboratory and numerical studies is that the granular material is typically initially mono-disperse and often of a contrived shape (cylindrical [1] or spherical [4]). This approach has two adverse consequences. Firstly, the initial granular material has a porosity much higher than a similar volume of compacted prismatic material. The higher porosity results in less dilation of the granular material as shear commences, which may inhibit breakage via builk-splitting. Secondly, there are fewer edges or corners, the sites most amenable for abrasion both during confinement and shear. This study extends previous studies using the Discrete Element Method (DEM [2]) to investigate the breakge mechanisms of sheared prismatic granular materials whose initial porosity is near zero. The granular prismatic material is constructed by first filling a volume with large spheres of variable size. These spheres are then replaced by convex polyhedra forming planar surfaces between
NASA Astrophysics Data System (ADS)
Orlić, Ivica; Mekterović, Darko; Mekterović, Igor; Ivošević, Tatjana
2015-11-01
VIBA-Lab is a computer program originally developed by the author and co-workers at the National University of Singapore (NUS) as an interactive software package for simulation of Particle Induced X-ray Emission and Rutherford Backscattering Spectra. The original program is redeveloped to a VIBA-Lab 3.0 in which the user can perform semi-quantitative analysis by comparing simulated and measured spectra as well as simulate 2D elemental maps for a given 3D sample composition. The latest version has a new and more versatile user interface. It also has the latest data set of fundamental parameters such as Coster-Kronig transition rates, fluorescence yields, mass absorption coefficients and ionization cross sections for K and L lines in a wider energy range than the original program. Our short-term plan is to introduce routine for quantitative analysis for multiple PIXE and XRF excitations. VIBA-Lab is an excellent teaching tool for students and researchers in using PIXE and RBS techniques. At the same time the program helps when planning an experiment and when optimizing experimental parameters such as incident ions, their energy, detector specifications, filters, geometry, etc. By "running" a virtual experiment the user can test various scenarios until the optimal PIXE and BS spectra are obtained and in this way save a lot of expensive machine time.
NASA Technical Reports Server (NTRS)
Patera, Anthony T.; Paraschivoiu, Marius
1998-01-01
We present a finite element technique for the efficient generation of lower and upper bounds to outputs which are linear functionals of the solutions to the incompressible Stokes equations in two space dimensions; the finite element discretization is effected by Crouzeix-Raviart elements, the discontinuous pressure approximation of which is central to our approach. The bounds are based upon the construction of an augmented Lagrangian: the objective is a quadratic "energy" reformulation of the desired output; the constraints are the finite element equilibrium equations (including the incompressibility constraint), and the intersubdomain continuity conditions on velocity. Appeal to the dual max-min problem for appropriately chosen candidate Lagrange multipliers then yields inexpensive bounds for the output associated with a fine-mesh discretization; the Lagrange multipliers are generated by exploiting an associated coarse-mesh approximation. In addition to the requisite coarse-mesh calculations, the bound technique requires solution only of local subdomain Stokes problems on the fine-mesh. The method is illustrated for the Stokes equations, in which the outputs of interest are the flowrate past, and the lift force on, a body immersed in a channel.
NASA Astrophysics Data System (ADS)
Kulchitsky, A. V.; Johnson, J.; Duvoy, P.; Wilkinson, A.; Creager, C. M.
2012-12-01
For in situ resource utilization on the Moon, asteroids, Mars, or other space body it is necessary to be able to simulate the interaction of mobile platforms and excavation machines with the regolith for engineering design, planning, and operations. For accurate simulations, tools designed to measure regolith properties will need to be deployed and interpreted. Two such tools are the penetrometer, used to measure a soil strength index as a function of depth, and the bevameter, used to characterize regolith surface properties of strength, friction and sinkage. The penetrometer interrogates regolith properties from the surface to a depth limited only by the capabilities of the instrument to penetrate the regolith while a bevameter interrogates only the upper few centimeters needed to describe a mobility platform's traction and sinkage. Interpretation of penetrometer and bevameter data can be difficult, especially on low gravity objects. We use the discrete element method (DEM) model to simulate the large regolith deformations and failures associated with the tests to determine regolith properties. The DEM simulates granular material behavior using large aggregates of distinct particles. Realistic physics of particle-particle interaction introduces many granular specific phenomena such as interlocking and force chain formation that cannot be represented using continuum methods. In this work, experiments using a cone penetrometer test (CPT) and bevameter on lunar simulants JSC-1A and GRC-1 were performed at NASA Glenn Research Center. These tests were used to validate the physics in the COUPi DEM model. COUPi is a general physical DEM code being developed to model machine/regolith interactions as part of a NASA Lunar Science Institute sponsored project on excavation and mobility modeling. The experimental results were used in this work to build an accurate model to simulate the lunar regolith. The CPT consists of driving an instrumented cone with opening angle of 60
NASA Astrophysics Data System (ADS)
Zhao, Xuzhe
High efficiency hydrogen storage method is significant in development of fuel cell vehicle. Seeking for a high energy density material as the fuel becomes the key of wide spreading fuel cell vehicle. LiBH4 + MgH 2 system is a strong candidate due to their high hydrogen storage density and the reaction between them is reversible. However, LiBH4 + MgH 2 system usually requires the high temperature and hydrogen pressure for hydrogen release and uptake reaction. In order to reduce the requirements of this system, nanoengineering is the simple and efficient method to improve the thermodynamic properties and reduce kinetic barrier of reaction between LiBH4 and MgH2. Based on ab initio density functional theory (DFT) calculations, the previous study has indicated that the reaction between LiBH4 and MgH2 can take place at temperature near 200°C or below. However, the predictions have been shown to be inconsistent with many experiments. Therefore, it is the first time that our experiment using ball milling with aerosol spraying (BMAS) to prove the reaction between LiBH4 and MgH2 can happen during high energy ball milling at room temperature. Through this BMAS process we have found undoubtedly the formation of MgB 2 and LiH during ball milling of MgH2 while aerosol spraying of the LiBH4/THF solution. Aerosol nanoparticles from LiBH 4/THF solution leads to form Li2B12H12 during BMAS process. The Li2B12H12 formed then reacts with MgH2 in situ during ball milling to form MgB 2 and LiH. Discrete element modeling (DEM) is a useful tool to describe operation of various ball milling processes. EDEM is software based on DEM to predict power consumption, liner and media wear and mill output. In order to further improve the milling efficiency of BMAS process, EDEM is conducted to make analysis for complicated ball milling process. Milling speed and ball's filling ratio inside the canister as the variables are considered to determine the milling efficiency. The average and maximum
Discrete element method based scale-up model for material synthesis using ball milling
NASA Astrophysics Data System (ADS)
Santhanam, Priya Radhi
Mechanical milling is a widely used technique for powder processing in various areas. In this work, a scale-up model for describing this ball milling process is developed. The thesis is a combination of experimental and modeling efforts. Initially, Discrete Element Model (DEM) is used to describe energy transfer from milling tools to the milled powder for shaker, planetary, and attritor mills. The rolling and static friction coefficients are determined experimentally. Computations predict a quasisteady rate of energy dissipation, E d, for each experimental configuration. It is proposed that the milling dose defined as a product of Ed and milling time, t, divided by the mass of milled powder, mp characterizes the milling progress independently of the milling device or milling conditions used. Once the milling dose is determined for one experimental configuration, it can be used to predict the milling time required to prepare the same material in any milling configuration, for which Ed is calculated. The concept is validated experimentally for DEM describing planetary and shaker mills. For attritor, the predicted Ed includes substantial contribution from milling tool interaction events with abnormally high forces (>103 N). The energy in such events is likely dissipated to heat or plastically deform milling tools rather than refine material. Indeed, DEM predictions for the attritor correlate with experiments when such events are ignored in the analysis. With an objective of obtaining real-time indicators of milling progress, power, torque, and rotation speed of the impeller of an attritor mill are measured during preparation of metal matrix composite powders in the subsequent portion of this thesis. Two material systems are selected and comparisons made between in-situ parameters and experimental milling progress indicators. It is established that real-time measurements can certainly be used to describe milling progress. However, they need to be interpreted carefully
NASA Astrophysics Data System (ADS)
Chang, K.-J.; Chen, R.-F.; Chan, Y.-C.; Kuo, C.-Y.; Weng, C.-H.
2012-04-01
transported debris was about 30 - 90 m thick, covered on the preexisting debris deposit hill and around the river channel. The debris formed a dammed lake, with a maximum volume of 45 Mm3. Based on DTMs data sets, field observations, the discrete element method - PFC3D is adapts to analyze the triggering mechanism and sling dynamic process. The presence and the coupling effect from the strong ground excitation and high pore water pressure is the essential factor to triggering the landslide event. The results shows that the best fit between the deposit topography of the post-event DTM and numerical simulations, the fictional coefficient of the sliding surface is as low as 0.087. The maximum sliding speed is as high as 87.2 m/s, the result coincide with the seismic record from the nearby strong motion seismic record.
NASA Astrophysics Data System (ADS)
Hancock, W.; Weatherley, D.; Wruck, B.; Chitombo, G. P.
2012-04-01
The flow dynamics of granular materials is of broad interest in both the geosciences (e.g. landslides, fault zone evolution, and brecchia pipe formation) and many engineering disciplines (e.g chemical engineering, food sciences, pharmaceuticals and materials science). At the interface between natural and human-induced granular media flow, current underground mass-mining methods are trending towards the induced failure and subsequent gravitational flow of large volumes of broken rock, a method known as cave mining. Cave mining relies upon the undercutting of a large ore body, inducement of fragmentation of the rock and subsequent extraction of ore from below, via hopper-like outlets. Design of such mines currently relies upon a simplified kinematic theory of granular flow in hoppers, known as the ellipsoid theory of mass movement. This theory assumes that the zone of moving material grows as an ellipsoid above the outlet of the silo. The boundary of the movement zone is a shear band and internal to the movement zone, the granular material is assumed to have a uniformly high bulk porosity compared with surrounding stagnant regions. There is however, increasing anecdotal evidence and field measurements suggesting this theory fails to capture the full complexity of granular material flow within cave mines. Given the practical challenges obstructing direct measurement of movement both in laboratory experiments and in-situ, the Discrete Element Method (DEM [1]) is a popular alternative to investigate granular media flow. Small-scale DEM studies (c.f. [3] and references therein) have confirmed that movement within DEM silo flow models matches that predicted by ellipsoid theory, at least for mono-disperse granular material freely outflowing at a constant rate. A major draw-back of these small-scale DEM studies is that the initial bulk porosity of the simulated granular material is significantly higher than that of broken, prismatic rock. In this investigation, more
Motta, Andréia Barreira; Pereira, Luiz Carlos; da Cunha, Andréia R.C.C
2007-01-01
All-ceramic fixed partial dentures (FPDs) have an esthetic approach for oral rehabilitation. However, metal-ceramic FPDs are best indicated in the posterior area where the follow-up studies found a lower failure rate. This 2D finite element study compared the stress distribution on 3-unit all-ceramic and metal-ceramic FPDs and identified the areas of major risk of failure. Three FPD models were designed: (1) metal-ceramic FPD; (2) All-ceramic FPD with the veneering porcelain on the occlusal and cervical surface of the abutment tooth; (3) All-ceramic FPD with the veneering porcelain only on the occlusal surface. A 100 N load was applied in an area of 0.5 mm2 on the working cusps, following these simulations: (1) on the abutment teeth and the pontic; (2) only on the abutment teeth; and (3) only on the pontic. Relative to the maximum stress values found for the physiological load, all-ceramic FPD with only occlusal veneering porcelain produced the lowest stress value (220 MPa), followed by all-ceramic FPD with cervical veneering porcelain (322 MPa) and metal-ceramic FPD (387 MPa). The stress distribution of the load applied on the abutments was significantly better compared to the other two load simulations. The highest principal stress values were low and limited in a small area for the three types of models under this load. When the load was applied on the pontic, the highest stress values appeared on the connector areas between the abutments and pontic. In conclusion, the best stress values and distribution were found for the all-ceramic FPD with the veneering porcelain only on the occlusal surface. However, in under clinical conditions, fatigue conditions and restoration defects must be considered. PMID:19089168
Ondek, B; Shepard, A; Herr, W
1987-01-01
The SV40 enhancer contains three genetically defined elements, called A, B and C, that can functionally compensate for one another. By using short, synthetic DNA oligonucleotides, we show that each of these elements can act autonomously as an enhancer when present as multiple tandem copies. Analysis of a progressive series of B element oligomers shows a single element is ineffective as an enhancer and that the activity of two or more elements increases with copy number. Assay in five different cell lines of two separate enhancers containing six tandem copies of either the B or C element shows that these elements possess different cell-specific activities. Parallel oligomer enhancer constructs containing closely spaced double point mutations display no enhancer activity in any of the cell lines tested, indicating that these elements represent single units of enhancer function. These elements contain either a 'core' or 'octamer' consensus sequence but these consensus sequences alone are not sufficient for enhancer activity. The different cell-specific activities of the B and C elements are consistent with functional interactions with different trans-acting factors. We discuss how tandem duplication of such dissimilar elements, as in the wild-type SV40 72-bp repeats, can serve to expand the conditions under which an enhancer can function. Images Fig. 2. Fig. 3. Fig. 4. PMID:3036487
NASA Astrophysics Data System (ADS)
Dalguer Gudiel, L. A.; Irikura, K.
2001-12-01
We performed a 3D model to simulate the dynamic rupture of a pre-existing fault and near-source ground motion of actual earthquakes solving the elastodynamic equation of motion using the 3D Discrete Element Method (DEM). The DEM is widely employed in engineering to designate lumped mass models in a truss arrangement, as opposed to FEM (Finite Element) models that may also consist of lumped masses, but normally require to mount a full stiffness matrix for response determination. The term has also been used for models of solids consisting of assemblies of discrete elements, such as spheres in elastic contact, employed in the analysis of perforation or penetration of concrete or rock. It should be noted that the designation Lattice Models, common in Physics, may be more adequate, although it omits reference to a fundamental property of the approach, which is the lumped-mass representation. In the present DEM formulation, the method models any orthotropic elastic solid. It is constructed by a three dimensional periodic truss-like structures using cubic elements that consists of lumping masses in nodal points, which are interconnected by unidimensional elements. The method was previously used in 2D to simulate in a simplified way the 1999 Chi-chi (Taiwan) earthquake (Dalguer et. al., 2000). Now the method was extended to resolve 3D problems. We apply the model to simulate the dynamic rupture process and near source ground motion of the 1999 Chi-chi (Taiwan) and the 2000 Tottori (Japan) earthquakes. The attractive feature in the problem under consideration is the possibility of introducing internal cracks or fractures with little computational effort and without increasing the number of degrees of freedom. For the 3D dynamic spontaneous rupture simulation of these eartquakes we need to know: the geometry of the fault, the initial stress distribution along the fault, the stress drop distribution, the strength of the fault to break and the critical slip (because slip
NASA Astrophysics Data System (ADS)
Bosch, Jessica; Stoll, Martin; Benner, Peter
2014-04-01
We consider the efficient solution of the Cahn-Hilliard variational inequality using an implicit time discretization, which is formulated as an optimal control problem with pointwise constraints on the control. By applying a semi-smooth Newton method combined with a Moreau-Yosida regularization technique for handling the control constraints we show superlinear convergence in function space. At the heart of this method lies the solution of large and sparse linear systems for which we propose the use of preconditioned Krylov subspace solvers using an effective Schur complement approximation. Numerical results illustrate the competitiveness of this approach.
Anderson, Donald D.; Iyer, Krishna S.; Segal, Neil A.; Lynch, John A.; Brown, Thomas D.
2010-01-01
There exist no large-series human data linking contact stress exposure to an articular joint’s propensity for developing osteoarthritis because contact stress analysis for large numbers of subjects remains impractical. The speed and simplicity of discrete element analysis (DEA) for estimating contact stresses makes its application to this problem highly attractive, but to date DEA has been used to study only a small numbers of cases. This is because substantial issues regarding its use in population-wide studies have not been addressed. Chief among them are developing fast and robust methods for model derivation and the selection of boundary conditions, establishing accuracy of computed contact stresses, and including capabilities for modeling in-series structural elements (e.g., a meniscus). This article describes an implementation of DEA that makes it feasible to perform subject-specific modeling in articular joints in large population-based studies. PMID:20498493
Couzy, W.; Deville, M.O.
1995-01-01
The weak formulation of the incompressible Navier-Stokes equations in three space dimensions is discretized with spectral element approximations and Gauss-Lobatto-Legendre quadratures. The Uzawa algorithm is applied to decouple the velocities from the pressure. The equation that results for the pressure is solved by an iterative method. Within each pressure iteration, a Helmholtz operator has to be inverted. This can efficiently be done by separating the equations for the interior nodes from the equations at the interfaces, according to the Schur method. Fast diagonalization techniques are applied to the interior variables of the spectral elements. Several ways to deal with the resulting interface problem are discussed. Finally, a comparison is made with a more classical method. 18 refs., 2 figs., 5 tabs.
Vescovi, D.; Berzi, D.; Richard, P.
2014-05-15
We use existing 3D Discrete Element simulations of simple shear flows of spheres to evaluate the radial distribution function at contact that enables kinetic theory to correctly predict the pressure and the shear stress, for different values of the collisional coefficient of restitution. Then, we perform 3D Discrete Element simulations of plane flows of frictionless, inelastic spheres, sheared between walls made bumpy by gluing particles in a regular array, at fixed average volume fraction and distance between the walls. The results of the numerical simulations are used to derive boundary conditions appropriated in the cases of large and small bumpiness. Those boundary conditions are, then, employed to numerically integrate the differential equations of Extended Kinetic Theory, where the breaking of the molecular chaos assumption at volume fraction larger than 0.49 is taken into account in the expression of the dissipation rate. We show that the Extended Kinetic Theory is in very good agreement with the numerical simulations, even for coefficients of restitution as low as 0.50. When the bumpiness is increased, we observe that some of the flowing particles are stuck in the gaps between the wall spheres. As a consequence, the walls are more dissipative than expected, and the flows resemble simple shear flows, i.e., flows of rather constant volume fraction and granular temperature.
NASA Astrophysics Data System (ADS)
Gao, F. Q.; Kang, H. P.
2016-04-01
When rock failure is unavoidable, the designer of engineering structures must know and account for the residual strength of the rock mass. This is particularly relevant in underground coal mine openings. Pre-existing discontinuities play an important role in the mechanical behavior of rock masses and thus it is important to understand the effects of such pre-existing discontinuities on the residual strength. For this purpose, the present study demonstrates a numerical analysis using a discrete element method simulation. The numerical results indicate that fracture intensity has no significant influence on the residual strength of jointed rock masses, independent of confining conditions. As confining pressures increase, both peak and residual strengths increase, with residual strength increasing at a faster rate. The finding was further demonstrated by analyzing documented laboratory compressive test data from a variety of rocks along with field data from coal pillars. A comprehensive interpretation of the finding was conducted using a cohesion-weakening-friction-strengthening (CWFS) model. The effect of rock bolts on rock mass strength was also evaluated by using a discrete element method model which suggested that rock bolts can significantly increases residual strength but have limited effect on increasing the peak strength of rock masses.
Laminar-Turbulent Transition Behind Discrete Roughness Elements in a High-Speed Boundary Layer
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Li, Fei; Wu, Minwei; Chang, Chau-Lyan; Edwards, Jack R., Jr.; Kegerise, Michael; King, Rudolph
2010-01-01
Computations are performed to study the flow past an isolated roughness element in a Mach 3.5, laminar, flat plate boundary layer. To determine the effects of the roughness element on the location of laminar-turbulent transition inside the boundary layer, the instability characteristics of the stationary wake behind the roughness element are investigated over a range of roughness heights. The wake flow adjacent to the spanwise plane of symmetry is characterized by a narrow region of increased boundary layer thickness. Beyond the near wake region, the centerline streak is surrounded by a pair of high-speed streaks with reduced boundary layer thickness and a secondary, outer pair of lower-speed streaks. Similar to the spanwise periodic pattern of streaks behind an array of regularly spaced roughness elements, the above wake structure persists over large distances and can sustain strong enough convective instabilities to cause an earlier onset of transition when the roughness height is sufficiently large. Time accurate computations are performed to clarify additional issues such as the role of the nearfield of the roughness element during the generation of streak instabilities, as well as to reveal selected details of their nonlinear evolution. Effects of roughness element shape on the streak amplitudes and the interactions between multiple roughness elements aligned along the flow direction are also investigated.
Daya Sagar, B S
2010-02-01
Spatial interpolation is one of the demanding techniques in Geographic Information Science (GISci) to generate interpolated maps in a continuous manner by using two discrete spatial and/or temporal data sets. Noise-free data (thematic layers) depicting a specific theme at varied spatial or temporal resolutions consist of connected components either in aggregated or in disaggregated forms. This short paper provides a simple framework: 1) to categorize the connected components of layered sets of two different time instants through their spatial relationships and the Hausdorff distances between the companion-connected components and 2) to generate sequential maps (interpolations) between the discrete thematic maps. Development of the median set, using Hausdorff erosion and dilation distances to interpolate between temporal frames, is demonstrated on lake geometries mapped at two different times and also on the bubonic plague epidemic spread data available for 11 consecutive years. We documented the significantly fair quality of the median sets generated for epidemic data between alternative years by visually comparing the interpolated maps with actual maps. They can be used to visualize (animate) the spatiotemporal behavior of a specific theme in a continuous sequence.
MAGNUM2D. Radionuclide Transport Porous Media
Langford, D.W.; Baca, R.G.
1989-03-01
MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.
MAGNUM2D. Radionuclide Transport Porous Media
Langford, D.W.; Baca, R.G.
1988-08-01
MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculation assumes local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.
NASA Astrophysics Data System (ADS)
Kenna, A.; Basu, B.
2015-07-01
Wind turbine support towers at heights in excess of 90m are nowadays being formed in steel, concrete and hybrid concrete and steel structures. As is the case for all towers of this height, the towers will be assembled using a number of segments, which will be connected in some way. These local connections are to be viewed as areas of potential local weakness in the overall tower assembly and require care in terms of design and construction. This work concentrates on identifying local damage which can occur at an interface connection by either material or bolt/tendon failure. Spatial strain patterns will be used to try to identify local damage areas around a 3 dimensional tower shell. A Finite Element (FE) model will be assembled which will describe a hybrid tower as a continuum of four-noded, two-dimensional Reisser- Mindlin shell elements. In order to simulate local damage, an element around the circumference of the tower interface will be subjected to a reduced stiffness. Strain patterns will be observed both in the undamaged and damaged states and these signals will be processed using a Discrete Wavelet Transform (DWT) algorithm to investigate if the damaged element can be identified.
Pavia, Paula X; Thomas, M Carmen; López, Manuel C; Puerta, Concepción J
2012-10-01
Repetitive sequences constitute an important proportion of the Trypanosoma cruzi genome; hence, they have been used as molecular markers and as amplification targets to identify the parasite presence via PCR. In this study, a molecular characterization of the SIRE repetitive element was performed in the six discrete typing units (DTUs) of T. cruzi. The results evidenced that this element, located in multiple chromosomes, was interspersed in the genome of all DTUs of the parasite. The presence of several motifs implicated in element insertion, duplication, and functionality suggests that SIRE could be an active element in the parasite genome. Of interest, there were SIRE specific Alu I fragments that allowed to discriminate DTU I from the others DTUs. Moreover, an UPGMA phenetic tree constructed from fragment sharing Southern blot data showed that T. cruzi I isolates conform a cluster separated from the T. cruzi II-VI isolates. When the relative number of SIRE copies was determined, a variation from 105 to 2,000 copies per haploid genome was observed among the different isolates without kept a DTU-relationship. In all, these findings suggest that SIRE sequence is a good target for parasite DNA amplification.
Wake Instabilities Behind Discrete Roughness Elements in High Speed Boundary Layers
NASA Technical Reports Server (NTRS)
Choudhari, Meelan; Li, Fei; Chang, Chau-Lyan; Norris, Andrew; Edwards, Jack
2013-01-01
Computations are performed to study the flow past an isolated, spanwise symmetric roughness element in zero pressure gradient boundary layers at Mach 3.5 and 5.9, with an emphasis on roughness heights of less than 55 percent of the local boundary layer thickness. The Mach 5.9 cases include flow conditions that are relevant to both ground facility experiments and high altitude flight ("cold wall" case). Regardless of the Mach number, the mean flow distortion due to the roughness element is characterized by long-lived streamwise streaks in the roughness wake, which can support instability modes that did not exist in the absence of the roughness element. The higher Mach number cases reveal a variety of instability mode shapes with velocity fluctuations concentrated in different localized regions of high base flow shear. The high shear regions vary from the top of a mushroom shaped structure characterizing the centerline streak to regions that are concentrated on the sides of the mushroom. Unlike the Mach 3.5 case with nearly same values of scaled roughness height k/delta and roughness height Reynolds number Re(sub kk), the odd wake modes in both Mach 5.9 cases are significantly more unstable than the even modes of instability. Additional computations for a Mach 3.5 boundary layer indicate that the presence of a roughness element can also enhance the amplification of first mode instabilities incident from upstream. Interactions between multiple roughness elements aligned along the flow direction are also explored.
Eyler, L.L.; Budden, M.J.
1985-03-01
The objective of this work is to assess prediction capabilities and features of the MAGNUM-2D computer code in relation to its intended use in the Basalt Waste Isolation Project (BWIP). This objective is accomplished through a code verification and benchmarking task. Results are documented which support correctness of prediction capabilities in areas of intended model application. 10 references, 43 figures, 11 tables.
Dynamics of a discrete chain of bi-stable elements: A biomimetic shock absorbing mechanism
NASA Astrophysics Data System (ADS)
Cohen, T.; Givli, S.
2014-03-01
A biomimetic shock absorbing mechanism, inspired by the bi-stable elongation behavior of the giant protein titin, is examined. A bi-stable element, composed of three mass particles with monotonous interaction forces, is suggested to facilitate an internal degree of freedom of finite mass which contributes significantly to dissipation upon unlocking of an internal link. An essential feature of the suggested element is that it undergoes reversible rapture and therefore retrieves its initial configuration once unloaded. The quasistatic and dynamic behaviors are investigated showing similarity to the common tri-linear bi-stable response, with two steady phases separated by a spinodal region. The dynamic behavior of a chain of elements is also examined, for several loading scenarios, showing that the suggested mechanism serves as an efficient shock absorber in a sub-critical dampening environment, as compared with a simple mass on spring system. Propagation of shock waves and refraction waves in an element chain is observed and the effect of natural imperfections is considered.
