Science.gov

Sample records for 2d discrete wavelet

  1. A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform

    SciTech Connect

    Tang, Hui; Tong, Dan; Dong Bao, Xu; Dillenseger, Jean-Louis

    2015-04-15

    Purpose: In digital x-ray radiography, an antiscatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the antiscatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods: The method is as follows. The input image is first recursively decomposed into several smaller subimages using a multiscale 2D discrete wavelet transform. The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these subimages using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected subimages to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform. Results: The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1D Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions: The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time.

  2. 2-D wavelet with position controlled resolution

    NASA Astrophysics Data System (ADS)

    Walczak, Andrzej; Puzio, Leszek

    2005-09-01

    Wavelet transformation localizes all irregularities in the scene. It is most effective in the case when intensities in the scene have no sharp details. It is the case often present in a medical imaging. To identify the shape one has to extract it from the scene as typical irregularity. When the scene does not contain sharp changes then common differential filters are not efficient tool for a shape extraction. The new 2-D wavelet for such task has been proposed. Described wavelet transform is axially symmetric and has varied scale in dependence on the distance from the centre of the wavelet symmetry. The analytical form of the wavelet has been presented as well as its application for details extraction in the scene. Most important feature of the wavelet transform is that it gives a multi-scale transformation, and if zoom is on the wavelet selectivity varies proportionally to the zoom step. As a result, the extracted shape does not change during zoom operation. What is more the wavelet selectivity can be fit to the local intensity gradient properly to obtain best extraction of the irregularities.

  3. Discrete wavelet analysis of power system transients

    SciTech Connect

    Wilkinson, W.A.; Cox, M.D.

    1996-11-01

    Wavelet analysis is a new method for studying power system transients. Through wavelet analysis, transients are decomposed into a series of wavelet components, each of which is a time-domain signal that covers a specific octave frequency band. This paper presents the basic ideas of discrete wavelet analysis. A variety of actual and simulated transient signals are then analyzed using the discrete wavelet transform that help demonstrate the power of wavelet analysis.

  4. The 2D large deformation analysis using Daubechies wavelet

    NASA Astrophysics Data System (ADS)

    Liu, Yanan; Qin, Fei; Liu, Yinghua; Cen, Zhangzhi

    2010-01-01

    In this paper, Daubechies (DB) wavelet is used for solution of 2D large deformation problems. Because the DB wavelet scaling functions are directly used as basis function, no meshes are needed in function approximation. Using the DB wavelet, the solution formulations based on total Lagrangian approach for two-dimensional large deformation problems are established. Due to the lack of Kroneker delta properties in wavelet scaling functions, Lagrange multipliers are used for imposition of boundary condition. Numerical examples of 2D large deformation problems illustrate that this method is effective and stable.

  5. 2D wavelet transform with different adaptive wavelet bases for texture defect inspection based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Mo, Yu L.

    1998-08-01

    There are many textures such as woven fabrics having repeating Textron. In order to handle the textural characteristics of images with defects, this paper proposes a new method based on 2D wavelet transform. In the method, a new concept of different adaptive wavelet bases is used to match the texture pattern. The 2D wavelet transform has two different adaptive orthonormal wavelet bases for rows and columns which differ from Daubechies wavelet bases. The orthonormal wavelet bases for rows and columns are generated by genetic algorithm. The experiment result demonstrate the ability of the different adaptive wavelet bases to characterize the texture and locate the defects in the texture.

  6. A parallel splitting wavelet method for 2D conservation laws

    NASA Astrophysics Data System (ADS)

    Schmidt, Alex A.; Kozakevicius, Alice J.; Jakobsson, Stefan

    2016-06-01

    The current work presents a parallel formulation using the MPI protocol for an adaptive high order finite difference scheme to solve 2D conservation laws. Adaptivity is achieved at each time iteration by the application of an interpolating wavelet transform in each space dimension. High order approximations for the numerical fluxes are computed by ENO and WENO schemes. Since time evolution is made by a TVD Runge-Kutta space splitting scheme, the problem is naturally suitable for parallelization. Numerical simulations and speedup results are presented for Euler equations in gas dynamics problems.

  7. 2-D Continuous Wavelet Transform for ESPI phase-maps denoising

    NASA Astrophysics Data System (ADS)

    Escalante, Nivia; Villa, Jesús; de la Rosa, Ismael; de la Rosa, Enrique; González-Ramírez, Efrén; Gutiérrez, Osvaldo; Olvera, Carlos; Araiza, María

    2013-09-01

    In this work we introduce a 2-D Continuous Wavelet Transform (2-D CWT) method for denoising ESPI phase-maps. Multiresolution analysis with 2-D wavelets can provide high directional sensitivity and high anisotropy which are proper characteristics for this task. In particular, the 2-D CWT method using Gabor atoms (Gabor mother wavelets) which can naturally model phase fringes, has a good performance against noise and can preserve phase fringes. We describe the theoretical basis of the proposed technique and show some experimental results with real and simulated ESPI phase-maps. As can be verified the proposal is robust and effective.

  8. Multispectral image compression technology based on dual-tree discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Fang, Zhijun; Luo, Guihua; Liu, Zhicheng; Gan, Yun; Lu, Yu

    2009-10-01

    The paper proposes a combination of DCT and the Dual-Tree Discrete Wavelet Transform (DDWT) to solve the problems in multi-spectral image data storage and transmission. The proposed method not only removes spectral redundancy by1D DCT, but also removes spatial redundancy by 2D Dual-Tree Discrete Wavelet Transform. Therefore, it achieves low distortion under the conditions of high compression and high-quality reconstruction of the multi-spectral image. Tested by DCT, Haar and DDWT, the results show that the proposed method eliminates the blocking effect of wavelet and has strong visual sense and smooth image, which means the superiors with DDWT has more prominent quality of reconstruction and less noise.

  9. A discrete simulation of 2-D fluid flow on TERASYS

    SciTech Connect

    Mullins, P.G.; Krolak, P.D.

    1995-12-01

    A discrete simulation of two-dimensional (2-D) fluid flow, on a recently designed novel architecture called TERASYS is presented. The simulation uses a cellular automaton approach, implemented in a new language called data-parallel bit C (dbC). A performance comparison between our implementation on TERASYS and an implementation on the Connection Machine is discussed. We comment briefly on the suitability of the TERASYS system for modeling fluid flow using cellular automata.

  10. The Wavelet Element Method. Part 2; Realization and Additional Features in 2D and 3D

    NASA Technical Reports Server (NTRS)

    Canuto, Claudio; Tabacco, Anita; Urban, Karsten

    1998-01-01

    The Wavelet Element Method (WEM) provides a construction of multiresolution systems and biorthogonal wavelets on fairly general domains. These are split into subdomains that are mapped to a single reference hypercube. Tensor products of scaling functions and wavelets defined on the unit interval are used on the reference domain. By introducing appropriate matching conditions across the interelement boundaries, a globally continuous biorthogonal wavelet basis on the general domain is obtained. This construction does not uniquely define the basis functions but rather leaves some freedom for fulfilling additional features. In this paper we detail the general construction principle of the WEM to the 1D, 2D and 3D cases. We address additional features such as symmetry, vanishing moments and minimal support of the wavelet functions in each particular dimension. The construction is illustrated by using biorthogonal spline wavelets on the interval.

  11. Image denoising with 2D scale-mixing complex wavelet transforms.

    PubMed

    Remenyi, Norbert; Nicolis, Orietta; Nason, Guy; Vidakovic, Brani

    2014-12-01

    This paper introduces an image denoising procedure based on a 2D scale-mixing complex-valued wavelet transform. Both the minimal (unitary) and redundant (maximum overlap) versions of the transform are used. The covariance structure of white noise in wavelet domain is established. Estimation is performed via empirical Bayesian techniques, including versions that preserve the phase of the complex-valued wavelet coefficients and those that do not. The new procedure exhibits excellent quantitative and visual performance, which is demonstrated by simulation on standard test images. PMID:25312931

  12. Electroencephalography data analysis by using discrete wavelet packet transform

    NASA Astrophysics Data System (ADS)

    Karim, Samsul Ariffin Abdul; Ismail, Mohd Tahir; Hasan, Mohammad Khatim; Sulaiman, Jumat; Muthuvalu, Mohana Sundaram; Janier Josefina, B.

    2015-05-01

    Electroencephalography (EEG) is the electrical activity generated by the movement of neurons in the brain. It is categorized into delta waves, theta, alpha, beta and gamma. These waves exist in a different frequency band. This paper is a continuation of our previous research. EEG data will be decomposed using Discrete Wavelet Packet Transform (DWPT). Daubechies wavelets 10 (D10) will be used as the basic functions for research purposes. From the main results, it is clear that the DWPT able to characterize the EEG signal corresponding to each wave at a specific frequency. Furthermore, the numerical results obtained better than the results using DWT. Statistical analysis support our main findings.

  13. Long memory analysis by using maximal overlapping discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Shafie, Nur Amalina binti; Ismail, Mohd Tahir; Isa, Zaidi

    2015-05-01

    Long memory process is the asymptotic decay of the autocorrelation or spectral density around zero. The main objective of this paper is to do a long memory analysis by using the Maximal Overlapping Discrete Wavelet Transform (MODWT) based on wavelet variance. In doing so, stock market of Malaysia, China, Singapore, Japan and United States of America are used. The risk of long term and short term investment are also being looked into. MODWT can be analyzed with time domain and frequency domain simultaneously and decomposing wavelet variance to different scales without loss any information. All countries under studied show that they have long memory. Subprime mortgage crisis in 2007 is occurred in the United States of America are possible affect to the major trading countries. Short term investment is more risky than long term investment.

  14. Contrast-based image fusion using the discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Pu, Tian; Ni, GuoGiang

    2000-08-01

    We introduce a contrast-based image fusion method using the wavelet multiresolution analysis. This method includes three steps. First, the multiresolution architectures of the two original input images are obtained using the discrete wavelet transform. A new concept called directive contrast is presented. Second, the multiresolution architecture of the fused image can be achieved by selecting the corresponding subband signals of each input image based on the directive contrast. Finally, the fused image is reconstructed using the inverse wavelet transform. This algorithm is relevant to visual sensitivity and is tested by merging visual and IR images. The result shows that the fused image can integrate the details of each original image. The visual aesthetics and the computed SNRs of the fused images show that the new approaches can provide better fusion results than some previous multiresolution fusion methods.

  15. Wavelet regularization of the 2D incompressible Euler equations

    NASA Astrophysics Data System (ADS)

    Nguyen van Yen, Romain; Farge, Marie; Schneider, Kai

    2009-11-01

    We examine the viscosity dependence of the solutions of two-dimensional Navier-Stokes equations in periodic and wall-bounded domains, for Reynolds numbers varying from 10^3 to 10^7. We compare the Navier-Stokes solutions to those of the regularized two-dimensional Euler equations. The regularization is performed by applying at each time step the wavelet-based CVS filter (Farge et al., Phys. Fluids, 11, 1999), which splits turbulent fluctuations into coherent and incoherent contributions. We find that for Reynolds 10^5 the dissipation of coherent enstrophy tends to become independent of Reynolds, while the dissipation of total enstrophy decays to zero logarithmically with Reynolds. In the wall-bounded case, we observe an additional production of enstrophy at the wall. As a result, coherent enstrophy diverges when Reynolds tends to infinity, but its time derivative seems to remain bounded independently of Reynolds. This indicates that a balance may have been established between coherent enstrophy dissipation and coherent enstrophy production at the wall. The Reynolds number for which the dissipation of coherent enstrophy becomes independent on the Reynolds number is proposed to define the onset of the fully-turbulent regime.

  16. Decision support system for diabetic retinopathy using discrete wavelet transform.

    PubMed

    Noronha, K; Acharya, U R; Nayak, K P; Kamath, S; Bhandary, S V

    2013-03-01

    Prolonged duration of the diabetes may affect the tiny blood vessels of the retina causing diabetic retinopathy. Routine eye screening of patients with diabetes helps to detect diabetic retinopathy at the early stage. It is very laborious and time-consuming for the doctors to go through many fundus images continuously. Therefore, decision support system for diabetic retinopathy detection can reduce the burden of the ophthalmologists. In this work, we have used discrete wavelet transform and support vector machine classifier for automated detection of normal and diabetic retinopathy classes. The wavelet-based decomposition was performed up to the second level, and eight energy features were extracted. Two energy features from the approximation coefficients of two levels and six energy values from the details in three orientations (horizontal, vertical and diagonal) were evaluated. These features were fed to the support vector machine classifier with various kernel functions (linear, radial basis function, polynomial of orders 2 and 3) to evaluate the highest classification accuracy. We obtained the highest average classification accuracy, sensitivity and specificity of more than 99% with support vector machine classifier (polynomial kernel of order 3) using three discrete wavelet transform features. We have also proposed an integrated index called Diabetic Retinopathy Risk Index using clinically significant wavelet energy features to identify normal and diabetic retinopathy classes using just one number. We believe that this (Diabetic Retinopathy Risk Index) can be used as an adjunct tool by the doctors during the eye screening to cross-check their diagnosis. PMID:23662341

  17. Interpretation of gravity data using 2-D continuous wavelet transformation and 3-D inverse modeling

    NASA Astrophysics Data System (ADS)

    Roshandel Kahoo, Amin; Nejati Kalateh, Ali; Salajegheh, Farshad

    2015-10-01

    Recently the continuous wavelet transform has been proposed for interpretation of potential field anomalies. In this paper, we introduced a 2D wavelet based method that uses a new mother wavelet for determination of the location and the depth to the top and base of gravity anomaly. The new wavelet is the first horizontal derivatives of gravity anomaly of a buried cube with unit dimensions. The effectiveness of the proposed method is compared with Li and Oldenburg inversion algorithm and is demonstrated with synthetics and real gravity data. The real gravity data is taken over the Mobrun massive sulfide ore body in Noranda, Quebec, Canada. The obtained results of the 2D wavelet based algorithm and Li and Oldenburg inversion on the Mobrun ore body had desired similarities to the drill-hole depth information. In all of the inversion algorithms the model non-uniqueness is the challenging problem. Proposed method is based on a simple theory and there is no model non-uniqueness on it.

  18. Discrete Wavelet Transform for Fault Locations in Underground Distribution System

    NASA Astrophysics Data System (ADS)

    Apisit, C.; Ngaopitakkul, A.

    2010-10-01

    In this paper, a technique for detecting faults in underground distribution system is presented. Discrete Wavelet Transform (DWT) based on traveling wave is employed in order to detect the high frequency components and to identify fault locations in the underground distribution system. The first peak time obtained from the faulty bus is employed for calculating the distance of fault from sending end. The validity of the proposed technique is tested with various fault inception angles, fault locations and faulty phases. The result is found that the proposed technique provides satisfactory result and will be very useful in the development of power systems protection scheme.

  19. Embolic Doppler ultrasound signal detection using discrete wavelet transform.

    PubMed

    Aydin, Nizamettin; Marvasti, Farokh; Markus, Hugh S

    2004-06-01

    Asymptomatic circulating emboli can be detected by Doppler ultrasound. Embolic Doppler ultrasound signals are short duration transient like signals. The wavelet transform is an ideal method for analysis and detection of such signals by optimizing time-frequency resolution. We propose a detection system based on the discrete wavelet transform (DWT) and study some parameters, which might be useful for describing embolic signals (ES). We used a fast DWT algorithm based on the Daubechies eighth-order wavelet filters with eight scales. In order to evaluate feasibility of the DWT of ES, two independent data sets, each comprising of short segments containing an ES (N = 100), artifact (N = 100) or Doppler speckle (DS) (N = 100), were used. After applying the DWT to the data, several parameters were evaluated. The threshold values used for both data sets were optimized using the first data set. While the DWT coefficients resulting from artifacts dominantly appear at the higher scales (five, six, seven, and eight), the DWT coefficients at the lower scales (one, two, three, and four) are mainly dominated by ES and DS. The DWT is able to filter out most of the artifacts inherently during the transform process. For the first data set, 98 out of 100 ES were detected as ES. For the second data set, 95 out of 100 ES were detected as ES when the same threshold values were used. The algorithm was also tested with a third data set comprising 202 normal ES; 198 signals were detected as ES. PMID:15217263

  20. Background Subtraction Based on Three-Dimensional Discrete Wavelet Transform

    PubMed Central

    Han, Guang; Wang, Jinkuan; Cai, Xi

    2016-01-01

    Background subtraction without a separate training phase has become a critical task, because a sufficiently long and clean training sequence is usually unavailable, and people generally thirst for immediate detection results from the first frame of a video. Without a training phase, we propose a background subtraction method based on three-dimensional (3D) discrete wavelet transform (DWT). Static backgrounds with few variations along the time axis are characterized by intensity temporal consistency in the 3D space-time domain and, hence, correspond to low-frequency components in the 3D frequency domain. Enlightened by this, we eliminate low-frequency components that correspond to static backgrounds using the 3D DWT in order to extract moving objects. Owing to the multiscale analysis property of the 3D DWT, the elimination of low-frequency components in sub-bands of the 3D DWT is equivalent to performing a pyramidal 3D filter. This 3D filter brings advantages to our method in reserving the inner parts of detected objects and reducing the ringing around object boundaries. Moreover, we make use of wavelet shrinkage to remove disturbance of intensity temporal consistency and introduce an adaptive threshold based on the entropy of the histogram to obtain optimal detection results. Experimental results show that our method works effectively in situations lacking training opportunities and outperforms several popular techniques. PMID:27043570

  1. Discrete wavelet transform core for image processing applications

    NASA Astrophysics Data System (ADS)

    Savakis, Andreas E.; Carbone, Richard

    2005-02-01

    This paper presents a flexible hardware architecture for performing the Discrete Wavelet Transform (DWT) on a digital image. The proposed architecture uses a variation of the lifting scheme technique and provides advantages that include small memory requirements, fixed-point arithmetic implementation, and a small number of arithmetic computations. The DWT core may be used for image processing operations, such as denoising and image compression. For example, the JPEG2000 still image compression standard uses the Cohen-Daubechies-Favreau (CDF) 5/3 and CDF 9/7 DWT for lossless and lossy image compression respectively. Simple wavelet image denoising techniques resulted in improved images up to 27 dB PSNR. The DWT core is modeled using MATLAB and VHDL. The VHDL model is synthesized to a Xilinx FPGA to demonstrate hardware functionality. The CDF 5/3 and CDF 9/7 versions of the DWT are both modeled and used as comparisons. The execution time for performing both DWTs is nearly identical at approximately 14 clock cycles per image pixel for one level of DWT decomposition. The hardware area generated for the CDF 5/3 is around 15,000 gates using only 5% of the Xilinx FPGA hardware area, at 2.185 MHz max clock speed and 24 mW power consumption.

  2. Background Subtraction Based on Three-Dimensional Discrete Wavelet Transform.

    PubMed

    Han, Guang; Wang, Jinkuan; Cai, Xi

    2016-01-01

    Background subtraction without a separate training phase has become a critical task, because a sufficiently long and clean training sequence is usually unavailable, and people generally thirst for immediate detection results from the first frame of a video. Without a training phase, we propose a background subtraction method based on three-dimensional (3D) discrete wavelet transform (DWT). Static backgrounds with few variations along the time axis are characterized by intensity temporal consistency in the 3D space-time domain and, hence, correspond to low-frequency components in the 3D frequency domain. Enlightened by this, we eliminate low-frequency components that correspond to static backgrounds using the 3D DWT in order to extract moving objects. Owing to the multiscale analysis property of the 3D DWT, the elimination of low-frequency components in sub-bands of the 3D DWT is equivalent to performing a pyramidal 3D filter. This 3D filter brings advantages to our method in reserving the inner parts of detected objects and reducing the ringing around object boundaries. Moreover, we make use of wavelet shrinkage to remove disturbance of intensity temporal consistency and introduce an adaptive threshold based on the entropy of the histogram to obtain optimal detection results. Experimental results show that our method works effectively in situations lacking training opportunities and outperforms several popular techniques. PMID:27043570

  3. Multifractal analysis and modeling of one- and two-dimensional data with discrete wavelet transforms, isotropic or not

    SciTech Connect

    Davis, A.B.

    1998-12-01

    The authors compare several ways of uncovering multifractal properties of data in 1D and 2D using wavelet transforms. The WTMM or (Continuous) Wavelet Transform Maximum Modulus method has been extensively documented and widely applied by Dr. Alain Arneodo`s (Bordeaux) group, to the point where their successes have overshadowed simpler techniques that use the Discrete WT. What the latter lack in robustness is gained in efficiency, thus enabling virtually real-time multifractal analysis of data as it is collected. Another advantage of DWT-based approaches is that tensor products of dyadic and triadic branching schemes enable a straightforward attack on strong anisotropy in natural and artificial 2D random fields.

  4. Efficient architectures for two-dimensional discrete wavelet transform using lifting scheme.

    PubMed

    Xiong, Chengyi; Tian, Jinwen; Liu, Jian

    2007-03-01

    Novel architectures for 1-D and 2-D discrete wavelet transform (DWT) by using lifting schemes are presented in this paper. An embedded decimation technique is exploited to optimize the architecture for 1-D DWT, which is designed to receive an input and generate an output with the low- and high-frequency components of original data being available alternately. Based on this 1-D DWT architecture, an efficient line-based architecture for 2-D DWT is further proposed by employing parallel and pipeline techniques, which is mainly composed of two horizontal filter modules and one vertical filter module, working in parallel and pipeline fashion with 100% hardware utilization. This 2-D architecture is called fast architecture (FA) that can perform J levels of decomposition for N * N image in approximately 2N2(1 - 4(-J))/3 internal clock cycles. Moreover, another efficient generic line-based 2-D architecture is proposed by exploiting the parallelism among four subband transforms in lifting-based 2-D DWT, which can perform J levels of decomposition for N * N image in approximately N2(1 - 4(-J))/3 internal clock cycles; hence, it is called high-speed architecture. The throughput rate of the latter is increased by two times when comparing with the former 2-D architecture, but only less additional hardware cost is added. Compared with the works reported in previous literature, the proposed architectures for 2-D DWT are efficient alternatives in tradeoff among hardware cost, throughput rate, output latency and control complexity, etc. PMID:17357722

  5. Wavelet characterization of 2D turbulence and intermittency in magnetized electron plasmas

    NASA Astrophysics Data System (ADS)

    Romé, M.; Chen, S.; Maero, G.

    2016-06-01

    A study of the free relaxation of turbulence in a two-dimensional (2D) flow is presented, with a focus on the role of the initial vorticity conditions. Exploiting a well-known analogy with 2D inviscid incompressible fluids, the system investigated here is a magnetized pure electron plasma. The dynamics of this system are simulated by means of a 2D particle-in-cell code, starting from different spiral density (vorticity) distributions. A wavelet multiresolution analysis is adopted, which allows the coherent and incoherent parts of the flow to be separated. Comparison of the turbulent evolution in the different cases is based on the investigation of the time evolution of statistical properties, including the probability distribution functions and structure functions of the vorticity increments. It is also based on an analysis of the enstrophy evolution and its spectrum for the two components. In particular, while the statistical features assess the degree of flow intermittency, spectral analysis allows us not only to estimate the time required to reach a state of fully developed turbulence, but also estimate its dependence on the thickness of the initial spiral density distribution, accurately tracking the dynamics of both the coherent structures and the turbulent background. The results are compared with those relevant to annular initial vorticity distributions (Chen et al 2015 J. Plasma Phys. 81 495810511).

  6. An Automatic 3D Facial Landmarking Algorithm Using 2D Gabor Wavelets.

    PubMed

    de Jong, Markus A; Wollstein, Andreas; Ruff, Clifford; Dunaway, David; Hysi, Pirro; Spector, Tim; Fan Liu; Niessen, Wiro; Koudstaal, Maarten J; Kayser, Manfred; Wolvius, Eppo B; Bohringer, Stefan

    2016-02-01

    In this paper, we present a novel approach to automatic 3D facial landmarking using 2D Gabor wavelets. Our algorithm considers the face to be a surface and uses map projections to derive 2D features from raw data. Extracted features include texture, relief map, and transformations thereof. We extend an established 2D landmarking method for simultaneous evaluation of these data. The method is validated by performing landmarking experiments on two data sets using 21 landmarks and compared with an active shape model implementation. On average, landmarking error for our method was 1.9 mm, whereas the active shape model resulted in an average landmarking error of 2.3 mm. A second study investigating facial shape heritability in related individuals concludes that automatic landmarking is on par with manual landmarking for some landmarks. Our algorithm can be trained in 30 min to automatically landmark 3D facial data sets of any size, and allows for fast and robust landmarking of 3D faces. PMID:26540684

  7. Prostate segmentation algorithm using dyadic wavelet transform and discrete dynamic contour

    NASA Astrophysics Data System (ADS)

    Chiu, Bernard; Freeman, George H.; Salama, M. M. A.; Fenster, Aaron

    2004-11-01

    Knowing the location and the volume of the prostate is important for ultrasound-guided prostate brachytherapy, a commonly used prostate cancer treatment method. The prostate boundary must be segmented before a dose plan can be obtained. However, manual segmentation is arduous and time consuming. This paper introduces a semi-automatic segmentation algorithm based on the dyadic wavelet transform (DWT) and the discrete dynamic contour (DDC). A spline interpolation method is used to determine the initial contour based on four user-defined initial points. The DDC model then refines the initial contour based on the approximate coefficients and the wavelet coefficients generated using the DWT. The DDC model is executed under two settings. The coefficients used in these two settings are derived using smoothing functions with different sizes. A selection rule is used to choose the best contour based on the contours produced in these two settings. The accuracy of the final contour produced by the proposed algorithm is evaluated by comparing it with the manual contour outlined by an expert observer. A total of 114 2D TRUS images taken for six different patients scheduled for brachytherapy were segmented using the proposed algorithm. The average difference between the contour segmented using the proposed algorithm and the manually outlined contour is less than 3 pixels.

  8. Prostate segmentation algorithm using dyadic wavelet transform and discrete dynamic contour.

    PubMed

    Chiu, Bernard; Freeman, George H; Salama, M M A; Fenster, Aaron

    2004-11-01

    Knowing the location and the volume of the prostate is important for ultrasound-guided prostate brachytherapy, a commonly used prostate cancer treatment method. The prostate boundary must be segmented before a dose plan can be obtained. However, manual segmentation is arduous and time consuming. This paper introduces a semi-automatic segmentation algorithm based on the dyadic wavelet transform (DWT) and the discrete dynamic contour (DDC). A spline interpolation method is used to determine the initial contour based on four user-defined initial points. The DDC model then refines the initial contour based on the approximate coefficients and the wavelet coefficients generated using the DWT. The DDC model is executed under two settings. The coefficients used in these two settings are derived using smoothing functions with different sizes. A selection rule is used to choose the best contour based on the contours produced in these two settings. The accuracy of the final contour produced by the proposed algorithm is evaluated by comparing it with the manual contour outlined by an expert observer. A total of 114 2D TRUS images taken for six different patients scheduled for brachytherapy were segmented using the proposed algorithm. The average difference between the contour segmented using the proposed algorithm and the manually outlined contour is less than 3 pixels. PMID:15584529

  9. Feature Extraction on Brain Computer Interfaces using Discrete Dyadic Wavelet Transform: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Gareis, I.; Gentiletti, G.; Acevedo, R.; Rufiner, L.

    2011-09-01

    The purpose of this work is to evaluate different feature extraction alternatives to detect the event related evoked potential signal on brain computer interfaces, trying to minimize the time employed and the classification error, in terms of sensibility and specificity of the method, looking for alternatives to coherent averaging. In this context the results obtained performing the feature extraction using discrete dyadic wavelet transform using different mother wavelets are presented. For the classification a single layer perceptron was used. The results obtained with and without the wavelet decomposition were compared; showing an improvement on the classification rate, the specificity and the sensibility for the feature vectors obtained using some mother wavelets.

  10. Wavelet diagnostics of the flow control of unsteady separation on a 2D Wind Turbine Airfoil

    NASA Astrophysics Data System (ADS)

    Bai, Zhe; Lewalle, Jacques; Wang, Guannan; Glauser, Mark

    2013-11-01

    We investigated the aerodynamic characteristics of a 2D wind turbine airfoil. Unsteadiness was associated with the wake of a cylinder upstream of the airfoil. The experiments were conducted in both the baseline case, and with active closed-loop control on the suction surface of the airfoil. The data consisted of surface pressure time series. Continuous wavelet analysis gave the phase, band-pass filtered signals and envelope of harmonics of the fundamental shedding frequency. Coherence of pairs of signals was also used to map the flow characteristics. For the baseline and controlled case, we will report on the relation between phase of the leading edge fluctuations, unsteady flow separation and lift and drag coefficients. Our goal is to develop a more effective controller. The experiment was funded by DoE through University of Minnesota Wind Energy Consortium. Thanks for the support from the MAE department of Syracuse University.

  11. A multispeed Discrete Boltzmann Model for transcritical 2D shallow water flows

    NASA Astrophysics Data System (ADS)

    La Rocca, Michele; Montessori, Andrea; Prestininzi, Pietro; Succi, Sauro

    2015-03-01

    In this work a Discrete Boltzmann Model for the solution of transcritical 2D shallow water flows is presented and validated. In order to provide the model with transcritical capabilities, a particular multispeed velocity set has been employed for the discretization of the Boltzmann equation. It is shown that this particular set naturally yields a simple and closed procedure to determine higher order equilibrium distribution functions needed to simulate transcritical flow. The model is validated through several classical benchmarks and is proven to correctly and accurately simulate both 1D and 2D transitions between the two flow regimes.

  12. Separable and non-separable discrete wavelet transform based texture features and image classification of breast thermograms

    NASA Astrophysics Data System (ADS)

    Etehadtavakol, Mahnaz; Ng, E. Y. K.; Chandran, Vinod; Rabbani, Hossien

    2013-11-01

    Highly sensitive infrared cameras can produce high-resolution diagnostic images of the temperature and vascular changes of breasts. Wavelet transform based features are suitable in extracting the texture difference information of these images due to their scale-space decomposition. The objective of this study is to investigate the potential of extracted features in differentiating between breast lesions by comparing the two corresponding pectoral regions of two breast thermograms. The pectoral regions of breastsare important because near 50% of all breast cancer is located in this region. In this study, the pectoral region of the left breast is selected. Then the corresponding pectoral region of the right breast is identified. Texture features based on the first and the second sets of statistics are extracted from wavelet decomposed images of the pectoral regions of two breast thermograms. Principal component analysis is used to reduce dimension and an Adaboost classifier to evaluate classification performance. A number of different wavelet features are compared and it is shown that complex non-separable 2D discrete wavelet transform features perform better than their real separable counterparts.

  13. A novel sliding window algorithm for 2D discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Dong, Zhifang; Wu, Jiasong; Gui, Jiyong

    2015-12-01

    Discrete Fourier transform (DFT) is one of the most wildly used tools for signal processing. In this paper, a novel sliding window algorithm is presented for fast computing 2D DFT when sliding window shifts more than one-point. The propose algorithm computing the DFT of the current window using that of the previous window. For fast computation, we take advantage of the recursive process of 2D SDFT and butterfly-based algorithm. So it can be directly applied to 2D signal processing. The theoretical analysis shows that the computational complexity is equal to 2D SDFT when one sample comes into current window. As well, the number of additions and multiplications of our proposed algorithm are less than those of 2D vector radix FFT when sliding window shifts mutiple-point.

  14. A study of renal blood flow regulation using the discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexey N.; Pavlova, Olga N.; Mosekilde, Erik; Sosnovtseva, Olga V.

    2010-02-01

    In this paper we provide a way to distinguish features of renal blood flow autoregulation mechanisms in normotensive and hypertensive rats based on the discrete wavelet transform. Using the variability of the wavelet coefficients we show distinctions that occur between the normal and pathological states. A reduction of this variability in hypertension is observed on the microscopic level of the blood flow in efferent arteriole of single nephrons. This reduction is probably associated with higher flexibility of healthy cardiovascular system.

  15. Discrete wavelet transform and singular value decomposition based ECG steganography for secured patient information transmission.

    PubMed

    Edward Jero, S; Ramu, Palaniappan; Ramakrishnan, S

    2014-10-01

    ECG Steganography provides secured transmission of secret information such as patient personal information through ECG signals. This paper proposes an approach that uses discrete wavelet transform to decompose signals and singular value decomposition (SVD) to embed the secret information into the decomposed ECG signal. The novelty of the proposed method is to embed the watermark using SVD into the two dimensional (2D) ECG image. The embedding of secret information in a selected sub band of the decomposed ECG is achieved by replacing the singular values of the decomposed cover image by the singular values of the secret data. The performance assessment of the proposed approach allows understanding the suitable sub-band to hide secret data and the signal degradation that will affect diagnosability. Performance is measured using metrics like Kullback-Leibler divergence (KL), percentage residual difference (PRD), peak signal to noise ratio (PSNR) and bit error rate (BER). A dynamic location selection approach for embedding the singular values is also discussed. The proposed approach is demonstrated on a MIT-BIH database and the observations validate that HH is the ideal sub-band to hide data. It is also observed that the signal degradation (less than 0.6%) is very less in the proposed approach even with the secret data being as large as the sub band size. So, it does not affect the diagnosability and is reliable to transmit patient information. PMID:25187409

  16. Tensor representation of color images and fast 2D quaternion discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.

    2015-03-01

    In this paper, a general, efficient, split algorithm to compute the two-dimensional quaternion discrete Fourier transform (2-D QDFT), by using the special partitioning in the frequency domain, is introduced. The partition determines an effective transformation, or color image representation in the form of 1-D quaternion signals which allow for splitting the N × M-point 2-D QDFT into a set of 1-D QDFTs. Comparative estimates revealing the efficiency of the proposed algorithms with respect to the known ones are given. In particular, a proposed method of calculating the 2r × 2r -point 2-D QDFT uses 18N2 less multiplications than the well-known column-row method and method of calculation based on the symplectic decomposition. The proposed algorithm is simple to apply and design, which makes it very practical in color image processing in the frequency domain.