NASA Astrophysics Data System (ADS)
Moreno-García, Pavel; Grimaudo, Valentine; Riedo, Andreas; Neuland, Maike B.; Tulej, Marek; Broekmann, Peter; Wurz, Peter
2016-04-01
Direct quantitative chemical analysis with high lateral and vertical resolution of solid materials is of prime importance for the development of a wide variety of research fields, including e.g., astrobiology, archeology, mineralogy, electronics, among many others. Nowadays, studies carried out by complementary state-of-the-art analytical techniques such as Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), Secondary Ion Mass Spectrometry (SIMS), Glow Discharge Time-of-Flight Mass Spectrometry (GD-TOF-MS) or Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) provide extensive insight into the chemical composition and allow for a deep understanding of processes that might have fashioned the outmost layers of an analyte due to its interaction with the surrounding environment. Nonetheless, these investigations typically employ equipment that is not suitable for implementation on spacecraft, where requirements concerning weight, size and power consumption are very strict. In recent years Laser Ablation/Ionization Mass Spectrometry (LIMS) has re-emerged as a powerful analytical technique suitable not only for laboratory but also for space applications.[1-3] Its improved performance and measurement capabilities result from the use of cutting edge ultra-short femtosecond laser sources, improved vacuum technology and fast electronics. Because of its ultimate compactness, simplicity and robustness it has already proven to be a very suitable analytical tool for elemental and isotope investigations in space research.[4] In this contribution we demonstrate extended capabilities of our LMS instrument by means of three case studies: i) 2D chemical imaging performed on an Allende meteorite sample,[5] ii) depth profiling with unprecedented sub-nm vertical resolution on Cu electrodeposited interconnects[6,7] and iii) preliminary molecular desorption of polymers without assistance of matrix or functionalized substrates.[8] On the whole
NASA Technical Reports Server (NTRS)
Gersh-Range, Jessica A.; Arnold, William R.; Peck, Mason A.; Stahl, H. Philip
2011-01-01
Since future astrophysics missions require space telescopes with apertures of at least 10 meters, there is a need for on-orbit assembly methods that decouple the size of the primary mirror from the choice of launch vehicle. One option is to connect the segments edgewise using mechanisms analogous to damped springs. To evaluate the feasibility of this approach, a parametric ANSYS model that calculates the mode shapes, natural frequencies, and disturbance response of such a mirror, as well as of the equivalent monolithic mirror, has been developed. This model constructs a mirror using rings of hexagonal segments that are either connected continuously along the edges (to form a monolith) or at discrete locations corresponding to the mechanism locations (to form a segmented mirror). As an example, this paper presents the case of a mirror whose segments are connected edgewise by mechanisms analogous to a set of four collocated single-degree-of-freedom damped springs. The results of a set of parameter studies suggest that such mechanisms can be used to create a 15-m segmented mirror that behaves similarly to a monolith, although fully predicting the segmented mirror performance would require incorporating measured mechanism properties into the model. Keywords: segmented mirror, edgewise connectivity, space telescope
Least-squares finite element discretizations of neutron transport equations in 3 dimensions
Manteuffel, T.A; Ressel, K.J.; Starkes, G.
1996-12-31
The least-squares finite element framework to the neutron transport equation introduced in is based on the minimization of a least-squares functional applied to the properly scaled neutron transport equation. Here we report on some practical aspects of this approach for neutron transport calculations in three space dimensions. The systems of partial differential equations resulting from a P{sub 1} and P{sub 2} approximation of the angular dependence are derived. In the diffusive limit, the system is essentially a Poisson equation for zeroth moment and has a divergence structure for the set of moments of order 1. One of the key features of the least-squares approach is that it produces a posteriori error bounds. We report on the numerical results obtained for the minimum of the least-squares functional augmented by an additional boundary term using trilinear finite elements on a uniform tesselation into cubes.
Tao, Liang; McCurdy, C.W.; Rescigno, T.N.
2008-11-25
We show how to combine finite elements and the discrete variable representation in prolate spheroidal coordinates to develop a grid-based approach for quantum mechanical studies involving diatomic molecular targets. Prolate spheroidal coordinates are a natural choice for diatomic systems and have been used previously in a variety of bound-state applications. The use of exterior complex scaling in the present implementation allows for a transparently simple way of enforcing Coulomb boundary conditions and therefore straightforward application to electronic continuum problems. Illustrative examples involving the bound and continuum states of H2+, as well as the calculation of photoionization cross sections, show that the speed and accuracy of the present approach offer distinct advantages over methods based on single-center expansions.
NASA Astrophysics Data System (ADS)
Lessmann, Johann-Sebastian; Schoeppner, Volker
2016-03-01
The goal of this contribution is to describe a method of simulating solids-conveying processes in single screw extruders which include a defined back pressure leading to a resulting pressure buildup in the screw channel. To do so, use is made of the Discrete Element Method. Material parameters are presented, as well as details concerning the contact model used and the simulation tool EDEM. Additionally, a test setup is presented which has been used to validate the solids-conveying simulations. Results are shown for both simulations and experimental tests. Comparing the results from simulations and measurements shows acceptable conformity. Such simulations and experimental tests are crucial in order to better understand the buildup of pressure in high-speed single-screw extruders.
NASA Astrophysics Data System (ADS)
Virgo, Simon; Ankit, Kumar; Nestler, Britta; Urai, Janos L.
2016-04-01
Crack-seal veins form in a complex interplay of coupled thermal, hydraulic, mechanical and chemical processes. Their formation and cyclic growth involves brittle fracturing and dilatancy, phases of increased fluid flow and the growth of crystals that fill the voids and reestablish the mechanical strength. Existing numerical models of vein formation focus on selected aspects of the coupled process. Until today, no model exists that is able to use a realistic representation of the fracturing AND sealing processes, simultaneously. To address this challenge, we propose the bidirectional coupling of two numerical methods that have proven themselves as very powerful to model the fundamental processes acting in crack-seal systems: Phase-field and the Discrete Element Method (DEM). The phase-field Method was recently successfully extended to model the precipitation of quartz crystals from an aqueous solution and applied to model the sealing of a vein over multiple opening events (Ankit et al., 2013; Ankit et al., 2015a; Ankit et al., 2015b). The advantage over former, purely kinematic approaches is that in phase-field, the crystal growth is modeled based on thermodynamic and kinetic principles. Different driving forces for microstructure evolution, such as chemical bulk free energy, interfacial energy, elastic strain energy and different transport processes, such as mass diffusion and advection, can be coupled and the effect on the evolution process can be studied in 3D. The Discrete Element Method was already used in several studies to model the fracturing of rocks and the incremental growth of veins by repeated fracturing (Virgo et al., 2013; Virgo et al., 2014). Materials in DEM are represented by volumes of packed spherical particles and the response to the material to stress is modeled by interaction of the particles with their nearest neighbours. For rocks, in 3D, the method provides a realistic brittle failure behaviour. Exchange Routines are being developed that
NASA Technical Reports Server (NTRS)
Xue, W.-M.; Atluri, S. N.
1985-01-01
In this paper, all possible forms of mixed-hybrid finite element methods that are based on multi-field variational principles are examined as to the conditions for existence, stability, and uniqueness of their solutions. The reasons as to why certain 'simplified hybrid-mixed methods' in general, and the so-called 'simplified hybrid-displacement method' in particular (based on the so-called simplified variational principles), become unstable, are discussed. A comprehensive discussion of the 'discrete' BB-conditions, and the rank conditions, of the matrices arising in mixed-hybrid methods, is given. Some recent studies aimed at the assurance of such rank conditions, and the related problem of the avoidance of spurious kinematic modes, are presented.
A Study of Three Intrinsic Problems of the Classic Discrete Element Method Using Flat-Joint Model
NASA Astrophysics Data System (ADS)
Wu, Shunchuan; Xu, Xueliang
2016-05-01
Discrete element methods have been proven to offer a new avenue for obtaining the mechanics of geo-materials. The standard bonded-particle model (BPM), a classic discrete element method, has been applied to a wide range of problems related to rock and soil. However, three intrinsic problems are associated with using the standard BPM: (1) an unrealistically low unconfined compressive strength to tensile strength (UCS/TS) ratio, (2) an excessively low internal friction angle, and (3) a linear strength envelope, i.e., a low Hoek-Brown (HB) strength parameter m i . After summarizing the underlying reasons of these problems through analyzing previous researchers' work, flat-joint model (FJM) is used to calibrate Jinping marble and is found to closely match its macro-properties. A parametric study is carried out to systematically evaluate the micro-parameters' effect on these three macro-properties. The results indicate that (1) the UCS/TS ratio increases with the increasing average coordination number (CN) and bond cohesion to tensile strength ratio, but it first decreases and then increases with the increasing crack density (CD); (2) the HB strength parameter m i has positive relationships to the crack density (CD), bond cohesion to tensile strength ratio, and local friction angle, but a negative relationship to the average coordination number (CN); (3) the internal friction angle increases as the crack density (CD), bond cohesion to tensile strength ratio, and local friction angle increase; (4) the residual friction angle has little effect on these three macro-properties and mainly influences post-peak behavior. Finally, a new calibration procedure is developed, which not only addresses these three problems, but also considers the post-peak behavior.
Ji, S.; Hanes, D.M.; Shen, H.H.
2009-01-01
In this study, we report a direct comparison between a physical test and a computer simulation of rapidly sheared granular materials. An annular shear cell experiment was conducted. All parameters were kept the same between the physical and the computational systems to the extent possible. Artificially softened particles were used in the simulation to reduce the computational time to a manageable level. Sensitivity study on the particle stiffness ensured such artificial modification was acceptable. In the experiment, a range of normal stress was applied to a given amount of particles sheared in an annular trough with a range of controlled shear speed. Two types of particles, glass and Delrin, were used in the experiment. Qualitatively, the required torque to shear the materials under different rotational speed compared well with those in the physical experiments for both the glass and the Delrin particles. However, the quantitative discrepancies between the measured and simulated shear stresses were nearly a factor of two. Boundary conditions, particle size distribution, particle damping and friction, including a sliding and rolling, contact force model, were examined to determine their effects on the computational results. It was found that of the above, the rolling friction between particles had the most significant effect on the macro stress level. This study shows that discrete element simulation is a viable method for engineering design for granular material systems. Particle level information is needed to properly conduct these simulations. However, not all particle level information is equally important in the study regime. Rolling friction, which is not commonly considered in many discrete element models, appears to play an important role. ?? 2009 Elsevier Ltd.
Hoffman, E.L.; Ammerman, D.J.
1993-08-01
A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several finite element simulations of the event. The purpose of the study is to compare the performance of the various analysis codes and element types with respect to a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry.
Rupture cascades in a discrete element model of a porous sedimentary rock.
Kun, Ferenc; Varga, Imre; Lennartz-Sassinek, Sabine; Main, Ian G
2014-02-14
We investigate the scaling properties of the sources of crackling noise in a fully dynamic numerical model of sedimentary rocks subject to uniaxial compression. The model is initiated by filling a cylindrical container with randomly sized spherical particles that are then connected by breakable beams. Loading at a constant strain rate the cohesive elements fail, and the resulting stress transfer produces sudden bursts of correlated failures, directly analogous to the sources of acoustic emissions in real experiments. The source size, energy, and duration can all be quantified for an individual event, and the population can be analyzed for its scaling properties, including the distribution of waiting times between consecutive events. Despite the nonstationary loading, the results are all characterized by power-law distributions over a broad range of scales in agreement with experiments. As failure is approached, temporal correlation of events emerges accompanied by spatial clustering.
Rupture Cascades in a Discrete Element Model of a Porous Sedimentary Rock
NASA Astrophysics Data System (ADS)
Kun, Ferenc; Varga, Imre; Lennartz-Sassinek, Sabine; Main, Ian G.
2014-02-01
We investigate the scaling properties of the sources of crackling noise in a fully dynamic numerical model of sedimentary rocks subject to uniaxial compression. The model is initiated by filling a cylindrical container with randomly sized spherical particles that are then connected by breakable beams. Loading at a constant strain rate the cohesive elements fail, and the resulting stress transfer produces sudden bursts of correlated failures, directly analogous to the sources of acoustic emissions in real experiments. The source size, energy, and duration can all be quantified for an individual event, and the population can be analyzed for its scaling properties, including the distribution of waiting times between consecutive events. Despite the nonstationary loading, the results are all characterized by power-law distributions over a broad range of scales in agreement with experiments. As failure is approached, temporal correlation of events emerges accompanied by spatial clustering.
NASA Astrophysics Data System (ADS)
Guan, P. B.; Tingatinga, E. A.; Longalong, R. E.; Saguid, J.
2016-09-01
During the past decades, the complexity of conventional methods to perform seismic performance assessment of buildings led to the development of more effective approaches. The rigid body spring-discrete element method (RBS-DEM) is one of these approaches and has recently been applied to the study of the behavior of reinforced concrete (RC) buildings subjected to strong earthquakes. In this paper, the governing equations of RBS-DEM planar elements subjected to lateral loads and horizontal ground motion are presented and used to replicate the hysteretic behavior of experimental RC columns. The RBS-DEM models of columns are made up of rigid components connected by systems of springs that simulate axial, shear, and bending behavior of an RC section. The parameters of springs were obtained using Response-2000 software and the hysteretic response of the models of select columns from the Pacific Earthquake Engineering Research (PEER) Structural Performance Database were computed numerically. Numerical examples show that one-component models were able to simulate the initial stiffness reasonably, while the displacement capacity of actual columns undergoing large displacements were underestimated.
NASA Astrophysics Data System (ADS)
Karampinos, Efstratios; Hadjigeorgiou, John; Turcotte, Pascal
2016-12-01
Structurally defined squeezing mechanisms in hard rock mining often result in buckling failures and large deformations. In mining drives, the primary objective is to mitigate and manage, in a cost-effective way, as opposed to arrest the deformation. This paper is a contribution to an improved understanding of the impact of several reinforcement scenarios in structurally controlled deformations in hard rock mines. The influence of reinforcement in the 3D discrete element method is explored, extending previous numerical work that has captured the squeezing buckling mechanism driven by foliation and high stresses in the selected mine site. A comprehensive strategy for explicitly modelling rock reinforcement using the DEM was developed and implemented in a series of 3D numerical models. The models were calibrated based on field testing of reinforcement and observations at the LaRonde Mine. They were used to investigate the influence of different reinforcement strategies at different deformation stages. The numerical results were in agreement with the field observations and demonstrated the practical implications of using yielding reinforcement elements. This was supported by field data where the use of yielding bolts reduced the drift convergence and rehabilitation. The methodology is applicable to other mine sites facing structurally controlled large deformations.
NASA Astrophysics Data System (ADS)
Morgan, Julia K.
2015-05-01
Particle-based numerical simulations of cohesive contractional wedges can yield important perspectives on the formation and evolution of fold and thrust belts, offering particular insights into the mechanical evolution of the systems. Results of several discrete element method simulations are presented here, demonstrating the stress and strain evolution of systems with different initial cohesive strengths. Particle assemblages consolidated under gravity, and bonded to impart cohesion, are pushed from the left at a constant velocity above a weak, unbonded décollement surface. Internal thrusting causes horizontal shortening and vertical thickening, forming wedge geometries. The mean wedge taper is similar for all simulations, consistent with their similar residual and basal sliding friction values. In all examples presented here, both forethrusts and back thrusts occur, but forethrusts accommodate most of the shortening. Fault spacing and offset increase with increasing cohesion. Significant tectonic volume strain also occurs, with the greatest incremental volume strain occurring just outboard of the deformation front. This diffuse shortening serves to strengthen the unfaulted domain in front of the deformed wedge, preconditioning these materials for brittle (dilative) failure. The reach of this volumetric strain and extent of décollement slip increase with cohesive strength, defining the extent of stress transmission. Stress paths for elements tracked through the simulations demonstrate systematic variations in shear stress in response to episodes of both décollement slip and thrust fault activity, providing a direct explanation for stress fluctuations during convergence.
Crystal plasticity finite element modeling of discrete twin evolution in polycrystalline magnesium
NASA Astrophysics Data System (ADS)
Cheng, Jiahao; Ghosh, Somnath
2017-02-01
This paper develops an advanced, image-based crystal plasticity finite element (CPFE) model, for predicting explicit twin formation and associated heterogeneous deformation in single crystal and polycrystalline microstructures of hexagonal close-packed or hcp materials, such as magnesium. Twin formation is responsible for premature failure of many hcp materials. The physics of nucleation, propagation and growth of explicit twins are considered in the CPFE formulation. The twin nucleation model is based on dissociation of sessile dislocations into stable twin loops, while propagation is assumed by atoms shearing on twin planes and shuffling to reduce the thermal activation energy barrier. The explicit twin evolution model however has intrinsic issues of low computational efficiency. Very fine simulation time steps with enormous computation costs are required to simulate the fast propagating twin bands and associated strain localization. To improve the computational efficiency, a multi-time scale subcycling algorithm is developed. It decomposes the computational domain into sub-domains of localized twins requiring very fine time-steps and complementary domains of relatively low resolution. Each sub-domain updates the stress and the deformation-dependent variables in different rates, followed by a coupling at the end of every coarse time step to satisfy global equilibrium. A 6-fold increase in computing speed is obtained for a polycrystalline Mg microstructure simulation in this paper. CPFE simulations of high purity Mg microstructures are compared with experiments with very good agreement in stress-strain response as well as heterogeneous twin formation with strain localization.
Shearing fluid-filled granular media: A coupled discrete element - continuous approach
NASA Astrophysics Data System (ADS)
Goren, L.; Aharonov, E.; Sparks, D.; Toussaint, R.; Marder, E.
2012-04-01
Fluid-filled granular layers are abundant in the Earth's shallow crust as saturated soils and poorly consolidated hillslope material, and as fluid-filled fault gouge layers. When such grains-fluid systems are subjected to excitation by the passage of seismic waves, tectonic loading, or gravitational loading they exhibit a highly non-trivial dynamical behavior that may lead to instabilities in the form of soil liquefaction, debris flow mobilization, and earthquakes. In order to study the basic coupled mechanics of fluid-filled granular media and the dynamical processes that are responsible for the emergence of instabilities we develop a model that couples granular dynamics (DEM) algorithm with a continuous Eulerian grid-based solver. The two components of the model represent the two phases (grains and fluid) in two different scales. Each grain is represented by a single element in the granular dynamics component, where grains interact by elastic collisions and frictional sliding. The compressible pore fluid is represented on a coarser Darcy scale grid that is super-imposed over the grains layer. The pore space geometry set by the evolving granular packing is used to define smooth porosity and permeability fields, and the individual grain velocities are interpolated to define a smooth field of a solid-fraction velocity. The porosity, permeability, and solid velocity fields are used in the continuous fluid grid-based solver to find pore fluid velocity and pressure. Pore fluid pressure gradients are interpolated back from the fluid grid to individual grains, where they enter the grains force balance equation as seepage forces. Boundary conditions are specified separately for the two phases. For the pore fluid we test two end-member drainage conditions: completely drained system (with infinite boundary permeability) and completely undrained system (with zero boundary permeability). For the grains, two-dimensional time dependent stress and velocity conditions are
NASA Astrophysics Data System (ADS)
Herman, Agnieszka
2016-04-01
This paper presents theoretical foundations, numerical implementation and examples of application of the two-dimensional Discrete-Element bonded-particle Sea Ice model - DESIgn. In the model, sea ice is represented as an assemblage of objects of two types: disk-shaped "grains" and semi-elastic bonds connecting them. Grains move on the sea surface under the influence of forces from the atmosphere and the ocean, as well as interactions with surrounding grains through direct contact (Hertzian contact mechanics) and/or through bonds. The model has an experimental option of taking into account quasi-three-dimensional effects related to the space- and time-varying curvature of the sea surface, thus enabling simulation of ice breaking due to stresses resulting from bending moments associated with surface waves. Examples of the model's application to simple sea ice deformation and breaking problems are presented, with an analysis of the influence of the basic model parameters ("microscopic" properties of grains and bonds) on the large-scale response of the modeled material. The model is written as a toolbox suitable for usage with the open-source numerical library LIGGGHTS. The code, together with full technical documentation and example input files, is freely available with this paper and on the Internet.
NASA Astrophysics Data System (ADS)
Smart, Kevin J.; Wyrick, Danielle Y.; Ferrill, David A.
2011-04-01
Pit craters, circular to elliptical depressions that lack a raised rim or ejecta deposits, are common on the surface of Mars. Similar structures are also found on Earth, Venus, the Moon, and smaller planetary bodies, including some asteroids. While it is generally accepted that these pits form in response to material drainage into a subsurface void space, the primary mechanism(s) responsible for creating the void is a subject of debate. Previously proposed mechanisms include collapse into lave tubes, dike injection, extensional fracturing, and dilational normal faulting. In this study, we employ two-dimensional discrete element models to assess both extensional fracturing and dilational normal faulting as mechanisms for forming pit craters. We also examine the effect of mechanical stratigraphy (alternating strong and weak layers) and variation in regolith thickness on pit morphology. Our simulations indicate that both extensional fracturing and dilational normal faulting are viable mechanisms. Both mechanisms lead to generally convex (steepening downward) slope profiles; extensional fracturing results in generally symmetric pits, whereas dilational normal faulting produces strongly asymmetric geometries. Pit width is established early, whereas pit depth increases later in the deformation history. Inclusion of mechanical stratigraphy results in wider and deeper pits, particularly for the dilational normal faulting, and the presence of strong near-surface layers leads to pits with distinct edges as observed on Mars. The modeling results suggest that a thicker regolith leads to wider but shallower pits that are less distinct and may be more difficult to detect in areas of thick regolith.
Huang, Hai; Plummer, Mitchell; Podgorney, Robert
2013-02-01
Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.
2015-07-01
circular hole in an aluminium plate fitted with a titanium fastener that were computed using two-dimensional finite element contact analysis. By...used to validate the contact stress distributions associated with a circular hole in an aluminium plate fitted with a titanium fastener that were...fatigue life and aircraft structural integrity management of RAAF airframes. An aluminium coupon has been previously designed in support of the
NASA Astrophysics Data System (ADS)
Lenz, Reimar K.; Lenz, Udo
1990-11-01
A newly developed imaging principle two dimensional microscanning with Piezo-controlled Aperture Displacement (PAD) allows for high image resolutions. The advantages of line scanners (high resolution) are combined with those of CCD area sensors (high light sensitivity geometrical accuracy and stability easy focussing illumination control and selection of field of view by means of TV real-time imaging). A custom designed sensor optimized for small sensor element apertures and color fidelity eliminates the need for color filter revolvers or mechanical shutters and guarantees good color convergence. By altering the computer controlled microscan patterns spatial and temporal resolution become interchangeable their product being a constant. The highest temporal resolution is TV real-time (50 fields/sec) the highest spatial resolution is 2994 x 2320 picture elements (Pels) for each of the three color channels (28 MBytes of raw image data in 8 see). Thus for the first time it becomes possible to take 35mm slide quality still color images of natural 3D scenes by purely electronic means. Nearly " square" Pels as well as hexagonal sampling schemes are possible. Excellent geometrical accuracy and low noise is guaranteed by sensor element (Sel) synchronous analog to digital conversion within the camera head. The cameras principle of operation and the procedure to calibrate the two-dimensional piezo-mechanical motion with an accuracy of better than O. 2. tm RMSE in image space is explained. The remaining positioning inaccuracy may be further
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane strain elements as well as three different generalized plane strain type approaches were performed. The computed deflections, skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with lamination length. For more accurate predictions, however, a three-dimensional analysis is required.
Kitada, Ryo; Sadato, Norihiro; Lederman, Susan J
2012-01-01
Rigid surfaces consisting of spatially jittered 2-D raised-dot patterns with different inter-element spacings were moved back and forth across the skin at three different speeds (10-fold range). Within each psychophysical experiment, participants numerically estimated the perceived magnitude of either unpleasantness (nonpainful) or roughness of 2-D raised-dot surfaces applied to two stationary body sites (experiment 1: fingers; experiment 2: forearm). The psychophysical functions for the two types of perceptual judgment were highly similar at both body loci; more specifically, the perceived magnitude of unpleasantness and roughness both increased monotonically as a power function of increasing inter-element spacing, with the rate of growth declining at the upper end of the continuum. These results suggest that inter-element spacing is a critical determinant of the perceived magnitude of unpleasantness (nonpainful), as well as of roughness. Each perceptual judgment also increased as a function of increasing relative speed at both body loci. However, the magnitude of this effect was significantly greater for perceived unpleasantness than for perceived roughness; conversely, the speed effect was significantly greater on the forearm than on the fingers. Several possible explanations for these findings are considered.
NASA Astrophysics Data System (ADS)
Sui, Liansheng; Duan, Kuaikuai; Liang, Junli
2016-05-01
A secure double-image sharing scheme is proposed by using the Shamir's three-pass protocol in the discrete multiple-parameter fractional angular transform domain. First, an enlarged image is formed by assembling two plain images successively in the horizontal direction and scrambled in the chaotic permutation process, in which the sequences of chaotic pairs are generated by the two-dimensional Sine Logistic modulation map. Second, the scrambled image is divided into two components which are used to constitute a complex image. One component is normalized and regarded as the phase part of the complex image as well as other is considered as the amplitude part. Finally, the complex image is shared between the sender and the receiver by using the Shamir's three-pass protocol, in which the discrete multiple-parameter fractional angular transform is used as the encryption function due to its commutative property. The proposed double-image sharing scheme has an obvious advantage that the key management is convenient without distributing the random phase mask keys in advance. Moreover, the security of the image sharing scheme is enhanced with the help of extra parameters of the discrete multiple-parameter fractional angular transform. To the best of our knowledge, this is the first report on integrating the Shamir's three-pass protocol with double-image sharing scheme in the information security field. Simulation results and security analysis verify the feasibility and effectiveness of the proposed scheme.
NASA Astrophysics Data System (ADS)
Lu, C.; Tang, C.; Hu, J.; Chan, Y.; Chi, C.