  17. SeismicWaveTool: Continuous and discrete wavelet analysis and filtering for multichannel seismic data

    NASA Astrophysics Data System (ADS)

    Galiana-Merino, J. J.; Rosa-Herranz, J. L.; Rosa-Cintas, S.; Martinez-Espla, J. J.

    2013-01-01

    A MATLAB-based computer code has been developed for the simultaneous wavelet analysis and filtering of multichannel seismic data. The considered time-frequency transforms include the continuous wavelet transform, the discrete wavelet transform and the discrete wavelet packet transform. The developed approaches provide a fast and precise time-frequency examination of the seismograms at different frequency bands. Moreover, filtering methods for noise, transients or even baseline removal, are implemented. The primary motivation is to support seismologists with a user-friendly and fast program for the wavelet analysis, providing practical and understandable results. Program summaryProgram title: SeismicWaveTool Catalogue identifier: AENG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 611072 No. of bytes in distributed program, including test data, etc.: 14688355 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) version 7.8.0.347 (R2009a) or higher. Wavelet Toolbox is required. Computer: Developed on a MacBook Pro. Tested on Mac and PC. No computer-specific optimization was performed. Operating system: Any supporting MATLAB (MathWorks Inc.) v7.8.0.347 (R2009a) or higher. Tested on Mac OS X 10.6.8, Windows XP and Vista. Classification: 13. Nature of problem: Numerous research works have developed a great number of free or commercial wavelet based software, which provide specific solutions for the analysis of seismic data. On the other hand, standard toolboxes, packages or libraries, such as the MathWorks' Wavelet Toolbox for MATLAB, offer command line functions and interfaces for the wavelet analysis of one-component signals. Thus, software usually is focused on very specific problems

  18. Performance enhancement of rake-receiver using continuous and discrete wavelet transforms analysis through NLOS propagation

    NASA Astrophysics Data System (ADS)

    Fayadh, Rashid A.; Malek, F.; Fadhil, Hilal A.; Dawood, Sameer A.; Abdullah, Farah Salwani

    2015-05-01

    In this paper, three levels of analysis and synthesis filter banks were used to create coefficients for a continuous wavelet transform (CWT) and discrete wavelet transform (DWT). The main property of these wavelet transform schemes is their ability to construct the transmitted signal across a log-normal fading channel over additive white Gaussian noise (AWGN). Wireless rake-receiver structure was chosen as a major application to reduce the inter-symbol interference (ISI) and to minimize the noise. In this work, a new scheme of rake receiver is proposed to receive indoor, multi-path components (MPCs) for ultra-wideband (UWB) wireless communication systems. Rake receivers consist of a continuous wavelet rake (CW-rake) and a discrete wavelet rake (DW-rake), and they use huge bandwidth (7.5 GHz), as reported by the Federal Communications Commission (FCC). The indoor channel models chose for analysis in this research were the non line-of-sight (LOS) channel model (CM4 from 4 to 10 meters) to show the behavior of bit error rate (BER) with respect to signal-to noise ratio (SNR). Two types of rake receiver were used in the simulation, i.e., partial-rake and selective-rake receivers with the maximal ratio combining (MRC) technique to capture the energy of the signal from the output of the rake's fingers.

  19. Discrete wavelet transform coupled with ANN for daily discharge forecasting into Três Marias reservoir

    NASA Astrophysics Data System (ADS)

    Santos, C. A. G.; Freire, P. K. M. M.; Silva, G. B. L.; Silva, R. M.

    2014-09-01

    This paper proposes the use of discrete wavelet transform (DWT) to remove the high-frequency components (details) of an original signal, because the noises generally present in time series (e.g. streamflow records) may influence the prediction quality. Cleaner signals could then be used as inputs to an artificial neural network (ANN) in order to improve the model performance of daily discharge forecasting. Wavelet analysis provides useful decompositions of original time series in high and low frequency components. The present application uses the Coiflet wavelets to decompose hydrological data, as there have been few reports in the literature. Finally, the proposed technique is tested using the inflow records to the Três Marias reservoir in São Francisco River basin, Brazil. This transformed signal is used as input for an ANN model to forecast inflows seven days ahead, and the error RMSE decreased by more than 50% (i.e. from 454.2828 to 200.0483).

  20. Analysis of spike-wave discharges in rats using discrete wavelet transform.

    PubMed

    Ubeyli, Elif Derya; Ilbay, Gül; Sahin, Deniz; Ateş, Nurbay

    2009-03-01

    A feature is a distinctive or characteristic measurement, transform, structural component extracted from a segment of a pattern. Features are used to represent patterns with the goal of minimizing the loss of important information. The discrete wavelet transform (DWT) as a feature extraction method was used in representing the spike-wave discharges (SWDs) records of Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. The SWD records of WAG/Rij rats were decomposed into time-frequency representations using the DWT and the statistical features were calculated to depict their distribution. The obtained wavelet coefficients were used to identify characteristics of the signal that were not apparent from the original time domain signal. The present study demonstrates that the wavelet coefficients are useful in determining the dynamics in the time-frequency domain of SWD records. PMID:19230874

  1. Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun

    2013-05-01

    Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.

  2. HPLC analysis of discrete haptoglobin isoform N-linked oligosaccharides following 2D-PAGE isolation.

    PubMed

    He, Zhicong; Aristoteli, Lina P; Kritharides, Leonard; Garner, Brett

    2006-05-01

    Glycosylation is a common but variable modification that regulates glycoprotein structure and function. We combined small format 2D-PAGE with HPLC to analyse discrete human haptoglobin isoform N-glycans. Seven major and several minor haptoglobin isoforms were detected by 2D-PAGE. N-Glycans released from Coomassie-stained gel spots using PNGase were labeled at their reducing termini with 2-aminobenzamide. HPLC analysis of selected major isoform N-glycans indicated that sialic acid composition determined their separation by isoelectric focussing. N-Glycans from two doublets of quantitatively minor isoforms were also analysed. Although separation of each pair of doublets was influenced by sialylation, individual spots within each doublet contained identical N-glycans. Thus, heterogeneity in minor haptoglobin isoforms was due to modifications distinct from N-glycan structure. These studies describe a simple method for analysing low abundance protein N-glycans and provide details of discrete haptoglobin isoform N-glycan structures which will be useful in proteomic analysis of human plasma samples. PMID:16546121

  3. A 2D Electromechanical Model of Human Atrial Tissue Using the Discrete Element Method

    PubMed Central

    Brocklehurst, Paul; Adeniran, Ismail; Yang, Dongmin; Sheng, Yong; Zhang, Henggui; Ye, Jianqiao

    2015-01-01

    Cardiac tissue is a syncytium of coupled cells with pronounced intrinsic discrete nature. Previous models of cardiac electromechanics often ignore such discrete properties and treat cardiac tissue as a continuous medium, which has fundamental limitations. In the present study, we introduce a 2D electromechanical model for human atrial tissue based on the discrete element method (DEM). In the model, single-cell dynamics are governed by strongly coupling the electrophysiological model of Courtemanche et al. to the myofilament model of Rice et al. with two-way feedbacks. Each cell is treated as a viscoelastic body, which is physically represented by a clump of nine particles. Cell aggregations are arranged so that the anisotropic nature of cardiac tissue due to fibre orientations can be modelled. Each cell is electrically coupled to neighbouring cells, allowing excitation waves to propagate through the tissue. Cell-to-cell mechanical interactions are modelled using a linear contact bond model in DEM. By coupling cardiac electrophysiology with mechanics via the intracellular Ca2+ concentration, the DEM model successfully simulates the conduction of cardiac electrical waves and the tissue's corresponding mechanical contractions. The developed DEM model is numerically stable and provides a powerful method for studying the electromechanical coupling problem in the heart. PMID:26583141

  4. Use of switched capacitor filters to implement the discrete wavelet transform

    NASA Technical Reports Server (NTRS)

    Kaiser, Kraig E.; Peterson, James N.

    1993-01-01

    This paper analyzes the use of IIR switched capacitor filters to implement the discrete wavelet transform and the inverse transform, using quadrature mirror filters (QMF) which have the necessary symmetry for reconstruction of the data. This is done by examining the sensitivity of the QMF transforms to the manufacturing variance in the desired capacitances. The performance is evaluated at the outputs of the separate filter stages and the error in the reconstruction of the inverse transform is compared with the desired results.

  5. Plasma Plume Oscillations Monitoring during Laser Welding of Stainless Steel by Discrete Wavelet Transform Application

    PubMed Central

    Sibillano, Teresa; Ancona, Antonio; Rizzi, Domenico; Lupo, Valentina; Tricarico, Luigi; Lugarà, Pietro Mario

    2010-01-01

    The plasma optical radiation emitted during CO2 laser welding of stainless steel samples has been detected with a Si-PIN photodiode and analyzed under different process conditions. The discrete wavelet transform (DWT) has been used to decompose the optical signal into various discrete series of sequences over different frequency bands. The results show that changes of the process settings may yield different signal features in the range of frequencies between 200 Hz and 30 kHz. Potential applications of this method to monitor in real time the laser welding processes are also discussed. PMID:22319311

  6. 2D resistivity inversion using conjugate gradients for a finite element discretization

    NASA Astrophysics Data System (ADS)

    Bortolozo, C. A.; Santos, F. M.; Porsani, J. L.

    2014-12-01

    In this work we present a DC 2D inversion algorithm using conjugate gradients relaxation to solve the maximum likelihood inverse equations. We apply, according to Zhang (1995), the maximum likelihood inverse theory developed by Tarantola and Valette (1982) to our 2D resistivity inversion. This algorithm was chosen to this research because it doesn't need to calculate the field's derivatives. Since conjugate gradient techniques only need the results of the sensitivity matrix à or its transpose ÃT multiplying a vector, the actual computation of the sensitivity matrix are not performed, according to the methodology described in Zhang (1995). In Zhang (1995), the terms Ãx and ÃTy, are dependent of the stiffness matrix K and its partial derivative ∂K⁄∂ρ. The inversion methodology described in Zhang (1995) is for the case of 3D electrical resistivity by finite differences discretization. So it was necessary to make a series of adjustments to obtain a satisfactory result for 2D electrical inversion using finite element method. The difference between the modeling of 3D resistivity with finite difference and the 2D finite element method are in the integration variable, used in the 2D case. In the 2D case the electrical potential are initially calculated in the transformed domain, including the stiffness matrix, and only in the end is transformed in Cartesian domain. In the case of 3D, described by Zhang (1995) this is done differently, the calculation is done directly in the Cartesian domain. In the literature was not found any work describing how to deal with this problem. Because the calculations of Ãx and ÃTy must be done without having the real stiffness matrix, the adaptation consist in calculate the stiffness matrix and its partial derivative using a set of integration variables. We transform those matrix in the same form has in the potential case, but with different sets of variables. The results will be presented and are very promising.

  7. Quarter-wave discrete wavelet design of dichroic highly reflecting-transmitting mirrors for ultrafast solid-state lasers.

    PubMed

    Cojocaru, E

    2004-02-20

    Thin-film wavelets are further analyzed for the design of dichroic mirrors for ultrafast solid-state lasers that provide both high reflectance on the lasing wavelength range and high transmittance of the pump light. Discrete quarter-wave-thick dielectric thin-film structures of homogeneous refractive indices following a quintic-wavelet envelope are considered. Relations for the reflectance on the lasing wavelength range are given. Adding several index-matching quarter-wave layers to both sides of the discrete wavelet optimizes the transmittance of the pump light. The design is further optimized to get minimum phase distortion on the lasing wavelength range. PMID:15008528

  8. Stratus cloud structure from MM-radar transects and satellite images: scaling properties and artifact detection with semi-discrete wavelet analysis

    SciTech Connect

    Davis, A. B.; Petrov, N. P.; Clothiaux, E. E.; Marshak, A.

    2002-01-01

    Spatial and/or temporal variabilities of clouds is of paramount importance for at least two in tensely researched sub-problems in global and regional climate modeling: (1) cloud-radiation interaction where correlations can trigger 3D radiative transfer effects; and (2) dynamical cloud modeling where the goal is to realistically reproduce the said correlations. We propose wavelets as a simple yet powerful way of quantifying cloud variability. More precisely, we use 'semi-discrete' wavelet transforms which, at least in the present statistical applications, have advantages over both its continuous and discrete counterparts found in the bulk of the wavelet literature. With the particular choice of normalization we adopt, the scale-dependence of the variance of the wavelet coefficients (i.e,, the wavelet energy spectrum) is always a better discriminator of transition from 'stationary' to 'nonstationary' behavior than conventional methods based on auto-correlation analysis, second-order structure function (a.k.a. the semi-variogram), or Fourier analysis. Indeed, the classic statistics go at best from monotonically scale- or wavenumber-dependent to flat at such a transition; by contrast, the wavelet spectrum changes the sign of its derivative with respect to scale. We apply 1D and 2D semi-discrete wavelet transforms to remote sensing data on cloud structure from two sources: (1) an upward-looking milli-meter cloud radar (MMCR) at DOE's climate observation site in Oklahoma deployed as part of the Atmospheric Radiation Measurement (ARM) Progrm; and (2) DOE's Multispectral Thermal Imager (MTI), a high-resolution space-borne instrument in sunsynchronous orbit that is described in sufficient detail for our present purposes by Weber et al. (1999). For each type of data, we have at least one theoretical prediction - with empirical validation already in existence - for a power-law relation for wavelet statistics with respect to scale. This is what is expected in physical (i

  9. Application of the 2-D discrete-ordinates method to multiple scattering of laser radiation

    SciTech Connect

    Zardecki, A.; Gerstl, S.A.W.; Embury, J.F.

    1983-05-01

    The discrete-ordinates finite-element radiation transport code twotran is applied to describe the multiple scattering of a laser beam from a reflecting target. For a model scenario involving a 99% relative humidity rural aerosol we compute the average intensity of the scattered radiation and correction factors to the Beer-Lambert law arising from multiple scattering. As our results indicate, 2-D x-y and r-z geometry modeling can reliably describe a realistic 3-D scenario. Specific results are presented for the two visual ranges of 1.52 and 0.76 km which show that, for sufficiently high aerosol concentrations (e.g., equivalent to V = 0.76 km), the target signature in a distant detector becomes dominated by multiply scattered radiation from interactions of the laser light with the aerosol environment. The merits of the scaling group and the delta-M approximation for the transfer equation are also explored.

  10. A framework for grand scale parallelization of the combined finite discrete element method in 2d

    NASA Astrophysics Data System (ADS)

    Lei, Z.; Rougier, E.; Knight, E. E.; Munjiza, A.

    2014-09-01

    Within the context of rock mechanics, the Combined Finite-Discrete Element Method (FDEM) has been applied to many complex industrial problems such as block caving, deep mining techniques (tunneling, pillar strength, etc.), rock blasting, seismic wave propagation, packing problems, dam stability, rock slope stability, rock mass strength characterization problems, etc. The reality is that most of these were accomplished in a 2D and/or single processor realm. In this work a hardware independent FDEM parallelization framework has been developed using the Virtual Parallel Machine for FDEM, (V-FDEM). With V-FDEM, a parallel FDEM software can be adapted to different parallel architecture systems ranging from just a few to thousands of cores.

  11. FPGA implementation of 2-D discrete cosine transforms algorithm using systemC

    NASA Astrophysics Data System (ADS)

    Liu, Yifei; Ding, Mingyue

    2007-12-01

    Discrete Cosine Transform (DCT) is widely applied in image and video compression. This paper presented the software and hardware co-design method based on SystemC. As a case of study, a two dimension (2D) DCT Algorithm was implemented on Programmable Gate Arrays (FPGAs) chip. The short simulation time and verification process greatly increases the design efficiency of SystemC, making the product designed by SystemC more quickly into the market. The design effect using SystemC is compared between the expertise hardware designer and the software designer with little hardware knowledge. The result shows SystemC is an excellent and high efficiency hardware design method for an expertise hardware designer.

  12. Robust H(∞) control for a class of 2-D discrete delayed systems.

    PubMed

    Ye, Shuxia; Li, Jianzhen; Yao, Juan

    2014-09-01

    In this paper, we deal with the problem of robust H∞ control for a class of 2-D discrete uncertain systems with delayed perturbations described by the Roesser state-space model (RM). The problem to be addressed is the design of robust controllers via state feedback such that the stability of the resulting closed-loop system is guaranteed and a prescribed H∞ performance level is ensured for all delayed perturbations. By utilizing the Lyapunov method and some results, H∞ controllers are given. The results are delay-dependent and can be expressed in terms of linear matrix inequalities (LMIs). Finally, some numerical examples are given to illustrate the effectiveness of the proposed results. PMID:24411024

  13. Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyong; Zhou, Ping; Chen, Gang; Guo, Ledong

    2014-11-01

    This study investigated the performance and potential of a hybrid model that combined the discrete wavelet transform and support vector regression (the DWT-SVR model) for daily and monthly streamflow forecasting. Three key factors of the wavelet decomposition phase (mother wavelet, decomposition level, and edge effect) were proposed to consider for improving the accuracy of the DWT-SVR model. The performance of DWT-SVR models with different combinations of these three factors was compared with the regular SVR model. The effectiveness of these models was evaluated using the root-mean-squared error (RMSE) and Nash-Sutcliffe model efficiency coefficient (NSE). Daily and monthly streamflow data observed at two stations in Indiana, United States, were used to test the forecasting skill of these models. The results demonstrated that the different hybrid models did not always outperform the SVR model for 1-day and 1-month lead time streamflow forecasting. This suggests that it is crucial to consider and compare the three key factors when using the DWT-SVR model (or other machine learning methods coupled with the wavelet transform), rather than choosing them based on personal preferences. We then combined forecasts from multiple candidate DWT-SVR models using a model averaging technique based upon Akaike's information criterion (AIC). This ensemble prediction was superior to the single best DWT-SVR model and regular SVR model for both 1-day and 1-month ahead predictions. With respect to longer lead times (i.e., 2- and 3-day and 2-month), the ensemble predictions using the AIC averaging technique were consistently better than the best DWT-SVR model and SVR model. Therefore, integrating model averaging techniques with the hybrid DWT-SVR model would be a promising approach for daily and monthly streamflow forecasting. Additionally, we strongly recommend considering these three key factors when using wavelet-based SVR models (or other wavelet-based forecasting models).

  14. A hybrid group method of data handling with discrete wavelet transform for GDP forecasting

    NASA Astrophysics Data System (ADS)

    Isa, Nadira Mohamed; Shabri, Ani

    2013-09-01

    This study is proposed the application of hybridization model using Group Method of Data Handling (GMDH) and Discrete Wavelet Transform (DWT) in time series forecasting. The objective of this paper is to examine the flexibility of the hybridization GMDH in time series forecasting by using Gross Domestic Product (GDP). A time series data set is used in this study to demonstrate the effectiveness of the forecasting model. This data are utilized to forecast through an application aimed to handle real life time series. This experiment compares the performances of a hybrid model and a single model of Wavelet-Linear Regression (WR), Artificial Neural Network (ANN), and conventional GMDH. It is shown that the proposed model can provide a promising alternative technique in GDP forecasting.

  15. A new time-adaptive discrete bionic wavelet transform for enhancing speech from adverse noise environment

    NASA Astrophysics Data System (ADS)

    Palaniswamy, Sumithra; Duraisamy, Prakash; Alam, Mohammad Showkat; Yuan, Xiaohui

    2012-04-01

    Automatic speech processing systems are widely used in everyday life such as mobile communication, speech and speaker recognition, and for assisting the hearing impaired. In speech communication systems, the quality and intelligibility of speech is of utmost importance for ease and accuracy of information exchange. To obtain an intelligible speech signal and one that is more pleasant to listen, noise reduction is essential. In this paper a new Time Adaptive Discrete Bionic Wavelet Thresholding (TADBWT) scheme is proposed. The proposed technique uses Daubechies mother wavelet to achieve better enhancement of speech from additive non- stationary noises which occur in real life such as street noise and factory noise. Due to the integration of human auditory system model into the wavelet transform, bionic wavelet transform (BWT) has great potential for speech enhancement which may lead to a new path in speech processing. In the proposed technique, at first, discrete BWT is applied to noisy speech to derive TADBWT coefficients. Then the adaptive nature of the BWT is captured by introducing a time varying linear factor which updates the coefficients at each scale over time. This approach has shown better performance than the existing algorithms at lower input SNR due to modified soft level dependent thresholding on time adaptive coefficients. The objective and subjective test results confirmed the competency of the TADBWT technique. The effectiveness of the proposed technique is also evaluated for speaker recognition task under noisy environment. The recognition results show that the TADWT technique yields better performance when compared to alternate methods specifically at lower input SNR.

  16. Discrete Wavelet Packet Transforms and volcanic tremor: method and application to Erta 'Ale, Ethiopia

    NASA Astrophysics Data System (ADS)

    Jones, J. P.; Carniel, R.; Malone, S.

    2005-12-01

    The time-varying properties of volcanic tremor demand advanced techniques capable of analyzing changes in both time and frequency domains. Specifically, rapid data preprocessing techniques with the ability to distinguish signal from noise are especially valuable in analyzing the temporal, spatial, and spectral properties of these signals. To this end, we use the Discrete Wavelet Packet Transform and the Best Shift Basis algorithm to select an orthonormal basis for continuous volcanic tremor data, then apply a simple statistical test to eliminate frequency bands that primarily consist of Gaussian white noise. We then use the Maximal Overlap Discrete Wavelet Packet Transform to compute and analyze features in the detail coefficients of each "signal" band. Because MODWPT detail coefficients are equivalent to a time series convolved with a zero phase filter, we apply standard polarization and amplitude-based location techniques to each frequency band's detail coefficients to analyze possible source locations and mechanisms. To demonstrate the usefulness of these techniques, we present a sample analysis of data from Erta 'Ale volcano, Ethiopia, recorded on a temporary network in November 2003. Data were sampled at 100 Hz and the DWPT was computed with the LA(16) wavelet to a maximum level of j = 7. The optimal basis for this data set consists of 54 frequency bands, but only 9 contain meaningful "signal" energy. We identify two frequency bands whose locations suggest a distributed source; three frequency bands whose signals may come from the lava lake itself; three high-frequency bands of scattered energy; and one very high frequency band of non-Gaussian instrument noise. Finally, we discuss optimization efforts, computational efficiency, and the feasibility of using similar wavelet methods to preprocess data in real time or near real time.

  17. The shift-invariant discrete wavelet transform and application to speech waveform analysis

    NASA Astrophysics Data System (ADS)

    Enders, Jörg; Geng, Weihua; Li, Peijun; Frazier, Michael W.; Scholl, David J.

    2005-04-01

    The discrete wavelet transform may be used as a signal-processing tool for visualization and analysis of nonstationary, time-sampled waveforms. The highly desirable property of shift invariance can be obtained at the cost of a moderate increase in computational complexity, and accepting a least-squares inverse (pseudoinverse) in place of a true inverse. A new algorithm for the pseudoinverse of the shift-invariant transform that is easier to implement in array-oriented scripting languages than existing algorithms is presented together with self-contained proofs. Representing only one of the many and varied potential applications, a recorded speech waveform illustrates the benefits of shift invariance with pseudoinvertibility. Visualization shows the glottal modulation of vowel formants and frication noise, revealing secondary glottal pulses and other waveform irregularities. Additionally, performing sound waveform editing operations (i.e., cutting and pasting sections) on the shift-invariant wavelet representation automatically produces quiet, click-free section boundaries in the resulting sound. The capabilities of this wavelet-domain editing technique are demonstrated by changing the rate of a recorded spoken word. Individual pitch periods are repeated to obtain a half-speed result, and alternate individual pitch periods are removed to obtain a double-speed result. The original pitch and formant frequencies are preserved. In informal listening tests, the results are clear and understandable. .

  18. Application of discrete wavelet transform for analysis of genomic sequences of Mycobacterium tuberculosis.

    PubMed

    Saini, Shiwani; Dewan, Lillie

    2016-01-01

    This paper highlights the potential of discrete wavelet transforms in the analysis and comparison of genomic sequences of Mycobacterium tuberculosis (MTB) with different resistance characteristics. Graphical representations of wavelet coefficients and statistical estimates of their parameters have been used to determine the extent of similarity between different sequences of MTB without the use of conventional methods such as Basic Local Alignment Search Tool. Based on the calculation of the energy of wavelet decomposition coefficients of complete genomic sequences, their broad classification of the type of resistance can be done. All the given genomic sequences can be grouped into two broad categories wherein the drug resistant and drug susceptible sequences form one group while the multidrug resistant and extensive drug resistant sequences form the other group. This method of segregation of the sequences is faster than conventional laboratory methods which require 3-4 weeks of culture of sputum samples. Thus the proposed method can be used as a tool to enhance clinical diagnostic investigations in near real-time. PMID:26839757

  19. Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech.

    NASA Astrophysics Data System (ADS)

    Campo, D.; Quintero, O. L.; Bastidas, M.

    2016-04-01

    We propose a study of the mathematical properties of voice as an audio signal. This work includes signals in which the channel conditions are not ideal for emotion recognition. Multiresolution analysis- discrete wavelet transform – was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states. ANNs proved to be a system that allows an appropriate classification of such states. This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features. Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify.

  20. Video compression of coronary angiograms based on discrete wavelet transform with block classification

    SciTech Connect

    Ho, B.K.T.; Tsai, M.J.; Wei, J.; Ma, M.; Saipetch, P.

    1996-12-01

    A new method of video compression for angiographic images has been developed to achieve high compression ratio ({approximately}20:1) while eliminating block artifacts which leads to loss of diagnostic accuracy. This method adopts motion picture experts group`s (MPEG`s) motion compensated prediction to take advantage of frame to frame correlation. However, in contrast to MPEG, the error images arising from mismatches in the motion estimation are encoded by discrete wavelet transform (DWT) rather than block discrete cosine transform (DCT). Furthermore, the authors developed a classification scheme which label each block in an image as intra, error, or background type and encode it accordingly. This hybrid coding can significantly improve the compression efficiency in certain cases. This method can be generalized for any dynamic image sequences applications sensitive to block artifacts.

  1. Optimized discrete wavelet transforms in the cubed sphere with the lifting scheme—implications for global finite-frequency tomography

    NASA Astrophysics Data System (ADS)

    Chevrot, Sébastien; Martin, Roland; Komatitsch, Dimitri

    2012-12-01

    Wavelets are extremely powerful to compress the information contained in finite-frequency sensitivity kernels and tomographic models. This interesting property opens the perspective of reducing the size of global tomographic inverse problems by one to two orders of magnitude. However, introducing wavelets into global tomographic problems raises the problem of computing fast wavelet transforms in spherical geometry. Using a Cartesian cubed sphere mapping, which grids the surface of the sphere with six blocks or 'chunks', we define a new algorithm to implement fast wavelet transforms with the lifting scheme. This algorithm is simple and flexible, and can handle any family of discrete orthogonal or bi-orthogonal wavelets. Since wavelet coefficients are local in space and scale, aliasing effects resulting from a parametrization with global functions such as spherical harmonics are avoided. The sparsity of tomographic models expanded in wavelet bases implies that it is possible to exploit the power of compressed sensing to retrieve Earth's internal structures optimally. This approach involves minimizing a combination of a ℓ2 norm for data residuals and a ℓ1 norm for model wavelet coefficients, which can be achieved through relatively minor modifications of the algorithms that are currently used to solve the tomographic inverse problem.

  2. Energy Detection Based on Undecimated Discrete Wavelet Transform and Its Application in Magnetic Anomaly Detection

    PubMed Central

    Nie, Xinhua; Pan, Zhongming; Zhang, Dasha; Zhou, Han; Chen, Min; Zhang, Wenna

    2014-01-01

    Magnetic anomaly detection (MAD) is a passive approach for detection of a ferromagnetic target, and its performance is often limited by external noises. In consideration of one major noise source is the fractal noise (or called 1/f noise) with a power spectral density of 1/fa (0wavelet decomposition can play the role of a Karhunen-Loève-type expansion to the 1/f-type signal by its decorrelation abilities, an effective energy detection method based on undecimated discrete wavelet transform (UDWT) is proposed in this paper. Firstly, the foundations of magnetic anomaly detection and UDWT are introduced in brief, while a possible detection system based on giant magneto-impedance (GMI) magnetic sensor is also given out. Then our proposed energy detection based on UDWT is described in detail, and the probabilities of false alarm and detection for given the detection threshold in theory are presented. It is noticeable that no a priori assumptions regarding the ferromagnetic target or the magnetic noise probability are necessary for our method, and different from the discrete wavelet transform (DWT), the UDWT is shift invariant. Finally, some simulations are performed and the results show that the detection performance of our proposed detector is better than that of the conventional energy detector even utilized in the Gaussian white noise, especially when the spectral parameter α is less than 1.0. In addition, a real-world experiment was done to demonstrate the advantages of the proposed method. PMID:25343484

  3. 2D wavelet-analysis-based calibration technique for flat-panel imaging detectors: application in cone beam volume CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.

    1999-05-01

    The application of the newly developed flat panel x-ray imaging detector in cone beam volume CT has attracted increasing interest recently. Due to an imperfect solid state array manufacturing process, however, defective elements, gain non-uniformity and offset image unavoidably exist in all kinds of flat panel x-ray imaging detectors, which will cause severe streak and ring artifacts in a cone beam reconstruction image and severely degrade image quality. A calibration technique, in which the artifacts resulting from the defective elements, gain non-uniformity and offset image can be reduced significantly, is presented in this paper. The detection of defective elements is distinctively based upon two-dimensional (2D) wavelet analysis. Because of its inherent localizability in recognizing singularities or discontinuities, wavelet analysis possesses the capability of detecting defective elements over a rather large x-ray exposure range, e.g., 20% to approximately 60% of the dynamic range of the detector used. Three-dimensional (3D) images of a low-contrast CT phantom have been reconstructed from projection images acquired by a flat panel x-ray imaging detector with and without calibration process applied. The artifacts caused individually by defective elements, gain non-uniformity and offset image have been separated and investigated in detail, and the correlation with each other have also been exposed explicitly. The investigation is enforced by quantitative analysis of the signal to noise ratio (SNR) and the image uniformity of the cone beam reconstruction image. It has been demonstrated that the ring and streak artifacts resulting from the imperfect performance of a flat panel x-ray imaging detector can be reduced dramatically, and then the image qualities of a cone beam reconstruction image, such as contrast resolution and image uniformity are improved significantly. Furthermore, with little modification, the calibration technique presented here is also applicable

  4. Representation of discrete Steklov-Poincare operator arising in domain decomposition methods in wavelet basis

    SciTech Connect

    Jemcov, A.; Matovic, M.D.

    1996-12-31

    This paper examines the sparse representation and preconditioning of a discrete Steklov-Poincare operator which arises in domain decomposition methods. A non-overlapping domain decomposition method is applied to a second order self-adjoint elliptic operator (Poisson equation), with homogeneous boundary conditions, as a model problem. It is shown that the discrete Steklov-Poincare operator allows sparse representation with a bounded condition number in wavelet basis if the transformation is followed by thresholding and resealing. These two steps combined enable the effective use of Krylov subspace methods as an iterative solution procedure for the system of linear equations. Finding the solution of an interface problem in domain decomposition methods, known as a Schur complement problem, has been shown to be equivalent to the discrete form of Steklov-Poincare operator. A common way to obtain Schur complement matrix is by ordering the matrix of discrete differential operator in subdomain node groups then block eliminating interface nodes. The result is a dense matrix which corresponds to the interface problem. This is equivalent to reducing the original problem to several smaller differential problems and one boundary integral equation problem for the subdomain interface.

  5. Two Layers of Security for Color Video by Matrix Affine Cipher with Two-Dimensional Discrete Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Mishra, D. C.; Sharma, R. K.; Dawar, Mayank; Hanmandlu, M.

    2015-09-01

    In this cryptosystem, we have presented a novel technique for security of video data by using matrix affine cipher (MAC) combined with two-dimensional discrete wavelet transform (2D-DWT). Existing schemes for security of video data provides only one layer of security, but the presented technique provides two layers of security for video data. In this cryptosystem, keys and arrangement of MAC parameters are imperative for decryption process. In this cryptosystem, if the attacker knows about all the exact keys, but has no information about the specific arrangement of MAC parameters, then the information of original video cannot be recovered from the encrypted video. Experimental results on standard examples support to the robustness and appropriateness of the presented cryptosystem of video encryption and decryption. The statistical analysis of the experimental results based on standard examples critically examine the behavior of the proposed technique. Comparison between existing schemes for security of video with the presented cryptosystem is also provided for the robustness of the proposed cryptosystem.

  6. COMPARISON OF THE ACCURACY OF VARIOUS SPATIAL DISCRETIZATION SCHEMES OF THE DISCRETE ORDINATES EQUATIONS IN 2D CARTESIAN GEOMETRY

    SciTech Connect

    Sebastian Schunert; Yousry Y. Azmy; Damien Fournier

    2011-05-01

    We present a comprehensive error estimation of four spatial discretization schemes of the two-dimensional Discrete Ordinates (SN) equations on Cartesian grids utilizing a Method of Manufactured Solution (MMS) benchmark suite based on variants of Larsen’s benchmark featuring different orders of smoothness of the underlying exact solution. The considered spatial discretization schemes include the arbitrarily high order transport methods of the nodal (AHOTN) and characteristic (AHOTC) types, the discontinuous Galerkin Finite Element method (DGFEM) and the recently proposed higher order diamond difference method (HODD) of spatial expansion orders 0 through 3. While AHOTN and AHOTC rely on approximate analytical solutions of the transport equation within a mesh cell, DGFEM and HODD utilize a polynomial expansion to mimick the angular flux profile across each mesh cell. Intuitively, due to the higher degree of analyticity, we expect AHOTN and AHOTC to feature superior accuracy compared with DGFEM and HODD, but at the price of potentially longer grind times and numerical instabilities. The latter disadvantages can result from the presence of exponential terms evaluated at the cell optical thickness that arise from the semianalytical solution process. This work quantifies the order of accuracy and the magnitude of the error of all four discretization methods for different optical thicknesses, scattering ratios and degrees of smoothness of the underlying exact solutions in order to verify or contradict the aforementioned intuitive expectation.

  7. Damage Detection on Sudden Stiffness Reduction Based on Discrete Wavelet Transform

    PubMed Central

    Chen, Bo; Chen, Zhi-wei; Wang, Gan-jun; Xie, Wei-ping

    2014-01-01

    The sudden stiffness reduction in a structure may cause the signal discontinuity in the acceleration responses close to the damage location at the damage time instant. To this end, the damage detection on sudden stiffness reduction of building structures has been actively investigated in this study. The signal discontinuity of the structural acceleration responses of an example building is extracted based on the discrete wavelet transform. It is proved that the variation of the first level detail coefficients of the wavelet transform at damage instant is linearly proportional to the magnitude of the stiffness reduction. A new damage index is proposed and implemented to detect the damage time instant, location, and severity of a structure due to a sudden change of structural stiffness. Numerical simulation using a five-story shear building under different types of excitation is carried out to assess the effectiveness and reliability of the proposed damage index for the building at different damage levels. The sensitivity of the damage index to the intensity and frequency range of measurement noise is also investigated. The made observations demonstrate that the proposed damage index can accurately identify the sudden damage events if the noise intensity is limited. PMID:24991647

  8. Medical image interpolation method based on similarity analysis of discrete wavelet transforms

    NASA Astrophysics Data System (ADS)

    Peng, Shichun; Liu, Jian

    2007-12-01

    A new interpolation method based on multi-resolution technique is presented and used for medical image zooming. The aim of this work is to focus on similarity analysis of adjacent sub-bands provided by Discrete Wavelet Transform (DWT) to enhance the accuracy of the interpolation. First, decompose the original image into sub-bands by the DWT; second, consider the similarity between adjacent sub-bands to calculate the high frequency components; third, use the original image as the low frequency component and apply the inverse DWT to obtain the final interpolation result. Experimental results on magnetic resonance (MR) images and positron emission tomography (PET) images illustrate the effectiveness of the proposed method.

  9. Lamb wave feature extraction using discrete wavelet transformation and Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Ghodsi, Mojtaba; Ziaiefar, Hamidreza; Amiryan, Milad; Honarvar, Farhang; Hojjat, Yousef; Mahmoudi, Mehdi; Al-Yahmadi, Amur; Bahadur, Issam

    2016-04-01

    In this research, a new method is presented for eliciting the proper features for recognizing and classifying the kinds of the defects by guided ultrasonic waves. After applying suitable preprocessing, the suggested method extracts the base frequency band from the received signals by discrete wavelet transform and discrete Fourier transform. This frequency band can be used as a distinctive feature of ultrasonic signals in different defects. Principal Component Analysis with improving this feature and decreasing extra data managed to improve classification. In this study, ultrasonic test with A0 mode lamb wave is used and is appropriated to reduce the difficulties around the problem. The defects under analysis included corrosion, crack and local thickness reduction. The last defect is caused by electro discharge machining (EDM). The results of the classification by optimized Neural Network depicts that the presented method can differentiate different defects with 95% precision and thus, it is a strong and efficient method. Moreover, comparing the elicited features for corrosion and local thickness reduction and also the results of the two's classification clarifies that modeling the corrosion procedure by local thickness reduction which was previously common, is not an appropriate method and the signals received from the two defects are different from each other.

  10. Structural interpretation of the Chuan-Dian block and surrounding regions using discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Xuan, Songbai; Shen, Chongyang; Li, Hui; Tan, Hongbo

    2016-07-01

    The Chuan-Dian tectonic block is a transitional zone between the Tibetan Plateau and the South China block. The crustal structure in this region has been studied in several ways, and in this work we present Bouguer gravity anomaly data with which to investigate the Chuan-Dian block and surrounding regions. Regional and local anomalies are decomposed using a method of discrete wavelet transform (DWT), and furthermore, the relief of the Moho is inverted based on the regional anomalies. Results of the transform show that there is a distinct belt of regional anomalies on the east and southeast margins of the Tibetan Plateau. In addition, there are two distinct gradient belts evident in the maps of the local gravity anomalies. The first of these, in the western Indo-China block, has a north-south strike with high anomalies around this belt, and the second is along the Longmenshan fault zone in the eastern margin of the Tibetan Plateau. The Chuan-Dian block can be divided into two discrete parts, separated by a broad and indistinct boundary observed from the fifth-order DWT detail and Moho relief. The DWT details reveal that parallel anomalies existing in the Indo-China block region were induced by subduction of the Burmese block. We conclude that the clockwise rotation of the Chuan-Dian block was synthetically affected by the extrusion of the Tibetan lithosphere and subduction of the Burmese block.

  11. Discrete wavelet transform-based spatial-temporal approach for quantized video watermarking

    NASA Astrophysics Data System (ADS)

    Faragallah, Osama S.

    2011-07-01

    We propose a new public digital watermarking technique for video copyright protection working in the discrete wavelet transform (DWT) domain. The proposed scheme is a combination of spread-spectrum and quantization-based watermarking. The proposed scheme is characterized by two achievements: (i) a spread-spectrum technique is used to spread the power spectrum of the watermark data and (ii) an error correction code is applied and embeds the watermark with spatial and temporal redundancy. The goal of these two achievements is to increase robustness against attacks, protect the watermark against bit errors, and achieve a very good perceptual quality. The effectiveness of the proposed scheme is verified through a series of experiments in which a number of video and standard image-processing attacks are conducted. The proposed scheme achieves a very good perceptual quality with mean peak signal-to-noise-ratio values of the watermarked videos of >40 dB and high resistance to a large spectrum of attacks.

  12. Discrete wavelet transform to improve guided-wave-based health monitoring of tendons and cables

    NASA Astrophysics Data System (ADS)

    Rizzo, Piervincenzo; Lanza di Scalea, Francesco

    2004-07-01

    Multi-wire steel strands are used in civil structures as pre-stressing tendons in prestressed concrete and as stay-cables in cable-stayed and suspension bridges. Monitoring the structural performance of these components is important to ensure the proper functioning and safety of the entire structure. Among the various NDE techniques that are under investigation for monitoring tendons and cables, the use of ultrasonic guided waves shows good promises. The main advantage of this approach is the possibility for the simultaneous monitoring of loads and detection of defects, such as corrosion and broken wires, by using the same ultrasonic setup. Load monitoring is achieved by measuring the travel time of the wave across a given length of the cable. Defect detection is achieved by measuring the reflections of the wave from the geometrical discontinuities. The new contributions of the current paper are two-fold. First, the study identifies those ultrasonic frequencies propagating with low attenuation for long-range defect detection. Second, the technique is substantially improved by implementing the Discrete Wavelet Transform (DWT) as a data post-processing tool. The data de-noising and data compression abilities of the DWT allow for greater sensitivity, larger ranges and higher monitoring speed. It is shown that the implementation of the DWT in the ultrasonic guided-wave technique becomes necessary for monitoring tendons and cables in the field.

  13. Speckle noise reduction in ultrasound images using a discrete wavelet transform-based image fusion technique.

    PubMed

    Choi, Hyun Ho; Lee, Ju Hwan; Kim, Sung Min; Park, Sung Yun

    2015-01-01

    Here, the speckle noise in ultrasonic images is removed using an image fusion-based denoising method. To optimize the denoising performance, each discrete wavelet transform (DWT) and filtering technique was analyzed and compared. In addition, the performances were compared in order to derive the optimal input conditions. To evaluate the speckle noise removal performance, an image fusion algorithm was applied to the ultrasound images, and comparatively analyzed with the original image without the algorithm. As a result, applying DWT and filtering techniques caused information loss and noise characteristics, and did not represent the most significant noise reduction performance. Conversely, an image fusion method applying SRAD-original conditions preserved the key information in the original image, and the speckle noise was removed. Based on such characteristics, the input conditions of SRAD-original had the best denoising performance with the ultrasound images. From this study, the best denoising technique proposed based on the results was confirmed to have a high potential for clinical application. PMID:26405924

  14. Image denoising with the dual-tree complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Yaseen, Alauldeen S.; Pavlova, Olga N.; Pavlov, Alexey N.; Hramov, Alexander E.

    2016-04-01

    The purpose of this study is to compare image denoising techniques based on real and complex wavelet-transforms. Possibilities provided by the classical discrete wavelet transform (DWT) with hard and soft thresholding are considered, and influences of the wavelet basis and image resizing are discussed. The quality of image denoising for the standard 2-D DWT and the dual-tree complex wavelet transform (DT-CWT) is studied. It is shown that DT-CWT outperforms 2-D DWT at the appropriate selection of the threshold level.

  15. Effective Temperature of 2D Dusty Plasma Liquids at the Discrete Level

    SciTech Connect

    Io, C.-W.; Chan, C.-L.; I Lin

    2007-07-13

    Fluctuation-dissipation theory has been used to measure the effective temperature of non-equilibrium system. In this work, using a 2D dusty plasma liquid formed by the negatively charged fine particles suspending in weakly ionized discharges and sheared by two CW counter parallel laser beams, we measure the micro-transport at the kinetic level. The effective temperatures Teff at different time scales are obtained through the Stokes-Einstein relation which relates the diffusion coefficient (D) and the viscosity ({eta}). The external energy is cascaded from the slow hopping modes to the fast caging modes through mutual coupling, which leads to the higher effective temperature of the slow hopping modes.

  16. An ECG signal compressor based on the selection of optimal threshold levels of discrete wavelet transform coefficients.

    PubMed

    Al-Ajlouni, A F; Abo-Zahhad, M; Ahmed, S M; Schilling, R J

    2008-01-01

    Compression of electrocardiography (ECG) is necessary for efficient storage and transmission of the digitized ECG signals. Discrete wavelet transform (DWT) has recently emerged as a powerful technique for ECG signal compression due to its multi-resolution signal decomposition and locality properties. This paper presents an ECG compressor based on the selection of optimum threshold levels of DWT coefficients in different subbands that achieve maximum data volume reduction while preserving the significant signal morphology features upon reconstruction. First, the ECG is wavelet transformed into m subbands and the wavelet coefficients of each subband are thresholded using an optimal threshold level. Thresholding removes excessively small features and replaces them with zeroes. The threshold levels are defined for each signal so that the bit rate is minimized for a target distortion or, alternatively, the distortion is minimized for a target compression ratio. After thresholding, the resulting significant wavelet coefficients are coded using multi embedded zero tree (MEZW) coding technique. In order to assess the performance of the proposed compressor, records from the MIT-BIH Arrhythmia Database were compressed at different distortion levels, measured by the percentage rms difference (PRD), and compression ratios (CR). The method achieves good CR values with excellent reconstruction quality that compares favourably with various classical and state-of-the-art ECG compressors. Finally, it should be noted that the proposed method is flexible in controlling the quality of the reconstructed signals and the volume of the compressed signals by establishing a target PRD and a target CR a priori, respectively. PMID:19005960

  17. Statistical Analysis of Large Scale Structure by the Discrete Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Pando, Jesus

    1997-10-01

    The discrete wavelet transform (DWT) is developed as a general statistical tool for the study of large scale structures (LSS) in astrophysics. The DWT is used in all aspects of structure identification including cluster analysis, spectrum and two-point correlation studies, scale-scale correlation analysis and to measure deviations from Gaussian behavior. The techniques developed are demonstrated on 'academic' signals, on simulated models of the Lymanα (Lyα) forests, and on observational data of the Lyα forests. This technique can detect clustering in the Ly-α clouds where traditional techniques such as the two-point correlation function have failed. The position and strength of these clusters in both real and simulated data is determined and it is shown that clusters exist on scales as large as at least 20 h-1 Mpc at significance levels of 2-4 σ. Furthermore, it is found that the strength distribution of the clusters can be used to distinguish between real data and simulated samples even where other traditional methods have failed to detect differences. Second, a method for measuring the power spectrum of a density field using the DWT is developed. All common features determined by the usual Fourier power spectrum can be calculated by the DWT. These features, such as the index of a power law or typical scales, can be detected even when the samples are geometrically complex, the samples are incomplete, or the mean density on larger scales is not known (the infrared uncertainty). Using this method the spectra of Ly-α forests in both simulated and real samples is calculated. Third, a method for measuring hierarchical clustering is introduced. Because hierarchical evolution is characterized by a set of rules of how larger dark matter halos are formed by the merging of smaller halos, scale-scale correlations of the density field should be one of the most sensitive quantities in determining the merging history. We show that these correlations can be completely

  18. Decision support system for age-related macular degeneration using discrete wavelet transform.

    PubMed

    Mookiah, Muthu Rama Krishnan; Acharya, U Rajendra; Koh, Joel E W; Chua, Chua Kuang; Tan, Jen Hong; Chandran, Vinod; Lim, Choo Min; Noronha, Kevin; Laude, Augustinus; Tong, Louis

    2014-09-01

    Age-related macular degeneration (AMD) affects the central vision and subsequently may lead to visual loss in people over 60 years of age. There is no permanent cure for AMD, but early detection and successive treatment may improve the visual acuity. AMD is mainly classified into dry and wet type; however, dry AMD is more common in aging population. AMD is characterized by drusen, yellow pigmentation, and neovascularization. These lesions are examined through visual inspection of retinal fundus images by ophthalmologists. It is laborious, time-consuming, and resource-intensive. Hence, in this study, we have proposed an automated AMD detection system using discrete wavelet transform (DWT) and feature ranking strategies. The first four-order statistical moments (mean, variance, skewness, and kurtosis), energy, entropy, and Gini index-based features are extracted from DWT coefficients. We have used five (t test, Kullback-Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance, receiver operating characteristics curve-based, and Wilcoxon) feature ranking strategies to identify optimal feature set. A set of supervised classifiers namely support vector machine (SVM), decision tree, [Formula: see text]-nearest neighbor ([Formula: see text]-NN), Naive Bayes, and probabilistic neural network were used to evaluate the highest performance measure using minimum number of features in classifying normal and dry AMD classes. The proposed framework obtained an average accuracy of 93.70%, sensitivity of 91.11%, and specificity of 96.30% using KLD ranking and SVM classifier. We have also formulated an AMD Risk Index using selected features to classify the normal and dry AMD classes using one number. The proposed system can be used to assist the clinicians and also for mass AMD screening programs. PMID:25112273

  19. Functional decomposition of the human ERG based on the discrete wavelet transform.

    PubMed

    Gauvin, Mathieu; Little, John M; Lina, Jean-Marc; Lachapelle, Pierre

    2015-01-01

    The morphology of the electroretinogram (ERG) can be altered as a result of normal and pathological processes of the retina. However, given that the ERG is almost solely assessed in terms of its amplitude and timing, defining the shape of the ERG waveform so that subtle, physiologically driven, morphological changes can be systematically and reproducibly detected remains a challenging problem. We examined if the discrete wavelet transform (DWT) could meet this challenge. Normal human photopic ERGs evoked to a broad range of luminance intensities (to yield waveforms of various shapes, amplitudes, and timings) were analyzed using DWT descriptors of the ERG. Luminance-response curves that were generated using the various DWT descriptors revealed distinct (p < 0.05) luminance-dependence patterns, indicating that the stimulus luminance differently modulates the various time-frequency components of the ERG and thus its morphology. The latter represents the first attempt to study the luminance-dependence of ERG descriptors obtained with the DWT. Analyses of ERGs obtained from patients affected with ON or OFF retinal pathway anomalies were also presented. We show here for the first time that distinct time-frequency descriptors can be specifically associated to the function of the ON and OFF cone pathway. Therefore, in this study, the DWT revealed reproducible, physiologically meaningful and diagnostically relevant descriptors of the ERG over a wide range of signal amplitudes and morphologies. The DWT analysis thus represents a valuable addition to the electrophysiologist's armamentarium that will improve the quantification and interpretation of normal and pathological ERG responses. PMID:26746684

  20. Some notes on the application of discrete wavelet transform in image processing

    SciTech Connect

    Caria, Egydio C. S.; Costa A, Trajano A. de; Rebello, Joao Marcos A.

    2011-06-23

    Mathematical transforms are used in signal processing in order to extract what is known as 'hidden' information. One of these mathematical tools is the Discrete Wavelet Transform (DWT), which has been increasingly employed in non-destructive testing and, more specifically, in image processing. The main concern in the present work is to employ DWT to suppress noise without losing relevant image features. However, some aspects must be taken into consideration when applying DWT in image processing, mainly in the case of weld radiographs, in order to achieve consistent results. Three topics were selected as representative of these difficulties, as follows: 1) How can image matrix be filled to fit the 2{sup n} lines and 2{sup n} rows requirement? 2) How can the most suitable decomposition level of the DWT function and the correct choice of their coefficient suppression be selected? 3) Is there any influence of the scanning direction and the weld radiograph image, e.g., longitudinal or transversal, on the final processing image? It is known that some artifacts may be present in weld radiograph images. Indeed, the weld surface is frequently rough and rippled, what can be seen as gray level variation on the radiograph, being sometimes mistaken as defective areas. Depending on the position of these artifacts, longitudinal or transversal to the weld bead, they may have different influences on the image processing procedure. This influence is clearly seen in the distribution of the DWT Function coefficients. In the present work, examples of two weld radiographs of quite different image quality were given in order to exemplify it.

  1. Some Notes on the Application of Discrete Wavelet Transform in Image Processing

    NASA Astrophysics Data System (ADS)

    Caria, Egydio C. S.; de A. Costa, Trajano A.; Rebello, João Marcos A.

    2011-06-01

    Mathematical transforms are used in signal processing in order to extract what is known as "hidden" information. One of these mathematical tools is the Discrete Wavelet Transform (DWT), which has been increasingly employed in non-destructive testing and, more specifically, in image processing. The main concern in the present work is to employ DWT to suppress noise without losing relevant image features. However, some aspects must be taken into consideration when applying DWT in image processing, mainly in the case of weld radiographs, in order to achieve consistent results. Three topics were selected as representative of these difficulties, as follows: 1) How can image matrix be filled to fit the 2n lines and 2n rows requirement? 2) How can the most suitable decomposition level of the DWT function and the correct choice of their coefficient suppression be selected? 3) Is there any influence of the scanning direction and the weld radiograph image, e.g., longitudinal or transversal, on the final processing image? It is known that some artifacts may be present in weld radiograph images. Indeed, the weld surface is frequently rough and rippled, what can be seen as gray level variation on the radiograph, being sometimes mistaken as defective areas. Depending on the position of these artifacts, longitudinal or transversal to the weld bead, they may have different influences on the image processing procedure. This influence is clearly seen in the distribution of the DWT Function coefficients. In the present work, examples of two weld radiographs of quite different image quality were given in order to exemplify it.

  2. A Robust and Non-Blind Watermarking Scheme for Gray Scale Images Based on the Discrete Wavelet Transform Domain

    NASA Astrophysics Data System (ADS)

    Bakhouche, A.; Doghmane, N.

    2008-06-01

    In this paper, a new adaptive watermarking algorithm is proposed for still image based on the wavelet transform. The two major applications for watermarking are protecting copyrights and authenticating photographs. Our robust watermarking [3] [22] is used for copyright protection owners. The main reason for protecting copyrights is to prevent image piracy when the provider distributes the image on the Internet. Embed watermark in low frequency band is most resistant to JPEG compression, blurring, adding Gaussian noise, rescaling, rotation, cropping and sharpening but embedding in high frequency is most resistant to histogram equalization, intensity adjustment and gamma correction. In this paper, we extend the idea to embed the same watermark in two bands (LL and HH bands or LH and HL bands) at the second level of Discrete Wavelet Transform (DWT) decomposition. Our generalization includes all the four bands (LL, HL, LH, and HH) by modifying coefficients of the all four bands in order to compromise between acceptable imperceptibility level and attacks' resistance.

  3. Fast Fourier and discrete wavelet transforms applied to sensorless vector control induction motor for rotor bar faults diagnosis.

    PubMed

    Talhaoui, Hicham; Menacer, Arezki; Kessal, Abdelhalim; Kechida, Ridha

    2014-09-01

    This paper presents new techniques to evaluate faults in case of broken rotor bars of induction motors. Procedures are applied with closed-loop control. Electrical and mechanical variables are treated using fast Fourier transform (FFT), and discrete wavelet transform (DWT) at start-up and steady state. The wavelet transform has proven to be an excellent mathematical tool for the detection of the faults particularly broken rotor bars type. As a performance, DWT can provide a local representation of the non-stationary current signals for the healthy machine and with fault. For sensorless control, a Luenberger observer is applied; the estimation rotor speed is analyzed; the effect of the faults in the speed pulsation is compensated; a quadratic current appears and used for fault detection. PMID:25004798

  4. Comparative analysis of feature extraction (2D FFT and wavelet) and classification (Lp metric distances, MLP NN, and HNeT) algorithms for SAR imagery

    NASA Astrophysics Data System (ADS)

    Sandirasegaram, Nicholas; English, Ryan

    2005-05-01

    The performance of several combinations of feature extraction and target classification algorithms is analyzed for Synthetic Aperture Radar (SAR) imagery using the standard Moving and Stationary Target Acquisition and Recognition (MSTAR) evaluation method. For feature extraction, 2D Fast Fourier Transform (FFT) is used to extract Fourier coefficients (frequency information) while 2D wavelet decomposition is used to extract wavelet coefficients (time-frequency information), from which subsets of characteristic in-class "invariant" coefficients are developed. Confusion matrices and Receiver Operating Characteristic (ROC) curves are used to evaluate and compare combinations of these characteristic coefficients with several classification methods, including Lp metric distances, a Multi Layer Perceptron (MLP) Neural Network (NN) and AND Corporation's Holographic Neural Technology (HNeT) classifier. The evaluation method examines the trade-off between correct detection rate and false alarm rate for each combination of feature-classifier systems. It also measures correct classification, misclassification and rejection rates for a 90% detection rate. Our analysis demonstrates the importance of feature and classifier selection in accurately classifying new target images.

  5. Estimation of moisture and oil content of in-shell nuts with a capacitance sensor using discrete wavelet analysis

    NASA Astrophysics Data System (ADS)

    Kandala, Chari V.; Sundaram, Jaya; Govindarajan, K. N.; Butts, Chris L.; Subbiah, Jeyam

    2009-03-01

    Moisture and oil contents are important quality factors often measured and monitored in the processing and storage of food products such as corn and peanuts. For estimating these parameters for peanuts nondestructively a parallel-plate capacitance sensor was used in conjunction with an impedance analyzer. Impedance, phase angle and dissipation factor were measured for the parallel-plate system, holding the in-shell peanut samples between its plates, at frequencies ranging between 1MHz and 30 MHz in intervals of 0.5 MHz. The acquired signals were analyzed with discrete wavelet analysis. The signals were decomposed to 6 levels using Daubechies mother wavelet. The decomposition coefficients of the sixth level were passed onto a stepwise variable selection routine to select significant variables. A linear regression was developed using only the significant variables to predict the moisture and oil content of peanut pods (inshell peanuts) from the impedance measurements. The wavelet analysis yielded similar R2 values with fewer variables as compared to multiple linear and partial least squares regressions. The estimated values were found to be in good agreement with the standard values for the samples tested. Ability to estimate the moisture and oil contents in peanuts without shelling them will be of considerable help to the peanut industry.

  6. A multi-resolution filtered-x LMS algorithm based on discrete wavelet transform for active noise control

    NASA Astrophysics Data System (ADS)

    Qiu, Z.; Lee, C.-M.; Xu, Z. H.; Sui, L. N.

    2016-01-01

    We have developed a new active control algorithm based on discrete wavelet transform (DWT) for both stationary and non-stationary noise control. First, the Mallat pyramidal algorithm is introduced to implement the DWT, which can decompose the reference signal into several sub-bands with multi-resolution and provides a perfect reconstruction (PR) procedure. To reduce the extra computational complexity introduced by DWT, an efficient strategy is proposed that updates the adaptive filter coefficients in the frequency domainDeepthi B.B using a fast Fourier transform (FFT). Based on the reference noise source, a 'Haar' wavelet is employed and by decomposing the noise signal into two sub-band (3-band), the proposed DWT-FFT-based FXLMS (DWT-FFT-FXLMS) algorithm has greatly reduced complexity and a better convergence performance compared to a time domain filtered-x least mean square (TD-FXLMS) algorithm. As a result of the outstanding time-frequency characteristics of wavelet analysis, the proposed DWT-FFT-FXLMS algorithm can effectively cancel both stationary and non-stationary noise, whereas the frequency domain FXLMS (FD-FXLMS) algorithm cannot approach this point.

  7. Modal analysis of delaminated composite plates using the finite element method and damage detection via combined Ritz/2D-wavelet analysis

    NASA Astrophysics Data System (ADS)

    Gallego, A.; Moreno-García, P.; Casanova, Cesar F.

    2013-06-01

    Structural studies to find defects (in particular delaminations) in composite plates have been very prevalent in the Structural Health Monitoring field. The present work develops a new method to detect delaminations in CFRP (Carbon Fiber Reinforced Polymer) plates. In this paper the method is validated with numerical simulations, which come to support its adequacy for use with real acquisition data. This is done firstly through the implementation of a delaminated plate finite element. Using the classical lamination plate theory, delamination is considered in the kinematic equations through jump functions and additional degrees of freedom. The element allows the introduction of nd delaminations through its thickness. Classical QMITC (Quadrilateral Mixed Interpolation Tensorial Components) and DKQ (Discrete Kirchhoff Quadrilateral) elements are used for the membrane and bending FEM (Finite Element Method) formulation. Second, using the vibration modes obtained with the FEM, a damage location technique based on the variational Ritz method and Wavelet Analysis is proposed. The approach has the advantage of requiring only damaged modes and not the healthy ones. Both FEM simulations and Ritz/Wavelet damage detection schemes are applied in an orthotropic CFRP plate with the stacking sequence [0/90]3S. In addition, the influence of delamination thickness position, boundary conditions and added noise (in order to simulate experimental measures) was studied.

  8. Automated diagnosis of epileptic electroencephalogram using independent component analysis and discrete wavelet transform for different electroencephalogram durations.

    PubMed

    Acharya, U R; Yanti, R; Swapna, G; Sree, V S; Martis, R J; Suri, J S

    2013-03-01

    Epilepsy is a disorder of the brain depicted by recurrent seizures. Electroencephalogram signals can be used to study the characteristics of epileptic seizures. In this study, we propose a method for the automated classification of electroencephalogram into normal, interictal and ictal classes using 6, 12, 18 and 23.6 s of data. We employed discrete wavelet transform to decompose electroencephalogram signals into frequency sub-bands. These discrete wavelet transform coefficients were then subjected to independent component analysis for reducing the data dimension. The independent component analysis features were then fed to six classifiers, namely, decision tree, K-nearest neighbor, probabilistic neural network, fuzzy, Gaussian mixture model and support vector machine to select the best classifier. We observed that the support vector machine classifier with radial basis function kernel function gave the best results with an average accuracy of 96%, sensitivity of 96% and specificity of 97% for 23.6 s of electroencephalogram data. Our results show that as the duration of the data increases, the classification accuracy increases. This proposed technique can be used as an automatic seizure monitoring software to aid the doctors in providing timely quality care for the patients suffering from epilepsy. PMID:23662339

  9. A Mass Conservative Method for Integrating 1-D Vadose Zone Simulations Discretized in the Moisture Content Domain with 2-D Groundwater Interflow Simulations

    NASA Astrophysics Data System (ADS)

    Steinke, R. C.

    2015-12-01

    Discretizing 1-D vadose zone simulations in the moisture content domain, such as is done in the Talbot-Ogden method, provides some advantages over discretizing in depth, such as is done in Richards' Equation. These advantages include inherent mass conservation and lower computational cost. However, doing so presents a difficulty for integration with 2-D groundwater interflow simulations. The equations of motion of the bins of discrete moisture content take the depth of the water table as an input. They do not produce it as an output. Finding the correct water table depth so that the groundwater recharge from the 1-D vadose zone simulation mass balances with the lateral flows from the 2-D groundwater interflow simulation was a previously unsolved problem. In this paper we present a net-groundwater-recharge method to solve to this problem and compare it with the source-term method used with Richards' Equation.

  10. The Discrete Wavelet Transform with Lifting : A Step by Step Introduction

    SciTech Connect

    Elofson, C

    2004-08-26

    There is a great deal of information pertaining to wavelets readily available from various sources; several of the more recent sources describe the lifting technique for constructing wavelets. The tutorial paper by Sweldens and Schr{umlt o}der [1] gives a thorough explanation of the lifting approach for Haar bases. While it provides an excellent introduction to the topic, it is not immediately obvious how this approach is extended to nonuniformly spaced data on finite intervals. The present paper provides intermediate steps that supplement the material in [1]. After working through the following discussion, the reader should have no problem deriving the relevant equations presented in Sweldens and Schr{umlt o}der's article. Because of the abundance of information on the Haar basis, this discussion will instead work through the steps using a linear basis set.

  11. Application of the Discrete Wavelet Transform to SEM and AFM Micrographs for Quantitative Analysis of Complex Surfaces.

    PubMed

    Workman, Michael J; Serov, Alexey; Halevi, Barr; Atanassov, Plamen; Artyushkova, Kateryna

    2015-05-01

    The discrete wavelet transform (DWT) has found significant utility in process monitoring, filtering, and feature isolation of SEM, AFM, and optical images. Current use of the DWT for surface analysis assumes initial knowledge of the sizes of the features of interest in order to effectively isolate and analyze surface components. Current methods do not adequately address complex, heterogeneous surfaces in which features across multiple size ranges are of interest. Further, in situations where structure-to-property relationships are desired, the identification of features relevant for the function of the material is necessary. In this work, the DWT is examined as a tool for quantitative, length-scale specific surface metrology without prior knowledge of relevant features or length-scales. A new method is explored for determination of the best wavelet basis to minimize variation in roughness and skewness measurements with respect to change in position and orientation of surface features. It is observed that the size of the wavelet does not directly correlate with the size of features on the surface, and a method to measure the true length-scale specific roughness of the surface is presented. This method is applied to SEM and AFM images of non-precious metal catalysts, yielding new length-scale specific structure-to-property relationships for chemical speciation and fuel cell performance. The relationship between SEM and AFM length-scale specific roughness is also explored. Evidence is presented that roughness distributions of SEM images, as measured by the DWT, is representative of the true surface roughness distribution obtained from AFM. PMID:25879382

  12. Autocorrelation based denoising of manatee vocalizations using the undecimated discrete wavelet transform.

    PubMed

    Gur, Berke M; Niezrecki, Christopher

    2007-07-01

    Recent interest in the West Indian manatee (Trichechus manatus latirostris) vocalizations has been primarily induced by an effort to reduce manatee mortality rates due to watercraft collisions. A warning system based on passive acoustic detection of manatee vocalizations is desired. The success and feasibility of such a system depends on effective denoising of the vocalizations in the presence of high levels of background noise. In the last decade, simple and effective wavelet domain nonlinear denoising methods have emerged as an alternative to linear estimation methods. However, the denoising performances of these methods degrades considerably with decreasing signal-to-noise ratio (SNR) and therefore are not suited for denoising manatee vocalizations in which the typical SNR is below 0 dB. Manatee vocalizations possess a strong harmonic content and a slow decaying autocorrelation function. In this paper, an efficient denoising scheme that exploits both the autocorrelation function of manatee vocalizations and effectiveness of the nonlinear wavelet transform based denoising algorithms is introduced. The suggested wavelet-based denoising algorithm is shown to outperform linear filtering methods, extending the detection range of vocalizations. PMID:17614478

  13. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes.

    PubMed

    Casson, Alexander J

    2015-01-01

    Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit which approximates the output of the Discrete Wavelet Transform (DWT) for use in ultra low power wearable sensors. Analog filters are used for the DWT filters and it is demonstrated how these generate analog domain DWT-like information that embeds information from Butterworth and Daubechies maximally flat mother wavelet responses. The Analog DWT is realised in hardware via g(m)C circuits, designed to operate from a 1.3 V coin cell battery, and provide DWT-like signal processing using under 115 nW of power when implemented in a 0.18 μm CMOS process. Practical examples demonstrate the effective use of the new Analog DWT on ECG (electrocardiogram) and EEG (electroencephalogram) signals recorded from humans. PMID:26694414

  14. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes

    PubMed Central

    Casson, Alexander J.

    2015-01-01

    Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit which approximates the output of the Discrete Wavelet Transform (DWT) for use in ultra low power wearable sensors. Analog filters are used for the DWT filters and it is demonstrated how these generate analog domain DWT-like information that embeds information from Butterworth and Daubechies maximally flat mother wavelet responses. The Analog DWT is realised in hardware via gmC circuits, designed to operate from a 1.3 V coin cell battery, and provide DWT-like signal processing using under 115 nW of power when implemented in a 0.18 μm CMOS process. Practical examples demonstrate the effective use of the new Analog DWT on ECG (electrocardiogram) and EEG (electroencephalogram) signals recorded from humans. PMID:26694414

  15. A new method based on Adaptive Discrete Wavelet Entropy Energy and Neural Network Classifier (ADWEENN) for recognition of urine cells from microscopic images independent of rotation and scaling.