2011-12-01
The subtropical climate and annual average about four typhoons, combined with frequent earthquakes trigger the landslide hazards in mountainous area in Taiwan. The potential Lushan landslide area is located at a famous hotspring district of Nantou County in central Taiwan which slides frequently due to heavy rainfall during pouring rain or typhoon seasons. Lushan landslide demonstrates a typical deep-seated (up to 80 meters) creep deformation of a slate rock slope with high dip angles. Under the weathering effects, the slide surface is currently extending to the lower slope was formed by the coalescing of the joints on the upper eastern slope as well as the interface between the sandy slate and the slate on the upper western slope. In this study, we simulate the process of Lushan landslide by using PFC3D, which is conducted by adopting the 3D granular discrete element method. In this simulation, we assume the whole sliding block as an inhomogeneous layer of weaken slate. We extrapolate the slip plane depth according to the result of borehole, TDR and RIF profiles. The main landslide area is about 18 hectares and the volume is about 9 million cubic meters, which is filled with 30 thousand ball elements. The topography is represented by 25,620 wall elements based on the 5m digital elevation model. We set 9 monitoring balls on surface to monitor the velocity and run-out path. According to the field work, we defined the weak planes by the strike and dip of cleavage and joint. From our results, the run-out zone is about 40 hectares. The debris will cover whole Lushan hotspring district in 20 seconds and all rock mass will almost stop after 150 seconds. The predicted maximum velocity is about 40m/s. According to the velocity profile, we can see three and four times accelerations from monitored particles. The collision of particles during sliding and complex terrain explains the fluctuation of velocity profile with time. The numerical results of this study will provide
Biffle, J.H.; Blanford, M.L.
1994-05-01
JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.
NASA Astrophysics Data System (ADS)
Chang, Kuo-Jen; Taboada, Alfredo
2009-09-01
We present Contact Dynamics discrete element simulations of the earthquake-triggered Jiufengershan avalanche, which mobilized a 60 m thick, 1.5 km long sedimentary layer, dipping ˜22°SE toward a valley. The dynamic behavior of the avalanche is simulated under different assumptions about rock behavior, water table height, and boundary shear strength. Additionally, seismic shaking is introduced using strong motion records from nearby stations. We assume that seismic shaking generates shearing and frictional heating along the surface of rupture, which, in turn, may induce dynamic weakening and avalanche triggering; a simple "slip-weakening" criterion was adopted to simulate shear strength drop along the rupture surface. We investigate the mechanical processes occurring during triggering and propagation of an avalanche mobilizing shallowly dipping layers. Incipient deformation forms a pop-up structure at the toe of the dip slope. As the avalanche propagates, the pop-up deforms into an overturned fold, which overrides the surface of separation along a décollement. Simultaneously, uphill layers slide at high velocity (125 km/h) and are folded and disrupted as they reach the toe of the dip slope. The avalanche foot forms a wedge that is pushed forward as deformed rocks accrete at its rear. We simulated five cross sections across the Jiufengershan avalanche, which differ in the geometry of the surface of separation. Topographic and simulated surface profiles are similar. The friction coefficient at the surface of separation determined from back analysis is abnormally low (μSS = 0.2), possibly due to lubrication by liquefied soils. The granular deposits of simulated earthquake- and rain-triggered avalanches are similar.
NASA Astrophysics Data System (ADS)
Lisjak, Andrea; Tatone, Bryan S. A.; Mahabadi, Omid K.; Grasselli, Giovanni; Marschall, Paul; Lanyon, George W.; Vaissière, Rémi de la; Shao, Hua; Leung, Helen; Nussbaum, Christophe
2016-05-01
The analysis and prediction of the rock mass disturbance around underground excavations are critical components of the performance and safety assessment of deep geological repositories for nuclear waste. In the short term, an excavation damaged zone (EDZ) tends to develop due to the redistribution of stresses around the underground openings. The EDZ is associated with an increase in hydraulic conductivity of several orders of magnitude. In argillaceous rocks, sealing mechanisms ultimately lead to a partial reduction in the effective hydraulic conductivity of the EDZ with time. The goal of this study is to strengthen the understanding of the phenomena involved in the EDZ formation and sealing in Opalinus Clay, an indurated claystone currently being assessed as a host rock for a geological repository in Switzerland. To achieve this goal, hybrid finite-discrete element method (FDEM) simulations are performed. With its explicit consideration of fracturing processes, FDEM modeling is applied to the HG-A experiment, an in situ test carried out at the Mont Terri underground rock laboratory to investigate the hydro-mechanical response of a backfilled and sealed microtunnel. A quantitative simulation of the EDZ formation process around the microtunnel is first carried out, and the numerical results are compared with field observations. Then, the re-compression of the EDZ under the effect of a purely mechanical loading, capturing the increase of swelling pressure from the backfill onto the rock, is considered. The simulation results highlight distinctive rock failure kinematics due to the bedded structure of the rock mass. Also, fracture termination is simulated at the intersection with a pre-existing discontinuity, representing a fault plane oblique to the bedding orientation. Simulation of the EDZ re-compression indicates an overall reduction of the total fracture area as a function of the applied pressure, with locations of ineffective sealing associated with self
2014-01-01
Locomotion over deformable substrates is a common occurrence in nature. Footprints represent sedimentary distortions that provide anatomical, functional, and behavioral insights into trackmaker biology. The interpretation of such evidence can be challenging, however, particularly for fossil tracks recovered at bedding planes below the originally exposed surface. Even in living animals, the complex dynamics that give rise to footprint morphology are obscured by both foot and sediment opacity, which conceals animal–substrate and substrate–substrate interactions. We used X-ray reconstruction of moving morphology (XROMM) to image and animate the hind limb skeleton of a chicken-like bird traversing a dry, granular material. Foot movement differed significantly from walking on solid ground; the longest toe penetrated to a depth of ∼5 cm, reaching an angle of 30° below horizontal before slipping backward on withdrawal. The 3D kinematic data were integrated into a validated substrate simulation using the discrete element method (DEM) to create a quantitative model of limb-induced substrate deformation. Simulation revealed that despite sediment collapse yielding poor quality tracks at the air–substrate interface, subsurface displacements maintain a high level of organization owing to grain–grain support. Splitting the substrate volume along “virtual bedding planes” exposed prints that more closely resembled the foot and could easily be mistaken for shallow tracks. DEM data elucidate how highly localized deformations associated with foot entry and exit generate specific features in the final tracks, a temporal sequence that we term “track ontogeny.” This combination of methodologies fosters a synthesis between the surface/layer-based perspective prevalent in paleontology and the particle/volume-based perspective essential for a mechanistic understanding of sediment redistribution during track formation. PMID:25489092
NASA Astrophysics Data System (ADS)
Tessitore, S.; Fernández-Merodo, J. A.; Herrera, G.; Tomás, R.; Ramondini, M.; Sanabria, M.; Duro, J.; Mulas, J.; Calcaterra, D.
2015-11-01
Subsidence is a hazard that may have natural or anthropogenic origin causing important economic losses. The area of Murcia city (SE Spain) has been affected by subsidence due to groundwater overexploitation since the year 1992. The main observed historical piezometric level declines occurred in the periods 1982-1984, 1992-1995 and 2004-2008 and showed a close correlation with the temporal evolution of ground displacements. Since 2008, the pressure recovery in the aquifer has led to an uplift of the ground surface that has been detected by the extensometers. In the present work an elastic hydro-mechanical finite element code has been used to compute the subsidence time series for 24 geotechnical boreholes, prescribing the measured groundwater table evolution. The achieved results have been compared with the displacements estimated through an advanced DInSAR technique and measured by the extensometers. These spatio-temporal comparisons have showed that, in spite of the limited geomechanical data available, the model has turned out to satisfactorily reproduce the subsidence phenomenon affecting Murcia City. The model will allow the prediction of future induced deformations and the consequences of any piezometric level variation in the study area.
Teng, Zhongzhao; Sadat, Umar; Li, Zhiyong; Huang, Xueying; Zhu, Chengcheng; Young, Victoria E; Graves, Martin J; Gillard, Jonathan H
2010-10-01
High mechanical stress in atherosclerotic plaques at vulnerable sites, called critical stress, contributes to plaque rupture. The site of minimum fibrous cap (FC) thickness (FC(MIN)) and plaque shoulder are well-documented vulnerable sites. The inherent weakness of the FC material at the thinnest point increases the stress, making it vulnerable, and it is the big curvature of the lumen contour over FC which may result in increased plaque stress. We aimed to assess critical stresses at FC(MIN) and the maximum lumen curvature over FC (LC(MAX)) and quantify the difference to see which vulnerable site had the highest critical stress and was, therefore, at highest risk of rupture. One hundred patients underwent high resolution carotid magnetic resonance (MR) imaging. We used 352 MR slices with delineated atherosclerotic components for the simulation study. Stresses at all the integral nodes along the lumen surface were calculated using the finite-element method. FC(MIN) and LC(MAX) were identified, and critical stresses at these sites were assessed and compared. Critical stress at FC(MIN) was significantly lower than that at LC(MAX) (median: 121.55 kPa; inter quartile range (IQR) = [60.70-180.32] kPa vs. 150.80 kPa; IQR = [91.39-235.75] kPa, p < 0.0001). If critical stress at FC(MIN) was only used, then the stress condition of 238 of 352 MR slices would be underestimated, while if the critical stress at LC(MAX) only was used, then 112 out of 352 would be underestimated. Stress analysis at FC(MIN) and LC(MAX) should be used for a refined mechanical risk assessment of atherosclerotic plaques, since material failure at either site may result in rupture.
NASA Astrophysics Data System (ADS)
Martinez, J.; Belahcen, A.; Detoni, J. G.
2016-01-01
This paper presents a coupled Finite Element Model in order to study the vibrations in induction motors under steady-state. The model utilizes a weak coupling strategy between both magnetic and elastodynamic fields on the structure. Firstly, the problem solves the magnetic vector potential in an axial cut and secondly the former solution is coupled to a three dimensional model of the stator. The coupling is performed using projection based algorithms between the computed magnetic solution and the three-dimensional mesh. The three-dimensional model of the stator includes both end-windings and end-shields in order to give a realistic picture of the motor. The present model is validated using two steps. Firstly, a modal analysis hammer test is used to validate the material characteristic of this complex structure and secondly an array of accelerometer sensors is used in order to study the rotating waves using multi-dimensional spectral techniques. The analysis of the radial vibrations presented in this paper firstly concludes that slot harmonic components are visible when the motor is loaded. Secondly, the multidimensional spectrum presents the most relevant mechanical waves on the stator such as the ones produced by the space harmonics or the saturation of the iron core. The direct retrieval of the wave-number in a multi-dimensional spectrum is able to show the internal current distribution in a non-intrusive way. Experimental results for healthy induction motors are showing mechanical imbalances in a multi-dimensional spectrum in a more straightforward form.
2014-01-01
the appropriate convex hull , construction of a PBNO preconditioner for the 2-D DG model utilizes precisely the same objective NLLS algorithm as for...handle the complex spectrum of the DG model would introduce an element of arbitrariness in selecting the appropriate convex hull construction of a PBNO...Fig. 2.1(b), which has a hull that cannot be well-represented by a convex form. As we show in the next section, the process by which the PBNO
NASA Astrophysics Data System (ADS)
Zeeb, Conny; Frühwirt, Thomas; Konietzky, Heinz
2015-04-01
Key to a successful exploitation of deep geothermal reservoirs in a petrothermal environment is the hydraulic stimulation of the host rock to increase permeability. The presented research investigates the fracture propagation and interaction during hydraulic stimulation of multiple fractures in a highly anisotropic stress field. The presented work was conducted within the framework of the OPTIRISS project, which is a cooperation of industry partners and universities in Thuringia and Saxony (Federal States of Germany) and was funded by the European Fond for Regional Development. One objective was the design optimization of the subsurface geothermal heat exchanger (SGHE) by means of numerical simulations. The presented simulations were conducted applying 3DEC (Itasca™), a software tool based on the discrete element method. The simulation results indicate that the main direction of fracture propagation is towards lower stresses and thus towards the biosphere. Therefore, barriers might be necessary to limit fracture propagation to the designated geological formation. Moreover, the hydraulic stimulation significantly alters the stresses in the vicinity of newly created fractures. Especially the change of the minimum stress component affects the hydraulic stimulation of subsequent fractures, which are deflected away from the previously stimulated fractures. This fracture deflection can render it impossible to connect all fractures with a second borehole for the later production. The results of continuative simulations indicate that a fracture deflection cannot be avoided completely. Therefore, the stage alignment was modified to minimize fracture deflection by varying (1) the pauses between stages, (2) the spacing's between adjacent stages, and (3) the angle between stimulation borehole and minimum stress component. An optimum SGHE design, which implies that all stimulated fractures are connected to the production borehole, can be achieved by aligning the stimulation
Insight from modelling discrete fractures using GEOCRACK
DuTeaux, Robert; Swenson, Daniel; Hardeman, Brian
1996-01-24
This work analyzes the behavior of a numerical geothermal reservoir simulation with flow only in discrete fractures. GEOCRACK is a 2-D finite element model developed at Kansas State University for the Hot Dry Rock (HDR) research at Los Alamos National Laboratory. Its numerical simulations couple the mechanics of discrete fracture behavior with the state of earth stress, fluid flow, and heat transfer. This coupled model could also be of value for modeling reinjection and other reservoir operating strategies for liquid dominated fractured reservoirs. Because fracture surfaces cool quickly by fluid convection, and heat does not conduct quickly from the interior of reservoir rock, modeling the injection of cold fluid into a fractured reservoir is better simulated by a model with discrete fractures. This work contains knowledge gained from HDR reservoir simulation and continues to develop the general concept of heat mining, reservoir optimization. and the sensitivity of simulation to the uncertainties of fracture spacing and dynamic flow dispersion.
Liu, Hong-Ke; Huang, Xiaohua; Lu, Tianhong; Wang, Xiujian; Sun, Wei-Yin; Kang, Bei-Sheng
2008-06-28
Complexes [PF6 subset(Ag3(titmb)2](PF6)2 (8) and {SbF6 subset[Ag3(titmb)2](SbF6)2}.H2O.1.5 CH3OH (9) are obtained by reaction of titmb and Ag+ salts with different anions (PF6(-) and SbF6(-)), and crystal structures reveal that they are both M3L2 cage complexes with short Ag...F interactions between the silver atoms and the fluorine atoms of the anions. In complex 8, a novel cage dimer is formed by weak Ag...F contacts; an unique cage tetramer formed via Ag...pi interactions (Ag...eta5-imidazole) between dimers and an infinite 1D cage chain is presented. However, each of the external non-disordered SbF6(-) anions connect with six cage 9s via Ag...F contacts, and each cage 9 in turn connects with three SbF6(-) anions to form a 2D network cage layer; and the layers are connected by pi-pi interactions to form a 3D network. The anion-exchange reactions of four Ag3L2 type complexes ([BF4 subset(Ag3(titmb)2](BF4)2 (6), [ClO4 subset(Ag3(titmb)2](ClO4)2 (7b), [PF6 subset(Ag3(titmb)2](PF6)2 (8) and [SbF6 subset(Ag3(titmb)2](SbF6)2.1.5CH3OH (9)) with tetrahedral and octahedral anions (ClO4(-), BF4(-), PF6(-) and SbF6(-)) are also reported. The anion-exchange experiments demonstrate that the anion selective order is SbF6(-) > PF6(-) > BF4(-), ClO4(-), and this anion receptor is preferred to trap octahedral and tetrahedral anions rather than linear or triangle anions; SbF6(-) is the biggest and most preferable one, so far. The dimensions of cage complexes with or without internal anions, anion-exchange reactions, cage assembly and anion inclusions, silver(I) coordination environments, Ag-F and Ag-pi interactions of Ag3L2 complexes 1-9 are discussed.
NASA Astrophysics Data System (ADS)
Lotsch, Bettina V.
2015-07-01
Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.
Compatible, energy and symmetry preserving 2D Lagrangian hydrodynamics in rz-cylindrical coordinates
Shashkov, Mikhail; Wendroff, Burton; Burton, Donald; Barlow, A; Hongbin, Guo
2009-01-01
We present a new discretization for 2D Lagrangian hydrodynamics in rz geometry (cylindrical coordinates) that is compatible, energy conserving and symmetry preserving. We describe discretization of the basic Lagrangian hydrodynamics equations.
NASA Astrophysics Data System (ADS)
Viré, Axelle; Xiang, Jiansheng; Milthaler, Frank; Farrell, Patrick Emmet; Piggott, Matthew David; Latham, John-Paul; Pavlidis, Dimitrios; Pain, Christopher Charles
2012-12-01
Fluid-structure interactions are modelled by coupling the finite element fluid/ocean model `Fluidity-ICOM' with a combined finite-discrete element solid model `Y3D'. Because separate meshes are used for the fluids and solids, the present method is flexible in terms of discretisation schemes used for each material. Also, it can tackle multiple solids impacting on one another, without having ill-posed problems in the resolution of the fluid's equations. Importantly, the proposed approach ensures that Newton's third law is satisfied at the discrete level. This is done by first computing the action-reaction force on a supermesh, i.e. a function superspace of the fluid and solid meshes, and then projecting it to both meshes to use it as a source term in the fluid and solid equations. This paper demonstrates the properties of spatial conservation and accuracy of the method for a sphere immersed in a fluid, with prescribed fluid and solid velocities. While spatial conservation is shown to be independent of the mesh resolutions, accuracy requires fine resolutions in both fluid and solid meshes. It is further highlighted that unstructured meshes adapted to the solid concentration field reduce the numerical errors, in comparison with uniformly structured meshes with the same number of elements. The method is verified on flow past a falling sphere. Its potential for ocean applications is further shown through the simulation of vortex-induced vibrations of two cylinders and the flow past two flexible fibres.
2D semiconductor optoelectronics
NASA Astrophysics Data System (ADS)
Novoselov, Kostya
The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.
NASA Technical Reports Server (NTRS)
Myneni, Ranga B.; Kanemasu, Edward T.; Asrar, Ghassem
1988-01-01
A finite element discrete ordinates method for solving the radiative transfer equation in nonrotationally invariant scattering media has been applied to the lead-canopy problem, and results are presented on the cross sections and the reflection functions. The method is based on a unique implementation of the Galerkin integral law formulation of the transport equation. For both near-normal and grazing incidences, the transfer functions of leaf canopies are found to be strongly anisotropic, with relatively more scattered flux in the vertical directions. It is suggested that the assumption of isotropic scattering in leaf canopies is not valid.
Brittle damage models in DYNA2D
Faux, D.R.
1997-09-01
DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.
2D Hilbert transform for phase retrieval of speckle fields
NASA Astrophysics Data System (ADS)
Gorsky, M. P.; Ryabyi, P. A.; Ivanskyi, D. I.
2016-09-01
The paper presents principal approaches to diagnosing the structure forming skeleton of the complex optical field. An analysis of optical field singularity algorithms depending on intensity discretization and image resolution has been carried out. An optimal approach is chosen, which allows to bring much closer the solution of the phase problem of localization speckle-field special points. The use of a "window" 2D Hilbert transform for reconstruction of the phase distribution of the intensity of a speckle field is proposed. It is shown that the advantage of this approach consists in the invariance of a phase map to a change of the position of the kernel of transformation and in a possibility to reconstruct the structure-forming elements of the skeleton of an optical field, including singular points and saddle points. We demonstrate the possibility to reconstruct the equi-phase lines within a narrow confidence interval, and introduce an additional algorithm for solving the phase problem for random 2D intensity distributions.
Least-squares finite element methods for quantum chromodynamics
Ketelsen, Christian; Brannick, J; Manteuffel, T; Mccormick, S
2008-01-01
A significant amount of the computational time in large Monte Carlo simulations of lattice quantum chromodynamics (QCD) is spent inverting the discrete Dirac operator. Unfortunately, traditional covariant finite difference discretizations of the Dirac operator present serious challenges for standard iterative methods. For interesting physical parameters, the discretized operator is large and ill-conditioned, and has random coefficients. More recently, adaptive algebraic multigrid (AMG) methods have been shown to be effective preconditioners for Wilson's discretization of the Dirac equation. This paper presents an alternate discretization of the Dirac operator based on least-squares finite elements. The discretization is systematically developed and physical properties of the resulting matrix system are discussed. Finally, numerical experiments are presented that demonstrate the effectiveness of adaptive smoothed aggregation ({alpha}SA ) multigrid as a preconditioner for the discrete field equations resulting from applying the proposed least-squares FE formulation to a simplified test problem, the 2d Schwinger model of quantum electrodynamics.
McHugh, P.R.; Knoll, D.A.
1992-01-01
A fully implicit solution algorithm based on Newton's method is used to solve the steady, incompressible Navier-Stokes and energy equations. An efficiently evaluated numerical Jacobian is used to simplify implementation, and mesh sequencing is used to increase the radius of convergence of the algorithm. We employ finite volume discretization using the power law scheme of Patankar to solve the benchmark backward facing step problem defined by the ASME K-12 Aerospace Heat Transfer Committee. LINPACK banded Gaussian elimination and the preconditioned transpose-free quasi-minimal residual (TFQMR) algorithm of Freund are studied as possible linear equation solvers. Implementation of the preconditioned TFQMR algorithm requires use of the switched evolution relaxation algorithm of Mulder and Van Leer to ensure convergence. The preconditioned TFQMR algorithm is more memory efficient than the direct solver, but our implementation is not as CPU efficient. Results show that for the level of grid refinement used, power law differencing was not adequate to yield the desired accuracy for this problem.
NASA Astrophysics Data System (ADS)
Profit, Matthew; Dutko, Martin; Yu, Jianguo; Cole, Sarah; Angus, Doug; Baird, Alan
2016-04-01
This paper presents a novel approach to predict the propagation of hydraulic fractures in tight shale reservoirs. Many hydraulic fracture modelling schemes assume that the fracture direction is pre-seeded in the problem domain discretisation. This is a severe limitation as the reservoir often contains large numbers of pre-existing fractures that strongly influence the direction of the propagating fracture. To circumvent these shortcomings, a new fracture modelling treatment is proposed where the introduction of discrete fracture surfaces is based on new and dynamically updated geometrical entities rather than the topology of the underlying spatial discretisation. Hydraulic fracturing is an inherently coupled engineering problem with interactions between fluid flow and fracturing when the stress state of the reservoir rock attains a failure criterion. This work follows a staggered hydro-mechanical coupled finite/discrete element approach to capture the key interplay between fluid pressure and fracture growth. In field practice, the fracture growth is hidden from the design engineer and microseismicity is often used to infer hydraulic fracture lengths and directions. Microseismic output can also be computed from changes of the effective stress in the geomechanical model and compared against field microseismicity. A number of hydraulic fracture numerical examples are presented to illustrate the new technology.
NASA Astrophysics Data System (ADS)
Yang, Sheng-Qi; Huang, Yan-Hua; Ranjith, P. G.; Jiao, Yu-Yong; Ji, Jian
2015-12-01
Based on experimental results of brittle, intact sandstone under uniaxial compression, the micro-parameters were firstly confirmed by adopting particle flow code (PFC^{2D}). Then, the validation of the simulated models were cross checked with the experimental results of brittle sandstone containing three parallel fissures under uniaxial compression. The simulated results agreed very well with the experimental results, including the peak strength, peak axial strain, and ultimate failure mode. Using the same micro-parameters, the numerical models containing a new geometry of three fissures are constructed to investigate the fissure angle on the fracture mechanical behavior of brittle sandstone under uniaxial compression. The strength and deformation parameters of brittle sandstone containing new three fissures are dependent to the fissure angle. With the increase of the fissure angle, the elastic modulus, the crack damage threshold, and the peak strength of brittle sandstone containing three fissures firstly increase and secondly decrease. But the peak axial strain is nonlinearly related to the fissure angle. In the entire process of deformation, the crack initiation and propagation behavior of brittle sandstone containing three fissures under uniaxial compression are investigated with respect to the fissure angle. Six different crack coalescence modes are identified for brittle sandstone containing three fissures under uniaxial compression. The influence of the fissure angle on the length of crack propagation and crack coalescence stress is evaluated. These investigated conclusions are very important for ensuring the stability and safety of rock engineering with intermittent structures.
NASA Astrophysics Data System (ADS)
Stühler, Sven; Fleissner, Florian; Eberhard, Peter
2016-11-01
We present an extended particle model for the discrete element method that on the one hand is tetrahedral in shape and on the other hand is capable to describe deformations. The deformations of the tetrahedral particles require a framework to interrelate the particle strains and resulting stresses. Hence, adaptations from the finite element method were used. This allows to link the two methods and to adequately describe material and simulation parameters separately in each scope. Due to the complexity arising of the non-spherical tetrahedral geometry, all possible contact combinations of vertices, edges, and surfaces must be considered by the used contact detection algorithm. The deformations of the particles make the contact evaluation even more challenging. Therefore, a robust contact detection algorithm based on an optimization approach that exploits temporal coherence is presented. This algorithm is suitable for general {R}^{{n}} simplices. An evaluation of the robustness of this algorithm is performed using a numerical example. In order to create complex geometries, bonds between these deformable particles are introduced. This coupling via the tetrahedra faces allows the simulation bonding of deformable bodies composed of several particles. Numerical examples are presented and validated with results that are obtained by the same simulation setup modeled with the finite element method. The intention of using these bonds is to be able to model fracture and material failure. Therefore, the bonds between the particles are not lasting and feature a release mechanism based on a predefined criterion.
1983-11-01
element u.-lei is readily applied to such flows. For lully developed flow V = 0, and U and H are functions of y only (i.e., J ■ U(y) and H ■ H(y...included, application of the basic momentum theorem yields T b |£| . / w+ Jb \\ T r ’dx’ I W < s,av where T is the average shear stress
NASA Astrophysics Data System (ADS)
Tao, Liang; McCurdy, C. W.; Rescigno, T. N.
2009-01-01
We show how to combine finite elements and the discrete-variable representation in prolate spheroidal coordinates to develop a grid-based approach for quantum mechanical studies involving diatomic molecular targets. Prolate spheroidal coordinates are a natural choice for diatomic systems and have been used previously in a variety of bound-state applications. The use of exterior complex scaling in the present implementation allows for a transparently simple way of enforcing Coulomb boundary conditions and therefore straightforward application to electronic continuum problems. Illustrative examples involving the bound and continuum states of H2+ , as well as the calculation of photoionization cross sections, show that the speed and accuracy of the present approach offer distinct advantages over methods based on single-center expansions.
2-D Signal Generation Using State-Space Formulation.
1985-12-01
published that have established nonoptical .~ -~ Iimage processing as a viable area of research. A large portion of this research emphasizes the linear...research and the study of time-discrete linear systems. This thesis develops the discrete model of Roesser [Ref. 5] for linear image processing which... THESIS 2-D SIGNAL GENERATION USING STATE-SPACE FORMULATION - • by (.) Evangelos Theofilou December 1985 • Thesis Advisor: Sydney R. Parker Approved
2D DEM model of sand transport with wind interaction
NASA Astrophysics Data System (ADS)
Oger, L.; Valance, A.