    PubMed

    Avci, Derya; Leblebicioglu, Mehmet Kemal; Poyraz, Mustafa; Dogantekin, Esin

    2014-02-01

    So far, analysis and classification of urine cells number has become an important topic for medical diagnosis of some diseases. Therefore, in this study, we suggest a new technique based on Adaptive Discrete Wavelet Entropy Energy and Neural Network Classifier (ADWEENN) for Recognition of Urine Cells from Microscopic Images Independent of Rotation and Scaling. Some digital image processing methods such as noise reduction, contrast enhancement, segmentation, and morphological process are used for feature extraction stage of this ADWEENN in this study. Nowadays, the image processing and pattern recognition topics have come into prominence. The image processing concludes operation and design of systems that recognize patterns in data sets. In the past years, very difficulty in classification of microscopic images was the deficiency of enough methods to characterize. Lately, it is seen that, multi-resolution image analysis methods such as Gabor filters, discrete wavelet decompositions are superior to other classic methods for analysis of these microscopic images. In this study, the structure of the ADWEENN method composes of four stages. These are preprocessing stage, feature extraction stage, classification stage and testing stage. The Discrete Wavelet Transform (DWT) and adaptive wavelet entropy and energy is used for adaptive feature extraction in feature extraction stage to strengthen the premium features of the Artificial Neural Network (ANN) classifier in this study. Efficiency of the developed ADWEENN method was tested showing that an avarage of 97.58% recognition succes was obtained. PMID:24493072

  16. A Piecewise Linear Discontinuous Finite Element Spatial Discretization of the Transport Equation in 2D Cylindrical Geometry

    SciTech Connect

    Bailey, T S; Adams, M L; Chang, J H

    2008-10-01

    We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional cylindrical (RZ) geometry for arbitrary polygonal meshes. This discretization is a discontinuous finite element method that utilizes the piecewise linear basis functions developed by Stone and Adams. We describe an asymptotic analysis that shows this method to be accurate for many problems in the thick diffusion limit on arbitrary polygons, allowing this method to be applied to radiative transfer problems with these types of meshes. We also present numerical results for multiple problems on quadrilateral grids and compare these results to the well-known bi-linear discontinuous finite element method.

  17. Homogeneous hierarchies: A discrete analogue to the wavelet-based multiresolution approximation

    SciTech Connect

    Mirkin, B.

    1996-12-31

    A correspondence between discrete binary hierarchies and some orthonormal bases of the n-dimensional Euclidean space can be applied to such problems as clustering, ordering, identifying/testing in very large data bases, or multiresolution image/signal processing. The latter issue is considered in the paper. The binary hierarchy based multiresolution theory is expected to lead to effective methods for data processing because of relaxing the regularity restrictions of the classical theory.

  18. Fermi-surface reconstruction from two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) data using maximum-likelihood fitting of wavelet-like functions

    NASA Astrophysics Data System (ADS)

    G, A., Major; Fretwell, H. M.; Dugdale, S. B.; Alam, M. A.

    1998-11-01

    A novel method for reconstructing the Fermi surface from experimental two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) projections is proposed. In this algorithm, the 3D electron momentum-density distribution is expanded in terms of a basis of wavelet-like functions. The parameters of the model, the wavelet coefficients, are determined by maximizing the likelihood function corresponding to the experimental data and the projections calculated from the model. In contrast to other expansions, in the case of that in terms of wavelets a relatively small number of model parameters are sufficient for representing the relevant parts of the 3D distribution, thus keeping computation times reasonably short. Unlike other reconstruction methods, this algorithm takes full account of the statistical information content of the data and therefore may help to reduce the amount of time needed for data acquisition. An additional advantage of wavelet expansion may be the possibility of retrieving the Fermi surface directly from the wavelet coefficients rather than indirectly using the reconstructed 3D distribution.

  19. [Hyper spectral estimation method for soil alkali hydrolysable nitrogen content based on discrete wavelet transform and genetic algorithm in combining with partial least squares DWT-GA-PLS)].

    PubMed

    Chen, Hong-Yan; Zhao, Geng-Xing; Li, Xi-Can; Wang, Xiang-Feng; Li, Yu-Ling

    2013-11-01

    Taking the Qihe County in Shandong Province of East China as the study area, soil samples were collected from the field, and based on the hyperspectral reflectance measurement of the soil samples and the transformation with the first deviation, the spectra were denoised and compressed by discrete wavelet transform (DWT), the variables for the soil alkali hydrolysable nitrogen quantitative estimation models were selected by genetic algorithms (GA), and the estimation models for the soil alkali hydrolysable nitrogen content were built by using partial least squares (PLS) regression. The discrete wavelet transform and genetic algorithm in combining with partial least squares (DWT-GA-PLS) could not only compress the spectrum variables and reduce the model variables, but also improve the quantitative estimation accuracy of soil alkali hydrolysable nitrogen content. Based on the 1-2 levels low frequency coefficients of discrete wavelet transform, and under the condition of large scale decrement of spectrum variables, the calibration models could achieve the higher or the same prediction accuracy as the soil full spectra. The model based on the second level low frequency coefficients had the highest precision, with the model predicting R2 being 0.85, the RMSE being 8.11 mg x kg(-1), and RPD being 2.53, indicating the effectiveness of DWT-GA-PLS method in estimating soil alkali hydrolysable nitrogen content. PMID:24564148

  20. FPGA-based smart sensor for drought stress detection in tomato plants using novel physiological variables and discrete wavelet transform.

    PubMed

    Duarte-Galvan, Carlos; Romero-Troncoso, Rene de J; Torres-Pacheco, Irineo; Guevara-Gonzalez, Ramon G; Fernandez-Jaramillo, Arturo A; Contreras-Medina, Luis M; Carrillo-Serrano, Roberto V; Millan-Almaraz, Jesus R

    2014-01-01

    Soil drought represents one of the most dangerous stresses for plants. It impacts the yield and quality of crops, and if it remains undetected for a long time, the entire crop could be lost. However, for some plants a certain amount of drought stress improves specific characteristics. In such cases, a device capable of detecting and quantifying the impact of drought stress in plants is desirable. This article focuses on testing if the monitoring of physiological process through a gas exchange methodology provides enough information to detect drought stress conditions in plants. The experiment consists of using a set of smart sensors based on Field Programmable Gate Arrays (FPGAs) to monitor a group of plants under controlled drought conditions. The main objective was to use different digital signal processing techniques such as the Discrete Wavelet Transform (DWT) to explore the response of plant physiological processes to drought. Also, an index-based methodology was utilized to compensate the spatial variation inside the greenhouse. As a result, differences between treatments were determined to be independent of climate variations inside the greenhouse. Finally, after using the DWT as digital filter, results demonstrated that the proposed system is capable to reject high frequency noise and to detect drought conditions. PMID:25302811

  1. Damage Detection in Wind Turbine Towers using a Finite Element Model and Discrete Wavelet Transform of Strain Signals

    NASA Astrophysics Data System (ADS)

    Kenna, A.; Basu, B.

    2015-07-01

    Wind turbine support towers at heights in excess of 90m are nowadays being formed in steel, concrete and hybrid concrete and steel structures. As is the case for all towers of this height, the towers will be assembled using a number of segments, which will be connected in some way. These local connections are to be viewed as areas of potential local weakness in the overall tower assembly and require care in terms of design and construction. This work concentrates on identifying local damage which can occur at an interface connection by either material or bolt/tendon failure. Spatial strain patterns will be used to try to identify local damage areas around a 3 dimensional tower shell. A Finite Element (FE) model will be assembled which will describe a hybrid tower as a continuum of four-noded, two-dimensional Reisser- Mindlin shell elements. In order to simulate local damage, an element around the circumference of the tower interface will be subjected to a reduced stiffness. Strain patterns will be observed both in the undamaged and damaged states and these signals will be processed using a Discrete Wavelet Transform (DWT) algorithm to investigate if the damaged element can be identified.

  2. Efficiency and Flexibility of Fingerprint Scheme Using Partial Encryption and Discrete Wavelet Transform to Verify User in Cloud Computing

    PubMed Central

    Yassin, Ali A.

    2014-01-01

    Now, the security of digital images is considered more and more essential and fingerprint plays the main role in the world of image. Furthermore, fingerprint recognition is a scheme of biometric verification that applies pattern recognition techniques depending on image of fingerprint individually. In the cloud environment, an adversary has the ability to intercept information and must be secured from eavesdroppers. Unluckily, encryption and decryption functions are slow and they are often hard. Fingerprint techniques required extra hardware and software; it is masqueraded by artificial gummy fingers (spoof attacks). Additionally, when a large number of users are being verified at the same time, the mechanism will become slow. In this paper, we employed each of the partial encryptions of user's fingerprint and discrete wavelet transform to obtain a new scheme of fingerprint verification. Moreover, our proposed scheme can overcome those problems; it does not require cost, reduces the computational supplies for huge volumes of fingerprint images, and resists well-known attacks. In addition, experimental results illustrate that our proposed scheme has a good performance of user's fingerprint verification. PMID:27355051

  3. FPGA-Based Smart Sensor for Drought Stress Detection in Tomato Plants Using Novel Physiological Variables and Discrete Wavelet Transform

    PubMed Central

    Duarte-Galvan, Carlos; de J. Romero-Troncoso, Rene; Torres-Pacheco, Irineo; Guevara-Gonzalez, Ramon G.; Fernandez-Jaramillo, Arturo A.; Contreras-Medina, Luis M.; Carrillo-Serrano, Roberto V.; Millan-Almaraz, Jesus R.

    2014-01-01

    Soil drought represents one of the most dangerous stresses for plants. It impacts the yield and quality of crops, and if it remains undetected for a long time, the entire crop could be lost. However, for some plants a certain amount of drought stress improves specific characteristics. In such cases, a device capable of detecting and quantifying the impact of drought stress in plants is desirable. This article focuses on testing if the monitoring of physiological process through a gas exchange methodology provides enough information to detect drought stress conditions in plants. The experiment consists of using a set of smart sensors based on Field Programmable Gate Arrays (FPGAs) to monitor a group of plants under controlled drought conditions. The main objective was to use different digital signal processing techniques such as the Discrete Wavelet Transform (DWT) to explore the response of plant physiological processes to drought. Also, an index-based methodology was utilized to compensate the spatial variation inside the greenhouse. As a result, differences between treatments were determined to be independent of climate variations inside the greenhouse. Finally, after using the DWT as digital filter, results demonstrated that the proposed system is capable to reject high frequency noise and to detect drought conditions. PMID:25302811

  4. Wavelet analysis and scaling properties of time series

    NASA Astrophysics Data System (ADS)

    Manimaran, P.; Panigrahi, Prasanta K.; Parikh, Jitendra C.

    2005-10-01

    We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior.

  5. Wavelet analysis and scaling properties of time series.

    PubMed

    Manimaran, P; Panigrahi, Prasanta K; Parikh, Jitendra C

    2005-10-01

    We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior. PMID:16383481

  6. Discrete hexamer water clusters and 2D water layer trapped in three luminescent Ag/tetramethylpyrazine/benzene-dicarboxylate hosts: 1D chain, 2D layer and 3D network

    NASA Astrophysics Data System (ADS)

    Mei, Hong-Xin; Zhang, Ting; Huang, Hua-Qi; Huang, Rong-Bin; Zheng, Lan-Sun

    2016-03-01

    Three mix-ligand Ag(I) coordination compounds, namely, {[Ag10(tpyz) 5(L1) 5(H2 O)2].(H2 O)4}n (1, tpyz = 2,3,4,5-tetramethylpyrazine, H2 L1 = phthalic acid), [Ag4(tpyz) 2(L2) 2(H2 O)].(H2 O)5}n (2, H2 L2 = isophthalic acid) {[Ag2(tpyz) 2(L3) (H2 O)4].(H2 O)8}n (3, H2 L3 = terephthalic acid), have been synthesized and characterized by elemental analysis, IR, PXRD and X-ray single-crystal diffraction. 1 exhibits a 2D layer which can be simplified as a (4,4) net. 2 is a 3D network which can be simplified as a (3,3)-connected 2-nodal net with a point symbol of {102.12}{102}. 3 consists of linear [Ag(tpyz) (H2 O)2]n chain. Of particular interest, discrete hexamer water clusters were observed in 1 and 2, while a 2D L10(6) water layer exists in 3. The results suggest that the benzene dicarboxylates play pivotal roles in the formation of the different host architectures as well as different water aggregations. Moreover, thermogravimetric analysis (TGA) and emissive behaviors of these compounds were investigated.

  7. 2-D discrete element modeling of the fault zone considering the time-dependent increase of contact area

    NASA Astrophysics Data System (ADS)

    Igami, M.; Shibazaki, B.; Nakama, Y.

    2002-12-01

    Particle based simulations such as the lattice solid modeling (Mora and Place, 1994; Abe et al., 2002) and the modeling using the discrete element method (Morgan and Boettcher, 1999) are very useful for investigating frictional behavior of the fault zone. We investigate the fault behavior using the discrete element method considering the effect of the time-dependent increase of contact area between particles. In our model the tangential force due to the frictional contact is assumed to be SA, where S is the shear stress within microcontacts and A is the contact area. For stationary contact, the contact area is assumed to increase with time following the equation A(t)=A0}(1+k{BT/E ln (1+t/t0)) (Brechet and Estrin, 1994), where t0 is an increasing function of temperature T. On the other hand, when sliding velocity V is not equal to 0, t is replaced with D c/V. Based on the elastic contact theory, A0 is assumed to be in proportion to Fn3/2, where Fn is the normal force that acts on each grain. As a test, we perform velocity step experiments. We consider the particle size distribution of r max/r min=2, where r max and r min represent maximum and minimum particle size, respectively. We found that stability of the fault zone is controlled by T. For small T or t0, velocity weakening behavior was observed. When T or t0 is large, however, no velocity weakening was observed. Our model is able to include the increase of contact area due to solution-transfer proposed by Hickman and Evans (1992). We also report the results of numerical simulation using the functional form of contact area when the solution-transfer is at work within microcontacts.

  8. Comparison of short-time Fourier transform and Eigenvector MUSIC methods using discrete wavelet transform for diagnosis of atherosclerosis.

    PubMed

    Latifoğlu, Fatma; Kara, Sadik; Imal, Erkan

    2009-06-01

    In this paper, a more effective use of Doppler techniques is presented for the purpose of diagnosing atherosclerosis in its early stages using the carotid artery Doppler signals. The power spectral density (PSD) graphics are obtained by applying the short-time Fourier transform (STFT)-Welch and the Eigenvector MUSIC methods to the discrete wavelet transform (DWT) of Doppler signals. The PSDs for the fourth approximation component (A4) of both methods estimated that the patients with atherosclerosis in its early phase had lower maximum frequency components. On the other hand, the healthy subjects had higher maximum frequency components. The area under the curve (AUC), which belongs to the receiver operating characteristic (ROC) curve for the frequency level of the maximum PSDs of the A4 approximation obtained from the STFT modeling, is computed as 0.97. The AUC for the MUSIC modeling is computed as 0.996. The AUC belonging to the ROC curve for the higher maximum frequency component is computed as 0.87. The AUC belonging to the ROC curve for the test parameter of the frequency level of the maximum PSDs derived from the MUSIC modeling is determined to be 0.882. The results of this study clearly demonstrate that it is possible to distinguish between the healthy people and the patients with atherosclerosis by using the frequency level of the maximum PSDs for the A4 approximation. Furthermore, it is concluded that the power of Eigenvector-MUSIC method in terms of the resolution of the high frequencies is better than that of the STFT methods. PMID:19408452

  9. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  10. Numerical analysis and synthesis of 2D quasi-optical reflectors and beam waveguides based on an integral-equation approach with Nystrom's discretization.

    PubMed

    Nosich, Andrey A; Gandel, Yuriy V; Magath, Thore; Altintas, Ayhan

    2007-09-01

    Considered is the beam wave guidance and scattering by 2D quasi-optical reflectors modeling the components of beam waveguides. The incident field is taken as the complex-source-point field to simulate a finite-width beam generated by a small-aperture source. A numerical solution is obtained from the coupled singular integral equations (SIEs) for the surface currents on reflectors, discretized by using the recently introduced Nystrom-type quadrature formulas. This analysis is applied to study what effect the edge illumination has on the performance of a chain of confocal elliptic reflectors. We also develop a semianalytical approach for shaped reflector synthesis after a prescribed near-field pattern. Here a new point is the use of auxiliary SIEs of the same type as in the scattering analysis problem, however, for the gradient of the objective function. Sample results are presented for the synthesis of a reflector-type beam splitter. PMID:17767252

  11. A non-negative moment-preserving spatial discretization scheme for the linearized Boltzmann transport equation in 1-D and 2-D Cartesian geometries

    NASA Astrophysics Data System (ADS)

    Maginot, Peter G.; Morel, Jim E.; Ragusa, Jean C.

    2012-08-01

    We present a new nonlinear spatial finite-element method for the linearized Boltzmann transport equation with Sn angular discretization in 1-D and 2-D Cartesian geometries. This method has two central characteristics. First, it is equivalent to the linear-discontinuous (LD) Galerkin method whenever that method yields a strictly non-negative solution. Second, it always satisfies both the zeroth and first spatial moment equations. Because it yields the LD solution when that solution is non-negative, one might interpret our method as a classical fix-up to the LD scheme. However, fix-up schemes for the LD equations derived in the past have given up solution of the first moment equations when the LD solution is negative in order to satisfy positivity in a simple manner. We present computational results comparing our method in 1-D to the strictly non-negative linear exponential-discontinuous method and to the LD method. We present computational results in 2-D comparing our method to a recently developed LD fix-up scheme and to the LD scheme. It is demonstrated that our method is a valuable alternative to existing methods.

  12. Two-dimensional quantum propagation using wavelets in space and time

    SciTech Connect

    Sparks, Douglas K.; Johnson, Bruce R.

    2006-09-21

    A recent method for solving the time-dependent Schroedinger equation has been developed using expansions in compact-support wavelet bases in both space and time [H. Wang et al., J. Chem. Phys. 121, 7647 (2004)]. This method represents an exact quantum mixed time-frequency approach, with special initial temporal wavelets used to solve the initial value problem. The present work is a first extension of the method to multiple spatial dimensions applied to a simple two-dimensional (2D) coupled anharmonic oscillator problem. A wavelet-discretized version of norm preservation for time-independent Hamiltonians discovered in the earlier one-dimensional investigation is verified to hold as well in 2D and, by implication, in higher numbers of spatial dimensions. The wavelet bases are not restricted to rectangular domains, a fact which is exploited here in a 2D adaptive version of the algorithm.

  13. Applications of a fast, continuous wavelet transform

    SciTech Connect

    Dress, W.B.

    1997-02-01

    A fast, continuous, wavelet transform, based on Shannon`s sampling theorem in frequency space, has been developed for use with continuous mother wavelets and sampled data sets. The method differs from the usual discrete-wavelet approach and the continuous-wavelet transform in that, here, the wavelet is sampled in the frequency domain. Since Shannon`s sampling theorem lets us view the Fourier transform of the data set as a continuous function in frequency space, the continuous nature of the functions is kept up to the point of sampling the scale-translation lattice, so the scale-translation grid used to represent the wavelet transform is independent of the time- domain sampling of the signal under analysis. Computational cost and nonorthogonality aside, the inherent flexibility and shift invariance of the frequency-space wavelets has advantages. The method has been applied to forensic audio reconstruction speaker recognition/identification, and the detection of micromotions of heavy vehicles associated with ballistocardiac impulses originating from occupants` heart beats. Audio reconstruction is aided by selection of desired regions in the 2-D representation of the magnitude of the transformed signal. The inverse transform is applied to ridges and selected regions to reconstruct areas of interest, unencumbered by noise interference lying outside these regions. To separate micromotions imparted to a mass-spring system (e.g., a vehicle) by an occupants beating heart from gross mechanical motions due to wind and traffic vibrations, a continuous frequency-space wavelet, modeled on the frequency content of a canonical ballistocardiogram, was used to analyze time series taken from geophone measurements of vehicle micromotions. By using a family of mother wavelets, such as a set of Gaussian derivatives of various orders, features such as the glottal closing rate and word and phrase segmentation may be extracted from voice data.

  14. An Introduction to Wavelet Theory and Analysis

    SciTech Connect

    Miner, N.E.

    1998-10-01

    This report reviews the history, theory and mathematics of wavelet analysis. Examination of the Fourier Transform and Short-time Fourier Transform methods provides tiormation about the evolution of the wavelet analysis technique. This overview is intended to provide readers with a basic understanding of wavelet analysis, define common wavelet terminology and describe wavelet amdysis algorithms. The most common algorithms for performing efficient, discrete wavelet transforms for signal analysis and inverse discrete wavelet transforms for signal reconstruction are presented. This report is intended to be approachable by non- mathematicians, although a basic understanding of engineering mathematics is necessary.

  15. Induction motors airgap-eccentricity detection through the discrete wavelet transform of the apparent power signal under non-stationary operating conditions.

    PubMed

    Yahia, K; Cardoso, A J M; Ghoggal, A; Zouzou, S E

    2014-03-01

    Fast Fourier transform (FFT) analysis has been successfully used for fault diagnosis in induction machines. However, this method does not always provide good results for the cases of load torque, speed and voltages variation, leading to a variation of the motor-slip and the consequent FFT problems that appear due to the non-stationary nature of the involved signals. In this paper, the discrete wavelet transform (DWT) of the apparent-power signal for the airgap-eccentricity fault detection in three-phase induction motors is presented in order to overcome the above FFT problems. The proposed method is based on the decomposition of the apparent-power signal from which wavelet approximation and detail coefficients are extracted. The energy evaluation of a known bandwidth permits to define a fault severity factor (FSF). Simulation as well as experimental results are provided to illustrate the effectiveness and accuracy of the proposed method presented even for the case of load torque variations. PMID:24461376

  16. Enhancement of the Wear Particle Monitoring Capability of Oil Debris Sensors Using a Maximal Overlap Discrete Wavelet Transform with Optimal Decomposition Depth

    PubMed Central

    Li, Chuan; Peng, Juan; Liang, Ming

    2014-01-01

    Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements. PMID:24686730

  17. Texture image retrieval using new rotated complex wavelet filters.

    PubMed

    Kokare, Manesh; Biswas, P K; Chatterji, B N

    2005-12-01

    A new set of two-dimensional (2-D) rotated complex wavelet filters (RCWFs) are designed with complex wavelet filter coefficients, which gives texture information strongly oriented in six different directions (45 degrees apart from complex wavelet transform). The 2-D RCWFs are nonseparable and oriented, which improves characterization of oriented textures. Most texture image retrieval systems are still incapable of providing retrieval result with high retrieval accuracy and less computational complexity. To address this problem, we propose a novel approach for texture image retrieval by using a set of dual-tree rotated complex wavelet filter (DT-RCWF) and dual-tree-complex wavelet transform (DT-CWT) jointly, which obtains texture features in 12 different directions. The information provided by DT-RCWF complements the information generated by DT-CWT. Features are obtained by computing the energy and standard deviation on each subband of the decomposed image. To check the retrieval performance, texture database D1 of 1856 textures from Brodatz album and database D2 of 640 texture images from VisTex image database is created. Experimental results indicates that the proposed method improves retrieval rate from 69.61% to 77.75% on database D1, and from 64.83% to 82.81% on database D2, in comparing with traditional discrete wavelet transform based approach. The proposed method also retains comparable levels of computational complexity. PMID:16366243

  18. Applications of a fast continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Dress, William B.

    1997-04-01

    A fast, continuous, wavelet transform, justified by appealing to Shannon's sampling theorem in frequency space, has been developed for use with continuous mother wavelets and sampled data sets. The method differs from the usual discrete-wavelet approach and from the standard treatment of the continuous-wavelet transform in that, here, the wavelet is sampled in the frequency domain. Since Shannon's sampling theorem lets us view the Fourier transform of the data set as representing the continuous function in frequency space, the continuous nature of the functions is kept up to the point of sampling the scale-translation lattice, so the scale-translation grid used to represent the wavelet transform is independent of the time-domain sampling of the signal under analysis. Although more computationally costly and not represented by an orthogonal basis, the inherent flexibility and shift invariance of the frequency-space wavelets are advantageous for certain applications. The method has been applied to forensic audio reconstruction, speaker recognition/identification, and the detection of micromotions of heavy vehicles associated with ballistocardiac impulses originating from occupants' heart beats. Audio reconstruction is aided by selection of desired regions in the 2D representation of the magnitude of the transformed signals. The inverse transform is applied to ridges and selected regions to reconstruct areas of interest, unencumbered by noise interference lying outside these regions. To separate micromotions imparted to a mass- spring system by an occupant's beating heart from gross mechanical motions due to wind and traffic vibrations, a continuous frequency-space wavelet, modeled on the frequency content of a canonical ballistocardiogram, was used to analyze time series taken from geophone measurements of vehicle micromotions. By using a family of mother wavelets, such as a set of Gaussian derivatives of various orders, different features may be extracted from voice

  19. Watermarking spectral images with three-dimensional discrete wavelet transform and singular value decomposition under various illumination conditions

    NASA Astrophysics Data System (ADS)

    Ma, Long; Li, Changjun; Song, Shuni; Zhao, Deping

    2011-11-01

    Kaarna et al. [pro. Scand. Cof. Image Analysis, SCIA 2003, pages 320-327] proposed a watermarking method based on the three dimensional wavelet transform for spectral images. kaarna et al [J. Imaging SCI. Technol. 52, pages 30502-1 - 30502-18, 2008] reported that the robustness of the watermarking method to different illumination conditions. The spectral image database provider stores the reflectance or radiance spectra of the images. Depending on the client's requirements, the effects from illumination can be added to the spectra, i.e., the viewing conditions change the perceived color of the spectrum. External illumination can be compensated through convoluting the spectra of the image with the spectrum of the illuminant. In this paper, a hybrid watermarking method based on the three-dimensional wavelet transform and singular value decomposition is proposed. The proposed method is compared with the 3D-DWT method of kaarna et al in the cases both with and without effect of different illumination conditions. Experiments were performed on a spectral image of natural scenes. Inlab2 was selected. The color reproduction is done using CIE XYZ basis function with D65 light model. Inlab2 image have the following dimensions: 256x256 pixels, and 31 spectral components per each pixel. Images were captured by a CCD (charge coupled device) camera in a 400-700 nm wavelength range at 10 nm intervals. The image selected was taken indoor (in a controlled environment, i.e. dark-lab or glass-house). The performance of the proposed technique is compared with the work of kaarna et al against different illumination conditions and attacks including median and mean filtering, lossy compression. The experiments indicate, the proposed method outperforms the work of kaarna et al.

  20. False ventricular tachycardia alarm suppression in the ICU based on the discrete wavelet transform in the ECG signal.

    PubMed

    Salas-Boni, Rebeca; Bai, Yong; Harris, Patricia Rae Eileen; Drew, Barbara J; Hu, Xiao

    2014-01-01

    Over the past few years, reducing the number of false positive cardiac monitor alarms (FA) in the intensive care unit (ICU) has become an issue of the utmost importance. In our work, we developed a robust methodology that, without the need for additional non-ECG waveforms, suppresses false positive ventricular tachycardia (VT) alarms without resulting in false negative alarms. Our approach is based on features extracted from the ECG signal 20 seconds prior to a triggered alarm. We applied a multi resolution wavelet transform to the ECG data 20seconds prior to the alarm trigger, extracted features from appropriately chosen scales and combined them across all available leads. These representations are presented to a L1-regularized logistic regression classifier. Results are shown in two datasets of physiological waveforms with manually assessed cardiac monitor alarms: the MIMIC II dataset, where we achieved a false alarm (FA) suppression of 21% with zero true alarm (TA) suppression; and a dataset compiled by UCSF and General Electric, where a 36% FA suppression was achieved with a zero TA suppression. The methodology described in this work could be implemented to reduce the number of false monitor alarms in other arrhythmias. PMID:25172188

  1. Performance of a Discrete Wavelet Transform for Compressing Plasma Count Data and its Application to the Fast Plasma Investigation on NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Barrie, Alexander C.; Yeh, Penshu; Dorelli, John C.; Clark, George B.; Paterson, William R.; Adrian, Mark L.; Holland, Matthew P.; Lobell, James V.; Simpson, David G.; Pollock, Craig J.; Moore, Thomas E.

    2015-01-01

    Plasma measurements in space are becoming increasingly faster, higher resolution, and distributed over multiple instruments. As raw data generation rates can exceed available data transfer bandwidth, data compression is becoming a critical design component. Data compression has been a staple of imaging instruments for years, but only recently have plasma measurement designers become interested in high performance data compression. Missions will often use a simple lossless compression technique yielding compression ratios of approximately 2:1, however future missions may require compression ratios upwards of 10:1. This study aims to explore how a Discrete Wavelet Transform combined with a Bit Plane Encoder (DWT/BPE), implemented via a CCSDS standard, can be used effectively to compress count information common to plasma measurements to high compression ratios while maintaining little or no compression error. The compression ASIC used for the Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale mission (MMS) is used for this study. Plasma count data from multiple sources is examined: resampled data from previous missions, randomly generated data from distribution functions, and simulations of expected regimes. These are run through the compression routines with various parameters to yield the greatest possible compression ratio while maintaining little or no error, the latter indicates that fully lossless compression is obtained. Finally, recommendations are made for future missions as to what can be achieved when compressing plasma count data and how best to do so.

  2. Comparison of rootMUSIC and discrete wavelet transform analysis of Doppler ultrasound blood flow waveforms to detect microvascular abnormalities in type I diabetes.

    PubMed

    Agnew, Christina Elizabeth; McCann, A J; Lockhart, C J; Hamilton, P K; McVeigh, G E; McGivern, R C

    2011-04-01

    The earliest signs of cardiovascular disease occur in microcirculations. Changes to mechanical and structural properties of these small resistive vessels alter the impedance to flow, subsequent reflected waves, and consequently, flow waveform morphology. In this paper, we compare two frequency analysis techniques: 1) rootMUSIC and 2) the discrete wavelet transform (DWT) to extract features of flow velocity waveform morphology captured using Doppler ultrasound from the ophthalmic artery (OA) in 30 controls and 38 age and sex matched Type I diabetics. Conventional techniques for characterizing Doppler velocity waveforms, such as mean velocity, resistive index, and pulsatility index, revealed no significant differences between the groups. However, rootMUSIC and the DWT provided highly correlated results with the spectral content in bands 2-7 (30-0.8 Hz) significantly elevated in the diabetic group (p < 0.05). The spectral distinction between the groups may be attributable to manifestations of underlying pathophysiological processes in vascular impedance and consequent wave reflections, with bands 5 and 7 related to age. Spectral descriptors of OA blood velocity waveforms are better indicators of preclinical microvascular abnormalities in Type I diabetes than conventional measures. Although highly correlated DWT proved slightly more discriminatory than rootMUSIC and has the advantage of extending to subheart rate frequencies, which may be of interest. PMID:21138796

  3. ThyroScreen system: high resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform.

    PubMed

    Acharya, U Rajendra; Faust, Oliver; Sree, S Vinitha; Molinari, Filippo; Suri, Jasjit S

    2012-08-01

    Using right equipment and well trained personnel, ultrasound of the neck can detect a large number of non-palpable thyroid nodules. However, this technique often suffers from subjective interpretations and poor accuracy in the differential diagnosis of malignant and benign thyroid lesions. Therefore, we developed an automated identification system based on knowledge representation techniques for characterizing the intra-nodular vascularization of thyroid lesions. Twenty nodules (10 benign and 10 malignant), taken from 3-D high resolution ultrasound (HRUS) images were used for this work. Malignancy was confirmed using fine needle aspiration biopsy and subsequent histological studies. A combination of discrete wavelet transformation (DWT) and texture algorithms were used to extract relevant features from the thyroid images. These features were fed to different configurations of AdaBoost classifier. The performance of these configurations was compared using receiver operating characteristic (ROC) curves. Our results show that the combination of texture features and DWT features presented an accuracy value higher than that reported in the literature. Among the different classifier setups, the perceptron based AdaBoost yielded very good result and the area under the ROC curve was 1 and classification accuracy, sensitivity and specificity were 100%. Finally, we have composed an Integrated Index called thyroid malignancy index (TMI) made up of these DWT and texture features, to facilitate distinguishing and diagnosing benign or malignant nodules using just one index or number. This index would help the clinicians in more quantitative assessment of the thyroid nodules. PMID:22054816

  4. Entanglement Renormalization and Wavelets.

    PubMed

    Evenbly, Glen; White, Steven R

    2016-04-01

    We establish a precise connection between discrete wavelet transforms and entanglement renormalization, a real-space renormalization group transformation for quantum systems on the lattice, in the context of free particle systems. Specifically, we employ Daubechies wavelets to build approximations to the ground state of the critical Ising model, then demonstrate that these states correspond to instances of the multiscale entanglement renormalization ansatz (MERA), producing the first known analytic MERA for critical systems. PMID:27104687

  5. Entanglement Renormalization and Wavelets

    NASA Astrophysics Data System (ADS)

    Evenbly, Glen; White, Steven R.

    2016-04-01

    We establish a precise connection between discrete wavelet transforms and entanglement renormalization, a real-space renormalization group transformation for quantum systems on the lattice, in the context of free particle systems. Specifically, we employ Daubechies wavelets to build approximations to the ground state of the critical Ising model, then demonstrate that these states correspond to instances of the multiscale entanglement renormalization ansatz (MERA), producing the first known analytic MERA for critical systems.

  6. Wavelet analysis of atmospheric turbulence

    SciTech Connect

    Hudgins, L.H.