2013-06-01
The advance of the dunes in the desert is a threat to the life of the local people. The dunes invade houses, agricultural land and perturb the circulation on the roads. It is therefore very important to understand the mechanism of sand transport in order to fight against desertification. Saltation in which sand grains are propelled by the wind along the surface in short hops, is the primary mode of blown sand movement [1]. The saltating grains are very energetic and when impact a sand surface, they rebound and consequently eject other particles from the sand bed. The ejected grains, called reptating grains, contribute to the augmentation of the sand flux. Some of them can be promoted to the saltation motion. We use a mechanical model based on the Discrete Element Method to study successive collisions of incident energetic beads with granular packing in the context of Aeolian saltation transport. We investigate the collision process for the case where the incident bead and those from the packing have identical mechanical properties. We analyze the features of the consecutive collision processes made by the transport of the saltating disks by a wind in which its profile is obtained from the counter-interaction between air flow and grain flows. We used a molecular dynamics method known as DEM (soft Discrete Element Method) with a initial static packing of 20000 2D particles. The dilation of the upper surface due to the consecutive collisions is responsible for maintaining the flow at a given energy input due to the wind.
Modeling discrete modulators for optical correlation
NASA Astrophysics Data System (ADS)
Knopp, Jerome
1995-08-01
The practical calculation of optical correlation filters in correlators that use spatial light modulators with discrete elements is based on the assumption that the image on the input modulator can be modeled as a modulated 2D comb function or 'bed of nails'. A 2D discrete Fourier transform (DFT) is used to calculate a filter that is also modeled as a modulated bed of nails. The sample values in the comb array are assigned to pixel values in the filter. This approach actually gives fairly good qualitative results in modeling correlation behavior. However, it cannot account in detail for the finite size of pixel elements. The DFT approach has problems when modeling modulators whose pixels' center positions cannot be aligned with corresponding sample values. A modified DFT algorithm and an interpolation scheme for modeling these situations is given. As a practical application of the method, we look at modeling an optical correlator whose pixels are not centered at positions that correspond the DFT sample values.
E-2D Advanced Hawkeye Aircraft (E-2D AHE)
2015-12-01
Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined
Zou, Feng; Yuan, De-Yi; Gao, Chao; Liao, Ting; Chen, Wen-Tao; Han, Zhi-Qiang; Zhang, Lin
2014-04-01
In order to elucidate the nutrition of Camellia olei fera at pollination and fertilization stages, the contents of mineral elements were determined by auto discrete analyzers and atomic absorption spectrophotometer, and the change in the contents of mineral elements was studied and analysed under the condition of self- and cross-pollination. The results are showed that nine kinds of mineral elements contents were of "S" or "W" type curve changes at the pollination and fertilization stages of Camellia olei fera. N, K, Zn, Cu, Ca, Mn element content changes showed "S" curve under the self- and out-crossing, the content of N reaching the highest was 3.445 8 mg x g(-1) in self-pollination of 20 d; K content reaching the highest at the cross-pollination 20 d was 6.275 5 mg x g(-1); Zn content in self-pollination of 10 d reaching the highest was 0.070 5 mg x g(-1); Cu content in the cross-pollination of 5 d up to the highest was 0.061 0 mg x g(-1); Ca content in the cross-pollination of 15 d up to the highest was 3.714 5 mg x g(-1); the content of Mn reaching the highest in self-pollination 30 d was 2. 161 5 mg x g(-1). Fe, P, Mg element content changes was of "S" type curve in selfing and was of "W" type curve in outcrossing, Fe content in the self-pollination 10 d up to the highest was 0.453 0 mg x g(-1); P content in self-pollination of 20 d reaching the highest was 6.731 8 mg x g(-1); the content of Mg up to the highest in self-pollination 25 d was 2.724 0 mg x g(-1). The results can be used as a reference for spraying foliar fertilizer, and improving seed setting rate and yield in Camellia olei fera.
NASA Astrophysics Data System (ADS)
Motamarri, Phani; Gavini, Vikram
2014-09-01
We present a subspace projection technique to conduct large-scale Kohn-Sham density functional theory calculations using higher-order spectral finite-element discretization. The proposed method treats both metallic and insulating materials in a single framework and is applicable to both pseudopotential as well as all-electron calculations. The key ideas involved in the development of this method include: (i) employing a higher-order spectral finite-element basis that is amenable to mesh adaption; (ii) using a Chebyshev filter to construct a subspace, which is an approximation to the occupied eigenspace in a given self-consistent field iteration; (iii) using a localization procedure to construct a nonorthogonal localized basis spanning the Chebyshev filtered subspace; and (iv) using a Fermi-operator expansion in terms of the subspace-projected Hamiltonian represented in the nonorthogonal localized basis to compute relevant quantities like the density matrix, electron density, and band energy. We demonstrate the accuracy and efficiency of the proposed approach on benchmark systems involving pseudopotential calculations on aluminum nanoclusters up to 3430 atoms and on alkane chains up to 7052 atoms, as well as all-electron calculations on silicon nanoclusters up to 3920 electrons. The benchmark studies revealed that accuracies commensurate with chemical accuracy can be obtained with the proposed method, and a subquadratic-scaling with system size was observed for the range of materials systems studied. In particular, for the alkane chains—representing an insulating material—close to linear scaling is observed, whereas, for aluminum nanoclusters—representing a metallic material—the scaling is observed to be O (N1.46). For all-electron calculations on silicon nanoclusters, the scaling with the number of electrons is computed to be O (N1.75). In all the benchmark systems, significant computational savings have been realized with the proposed approach, with
Sheikh, Bahman; Pak, Ali
2015-05-01
Permeability of porous materials is an important characteristic which is extensively used in various engineering disciplines. There are a number of issues that influence the permeability coefficient among which the porosity, size of particles, pore shape, tortuosity, and particle size distribution are of great importance. In this paper a C++ GPU code based on three-dimensional lattice Boltzmann method (LBM) has been developed and used for investigating the effects of the above mentioned factors on the permeability coefficient of granular materials. Multirelaxation time collision scheme of the LBM equations is used in the simulator, which is capable of modeling the exact position of the fluid-solid interface leading to viscosity-independent permeabilities and better computational stability due to separation of the relaxations of various kinetic models. GPU-CPU parallel processing has been employed to reduce the computational time associated with three-dimensional simulations. Soil samples have been prepared using the discrete element method. The obtained results have demonstrated the importance of employing the concept of effective porosity instead of total porosity in permeability relationships. The results also show that a threshold porosity exists below which the connectivity of the pores vanishes and the permeability of the soils reduces drastically.
NASA Astrophysics Data System (ADS)
Aharonov, Einat; Katz, Oded; Morgan, Julia K.; Dugan, Brandon
2016-01-01
Chen et al.'s comment presents limit equilibrium (LE) calculations of slope stability, which yield different landslide geometries compared with those obtained by Katz et al. (2014) using the Discrete Element Method (DEM). Previous work, however, has demonstrated excellent agreement in the slide geometries and sizes obtained by DEM vs. those obtained by limit analysis, thereby lending confidence to DEM and to limit analysis as methods to study slope instability and geometry. We suggest three reasons why the LE results may differ from DEM: (1) LE is a static method, which seeks a single failure surface to predict slope stability. Although it captures well the average slope conditions, the details of the stress distribution may be inaccurate. (2) DEM is a dynamic method that holistically simulates the evolution of stress and strain. Thus it is better suited to simulate far from equilibrium situations, such as overly steep slopes with FS < 1, which have strong dynamic responses. (3) The geometries of the slides presented by Chen et al. appear to be constrained by the domain size. We expect that a larger simulation domain may allow exploration of additional slide geometries, potentially with better correspondence with those of the DEM simulations.
NASA Astrophysics Data System (ADS)
Sheikh, Bahman; Pak, Ali
2015-05-01
Permeability of porous materials is an important characteristic which is extensively used in various engineering disciplines. There are a number of issues that influence the permeability coefficient among which the porosity, size of particles, pore shape, tortuosity, and particle size distribution are of great importance. In this paper a C++ GPU code based on three-dimensional lattice Boltzmann method (LBM) has been developed and used for investigating the effects of the above mentioned factors on the permeability coefficient of granular materials. Multirelaxation time collision scheme of the LBM equations is used in the simulator, which is capable of modeling the exact position of the fluid-solid interface leading to viscosity-independent permeabilities and better computational stability due to separation of the relaxations of various kinetic models. GPU-CPU parallel processing has been employed to reduce the computational time associated with three-dimensional simulations. Soil samples have been prepared using the discrete element method. The obtained results have demonstrated the importance of employing the concept of effective porosity instead of total porosity in permeability relationships. The results also show that a threshold porosity exists below which the connectivity of the pores vanishes and the permeability of the soils reduces drastically.
NASA Astrophysics Data System (ADS)
Virgo, Simon; Abe, Steffen; Urai, Janos L.
2014-12-01
Veins are ubiquitous in upper and middle crustal rocks. Due to strength and stiffness contrast to the host rock, veins can influence crack propagation. Here we present Discrete Element Models to investigate crack-vein interactions by simulating cycles of fracturing of a rock mass, sealing the cracks to form veins, and refracturing the rock mass after rotating the stress field. We observe different styles of interaction between new fractures and existing veins, depending on the strength ratio between vein and host rock and on the changes in the stress field between the different deformation stages. If the orientation of stress field does not change between deformation stages, ataxial crack seal veins are produced if the veins are weak and a bundle of subparallel microveins if the veins are strong. If the stress field is rotated between deformation stages, the interactions include reactivation, fracture deflection, and crosscutting. Reactivation of weak veins occurs even if the vein orientation is highly unfavorable relative to the stress field. Relays of fractures between reactivated veins form at a higher angle to the veins than expected. This demonstrates that the orientation of secondary veins does not reflect the regional stress field in a simple manner and that veins can strongly influence fracture connectivity, with implications for paleostress analysis and basin modeling. Simulation results compare well with field examples of multiphase vein networks in carbonates from Jebel Akhdar, Oman.
Transition to turbulence: 2D directed percolation
NASA Astrophysics Data System (ADS)
Chantry, Matthew; Tuckerman, Laurette; Barkley, Dwight
2016-11-01
The transition to turbulence in simple shear flows has been studied for well over a century, yet in the last few years has seen major leaps forward. In pipe flow, this transition shows the hallmarks of (1 + 1) D directed percolation, a universality class of continuous phase transitions. In spanwisely confined Taylor-Couette flow the same class is found, suggesting the phenomenon is generic to shear flows. However in plane Couette flow the largest simulations and experiments to-date find evidence for a discrete transition. Here we study a planar shear flow, called Waleffe flow, devoid of walls yet showing the fundamentals of planar transition to turbulence. Working with a quasi-2D yet Navier-Stokes derived model of this flow we are able to attack the (2 + 1) D transition problem. Going beyond the system sizes previously possible we find all of the required scalings of directed percolation and thus establish planar shears flow in this class.
Numerical Evaluation of 2D Ground States
NASA Astrophysics Data System (ADS)
Kolkovska, Natalia
2016-02-01
A ground state is defined as the positive radial solution of the multidimensional nonlinear problem
Static & Dynamic Response of 2D Solids
Lin, Jerry
1996-07-15
NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.
Explicit 2-D Hydrodynamic FEM Program
Lin, Jerry
1996-08-07
DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.
Optoelectronics with 2D semiconductors
NASA Astrophysics Data System (ADS)
Mueller, Thomas
2015-03-01
Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.
NASA Astrophysics Data System (ADS)
Tseng, C. H.; Chan, Y. C.; Jeng, C. J.; Hsieh, Y. C.
2015-12-01
Slope failure is a widely observed phenomenon in hill and mountainous areas in Taiwan, which is characterized by high erosion rates (up to 60 mm/yr) due to its climatic and geographical conditions. Slope failure events easily occur after intense rainfall, especially resulting from typhoons and accordingly cause a great loss of human lives and property. At the northern end of the Western Foothill belt in northern Taiwan, Huafan University campus (121.692448˚ E, 24.980724˚ N ) is founded on a dip slope, ~20˚ toward southwest, being composed of early Miocene alternations of sandstone and shale. Data from continuous monitoring over the years by means of inclinometers and groundwater gauges reveal that creep of 6-10 mm of the slope occurred when precipitation exceeded 300 mm during typhoons' striking. In addition, extension cracks on the ground are also found within and on the edge of the campus. Furthermore, potential slip surfaces are detected shown by rock cores to exist 10 and 30 m in depth as well. To understand the kinematic behaviors of the rock slope failure beneath the university campus, a 3D discrete element mothed is applied in this study. Results of the modeling indicate that creeping is the primary behavior pattern when the friction coefficient reduces owing to rise of groundwater during rainstorms. However, rapid slip may take place under influences of earthquake with large magnitude. Suggestions for preventing the slope creep are to construct catchpits to drainage runoff and lower the groundwater table and ground anchors through the slip surfaces to stabilize the slide blocks.
Three-phase flow simulations in discrete fracture networks
NASA Astrophysics Data System (ADS)
Geiger, S.; Niessner, J.; Matthai, S. K.; Helmig, R.
2006-12-01
Fractures are often the key conduits for fluid flow in otherwise low permeability rocks. Their presence in hydrocarbon reservoirs leads to complex production histories, unpredictable coupling of wells, rapidly changing flow rates, possibly early water breakthrough, and low final recovery. Recently, it has been demonstrated that a combination of finite volume and finite element discretization is well suited to model incompressible, immiscible two-phase flow in 3D discrete fracture networks (DFN) representing complexly fractured rocks. Such an approach has been commercialized in Golder Associates' FracMan Reservoir Edition software. For realistic reservoir simulations, however, it would be desirable if a third compressible gas phase can be included which is often present at reservoir conditions. Here we present the extension of an existing node-centred finite volume - finite element (FEFV) discretization for the efficient and accurate simulations of three-component - three-phase flow in geologically realistic representations of fractured porous media. Two possible types of fracture networks can be used: In 2D, they are detailed geometrical representations of fractured rock masses mapped in field studies. In 3D, they are geologically constrained, stochastically generated discrete fracture networks. Flow and transport can be simulated for fractures only or for fractures and matrix combined. The governing equations are solved decoupled using an implicit-pressure, explicit-saturation (IMPES) approach. Flux and concentration terms can be treated with higher-order accuracy in the finite volume scheme to preserve shock fronts. The method is locally mass conservative and works on unstructured, spatially refined grids. Flash calculations are carried out by a new description of the Black-Oil model. Capillary and gravity effects are included in this formulation. The robustness and accuracy of this formulation is shown in several applications. First, grid convergence is
NASA Astrophysics Data System (ADS)
Simonson, Scott; Hua, Peng; Luobin, Yan; Zhi, Chen
2016-04-01
Important to the evolution of Danxia landforms is how the rock cliffs are in large part shaped by rock collapse events, ranging from small break offs to large collapses. Quantitative research of Danxia landform evolution is still relatively young. In 2013-2014, Chinese and Slovak researchers conducted joint research to measure deformation of two large rock walls. In situ measurements of one rock wall found it to be stable, and Ps-InSAR measurements of the other were too few to be validated. Research conducted this year by Chinese researchers modeled the stress states of a stone pillar at Mt. Langshan, in Hunan Province, that toppled over in 2009. The model was able to demonstrate how stress states within the pillar changed as the soft basal layer retreated, but was not able to show the stress states at the point of complete collapse. According to field observations, the back side of the pillar fell away from the entire cliff mass before the complete collapse, and no models have been able to demonstrate the mechanisms behind this behavior. A further understanding of the mechanisms controlling rockfall events in Danxia landforms is extremely important because these stunning sceneries draw millions of tourists each year. Protecting the tourists and the infrastructure constructed to accommodate tourism is of utmost concern. This research will employ a UAV to as universally as possible photograph a stone pillar at Mt. Langshan that stands next to where the stone pillar collapsed in 2009. Using the recently developed structure-from-motion technique, a 3D model of the pillar will be constructed in order to extract geometrical data of the entire slope and its structural fabric. Also in situ measurements will be taken of the slope's toe during the field work exercises. These data are essential to constructing a realistic discrete element model using the 3DEC code and perform a kinematic analysis of the rock mass. Intact rock behavior will be based on the Mohr Coulomb
Highly crystalline 2D superconductors
NASA Astrophysics Data System (ADS)
Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro
2016-12-01
Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.
Sevrin, A.
1993-06-01
After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.
Realistic and efficient 2D crack simulation
NASA Astrophysics Data System (ADS)
Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek
2010-04-01
Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.
NASA Astrophysics Data System (ADS)
Kettermann, Michael; von Hagke, Christoph; Virgo, Simon; Urai, Janos L.
2015-04-01
Brittle rocks are often affected by different generations of fractures that influence each other. We study pre-existing vertical joints followed by a faulting event. Understanding the effect of these interactions on fracture/fault geometries as well as the development of dilatancy and the formation of cavities as potential fluid pathways is crucial for reservoir quality prediction and production. Our approach combines scaled analogue and numerical modeling. Using cohesive hemihydrate powder allows us to create open fractures prior to faulting. The physical models are reproduced using the ESyS-Particle discrete element Modeling Software (DEM), and different parameters are investigated. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. We tested the influence of different angles between the strike of the basement fault and the joint set (0°, 4°, 8°, 12°, 16°, 20°, and 25°). During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. We observe that no faults or fractures occur parallel to basement-fault strike. Secondary fractures are mostly oriented normal to primary joints. At the final stage of the experiments we analyzed semi-quantitatively the number of connected joints, number of secondary fractures, degree of segmentation (i.e. number of joints accommodating strain), damage zone width, and the map-view area fraction of open gaps. Whereas the area fraction does not change
Application of 2-D graphical representation of DNA sequence
NASA Astrophysics Data System (ADS)
Liao, Bo; Tan, Mingshu; Ding, Kequan
2005-10-01
Recently, we proposed a 2-D graphical representation of DNA sequence [Bo Liao, A 2-D graphical representation of DNA sequence, Chem. Phys. Lett. 401 (2005) 196-199]. Based on this representation, we consider properties of mutations and compute the similarities among 11 mitochondrial sequences belonging to different species. The elements of the similarity matrix are used to construct phylogenic tree. Unlike most existing phylogeny construction methods, the proposed method does not require multiple alignment.
Recent advances in 2D materials for photocatalysis.
Luo, Bin; Liu, Gang; Wang, Lianzhou
2016-04-07
Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.
The spectral element dynamical core in the Community Atmosphere Model
NASA Astrophysics Data System (ADS)
Taylor, Mark
2013-11-01
I will describe our work developing CAM-SE, a highly scalable version of the Community Atmosphere Model (CAM). CAM-SE solves the hydrostatic equations with a spectral element horizontal descritization and the hybrid coordinate Simmons & Burridge (1981) vertical discretization. It uses a mimetic formulation of spectral elements which preserves the adjoint and annihilator properties of the divergence, gradient and curl operations. These mimetic properties result in local conservation (to machine precision) of mass, tracer mass and (2D) potential vorticity, and semi-discrete conservation (exact with exact time-discretization) of total energy. Hyper-viscsoity is used for all numerical dissipation. The spectral element method naturally supports unstructured/variable resolution grids. We are using this capability to perform simulations with 1/8 degree resolution over the central U.S., transitioning to 1 degree over most of the globe. This is a numerically efficient way to study the resolution sensitivity of CAM's many subgrid parameterizations.
NIKE2D96. Static & Dynamic Response of 2D Solids
Raboin, P.; Engelmann, B.; Halquist, J.O.
1992-01-24
NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.
2D quasiperiodic plasmonic crystals
Bauer, Christina; Kobiela, Georg; Giessen, Harald
2012-01-01
Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871
NASA Astrophysics Data System (ADS)
Schaibley, John R.; Yu, Hongyi; Clark, Genevieve; Rivera, Pasqual; Ross, Jason S.; Seyler, Kyle L.; Yao, Wang; Xu, Xiaodong
2016-11-01
Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.
Georgi, Howard; Kats, Yevgeny
2008-09-26
We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.
Rotation invariance principles in 2D/3D registration
NASA Astrophysics Data System (ADS)
Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels C.; Jacob, Augustinus L.; Regazzoni, Pietro; Messmer, Peter
2003-05-01
2D/3D patient-to-computed tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 2D/3D registration is the fast that finding a registration includes sovling a minimization problem in six degrees-of-freedom in motion. This results in considerable time expenses since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations aroudn a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of its original value. The method was implemented and extensively tested on simulated x-ray images of a pelvis. We conclude that this hardware-indepenent optimization of 2D/3D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.
Quantum coherence selective 2D Raman–2D electronic spectroscopy
Spencer, Austin P.; Hutson, William O.; Harel, Elad
2017-01-01
Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541
Quantum coherence selective 2D Raman-2D electronic spectroscopy
NASA Astrophysics Data System (ADS)
Spencer, Austin P.; Hutson, William O.; Harel, Elad
2017-03-01
Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.
Quantum coherence selective 2D Raman-2D electronic spectroscopy.
Spencer, Austin P; Hutson, William O; Harel, Elad
2017-03-10
Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.
NASA Astrophysics Data System (ADS)
Nehl, T. W.
1980-12-01
A discrete state space model of a power conditioner fed permanent magnet brushless dc motor for aerospace and electric vehicle applications is developed. The parameters which describe that machine portion of this model are derived from a two dimensional nonlinear magnetic field analysis using the finite element method. The model predicts the instantaneous mechanical and electrical behavior of a prototype electromechanical actuator for possible use on board the shuttle orbiter. The model is also used to simulate the instantaneous performance of an advanced electric vehicle propulsion unit. The results of the computer simulations are compared with experimental test data and excellent agreement between the two is found in all cases.
A new splitting scheme to the discrete Boltzmann equation for non-ideal gases on non-uniform meshes
NASA Astrophysics Data System (ADS)
Patel, Saumil; Lee, Taehun
2016-12-01
We present a novel numerical procedure for solving the discrete Boltzmann equations (DBE) on non-uniform meshes. Our scheme is based on the Strang splitting method where we seek to investigate two-phase flow applications. In this note, we investigate the onset of parasitic currents which arise in many computational two-phase algorithms. To the best of our knowledge, the results presented in this work show, for the first time, a spectral element discontinuous Galerkin (SEDG) discretization of a discrete Boltzmann equation which successfully eliminates parasitic currents on non-uniform meshes. With the hope that this technique can be used for applications in complex geometries, calculations are performed on non-uniform mesh distributions by using high-order (spectral), body-fitting quadrilateral elements. Validation and verification of our work is carried out by comparing results against the classical 2D Young-Laplace law problem for a static drop.
Spectral element discontinuous Galerkin simulations for wake potential calculations : NEKCEM.
Min, M.; Fischer, P. F.; Chae, Y.-C.
2008-01-01
In this paper we present high-order spectral element discontinuous Galerkin simulations for wake field and wake potential calculations. Numerical discretizations are based on body-conforming hexagonal meshes on Gauss-Lobatto-Legendre grids. We demonstrate wake potential profiles for cylindrically symmetric cavity structures in 3D, including the cases for linear and quadratic transitions between two cross sections. Wake potential calculations are carried out on 2D surfaces for various bunch sizes.
NKG2D ligands as therapeutic targets
Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.
2013-01-01
The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565
Energy conserving discontinuous Galerkin spectral element method for the Vlasov-Poisson system
NASA Astrophysics Data System (ADS)
Madaule, Éric; Restelli, Marco; Sonnendrücker, Eric
2014-12-01
We propose a new, energy conserving, spectral element, discontinuous Galerkin method for the approximation of the Vlasov-Poisson system in arbitrary dimension, using Cartesian grids. The method is derived from the one proposed in [4], with two modifications: energy conservation is obtained by a suitable projection operator acting on the solution of the Poisson problem, rather than by solving multiple Poisson problems, and all the integrals appearing in the finite element formulation are approximated with Gauss-Lobatto quadrature, thereby yielding a spectral element formulation. The resulting method has the following properties: exact energy conservation (up to errors introduced by the time discretization), stability (thanks to the use of upwind numerical fluxes), high order accuracy and high locality. For the time discretization, we consider both Runge-Kutta methods and exponential integrators, and show results for 1D and 2D cases (2D and 4D in phase space, respectively).
2007-04-30
of force chains” ANZIAM Journal, 47, pp C355 -C372. [6] Walsh SDC and Tordesillas, A# (2006) “Finite element methods for micropolar models of...Congress on Particle Technology. American Institute of Chemical Engineers, 18 pages, ISBN 0 -8169-1005-7. [2] Walsh, SDC and Tordesillas, A# (2006
Quasi-Optimal Elimination Trees for 2D Grids with Singularities
Paszyńska, A.; Paszyński, M.; Jopek, K.; ...
2015-01-01
We consmore » truct quasi-optimal elimination trees for 2D finite element meshes with singularities. These trees minimize the complexity of the solution of the discrete system. The computational cost estimates of the elimination process model the execution of the multifrontal algorithms in serial and in parallel shared-memory executions. Since the meshes considered are a subspace of all possible mesh partitions, we call these minimizers quasi-optimal. We minimize the cost functionals using dynamic programming. Finding these minimizers is more computationally expensive than solving the original algebraic system. Nevertheless, from the insights provided by the analysis of the dynamic programming minima, we propose a heuristic construction of the elimination trees that has cost O N e log N e , where N e is the number of elements in the mesh. We show that this heuristic ordering has similar computational cost to the quasi-optimal elimination trees found with dynamic programming and outperforms state-of-the-art alternatives in our numerical experiments.« less
Liu, Peiyuan; Brown, Timothy; Fullmer, William D.; Hauser, Thomas; Hrenya, Christine; Grout, Ray; Sitaraman, Hariswaran
2016-01-29
Five benchmark problems are developed and simulated with the computational fluid dynamics and discrete element model code MFiX. The benchmark problems span dilute and dense regimes, consider statistically homogeneous and inhomogeneous (both clusters and bubbles) particle concentrations and a range of particle and fluid dynamic computational loads. Several variations of the benchmark problems are also discussed to extend the computational phase space to cover granular (particles only), bidisperse and heat transfer cases. A weak scaling analysis is performed for each benchmark problem and, in most cases, the scalability of the code appears reasonable up to approx. 103 cores. Profiling of the benchmark problems indicate that the most substantial computational time is being spent on particle-particle force calculations, drag force calculations and interpolating between discrete particle and continuum fields. Hardware performance analysis was also carried out showing significant Level 2 cache miss ratios and a rather low degree of vectorization. These results are intended to serve as a baseline for future developments to the code as well as a preliminary indicator of where to best focus performance optimizations.
Smith, Jovanca J.; Bishop, Joseph E.
2013-11-01
This report summarizes the work performed by the graduate student Jovanca Smith during a summer internship in the summer of 2012 with the aid of mentor Joe Bishop. The projects were a two-part endeavor that focused on the use of the numerical model called the Lattice Discrete Particle Model (LDPM). The LDPM is a discrete meso-scale model currently used at Northwestern University and the ERDC to model the heterogeneous quasi-brittle material, concrete. In the first part of the project, LDPM was compared to the Karagozian and Case Concrete Model (K&C) used in Presto, an explicit dynamics finite-element code, developed at Sandia National Laboratories. In order to make this comparison, a series of quasi-static numerical experiments were performed, namely unconfined uniaxial compression tests on four varied cube specimen sizes, three-point bending notched experiments on three proportional specimen sizes, and six triaxial compression tests on a cylindrical specimen. The second part of this project focused on the application of LDPM to simulate projectile perforation on an ultra high performance concrete called CORTUF. This application illustrates the strengths of LDPM over traditional continuum models.
Quantitative 2D liquid-state NMR.
Giraudeau, Patrick
2014-06-01
Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.
Annotated Bibliography of EDGE2D Use
J.D. Strachan and G. Corrigan
2005-06-24
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.
Staring 2-D hadamard transform spectral imager
Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.
2006-02-07
A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.
NASA Astrophysics Data System (ADS)
Li, Zhan-Ke; Li, Jian-Wei; Cooke, David R.; Danyushevsky, Leonid; Zhang, Lejun; O'Brien, Hugh; Lahaye, Yann; Zhang, Wen; Xu, Hai-Jun
2016-12-01
The Haopinggou deposit in the Xiong'ershan district, southern margin of the North China Craton, comprises numerous Au and Ag-Pb-Zn veins hosted in metamorphic rocks of the Late Archean to early Paleoproterozoic Taihua Group. Two stages of mineralization have been recognized: Stage 1 pyrite-quartz veins and Stage 2 Pb-Zn-sulfide veins. Some pyrite-quartz veins are surrounded or cut by Pb-Zn-sulfide veins, others occur as independent veins. Six generations of pyrite have been identified at Haopinggou: Py1 to Py3 in Stage 1 and Py4 to Py6 in Stage 2. Pyrites from Stage 1 are enriched in Au, As, Co, Ni, and Bi, whereas Stage 2 pyrites contain higher Ag, Pb, Zn, Sn, and Sb. Invisible Au mostly occurs as lattice-bound gold in Py2 (up to 92 ppm Au) and Py3 (up to 127 ppm Au) and has a close relationship with As. Native Au grains are also present in Py3 and likely resulted from mobilization and reprecipitation of the invisible Au previously locked in the precursor pyrite. This view is supported by extensive plastic deformation in Stage 1 pyrite as revealed by electron backscatter diffraction analysis. In Stage 2, Ag is mostly present as lattice-bound silver closely associated with Sb in galena (up to 798 ppm Ag). A variety of silver minerals are also present as inclusions within galena or as interstitial grains. These silver minerals were likely formed via Ag-Cu exchange reaction between tetrahedrite and galena or represent exsolution from galena due to a temperature decrease. Pb isotopic compositions differ remarkably between Stage 1 and Stage 2 sulfides, indicating different sources of lead. Pb in Stage 2 Pb-Zn-sulfide veins is consistent with the Haopinggou porphyry close to the veins. The field, textural, compositional, and lead isotopic data led us to conclude that the early gold-bearing pyrite-quartz veins and late silver-bearing Pb-Zn-sulfide veins likely formed from distinct fluid systems related to discrete mineralization events. Our study suggests that Au and Ag
Numerical 2D-modeling of multiroll leveling
NASA Astrophysics Data System (ADS)
Mathieu, N.; Potier-Ferry, M.; Zahrouni, H.
2016-10-01
Multiroll leveling is a forming process used in the metals industries (aluminum, steel, …) in order to correct flatness defects and minimize residual stresses in strips thanks to alternating bending. This work proposes a Finite Element 2D model to simulate the metal sheet conveying through the machine. Obtained results (plastic strain and residual stress distributions through thickness) are analysed. Strip deformation, after elastic springback and potential buckling, is also predicted (residual curvatures).
Langley, Stuart K; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S
2011-12-07
The synthesis, magnetic characterization and X-ray crystal structures are reported for five new manganese compounds, [Mn(III)(teaH(2))(sal)]·(1/2)H(2)O (1), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(4)]·6MeOH (2), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·7MeOH (3), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·2MeOH·Et(2)O (4) and [K(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(H(2)O)(2)](n)·5MeOH (5). Complex 1 is a mononuclear compound, formed via the reaction of Mn(NO(3))(2)·4H(2)O, triethanolamine (teaH(3)) and salicylic acid (salH(2)) in a basic methanolic solution. Compound 2 is a mixed-valent hetero-metallic cluster made up of a Mn(8)Na(2) decanuclear core and is formed via the reaction of sodium azide (NaN(3)) with 1. Compounds 3-5 are isolated as 1- or 2-D coordination polymers, each containing the decanuclear Mn(8)M(2) (M = Na(+) or K(+)) core building block as the repeating unit. Compound 3 is isolated when 1 is reacted with NaN(3) over a very short reaction time and forms a 1-D coordination polymer. Each unit displays inter-cluster bridges via the O-atoms of teaH(2-) ligands bonding to the sodium ions of an adjacent cluster. Increasing the reaction time appears to drive the formation of 4 which forms 2-D polymeric sheets and is a packing polymorph of 3. The addition of KMnO(4) and NaN(3) to 1 resulted in compound 5, which also forms a 1-D coordination polymer of the decanuclear core unit. The 1-D chains are now linked via inter-cluster potassium and salicylate bridges. Solid state DC susceptibility measurements were performed on compounds 1-5. The data for 1 are as expected for an S = 2 Mn(III) ion, with the isothermal M vs. H data being fitted by matrix diagonalization methods to give values of g and the axial (D) and rhombic (E) zero field splitting parameters of 2.02, -2.70 cm(-1) and 0.36 cm(-1) respectively. The data for 2-5, each with an identical Mn(II)(4)Mn(III)(4
HEXAGONAL ARRAY STRUCTURE FOR 2D NDE APPLICATIONS
Dziewierz, J.; Ramadas, S. N.; Gachagan, A.; O'Leary, R. L.
2010-02-22
This paper describes a combination of simulation and experimentation to evaluate the advantages offered by utilizing a hexagonal shaped array element in a 2D NDE array structure. The active material is a 1-3 connectivity piezoelectric composite structure incorporating triangular shaped pillars--each hexagonal array element comprising six triangular pillars. A combination of PZFlex, COMSOL and Matlab has been used to simulate the behavior of this device microstructure, for operation around 2.25 MHz, with unimodal behavior and low levels of mechanical cross-coupling predicted. Furthermore, the application of hexagonal array elements enables the array aperture to increase by approximately 30%, compared to a conventional orthogonal array matrix and hence will provide enhanced volumetric coverage and SNR. Prototype array configurations demonstrate good corroboration of the theoretically predicted mechanical cross-coupling between adjacent array elements (approx23 dB).
MAST-2D diffusive model for flood prediction on domains with triangular Delaunay unstructured meshes
NASA Astrophysics Data System (ADS)
Aricò, C.; Sinagra, M.; Begnudelli, L.; Tucciarelli, T.
2011-11-01
A new methodology for the solution of the 2D diffusive shallow water equations over Delaunay unstructured triangular meshes is presented. Before developing the new algorithm, the following question is addressed: it is worth developing and using a simplified shallow water model, when well established algorithms for the solution of the complete one do exist? The governing Partial Differential Equations are discretized using a procedure similar to the linear conforming Finite Element Galerkin scheme, with a different flux formulation and a special flux treatment that requires Delaunay triangulation but entire solution monotonicity. A simple mesh adjustment is suggested, that attains the Delaunay condition for all the triangle sides without changing the original nodes location and also maintains the internal boundaries. The original governing system is solved applying a fractional time step procedure, that solves consecutively a convective prediction system and a diffusive correction system. The non linear components of the problem are concentrated in the prediction step, while the correction step leads to the solution of a linear system of the order of the number of computational cells. A semi-analytical procedure is applied for the solution of the prediction step. The discretized formulation of the governing equations allows to handle also wetting and drying processes without any additional specific treatment. Local energy dissipations, mainly the effect of vertical walls and hydraulic jumps, can be easily included in the model. Several numerical experiments have been carried out in order to test (1) the stability of the proposed model with regard to the size of the Courant number and to the mesh irregularity, (2) its computational performance, (3) the convergence order by means of mesh refinement. The model results are also compared with the results obtained by a fully dynamic model. Finally, the application to a real field case with a Venturi channel is presented.
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
NASA Astrophysics Data System (ADS)
Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.
2006-02-01
A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.
Chemical Approaches to 2D Materials.
Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang
2016-08-01
Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.
Lin, Lin; Yang, Chao; Lu, Jiangfeng; Ying, Lexing; E, Weinan
2009-09-25
We present an efficient parallel algorithm and its implementation for computing the diagonal of $H^-1$ where $H$ is a 2D Kohn-Sham Hamiltonian discretized on a rectangular domain using a standard second order finite difference scheme. This type of calculation can be used to obtain an accurate approximation to the diagonal of a Fermi-Dirac function of $H$ through a recently developed pole-expansion technique \\cite{LinLuYingE2009}. The diagonal elements are needed in electronic structure calculations for quantum mechanical systems \\citeHohenbergKohn1964, KohnSham 1965,DreizlerGross1990. We show how elimination tree is used to organize the parallel computation and how synchronization overhead is reduced by passing data level by level along this tree using the technique of local buffers and relative indices. We analyze the performance of our implementation by examining its load balance and communication overhead. We show that our implementation exhibits an excellent weak scaling on a large-scale high performance distributed parallel machine. When compared with standard approach for evaluating the diagonal a Fermi-Dirac function of a Kohn-Sham Hamiltonian associated a 2D electron quantum dot, the new pole-expansion technique that uses our algorithm to compute the diagonal of $(H-z_i I)^-1$ for a small number of poles $z_i$ is much faster, especially when the quantum dot contains many electrons.
ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data
NASA Astrophysics Data System (ADS)
Akca, Irfan
2016-04-01
ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discre-tized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole inversion procedure. The inversion routine is based on the smoothness constrained least squares method. In order to verify the program, responses of two test models and field data sets were inverted. The models inverted from the synthetic data sets are consistent with the original test models in both DC resistivity and IP cases. A field data set acquired in an archaeological site is also used for the verification of outcomes of the program in comparison with the excavation results.
Structural Complexity and Phonon Physics in 2D Arsenenes.
Carrete, Jesús; Gallego, Luis J; Mingo, Natalio
2017-03-15
In the quest for stable 2D arsenic phases, four different structures have been recently claimed to be stable. We show that, due to phonon contributions, the relative stability of those structures differs from previous reports and depends crucially on temperature. We also show that one of those four phases is in fact mechanically unstable. Furthermore, our results challenge the common assumption of an inverse correlation between structural complexity and thermal conductivity. Instead, a richer picture emerges from our results, showing how harmonic interactions, anharmonicity, and symmetries all play a role in modulating thermal conduction in arsenenes. More generally, our conclusions highlight how vibrational properties are an essential element to be carefully taken into account in theoretical searches for new 2D materials.
2D FEM Heat Transfer & E&M Field Code
1992-04-02
TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.
Adaptive superplastic forming using NIKE2D with ISLAND
Engelmann, B.E.; Whirley, R.G.; Raboin, P.J.
1992-07-30
Superplastic forming has emerged as an important manufacturing process for producing near-net-shape parts. The design of a superplastic forming process is more difficult than conventional manufacturing operations, and is less amenable to trial and error approaches. This paper describes a superplastic forming process design capability incorporating nonlinear finite element analysis. The material constraints to allow superplastic behavior are integrated into an external constraint equation which is solved concurrently with the nonlinear finite element equations. The implementation of this approach using the ISLAND solution control language with the nonlinear finite element code NIKE2D is discussed in detail. Superplastic forming process design problems with one and two control parameters are presented as examples.
2d-LCA - an alternative to x-wires
NASA Astrophysics Data System (ADS)
Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim
2014-11-01
The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.
Efficient elastoplastic analysis with the boundary element method
NASA Astrophysics Data System (ADS)
Ribeiro, T. S. A.; Beer, G.; Duenser, C.
2008-02-01
Conventional numerical implementation of the boundary element method (BEM) for elasto-plastic analysis requires a domain discretization into cells. This requires more effort for the discretization of the problem and additional computational effort. A new technique is proposed here for the analysis of 2D and 3D elasto-plastic problems with the boundary element method. In this approach the domain does not need to be discretised into cells prior to the analysis. Plasticity is assumed to start from the boundary and the cells are generated from the boundary data automatically during the analysis. Using the cell generation process, elasto-plastic analysis with the BEM becomes much more user friendly and efficient than the standard approach with a pre-definition of cells. The accuracy and efficiency of the solution obtained by the new approach is verified by several numerical examples.
Reconstruction of a 2D seismic wavefield by seismic gradiometry
NASA Astrophysics Data System (ADS)
Maeda, Takuto; Nishida, Kiwamu; Takagi, Ryota; Obara, Kazushige
2016-12-01
We reconstructed a 2D seismic wavefield and obtained its propagation properties by using the seismic gradiometry method together with dense observations of the Hi-net seismograph network in Japan. The seismic gradiometry method estimates the wave amplitude and its spatial derivative coefficients at any location from a discrete station record by using a Taylor series approximation. From the spatial derivatives in horizontal directions, the properties of a propagating wave packet, including the arrival direction, slowness, geometrical spreading, and radiation pattern can be obtained. In addition, by using spatial derivatives together with free-surface boundary conditions, the 2D vector elastic wavefield can be decomposed into divergence and rotation components. First, as a feasibility test, we performed an analysis with a synthetic seismogram dataset computed by a numerical simulation for a realistic 3D medium and the actual Hi-net station layout. We confirmed that the wave amplitude and its spatial derivatives were very well-reproduced for period bands longer than 25 s. Applications to a real large earthquake showed that the amplitude and phase of the wavefield were well reconstructed, along with slowness vector. The slowness of the reconstructed wavefield showed a clear contrast between body and surface waves and regional non-great-circle-path wave propagation, possibly owing to scattering. Slowness vectors together with divergence and rotation decomposition are expected to be useful for determining constituents of observed wavefields in inhomogeneous media.
Parallel-pipeline 2-D DCT/IDCT processor chip
NASA Astrophysics Data System (ADS)
Ruiz, G. A.; Michell, J. A.; Buron, A.
2005-06-01
This paper describes the architecture of an 8x8 2-D DCT/IDCT processor with high throughput and a cost-effective architecture. The 2D DCT/IDCT is calculated using the separability property, so that its architecture is made up of two 1-D processors and a transpose buffer (TB) as intermediate memory. This transpose buffer presents a regular structure based on D-type flip-flops with a double serial input/output data-flow very adequate for pipeline architectures. The processor has been designed with parallel and pipeline architecture to attain high throughput, reduced hardware and maximum efficiency in all arithmetic elements. This architecture allows that the processing elements and arithmetic units work in parallel at half the frequency of the data input rate, except for normalization of transform which it is done in a multiplier operating at maximum frequency. Moreover, it has been verified that the precision analysis of the proposed processor meets the demands of IEEE Std. 1180-1990 used in video codecs ITU-T H.261 and ITU-T H.263. This processor has been conceived using a standard cell design methodology and manufactured in a 0.35-μm CMOS CSD 3M/2P 3.3V process. It has an area of 6.25 mm2 (the core is 3mm2) and contains a total of 11.7k gates, of which 5.8k gates are flip-flops. A data input rate frequency of 300MHz has been established with a latency of 172 cycles for the 2-D DCT and 178 cycles for the 2-D IDCT. The computing time of a block is close to 580ns. Its performances in computing speed as well as hardware complexity indicate that the proposed design is suitable for HDTV applications.
Orthotropic Piezoelectricity in 2D Nanocellulose
NASA Astrophysics Data System (ADS)
García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.
2016-10-01
The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.
Orthotropic Piezoelectricity in 2D Nanocellulose
García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.
2016-01-01
The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364
Orthotropic Piezoelectricity in 2D Nanocellulose.
García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M
2016-10-06
The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V(-1), ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.
2D microwave imaging reflectometer electronics
Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.
2014-11-15
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
Large Area Synthesis of 2D Materials
NASA Astrophysics Data System (ADS)
Vogel, Eric
Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.
2D microwave imaging reflectometer electronics.
Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.
Fang, Yuan; Yushmanov, Pavel V; Furó, István
2016-12-08
Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.
2D Distributed Sensing Via TDR
2007-11-02
plate VEGF CompositeSensor Experimental Setup Air 279 mm 61 78 VARTM profile: slope RTM profile: rectangle 22 1 Jul 2003© 2003 University of Delaware...2003 University of Delaware All rights reserved Vision: Non-contact 2D sensing ü VARTM setup constructed within TL can be sensed by its EM field: 2D...300.0 mm/ns. 1 2 1 Jul 2003© 2003 University of Delaware All rights reserved Model Validation “ RTM Flow” TDR Response to 139 mm VEGC
Inkjet printing of 2D layered materials.
Li, Jiantong; Lemme, Max C; Östling, Mikael
2014-11-10
Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.
LAPS discretization and solution of plasma equilibrium
NASA Astrophysics Data System (ADS)
Missanelli, Maria; Delzanno, Gian Luca; Guo, Zehua; Srinivasan, Bhuvana; Tang, Xianzhu
2011-10-01
LAPS provides spectral element discretization for solving steady state plasma profiles. Our initial focus is on its implementation for two dimensional open magnetic field equilibria in linear and toroidal geometries. The linear geometry is an axisymmetric magnetic mirror with anisotropic pressure. The toroidal case is a tokamak scrape-off layer plasma. Structured grids are produced by the grid generation package in LAPS. The spectral element discretization uses modal bases over quadrilateral elements. A Newton-Krylov solver implemented with the Portable, Extensible Toolkits for Scientific Computing PETSc is applied to iteratively converge the solution. Care has been taken in the code design to separate the grid generation, spectral element discretization, and (non)linear solver from the user-specified equilibrium equations, so the LAPS infrastructure can be easily used for different applications. Work supported by DOE OFES.
Discrete element weld model, phase 2
NASA Technical Reports Server (NTRS)
Prakash, C.; Samonds, M.; Singhal, A. K.
1987-01-01
A numerical method was developed for analyzing the tungsten inert gas (TIG) welding process. The phenomena being modeled include melting under the arc and the flow in the melt under the action of buoyancy, surface tension, and electromagnetic forces. The latter entails the calculation of the electric potential and the computation of electric current and magnetic field therefrom. Melting may occur at a single temperature or over a temperature range, and the electrical and thermal conductivities can be a function of temperature. Results of sample calculations are presented and discussed at length. A major research contribution has been the development of numerical methodology for the calculation of phase change problems in a fixed grid framework. The model has been implemented on CHAM's general purpose computer code PHOENICS. The inputs to the computer model include: geometric parameters, material properties, and weld process parameters.
Discrete Element Method for Modeling Penetration
2006-07-01
toughness K,, increases as the rate of applied load is increased. Mindess et al. (1987) conducted experiments on single-edge 24 notched concrete beams loaded...547. Mindess , S., Banthia, N., and Yan, C., "The Fracture Toughness of Concrete under Impact Loading," Cement and Concrete Research, Vol. 17, 1987
Parallel Stitching of 2D Materials.
Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing
2016-03-23
Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.
Beckett, Phil
2012-01-01
The technique of two-dimensional (2D) gel electrophoresis is a powerful tool for separating complex mixtures of proteins, but since its inception in the mid 1970s, it acquired the stigma of being a very difficult application to master and was generally used to its best effect by experts. The introduction of commercially available immobilized pH gradients in the early 1990s provided enhanced reproducibility and easier protocols, leading to a pronounced increase in popularity of the technique. However gel-to-gel variation was still difficult to control without the use of technical replicates. In the mid 1990s (at the same time as the birth of "proteomics"), the concept of multiplexing fluorescently labeled proteins for 2D gel separation was realized by Jon Minden's group and has led to the ability to design experiments to virtually eliminate gel-to-gel variation, resulting in biological replicates being used for statistical analysis with the ability to detect very small changes in relative protein abundance. This technology is referred to as 2D difference gel electrophoresis (2D DIGE).
Parallel stitching of 2D materials
Ling, Xi; Wu, Lijun; Lin, Yuxuan; ...
2016-01-27
Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.
Discrete breathers in nonlinear magnetic metamaterials.
Lazarides, N; Eleftheriou, M; Tsironis, G P
2006-10-13
Magnetic metamaterials composed of split-ring resonators or U-type elements may exhibit discreteness effects in THz and optical frequencies due to weak coupling. We consider a model one-dimensional metamaterial formed by a discrete array of nonlinear split-ring resonators where each ring interacts with its nearest neighbors. On-site nonlinearity and weak coupling among the individual array elements result in the appearance of discrete breather excitations or intrinsic localized modes, both in the energy-conserved and the dissipative system. We analyze discrete single and multibreather excitations, as well as a special breather configuration forming a magnetization domain wall and investigate their mobility and the magnetic properties their presence induces in the system.
A Glove for Tapping and Discrete 1D/2D Input
NASA Technical Reports Server (NTRS)
Miller, Sam A.; Smith, Andy; Bahram, Sina; SaintAmant, Robert
2012-01-01
This paper describes a glove with which users enter input by tapping fingertips with the thumb or by rubbing the thumb over the palmar surfaces of the middle and index fingers. The glove has been informally tested as the controller for two semi-autonomous robots in a a 3D simulation environment. A preliminary evaluation of the glove s performance is presented.
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology
Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr
2016-01-01
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.
Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr
2016-02-06
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.
NASA Astrophysics Data System (ADS)
Cagnoli, Bruno; Piersanti, Antonio
2017-02-01
We have carried out new three-dimensional numerical simulations by using a discrete element method (DEM) to study the mobility of dry granular flows of angular rock fragments. These simulations are relevant for geophysical flows such as rock avalanches and pyroclastic flows. The model is validated by previous laboratory experiments. We confirm that (1) the finer the grain size, the larger the mobility of the center of mass of granular flows; (2) the smaller the flow volume, the larger the mobility of the center of mass of granular flows and (3) the wider the channel, the larger the mobility of the center of mass of granular flows. The grain size effect is due to the fact that finer grain size flows dissipate intrinsically less energy. This volume effect is the opposite of that experienced by the flow fronts. The original contribution of this paper consists of providing a comparison of the mobility of granular flows in six channels with a different cross section each. This results in a new scaling parameter χ that has the product of grain size and the cubic root of flow volume as the numerator and the product of channel width and flow length as the denominator. The linear correlation between the reciprocal of mobility and parameter χ is statistically highly significant. Parameter χ confirms that the mobility of the center of mass of granular flows is an increasing function of the ratio of the number of fragments per unit of flow mass to the total number of fragments in the flow. These are two characteristic numbers of particles whose effect on mobility is scale invariant.
Principles of Discrete Time Mechanics
NASA Astrophysics Data System (ADS)
Jaroszkiewicz, George
2014-04-01
1. Introduction; 2. The physics of discreteness; 3. The road to calculus; 4. Temporal discretization; 5. Discrete time dynamics architecture; 6. Some models; 7. Classical cellular automata; 8. The action sum; 9. Worked examples; 10. Lee's approach to discrete time mechanics; 11. Elliptic billiards; 12. The construction of system functions; 13. The classical discrete time oscillator; 14. Type 2 temporal discretization; 15. Intermission; 16. Discrete time quantum mechanics; 17. The quantized discrete time oscillator; 18. Path integrals; 19. Quantum encoding; 20. Discrete time classical field equations; 21. The discrete time Schrodinger equation; 22. The discrete time Klein-Gordon equation; 23. The discrete time Dirac equation; 24. Discrete time Maxwell's equations; 25. The discrete time Skyrme model; 26. Discrete time quantum field theory; 27. Interacting discrete time scalar fields; 28. Space, time and gravitation; 29. Causality and observation; 30. Concluding remarks; Appendix A. Coherent states; Appendix B. The time-dependent oscillator; Appendix C. Quaternions; Appendix D. Quantum registers; References; Index.
Compatible embedding for 2D shape animation.
Baxter, William V; Barla, Pascal; Anjyo, Ken-Ichi
2009-01-01
We present new algorithms for the compatible embedding of 2D shapes. Such embeddings offer a convenient way to interpolate shapes having complex, detailed features. Compared to existing techniques, our approach requires less user input, and is faster, more robust, and simpler to implement, making it ideal for interactive use in practical applications. Our new approach consists of three parts. First, our boundary matching algorithm locates salient features using the perceptually motivated principles of scale-space and uses these as automatic correspondences to guide an elastic curve matching algorithm. Second, we simplify boundaries while maintaining their parametric correspondence and the embedding of the original shapes. Finally, we extend the mapping to shapes' interiors via a new compatible triangulation algorithm. The combination of our algorithms allows us to demonstrate 2D shape interpolation with instant feedback. The proposed algorithms exhibit a combination of simplicity, speed, and accuracy that has not been achieved in previous work.
Schottky diodes from 2D germanane
NASA Astrophysics Data System (ADS)
Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.
2016-07-01
We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.
Extrinsic Cation Selectivity of 2D Membranes
2017-01-01
From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333
Interactive 2D to 3D stereoscopic image synthesis
NASA Astrophysics Data System (ADS)
Feldman, Mark H.; Lipton, Lenny
2005-03-01
Advances in stereoscopic display technologies, graphic card devices, and digital imaging algorithms have opened up new possibilities in synthesizing stereoscopic images. The power of today"s DirectX/OpenGL optimized graphics cards together with adapting new and creative imaging tools found in software products such as Adobe Photoshop, provide a powerful environment for converting planar drawings and photographs into stereoscopic images. The basis for such a creative process is the focus of this paper. This article presents a novel technique, which uses advanced imaging features and custom Windows-based software that utilizes the Direct X 9 API to provide the user with an interactive stereo image synthesizer. By creating an accurate and interactive world scene with moveable and flexible depth map altered textured surfaces, perspective stereoscopic cameras with both visible frustums and zero parallax planes, a user can precisely model a virtual three-dimensional representation of a real-world scene. Current versions of Adobe Photoshop provide a creative user with a rich assortment of tools needed to highlight elements of a 2D image, simulate hidden areas, and creatively shape them for a 3D scene representation. The technique described has been implemented as a Photoshop plug-in and thus allows for a seamless transition of these 2D image elements into 3D surfaces, which are subsequently rendered to create stereoscopic views.