    1992-12-31

    After a brief review of the elementary properties of Fourier Transforms, the Wavelet Transform is defined in Part I. Basic results are given for admissable wavelets. The Multiresolution Analysis, or MRA (a mathematical structure which unifies a large class of wavelets with Quadrature Mirror Filters) is then introduced. Some fundamental aspects of wavelet design are then explored. The Discrete Wavelet Transform is discussed and, in the context of an MRA, is seen to supply a Fast Wavelet Transform which competes with the Fast Fourier Transform for efficiency. In Part II, the Wavelet Transform is developed in terms of the scale number variable s instead of the scale length variable a where a = 1/s. Basic results such as the admissibility condition, conservation of energy, and the reconstruction theorem are proven in this context. After reviewing some motivation for the usual Fourier power spectrum, a definition is given for the wavelet power spectrum. This `spectral density` is then intepreted in the context of spectral estimation theory. Parseval`s theorem for Wavelets then leads naturally to the Wavelet Cross Spectrum, Wavelet Cospectrum, and Wavelet Quadrature Spectrum. Wavelet Transforms are then applied in Part III to the analysis of atmospheric turbulence. Data collected over the ocean is examined in the wavelet transform domain for underlying structure. A brief overview of atmospheric turbulence is provided. Then the overall method of applying Wavelet Transform techniques to time series data is described. A trace study is included, showing some of the aspects of choosing the computational algorithm, and selection of a specific analyzing wavelet. A model for generating synthetic turbulence data is developed, and seen to yield useful results in comparing with real data for structural transitions. Results from the theory of Wavelet Spectral Estimation and Wavelength Cross-Transforms are applied to studying the momentum transport and the heat flux.

  7. Spectral Laplace-Beltrami wavelets with applications in medical images.

    PubMed

    Tan, Mingzhen; Qiu, Anqi

    2015-05-01

    The spectral graph wavelet transform (SGWT) has recently been developed to compute wavelet transforms of functions defined on non-Euclidean spaces such as graphs. By capitalizing on the established framework of the SGWT, we adopt a fast and efficient computation of a discretized Laplace-Beltrami (LB) operator that allows its extension from arbitrary graphs to differentiable and closed 2-D manifolds (smooth surfaces embedded in the 3-D Euclidean space). This particular class of manifolds are widely used in bioimaging to characterize the morphology of cells, tissues, and organs. They are often discretized into triangular meshes, providing additional geometric information apart from simple nodes and weighted connections in graphs. In comparison with the SGWT, the wavelet bases constructed with the LB operator are spatially localized with a more uniform "spread" with respect to underlying curvature of the surface. In our experiments, we first use synthetic data to show that traditional applications of wavelets in smoothing and edge detectio can be done using the wavelet bases constructed with the LB operator. Second, we show that multi-resolutional capabilities of the proposed framework are applicable in the classification of Alzheimer's patients with normal subjects using hippocampal shapes. Wavelet transforms of the hippocampal shape deformations at finer resolutions registered higher sensitivity (96%) and specificity (90%) than the classification results obtained from the direct usage of hippocampal shape deformations. In addition, the Laplace-Beltrami method requires consistently a smaller number of principal components (to retain a fixed variance) at higher resolution as compared to the binary and weighted graph Laplacians, demonstrating the potential of the wavelet bases in adapting to the geometry of the underlying manifold. PMID:25343758

  8. Wavelet for Ultrasonic Flaw Enhancement and Image Compression

    NASA Astrophysics Data System (ADS)

    Cheng, W.; Tsukada, K.; Li, L. Q.; Hanasaki, K.

    2003-03-01

    Ultrasonic imaging has been widely used in Non-destructive Testing (NDT) and medical application. However, the image is always degraded by blur and noise. Besides, the pressure on both storage and transmission gives rise to the need of image compression. We apply 2-D Discrete Wavelet Transform (DWT) to C-scan 2-D images to realize flaw enhancement and image compression, taking advantage of DWT scale and orientation selectivity. The Wavelet coefficient thresholding and scalar quantization are employed respectively. Furthermore, we realize the unification of flaw enhancement and image compression in one process. The reconstructed image from the compressed data gives a clearer interpretation of the flaws at a much smaller bit rate.

  9. Effect of dislocation structure on the strain rate dependence of the flow stress in a 2D discrete dislocation dynamics model

    NASA Astrophysics Data System (ADS)

    Song, Hengxu; Papanikolaou, Stefanos; van der Giessen, Erik

    2015-03-01

    It is well known for almost three decades that crystal plasticity in metals, such as Cu, is strongly rate dependent at strain rates higher than 10⌃3/s. This rate sensitivity is typically attributed to dislocation drag effects, but there appears to be a large range of possible high-rate-sensitivity exponents, depending on the sample and the experimental group. Thus, one may hypothesize that the dislocation structure has a strong influence on these effects. We elucidate the origins of rate effects in crystal plasticity and their connection with relaxed, before applying stress, dislocation structures by investigating simple bending in a model of discrete dislocation plasticity in two dimensions. We find that the high-strain-rate sensitivity changes significantly as a function of strain, different material treatment (annealed or not) and properties of dislocation sources (surface vs. bulk nucleation). We characterize in detail the emerging patterning in the dislocation structure and we provide predictions for future experiments on the dependence of the rate sensitivity on dislocation-related characteristics.

  10. Compression of 3D integral images using wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Mazri, Meriem; Aggoun, Amar

    2003-06-01

    This paper presents a wavelet-based lossy compression technique for unidirectional 3D integral images (UII). The method requires the extraction of different viewpoint images from the integral image. A single viewpoint image is constructed by extracting one pixel from each microlens, then each viewpoint image is decomposed using a Two Dimensional Discrete Wavelet Transform (2D-DWT). The resulting array of coefficients contains several frequency bands. The lower frequency bands of the viewpoint images are assembled and compressed using a 3 Dimensional Discrete Cosine Transform (3D-DCT) followed by Huffman coding. This will achieve decorrelation within and between 2D low frequency bands from the different viewpoint images. The remaining higher frequency bands are Arithmetic coded. After decoding and decompression of the viewpoint images using an inverse 3D-DCT and an inverse 2D-DWT, each pixel from every reconstructed viewpoint image is put back into its original position within the microlens to reconstruct the whole 3D integral image. Simulations were performed on a set of four different grey level 3D UII using a uniform scalar quantizer with deadzone. The results for the average of the four UII intensity distributions are presented and compared with previous use of 3D-DCT scheme. It was found that the algorithm achieves better rate-distortion performance, with respect to compression ratio and image quality at very low bit rates.

  11. Integrated wavelets for medical image analysis

    NASA Astrophysics Data System (ADS)

    Heinlein, Peter; Schneider, Wilfried

    2003-11-01

    Integrated wavelets are a new method for discretizing the continuous wavelet transform (CWT). Independent of the choice of discrete scale and orientation parameters they yield tight families of convolution operators. Thus these families can easily be adapted to specific problems. After presenting the fundamental ideas, we focus primarily on the construction of directional integrated wavelets and their application to medical images. We state an exact algorithm for implementing this transform and present applications from the field of digital mammography. The first application covers the enhancement of microcalcifications in digital mammograms. Further, we exploit the directional information provided by integrated wavelets for better separation of microcalcifications from similar structures.

  12. Wavelet-based approaches for multiple hypothesis testing in activation mapping of functional magnetic resonance images of the human brain

    NASA Astrophysics Data System (ADS)

    Fadili, Jalal M.; Bullmore, Edward T.

    2003-11-01

    Wavelet-based methods for multiple hypothesis testing are described and their potential for activation mapping of human functional magnetic resonance imaging (fMRI) data is investigated. In this approach, we emphasize convergence between methods of wavelet thresholding or shrinkage and the problem of multiple hypothesis testing in both classical and Bayesian contexts. Specifically, our interest will be focused on ensuring a trade off between type I probability error control and power dissipation. We describe a technique for controlling the false discovery rate at an arbitrary level of type 1 error in testing multiple wavelet coefficients generated by a 2D discrete wavelet transform (DWT) of spatial maps of {fMRI} time series statistics. We also describe and apply recursive testing methods that can be used to define a threshold unique to each level and orientation of the 2D-DWT. Bayesian methods, incorporating a formal model for the anticipated sparseness of wavelet coefficients representing the signal or true image, are also tractable. These methods are comparatively evaluated by analysis of "null" images (acquired with the subject at rest), in which case the number of positive tests should be exactly as predicted under the hull hypothesis, and an experimental dataset acquired from 5 normal volunteers during an event-related finger movement task. We show that all three wavelet-based methods of multiple hypothesis testing have good type 1 error control (the FDR method being most conservative) and generate plausible brain activation maps.

  13. Periodized wavelets

    SciTech Connect

    Schlossnagle, G.; Restrepo, J.M.; Leaf, G.K.

    1993-12-01

    The properties of periodized Daubechies wavelets on [0,1] are detailed and contrasted against their counterparts which form a basis for L{sup 2}(R). Numerical examples illustrate the analytical estimates for convergence and demonstrate by comparison with Fourier spectral methods the superiority of wavelet projection methods for approximations. The analytical solution to inner products of periodized wavelets and their derivatives, which are known as connection coefficients, is presented, and several tabulated values are included.

  14. Structural interpretation of southern part of western Anatolian using analytic signal of the second order gravity gradients and discrete wavelet transform analysis

    NASA Astrophysics Data System (ADS)

    Oruç, B.

    2014-04-01

    In this work, gravity anomalies have been analyzed using gradient analytic signal (GAS) obtained from the square root of the sum of the squares of the second complex and vertical gradients. The gravity anomalies have been decomposed at 1, 2 and 3 levels with Haar mother wavelet. The DWT leads to a decomposition of the approximation coefficients in four distinct components: the approximation, horizontal, vertical and diagonal. I have tested the maxima of the magnitude computed from the square root of the sum of the squares of the horizontal, vertical and diagonal components (HVDM), and maxima of GAS in imaging the source edges in theoretical examples, with and without random Gaussian noise.

  15. Wavelet transforms as solutions of partial differential equations

    SciTech Connect

    Zweig, G.

    1997-10-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Wavelet transforms are useful in representing transients whose time and frequency structure reflect the dynamics of an underlying physical system. Speech sound, pressure in turbulent fluid flow, or engine sound in automobiles are excellent candidates for wavelet analysis. This project focused on (1) methods for choosing the parent wavelet for a continuous wavelet transform in pattern recognition applications and (2) the more efficient computation of continuous wavelet transforms by understanding the relationship between discrete wavelet transforms and discretized continuous wavelet transforms. The most interesting result of this research is the finding that the generalized wave equation, on which the continuous wavelet transform is based, can be used to understand phenomena that relate to the process of hearing.

  16. Dyadic wavelet for image coding implementation on a Xilinx MicroBlaze processor: application to neutron radiography.

    PubMed

    Saadi, Slami; Touiza, Maamar; Kharfi, Fayçal; Guessoum, Abderrezak

    2013-12-01

    In this work, we present a mixed software/hardware implementation of 2-D signals encoder/decoder using dyadic discrete wavelet transform (DWT) based on quadrature mirror filters (QMF); using fast wavelet Mallat's algorithm. This work is designed and compiled on the embedded development kit EDK6.3i, and the synthesis software, ISE6.3i, which is available with Xilinx Virtex-IIV2MB1000 FPGA. Huffman coding scheme is used to encode the wavelet coefficients so that they can be transmitted progressively through an Ethernet TCP/IP based connection. The possible reconfiguration can be exploited to attain higher performance. The design will be integrated with the neutron radiography system that is used with the Es-Salem research reactor. PMID:24041807

  17. Image-based scene representation using wavelet-based interval morphing

    NASA Astrophysics Data System (ADS)

    Bao, Paul; Xu, Dan

    1999-07-01

    Scene appearance for a continuous range of viewpoint can be represented by a discrete set of images via image morphing. In this paper, we present a new robust image morphing scheme based on 2D wavelet transform and interval field interpolation. Traditional mesh-base and field-based morphing algorithms, usually designed in the spatial image space, suffer from very high time complexity and therefore make themselves impractical in real-time virtual environment applications. Compared with traditional morphing methods, the proposed wavelet-based interval morphing scheme performs interval interpolation in both the frequency and spatial spaces. First, the images of the scene can be significantly compressed in the frequency domain with little degradation in visual quality and therefore the complexity of the scene can be significantly reduced. Second, since a feature point in the image may correspond to a neighborhood in a subband image in the wavelet domain, we define feature interval for the wavelet-transformed images for an accurate feature matching between the morphing images. Based on the feature intervals, we employ the interval field interpolation to morph the images progressively in a coarse-to-fine process. Finally, we use a post-warping procedure to transform the interpolated views to its desired position. A nice future of using wavelet transformation is its multiresolution representation mode, which enables the progressive morphing of scene.

  18. Critically sampled wavelets with composite dilations.

    PubMed

    Easley, Glenn R; Labate, Demetrio

    2012-02-01

    Wavelets with composite dilations provide a general framework for the construction of waveforms defined not only at various scales and locations, as traditional wavelets, but also at various orientations and with different scaling factors in each coordinate. As a result, they are useful to analyze the geometric information that often dominate multidimensional data much more efficiently than traditional wavelets. The shearlet system, for example, is a particular well-known realization of this framework, which provides optimally sparse representations of images with edges. In this paper, we further investigate the constructions derived from this approach to develop critically sampled wavelets with composite dilations for the purpose of image coding. Not only do we show that many nonredundant directional constructions recently introduced in the literature can be derived within this setting, but we also introduce new critically sampled discrete transforms that achieve much better nonlinear approximation rates than traditional discrete wavelet transforms and outperform the other critically sampled multiscale transforms recently proposed. PMID:21843993

  19. Diagnosis of cervical cancer cell taken from scanning electron and atomic force microscope images of the same patients using discrete wavelet entropy energy and Jensen Shannon, Hellinger, Triangle Measure classifier

    NASA Astrophysics Data System (ADS)

    Aytac Korkmaz, Sevcan

    2016-05-01

    The aim of this article is to provide early detection of cervical cancer by using both Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) images of same patient. When the studies in the literature are examined, it is seen that the AFM and SEM images of the same patient are not used together for early diagnosis of cervical cancer. AFM and SEM images can be limited when using only one of them for the early detection of cervical cancer. Therefore, multi-modality solutions which give more accuracy results than single solutions have been realized in this paper. Optimum feature space has been obtained by Discrete Wavelet Entropy Energy (DWEE) applying to the 3 × 180 AFM and SEM images. Then, optimum features of these images are classified with Jensen Shannon, Hellinger, and Triangle Measure (JHT) Classifier for early diagnosis of cervical cancer. However, between classifiers which are Jensen Shannon, Hellinger, and triangle distance have been validated the measures via relationships. Afterwards, accuracy diagnosis of normal, benign, and malign cervical cancer cell was found by combining mean success rates of Jensen Shannon, Hellinger, and Triangle Measure which are connected with each other. Averages of accuracy diagnosis for AFM and SEM images by averaging the results obtained from these 3 classifiers are found as 98.29% and 97.10%, respectively. It has been observed that AFM images for early diagnosis of cervical cancer have higher performance than SEM images. Also in this article, surface roughness of malign AFM images in the result of the analysis made for the AFM images, according to the normal and benign AFM images is observed as larger, If the volume of particles has found as smaller. She has been a Faculty Member at Fırat University in the Electrical- Electronic Engineering Department since 2007. Her research interests include image processing, computer vision systems, pattern recognition, data fusion, wavelet theory, artificial neural

  20. A Wavelet Perspective on the Allan Variance.

    PubMed

    Percival, Donald B

    2016-04-01

    The origins of the Allan variance trace back 50 years ago to two seminal papers, one by Allan (1966) and the other by Barnes (1966). Since then, the Allan variance has played a leading role in the characterization of high-performance time and frequency standards. Wavelets first arose in the early 1980s in the geophysical literature, and the discrete wavelet transform (DWT) became prominent in the late 1980s in the signal processing literature. Flandrin (1992) briefly documented a connection between the Allan variance and a wavelet transform based upon the Haar wavelet. Percival and Guttorp (1994) noted that one popular estimator of the Allan variance-the maximal overlap estimator-can be interpreted in terms of a version of the DWT now widely referred to as the maximal overlap DWT (MODWT). In particular, when the MODWT is based on the Haar wavelet, the variance of the resulting wavelet coefficients-the wavelet variance-is identical to the Allan variance when the latter is multiplied by one-half. The theory behind the wavelet variance can thus deepen our understanding of the Allan variance. In this paper, we review basic wavelet variance theory with an emphasis on the Haar-based wavelet variance and its connection to the Allan variance. We then note that estimation theory for the wavelet variance offers a means of constructing asymptotically correct confidence intervals (CIs) for the Allan variance without reverting to the common practice of specifying a power-law noise type a priori. We also review recent work on specialized estimators of the wavelet variance that are of interest when some observations are missing (gappy data) or in the presence of contamination (rogue observations or outliers). It is a simple matter to adapt these estimators to become estimators of the Allan variance. Finally we note that wavelet variances based upon wavelets other than the Haar offer interesting generalizations of the Allan variance. PMID:26529757

  1. VHDL implementation of wavelet packet transforms using SIMULINK tools

    NASA Astrophysics Data System (ADS)

    Shirvaikar, Mukul; Bushnaq, Tariq

    2008-02-01

    The wavelet transform is currently being used in many engineering fields. The real-time implementation of the Discrete Wavelet Transform (DWT) is a current area of research as it is one of the most time consuming steps in the JPEG2000 standard. The standard implements two different wavelet transforms: irreversible and reversible Daubechies. The former is a lossy transform, whereas the latter is a lossless transform. Many current JPEG2000 implementations are software-based and not efficient enough to meet real-time deadlines. Field Programmable Gate Arrays (FPGAs) are revolutionizing image and signal processing. Many major FPGA vendors like Altera and Xilinx have recently developed SIMULINK tools to support their FPGAs. These tools are intended to provide a seamless path from system-level algorithm design to FPGA implementation. In this paper, we investigate FPGA implementation of 2-D lifting-based Daubechies 9/7 and Daubechies 5/3 transforms using a Matlab/Simulink tool that generates synthesizable VHSIC Hardware Description Language (VHDL) code. The goal is to study the feasibility of this approach for real time image processing by comparing the performance of the high-level toolbox with a handwritten VHDL implementation. The hardware platform used is an Altera DE2 board with a 50MHz Cyclone II FPGA chip and the Simulink tool chosen is DSPBuilder by Altera.

  2. Spherical wavelet transform: linking global seismic tomography and imaging

    NASA Astrophysics Data System (ADS)

    Pan, J.

    2001-12-01

    Each year, numerous seismic tomographic images are published based on either new parameterization, damping schemes or datasets. Though people agree generally on the longer- wavelength seismic structures, large discrepencies still exist among various models. Normally the data is noisy, thus the inverse problem is often ill-conditioned. Sampling rate may be enough to resolve for long-wavelength structures when we parameterize the earth to a low harmonic order. However, higher order signals (slabs, plume-like structures, and local seismic velocity anomalies (SVA)) on a global scale remain under-sampled. Finer discretization of the model space increases the problem size dramatically but does not alleviate the nature of the problem. The main challenge thus is to find an efficient representation of the model space to solve for the lower- and higher- degree SVAs simultaneously. Spherical wavelets are a good choice because of their compact support (locaized) in both spatial and frequency domains. If SVAs can be viewed as an image, they consist of smooth-varying signals superpositioned by small-scale local changes and can be compressed greatly and represented better using spherical wavelets. By mapping the model parameters into a nested multi-resolution analysis (MRA) space, the signals become comparable in size therefore stable solutions can be achieved at every level of the resolution without introducing subjective damping. The efficiency of using wavelets and MRA to denoise and compress signals can be used to reduce the problem size and eliminate effects of noisy data. This new algorithm can achieve better resolving power for 2D and 3D seismic tomography, by linking image processing with inverse theory. Advances in spherical wavelets enable the introduction of wavelet analysis and a new parameterization of MRA into global tomography studies. In this paper, we present the new inversion method based on spherical wavelet transform. An application to 2D surface wave

  3. Wavelet analysis in virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Greenblum, Sharon; Li, Jiang; Huang, Adam; Summers, Ronald M.

    2006-03-01

    The computed tomographic colonography (CTC) computer aided detection (CAD) program is a new method in development to detect colon polyps in virtual colonoscopy. While high sensitivity is consistently achieved, additional features are desired to increase specificity. In this paper, a wavelet analysis was applied to CTCCAD outputs in an attempt to filter out false positive detections. 52 CTCCAD detection images were obtained using a screen capture application. 26 of these images were real polyps, confirmed by optical colonoscopy and 26 were false positive detections. A discrete wavelet transform of each image was computed with the MATLAB wavelet toolbox using the Haar wavelet at levels 1-5 in the horizontal, vertical and diagonal directions. From the resulting wavelet coefficients at levels 1-3 for all directions, a 72 feature vector was obtained for each image, consisting of descriptive statistics such as mean, variance, skew, and kurtosis at each level and orientation, as well as error statistics based on a linear predictor of neighboring wavelet coefficients. The vectors for each of the 52 images were then run through a support vector machine (SVM) classifier using ten-fold cross-validation training to determine its efficiency in distinguishing polyps from false positives. The SVM results showed 100% sensitivity and 51% specificity in correctly identifying the status of detections. If this technique were added to the filtering process of the CTCCAD polyp detection scheme, the number of false positive results could be reduced significantly.

  4. Doppler ultrasound signal denoising based on wavelet frames.

    PubMed

    Zhang, Y; Wang, Y; Wang, W; Liu, B

    2001-05-01

    A novel approach was proposed to denoise the Doppler ultrasound signal. Using this method, wavelet coefficients of the Doppler signal at multiple scales were first obtained using the discrete wavelet frame analysis. Then, a soft thresholding-based denoising algorithm was employed to deal with these coefficients to get the denoised signal. In the simulation experiments, the SNR improvements and the maximum frequency estimation precision were studied for the denoised signal. From the simulation and clinical studies, it was concluded that the performance of this discrete wavelet frame (DWF) approach is higher than that of the standard (critically sampled) wavelet transform (DWT) for the Doppler ultrasound signal denoising. PMID:11381694

  5. Adaptive wavelets and relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hirschmann, Eric; Neilsen, David; Anderson, Matthe; Debuhr, Jackson; Zhang, Bo

    2016-03-01

    We present a method for integrating the relativistic magnetohydrodynamics equations using iterated interpolating wavelets. Such provide an adaptive implementation for simulations in multidimensions. A measure of the local approximation error for the solution is provided by the wavelet coefficients. They place collocation points in locations naturally adapted to the flow while providing expected conservation. We present demanding 1D and 2D tests includingthe Kelvin-Helmholtz instability and the Rayleigh-Taylor instability. Finally, we consider an outgoing blast wave that models a GRB outflow.

  6. Perceptually Lossless Wavelet Compression

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Yang, Gloria Y.; Solomon, Joshua A.; Villasenor, John

    1996-01-01

    The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter, which we call DWT uniform quantization noise. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2(exp -1), where r is display visual resolution in pixels/degree, and L is the wavelet level. Amplitude thresholds increase rapidly with spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from low-pass to horizontal/vertical to diagonal. We propose a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a 'perceptually lossless' quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  7. Adapting overcomplete wavelet models to natural images

    NASA Astrophysics Data System (ADS)

    Sallee, Phil; Olshausen, Bruno A.

    2003-11-01

    Overcomplete wavelet representations have become increasingly popular for their ability to provide highly sparse and robust descriptions of natural signals. We describe a method for incorporating an overcomplete wavelet representation as part of a statistical model of images which includes a sparse prior distribution over the wavelet coefficients. The wavelet basis functions are parameterized by a small set of 2-D functions. These functions are adapted to maximize the average log-likelihood of the model for a large database of natural images. When adapted to natural images, these functions become selective to different spatial orientations, and they achieve a superior degree of sparsity on natural images as compared with traditional wavelet bases. The learned basis is similar to the Steerable Pyramid basis, and yields slightly higher SNR for the same number of active coefficients. Inference with the learned model is demonstrated for applications such as denoising, with results that compare favorably with other methods.

  8. Comparative study of different wavelet based neural network models for rainfall-runoff modeling

    NASA Astrophysics Data System (ADS)

    Shoaib, Muhammad; Shamseldin, Asaad Y.; Melville, Bruce W.

    2014-07-01

    The use of wavelet transformation in rainfall-runoff modeling has become popular because of its ability to simultaneously deal with both the spectral and the temporal information contained within time series data. The selection of an appropriate wavelet function plays a crucial role for successful implementation of the wavelet based rainfall-runoff artificial neural network models as it can lead to further enhancement in the model performance. The present study is therefore conducted to evaluate the effects of 23 mother wavelet functions on the performance of the hybrid wavelet based artificial neural network rainfall-runoff models. The hybrid Multilayer Perceptron Neural Network (MLPNN) and the Radial Basis Function Neural Network (RBFNN) models are developed in this study using both the continuous wavelet and the discrete wavelet transformation types. The performances of the 92 developed wavelet based neural network models with all the 23 mother wavelet functions are compared with the neural network models developed without wavelet transformations. It is found that among all the models tested, the discrete wavelet transform multilayer perceptron neural network (DWTMLPNN) and the discrete wavelet transform radial basis function (DWTRBFNN) models at decomposition level nine with the db8 wavelet function has the best performance. The result also shows that the pre-processing of input rainfall data by the wavelet transformation can significantly increases performance of the MLPNN and the RBFNN rainfall-runoff models.

  9. Wavelet frames and admissibility in higher dimensions

    SciTech Connect

    Fuehr, H.

    1996-12-01

    This paper is concerned with the relations between discrete and continuous wavelet transforms on {ital k}-dimensional Euclidean space. We start with the construction of continuous wavelet transforms with the help of square-integrable representations of certain semidirect products, thereby generalizing results of Bernier and Taylor. We then turn to frames of L{sup 2}({bold R}{sup {ital k}}) and to the question, when the functions occurring in a given frame are admissible for a given continuous wavelet transform. For certain frames we give a characterization which generalizes a result of Daubechies to higher dimensions. {copyright} {ital 1996 American Institute of Physics.}

  10. Transionospheric signal detection with chirped wavelets

    SciTech Connect

    Doser, A.B.; Dunham, M.E.

    1997-11-01

    Chirped wavelets are utilized to detect dispersed signals in the joint time scale domain. Specifically, pulses that become dispersed by transmission through the ionosphere and are received by satellites as nonlinear chirps are investigated. Since the dispersion greatly lowers the signal to noise ratios, it is difficult to isolate the signals in the time domain. Satellite data are examined with discrete wavelet expansions. Detection is accomplished via a template matching threshold scheme. Quantitative experimental results demonstrate that the chirped wavelet detection scheme is successful in detecting the transionospheric pulses at very low signal to noise ratios.

  11. Diagnosis of cervical cancer cell taken from scanning electron and atomic force microscope images of the same patients using discrete wavelet entropy energy and Jensen Shannon, Hellinger, Triangle Measure classifier.

    PubMed

    Aytac Korkmaz, Sevcan

    2016-05-01

    The aim of this article is to provide early detection of cervical cancer by using both Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) images of same patient. When the studies in the literature are examined, it is seen that the AFM and SEM images of the same patient are not used together for early diagnosis of cervical cancer. AFM and SEM images can be limited when using only one of them for the early detection of cervical cancer. Therefore, multi-modality solutions which give more accuracy results than single solutions have been realized in this paper. Optimum feature space has been obtained by Discrete Wavelet Entropy Energy (DWEE) applying to the 3×180 AFM and SEM images. Then, optimum features of these images are classified with Jensen Shannon, Hellinger, and Triangle Measure (JHT) Classifier for early diagnosis of cervical cancer. However, between classifiers which are Jensen Shannon, Hellinger, and triangle distance have been validated the measures via relationships. Afterwards, accuracy diagnosis of normal, benign, and malign cervical cancer cell was found by combining mean success rates of Jensen Shannon, Hellinger, and Triangle Measure which are connected with each other. Averages of accuracy diagnosis for AFM and SEM images by averaging the results obtained from these 3 classifiers are found as 98.29% and 97.10%, respectively. It has been observed that AFM images for early diagnosis of cervical cancer have higher performance than SEM images. Also in this article, surface roughness of malign AFM images in the result of the analysis made for the AFM images, according to the normal and benign AFM images is observed as larger, If the volume of particles has found as smaller. PMID:26921605

  12. Adaptive Multilinear Tensor Product Wavelets.

    PubMed

    Weiss, Kenneth; Lindstrom, Peter

    2016-01-01

    Many foundational visualization techniques including isosurfacing, direct volume rendering and texture mapping rely on piecewise multilinear interpolation over the cells of a mesh. However, there has not been much focus within the visualization community on techniques that efficiently generate and encode globally continuous functions defined by the union of multilinear cells. Wavelets provide a rich context for analyzing and processing complicated datasets. In this paper, we exploit adaptive regular refinement as a means of representing and evaluating functions described by a subset of their nonzero wavelet coefficients. We analyze the dependencies involved in the wavelet transform and describe how to generate and represent the coarsest adaptive mesh with nodal function values such that the inverse wavelet transform is exactly reproduced via simple interpolation (subdivision) over the mesh elements. This allows for an adaptive, sparse representation of the function with on-demand evaluation at any point in the domain. We focus on the popular wavelets formed by tensor products of linear B-splines, resulting in an adaptive, nonconforming but crack-free quadtree (2D) or octree (3D) mesh that allows reproducing globally continuous functions via multilinear interpolation over its cells. PMID:26529742

  13. Image registration using redundant wavelet transforms

    NASA Astrophysics Data System (ADS)

    Brown, Richard K.; Claypoole, Roger L., Jr.

    2001-12-01

    Imagery is collected much faster and in significantly greater quantities today compared to a few years ago. Accurate registration of this imagery is vital for comparing the similarities and differences between multiple images. Image registration is a significant component in computer vision and other pattern recognition problems, medical applications such as Medical Resonance Images (MRI) and Positron Emission Tomography (PET), remotely sensed data for target location and identification, and super-resolution algorithms. Since human analysis is tedious and error prone for large data sets, we require an automatic, efficient, robust, and accurate method to register images. Wavelet transforms have proven useful for a variety of signal and image processing tasks. In our research, we present a fundamentally new wavelet-based registration algorithm utilizing redundant transforms and a masking process to suppress the adverse effects of noise and improve processing efficiency. The shift-invariant wavelet transform is applied in translation estimation and a new rotation-invariant polar wavelet transform is effectively utilized in rotation estimation. We demonstrate the robustness of these redundant wavelet transforms for the registration of two images (i.e., translating or rotating an input image to a reference image), but extensions to larger data sets are feasible. We compare the registration accuracy of our redundant wavelet transforms to the critically sampled discrete wavelet transform using the Daubechies wavelet to illustrate the power of our algorithm in the presence of significant additive white Gaussian noise and strongly translated or rotated images.

  14. Theory and application of frequency-selective wavelets

    SciTech Connect

    Tomas, B.

    1992-01-01

    Orthonormal compactly supported wavelets have been successfully applied to generate sparse representations of piecewise-smooth functions, yielding fast numerical algorithms. The authors consider the case of case of piecewise oscillatory functions, and construct a variation of the original Daubechies family of wavelets which efficiently represents the oscillations. This new family is constructed by moving some of the zeros of the underlying symbol away from [pi], shifting the approximation properties of the wavelets. The zeros may be chosen to give a sparse representation of an oscillatory function whose spectrum is known. In this sense, these wavelets are frequency-selective. Existence, uniqueness, and regularity results are proved for this family of wavelets. A natural application is the numerical solution of the electric field integral equation in two spatial dimensions: The kernel is singular on the diagonal, and oscillatory within a narrow frequency spectrum away from the diagonal. Applying frequency selective wavelets with the discrete wavelet transform, the discrete equations are transformed into a sparse linear system which is economically solved by a multi-grid scheme based upon the discrete wavelet transform. Substantial computational savings are obtained over the same method using the original Daubechies family of wavelets, and a factor of 10 savings is obtained over standard LU-factorization.

  15. Digital audio signal filtration based on the dual-tree wavelet transform

    NASA Astrophysics Data System (ADS)

    Yaseen, A. S.; Pavlov, A. N.

    2015-07-01

    A new method of digital audio signal filtration based on the dual-tree wavelet transform is described. An adaptive approach is proposed that allows the automatic adjustment of parameters of the wavelet filter to be optimized. A significant improvement of the quality of signal filtration is demonstrated in comparison to the traditionally used filters based on the discrete wavelet transform.

  16. Compression of echocardiographic scan line data using wavelet packet transform

    NASA Technical Reports Server (NTRS)

    Hang, X.; Greenberg, N. L.; Qin, J.; Thomas, J. D.

    2001-01-01

    An efficient compression strategy is indispensable for digital echocardiography. Previous work has suggested improved results utilizing wavelet transforms in the compression of 2D echocardiographic images. Set partitioning in hierarchical trees (SPIHT) was modified to compress echocardiographic scanline data based on the wavelet packet transform. A compression ratio of at least 94:1 resulted in preserved image quality.

  17. FPGA Implementation of 2D Signals Encoder Using QMF Based Dyadic DWT: Application to Neutron Tomography Projections

    NASA Astrophysics Data System (ADS)

    Saadi, S.; Touiza, M.; Guessoum, A.

    In this study, we present an implementation on FPGA of 2D signals Encoder/Decoder using dyadic Discrete Wavelet Transform based on quadrature mirror filters, by applying fast wavelet Mallat`s algorithm. The wavelet coefficients will be encoded by Huffman code in order to be transmitted progressively through an Ethernet TCP/IP based connection. The proposed study is implemented and synthesized in VHDL for Xilinx Virtex-IIV2MB1000 FPGA device using ISE 8.1 and simulated on Modelsim PE 6.0d. The synthesis results are presented in detail. The proposed design can substantially accelerate the DWT and the possible reconfiguration can be exploited to reach a higher performance in the future. The system is designed to be integrated as an extension to the nuclear imaging system implemented around our nuclear research reactor. Assuming a Pentium4 processor with clock frequency of 3.3 GHz for the Matlab software implementation, a speed up of over 5 times for a picture size of 256 x 256 was achieved.

  18. Modelling Elastic Media With Arbitrary Shapes Using the Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Rosa, J. W.; Cardoso, F. A.; Rosa, J. W.; Aki, K.