Quasiparticle interference in unconventional 2D systems
NASA Astrophysics Data System (ADS)
Chen, Lan; Cheng, Peng; Wu, Kehui
2017-03-01
At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.
Compact 2-D graphical representation of DNA
NASA Astrophysics Data System (ADS)
Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana
2003-05-01
We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.
2D Metals by Repeated Size Reduction.
Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui
2016-10-01
A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers.
Engineering light outcoupling in 2D materials.
Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali
2015-02-11
When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.
Irreversibility-inversions in 2D turbulence
NASA Astrophysics Data System (ADS)
Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido
2016-11-01
We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.
Bi-sided integral imaging with 2D/3D convertibility using scattering polarizer.
Yeom, Jiwoon; Hong, Keehoon; Park, Soon-gi; Hong, Jisoo; Min, Sung-Wook; Lee, Byoungho
2013-12-16
We propose a two-dimensional (2D) and three-dimensional (3D) convertible bi-sided integral imaging. The proposed system uses the polarization state of projected light for switching its operation mode between 2D and 3D modes. By using an optical module composed of two scattering polarizers and one linear polarizer, the proposed integral imaging system simultaneously provides 3D images with 2D background images for observers who are located in the front and the rear sides of the system. The occlusion effect between 2D images and 3D images is realized by using a compensation mask for 2D images and the elemental images. The principle of proposed system is experimentally verified.
Metallic and Magnetic 2D Materials Containing Planar Tetracoordinated C and N.
Jimenez-Izal, Elisa; Saeys, Mark; Alexandrova, Anastassia N
2016-08-26
The top monolayers of surface carbides and nitrides of Co and Ni are predicted to yield new stable 2D materials upon exfoliation. These 2D phases are p4g clock reconstructed, and contain planar tetracoordinated C or N. The stability of these flat carbides and nitrides is high, and ab-initio molecular dynamics at a simulation temperature of 1800 K suggest that the materials are thermally stable at elevated temperatures. The materials owe their stability to local triple aromaticity (π-, σ-radial, and σ-peripheral) associated with binding of the main group element to the metal. All predicted 2D phases are conductors, and the two alloys of Co are also ferromagnetic - a property especially rare among 2D materials. The preparation of 2D carbides and nitrides is envisioned to be done through surface deposition and peeling, possibly on a metal with a larger lattice constant for reduced affinity.
2D superconductivity by ionic gating
NASA Astrophysics Data System (ADS)
Iwasa, Yoshi
2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially
On equivalence of discrete-discrete and continuum-discrete design sensitivity analysis
NASA Technical Reports Server (NTRS)
Choi, Kyung K.; Twu, Sung-Ling
1989-01-01
Developments in design sensitivity analysis (DSA) method have been made using two fundamentally different approaches as shown. In the first approach, a discretized structural finite element model is used to carry out DSA. There are three different methods in the discrete DSA approach: finite difference, semi-analytical, and analytical methods. The finite difference method is a popular one due to its simplicity, but a serious shortcoming of the method is the uncertainty in the choice of a perturbation step size of design variables. In the semi-analytical method, the derivatives of stiffness matrix is computed by finite differences, whereas in the analytical method, the derivatives are obtained analytically. For the shape design variable, computation of analytical derivative of stiffness matrix is quite costly. Because of this, the semi-analytical method is a popular choice in discrete shape DSA approach. However, recently, Barthelemy and Haftka presented that the semi-analytical method can have serious accuracy problems for shape design variables in structures modeled by beam, plate, truss, frame, and solid elements. They found that accuracy problems occur even for a simple cantilever beam. In the second approach, a continuum model of the structure is used to carry out DSA.
TOPAZ2D heat transfer code users manual and thermal property data base
Shapiro, A.B.; Edwards, A.L.
1990-05-01
TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.
Periodically sheared 2D Yukawa systems
Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán
2015-10-15
We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.
ENERGY LANDSCAPE OF 2D FLUID FORMS
Y. JIANG; ET AL
2000-04-01
The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.
Codon Constraints on Closed 2D Shapes,
2014-09-26
19843$ CODON CONSTRAINTS ON CLOSED 2D SHAPES Go Whitman Richards "I Donald D. Hoffman’ D T 18 Abstract: Codons are simple primitives for describing plane...RSONAL AUT"ORtIS) Richards, Whitman & Hoffman, Donald D. 13&. TYPE OF REPORT 13b. TIME COVERED N/A P8 AT F RRrT t~r. Ago..D,) is, PlE COUNT Reprint...outlines, if figure and ground are ignored. Later, we will address the problem of indexing identical codon descriptors that have different figure
An algorithm for computing the 2D structure of fast rotating stars
Rieutord, Michel; Espinosa Lara, Francisco; Putigny, Bertrand
2016-08-01
Stars may be understood as self-gravitating masses of a compressible fluid whose radiative cooling is compensated by nuclear reactions or gravitational contraction. The understanding of their time evolution requires the use of detailed models that account for a complex microphysics including that of opacities, equation of state and nuclear reactions. The present stellar models are essentially one-dimensional, namely spherically symmetric. However, the interpretation of recent data like the surface abundances of elements or the distribution of internal rotation have reached the limits of validity of one-dimensional models because of their very simplified representation of large-scale fluid flows. In this article, we describe the ESTER code, which is the first code able to compute in a consistent way a two-dimensional model of a fast rotating star including its large-scale flows. Compared to classical 1D stellar evolution codes, many numerical innovations have been introduced to deal with this complex problem. First, the spectral discretization based on spherical harmonics and Chebyshev polynomials is used to represent the 2D axisymmetric fields. A nonlinear mapping maps the spheroidal star and allows a smooth spectral representation of the fields. The properties of Picard and Newton iterations for solving the nonlinear partial differential equations of the problem are discussed. It turns out that the Picard scheme is efficient on the computation of the simple polytropic stars, but Newton algorithm is unsurpassed when stellar models include complex microphysics. Finally, we discuss the numerical efficiency of our solver of Newton iterations. This linear solver combines the iterative Conjugate Gradient Squared algorithm together with an LU-factorization serving as a preconditioner of the Jacobian matrix.
NASA Astrophysics Data System (ADS)
Leblond, Jean-Baptiste; Frelat, Joël
2014-03-01
It is experimentally well-known that a crack loaded in mode I+III propagates through formation of discrete fracture facets inclined at a certain tilt angle on the original crack plane, depending on the ratio of the mode III to mode I initial stress intensity factors. Pollard et al. (1982) have proposed to calculate this angle by considering the tractions on all possible future infinitesimal facets and assuming shear tractions to be zero on that which will actually develop. In this paper we consider the opposite case of well-developed facets; the stress field near the lateral fronts of such facets becomes independent of the initial crack and essentially 2D in a plane perpendicular to the main direction of crack propagation. To determine this stress field, we solve the model 2D problem of an infinite plate containing an infinite periodic array of cracks inclined at some angle on a straight line, and loaded through uniform stresses at infinity. This is done first analytically, for small values of this angle, by combining Muskhelishvili's (1953) formalism and a first-order perturbation procedure. The formulae found for the 2D stress intensity factors are then extended in an approximate way to larger angles by using another reference solution, and finally assessed through comparison with some finite element results. To finally illustrate the possible future application of these formulae to the prediction of the stationary tilt angle, we introduce the tentative assumption that the 2D mode II stress intensity factor is zero on the lateral fronts of the facets. An approximate formula providing the tilt angle as a function of the ratio of the mode III to mode I stress intensity factors of the initial crack is deduced from there. This formula, which slightly depends on the type of loading imposed, predicts somewhat smaller angles than that of Pollard et al. (1982).
Remarks on thermalization in 2D CFT
NASA Astrophysics Data System (ADS)
de Boer, Jan; Engelhardt, Dalit
2016-12-01
We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.
Microwave Assisted 2D Materials Exfoliation
NASA Astrophysics Data System (ADS)
Wang, Yanbin
Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.
Capturing nonlocal effects in 2D granular flows
NASA Astrophysics Data System (ADS)
Kamrin, Ken; Koval, Georg
2013-03-01
There is an industrial need, and a scientific desire, to produce a continuum model that can predict the flow of dense granular matter in an arbitrary geometry. A viscoplastic continuum approach, developed over recent years, has shown some ability to approximate steady flow and stress profiles in multiple inhomogeneous flow environments. However, the model incorrectly represents phenomena observed in the slow, creeping flow regime. As normalized flow-rate decreases, granular stresses are observed to become largely rate-independent and a dominating length-scale emerges in the mechanics. This talk attempts to account for these effects, in the simplified case of 2D, using the notion of nonlocal fluidity, which has proven successful in treating nonlocal effects in emulsions. The idea is to augment the local granular fluidity law with a diffusive second-order term scaled by the particle size, which spreads flowing zones accordingly. Below the yield stress, the local contribution vanishes and the fluidity becomes rate-independent, as we require. We implement the modified law in multiple geometries and validate its flow and stress predictions in multiple geometries compared against discrete particle simulations. In so doing, we demonstrate that the nonlocal relation proposed is satisfied universally in a seemingly geometry-independent fashion.
Nonlinear standing waves in 2-D acoustic resonators.
Cervenka, Milan; Bednarik, Michal
2006-12-22
This paper deals with 2-D simulation of finite-amplitude standing waves behavior in rectangular acoustic resonators. Set of three partial differential equations in third approximation formulated in conservative form is derived from fundamental equations of gas dynamics. These equations form a closed set for two components of acoustic velocity vector and density, the equations account for external driving force, gas dynamic nonlinearities and thermoviscous dissipation. Pressure is obtained from solution of the set by means of an analytical formula. The equations are formulated in the Cartesian coordinate system. The model equations set is solved numerically in time domain using a central semi-discrete difference scheme developed for integration of sets of convection-diffusion equations with two or more spatial coordinates. Numerical results show various patterns of acoustic field in resonators driven using vibrating piston with spatial distribution of velocity. Excitation of lateral shock-wave mode is observed when resonant conditions are fulfilled for longitudinal as well as for transversal direction along the resonator cavity.
Human erythrocytes analyzed by generalized 2D Raman correlation spectroscopy
NASA Astrophysics Data System (ADS)
Wesełucha-Birczyńska, Aleksandra; Kozicki, Mateusz; Czepiel, Jacek; Łabanowska, Maria; Nowak, Piotr; Kowalczyk, Grzegorz; Kurdziel, Magdalena; Birczyńska, Malwina; Biesiada, Grażyna; Mach, Tomasz; Garlicki, Aleksander
2014-07-01
The most numerous elements of the blood cells, erythrocytes, consist mainly of two components: homogeneous interior filled with hemoglobin and closure which is the cell membrane. To gain insight into their specific properties we studied the process of disintegration, considering these two constituents, and comparing the natural aging process of human healthy blood cells. MicroRaman spectra of hemoglobin within the single RBC were recorded using 514.5, and 785 nm laser lines. The generalized 2D correlation method was applied to analyze the collected spectra. The time passed from blood donation was regarded as an external perturbation. The time was no more than 40 days according to the current storage limit of blood banks, although, the average RBC life span is 120 days. An analysis of the prominent synchronous and asynchronous cross peaks allow us to get insight into the mechanism of hemoglobin decomposition. Appearing asynchronous cross-peaks point towards globin and heme separation from each other, while synchronous shows already broken globin into individual amino acids. Raman scattering analysis of hemoglobin "wrapping", i.e. healthy erythrocyte ghosts, allows for the following peculiarity of their behavior. The increasing power of the excitation laser induced alterations in the assemblage of membrane lipids. 2D correlation maps, obtained with increasing laser power recognized as an external perturbation, allows for the consideration of alterations in the erythrocyte membrane structure and composition, which occurs first in the proteins. Cross-peaks were observed indicating an asynchronous correlation between the senescent-cell antigen (SCA) and heme or proteins vibrations. The EPR spectra of the whole blood was analyzed regarding time as an external stimulus. The 2D correlation spectra points towards participation of the selected metal ion centers in the disintegration process.
Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT
Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; ...
2016-08-25
We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less
Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT
NASA Astrophysics Data System (ADS)
Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T. H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew
2016-12-01
A consistent "2D/1D" neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.
Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT
Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T. H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew
2016-08-25
We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.
2-D or not 2-D, that is the question: A Northern California test
Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D
2005-06-06
Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2
Meshfree natural vibration analysis of 2D structures
NASA Astrophysics Data System (ADS)
Kosta, Tomislav; Tsukanov, Igor
2014-02-01
Determination of resonance frequencies and vibration modes of mechanical structures is one of the most important tasks in the product design procedure. The main goal of this paper is to describe a pioneering application of the solution structure method (SSM) to 2D structural natural vibration analysis problems and investigate the numerical properties of the method. SSM is a meshfree method which enables construction of the solutions to the engineering problems that satisfy exactly all prescribed boundary conditions. This method is capable of using spatial meshes that do not conform to the shape of a geometric model. Instead of using the grid nodes to enforce boundary conditions, it employs distance fields to the geometric boundaries and combines them with the basis functions and prescribed boundary conditions at run time. This defines unprecedented geometric flexibility of the SSM as well as the complete automation of the solution procedure. In the paper we will explain the key points of the SSM as well as investigate the accuracy and convergence of the proposed approach by comparing our results with the ones obtained using analytical methods or traditional finite element analysis. Despite in this paper we are dealing with 2D in-plane vibrations, the proposed approach has a straightforward generalization to model vibrations of 3D structures.
Application Perspective of 2D+SCALE Dimension
NASA Astrophysics Data System (ADS)
Karim, H.; Rahman, A. Abdul
2016-09-01
Different applications or users need different abstraction of spatial models, dimensionalities and specification of their datasets due to variations of required analysis and output. Various approaches, data models and data structures are now available to support most current application models in Geographic Information System (GIS). One of the focuses trend in GIS multi-dimensional research community is the implementation of scale dimension with spatial datasets to suit various scale application needs. In this paper, 2D spatial datasets that been scaled up as the third dimension are addressed as 2D+scale (or 3D-scale) dimension. Nowadays, various data structures, data models, approaches, schemas, and formats have been proposed as the best approaches to support variety of applications and dimensionality in 3D topology. However, only a few of them considers the element of scale as their targeted dimension. As the scale dimension is concerned, the implementation approach can be either multi-scale or vario-scale (with any available data structures and formats) depending on application requirements (topology, semantic and function). This paper attempts to discuss on the current and new potential applications which positively could be integrated upon 3D-scale dimension approach. The previous and current works on scale dimension as well as the requirements to be preserved for any given applications, implementation issues and future potential applications forms the major discussion of this paper.
Synchronous Discrete Harmonic Oscillator
Antippa, Adel F.; Dubois, Daniel M.
2008-10-17
We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2{pi} in phase space, is an integral multiple N of the discrete time step {delta}t. It is fully synchronous when N is even. It is pseudo-synchronous when T/{delta}t is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is ''blue shifted'' relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval {delta}t. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.
Synchronous Discrete Harmonic Oscillator
NASA Astrophysics Data System (ADS)
Antippa, Adel F.; Dubois, Daniel M.
2008-10-01
We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2π in phase space, is an integral multiple N of the discrete time step Δt. It is fully synchronous when N is even. It is pseudo-synchronous when T/Δt is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is "blue shifted" relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval Δt. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.
2D quantum gravity from quantum entanglement.
Gliozzi, F
2011-01-21
In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.
Simulation of Yeast Cooperation in 2D.
Wang, M; Huang, Y; Wu, Z
2016-03-01
Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse.
2D Electrostatic Actuation of Microshutter Arrays
NASA Technical Reports Server (NTRS)
Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.
2015-01-01
An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.
Graphene suspensions for 2D printing
NASA Astrophysics Data System (ADS)
Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.
2016-04-01
It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).
Canard configured aircraft with 2-D nozzle
NASA Technical Reports Server (NTRS)
Child, R. D.; Henderson, W. P.
1978-01-01
A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.
2D Monoelemental Arsenene, Antimonene, and Bismuthene: Beyond Black Phosphorus.
Pumera, Martin; Sofer, Zdeněk
2017-02-10
Two-dimensional materials are responsible for changing research in materials science. After graphene and its counterparts, graphane, fluorographene, and others were introduced, waves of renewed interest in 2D binary compounds occurred, such as in metal oxides, transition-metal dichalcogenides (most often represented by MoS2 ), metal oxy/hydroxide borides, and MXenes, to name the most prominent. Recently, interest has turned to two-dimensional monoelemental structures, such as monolayer black phosphorus and, very recently, to monolayer arsenic, antimony, and bismuth. Here, a short overview is provided of the area of exponentially increasing research in arsenene, antimonene, and bismuthene, which belong to the fifth main group of elements, the so-called pnictogens. A short review of historical work is provided, the properties of bulk allotropes of As, Sb, and Bi discussed, and then theoretical and experimental research on mono- and few-layered arsenene, antimonene, and bismuthene addressed, discussing their structures and properties.
TOPAZ2D validation status report, August 1990
Davis, B.
1990-08-01
Analytic solutions to two heat transfer problems were used to partially evaluate the performance TOPAZ, and LLNL finite element heat transfer code. The two benchmark analytic solutions were for: 2D steady state slab, with constant properties, constant uniform temperature boundary conditions on three sides, and constant temperature distribution according to a sine function on the fourth side; 1D transient non-linear, with temperature dependent conductivity and specific heat (varying such that the thermal diffusivity remained constant), constant heat flux on the front face and adiabatic conditions on the other face. The TOPAZ solution converged to the analytic solution in both the transient and the steady state problem. Consistent mass matrix type of analysis yielded best performance for the transient problem, in the late-time response; but notable unnatural anomalies were observed in the early-time temperature response at nodal locations near the front face. 5 refs., 22 figs.
Compatible Spatial Discretizations for Partial Differential Equations
Arnold, Douglas, N, ed.
2004-11-25
From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical
Metrology for graphene and 2D materials
NASA Astrophysics Data System (ADS)
Pollard, Andrew J.
2016-09-01
The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the
CBP/p300 acetyltransferases regulate the expression of NKG2D ligands on tumor cells
Sauer, M; Schuldner, M; Hoffmann, N; Cetintas, A; Reiners, K S; Shatnyeva, O; Hallek, M; Hansen, H P; Gasser, S; von Strandmann, E P
2017-01-01
Tumor surveillance of natural killer (NK) cells is mediated by the cytotoxicity receptor natural-killer group 2 member D (NKG2D). Ligands for NKG2D are generally not expressed on healthy cells, but induced on the surface of malignant cells. To date, NKG2D ligand (NKG2D-L) induction was mainly described to depend on the activation of the DNA damage response, although the molecular mechanisms that regulate NKG2D-L expression remain largely unknown. Here, we show that the acetyltransferases CBP (CREB-binding protein) and p300 play a crucial role in the regulation of NKG2D-L on tumor cells. Loss of CBP/p300 decreased the basal cell surface expression of human ligands and reduced the upregulation of MICA/B and ULBP2 in response to histone deacetylase inhibitors or DNA damage. Furthermore, CBP/P300 deficiency abrogated the sensitivity of stressed cells to NK cell-mediated killing. CBP/p300 were also identified as major regulators of mouse NKG2D ligand RAE-1 in vitro and in vivo using the Eμ-Myc lymphoma model. Mechanistically, we observed an enhanced activation of the CBP/p300 binding transcription factor CREB (cAMP response element-binding protein) correlating to the NKG2D-L upregulation. Moreover, increased binding of CREB and CBP/p300 to NKG2D-L promoters and elevated histone acetylation were detectable. This study provides strong evidence for a major role of CBP and p300 in orchestrating NKG2D-L induction and consequently immunosurveillance of tumors in mice and humans. These findings might help to develop novel immunotherapeutic approaches against cancer. PMID:27477692
A faster method for 3D/2D medical image registration—a simulation study
NASA Astrophysics Data System (ADS)
Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Claudius Gellrich, Niels; Jacob, Augustinus Ludwig; Regazzoni, Pietro; Messmer, Peter
2003-08-01
3D/2D patient-to-computed-tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Iterative variation of the CT's position between rendering steps finally leads to exact registration. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 3D/2D registration is the fact that finding a registration includes solving a minimization problem in six degrees of freedom (dof) in motion. This results in considerable time requirements since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations around a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of it's original value. The method was implemented and extensively tested on simulated x-ray images of a tibia, a pelvis and a skull base. When using one projective image and a discrete full parameter space search for solving the optimization problem, average accuracy was found to be 1.0 +/- 0.6(°) and 4.1 +/- 1.9 (mm) for a registration in six parameters, and 1.0 +/- 0.7(°) and 4.2 +/- 1.6 (mm) when using the 5 + 1 dof method described in this paper. Time requirements were reduced by a factor 3.1. We conclude that this hardware-independent optimization of 3D/2D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.
A faster method for 3D/2D medical image registration--a simulation study.
Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels Claudius; Jacob, Augustinus Ludwig; Regazzoni, Pietro; Messmer, Peter
2003-08-21
3D/2D patient-to-computed-tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Iterative variation of the CT's position between rendering steps finally leads to exact registration. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 3D/2D registration is the fact that finding a registration includes solving a minimization problem in six degrees of freedom (dof) in motion. This results in considerable time requirements since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations around a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of it's original value. The method was implemented and extensively tested on simulated x-ray images of a tibia, a pelvis and a skull base. When using one projective image and a discrete full parameter space search for solving the optimization problem, average accuracy was found to be 1.0 +/- 0.6(degrees) and 4.1 +/- 1.9 (mm) for a registration in six parameters, and 1.0 +/- 0.7(degrees) and 4.2 +/- 1.6 (mm) when using the 5 + 1 dof method described in this paper. Time requirements were reduced by a factor 3.1. We conclude that this hardware-independent optimization of 3D/2D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.
Discrete dislocations in graphene
NASA Astrophysics Data System (ADS)
Ariza, M. P.; Ortiz, M.
2010-05-01
In this work, we present an application of the theory of discrete dislocations of Ariza and Ortiz (2005) to the analysis of dislocations in graphene. Specifically, we discuss the specialization of the theory to graphene and its further specialization to the force-constant model of Aizawa et al. (1990). The ability of the discrete-dislocation theory to predict dislocation core structures and energies is critically assessed for periodic arrangements of dislocation dipoles and quadrupoles. We show that, with the aid of the discrete Fourier transform, those problems are amenable to exact solution within the discrete-dislocation theory, which confers the theory a distinct advantage over conventional atomistic models. The discrete dislocations exhibit 5-7 ring core structures that are consistent with observation and result in dislocation energies that fall within the range of prediction of other models. The asymptotic behavior of dilute distributions of dislocations is characterized analytically in terms of a discrete prelogarithmic energy tensor. Explicit expressions for this discrete prelogarithmic energy tensor are provided up to quadratures.
NASA Astrophysics Data System (ADS)
Xiao, Hongyi; Deng, Zhekai; Umbanhowar, Paul; Ottino, Julio; Lueptow, Richard
2016-11-01
Segregation of disperse granular materials in unsteady flows is ubiquitous in nature and industry, yet remains largely unexplored. In this study, unsteady flows are generated by feeding size-bidisperse granular mixtures onto a quasi-2D bounded heap using alternating feed rates, which results in stratified layers of large and small particles. The mechanism of stratification is investigated in detail using Discrete Element Method (DEM) simulations of the flow. During the transition from the slow to the fast feed rate, a segregating wedge propagates downstream and forms a large particle layer extending upstream. During the opposite transition, upstream segregated small particles relax downstream and form a small particle layer extending downstream. The transient kinematics from DEM simulations are quantified and used to inform a time-dependent continuum model that captures the interplay of advection, diffusion, and segregation in the flowing layer. The continuum model reproduces the principle characteristics of the stratification patterns observed in experiments and simulations. Funded by NSF Grant CBET-1511450.
Composite transposable elements in the Xenopus laevis genome.
Garrett, J E; Knutzon, D S; Carroll, D
1989-01-01
Members of two related families of transposable elements, Tx1 and Tx2, were isolated from the genome of Xenopus laevis and characterized. In both families, two versions of the elements were found. The smaller version in each family (Tx1d and Tx2d) consisted largely of two types of 400-base-pair tandem internal repeats. These elements had discrete ends and short inverted terminal repeats characteristic of mobile DNAs that are presumed to move via DNA intermediates, e.g., Drosophila P and maize Ac elements. The longer versions (Tx1c and Tx2c) differed from Tx1d and Tx2d by the presence of a 6.9-kilobase-pair internal segment that included two long open reading frames (ORFs). ORF1 had one cysteine-plus-histidine-rich sequence of the type found in retroviral gag proteins. ORF2 showed more substantial homology to retroviral pol genes and particularly to the analogs of pol found in a subclass of mobile DNAs that are supposed retrotransposons, such as mammalian long interspersed repetitive sequences, Drosophila I factors, silkworm R1 elements, and trypanosome Ingi elements. Thus, the Tx1 elements present a paradox by exhibiting features of two classes of mobile DNAs that are thought to have very different modes of transposition. Two possible resolutions are considered: (i) the composite versions are actually made up of two independent elements, one of the retrotransposon class, which has a high degree of specificity for insertion into a target within the other, P-like element; and (ii) the composite elements are intact, autonomous mobile DNAs, in which the pol-like gene product collaborates with the terminal inverted repeats to cause transposition of the entire unit. Images PMID:2550791
NASA Astrophysics Data System (ADS)
Aydin, Alhun; Sisman, Altug
2016-03-01
By considering the quantum-mechanically minimum allowable energy interval, we exactly count number of states (NOS) and introduce discrete density of states (DOS) concept for a particle in a box for various dimensions. Expressions for bounded and unbounded continua are analytically recovered from discrete ones. Even though substantial fluctuations prevail in discrete DOS, they're almost completely flattened out after summation or integration operation. It's seen that relative errors of analytical expressions of bounded/unbounded continua rapidly decrease for high NOS values (weak confinement or high energy conditions), while the proposed analytical expressions based on Weyl's conjecture always preserve their lower error characteristic.
NASA Astrophysics Data System (ADS)
Sun, Yan-Qiong; Zhong, Jie-Cen; Liu, Le-Hui; Qiu, Xing-Tai; Chen, Yi-Ping
2016-11-01
An organo-bismuth benzoate with phen as auxiliary ligand, [Bi(phen)(C6H5COO)(C6H4COO)] (1) (phen = 1,10-phenanthroline) has been hydrothermally synthesized from bismuth nitrate, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, PXRD, IR spectra, TG analyses, temperature-depended 2D-IR COS (two-dimensional infrared correlation spectroscopy). Interestingly, benzoate anions in 1 came from the desulfuration reaction of 2-mercaptonbenzoic acid under hydrothermal condition. Compound 1 is a discrete organo-bismuth compound with benzoate and phen ligands. The offset face-to-face π-π stacking interactions and C-H⋯O hydrogen bonds link the isolate complex into a 3D supramolecular network. The temperature-depended 2D-IR COS indicates that the stretching vibrations of Cdbnd C/Cdbnd N of aromatic rings and Cdbnd O bonds are sensitive to the temperature change.
ERIC Educational Resources Information Center
Peters, James V.
2004-01-01
Using the methods of finite difference equations the discrete analogue of the parabolic and catenary cable are analysed. The fibonacci numbers and the golden ratio arise in the treatment of the catenary.
ERIC Educational Resources Information Center
Crisler, Nancy; Froelich, Gary
1990-01-01
Discussed are summary recommendations concerning the integration of some aspects of discrete mathematics into existing secondary mathematics courses. Outlines of course activities are grouped into the three levels of prealgebra, algebra, and geometry. Some sample problems are included. (JJK)
FRANC2D: A two-dimensional crack propagation simulator. Version 2.7: User's guide
NASA Technical Reports Server (NTRS)
Wawrzynek, Paul; Ingraffea, Anthony
1994-01-01
FRANC 2D (FRacture ANalysis Code, 2 Dimensions) is a menu driven, interactive finite element computer code that performs fracture mechanics analyses of 2-D structures. The code has an automatic mesh generator for triangular and quadrilateral elements. FRANC2D calculates the stress intensity factor using linear elastic fracture mechanics and evaluates crack extension using several methods that may be selected by the user. The code features a mesh refinement and adaptive mesh generation capability that is automatically developed according to the predicted crack extension direction and length. The code also has unique features that permit the analysis of layered structure with load transfer through simulated mechanical fasteners or bonded joints. The code was written for UNIX workstations with X-windows graphics and may be executed on the following computers: DEC DecStation 3000 and 5000 series, IBM RS/6000 series, Hewlitt-Packard 9000/700 series, SUN Sparc stations, and most Silicon Graphics models.
Persistence Measures for 2d Soap Froth
NASA Astrophysics Data System (ADS)
Feng, Y.; Ruskin, H. J.; Zhu, B.
Soap froths as typical disordered cellular structures, exhibiting spatial and temporal evolution, have been studied through their distributions and topological properties. Recently, persistence measures, which permit representation of the froth as a two-phase system, have been introduced to study froth dynamics at different length scales. Several aspects of the dynamics may be considered and cluster persistence has been observed through froth experiment. Using a direct simulation method, we have investigated persistent properties in 2D froth both by monitoring the persistence of survivor cells, a topologically independent measure, and in terms of cluster persistence. It appears that the area fraction behavior for both survivor and cluster persistence is similar for Voronoi froth and uniform froth (with defects). Survivor and cluster persistent fractions are also similar for a uniform froth, particularly when geometries are constrained, but differences observed for the Voronoi case appear to be attributable to the strong topological dependency inherent in cluster persistence. Survivor persistence, on the other hand, depends on the number rather than size and position of remaining bubbles and does not exhibit the characteristic decay to zero.
SEM signal emulation for 2D patterns
NASA Astrophysics Data System (ADS)
Sukhov, Evgenii; Muelders, Thomas; Klostermann, Ulrich; Gao, Weimin; Braylovska, Mariya
2016-03-01
The application of accurate and predictive physical resist simulation is seen as one important use model for fast and efficient exploration of new patterning technology options, especially if fully qualified OPC models are not yet available at an early pre-production stage. The methodology of using a top-down CD-SEM metrology to extract the 3D resist profile information, such as the critical dimension (CD) at various resist heights, has to be associated with a series of presumptions which may introduce such small, but systematic CD errors. Ideally, the metrology effects should be carefully minimized during measurement process, or if possible be taken into account through proper metrology modeling. In this paper we discuss the application of a fast SEM signal emulation describing the SEM image formation. The algorithm is applied to simulated resist 3D profiles and produces emulated SEM image results for 1D and 2D patterns. It allows estimating resist simulation quality by comparing CDs which were extracted from the emulated and from the measured SEM images. Moreover, SEM emulation is applied for resist model calibration to capture subtle error signatures through dose and defocus. Finally, it should be noted that our SEM emulation methodology is based on the approximation of physical phenomena which are taking place in real SEM image formation. This approximation allows achieving better speed performance compared to a fully physical model.
Competing coexisting phases in 2D water
NASA Astrophysics Data System (ADS)
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-05-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.
Competing coexisting phases in 2D water
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-01-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018
NASA Astrophysics Data System (ADS)
Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John
2016-05-01
We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.
The Xis2d protein of CTnDOT binds to the intergenic region between the mob and tra operons
Hopp, Crystal M.; Gardner, Jeffrey F.; Salyers, Abigail A.
2015-01-01
CTnDOT is a 65kbp integrative and conjugative element (ICE) that carries genes encoding both tetracycline and erythromycin resistances. The Excision operon of this element encodes Xis2c, Xis2d, and Exc proteins involved in the excision of CTnDOT from host chromosomes. These proteins are also required in the complex transcriptional regulation of the divergently transcribed transfer (tra) and mobilization (mob) operons of CTnDOT. Transcription of the tra operon is positively regulated by Xis2c and Xis2d, whereas, transcription of the mob operon is positively regulated by Xis2d and Exc. Xis2d is the only protein that is involved in the excision reaction, as well as the transcriptional regulation of both the mob and tra operons. This paper helps establish how Xis2d binds the DNA in the mob and tra region. Unlike other excisionase proteins, Xis2d binds a region of dyad symmetry. The binding site is located in the intergenic region between the mob and tra promoters, and once bound Xis2d induces a bend in the DNA. Xis2d binding to this region could be the preliminary step for the activation of both operons. Then the other proteins, like Exc, can interact with Xis2d and form higher order complexes. PMID:26212728
López-Álvarez, M R; Campillo, J A; Legaz, I; Blanco-García, R M; Salgado-Cecilia, G; Bolarín, J M; Gimeno, L; Gil, J; García-Alonso, A M; Muro, M; Alvarez-López, M R; Miras, M; Minguela, A
2011-03-01
Natural killer (NK) and CD8(+) T cells may be active elements in the allograft response, but little is known about their role in liver transplantation. Some of these cells express killer immunoglobulin-like receptors (KIRs), which after binding specific ligands may transmit inhibitory/activating signals. In this study, circulating NK and CD8(+) T cells expressing CD158a/h (KIR2DL1/S1) or CD158b/j (KIR2DL2/3/S(2)) receptors were analyzed in 142 liver recipients by flow cytometry. They were underrepresented in patients before transplantation, but following transplantation, whereas the KIR2D(+) NK subsets experienced a late recuperation (day 365) mainly in C2-homozygous patients developing early acute rejection, recovery of the 2 CD8(+)KIR2D(+) T cells started earlier, showing significant differences on day 365 between patients without acute rejection and those suffering from it (p = 0.004 and p < 0.0001, respectively). These differences were also evident when the human leukocute antigen-C genotypes of the recipient were considered. In conclusion, whereas the late recovery of KIR2D(+) NK cells in C2/C2 patients appears to be linked to acute rejection, the increase in early CD8(+)KIR2D(+) T cells in overall liver recipients correlates with a most successful early graft outcome. Therefore, monitoring of KIR2D(+) cells appears to be a useful tool for liver transplant follow-up.
Complete Genome Sequence of Acinetobacter sp. Strain NCu2D-2 Isolated from a Mouse
Blaschke, Ulrike
2017-01-01
ABSTRACT Whole-genome sequencing of Acinetobacter sp. strain NCu2D-2, isolated from the trachea of a mouse, revealed the presence of a plasmid of 309,964 bp with little overall similarity to known plasmids and enriched in insertion sequences (ISs) closely related to IS elements known from the nosocomial pathogen Acinetobacter baumannii. PMID:28126932
The strength of heterogeneous volcanic rocks: A 2D approximation
NASA Astrophysics Data System (ADS)
Heap, Michael J.; Wadsworth, Fabian B.; Xu, Tao; Chen, Chong-feng; Tang, Chun'an
2016-06-01
Volcanic rocks typically contain heterogeneities in the form of crystals and pores. We investigate here the influence of such heterogeneity on the strength of volcanic rocks using an elastic damage mechanics model in which we numerically deform two-dimensional samples comprising low-strength elements representing crystals and zero-strength elements representing pores. These circular elements are stochastically generated so that there is no overlap in a medium representing the groundmass. Our modelling indicates that increasing the fraction of pores and/or crystals reduces the strength of volcanic rocks, and that increasing the pore fraction results in larger strength reductions than increasing the crystal fraction. The model also highlights an important weakening role for pore diameter, but finds that crystal diameter has a less significant influence for strength. To account for heterogeneity (pores and crystals), we propose an effective medium approach where we define an effective pore fraction ϕp‧ = Vp/(Vp + Vg) where Vp and Vg are the pore and groundmass fractions, respectively. Highly heterogeneous samples (containing high pore and/or crystal fractions) will therefore have high values of ϕp‧, and vice-versa. When we express our numerical samples (more than 200 simulations spanning a wide range of crystal and pore fractions) in terms of ϕp‧, we find that their strengths can be described by a single curve for a given pore diameter. To provide a predictive tool for the strength of heterogeneous volcanic rocks, we propose a modified version of 2D solution for the Sammis and Ashby (1986) pore-emanating crack model, a micromechanical model designed to estimate strength using microstructural attributes such as porosity, pore radius, and fracture toughness. The model, reformulated to include ϕp‧ (and therefore crystal fraction), captures the strength curves for our numerical simulations over a sample heterogeneity range relevant to volcanic systems. We find
Generates 2D Input for DYNA NIKE & TOPAZ
Hallquist, J. O.; Sanford, Larry
1996-07-15
MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ
Sanford, L.; Hallquist, J.O.
1992-02-24
MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
NASA Technical Reports Server (NTRS)
Tang, H. T.; Hofmann, R.; Yee, G.; Vaughan, D. K.
1980-01-01
Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences.
Chiral scale and conformal invariance in 2D quantum field theory.
Hofman, Diego M; Strominger, Andrew
2011-10-14
It is well known that a local, unitary Poincaré-invariant 2D quantum field theory with a global scaling symmetry and a discrete non-negative spectrum of scaling dimensions necessarily has both a left and a right local conformal symmetry. In this Letter, we consider a chiral situation beginning with only a left global scaling symmetry and do not assume Lorentz invariance. We find that a left conformal symmetry is still implied, while right translations are enhanced either to a right conformal symmetry or a left U(1) Kac-Moody symmetry.
Characterization of nonlinear ultrasound fields of 2D therapeutic arrays
Yuldashev, Petr V.; Kreider, Wayne; Sapozhnikov, Oleg A.; Farr, Navid; Partanen, Ari; Bailey, Michael R.; Khokhlova, Vera
2015-01-01
A current trend in high intensity focused ultrasound (HIFU) technologies is to use 2D focused phased arrays that enable electronic steering of the focus, beamforming to avoid overheating of obstacles (such as ribs), and better focusing through inhomogeneities of soft tissue using time reversal methods. In many HIFU applications, the acoustic intensity in situ can reach thousands of W/cm2 leading to nonlinear propagation effects. At high power outputs, shock fronts develop in the focal region and significantly alter the bioeffects induced. Clinical applications of HIFU are relatively new and challenges remain for ensuring their safety and efficacy. A key component of these challenges is the lack of standard procedures for characterizing nonlinear HIFU fields under operating conditions. Methods that combine low-amplitude pressure measurements and nonlinear modeling of the pressure field have been proposed for axially symmetric single element transducers but have not yet been validated for the much more complex 3D fields generated by therapeutic arrays. Here, the method was tested for a clinical HIFU source comprising a 256-element transducer array. A numerical algorithm based on the Westervelt equation was used to enable 3D full-diffraction nonlinear modeling. With the acoustic holography method, the magnitude and phase of the acoustic field were measured at a low power output and used to determine the pattern of vibrations at the surface of the array. This pattern was then scaled to simulate a range of intensity levels near the elements up to 10 W/cm2. The accuracy of modeling was validated by comparison with direct measurements of the focal waveforms using a fiber-optic hydrophone. Simulation results and measurements show that shock fronts with amplitudes up to 100 MPa were present in focal waveforms at clinically relevant outputs, indicating the importance of strong nonlinear effects in ultrasound fields generated by HIFU arrays. PMID:26203345
Characterization of nonlinear ultrasound fields of 2D therapeutic arrays.
Yuldashev, Petr V; Kreider, Wayne; Sapozhnikov, Oleg A; Farr, Navid; Partanen, Ari; Bailey, Michael R; Khokhlova, Vera
2012-10-07
A current trend in high intensity focused ultrasound (HIFU) technologies is to use 2D focused phased arrays that enable electronic steering of the focus, beamforming to avoid overheating of obstacles (such as ribs), and better focusing through inhomogeneities of soft tissue using time reversal methods. In many HIFU applications, the acoustic intensity in situ can reach thousands of W/cm(2) leading to nonlinear propagation effects. At high power outputs, shock fronts develop in the focal region and significantly alter the bioeffects induced. Clinical applications of HIFU are relatively new and challenges remain for ensuring their safety and efficacy. A key component of these challenges is the lack of standard procedures for characterizing nonlinear HIFU fields under operating conditions. Methods that combine low-amplitude pressure measurements and nonlinear modeling of the pressure field have been proposed for axially symmetric single element transducers but have not yet been validated for the much more complex 3D fields generated by therapeutic arrays. Here, the method was tested for a clinical HIFU source comprising a 256-element transducer array. A numerical algorithm based on the Westervelt equation was used to enable 3D full-diffraction nonlinear modeling. With the acoustic holography method, the magnitude and phase of the acoustic field were measured at a low power output and used to determine the pattern of vibrations at the surface of the array. This pattern was then scaled to simulate a range of intensity levels near the elements up to 10 W/cm(2). The accuracy of modeling was validated by comparison with direct measurements of the focal waveforms using a fiber-optic hydrophone. Simulation results and measurements show that shock fronts with amplitudes up to 100 MPa were present in focal waveforms at clinically relevant outputs, indicating the importance of strong nonlinear effects in ultrasound fields generated by HIFU arrays.
Wideband 2-D Array Design Optimization With Fabrication Constraints for 3-D US Imaging.
Roux, Emmanuel; Ramalli, Alessandro; Liebgott, Herve; Cachard, Christian; Robini, Marc C; Tortoli, Piero
2017-01-01
Ultrasound (US) 2-D arrays are of increasing interest due to their electronic steering capability to investigate 3-D regions without requiring any probe movement. These arrays are typically populated by thousands of elements that, ideally, should be individually driven by the companion scanner. Since this is not convenient, the so-called microbeamforming methods, yielding a prebeamforming stage performed in the probe handle by suitable custom integrated circuits, have so far been implemented in a few commercial high-end scanners. A possible approach to implement relatively cheap and efficient 3-D US imaging systems is using 2-D sparse arrays in which a limited number of elements can be coupled to an equal number of independent transmit/receive channels. In order to obtain US beams with adequate characteristics all over the investigated volume, the layout of such arrays must be carefully designed. This paper provides guidelines to design, by using simulated annealing optimization, 2-D sparse arrays capable of fitting specific applications or fabrication/implementation constraints. In particular, an original energy function based on multidepth 3-D analysis of the beam pattern is also exploited. A tutorial example is given, addressed to find the N e elements that should be activated in a 2-D fully populated array to yield efficient acoustic radiating performance over the entire volume. The proposed method is applied to a 32 ×32 array centered at 3 MHz to select the 128, 192, and 256 elements that provide the best acoustic performance. It is shown that the 256-element optimized array yields sidelobe levels even lower (by 5.7 dB) than that of the reference 716-element circular and (by 10.3 dB) than that of the reference 1024-element array.
Wang, Yanchao; Miao, Maosheng; Lv, Jian; Zhu, Li; Yin, Ketao; Liu, Hanyu; Ma, Yanming
2012-12-14
A structure prediction method for layered materials based on two-dimensional (2D) particle swarm optimization algorithm is developed. The relaxation of atoms in the perpendicular direction within a given range is allowed. Additional techniques including structural similarity determination, symmetry constraint enforcement, and discretization of structure constructions based on space gridding are implemented and demonstrated to significantly improve the global structural search efficiency. Our method is successful in predicting the structures of known 2D materials, including single layer and multi-layer graphene, 2D boron nitride (BN) compounds, and some quasi-2D group 6 metals(VIB) chalcogenides. Furthermore, by use of this method, we predict a new family of mono-layered boron nitride structures with different chemical compositions. The first-principles electronic structure calculations reveal that the band gap of these N-rich BN systems can be tuned from 5.40 eV to 2.20 eV by adjusting the composition.
A post-beamforming 2-D pseudoinverse filter for coarsely sampled ultrasound arrays.
Wan, Yayun; Ebbini, Emad S
2009-09-01
Beamforming artifacts due to coarse discretization of imaging apertures represent a significant barrier against the use of array probes in high-frequency applications. Nyquist sampling of array apertures dictates center-to-center spacing of lambda/2 for elimination of grating lobes in the array pattern. However, this requirement is hard to achieve using current transducer technologies, even at the lower end of high-frequency ultrasonic imaging (in the range 25-35 MHz). In this paper, we present a new design approach for 2-D regularized pseudoinverse (PIO) filters suitable for restoring imaging contrast in systems employing coarsely sampled arrays. The approach is based on a discretized 2-D imaging model for linear arrays assuming scattering from a Cartesian grid in the imaging field of view (FOV). We show that the discretized imaging operator can be represented with a block Toeplitz matrix with the blocks themselves being Toeplitz. With sufficiently large grid size in the axial and lateral directions, it is possible to replace this Toeplitz-block block Toeplitz (TBBT) operator with its circulant-block block circulant (CBBC) equivalent. This leads to a computationally efficient implementation of the regularized pseudoinverse filtering approach using the 2-D fast Fourier transform (FFT). The derivation of the filtering equation is shown in detail and the regularization procedure is fully described. Using FIELD, we present simulation data to show the 2-D point-spread functions (PSFs) for imaging systems employing linear arrays with fine and coarse sampling of the imaging aperture. PSFs are also computed for a coarsely sampled array with different levels of regularization to demonstrate the tradeoff between contrast and spatial resolution. These results demonstrate the well-behaved nature of the PSF with the variation in a single regularization parameter. Specifically, the 6 dB axial and lateral dimensions of the PSF increase gradually with increasing value of the
New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters
NASA Astrophysics Data System (ADS)
Zhang, Fan; Song, Kaijun; Fan, Yong
2017-02-01
A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model.
New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters
Zhang, Fan; Song, Kaijun; Fan, Yong
2017-01-01
A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model. PMID:28181514
New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters.
Zhang, Fan; Song, Kaijun; Fan, Yong
2017-02-09
A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model.
Theory and operation of 2-D array piezoelectric micromachined ultrasound transducers.
Dausch, David E; Castellucci, John B; Chou, Derrick R; von Ramm, Olaf T
2008-11-01
Piezoelectric micromachined ultrasound transducers (pMUTs) are a new approach for the construction of 2-D arrays for forward-looking 3-D intravascular (IVUS) and intracardiac (ICE) imaging. Two-dimensional pMUT test arrays containing 25 elements (5 x 5 arrays) were bulk micromachined in silicon substrates. The devices consisted of lead zirconate titanate (PZT) thin film membranes formed by deep reactive ion etching of the silicon substrate. Element widths ranged from 50 to 200 microm with pitch from 100 to 300 mum. Acoustic transmit properties were measured in de-ionized water with a calibrated hydrophone placed at a range of 20 mm. Measured transmit frequencies for the pMUT elements ranged from 4 to 13 MHz, and mode of vibration differed for the various element sizes. Element capacitance varied from 30 to over 400 pF depending on element size and PZT thickness. Smaller element sizes generally produced higher acoustic transmit output as well as higher frequency than larger elements. Thicker PZT layers also produced higher transmit output per unit electric field applied. Due to flexure mode operation above the PZT coercive voltage, transmit output increased nonlinearly with increased drive voltage. The pMUT arrays were attached directly to the Duke University T5 Phased Array Scanner to produce real-time pulse-echo B-mode images with the 2-D pMUT arrays.
CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping
Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea
2016-01-01
TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact
CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.
Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea
2015-01-01
TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer
NASA Astrophysics Data System (ADS)
Klette, Reinhard; Jiang, Ruyi; Morales, Sandino; Vaudrey, Tobi
Applying computer technology, such as computer vision in driver assistance, implies that processes and data are modeled as being discretized rather than being continuous. The area of stereo vision provides various examples how concepts known in discrete mathematics (e.g., pixel adjacency graphs, belief propagation, dynamic programming, max-flow/min-cut, or digital straight lines) are applied when aiming for efficient and accurate pixel correspondence solutions. The paper reviews such developments for a reader in discrete mathematics who is interested in applied research (in particular, in vision-based driver assistance). As a second subject, the paper also discusses lane detection and tracking, which is a particular task in driver assistance; recently the Euclidean distance transform proved to be a very appropriate tool for obtaining a fairly robust solution.
PLAN2D - A PROGRAM FOR ELASTO-PLASTIC ANALYSIS OF PLANAR FRAMES
NASA Technical Reports Server (NTRS)
Lawrence, C.
1994-01-01
PLAN2D is a FORTRAN computer program for the plastic analysis of planar rigid frame structures. Given a structure and loading pattern as input, PLAN2D calculates the ultimate load that the structure can sustain before collapse. Element moments and plastic hinge rotations are calculated for the ultimate load. The location of hinges required for a collapse mechanism to form are also determined. The program proceeds in an iterative series of linear elastic analyses. After each iteration the resulting elastic moments in each member are compared to the reserve plastic moment capacity of that member. The member or members that have moments closest to their reserve capacity will determine the minimum load factor and the site where the next hinge is to be inserted. Next, hinges are inserted and the structural stiffness matrix is reformulated. This cycle is repeated until the structure becomes unstable. At this point the ultimate collapse load is calculated by accumulating the minimum load factor from each previous iteration and multiplying them by the original input loads. PLAN2D is based on the program STAN, originally written by Dr. E.L. Wilson at U.C. Berkeley. PLAN2D has several limitations: 1) Although PLAN2D will detect unloading of hinges it does not contain the capability to remove hinges; 2) PLAN2D does not allow the user to input different positive and negative moment capacities and 3) PLAN2D does not consider the interaction between axial and plastic moment capacity. Axial yielding and buckling is ignored as is the reduction in moment capacity due to axial load. PLAN2D is written in FORTRAN and is machine independent. It has been tested on an IBM PC and a DEC MicroVAX. The program was developed in 1988.
The use of 2D Hilbert transform for phase retrieval of speckle fields
NASA Astrophysics Data System (ADS)
Angelsky, O. V.; Zenkova, C. Yu.; Riabyi, P. A.
2016-12-01
The use of a "window" 2D Hilbert transform for reconstruction of the phase distribution of remote objects is proposed. It is shown that the advantage of this approach consists in the invariance of a phase map to a change of the position of the kernel of transformation and in a possibility to reconstruct the structure-forming elements of the skeleton of an optical field, including singular points and saddle points. We demonstrate the possibility to reconstruct the equi-phase lines within a narrow confidence interval, and introduce a new algorithm for solving the phase problem for random 2D intensity distributions.
Discrete breathers in crystals
NASA Astrophysics Data System (ADS)
Dmitriev, S. V.; Korznikova, E. A.; Baimova, Yu A.; Velarde, M. G.
2016-05-01
It is well known that periodic discrete defect-containing systems, in addition to traveling waves, support vibrational defect-localized modes. It turned out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Since the nodes of the system are all on equal footing, it is only through the special choice of initial conditions that a group of nodes can be found on which such a mode, called a discrete breather (DB), will be excited. The DB frequency must be outside the frequency range of the small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically conserve its vibrational energy forever provided no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery in them of DBs was only a matter of time. It is well known that periodic discrete defect-containing systems support both traveling waves and vibrational defect-localized modes. It turns out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Because the nodes of the system are all on equal footing, only a special choice of the initial conditions allows selecting a group of nodes on which such a mode, called a discrete breather (DB), can be excited. The DB frequency must be outside the frequency range of small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically preserve its vibrational energy forever if no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery of DBs in them was only a matter of time. Experimental studies of DBs encounter major technical difficulties, leaving atomistic computer simulations as the primary investigation tool. Despite
Discrete modelling of drapery systems
NASA Astrophysics Data System (ADS)
Thoeni, Klaus; Giacomini, Anna
2016-04-01
Drapery systems are an efficient and cost-effective measure in preventing and controlling rockfall hazards on rock slopes. The simplest form consists of a row of ground anchors along the top of the slope connected to a horizontal support cable from which a wire mesh is suspended down the face of the slope. Such systems are generally referred to as simple or unsecured draperies (Badger and Duffy 2012). Variations such as secured draperies, where a pattern of ground anchors is incorporated within the field of the mesh, and hybrid systems, where the upper part of an unsecured drapery is elevated to intercept rockfalls originating upslope of the installation, are becoming more and more popular. This work presents a discrete element framework for simulation of unsecured drapery systems and its variations. The numerical model is based on the classical discrete element method (DEM) and implemented into the open-source framework YADE (Šmilauer et al., 2010). The model takes all relevant interactions between block, drapery and slope into account (Thoeni et al., 2014) and was calibrated and validated based on full-scale experiments (Giacomini et al., 2012).The block is modelled as a rigid clump made of spherical particles which allows any shape to be approximated. The drapery is represented by a set of spherical particle with remote interactions. The behaviour of the remote interactions is governed by the constitutive behaviour of the wire and generally corresponds to a piecewise linear stress-strain relation (Thoeni et al., 2013). The same concept is used to model wire ropes. The rock slope is represented by rigid triangular elements where material properties (e.g., normal coefficient of restitution, friction angle) are assigned to each triangle. The capabilities of the developed model to simulate drapery systems and estimate the residual hazard involved with such systems is shown. References Badger, T.C., Duffy, J.D. (2012) Drapery systems. In: Turner, A.K., Schuster R
Residual lens effects in 2D mode of auto-stereoscopic lenticular-based switchable 2D/3D displays
NASA Astrophysics Data System (ADS)
Sluijter, M.; IJzerman, W. L.; de Boer, D. K. G.; de Zwart, S. T.