    2004-12-01

    We extend the new method proposed by Rosa et al. (2001) for the study of elastic bodies with complete arbitrary shapes. The method was originally developed for modelling 2-D elastic media with the application of the wavelet transform, and was extended to cases where discontinuities simulated geologic faults between two different elastic media. In addition to extending the method for the study of bodies with complete arbitrary shapes, we also test new transforms with the objective of making the related matrices more compact, which are also applied to the most general case of the method. The basic method consists of the discretization of the polynomial expansion for the boundary conditions of the 2-D problem involving the stress and strain relations for the media. This parameterization leads to a system of linear equations that should be solved for the determination of the expansion coefficients, which are the model parameters, and their determination leads to the solution of the problem. Despite the fact that the media we studied originally were 2-D bodies, the result of the application of this new method can be viewed as an approximate solution to some specific 3-D problems. Among the motivations for developing this method are possible geological applications (that is, the study of tectonic plates and geologic faults) and simulations of the elastic behaviour of materials in several other fields of science. The wavelet transform is applied with two main objectives, namely to decrease the error related to the truncation of the polynomial expansion and to make the system of linear equations more compact for computation. Having validated this method for the original 2-D elastic media, we plan that this extension to elastic bodies with complete arbitrary shapes will enable it to be even more attractive for modelling real media. Reference Rosa, J. W. C., F. A. C. M. Cardoso, K. Aki, H. S. Malvar, F. A. V. Artola, and J. W. C. Rosa, Modelling elastic media with the

  19. A secure double-image sharing scheme based on Shamir's three-pass protocol and 2D Sine Logistic modulation map in discrete multiple-parameter fractional angular transform domain

    NASA Astrophysics Data System (ADS)

    Sui, Liansheng; Duan, Kuaikuai; Liang, Junli

    2016-05-01

    A secure double-image sharing scheme is proposed by using the Shamir's three-pass protocol in the discrete multiple-parameter fractional angular transform domain. First, an enlarged image is formed by assembling two plain images successively in the horizontal direction and scrambled in the chaotic permutation process, in which the sequences of chaotic pairs are generated by the two-dimensional Sine Logistic modulation map. Second, the scrambled image is divided into two components which are used to constitute a complex image. One component is normalized and regarded as the phase part of the complex image as well as other is considered as the amplitude part. Finally, the complex image is shared between the sender and the receiver by using the Shamir's three-pass protocol, in which the discrete multiple-parameter fractional angular transform is used as the encryption function due to its commutative property. The proposed double-image sharing scheme has an obvious advantage that the key management is convenient without distributing the random phase mask keys in advance. Moreover, the security of the image sharing scheme is enhanced with the help of extra parameters of the discrete multiple-parameter fractional angular transform. To the best of our knowledge, this is the first report on integrating the Shamir's three-pass protocol with double-image sharing scheme in the information security field. Simulation results and security analysis verify the feasibility and effectiveness of the proposed scheme.

  20. Wavelet periodicity detection algorithms

    NASA Astrophysics Data System (ADS)

    Benedetto, John J.; Pfander, Goetz E.

    1998-10-01

    This paper deals with the analysis of time series with respect to certain known periodicities. In particular, we shall present a fast method aimed at detecting periodic behavior inherent in noise data. The method is composed of three steps: (1) Non-noisy data are analyzed through spectral and wavelet methods to extract specific periodic patterns of interest. (2) Using these patterns, we construct an optimal piecewise constant wavelet designed to detect the underlying periodicities. (3) We introduce a fast discretized version of the continuous wavelet transform, as well as waveletgram averaging techniques, to detect occurrence and period of these periodicities. The algorithm is formulated to provide real time implementation. Our procedure is generally applicable to detect locally periodic components in signals s which can be modeled as s(t) equals A(t)F(h(t)) + N(t) for t in I, where F is a periodic signal, A is a non-negative slowly varying function, and h is strictly increasing with h' slowly varying, N denotes background activity. For example, the method can be applied in the context of epileptic seizure detection. In this case, we try to detect seizure periodics in EEG and ECoG data. In the case of ECoG data, N is essentially 1/f noise. In the case of EEG data and for t in I,N includes noise due to cranial geometry and densities. In both cases N also includes standard low frequency rhythms. Periodicity detection has other applications including ocean wave prediction, cockpit motion sickness prediction, and minefield detection.

  1. Gyrator wavelet transform based non-linear multiple single channel information fusion and authentication

    NASA Astrophysics Data System (ADS)

    Abuturab, Muhammad Rafiq

    2015-11-01

    A novel gyrator wavelet transform based non-linear multiple single channel information fusion and authentication is introduced. In this technique, each user channel is normalized, phase encoded, and modulated by random phase function, and then multiplexed into a single channel user ciphertext. Now, the secret channel of corresponding user is phase encoded, modulated by random phase function, and gyrator transformed, and then multiplexed into a single channel secret ciphertext. The user ciphertext and secret ciphertext are multiplied to get a single channel multiplex image and then inverse gyrator transformed. The resultant spectrum is phase- and amplitude-truncated to obtain the encrypted image and the asymmetric key, respectively. The encrypted image is a single-level 2-D discrete wavelet transformed. The information is decomposed into LL, HL, LH, and HH sub-bands. This process is repeated to obtain three sets of four sub-bands of three different images. Next, the individual sub-band of each encrypted image is fused to get four fused sub-bands. Finally, the four fused sub-bands are inverse single-level 2-D discrete wavelet transformed to obtain final encrypted image. This is the main advantage for the proposed system: using multiple individual decryption keys (authentication key, asymmetric key, secret keys, and sub-band keys) for each user not only expands the key spaces but also supplies non-linear keys to control the system security. Moreover, the orders of gyrator transform provide extra degrees of freedom. The theoretical analysis and numerical simulation results support the proposed method.

  2. Group multiple-image encoding and watermarking using coupled logistic maps and gyrator wavelet transform.

    PubMed

    Abuturab, Muhammad Rafiq

    2015-10-01

    A novel method of group multiple-image encoding and watermarking using coupled logistic maps and gyrator wavelet transform is presented. The proposed method employs three different groups of multiple images. The color images of each group are individually segregated into R, G, and B channels. Each channel is first permutated by using a sequence of chaotic pairs generated with a system of two symmetrically coupled identical logistic maps and then gyrator transformed. The gyrator spectrum of each channel is multiplied together and then modulated by a random phase function to obtain a corresponding multiplex channel. The encoded multiplex image is restituted through a concatenation of R, G, and B multiplex channels. The phase and amplitude functions of the first, second, and third groups of encoded multiplex images are generated. The host image is a single-level 2D discrete wavelet transformed to decompose into LL, HL, LH, and HH subbands. HL, LH, and HH subbands are then replaced with phase functions of the first, second, and third groups, respectively. Finally, the resultant image is an inverse single-level 2D discrete wavelet transformed to construct a watermarked image. The three groups of multiple images are protected not only by the encryption algorithm but also visually by the host image. Thus, a high level of security can be achieved. Each group includes group decryption keys, and each image of the group comprises individual decryption keys beside parameters of coupled logistic maps and gyrator transform. As a result, the key space is very large. The decryption system can be realized by using an optoelectronic device. The numerical simulation results confirm the validity and security of the proposed scheme. PMID:26479935

  3. Visibility of wavelet quantization noise

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.

    1997-01-01

    The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  4. Wavelet Approximation in Data Assimilation

    NASA Technical Reports Server (NTRS)

    Tangborn, Andrew; Atlas, Robert (Technical Monitor)

    2002-01-01

    Estimation of the state of the atmosphere with the Kalman filter remains a distant goal because of high computational cost of evolving the error covariance for both linear and nonlinear systems. Wavelet approximation is presented here as a possible solution that efficiently compresses both global and local covariance information. We demonstrate the compression characteristics on the the error correlation field from a global two-dimensional chemical constituent assimilation, and implement an adaptive wavelet approximation scheme on the assimilation of the one-dimensional Burger's equation. In the former problem, we show that 99%, of the error correlation can be represented by just 3% of the wavelet coefficients, with good representation of localized features. In the Burger's equation assimilation, the discrete linearized equations (tangent linear model) and analysis covariance are projected onto a wavelet basis and truncated to just 6%, of the coefficients. A nearly optimal forecast is achieved and we show that errors due to truncation of the dynamics are no greater than the errors due to covariance truncation.

  5. Perception-based reversible watermarking for 2D vector maps

    NASA Astrophysics Data System (ADS)

    Men, Chaoguang; Cao, Liujuan; Li, Xiang

    2010-07-01

    This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.

  6. Directional spherical multipole wavelets

    SciTech Connect

    Hayn, Michael; Holschneider, Matthias

    2009-07-15

    We construct a family of admissible analysis reconstruction pairs of wavelet families on the sphere. The construction is an extension of the isotropic Poisson wavelets. Similar to those, the directional wavelets allow a finite expansion in terms of off-center multipoles. Unlike the isotropic case, the directional wavelets are not a tight frame. However, at small scales, they almost behave like a tight frame. We give an explicit formula for the pseudodifferential operator given by the combination analysis-synthesis with respect to these wavelets. The Euclidean limit is shown to exist and an explicit formula is given. This allows us to quantify the asymptotic angular resolution of the wavelets.

  7. Optimal wavelet denoising for smart biomonitor systems

    NASA Astrophysics Data System (ADS)

    Messer, Sheila R.; Agzarian, John; Abbott, Derek

    2001-03-01

    Future smart-systems promise many benefits for biomedical diagnostics. The ideal is for simple portable systems that display and interpret information from smart integrated probes or MEMS-based devices. In this paper, we will discuss a step towards this vision with a heart bio-monitor case study. An electronic stethoscope is used to record heart sounds and the problem of extracting noise from the signal is addressed via the use of wavelets and averaging. In our example of heartbeat analysis, phonocardiograms (PCGs) have many advantages in that they may be replayed and analysed for spectral and frequency information. Many sources of noise may pollute a PCG including foetal breath sounds if the subject is pregnant, lung and breath sounds, environmental noise and noise from contact between the recording device and the skin. Wavelets can be employed to denoise the PCG. The signal is decomposed by a discrete wavelet transform. Due to the efficient decomposition of heart signals, their wavelet coefficients tend to be much larger than those due to noise. Thus, coefficients below a certain level are regarded as noise and are thresholded out. The signal can then be reconstructed without significant loss of information in the signal. The questions that this study attempts to answer are which wavelet families, levels of decomposition, and thresholding techniques best remove the noise in a PCG. The use of averaging in combination with wavelet denoising is also addressed. Possible applications of the Hilbert Transform to heart sound analysis are discussed.

  8. Adaptive wavelet collocation methods for initial value boundary problems of nonlinear PDE's

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Wang, Jian-Zhong

    1993-01-01

    We have designed a cubic spline wavelet decomposition for the Sobolev space H(sup 2)(sub 0)(I) where I is a bounded interval. Based on a special 'point-wise orthogonality' of the wavelet basis functions, a fast Discrete Wavelet Transform (DWT) is constructed. This DWT transform will map discrete samples of a function to its wavelet expansion coefficients in O(N log N) operations. Using this transform, we propose a collocation method for the initial value boundary problem of nonlinear PDE's. Then, we test the efficiency of the DWT transform and apply the collocation method to solve linear and nonlinear PDE's.

  9. The Sea of Wavelets

    NASA Astrophysics Data System (ADS)

    Jones, B. J. T.

    Wavelet analysis has become a major tool in many aspects of data handling, whether it be statistical analysis, noise removal or image reconstruction. Wavelet analysis has worked its way into fields as diverse as economics, medicine, geophysics, music and cosmology.

  10. Data analysis using wavelets

    SciTech Connect

    Fryer, M.O.

    1997-05-01

    This paper describes the use of wavelet transform techniques to analyze typical data found in industrial applications. A way of detecting system changes using wavelet transforms is described. The results of applying this method are described for several typical applications. The wavelet technique is compared with the use of Fourier transform methods.

  11. Adaptive Wavelet Transforms

    SciTech Connect

    Szu, H.; Hsu, C.

    1996-12-31

    Human sensors systems (HSS) may be approximately described as an adaptive or self-learning version of the Wavelet Transforms (WT) that are capable to learn from several input-output associative pairs of suitable transform mother wavelets. Such an Adaptive WT (AWT) is a redundant combination of mother wavelets to either represent or classify inputs.

  12. Frequency Domain Modelling by a Direct-Iterative Solver: A Space and Wavelet Approach

    NASA Astrophysics Data System (ADS)

    Hustedt, B.; Operto, S.; Virieux, J.

    2002-12-01

    Seismic forward modelling of wave propagation phenomena in complex rheologic media using a frequency domain finite-difference (FDFD) technique is of special interest for multisource experiments and waveform inversion schemes, because the complete wavefield solution can be computed in a fast and efficient way. FDFD modelling requires the inversion of an extremely large matrix-equation A x x = b, by either a direct or an iterative solver. The direct solver computes an effective inverse of A, called LU factorization. The main handicap is additional computer memory required for storing matrix fill-in coefficients, that are created during the factorization process. Iterative solvers are not limited by memory constraints (additional coefficients), but the convergence depends on a good initial solution difficult to guess before hand. For both solvers, available computer resources has limited wide-spread FDFD modelling applications to mainly two-dimensional (2D) and rarely three-dimensional (3D) problems. In order to overcome these limits, we propose the combination of a direct solver and an iterative solver, called Direct-Iterative Solver (DIS). The direct solver is used to compute an exact wavefield solution on a coarse discretized grid. We use a multifrontal decomposition technique. The coarse-grid size is determined preliminary by limits of the available computer resources, rather than by the wave simulation problem. We project the exact coarse-grid solution on a fine-grid, and use it as an initial solution for an iterative solver, which convergences to an acceptable approximation of the desired fine-grid solution. Two different DIS schemes have been implemented and tested for numerical accuracy and computational performance. The first approach, called the Direct-Iterative-Space Solver (DISS), projects the coarse-grid solution on the fine-grid by a bilinear interpolation. Though the interpolated solution nicely approximates the desired fine-grid solution, still for

  13. Mesh2d

    SciTech Connect

    Greg Flach, Frank Smith

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.

  14. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  15. Visibility of Wavelet Quantization Noise

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Yang, Gloria Y.; Solomon, Joshua A.; Villasenor, John; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter, which we call DWT uniform quantization noise. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2(exp)-L , where r is display visual resolution in pixels/degree, and L is the wavelet level. Amplitude thresholds increase rapidly with spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from low-pass to horizontal/vertical to diagonal. We describe a mathematical model to predict DWT noise detection thresholds as a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  16. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  17. [An improved wavelet threshold algorithm for ECG denoising].

    PubMed

    Liu, Xiuling; Qiao, Lei; Yang, Jianli; Dong, Bin; Wang, Hongrui

    2014-06-01

    Due to the characteristics and environmental factors, electrocardiogram (ECG) signals are usually interfered by noises in the course of signal acquisition, so it is crucial for ECG intelligent analysis to eliminate noises in ECG signals. On the basis of wavelet transform, threshold parameters were improved and a more appropriate threshold expression was proposed. The discrete wavelet coefficients were processed using the improved threshold parameters, the accurate wavelet coefficients without noises were gained through inverse discrete wavelet transform, and then more original signal coefficients could be preserved. MIT-BIH arrythmia database was used to validate the method. Simulation results showed that the improved method could achieve better denoising effect than the traditional ones. PMID:25219225

  18. Symplectic wavelet transformation.

    PubMed

    Fan, Hong-Yi; Lu, Hai-Liang

    2006-12-01

    Usually a wavelet transform is based on dilated-translated wavelets. We propose a symplectic-transformed-translated wavelet family psi(*)(r,s)(z-kappa) (r,s are the symplectic transform parameters, |s|(2)-|r|(2)=1, kappa is a translation parameter) generated from the mother wavelet psi and the corresponding wavelet transformation W(psi)f(r,s;kappa)=integral(infinity)(-infinity)(d(2)z/pi)f(z)psi(*)(r,s)(z-kappa). This new transform possesses well-behaved properties and is related to the optical Fresnel transform in quantum mechanical version. PMID:17099740

  19. Wavelet-assisted volume ray casting.

    PubMed

    He, T

    1998-01-01

    Volume rendering is an important technique for computational biology. In this paper we propose a new wavelet-assisted volume ray casting algorithm. The main idea is to use the wavelet coefficients for detecting the local frequency, and decide the appropriate sampling rate along the ray according to the maximum frequency. Our algorithm is to first apply the 3D discrete wavelet transform on the volume, then create an index volume to indicate the necessary sampling distance at each voxel. During ray casting, the original volume is traversed in the spatial domain, while the index volume is used to decide the appropriate sampling distance. We demonstrate that our algorithm provides a framework for approximating the volume rendering at different levels of quality in a rapid and controlled way. PMID:9697179

  20. Method and system for progressive mesh storage and reconstruction using wavelet-encoded height fields

    NASA Technical Reports Server (NTRS)

    Baxes, Gregory A. (Inventor); Linger, Timothy C. (Inventor)

    2011-01-01

    Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.

  1. Method and system for progressive mesh storage and reconstruction using wavelet-encoded height fields

    NASA Technical Reports Server (NTRS)

    Baxes, Gregory A. (Inventor)

    2010-01-01

    Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.

  2. Multiresolution local tomography in dental radiology using wavelets.

    PubMed

    Niinimäki, K; Siltanen, S; Kolehmainen, V

    2007-01-01

    A Bayesian multiresolution model for local tomography in dental radiology is proposed. In this model a wavelet basis is used to present dental structures and the prior information is modeled in terms of Besov norm penalty. The proposed wavelet-based multiresolution method is used to reduce the number of unknowns in the reconstruction problem by abandoning fine-scale wavelets outside the region of interest (ROI). This multiresolution model allows significant reduction in the number of unknowns without the loss of reconstruction accuracy inside the ROI. The feasibility of the proposed method is tested with two-dimensional (2D) examples using simulated and experimental projection data from dental specimens. PMID:18002604

  3. Dependence and risk assessment for oil prices and exchange rate portfolios: A wavelet based approach

    NASA Astrophysics Data System (ADS)

    Aloui, Chaker; Jammazi, Rania

    2015-10-01

    In this article, we propose a wavelet-based approach to accommodate the stylized facts and complex structure of financial data, caused by frequent and abrupt changes of markets and noises. Specifically, we show how the combination of both continuous and discrete wavelet transforms with traditional financial models helps improve portfolio's market risk assessment. In the empirical stage, three wavelet-based models (wavelet-EGARCH with dynamic conditional correlations, wavelet-copula, and wavelet-extreme value) are considered and applied to crude oil price and US dollar exchange rate data. Our findings show that the wavelet-based approach provides an effective and powerful tool for detecting extreme moments and improving the accuracy of VaR and Expected Shortfall estimates of oil-exchange rate portfolios after noise is removed from the original data.

  4. Wavelet based free-form deformations for nonrigid registration

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.

  5. Random wavelet transforms, algebraic geometric coding, and their applications in signal compression and de-noising

    SciTech Connect

    Bieleck, T.; Song, L.M.; Yau, S.S.T.; Kwong, M.K.

    1995-07-01

    The concepts of random wavelet transforms and discrete random wavelet transforms are introduced. It is shown that these transforms can lead to simultaneous compression and de-noising of signals that have been corrupted with fractional noises. Potential applications of algebraic geometric coding theory to encode the ensuing data are also discussed.

  6. Nonstationary Dynamics Data Analysis with Wavelet-SVD Filtering

    NASA Technical Reports Server (NTRS)

    Brenner, Marty; Groutage, Dale; Bessette, Denis (Technical Monitor)

    2001-01-01

    Nonstationary time-frequency analysis is used for identification and classification of aeroelastic and aeroservoelastic dynamics. Time-frequency multiscale wavelet processing generates discrete energy density distributions. The distributions are processed using the singular value decomposition (SVD). Discrete density functions derived from the SVD generate moments that detect the principal features in the data. The SVD standard basis vectors are applied and then compared with a transformed-SVD, or TSVD, which reduces the number of features into more compact energy density concentrations. Finally, from the feature extraction, wavelet-based modal parameter estimation is applied.

  7. New classes of Wavelets

    SciTech Connect

    Manchanda, P.; Meenakshi

    2009-07-02

    Recently Manchanda, Meenakshi and Siddiqi have studied Haar-Vilenkin wavelet and a special type of non-uniform multiresolution analysis. Haar-Vilenkin wavelet is a generalization of Haar wavelet. Motivated by the paper of Gabardo and Nashed we have introduced a class of multiresolution analysis extending the concept of classical multiresolution analysis. We present here a resume of these results. We hope that applications of these concepts to some significant real world problems could be found.

  8. A 2-D orientation-adaptive prediction filter in lifting structures for image coding.

    PubMed

    Gerek, Omer N; Cetin, A Enis

    2006-01-01

    Lifting-style implementations of wavelets are widely used in image coders. A two-dimensional (2-D) edge adaptive lifting structure, which is similar to Daubechies 5/3 wavelet, is presented. The 2-D prediction filter predicts the value of the next polyphase component according to an edge orientation estimator of the image. Consequently, the prediction domain is allowed to rotate +/-45 degrees in regions with diagonal gradient. The gradient estimator is computationally inexpensive with additional costs of only six subtractions per lifting instruction, and no multiplications are required. PMID:16435541

  9. Characterization and simulation of gunfire with wavelets

    SciTech Connect

    Smallwood, D.O.

    1998-09-01

    Gunfire is used as an example to show how the wavelet transform can be used to characterize and simulate nonstationary random events when an ensemble of events is available. The response of a structure to nearby firing of a high-firing rate gun has been characterized in several ways as a nonstationary random process. The methods all used some form of the discrete fourier transform. The current paper will explore a simpler method to describe the nonstationary random process in terms of a wavelet transform. As was done previously, the gunfire record is broken up into a sequence of transient waveforms each representing the response to the firing of a single round. The wavelet transform is performed on each of these records. The mean and standard deviation of the resulting wavelet coefficients describe the composite characteristics of the entire waveform. It is shown that the distribution of the wavelet coefficients is approximately Gaussian with a nonzero mean and that the standard deviation of the coefficients at different times and levels are approximately independent. The gunfire is simulated by generating realizations of records of a single-round firing by computing the inverse wavelet transform from Gaussian random coefficients with the same mean and standard deviation as those estimated from the previously discussed gunfire record. The individual realizations are then assembled into a realization of a time history of many rounds firing. A second-order correction of the probability density function (pdf) is accomplished with a zero memory nonlinear (ZMNL) function. The method is straightforward, easy to implement, and produces a simulated record very much like the original measured gunfire record.

  10. Wavelet Analyses and Applications

    ERIC Educational Resources Information Center

    Bordeianu, Cristian C.; Landau, Rubin H.; Paez, Manuel J.

    2009-01-01

    It is shown how a modern extension of Fourier analysis known as wavelet analysis is applied to signals containing multiscale information. First, a continuous wavelet transform is used to analyse the spectrum of a nonstationary signal (one whose form changes in time). The spectral analysis of such a signal gives the strength of the signal in each…

  11. Three-dimensional compression scheme based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Yang, Wu; Xu, Hui; Liao, Mengyang

    1999-03-01

    In this paper, a 3D compression method based on separable wavelet transform is discussed in detail. The most commonly used digital modalities generate multiple slices in a single examination, which are normally anatomically or physiologically correlated to each other. 3D wavelet compression methods can achieve more efficient compression by exploring the correlation between slices. The first step is based on a separable 3D wavelet transform. Considering the difference between pixel distances within a slice and those between slices, one biorthogonal Antoninin filter bank is applied within 2D slices and a second biorthogonal Villa4 filter bank on the slice direction. Then, S+P transform is applied in the low-resolution wavelet components and an optimal quantizer is presented after analysis of the quantization noise. We use an optimal bit allocation algorithm, which, instead of eliminating the coefficients of high-resolution components in smooth areas, minimizes the system reconstruction distortion at a given bit-rate. Finally, to remain high coding efficiency and adapt to different properties of each component, a comprehensive entropy coding method is proposed, in which arithmetic coding method is applied in high-resolution components and adaptive Huffman coding method in low-resolution components. Our experimental results are evaluated by several image measures and our 3D wavelet compression scheme is proved to be more efficient than 2D wavelet compression.

  12. The use of wavelet transformations in the solution of two-phase flow problems

    SciTech Connect

    Moridis, G.J.; Nikolaou, M.; You, Y.

    1995-12-31

    In this paper the authors present the use of wavelets to solve the non-linear Partial Differential Equation (PDE) of two-phase flow in one dimension. The wavelet transforms allow a drastically different approach in the discretization of space. In contrast to the traditional trigonometric basis functions, wavelets approximate a function not by cancellation but by placement of wavelets at appropriate locations. When an abrupt change, such as a shock wave or a spike, occurs in a function, only local coefficients in a wavelet approximation will be affected. The unique feature of wavelets is their Multi-Resolution Analysis (MRA) property, which allows seamless investigation at nay spatial resolution. The use of wavelets is tested in the solution of the one-dimensional Buckley-Leverett problem against analytical solutions and solutions obtained from standard numerical models. Two classes of wavelet bases (Daubechies and Chui-Wang) and two methods (Galerkin and collocation) are investigated. The authors determine that the Chui-Wang wavelets and a collection method provide the optimum wavelet solution for this type of problem. Increasing the resolution level improves the accuracy of the solution, but the order of the basis function seems to be far less important. The results indicate that wavelet transforms are an effective and accurate method which does not suffer from oscillations or numerical smearing in the presence of steep fronts.

  13. The use of wavelet transforms in the solution of two-phase flow problems

    SciTech Connect

    Moridis, G.J.; Nikolaou, M.; You, Yong

    1994-10-01

    In this paper we present the use of wavelets to solve the nonlinear Partial Differential.Equation (PDE) of two-phase flow in one dimension. The wavelet transforms allow a drastically different approach in the discretization of space. In contrast to the traditional trigonometric basis functions, wavelets approximate a function not by cancellation but by placement of wavelets at appropriate locations. When an abrupt chance, such as a shock wave or a spike, occurs in a function, only local coefficients in a wavelet approximation will be affected. The unique feature of wavelets is their Multi-Resolution Analysis (MRA) property, which allows seamless investigational any spatial resolution. The use of wavelets is tested in the solution of the one-dimensional Buckley-Leverett problem against analytical solutions and solutions obtained from standard numerical models. Two classes of wavelet bases (Daubechies and Chui-Wang) and two methods (Galerkin and collocation) are investigated. We determine that the Chui-Wang, wavelets and a collocation method provide the optimum wavelet solution for this type of problem. Increasing the resolution level improves the accuracy of the solution, but the order of the basis function seems to be far less important. Our results indicate that wavelet transforms are an effective and accurate method which does not suffer from oscillations or numerical smearing in the presence of steep fronts.

  14. Source Wavelet Phase Extraction

    NASA Astrophysics Data System (ADS)

    Naghadeh, Diako Hariri; Morley, Christopher Keith

    2016-06-01

    Extraction of propagation wavelet phase from seismic data can be conducted using first, second, third and fourth-order statistics. Three new methods are introduced, which are: (1) Combination of different moments, (2) Windowed continuous wavelet transform and (3) Maximum correlation with cosine function. To compare different methods synthetic data with and without noise were chosen. Results show that first, second and third order statistics are not able to preserve wavelet phase. Kurtosis can preserve propagation wavelet phase but signal-to-noise ratio can affect the extracted phase using this method. So for data set with low signal-to-noise ratio, it will be unstable. Using a combination of different moments to extract the phase is more robust than applying kurtosis. The improvement occurs because zero phase wavelets with reverse polarities have equal maximum kurtosis values hence the correct wavelet polarity cannot be identified. Zero-phase wavelets with reverse polarities have minimum and maximum values for a combination of different-moments method. These properties enable the technique to handle a finite data segment and to choose the correct wavelet polarity. Also, the existence of different moments can decrease sensitivity to outliers. A windowed continuous wavelet transform is more sensitive to signal-to-noise ratio than the combination of different-moments method, also if the scale for the wavelet is incorrect it will encounter with more problems to extract phase. When the effects of frequency bandwidth, signal-to-noise ratio and analyzing window length are considered, the results of extracting phase information from data without and with noise demonstrate that combination of different-moments is superior to the other methods introduced here.

  15. Directional wavelet based features for colonic polyp classification.

    PubMed

    Wimmer, Georg; Tamaki, Toru; Tischendorf, J J W; Häfner, Michael; Yoshida, Shigeto; Tanaka, Shinji; Uhl, Andreas

    2016-07-01

    In this work, various wavelet based methods like the discrete wavelet transform, the dual-tree complex wavelet transform, the Gabor wavelet transform, curvelets, contourlets and shearlets are applied for the automated classification of colonic polyps. The methods are tested on 8 HD-endoscopic image databases, where each database is acquired using different imaging modalities (Pentax's i-Scan technology combined with or without staining the mucosa), 2 NBI high-magnification databases and one database with chromoscopy high-magnification images. To evaluate the suitability of the wavelet based methods with respect to the classification of colonic polyps, the classification performances of 3 wavelet transforms and the more recent curvelets, contourlets and shearlets are compared using a common framework. Wavelet transforms were already often and successfully applied to the classification of colonic polyps, whereas curvelets, contourlets and shearlets have not been used for this purpose so far. We apply different feature extraction techniques to extract the information of the subbands of the wavelet based methods. Most of the in total 25 approaches were already published in different texture classification contexts. Thus, the aim is also to assess and compare their classification performance using a common framework. Three of the 25 approaches are novel. These three approaches extract Weibull features from the subbands of curvelets, contourlets and shearlets. Additionally, 5 state-of-the-art non wavelet based methods are applied to our databases so that we can compare their results with those of the wavelet based methods. It turned out that extracting Weibull distribution parameters from the subband coefficients generally leads to high classification results, especially for the dual-tree complex wavelet transform, the Gabor wavelet transform and the Shearlet transform. These three wavelet based transforms in combination with Weibull features even outperform the state

  16. Wavelet transformation based watermarking technique for human electrocardiogram (ECG).

    PubMed

    Engin, Mehmet; Cidam, Oğuz; Engin, Erkan Zeki

    2005-12-01

    Nowadays, watermarking has become a technology of choice for a broad range of multimedia copyright protection applications. Watermarks have also been used to embed prespecified data in biomedical signals. Thus, the watermarked biomedical signals being transmitted through communication are resistant to some attacks. This paper investigates discrete wavelet transform based watermarking technique for signal integrity verification in an Electrocardiogram (ECG) coming from four ECG classes for monitoring application of cardiovascular diseases. The proposed technique is evaluated under different noisy conditions for different wavelet functions. Daubechies (db2) wavelet function based technique performs better than those of Biorthogonal (bior5.5) wavelet function. For the beat-to-beat applications, all performance results belonging to four ECG classes are highly moderate. PMID:16235811

  17. Wavelet analysis of electric adjustable speed drive waveforms

    SciTech Connect

    Czarkowski, D.; Domijan, A. Jr.

    1998-10-01

    The three most common adjustable speed drives (ASDs) used in HVAC equipment, namely, pulse-width modulated (PWM) induction drive, brushless-dc drive, and switched-reluctance drive, generate non-periodic and nonstationary electric waveforms with sharp edges and transients. Deficiencies of Fourier transform methods in analysis of such ASD waveforms prompted an application of the wavelet transform. Results of discrete wavelet transform (DWT) analysis of PWM inverter-fed motor waveforms are presented. The best mother wavelet for analysis of the recorded waveforms is selected. Data compression properties of the selected mother wavelet are compared to those of the fast Fourier transform (FFT). Multilevel feature detection of ASD waveforms using the DWT is shown.

  18. Application of wavelet transforms to reservoir data analysis and scaling

    SciTech Connect

    Panda, M.N.; Mosher, C.; Chopra, A.K.

    1996-12-31

    General characterization of physical systems uses two aspects of data analysis methods: decomposition of empirical data to determine model parameters and reconstruction of the image using these characteristic parameters. Spectral methods, involving a frequency based representation of data, usually assume stationarity. These methods, therefore, extract only the average information and hence are not suitable for analyzing data with isolated or deterministic discontinuities, such as faults or fractures in reservoir rocks or image edges in computer vision. Wavelet transforms provide a multiresolution framework for data representation. They are a family of orthogonal basis functions that separate a function or a signal into distinct frequency packets that are localized in the time domain. Thus, wavelets are well suited for analyzing non-stationary data. In other words, a projection of a function or a discrete data set onto a time-frequency space using wavelets shows how the function behaves at different scales of measurement. Because wavelets have compact support, it is easy to apply this transform to large data sets with minimal computations. We apply the wavelet transforms to one-dimensional and two-dimensional permeability data to determine the locations of layer boundaries and other discontinuities. By binning in the time-frequency plane with wavelet packets, permeability structures of arbitrary size are analyzed. We also apply orthogonal wavelets for scaling up of spatially correlated heterogeneous permeability fields.

  19. Semi-orthogonal wavelets for elliptic variational problems

    SciTech Connect

    Hardin, D.P.; Roach, D.W.

    1998-04-01

    In this paper the authors give a construction of wavelets which are (a) semi-orthogonal with respect to an arbitrary elliptic bilinear form a({center_dot},{center_dot}) on the Sobolev space H{sub 0}{sup 1}((0, L)) and (b) continuous and piecewise linear on an arbitrary partition of [0, L]. They illustrate this construction using a model problem. They also construct alpha-orthogonal Battle-Lemarie type wavelets which fully diagonalize the Galerkin discretized matrix for the model problem with domain IR. Finally they describe a hybrid basis consisting of a combination of elements from the semi-orthogonal wavelet basis and the hierarchical Schauder basis. Numerical experiments indicate that this basis leads to robust scalable Galerkin discretizations of the model problem which remain well-conditioned independent of {epsilon}, L, and the refinement level K.

  20. BOOK REVIEW: The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance

    NASA Astrophysics Data System (ADS)

    Ng, J.; Kingsbury, N. G.

    2004-02-01

    This book provides an overview of the theory and practice of continuous and discrete wavelet transforms. Divided into seven chapters, the first three chapters of the book are introductory, describing the various forms of the wavelet transform and their computation, while the remaining chapters are devoted to applications in fluids, engineering, medicine and miscellaneous areas. Each chapter is well introduced, with suitable examples to demonstrate key concepts. Illustrations are included where appropriate, thus adding a visual dimension to the text. A noteworthy feature is the inclusion, at the end of each chapter, of a list of further resources from the academic literature which the interested reader can consult. The first chapter is purely an introduction to the text. The treatment of wavelet transforms begins in the second chapter, with the definition of what a wavelet is. The chapter continues by defining the continuous wavelet transform and its inverse and a description of how it may be used to interrogate signals. The continuous wavelet transform is then compared to the short-time Fourier transform. Energy and power spectra with respect to scale are also discussed and linked to their frequency counterparts. Towards the end of the chapter, the two-dimensional continuous wavelet transform is introduced. Examples of how the continuous wavelet transform is computed using the Mexican hat and Morlet wavelets are provided throughout. The third chapter introduces the discrete wavelet transform, with its distinction from the discretized continuous wavelet transform having been made clear at the end of the second chapter. In the first half of the chapter, the logarithmic discretization of the wavelet function is described, leading to a discussion of dyadic grid scaling, frames, orthogonal and orthonormal bases, scaling functions and multiresolution representation. The fast wavelet transform is introduced and its computation is illustrated with an example using the Haar

  1. Multispectral multisensor image fusion using wavelet transforms

    USGS Publications Warehouse

    Lemeshewsky, George P.

    1999-01-01

    Fusion techniques can be applied to multispectral and higher spatial resolution panchromatic images to create a composite image that is easier to interpret than the individual images. Wavelet transform-based multisensor, multiresolution fusion (a type of band sharpening) was applied to Landsat thematic mapper (TM) multispectral and coregistered higher resolution SPOT panchromatic images. The objective was to obtain increased spatial resolution, false color composite products to support the interpretation of land cover types wherein the spectral characteristics of the imagery are preserved to provide the spectral clues needed for interpretation. Since the fusion process should not introduce artifacts, a shift invariant implementation of the discrete wavelet transform (SIDWT) was used. These results were compared with those using the shift variant, discrete wavelet transform (DWT). Overall, the process includes a hue, saturation, and value color space transform to minimize color changes, and a reported point-wise maximum selection rule to combine transform coefficients. The performance of fusion based on the SIDWT and DWT was evaluated with a simulated TM 30-m spatial resolution test image and a higher resolution reference. Simulated imagery was made by blurring higher resolution color-infrared photography with the TM sensors' point spread function. The SIDWT based technique produced imagery with fewer artifacts and lower error between fused images and the full resolution reference. Image examples with TM and SPOT 10-m panchromatic illustrate the reduction in artifacts due to the SIDWT based fusion.

  2. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  3. An Explicitly Correlated Wavelet Method for the Electronic Schroedinger Equation

    SciTech Connect

    Bachmayr, Markus

    2010-09-30

    A discretization for an explicitly correlated formulation of the electronic Schroedinger equation based on hyperbolic wavelets and exponential sum approximations of potentials is described, covering mathematical results as well as algorithmic realization, and discussing in particular the potential of methods of this type for parallel computing.

  4. 3D Wavelet-Based Filter and Method

    DOEpatents

    Moss, William C.; Haase, Sebastian; Sedat, John W.

    2008-08-12

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  5. Implemented Wavelet Packet Tree based Denoising Algorithm in Bus Signals of a Wearable Sensorarray

    NASA Astrophysics Data System (ADS)

    Schimmack, M.; Nguyen, S.; Mercorelli, P.

    2015-11-01

    This paper introduces a thermosensing embedded system with a sensor bus that uses wavelets for the purposes of noise location and denoising. From the principle of the filter bank the measured signal is separated in two bands, low and high frequency. The proposed algorithm identifies the defined noise in these two bands. With the Wavelet Packet Transform as a method of Discrete Wavelet Transform, it is able to decompose and reconstruct bus input signals of a sensor network. Using a seminorm, the noise of a sequence can be detected and located, so that the wavelet basis can be rearranged. This particularly allows for elimination of any incoherent parts that make up unavoidable measuring noise of bus signals. The proposed method was built based on wavelet algorithms from the WaveLab 850 library of the Stanford University (USA). This work gives an insight to the workings of Wavelet Transformation.

  6. Periodized Daubechies wavelets

    SciTech Connect

    Restrepo, J.M.; Leaf, G.K.; Schlossnagle, G.

    1996-03-01

    The properties of periodized Daubechies wavelets on [0,1] are detailed and counterparts which form a basis for L{sup 2}(R). Numerical examples illustrate the analytical estimates for convergence and demonstrated by comparison with Fourier spectral methods the superiority of wavelet projection methods for approximations. The analytical solution to inner products of periodized wavelets and their derivatives, which are known as connection coefficients, is presented, and their use ius illustrated in the approximation of two commonly used differential operators. The periodization of the connection coefficients in Galerkin schemes is presented in detail.

  7. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  8. Wavelets and electromagnetics

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.

    1992-01-01

    Wavelets are an exciting new topic in applied mathematics and signal processing. This paper will provide a brief review of wavelets which are also known as families of functions with an emphasis on interpretation rather than rigor. We will derive an indirect use of wavelets for the solution of integral equations based techniques adapted from image processing. Examples for resistive strips will be given illustrating the effect of these techniques as well as their promise in reducing dramatically the requirement in order to solve an integral equation for large bodies. We also will present a direct implementation of wavelets to solve an integral equation. Both methods suggest future research topics and may hold promise for a variety of uses in computational electromagnetics.

  9. Real-time defect detection of steel wire rods using wavelet filters optimized by univariate dynamic encoding algorithm for searches.

    PubMed

    Yun, Jong Pil; Jeon, Yong-Ju; Choi, Doo-chul; Kim, Sang Woo

    2012-05-01

    We propose a new defect detection algorithm for scale-covered steel wire rods. The algorithm incorporates an adaptive wavelet filter that is designed on the basis of lattice parameterization of orthogonal wavelet bases. This approach offers the opportunity to design orthogonal wavelet filters via optimization methods. To improve the performance and the flexibility of wavelet design, we propose the use of the undecimated discrete wavelet transform, and separate design of column and row wavelet filters but with a common cost function. The coefficients of the wavelet filters are optimized by the so-called univariate dynamic encoding algorithm for searches (uDEAS), which searches the minimum value of a cost function designed to maximize the energy difference between defects and background noise. Moreover, for improved detection accuracy, we propose an enhanced double-threshold method. Experimental results for steel wire rod surface images obtained from actual steel production lines show that the proposed algorithm is effective. PMID:22561939

  10. The discrete Kalman filtering approach for seismic signals deconvolution

    SciTech Connect

    Kurniadi, Rizal; Nurhandoko, Bagus Endar B.

    2012-06-20

    Seismic signals are a convolution of reflectivity and seismic wavelet. One of the most important stages in seismic data processing is deconvolution process; the process of deconvolution is inverse filters based on Wiener filter theory. This theory is limited by certain modelling assumptions, which may not always valid. The discrete form of the Kalman filter is then used to generate an estimate of the reflectivity function. The main advantage of Kalman filtering is capability of technique to handling continually time varying models and has high resolution capabilities. In this work, we use discrete Kalman filter that it was combined with primitive deconvolution. Filtering process works on reflectivity function, hence the work flow of filtering is started with primitive deconvolution using inverse of wavelet. The seismic signals then are obtained by convoluting of filtered reflectivity function with energy waveform which is referred to as the seismic wavelet. The higher frequency of wavelet gives smaller wave length, the graphs of these results are presented.

  11. Classification of mammographic microcalcifications using wavelets

    NASA Astrophysics Data System (ADS)

    Chitre, Yateen S.; Dhawan, Atam P.; Moskowitz, Myron; Sarwal, Alok; Bonasso, Christine; Narayan, Suresh B.

    1995-05-01

    Breast cancer is the leading cause of death among women. Breast cancer can be detected earlier by mammography than any other non-invasive examination. About 30% to 50% of breast cancers demonstrate tiny granulelike deposits of calcium called microcalcifications. It is difficult to distinguish between benign and malignant cases based on an examination of calcification regions, especially in hard-to-diagnose cases. We investigate the potential of using energy and entropy features computed from wavelet packets for their correlation with malignancy. Two types of Daubechies discrete filters were used as prototype wavelets. The energy and entropy features were computed for 128 benign and 63 malignant cases and analyzed using a multivariate cluster analysis and a univariate statistical analysis to reduce the feature set to a `five best set of features.' The efficacy of the reduced feature set to discriminate between the malignant and benign categories was evaluated using different multilayer perceptron architectures. The multilayer perceptron was trained using the backpropagation algorithm for various training and test set sizes. For each case 40 partitions of the data set were used to set up the training and test sets. The performance of the features was evaluated by computing the best area under the relative operating characteristic (ROC) curve and the average area under the ROC curve. The performance of the features computed from the wavelet packets was compared to a second set of features consisting of the wavelet packet features, image structure features and cluster features. The classification results are encouraging and indicate the potential of using features derived from wavelet packets in discriminating microcalcification regions into benign and malignant categories.

  12. Pre-cancer detection by wavelet transform and multi-fractality in various grades of DIC stromal images

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sabyasachi; Das, Nandan K.; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.

    2014-02-01

    The objective of the present work is to diagnose pre-cancer by wavelet transform and multi-fractal de-trended fluctuation analysis of DIC images of normal and different grades of cancer tissues. Our DIC imaging and fluctuation analysis methods (Discrete and continuous wavelet transform, MFDFA) confirm the ability to diagnose and detect the early stage of cancer in cervical tissue.

  13. Lagrange wavelets for signal processing.

    PubMed

    Shi, Z; Wei, G W; Kouri, D J; Hoffman, D K; Bao, Z

    2001-01-01

    This paper deals with the design of interpolating wavelets based on a variety of Lagrange functions, combined with novel signal processing techniques for digital imaging. Halfband Lagrange wavelets, B-spline Lagrange wavelets and Gaussian Lagrange (Lagrange distributed approximating functional (DAF)) wavelets are presented as specific examples of the generalized Lagrange wavelets. Our approach combines the perceptually dependent visual group normalization (VGN) technique and a softer logic masking (SLM) method. These are utilized to rescale the wavelet coefficients, remove perceptual redundancy and obtain good visual performance for digital image processing. PMID:18255493

  14. Wavelet-based analysis of circadian behavioral rhythms.

    PubMed

    Leise, Tanya L

    2015-01-01

    The challenging problems presented by noisy biological oscillators have led to the development of a great variety of methods for accurately estimating rhythmic parameters such as period and amplitude. This chapter focuses on wavelet-based methods, which can be quite effective for assessing how rhythms change over time, particularly if time series are at least a week in length. These methods can offer alternative views to complement more traditional methods of evaluating behavioral records. The analytic wavelet transform can estimate the instantaneous period and amplitude, as well as the phase of the rhythm at each time point, while the discrete wavelet transform can extract the circadian component of activity and measure the relative strength of that circadian component compared to those in other frequency bands. Wavelet transforms do not require the removal of noise or trend, and can, in fact, be effective at removing noise and trend from oscillatory time series. The Fourier periodogram and spectrogram are reviewed, followed by descriptions of the analytic and discrete wavelet transforms. Examples illustrate application of each method and their prior use in chronobiology is surveyed. Issues such as edge effects, frequency leakage, and implications of the uncertainty principle are also addressed. PMID:25662453

  15. Biomedical image and signal de-noising using dual tree complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Rizi, F. Yousefi; Noubari, H. Ahmadi; Setarehdan, S. K.

    2011-10-01

    Dual tree complex wavelet transform(DTCWT) is a form of discrete wavelet transform, which generates complex coefficients by using a dual tree of wavelet filters to obtain their real and imaginary parts. The purposes of de-noising are reducing noise level and improving signal to noise ratio (SNR) without distorting the signal or image. This paper proposes a method for removing white Gaussian noise from ECG signals and biomedical images. The discrete wavelet transform (DWT) is very valuable in a large scope of de-noising problems. However, it has limitations such as oscillations of the coefficients at a singularity, lack of directional selectivity in higher dimensions, aliasing and consequent shift variance. The complex wavelet transform CWT strategy that we focus on in this paper is Kingsbury's and Selesnick's dual tree CWT (DTCWT) which outperforms the critically decimated DWT in a range of applications, such as de-noising. Each complex wavelet is oriented along one of six possible directions, and the magnitude of each complex wavelet has a smooth bell-shape. In the final part of this paper, we present biomedical image and signal de-noising by the means of thresholding magnitude of the wavelet coefficients.

  16. Analysis and removing noise from speech using wavelet transform

    NASA Astrophysics Data System (ADS)

    Tomala, Karel; Voznak, Miroslav; Partila, Pavol; Rezac, Filip; Safarik, Jakub

    2013-05-01

    The paper discusses the use of Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT) wavelet in removing noise from voice samples and evaluation of its impact on speech quality. One significant part of Quality of Service (QoS) in communication technology is the speech quality assessment. However, this part is seriously overlooked as telecommunication providers often focus on increasing network capacity, expansion of services offered and their enforcement in the market. Among the fundamental factors affecting the transmission properties of the communication chain is noise, either at the transmitter or the receiver side. A wavelet transform (WT) is a modern tool for signal processing. One of the most significant areas in which wavelet transforms are used is applications designed to suppress noise in signals. To remove noise from the voice sample in our experiment, we used the reference segment of the voice which was distorted by Gaussian white noise. An evaluation of the impact on speech quality was carried out by an intrusive objective algorithm Perceptual Evaluation of Speech Quality (PESQ). DWT and SWT transformation was applied to voice samples that were devalued by Gaussian white noise. Afterwards, we determined the effectiveness of DWT and SWT by means of objective algorithm PESQ. The decisive criterion for determining the quality of a voice sample once the noise had been removed was Mean Opinion Score (MOS) which we obtained in PESQ. The contribution of this work lies in the evaluation of efficiency of wavelet transformation to suppress noise in voice samples.

  17. Directional dual-tree complex wavelet packet transform.

    PubMed

    Serbes, Gorkem; Aydin, Nizamettin; Gulcur, Halil Ozcan

    2013-01-01

    Doppler ultrasound systems, which are widely used in cardiovascular disorders detection, have quadrature format outputs. Various types of algorithms were described in literature to process quadrature Doppler signals (QDS), such as phasing filter technique (PFT), fast Fourier transform method, frequency domain Hilbert transform method and complex continuous wavelet transform. However for the discrete wavelet transform (DWT) case, which becomes a common method for processing QDSs, there was not a direct method to recover flow direction from quadrature signals. Traditionally, to process QDSs with DWT, firstly directional signals have to be extracted and later two DWTs must be applied. Although there exists a complex DWT algorithm called dual tree complex discrete wavelet transform (DTCWT), it does not provide directional signal decoding during analysis because of the unwanted energy leaks into its negative frequency bands. Modified DTCWT, which is a combination of PFT and DTCWT, has the capability of extracting directional information while decomposing QDSs into different frequency bands, but it uses an additional Hilbert transform filter and it increases the computational complexity of whole transform. Discrete wavelet packet transform (DWPT), which is a generalization of the ordinary DWT allowing subband analysis without the constraint of dyadic decomposition, can perform an adaptive decomposition of the frequency axis. In this study, a novel complex DWPT, which maps directional information while processing QDSs, is proposed. The success of proposed method will be measured by using simulated quadrature signals. PMID:24110370

  18. Wavelet decomposition-based efficient face liveness detection

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2016-04-01

    Existing face recognition systems are susceptible to spoofing attacks. So, Face liveness detection is a pivotal part for reliable face recognition, which has recently acknowledged vast attention. In this paper we propose a wavelet decomposition based face liveness recognition system using an energy calculation technique. Live faces contain high energy components compared to fake or printed image. In this paper, we calculate energy components of live face as well as fake face using discrete wavelet decomposition method. We analyze percentage of energy at different levels as well as for different wavelet basis function. We also analyze percentage of energy at different RGB bands and efficient face liveness detection method has been proposed. Discrete wavelet representation has been used to calculate decomposed energy components. Moreover, it provides differentiation of several spatial orientations as well as average and detailed information which are missing in the fake faces. This technique provides excellent discrimination capability when compared to the previously reported works based on the discrete Fourier transform and n-dimensional Fourier transform operations. To verify the proposed approach, we tested the performance using various face antispoofing datasets such as university of south Alabama (UFAD), and MSU face antispoofing dataset which incorporates different types of attacks. The test results obtained using the proposed technique shows better performance compared to existing techniques.

  19. Wavelet-RX anomaly detection for dual-band forward-looking infrared imagery.

    PubMed

    Mehmood, Asif; Nasrabadi, Nasser M

    2010-08-20

    This paper describes a new wavelet-based anomaly detection technique for a dual-band forward-looking infrared (FLIR) sensor consisting of a coregistered longwave (LW) with a midwave (MW) sensor. The proposed approach, called the wavelet-RX (Reed-Xiaoli) algorithm, consists of a combination of a two-dimensional (2D) wavelet transform and a well-known multivariate anomaly detector called the RX algorithm. In our wavelet-RX algorithm, a 2D wavelet transform is first applied to decompose the input image into uniform subbands. A subband-image cube is formed by concatenating together a number of significant subbands (high-energy subbands). The RX algorithm is then applied to the subband-image cube obtained from a wavelet decomposition of the LW or MW sensor data. In the case of the dual band, the RX algorithm is applied to a subband-image cube constructed by concatenating together the high-energy subbands of the LW and MW subband-image cubes. Experimental results are presented for the proposed wavelet-RX and the classical constant false alarm rate (CFAR) algorithm for detecting anomalies (targets) in a single broadband FLIR (LW or MW) or in a coregistered dual-band FLIR sensor. The results show that the proposed wavelet-RX algorithm outperforms the classical CFAR detector for both single-band and dual-band FLIR sensors. PMID:20733634

  20. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  1. Lung tissue classification using wavelet frames.

    PubMed

    Depeursinge, Adrien; Sage, Daniel; Hidki, Asmâa; Platon, Alexandra; Poletti, Pierre-Alexandre; Unser, Michael; Müller, Henning

    2007-01-01

    We describe a texture classification system that identifies lung tissue patterns from high-resolution computed tomography (HRCT) images of patients affected with interstitial lung diseases (ILD). This pattern recognition task is part of an image-based diagnostic aid system for ILDs. Five lung tissue patterns (healthy, emphysema, ground glass, fibrosis and microdules) selected from a multimedia database are classified using the overcomplete discrete wavelet frame decompostion combined with grey-level histogram features. The overall multiclass accuracy reaches 92.5% of correct matches while combining the two types of features, which are found to be complementary. PMID:18003452

  2. Image coding by way of wavelets

    NASA Technical Reports Server (NTRS)

    Shahshahani, M.

    1993-01-01

    The application of two wavelet transforms to image compression is discussed. It is noted that the Haar transform, with proper bit allocation, has performance that is visually superior to an algorithm based on a Daubechies filter and to the discrete cosine transform based Joint Photographic Experts Group (JPEG) algorithm at compression ratios exceeding 20:1. In terms of the root-mean-square error, the performance of the Haar transform method is basically comparable to that of the JPEG algorithm. The implementation of the Haar transform can be achieved in integer arithmetic, making it very suitable for applications requiring real-time performance.

  3. Stationary wavelet transform for fault detection in rotating machinery

    NASA Astrophysics Data System (ADS)

    Seker, Serhat; Karatoprak, Erinc; Kayran, A. H.; Senguler, Tayfun

    2007-09-01

    This research presents a different fault diagnostic approach using the Stationary Wavelet Transform (SWT) as an alternative method to Discrete Wavelet Transform (DWT). In this sense, it is aimed to find potential defects, which exist in healthy motor bearings as manufacturing defects as compared to the faulty case. This approach extracts the origin of the bearing damage that develops during the aging process. In this manner, the advantage of the SWT over the DWT is emphasized. Hence, it can be introduced as a new approach for condition monitoring studies in rotating machineries like the induction motors.

  4. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  5. Wavelet based hierarchical coding scheme for radar image compression

    NASA Astrophysics Data System (ADS)

    Sheng, Wen; Jiao, Xiaoli; He, Jifeng

    2007-12-01

    This paper presents a wavelet based hierarchical coding scheme for radar image compression. Radar signal is firstly quantized to digital signal, and reorganized as raster-scanned image according to radar's repeated period frequency. After reorganization, the reformed image is decomposed to image blocks with different frequency band by 2-D wavelet transformation, each block is quantized and coded by the Huffman coding scheme. A demonstrating system is developed, showing that under the requirement of real time processing, the compression ratio can be very high, while with no significant loss of target signal in restored radar image.

  6. Lossless to lossy compression for hyperspectral imagery based on wavelet and integer KLT transforms with 3D binary EZW

    NASA Astrophysics Data System (ADS)

    Cheng, Kai-jen; Dill, Jeffrey

    2013-05-01

    In this paper, a lossless to lossy transform based image compression of hyperspectral images based on Integer Karhunen-Loève Transform (IKLT) and Integer Discrete Wavelet Transform (IDWT) is proposed. Integer transforms are used to accomplish reversibility. The IKLT is used as a spectral decorrelator and the 2D-IDWT is used as a spatial decorrelator. The three-dimensional Binary Embedded Zerotree Wavelet (3D-BEZW) algorithm efficiently encodes hyperspectral volumetric image by implementing progressive bitplane coding. The signs and magnitudes of transform coefficients are encoded separately. Lossy and lossless compressions of signs are implemented by conventional EZW algorithm and arithmetic coding respectively. The efficient 3D-BEZW algorithm is applied to code magnitudes. Further compression can be achieved using arithmetic coding. The lossless and lossy compression performance is compared with other state of the art predictive and transform based image compression methods on Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images. Results show that the 3D-BEZW performance is comparable to predictive algorithms. However, its computational cost is comparable to transform- based algorithms.

  7. Automatic detection of blood versus non-blood regions on intravascular ultrasound (IVUS) images using wavelet packet signatures

    NASA Astrophysics Data System (ADS)

    Katouzian, Amin; Baseri, Babak; Konofagou, Elisa E.; Laine, Andrew F.

    2008-03-01

    Intravascular ultrasound (IVUS) has been proven a reliable imaging modality that is widely employed in cardiac interventional procedures. It can provide morphologic as well as pathologic information on the occluded plaques in the coronary arteries. In this paper, we present a new technique using wavelet packet analysis that differentiates between blood and non-blood regions on the IVUS images. We utilized the multi-channel texture segmentation algorithm based on the discrete wavelet packet frames (DWPF). A k-mean clustering algorithm was deployed to partition the extracted textural features into blood and non-blood in an unsupervised fashion. Finally, the geometric and statistical information of the segmented regions was used to estimate the closest set of pixels to the lumen border and a spline curve was fitted to the set. The presented algorithm may be helpful in delineating the lumen border automatically and more reliably prior to the process of plaque characterization, especially with 40 MHz transducers, where appearance of the red blood cells renders the border detection more challenging, even manually. Experimental results are shown and they are quantitatively compared with manually traced borders by an expert. It is concluded that our two dimensional (2-D) algorithm, which is independent of the cardiac and catheter motions performs well in both in-vivo and in-vitro cases.

  8. Classification of osteosarcoma T-ray responses using adaptive and rational wavelets for feature extraction

    NASA Astrophysics Data System (ADS)

    Ng, Desmond; Wong, Fu Tian; Withayachumnankul, Withawat; Findlay, David; Ferguson, Bradley; Abbott, Derek

    2007-12-01

    In this work we investigate new feature extraction algorithms on the T-ray response of normal human bone cells and human osteosarcoma cells. One of the most promising feature extraction methods is the Discrete Wavelet Transform (DWT). However, the classification accuracy is dependant on the specific wavelet base chosen. Adaptive wavelets circumvent this problem by gradually adapting to the signal to retain optimum discriminatory information, while removing redundant information. Using adaptive wavelets, classification accuracy, using a quadratic Bayesian classifier, of 96.88% is obtained based on 25 features. In addition, the potential of using rational wavelets rather than the standard dyadic wavelets in classification is explored. The advantage it has over dyadic wavelets is that it allows a better adaptation of the scale factor according to the signal. An accuracy of 91.15% is obtained through rational wavelets with 12 coefficients using a Support Vector Machine (SVM) as the classifier. These results highlight adaptive and rational wavelets as an efficient feature extraction method and the enormous potential of T-rays in cancer detection.

  9. 2d PDE Linear Symmetric Matrix Solver

    1983-10-01

    ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  10. 2d PDE Linear Asymmetric Matrix Solver

    1983-10-01

    ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  11. Wavelets on Planar Tesselations

    SciTech Connect

    Bertram, M.; Duchaineau, M.A.; Hamann, B.; Joy, K.I.

    2000-02-25

    We present a new technique for progressive approximation and compression of polygonal objects in images. Our technique uses local parameterizations defined by meshes of convex polygons in the plane. We generalize a tensor product wavelet transform to polygonal domains to perform multiresolution analysis and compression of image regions. The advantage of our technique over conventional wavelet methods is that the domain is an arbitrary tessellation rather than, for example, a uniform rectilinear grid. We expect that this technique has many applications image compression, progressive transmission, radiosity, virtual reality, and image morphing.

  12. Electromagnetic spatial coherence wavelets.

    PubMed

    Castaneda, Roman; Garcia-Sucerquia, Jorge

    2006-01-01

    The recently introduced concept of spatial coherence wavelets is generalized to describe the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows for the analysis of the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides further insight about the causal relationship between the polarization states at different planes along the propagation path. PMID:16478063

  13. Wavelet transform based on the optimal wavelet pairs for tunable diode laser absorption spectroscopy signal processing.

    PubMed

    Li, Jingsong; Yu, Benli; Fischer, Horst

    2015-04-01

    This paper presents a novel methodology-based discrete wavelet transform (DWT) and the choice of the optimal wavelet pairs to adaptively process tunable diode laser absorption spectroscopy (TDLAS) spectra for quantitative analysis, such as molecular spectroscopy and trace gas detection. The proposed methodology aims to construct an optimal calibration model for a TDLAS spectrum, regardless of its background structural characteristics, thus facilitating the application of TDLAS as a powerful tool for analytical chemistry. The performance of the proposed method is verified using analysis of both synthetic and observed signals, characterized with different noise levels and baseline drift. In terms of fitting precision and signal-to-noise ratio, both have been improved significantly using the proposed method. PMID:25741689

  14. A comparison between wavelet based static and dynamic neural network approaches for runoff prediction

    NASA Astrophysics Data System (ADS)

    Shoaib, Muhammad; Shamseldin, Asaad Y.; Melville, Bruce W.; Khan, Mudasser Muneer

    2016-04-01

    In order to predict runoff accurately from a rainfall event, the multilayer perceptron type of neural network models are commonly used in hydrology. Furthermore, the wavelet coupled multilayer perceptron neural network (MLPNN) models has also been found superior relative to the simple neural network models which are not coupled with wavelet. However, the MLPNN models are considered as static and memory less networks and lack the ability to examine the temporal dimension of data. Recurrent neural network models, on the other hand, have the ability to learn from the preceding conditions of the system and hence considered as dynamic models. This study for the first time explores the potential of wavelet coupled time lagged recurrent neural network (TLRNN) models for runoff prediction using rainfall data. The Discrete Wavelet Transformation (DWT) is employed in this study to decompose the input rainfall data using six of the most commonly used wavelet functions. The performance of the simple and the wavelet coupled static MLPNN models is compared with their counterpart dynamic TLRNN models. The study found that the dynamic wavelet coupled TLRNN models can be considered as alternative to the static wavelet MLPNN models. The study also investigated the effect of memory depth on the performance of static and dynamic neural network models. The memory depth refers to how much past information (lagged data) is required as it is not known a priori. The db8 wavelet function is found to yield the best results with the static MLPNN models and with the TLRNN models having small memory depths. The performance of the wavelet coupled TLRNN models with large memory depths is found insensitive to the selection of the wavelet function as all wavelet functions have similar performance.

  15. The effects of wavelet compression on Digital Elevation Models (DEMs)

    USGS Publications Warehouse

    Oimoen, M.J.

    2004-01-01

    This paper investigates the effects of lossy compression on floating-point digital elevation models using the discrete wavelet transform. The compression of elevation data poses a different set of problems and concerns than does the compression of images. Most notably, the usefulness of DEMs depends largely in the quality of their derivatives, such as slope and aspect. Three areas extracted from the U.S. Geological Survey's National Elevation Dataset were transformed to the wavelet domain using the third order filters of the Daubechies family (DAUB6), and were made sparse by setting 95 percent of the smallest wavelet coefficients to zero. The resulting raster is compressible to a corresponding degree. The effects of the nulled coefficients on the reconstructed DEM are noted as residuals in elevation, derived slope and aspect, and delineation of drainage basins and streamlines. A simple masking technique also is presented, that maintains the integrity and flatness of water bodies in the reconstructed DEM.

  16. ECG Signal Analysis and Arrhythmia Detection using Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Kaur, Inderbir; Rajni, Rajni; Marwaha, Anupma

    2016-06-01

    Electrocardiogram (ECG) is used to record the electrical activity of the heart. The ECG signal being non-stationary in nature, makes the analysis and interpretation of the signal very difficult. Hence accurate analysis of ECG signal with a powerful tool like discrete wavelet transform (DWT) becomes imperative. In this paper, ECG signal is denoised to remove the artifacts and analyzed using Wavelet Transform to detect the QRS complex and arrhythmia. This work is implemented in MATLAB software for MIT/BIH Arrhythmia database and yields the sensitivity of 99.85 %, positive predictivity of 99.92 % and detection error rate of 0.221 % with wavelet transform. It is also inferred that DWT outperforms principle component analysis technique in detection of ECG signal.

  17. A Wavelet-Based Methodology for Grinding Wheel Condition Monitoring

    SciTech Connect

    Liao, T. W.; Ting, C.F.; Qu, Jun; Blau, Peter Julian

    2007-01-01

    Grinding wheel surface condition changes as more material is removed. This paper presents a wavelet-based methodology for grinding wheel condition monitoring based on acoustic emission (AE) signals. Grinding experiments in creep feed mode were conducted to grind alumina specimens with a resinoid-bonded diamond wheel using two different conditions. During the experiments, AE signals were collected when the wheel was 'sharp' and when the wheel was 'dull'. Discriminant features were then extracted from each raw AE signal segment using the discrete wavelet decomposition procedure. An adaptive genetic clustering algorithm was finally applied to the extracted features in order to distinguish different states of grinding wheel condition. The test results indicate that the proposed methodology can achieve 97% clustering accuracy for the high material removal rate condition, 86.7% for the low material removal rate condition, and 76.7% for the combined grinding conditions if the base wavelet, the decomposition level, and the GA parameters are properly selected.

  18. On 2D bisection method for double eigenvalue problems

    SciTech Connect

    Ji, X.

    1996-06-01

    The two-dimensional bisection method presented in (SIAM J. Matrix Anal. Appl. 13(4), 1085 (1992)) is efficient for solving a class of double eigenvalue problems. This paper further extends the 2D bisection method of full matrix cases and analyses its stability. As in a single parameter case, the 2D bisection method is very stable for the tridiagonal matrix triples satisfying the symmetric-definite condition. Since the double eigenvalue problems arise from two-parameter boundary value problems, an estimate of the discretization error in eigenpairs is also given. Some numerical examples are included. 42 refs., 1 tab.

  19. Dual tree fractional quaternion wavelet transform for disparity estimation.

    PubMed

    Kumar, Sanoj; Kumar, Sanjeev; Sukavanam, Nagarajan; Raman, Balasubramanian

    2014-03-01

    This paper proposes a novel phase based approach for computing disparity as the optical flow from the given pair of consecutive images. A new dual tree fractional quaternion wavelet transform (FrQWT) is proposed by defining the 2D Fourier spectrum upto a single quadrant. In the proposed FrQWT, each quaternion wavelet consists of a real part (a real DWT wavelet) and three imaginary parts that are organized according to the quaternion algebra. First two FrQWT phases encode the shifts of image features in the absolute horizontal and vertical coordinate system, while the third phase has the texture information. The FrQWT allowed a multi-scale framework for calculating and adjusting local disparities and executing phase unwrapping from coarse to fine scales with linear computational efficiency. PMID:24388356

  20. The wavelet/scalar quantization compression standard for digital fingerprint images

    SciTech Connect

    Bradley, J.N.; Brislawn, C.M.

    1994-04-01

    A new digital image compression standard has been adopted by the US Federal Bureau of Investigation for use on digitized gray-scale fingerprint images. The algorithm is based on adaptive uniform scalar quantization of a discrete wavelet transform image decomposition and is referred to as the wavelet/scalar quantization standard. The standard produces archival quality images at compression ratios of around 20:1 and will allow the FBI to replace their current database of paper fingerprint cards with digital imagery.

  1. Stacking up 2D materials

    NASA Astrophysics Data System (ADS)

    Mayor, Louise

    2016-05-01

    Graphene might be the most famous example, but there are other 2D materials and compounds too. Louise Mayor explains how these atomically thin sheets can be layered together to create flexible “van der Waals heterostructures”, which could lead to a range of novel applications.

  2. Discrete resonances

    NASA Astrophysics Data System (ADS)

    Vivaldi, Franco

    2015-12-01

    The concept of resonance has been instrumental to the study of Hamiltonian systems with divided phase space. One can also define such systems over discrete spaces, which have a finite or countable number of points, but in this new setting the notion of resonance must be re-considered from scratch. I review some recent developments in the area of arithmetic dynamics which outline some salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline the difficulties that emerge in their analysis.