2006-04-01
We discuss residual lens effects in multi-view switchable auto-stereoscopic lenticular-based 2D/3D displays. With the introduction of a switchable lenticular, it is possible to switch between a 2D mode and a 3D mode. The 2D mode displays conventional content, whereas the 3D mode provides the sensation of depth to the viewer. The uniformity of a display in the 2D mode is quantified by the quality parameter modulation depth. In order to reduce the modulation depth in the 2D mode, birefringent lens plates are investigated analytically and numerically, by ray tracing. We can conclude that the modulation depth in the 2D mode can be substantially decreased by using birefringent lens plates with a perfect index match between lens material and lens plate. Birefringent lens plates do not disturb the 3D performance of a switchable 2D/3D display.
Differential CYP 2D6 metabolism alters primaquine pharmacokinetics.
Potter, Brittney M J; Xie, Lisa H; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T; Bandara Herath, H M T; Dhammika Nanayakkara, N P; Tekwani, Babu L; Walker, Larry A; Nolan, Christina K; Sciotti, Richard J; Zottig, Victor E; Smith, Philip L; Paris, Robert M; Read, Lisa T; Li, Qigui; Pybus, Brandon S; Sousa, Jason C; Reichard, Gregory A; Marcsisin, Sean R
2015-04-01
Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity.
Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials
NASA Technical Reports Server (NTRS)
Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.
1993-01-01
Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.
Atomistic methodologies for material properties of 2D materials at the nanoscale
NASA Astrophysics Data System (ADS)
Zhang, Zhen
Research on two dimensional (2D) materials, such as graphene and MoS2, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. From an engineering point of view, understanding the material properties of 2D materials under various conditions is crucial for tailoring the electrical and mechanical properties of 2D-material-based devices at the nanoscale. Even at the nanoscale, molecular systems typically consist of a vast number of atoms. Molecular dynamics (MD) simulations enable us to understand the properties of assemblies of molecules in terms of their structure and the microscopic interactions between them. From a continuum approach, mechanical properties and thermal properties, such as strain, stress, and heat capacity, are well defined and experimentally measurable. In MD simulations, material systems are considered to be discrete, and only interatomic potential, interatomic forces, and atom positions are directly obtainable. Besides, most of the fracture mechanics concepts, such as stress intensity factors, are not applicable since there is no singularity in MD simulations. However, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at the nanoscale. Therefore, equivalent definition of a physical quantity both in atomic scale and macroscopic scale is necessary in order to understand molecular and continuum scale phenomena concurrently. This work introduces atomistic simulation methodologies, based on interatomic potential and interatomic forces, as a tool to unveil the mechanical properties, thermal properties and fracture mechanical properties of 2D materials at the nanoscale. Among many 2D materials, graphene and MoS2 have attracted intense interest. Therefore, we applied our
Makris, Konstantinos G; Suntsov, Sergiy; Christodoulides, Demetrios N; Stegeman, George I; Hache, Alain
2005-09-15
It is theoretically shown that discrete nonlinear surface waves are possible in waveguide lattices. These self-trapped states are located at the edge of the array and can exist only above a certain power threshold. The excitation characteristics and stability properties of these surface waves are systematically investigated.
Numerical simulation of rock cutting using 2D AUTODYN
NASA Astrophysics Data System (ADS)
Woldemichael, D. E.; Rani, A. M. Abdul; Lemma, T. A.; Altaf, K.
2015-12-01
In a drilling process for oil and gas exploration, understanding of the interaction between the cutting tool and the rock is important for optimization of the drilling process using polycrystalline diamond compact (PDC) cutters. In this study the finite element method in ANSYS AUTODYN-2D is used to simulate the dynamics of cutter rock interaction, rock failure, and fragmentation. A two-dimensional single PDC cutter and rock model were used to simulate the orthogonal cutting process and to investigate the effect of different parameters such as depth of cut, and back rake angle on two types of rocks (sandstone and limestone). In the simulation, the cutting tool was dragged against stationary rock at predetermined linear velocity and the depth of cut (1,2, and 3 mm) and the back rake angles(-10°, 0°, and +10°) were varied. The simulation result shows that the +10° back rake angle results in higher rate of penetration (ROP). Increasing depth of cut leads to higher ROP at the cost of higher cutting force.
Steady propagation of Bingham plugs in 2D channels
NASA Astrophysics Data System (ADS)
Zamankhan, Parsa; Takayama, Shuichi; Grotberg, James
2009-11-01
The displacement of the yield-stress liquid plugs in channels and tubes occur in many biological systems and industrial processes. Among them is the propagation of mucus plugs in the respiratory tracts as may occur in asthma, cystic fibrosis, or emphysema. In this work the steady propagation of mucus plugs in a 2D channel is studied numerically, assuming that the mucus is a pure Bingham fluid. The governing equations are solved by a mixed-discontinuous finite element formulation and the free surface is resolved with the method of spines. The constitutive equation for a pure Bingham fluid is modeled by a regularization method. Fluid inertia is neglected, so the controlling parameters in a steady displacement are; the capillary number, Ca, Bingham number ,Bn, and the plug length. According to the numerical results, the yield stress behavior of the plug modifies the plug shape, the pattern of the streamlines and the distribution of stresses in the plug domain and along the walls in a significant way. The distribution along the walls is a major factor in studying cell injuries. This work is supported through the grant NIH HL84370.
Generalization Technique for 2D+SCALE Dhe Data Model
NASA Astrophysics Data System (ADS)
Karim, Hairi; Rahman, Alias Abdul; Boguslawski, Pawel
2016-10-01
Different users or applications need different scale model especially in computer application such as game visualization and GIS modelling. Some issues has been raised on fulfilling GIS requirement of retaining the details while minimizing the redundancy of the scale datasets. Previous researchers suggested and attempted to add another dimension such as scale or/and time into a 3D model, but the implementation of scale dimension faces some problems due to the limitations and availability of data structures and data models. Nowadays, various data structures and data models have been proposed to support variety of applications and dimensionality but lack research works has been conducted in terms of supporting scale dimension. Generally, the Dual Half Edge (DHE) data structure was designed to work with any perfect 3D spatial object such as buildings. In this paper, we attempt to expand the capability of the DHE data structure toward integration with scale dimension. The description of the concept and implementation of generating 3D-scale (2D spatial + scale dimension) for the DHE data structure forms the major discussion of this paper. We strongly believed some advantages such as local modification and topological element (navigation, query and semantic information) in scale dimension could be used for the future 3D-scale applications.
Antenna coupled detectors for 2D staring focal plane arrays
NASA Astrophysics Data System (ADS)
Gritz, Michael A.; Kolasa, Borys; Lail, Brian; Burkholder, Robert; Chen, Leonard
2013-06-01
Millimeter-wave (mmW)/sub-mmW/THz region of the electro-magnetic spectrum enables imaging thru clothing and other obscurants such as fog, clouds, smoke, sand, and dust. Therefore considerable interest exists in developing low cost millimeter-wave imaging (MMWI) systems. Previous MMWI systems have evolved from crude mechanically scanned, single element receiver systems into very complex multiple receiver camera systems. Initial systems required many expensive mmW integrated-circuit low-noise amplifiers. In order to reduce the cost and complexity of the existing systems, attempts have been made to develop new mmW imaging sensors employing direct detection arrays. In this paper, we report on Raytheon's recent development of a unique focal plane array technology, which operates broadly from the mmW through the sub-mmW/THz region. Raytheon's innovative nano-antenna based detector enables low cost production of 2D staring mmW focal plane arrays (mmW FPA), which not only have equivalent sensitivity and performance to existing MMWI systems, but require no mechanical scanning.
Comparison of continuous and discontinuous discretizations for the Stokes flow
NASA Astrophysics Data System (ADS)
Lehmann, Ragnar; Kaus, Boris J. P.; Lukáčová-Medvid'ová, Maria
2013-04-01
Finite element methods (FEM) of various types are widely used to solve incompressible flow problems in general and Stokes flow in particular. We present first results of a study comparing two numerical methods: the continuous Galerkin and the discontinuous Galerkin (DG) method. For this purpose a Matlab code was developed employing 2D Stokes flow in a model setup with known analytical solution. [2] Nonlinearities of, e.g., the viscosity can lead to discontinuities in the velocity-pressure solution. Hence, using continuous approximations may result in avoidable inaccuracies. In contrast to the FEM, the DG method allows for discontinuities of velocity and pressure across interior mesh edges. This increases the number of degrees of freedom by a constant factor depending on the chosen element. A parameter is introduced to penalize the jumps in the velocity. The DG method provides the capability to locally adapt the polynomial degree of the shape functions. Moreover, it only needs communication between directly adjacent mesh cells, which makes it highly flexible and easy to parallelize. The velocity and pressure errors of the methods are measured in the L1-norm [1]. Orders of convergence are determined and compared. [1] Duretz, T., May, D.A., Garya, T.V. and Tackley, P.J., 2011. Discretization errors and free surface stabilization in the finite difference and marker-in-cell method for applied geodynamics: A numerical Study, Geochem. Geophys. Geosyst., 12, Q07004, doi:10.1029/2011GC003567. [2] Zhong, S., 1996. Analytic solution for Stokes' flow with lateral variations in viscosity, Geophys. J. Int., 124, 18-128, doi:10.1111/j.1365-246X.1996.tb06349.x.
A New 2D-Transport, 1D-Diffusion Approximation of the Boltzmann Transport equation
Larsen, Edward
2013-06-17
The work performed in this project consisted of the derivation, implementation, and testing of a new, computationally advantageous approximation to the 3D Boltz- mann transport equation. The solution of the Boltzmann equation is the neutron flux in nuclear reactor cores and shields, but solving this equation is difficult and costly. The new “2D/1D” approximation takes advantage of a special geometric feature of typical 3D reactors to approximate the neutron transport physics in a specific (ax- ial) direction, but not in the other two (radial) directions. The resulting equation is much less expensive to solve computationally, and its solutions are expected to be sufficiently accurate for many practical problems. In this project we formulated the new equation, discretized it using standard methods, developed a stable itera- tion scheme for solving the equation, implemented the new numerical scheme in the MPACT code, and tested the method on several realistic problems. All the hoped- for features of this new approximation were seen. For large, difficult problems, the resulting 2D/1D solution is highly accurate, and is calculated about 100 times faster than a 3D discrete ordinates simulation.
Landau levels in 2D materials using Wannier Hamiltonians obtained by first principles
NASA Astrophysics Data System (ADS)
Lado, J. L.; Fernández-Rossier, J.
2016-09-01
We present a method to calculate the Landau levels and the corresponding edge states of two dimensional (2D) crystals using as a starting point their electronic structure as obtained from standard density functional theory (DFT). The DFT Hamiltonian is represented in the basis of maximally localized Wannier functions. This defines a tight-binding Hamiltonian for the bulk that can be used to describe other structures, such as ribbons, provided that atomic scale details of the edges are ignored. The effect of the orbital magnetic field is described using the Peierls substitution in the hopping matrix elements. Implementing this approach in a ribbon geometry, we obtain both the Landau levels and the dispersive edge states for a series of 2D crystals, including graphene, Boron Nitride, MoS2, Black Phosphorous, Indium Selenide and MoO3. Our procedure can readily be used in any other 2D crystal, and provides an alternative to effective mass descriptions.
On Limits of Embedding in 3D Images Based on 2D Watson's Model
NASA Astrophysics Data System (ADS)
Kavehvash, Zahra; Ghaemmaghami, Shahrokh
We extend the Watson image quality metric to 3D images through the concept of integral imaging. In the Watson's model, perceptual thresholds for changes to the DCT coefficients of a 2D image are given for information hiding. These thresholds are estimated in a way that the resulting distortion in the 2D image remains undetectable by the human eyes. In this paper, the same perceptual thresholds are estimated for a 3D scene in the integral imaging method. These thresholds are obtained based on the Watson's model using the relation between 2D elemental images and resulting 3D image. The proposed model is evaluated through subjective tests in a typical image steganography scheme.
Computational Screening of 2D Materials for Photocatalysis.
Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G
2015-03-19
Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.
Synthetic Covalent and Non-Covalent 2D Materials.
Boott, Charlotte E; Nazemi, Ali; Manners, Ian
2015-11-16
The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.
Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.
Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios
2016-09-07
van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs.
Vantourout, Pierre; Willcox, Carrie; Turner, Andrea; Swanson, Chad; Haque, Yasmin; Sobolev, Olga; Grigoriadis, Anita; Tutt, Andrew; Hayday, Adrian
2014-01-01
Human cytolytic T lymphocytes and NK cells can limit tumor growth and are being increasingly harnessed for tumor immunotherapy. One way cytolytic lymphocytes recognize tumor cells is by engagement of their activating receptor, NKG2D, by stress-antigens of the MICA/B and ULBP families. This study shows that surface upregulation of NKG2D ligands by human epithelial cells in response to ultraviolet irradiation, osmotic shock, oxidative stress, and growth factor provision, is attributable to activation of the EGF-receptor (EGFR). EGFR activation causes intracellular re-localisation of AUF1 proteins that ordinarily destabilise NKG2D ligand mRNAs by targeting an AU-rich element conserved within the 3′ ends of most human but not murine NKG2D ligand genes. Consistent with these findings, NKG2D ligand expression by primary human carcinomas positively correlated with EGFR expression that is commonly hyper-activated in such tumours, and was reduced by clinical EGFR inhibitors. Thus, stress-induced activation of EGFR not only regulates cell growth but concomitantly regulates the cells’ immunological visibility. Thus, therapeutics designed to limit cancer cell growth should also be considered in terms of their impact on immunosurveillance. PMID:24718859
Face recognition based on the band fusion of generalized phase spectrum of 2D-FrFT
NASA Astrophysics Data System (ADS)
Wang, Xu; Qi, Lin; Tie, Yun; Chen, Enqing; Sun, Huijing
2017-02-01
In this paper, we propose a novel feature extraction method for face recognition based on two dimensional fractional Fourier transform (2D-FrFT). First, we extract the phase information of facial image in 2D-FrFT, which is called the generalized phase spectra (GPS). Then, we present an improved two-dimensional separability judgment (I2DSJ) to select appropriate order parameters for discrete fractional Fourier transform. Finally, multiple orders' generalized phase spectrum bands (MGPSB) fusion is proposed. In order to make full use of the discriminative information from different orders for face recognition, the proposed approach merges different orders' generalized phase spectra (GPS) of 2D-FrFT. The proposed method is no need to construct the subspace through the feature extraction methods and has less computation cost. Experimental results on the public face databases demonstrate that our method outperforms the representative methods.
The Freud-1/CC2D1A family: transcriptional regulators implicated in mental retardation.
Rogaeva, Anastasia; Galaraga, Kimberly; Albert, Paul R
2007-10-01
The CC2D1A gene family consists of two homologous genes, Freud-1/CC2D1A and Freud-2/CC2D1B, that share conserved domains, including several DM14 domains that are specific to this protein family, a C-terminal helix-loop-helix domain, and a C2 calcium-dependent phospholipid binding domain. Although the function of Freud-2 is unknown, Freud-1 has been shown to function as a transcriptional repressor of the serotonin-1A receptor gene that binds to a novel DNA element (FRE, 5'-repressor element). The DNA binding and repressor activities of Freud-1 are inhibited by calcium-calmodulin-dependent protein kinase. Recently, a deletion in the CC2D1A gene has been linked to nonsyndromic mental retardation. This deletion results in the truncation of the helix-loop-helix DNA binding and the C2 domains, crucial for Freud-1 repressor activity, and hence is predicted to generate an inactive or weakly dominant negative protein. The possible mechanisms by which inactivation of Freud-1 could lead to abnormal cortical development and cognitive impairment and the potential roles of Freud-1 gene targets are discussed.
Hypersonic Viscous Flow Over Large Roughness Elements
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Choudhari, Meelan M.
2009-01-01
Viscous flow over discrete or distributed surface roughness has great implications for hypersonic flight due to aerothermodynamic considerations related to laminar-turbulent transition. Current prediction capability is greatly hampered by the limited knowledge base for such flows. To help fill that gap, numerical computations are used to investigate the intricate flow physics involved. An unstructured mesh, compressible Navier-Stokes code based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for two roughness shapes investigated in wind tunnel experiments at NASA Langley Research Center. It was found through 2D parametric study that at subcritical Reynolds numbers of the boundary layers, absolute instability resulting in vortex shedding downstream, is likely to weaken at supersonic free-stream conditions. On the other hand, convective instability may be the dominant mechanism for supersonic boundary layers. Three-dimensional calculations for a rectangular or cylindrical roughness element at post-shock Mach numbers of 4.1 and 6.5 also confirm that no self-sustained vortex generation is present.
Hypersonic Viscous Flow Over Large Roughness Elements
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Choudhari, Meelan M.
2009-01-01
Viscous flow over discrete or distributed surface roughness has great implications for hypersonic flight due to aerothermodynamic considerations related to laminar-turbulent transition. Current prediction capability is greatly hampered by the limited knowledge base for such flows. To help fill that gap, numerical computations are used to investigate the intricate flow physics involved. An unstructured mesh, compressible Navier-Stokes code based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for two roughness shapes investigated in wind tunnel experiments at NASA Langley Research Center. It was found through 2D parametric study that at subcritical Reynolds numbers, spontaneous absolute instability accompanying by sustained vortex shedding downstream of the roughness is likely to take place at subsonic free-stream conditions. On the other hand, convective instability may be the dominant mechanism for supersonic boundary layers. Three-dimensional calculations for both a rectangular and a cylindrical roughness element at post-shock Mach numbers of 4.1 and 6.5 also confirm that no self-sustained vortex generation from the top face of the roughness is observed, despite the presence of flow unsteadiness for the smaller post-shock Mach number case.
NASA Astrophysics Data System (ADS)
Magarill, L. I.; Entin, M. V.
2016-12-01
The electron absorption and the edge photocurrent of a 2D topological insulator are studied for transitions between edge states to 2D states. The circular polarized light is found to produce the edge photocurrent, the direction of which is determined by light polarization and edge orientation. It is shown that the edge-state current is found to exceed the 2D current owing to the topological protection of the edge states.
Discrete Variational Optimal Control
NASA Astrophysics Data System (ADS)
Jiménez, Fernando; Kobilarov, Marin; Martín de Diego, David
2013-06-01
This paper develops numerical methods for optimal control of mechanical systems in the Lagrangian setting. It extends the theory of discrete mechanics to enable the solutions of optimal control problems through the discretization of variational principles. The key point is to solve the optimal control problem as a variational integrator of a specially constructed higher dimensional system. The developed framework applies to systems on tangent bundles, Lie groups, and underactuated and nonholonomic systems with symmetries, and can approximate either smooth or discontinuous control inputs. The resulting methods inherit the preservation properties of variational integrators and result in numerically robust and easily implementable algorithms. Several theoretical examples and a practical one, the control of an underwater vehicle, illustrate the application of the proposed approach.
Steerable Discrete Fourier Transform
NASA Astrophysics Data System (ADS)
Fracastoro, Giulia; Magli, Enrico
2017-03-01
Directional transforms have recently raised a lot of interest thanks to their numerous applications in signal compression and analysis. In this letter, we introduce a generalization of the discrete Fourier transform, called steerable DFT (SDFT). Since the DFT is used in numerous fields, it may be of interest in a wide range of applications. Moreover, we also show that the SDFT is highly related to other well-known transforms, such as the Fourier sine and cosine transforms and the Hilbert transforms.
The Discrete Wavelet Transform
1991-06-01
Split- Band Coding," Proc. ICASSP, May 1977, pp 191-195. 12. Vetterli, M. "A Theory of Multirate Filter Banks ," IEEE Trans. ASSP, 35, March 1987, pp 356...both special cases of a single filter bank structure, the discrete wavelet transform, the behavior of which is governed by one’s choice of filters . In...B-1 ,.iii FIGURES 1.1 A wavelet filter bank structure ..................................... 2 2.1 Diagram illustrating the dialation and
Discrete minimal flavor violation
Zwicky, Roman; Fischbacher, Thomas
2009-10-01
We investigate the consequences of replacing the global flavor symmetry of minimal flavor violation (MFV) SU(3){sub Q}xSU(3){sub U}xSU(3){sub D}x{center_dot}{center_dot}{center_dot} by a discrete D{sub Q}xD{sub U}xD{sub D}x{center_dot}{center_dot}{center_dot} symmetry. Goldstone bosons resulting from the breaking of the flavor symmetry generically lead to bounds on new flavor structure many orders of magnitude above the TeV scale. The absence of Goldstone bosons for discrete symmetries constitute the primary motivation of our work. Less symmetry implies further invariants and renders the mass-flavor basis transformation observable in principle and calls for a hierarchy in the Yukawa matrix expansion. We show, through the dimension of the representations, that the (discrete) symmetry in principle does allow for additional {delta}F=2 operators. If though the {delta}F=2 transitions are generated by two subsequent {delta}F=1 processes, as, for example, in the standard model, then the four crystal-like groups {sigma}(168){approx_equal}PSL(2,F{sub 7}), {sigma}(72{phi}), {sigma}(216{phi}) and especially {sigma}(360{phi}) do provide enough protection for a TeV-scale discrete MFV scenario. Models where this is not the case have to be investigated case by case. Interestingly {sigma}(216{phi}) has a (nonfaithful) representation corresponding to an A{sub 4} symmetry. Moreover we argue that the, apparently often omitted, (D) groups are subgroups of an appropriate {delta}(6g{sup 2}). We would like to stress that we do not provide an actual model that realizes the MFV scenario nor any other theory of flavor.
PFC2D simulation of thermally induced cracks in concrete specimens
NASA Astrophysics Data System (ADS)
Liu, Xinghong; Chang, Xiaolin; Zhou, Wei; Li, Shuirong
2013-06-01
The appearance of cracks exposed to severe environmental conditions can be critical for concrete structures. The research is to validate Particle Flow Code(PFC2D) method in the context of concrete thermally-induced cracking simulations. First, concrete was discreted as meso-level units of aggregate, cement mortar and the interfaces between them. Parallel bonded-particle model in PFC2D was adapted to describe the constitutive relation of the cementing material. Then, the concrete mechanics meso-parameters were obtained through several groups of biaxial tests, in order to make the numerical results comply with the law of the indoor test. The concrete thermal meso-parameters were determined by compared with the parameters in the empirical formula through the simulations imposing a constant heat flow to the left margin of concrete specimens. At last, a case of 1000mm×500mm concrete specimen model was analyzed. It simulated the formation and development process of the thermally-induced cracks under the cold waves of different durations and temperature decline. Good agreements in fracture morphology and process were observed between the simulations, previous studies and laboratory data. The temperature decline limits during cold waves were obtained when its tensile strength was given as 3MPa. And it showed the feasibility of using PFC2D to simulate concrete thermally-induced cracking.
Cortical Neural Computation by Discrete Results Hypothesis.
Castejon, Carlos; Nuñez, Angel
2016-01-01
One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called "Discrete Results" (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of "Discrete Results" is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel "Discrete Results" concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast-spiking (FS
Cortical Neural Computation by Discrete Results Hypothesis
Castejon, Carlos; Nuñez, Angel
2016-01-01
One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called “Discrete Results” (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of “Discrete Results” is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel “Discrete Results” concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast
A paradigm for discrete physics
Noyes, H.P.; McGoveran, D.; Etter, T.; Manthey, M.J.; Gefwert, C.
1987-01-01
An example is outlined for constructing a discrete physics using as a starting point the insight from quantum physics that events are discrete, indivisible and non-local. Initial postulates are finiteness, discreteness, finite computability, absolute nonuniqueness (i.e., homogeneity in the absence of specific cause) and additivity.
Energy Efficiency of D2D Multi-User Cooperation.
Zhang, Zufan; Wang, Lu; Zhang, Jie
2017-03-28
The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency.
Integrating Mobile Multimedia into Textbooks: 2D Barcodes
ERIC Educational Resources Information Center
Uluyol, Celebi; Agca, R. Kagan
2012-01-01
The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…
Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.
Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo
2016-09-01
Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.
Adaptation algorithms for 2-D feedforward neural networks.
Kaczorek, T
1995-01-01
The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).
a Discrete Simulation of Tumor Growth Concerning Nutrient Influence
NASA Astrophysics Data System (ADS)
Sun, L.; Chang, Y. F.; Cai, X.
We develop a 2-D discrete model to simulate malignant cells growing in healthy tissues using a thermodynamic method on the basis of Potts model. After introducing a malignant seed in a healthy tissue, we use a set of adjustment factors, including the interaction between cells and nutrient, to simulate the growth of malignant cells under different environments. This allows us to investigate the effects of environment on malignant cell growth and the formation of cancer.
Regulation of ligands for the NKG2D activating receptor
Raulet, David H.; Gasser, Stephan; Gowen, Benjamin G.; Deng, Weiwen; Jung, Heiyoun
2014-01-01
NKG2D is an activating receptor expressed by all NK cells and subsets of T cells. It serves as a major recognition receptor for detection and elimination of transformed and infected cells and participates in the genesis of several inflammatory diseases. The ligands for NKG2D are self-proteins that are induced by pathways that are active in certain pathophysiological states. NKG2D ligands are regulated transcriptionally, at the level of mRNA and protein stability, and by cleavage from the cell surface. In some cases, ligand induction can be attributed to pathways that are activated specifically in cancer cells or infected cells. We review the numerous pathways that have been implicated in the regulation of NKG2D ligands, discuss the pathologic states in which those pathways are likely to act, and attempt to synthesize the findings into general schemes of NKG2D ligand regulation in NK cell responses to cancer and infection. PMID:23298206
2D materials and van der Waals heterostructures.
Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H
2016-07-29
The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.
New generation transistor technologies enabled by 2D crystals
NASA Astrophysics Data System (ADS)
Jena, D.
2013-05-01
The discovery of graphene opened the door to 2D crystal materials. The lack of a bandgap in 2D graphene makes it unsuitable for electronic switching transistors in the conventional field-effect sense, though possible techniques exploiting the unique bandstructure and nanostructures are being explored. The transition metal dichalcogenides have 2D crystal semiconductors, which are well-suited for electronic switching. We experimentally demonstrate field effect transistors with current saturation and carrier inversion made from layered 2D crystal semiconductors such as MoS2, WS2, and the related family. We also evaluate the feasibility of such semiconducting 2D crystals for tunneling field effect transistors for low-power digital logic. The article summarizes the current state of new generation transistor technologies either proposed, or demonstrated, with a commentary on the challenges and prospects moving forward.
2D Traveling Wave Array Employing a Trapezoidal Dielectric Wedge for Beam Steering
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranada, Felix A.
2014-01-01
This presentation addresses the progress made so far in the development of an antenna array with reconfigurable transmission line feeds connecting each element in series. In particular, 2D traveling wave array employing trapezoidal Dielectric Wedge for Beam Steering will be discussed. The presentation includes current status of the effort and suggested future work. The work is being done as part of the NASA Office of the Chief Techn