  3. Discrete resonances

    NASA Astrophysics Data System (ADS)

    Vivaldi, Franco

    The concept of resonance has been instrumental to the study of Hamiltonian systems with divided phase space. One can also define such systems over discrete spaces, which have a finite or countable number of points, but in this new setting the notion of resonance must be re-considered from scratch. I review some recent developments in the area of arithmetic dynamics which outline some salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline the difficulties that emerge in their analysis.

  4. Security of Color Image Data Designed by Public-Key Cryptosystem Associated with 2D-DWT

    NASA Astrophysics Data System (ADS)

    Mishra, D. C.; Sharma, R. K.; Kumar, Manish; Kumar, Kuldeep

    2014-08-01

    In present times the security of image data is a major issue. So, we have proposed a novel technique for security of color image data by public-key cryptosystem or asymmetric cryptosystem. In this technique, we have developed security of color image data using RSA (Rivest-Shamir-Adleman) cryptosystem with two-dimensional discrete wavelet transform (2D-DWT). Earlier proposed schemes for security of color images designed on the basis of keys, but this approach provides security of color images with the help of keys and correct arrangement of RSA parameters. If the attacker knows about exact keys, but has no information of exact arrangement of RSA parameters, then the original information cannot be recovered from the encrypted data. Computer simulation based on standard example is critically examining the behavior of the proposed technique. Security analysis and a detailed comparison between earlier developed schemes for security of color images and proposed technique are also mentioned for the robustness of the cryptosystem.

  5. Application of wavelet transforms in terahertz spectroscopy of rough surface targets

    NASA Astrophysics Data System (ADS)

    Arbab, M. Hassan; Winebrenner, Dale P.; Thorsos, Eric I.; Chen, Antao

    2010-02-01

    Previously, it has been shown that scattering of terahertz waves by surface roughness of a target can alter the terahertz absorption spectrum and thus obscure the detection of some chemicals in both transmission and reflection geometries. In this paper it is demonstrated that by employing Maximal Overlap Discrete Wavelet Transform (MODWT) coefficients, wavelet-based methods can be used to retrieve spectroscopic information from a broadband terahertz signal reflected from a rough surface target. It is concluded that while the commonly used direct frequency domain deconvolution method fails to accurately characterize and detect the resonance in the dielectric constant of rough surface lactose pellets, wavelet techniques were able to successfully identify such features.

  6. An application of wavelet transforms and neural networks for decomposition of millimeter-wave spectroscopic signals

    SciTech Connect

    Gopalan, K.; Gopalsami, N.; Bakhtiari, S.; Raptis, A.C.

    1995-07-01

    This paper reports on wavelet-based decomposition methods and neural networks for remote monitoring of airborne chemicals using millimeter wave spectroscopy. Because of instrumentation noise and the presence of untargeted chemicals, direct decomposition of the spectra requires a large number of training data and yields low accuracy. A neural network trained with features obtained from a discrete wavelet transform is demonstrated to have better decomposition with faster training time. Results based on simulated and experimental spectra are presented to show the efficacy of the wavelet-based methods.

  7. SILC: a new Planck internal linear combination CMB temperature map using directional wavelets

    NASA Astrophysics Data System (ADS)

    Rogers, Keir K.; Peiris, Hiranya V.; Leistedt, Boris; McEwen, Jason D.; Pontzen, Andrew

    2016-08-01

    We present new clean maps of the cosmic microwave background (CMB) temperature anisotropies (as measured by Planck) constructed with a novel internal linear combination (ILC) algorithm using directional, scale-discretized wavelets - scale-discretized, directional wavelet ILC or Scale-discretised, directional wavelet Internal Linear Combination (SILC). Directional wavelets, when convolved with signals on the sphere, can separate the anisotropic filamentary structures which are characteristic of both the CMB and foregrounds. Extending previous component separation methods, which use the frequency, spatial and harmonic signatures of foregrounds to separate them from the cosmological background signal, SILC can additionally use morphological information in the foregrounds and CMB to better localize the cleaning algorithm. We test the method on Planck data and simulations, demonstrating consistency with existing component separation algorithms, and discuss how to optimize the use of morphological information by varying the number of directional wavelets as a function of spatial scale. We find that combining the use of directional and axisymmetric wavelets depending on scale could yield higher quality CMB temperature maps. Our results set the stage for the application of SILC to polarization anisotropies through an extension to spin wavelets.

  8. Parallel algorithms for 2-D cylindrical transport equations of Eigenvalue problem

    SciTech Connect

    Wei, J.; Yang, S.

    2013-07-01

    In this paper, aimed at the neutron transport equations of eigenvalue problem under 2-D cylindrical geometry on unstructured grid, the discrete scheme of Sn discrete ordinate and discontinuous finite is built, and the parallel computation for the scheme is realized on MPI systems. Numerical experiments indicate that the designed parallel algorithm can reach perfect speedup, it has good practicality and scalability. (authors)

  9. A study of stationarity in time series by using wavelet transform

    NASA Astrophysics Data System (ADS)

    Dghais, Amel Abdoullah Ahmed; Ismail, Mohd Tahir

    2014-07-01

    In this work the core objective is to apply discrete wavelet transform (DWT) functions namely Haar, Daubechies, Symmlet, Coiflet and discrete approximation of the meyer wavelets in non-stationary financial time series data from US stock market (DJIA30). The data consists of 2048 daily data of closing index starting from December 17, 2004 until October 23, 2012. From the unit root test the results show that the data is non stationary in the level. In order to study the stationarity of a time series, the autocorrelation function (ACF) is used. Results indicate that, Haar function is the lowest function to obtain noisy series as compared to Daubechies, Symmlet, Coiflet and discrete approximation of the meyer wavelets. In addition, the original data after decomposition by DWT is less noisy series than decomposition by DWT for return time series.

  10. Baby universes and fractal structure of 2d gravity

    NASA Astrophysics Data System (ADS)

    Thorleifsson, Gudmar

    1994-04-01

    We extract the string susceptibility exponent γstr by measuring the distribution of baby universes on surfaces in the case of various matter fields coupled to discrete 2d quantum gravity. For c <= 1 the results are in good agreement with the KPZ-formula, if logarithmic corrections are taken into account for c = 1. For c > 1 it is not as clear how to extract γstr but universality with respect to c is observed in the fractal structure.

  11. Wavelet analysis for aboveground biomass estimate in temperate deciduous forests

    NASA Astrophysics Data System (ADS)

    Wei, Xiao-Fang

    2008-10-01

    The ever-increasing concentration of anthropogenic greenhouse gases (CO2, CH4, and CFCs) has been identified as a likely (greater than 90% confidence) cause of the observed increase of global mean temperatures since the mid-20th century (IPCC, 2007). The effect of human-induced climate change could be unprecedented and far-reaching. Carbon sequestration into trees and forests is an effective and inexpensive way for mitigating the CO2 level in the atmosphere. Hence, accurate measurement of biomass will be of great importance to global carbon cycle and climate change. This study performed a wavelet-based forest aboveground biomass estimation approach in a temperate deciduous forest, the Hoosier National Forest, in Indiana. Wavelet analysis, specifically two-dimensional discrete wavelet transform (DWT) was applied to ASTER images to obtain wavelet coefficients (WCs), which were correlated with forest inventory data using multiple linear regression analysis to investigate the relationship. Different mother wavelets and level of decomposition were tested. Moreover, vegetation indices, RATIO, normalized difference vegetation index (NDVI), and principal component analyses (PCA) were computed and correlated with field biomass measurements. The results indicate that wavelet coefficients correlate better with field biomass data than vegetation indices. For level one decomposition, the correlation coefficients are 0.3 to 0.5, while 0.1-0.3 for vegetation indices; for level two decomposition, the overall R value increased by 0.2, and for level three, the R value can be increased to 0.6-0.7. Meanwhile, tree per acre and basal area were also examined and correlated with field measurements. This study demonstrates that wavelet-based biomass estimation could be a very promising approach for solving the uncertainty between reflectance value from satellite images and forest biomass and therefore providing better biomass estimation; however, further research is needed for identifying

  12. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  13. A combined approach for the enhancement and segmentation of mammograms using modified fuzzy C-means method in wavelet domain.

    PubMed

    Srivastava, Subodh; Sharma, Neeraj; Singh, S K; Srivastava, R

    2014-07-01

    In this paper, a combined approach for enhancement and segmentation of mammograms is proposed. In preprocessing stage, a contrast limited adaptive histogram equalization (CLAHE) method is applied to obtain the better contrast mammograms. After this, the proposed combined methods are applied. In the first step of the proposed approach, a two dimensional (2D) discrete wavelet transform (DWT) is applied to all the input images. In the second step, a proposed nonlinear complex diffusion based unsharp masking and crispening method is applied on the approximation coefficients of the wavelet transformed images to further highlight the abnormalities such as micro-calcifications, tumours, etc., to reduce the false positives (FPs). Thirdly, a modified fuzzy c-means (FCM) segmentation method is applied on the output of the second step. In the modified FCM method, the mutual information is proposed as a similarity measure in place of conventional Euclidian distance based dissimilarity measure for FCM segmentation. Finally, the inverse 2D-DWT is applied. The efficacy of the proposed unsharp masking and crispening method for image enhancement is evaluated in terms of signal-to-noise ratio (SNR) and that of the proposed segmentation method is evaluated in terms of random index (RI), global consistency error (GCE), and variation of information (VoI). The performance of the proposed segmentation approach is compared with the other commonly used segmentation approaches such as Otsu's thresholding, texture based, k-means, and FCM clustering as well as thresholding. From the obtained results, it is observed that the proposed segmentation approach performs better and takes lesser processing time in comparison to the standard FCM and other segmentation methods in consideration. PMID:25190996

  14. Digital watermarking algorithm based on HVS in wavelet domain

    NASA Astrophysics Data System (ADS)

    Zhang, Qiuhong; Xia, Ping; Liu, Xiaomei

    2013-10-01

    As a new technique used to protect the copyright of digital productions, the digital watermark technique has drawn extensive attention. A digital watermarking algorithm based on discrete wavelet transform (DWT) was presented according to human visual properties in the paper. Then some attack analyses were given. Experimental results show that the watermarking scheme proposed in this paper is invisible and robust to cropping, and also has good robustness to cut , compression , filtering , and noise adding .

  15. New image watermarking algorithm based on mixed scales wavelets

    NASA Astrophysics Data System (ADS)

    El Hajji, Mohamed; Douzi, Hassan; Mammass, Driss; Harba, Rachid; Ros, Frédéric

    2012-01-01

    Watermarking is a technology for embedding secure information in digital content such as audio, images, and video. An effective watermarking algorithm is proposed based on a discrete wavelet transform (DWT) using mixed scales representation. The watermark is embedded in dominant blocks using quantization index modulation (QIM). These dominant blocks correspond to the texture and contour zones. Experimental results demonstrate that the proposed method is robust against various attacks and improves watermark invisibility.

  16. Embedded morphological dilation coding for 2D and 3D images

    NASA Astrophysics Data System (ADS)

    Lazzaroni, Fabio; Signoroni, Alberto; Leonardi, Riccardo

    2002-01-01

    Current wavelet-based image coders obtain high performance thanks to the identification and the exploitation of the statistical properties of natural images in the transformed domain. Zerotree-based algorithms, as Embedded Zerotree Wavelets (EZW) and Set Partitioning In Hierarchical Trees (SPIHT), offer high Rate-Distortion (RD) coding performance and low computational complexity by exploiting statistical dependencies among insignificant coefficients on hierarchical subband structures. Another possible approach tries to predict the clusters of significant coefficients by means of some form of morphological dilation. An example of a morphology-based coder is the Significance-Linked Connected Component Analysis (SLCCA) that has shown performance which are comparable to the zerotree-based coders but is not embedded. A new embedded bit-plane coder is proposed here based on morphological dilation of significant coefficients and context based arithmetic coding. The algorithm is able to exploit both intra-band and inter-band statistical dependencies among wavelet significant coefficients. Moreover, the same approach is used both for two and three-dimensional wavelet-based image compression. Finally we the algorithms are tested on some 2D images and on a medical volume, by comparing the RD results to those obtained with the state-of-the-art wavelet-based coders.

  17. Wavelet analysis to characterize cluster dynamics in a circulating fluidized bed

    SciTech Connect

    Guenther, C.; Breault, R.W.

    2007-04-30

    A common hydrodynamic feature in heavily loaded circulating fluidized beds is the presence of clusters. The continuous formation and destruction of clusters strongly influences particle hold-up, pressure drop, heat transfer at the wall, and mixing. In this paper fiber optic data is analyzed using discrete wavelet analysis to characterize the dynamic behavior of clusters. Five radial positions at three different axial locations under five different operating conditions spanning three different flow regimes were analyzed using discrete wavelets. Results are summarized with respect to cluster size and frequency.

  18. Nanoimprint lithography: 2D or not 2D? A review

    NASA Astrophysics Data System (ADS)

    Schift, Helmut

    2015-11-01

    Nanoimprint lithography (NIL) is more than a planar high-end technology for the patterning of wafer-like substrates. It is essentially a 3D process, because it replicates various stamp topographies by 3D displacement of material and takes advantage of the bending of stamps while the mold cavities are filled. But at the same time, it keeps all assets of a 2D technique being able to pattern thin masking layers like in photon- and electron-based traditional lithography. This review reports about 20 years of development of replication techniques at Paul Scherrer Institut, with a focus on 3D aspects of molding, which enable NIL to stay 2D, but at the same time enable 3D applications which are "more than Moore." As an example, the manufacturing of a demonstrator for backlighting applications based on thermally activated selective topography equilibration will be presented. This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale.

  19. Basis Selection for Wavelet Regression

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Lau, Sonie (Technical Monitor)

    1998-01-01

    A wavelet basis selection procedure is presented for wavelet regression. Both the basis and the threshold are selected using cross-validation. The method includes the capability of incorporating prior knowledge on the smoothness (or shape of the basis functions) into the basis selection procedure. The results of the method are demonstrated on sampled functions widely used in the wavelet regression literature. The results of the method are contrasted with other published methods.

  20. Discrete shearlet transform on GPU with applications in anomaly detection and denoising

    NASA Astrophysics Data System (ADS)

    Gibert, Xavier; Patel, Vishal M.; Labate, Demetrio; Chellappa, Rama

    2014-12-01

    Shearlets have emerged in recent years as one of the most successful methods for the multiscale analysis of multidimensional signals. Unlike wavelets, shearlets form a pyramid of well-localized functions defined not only over a range of scales and locations, but also over a range of orientations and with highly anisotropic supports. As a result, shearlets are much more effective than traditional wavelets in handling the geometry of multidimensional data, and this was exploited in a wide range of applications from image and signal processing. However, despite their desirable properties, the wider applicability of shearlets is limited by the computational complexity of current software implementations. For example, denoising a single 512 × 512 image using a current implementation of the shearlet-based shrinkage algorithm can take between 10 s and 2 min, depending on the number of CPU cores, and much longer processing times are required for video denoising. On the other hand, due to the parallel nature of the shearlet transform, it is possible to use graphics processing units (GPU) to accelerate its implementation. In this paper, we present an open source stand-alone implementation of the 2D discrete shearlet transform using CUDA C++ as well as GPU-accelerated MATLAB implementations of the 2D and 3D shearlet transforms. We have instrumented the code so that we can analyze the running time of each kernel under different GPU hardware. In addition to denoising, we describe a novel application of shearlets for detecting anomalies in textured images. In this application, computation times can be reduced by a factor of 50 or more, compared to multicore CPU implementations.

  1. Wavelets in medical imaging

    SciTech Connect

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.

    2012-07-17

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  2. Wavelets in medical imaging

    NASA Astrophysics Data System (ADS)

    Zahra, Noor e.; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.

    2012-07-01

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  3. 2D biological representations with reduced speckle obtained from two perpendicular ultrasonic arrays.

    PubMed

    Rodriguez-Hernandez, Miguel A; Gomez-Sacristan, Angel; Sempere-Payá, Víctor M

    2016-04-29

    Ultrasound diagnosis is a widely used medical tool. Among the various ultrasound techniques, ultrasonic imaging is particularly relevant. This paper presents an improvement to a two-dimensional (2D) ultrasonic system using measurements taken from perpendicular planes, where digital signal processing techniques are used to combine one-dimensional (1D) A-scans were acquired by individual transducers in arrays located in perpendicular planes. An algorithm used to combine measurements is improved based on the wavelet transform, which includes a denoising step during the 2D representation generation process. The inclusion of this new denoising stage generates higher quality 2D representations with a reduced level of speckling. The paper includes different 2D representations obtained from noisy A-scans and compares the improvements obtained by including the denoising stage. PMID:27163318

  4. Discrete wavelet transform FPGA design using MatLab/Simulink

    NASA Astrophysics Data System (ADS)

    Meyer-Baese, Uwe; Vera, A.; Meyer-Baese, A.; Pattichis, M.; Perry, R.

    2006-04-01

    Design of current DSP applications using state-of-the art multi-million gates devices requires a broad foundation of the engineering shlls ranging from knowledge of hardware-efficient DSP algorithms to CAD design tools. The requirement of short time-to-market, however, requires to replace the traditional HDL based designs by a MatLab/Simulink based design flow. This not only allows the over 1 million MatLab users to design FPGAs but also to by-pass the hardware design engineer leading to a significant reduction in development time. Critical however with this design flow are: (1) quality-of-results, (2) sophistication of Simulink block library, (3) compile time, (4) cost and availability of development boards, and (5) cost, functionality, and ease-of-use of the FPGA vendor provided design tools.

  5. Efficacy Evaluation of Different Wavelet Feature Extraction Methods on Brain MRI Tumor Detection

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel; Kubat, Miroslav

    2014-03-01

    Automated Magnetic Resonance Imaging brain tumor detection and segmentation is a challenging task. Among different available methods, feature-based methods are very dominant. While many feature extraction techniques have been employed, it is still not quite clear which of feature extraction methods should be preferred. To help improve the situation, we present the results of a study in which we evaluate the efficiency of using different wavelet transform features extraction methods in brain MRI abnormality detection. Applying T1-weighted brain image, Discrete Wavelet Transform (DWT), Discrete Wavelet Packet Transform (DWPT), Dual Tree Complex Wavelet Transform (DTCWT), and Complex Morlet Wavelet Transform (CMWT) methods are applied to construct the feature pool. Three various classifiers as Support Vector Machine, K Nearest Neighborhood, and Sparse Representation-Based Classifier are applied and compared for classifying the selected features. The results show that DTCWT and CMWT features classified with SVM, result in the highest classification accuracy, proving of capability of wavelet transform features to be informative in this application.

  6. Context Modeler for Wavelet Compression of Spectral Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron; Xie, Hua; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    A context-modeling sub-algorithm has been developed as part of an algorithm that effects three-dimensional (3D) wavelet-based compression of hyperspectral image data. The context-modeling subalgorithm, hereafter denoted the context modeler, provides estimates of probability distributions of wavelet-transformed data being encoded. These estimates are utilized by an entropy coding subalgorithm that is another major component of the compression algorithm. The estimates make it possible to compress the image data more effectively than would otherwise be possible. The following background discussion is prerequisite to a meaningful summary of the context modeler. This discussion is presented relative to ICER-3D, which is the name attached to a particular compression algorithm and the software that implements it. The ICER-3D software is summarized briefly in the preceding article, ICER-3D Hyperspectral Image Compression Software (NPO-43238). Some aspects of this algorithm were previously described, in a slightly more general context than the ICER-3D software, in "Improving 3D Wavelet-Based Compression of Hyperspectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. In turn, ICER-3D is a product of generalization of ICER, another previously reported algorithm and computer program that can perform both lossless and lossy wavelet-based compression and decompression of gray-scale-image data. In ICER-3D, hyperspectral image data are decomposed using a 3D discrete wavelet transform (DWT). Following wavelet decomposition, mean values are subtracted from spatial planes of spatially low-pass subbands prior to encoding. The resulting data are converted to sign-magnitude form and compressed. In ICER-3D, compression is progressive, in that compressed information is ordered so that as more of the compressed data stream is received, successive reconstructions of the hyperspectral image data are of successively higher overall fidelity.

  7. Wavelet-based ground vehicle recognition using acoustic signals

    NASA Astrophysics Data System (ADS)

    Choe, Howard C.; Karlsen, Robert E.; Gerhart, Grant R.; Meitzler, Thomas J.

    1996-03-01

    We present, in this paper, a wavelet-based acoustic signal analysis to remotely recognize military vehicles using their sound intercepted by acoustic sensors. Since expedited signal recognition is imperative in many military and industrial situations, we developed an algorithm that provides an automated, fast signal recognition once implemented in a real-time hardware system. This algorithm consists of wavelet preprocessing, feature extraction and compact signal representation, and a simple but effective statistical pattern matching. The current status of the algorithm does not require any training. The training is replaced by human selection of reference signals (e.g., squeak or engine exhaust sound) distinctive to each individual vehicle based on human perception. This allows a fast archiving of any new vehicle type in the database once the signal is collected. The wavelet preprocessing provides time-frequency multiresolution analysis using discrete wavelet transform (DWT). Within each resolution level, feature vectors are generated from statistical parameters and energy content of the wavelet coefficients. After applying our algorithm on the intercepted acoustic signals, the resultant feature vectors are compared with the reference vehicle feature vectors in the database using statistical pattern matching to determine the type of vehicle from where the signal originated. Certainly, statistical pattern matching can be replaced by an artificial neural network (ANN); however, the ANN would require training data sets and time to train the net. Unfortunately, this is not always possible for many real world situations, especially collecting data sets from unfriendly ground vehicles to train the ANN. Our methodology using wavelet preprocessing and statistical pattern matching provides robust acoustic signal recognition. We also present an example of vehicle recognition using acoustic signals collected from two different military ground vehicles. In this paper, we will

  8. Data compression by wavelet transforms

    NASA Technical Reports Server (NTRS)

    Shahshahani, M.

    1992-01-01

    A wavelet transform algorithm is applied to image compression. It is observed that the algorithm does not suffer from the blockiness characteristic of the DCT-based algorithms at compression ratios exceeding 25:1, but the edges do not appear as sharp as they do with the latter method. Some suggestions for the improved performance of the wavelet transform method are presented.

  9. Discrete Sibson interpolation.

    PubMed

    Park, Sung W; Linsen, Lars; Kreylos, Oliver; Owens, John D; Hamann, Bernd

    2006-01-01

    Natural-neighbor interpolation methods, such as Sibson's method, are well-known schemes for multivariate data fitting and reconstruction. Despite its many desirable properties, Sibson's method is computationally expensive and difficult to implement, especially when applied to higher-dimensional data. The main reason for both problems is the method's implementation based on a Voronoi diagram of all data points. We describe a discrete approach to evaluating Sibson's interpolant on a regular grid, based solely on finding nearest neighbors and rendering and blending d-dimensional spheres. Our approach does not require us to construct an explicit Voronoi diagram, is easily implemented using commodity three-dimensional graphics hardware, leads to a significant speed increase compared to traditional approaches, and generalizes easily to higher dimensions. For large scattered data sets, we achieve two-dimensional (2D) interpolation at interactive rates and 3D interpolation (3D) with computation times of a few seconds. PMID:16509383

  10. Time Domain Propagation of Quantum and Classical Systems using a Wavelet Basis Set Method

    NASA Astrophysics Data System (ADS)

    Lombardini, Richard; Nowara, Ewa; Johnson, Bruce

    2015-03-01

    The use of an orthogonal wavelet basis set (Optimized Maximum-N Generalized Coiflets) to effectively model physical systems in the time domain, in particular the electromagnetic (EM) pulse and quantum mechanical (QM) wavefunction, is examined in this work. Although past research has demonstrated the benefits of wavelet basis sets to handle computationally expensive problems due to their multiresolution properties, the overlapping supports of neighboring wavelet basis functions poses problems when dealing with boundary conditions, especially with material interfaces in the EM case. Specifically, this talk addresses this issue using the idea of derivative matching creating fictitious grid points (T.A. Driscoll and B. Fornberg), but replaces the latter element with fictitious wavelet projections in conjunction with wavelet reconstruction filters. Two-dimensional (2D) systems are analyzed, EM pulse incident on silver cylinders and the QM electron wave packet circling the proton in a hydrogen atom system (reduced to 2D), and the new wavelet method is compared to the popular finite-difference time-domain technique.

  11. Entropy-based optimization of wavelet spatial filters.

    PubMed

    Farina, Darino; Kamavuako, Ernest Nlandu; Wu, Jian; Naddeo, Francesco

    2008-03-01

    A new class of spatial filters for surface electromyographic (EMG) signal detection is proposed. These filters are based on the 2-D spatial wavelet decomposition of the surface EMG recorded with a grid of electrodes and inverse transformation after zeroing a subset of the transformation coefficients. The filter transfer function depends on the selected mother wavelet in the two spatial directions. Wavelet parameterization is proposed with the aim of signal-based optimization of the transfer function of the spatial filter. The optimization criterion was the minimization of the entropy of the time samples of the output signal. The optimized spatial filter is linear and space invariant. In simulated and experimental recordings, the optimized wavelet filter showed increased selectivity with respect to previously proposed filters. For example, in simulation, the ratio between the peak-to-peak amplitude of action potentials generated by motor units 20 degrees apart in the transversal direction was 8.58% (with monopolar recording), 2.47% (double differential), 2.59% (normal double differential), and 0.47% (optimized wavelet filter). In experimental recordings, the duration of the detected action potentials decreased from (mean +/- SD) 6.9 +/- 0.3 ms (monopolar recording), to 4.5 +/- 0.2 ms (normal double differential), 3.7 +/- 0.2 (double differential), and 3.0 +/- 0.1 ms (optimized wavelet filter). In conclusion, the new class of spatial filters with the proposed signal-based optimization of the transfer function allows better discrimination of individual motor unit activities in surface EMG recordings than it was previously possible. PMID:18334382

  12. Directional dual-tree complex wavelet packet transforms for processing quadrature signals.

    PubMed

    Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin

    2016-03-01

    Quadrature signals containing in-phase and quadrature-phase components are used in many signal processing applications in every field of science and engineering. Specifically, Doppler ultrasound systems used to evaluate cardiovascular disorders noninvasively also result in quadrature format signals. In order to obtain directional blood flow information, the quadrature outputs have to be preprocessed using methods such as asymmetrical and symmetrical phasing filter techniques. These resultant directional signals can be employed in order to detect asymptomatic embolic signals caused by small emboli, which are indicators of a possible future stroke, in the cerebral circulation. Various transform-based methods such as Fourier and wavelet were frequently used in processing embolic signals. However, most of the times, the Fourier and discrete wavelet transforms are not appropriate for the analysis of embolic signals due to their non-stationary time-frequency behavior. Alternatively, discrete wavelet packet transform can perform an adaptive decomposition of the time-frequency axis. In this study, directional discrete wavelet packet transforms, which have the ability to map directional information while processing quadrature signals and have less computational complexity than the existing wavelet packet-based methods, are introduced. The performances of proposed methods are examined in detail by using single-frequency, synthetic narrow-band, and embolic quadrature signals. PMID:25388779

  13. Wavelet-Based Grid Generation

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1996-01-01

    Wavelets can provide a basis set in which the basis functions are constructed by dilating and translating a fixed function known as the mother wavelet. The mother wavelet can be seen as a high pass filter in the frequency domain. The process of dilating and expanding this high-pass filter can be seen as altering the frequency range that is 'passed' or detected. The process of translation moves this high-pass filter throughout the domain, thereby providing a mechanism to detect the frequencies or scales of information at every location. This is exactly the type of information that is needed for effective grid generation. This paper provides motivation to use wavelets for grid generation in addition to providing the final product: source code for wavelet-based grid generation.

  14. Wavelet compression of medical imagery.

    PubMed

    Reiter, E

    1996-01-01

    Wavelet compression is a transform-based compression technique recently shown to provide diagnostic-quality images at compression ratios as great as 30:1. Based on a recently developed field of applied mathematics, wavelet compression has found success in compression applications from digital fingerprints to seismic data. The underlying strength of the method is attributable in large part to the efficient representation of image data by the wavelet transform. This efficient or sparse representation forms the basis for high-quality image compression by providing subsequent steps of the compression scheme with data likely to result in long runs of zero. These long runs of zero in turn compress very efficiently, allowing wavelet compression to deliver substantially better performance than existing Fourier-based methods. Although the lack of standardization has historically been an impediment to widespread adoption of wavelet compression, this situation may begin to change as the operational benefits of the technology become better known. PMID:10165355

  15. A generalized wavelet extrema representation

    SciTech Connect

    Lu, Jian; Lades, M.

    1995-10-01

    The wavelet extrema representation originated by Stephane Mallat is a unique framework for low-level and intermediate-level (feature) processing. In this paper, we present a new form of wavelet extrema representation generalizing Mallat`s original work. The generalized wavelet extrema representation is a feature-based multiscale representation. For a particular choice of wavelet, our scheme can be interpreted as representing a signal or image by its edges, and peaks and valleys at multiple scales. Such a representation is shown to be stable -- the original signal or image can be reconstructed with very good quality. It is further shown that a signal or image can be modeled as piecewise monotonic, with all turning points between monotonic segments given by the wavelet extrema. A new projection operator is introduced to enforce piecewise inonotonicity of a signal in its reconstruction. This leads to an enhancement to previously developed algorithms in preventing artifacts in reconstructed signal.

  16. Numerical discretization for nonlinear diffusion filter

    NASA Astrophysics Data System (ADS)

    Mustaffa, I.; Mizuar, I.; Aminuddin, M. M. M.; Dasril, Y.

    2015-05-01

    Nonlinear diffusion filters are famously used in machine vision for image denoising and restoration. This paper presents a study on the effects of different numerical discretization of nonlinear diffusion filter. Several numerical discretization schemes are presented; namely semi-implicit, AOS, and fully implicit schemes. The results of these schemes are compared by visual results, objective measurement e.g. PSNR and MSE. The results are also compared to a Daubechies wavelet denoising method. It is acknowledged that the two preceding scheme have already been discussed in literature, however comparison to the latter scheme has not been made. The semi-implicit scheme uses an additive operator splitting (AOS) developed to overcome the shortcoming of the explicit scheme i.e., stability for very small time steps. Although AOS has proven to be efficient, from the nonlinear diffusion filter results with different discretization schemes, examples shows that implicit schemes are worth pursuing.

  17. Mother wavelets for complex wavelet transform derived by Einstein-Podolsky-Rosen entangled state representation.

    PubMed

    Fan, Hong-Yi; Lu, Hai-Liang

    2007-03-01

    The Einstein-Podolsky-Rosen entangled state representation is applied to studying the admissibility condition of mother wavelets for complex wavelet transforms, which leads to a family of new mother wavelets. Mother wavelets thus are classified as the Hermite-Gaussian type for real wavelet transforms and the Laguerre-Gaussian type for the complex case. PMID:17392919

  18. Wavelets and spacetime squeeze

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.; Noz, Marilyn E.

    1993-01-01

    It is shown that the wavelet is the natural language for the Lorentz covariant description of localized light waves. A model for covariant superposition is constructed for light waves with different frequencies. It is therefore possible to construct a wave function for light waves carrying a covariant probability interpretation. It is shown that the time-energy uncertainty relation (Delta(t))(Delta(w)) is approximately 1 for light waves is a Lorentz-invariant relation. The connection between photons and localized light waves is examined critically.

  19. An Investigation into the Potential Application of Wavelets to Modal Testing and Analysis

    NASA Technical Reports Server (NTRS)

    Gwinn, A. Fort, Jr.

    2002-01-01

    The analysis of transient data of the type found in vibrating mechanical systems has been greatly improved through the use of modern techniques such as Fourier analysis. This is especially true when considered in conjunction with the development of the so-called Fast Fourier Transform algorithm by Cooley and the tremendous strides in computational power of the last several decades. The usefulness of the discrete Fourier Transform is its ability to transform sampled data from the "time-domain" to the "frequency domain," thereby allowing the analyst to decompose a signal into its frequency content. More recent developments have led to the wavelet transform. The strength of wavelet analysis is its ability to maintain both time and frequency information, thus making it an attractive candidate for the analysis of non-stationary signals. This report is an overview of wavelet theory and the potential use of the wavelet transform as an alternative to Fourier analysis in modal identification.

  20. Quantisation-based video watermarking in the wavelet domain with spatial and temporal redundancy

    NASA Astrophysics Data System (ADS)

    Preda, Radu O.; Vizireanu, Nicolae D.

    2011-03-01

    In this article we introduce a new public digital watermarking technique for video copyright protection working in the discrete wavelet transform domain. The scheme uses binary images as watermarks. These are embedded in the detail wavelet coefficients of the middle wavelet sub-bands. The method is a combination of spread spectrum and quantisation-based watermarking. Every bit of the watermark is spread over a number of wavelet coefficients with the use of a secret key. The resilience of the watermarking algorithm was tested against a series of eight different attacks using different videos. To improve the resilience of the algorithm we use error correction codes and embed the watermark with spatial and temporal redundancy. The proposed method achieves a very good perceptual quality with mean peak signal-to-noise ratio values of the watermarked videos of more than 40 dB and high resistance to a large spectrum of attacks.

  1. Application of dual tree complex wavelet transform in tandem mass spectrometry.

    PubMed

    Murugesan, Selvaraaju; Tay, David B H; Cooke, Ira; Faou, Pierre

    2015-08-01

    Mass Spectrometry (MS) is a widely used technique in molecular biology for high throughput identification and sequencing of peptides (and proteins). Tandem mass spectrometry (MS/MS) is a specialised mass spectrometry technique whereby the sequence of peptides can be determined. Preprocessing of the MS/MS data is indispensable before performing any statistical analysis on the data. In this work, preprocessing of MS/MS data is proposed based on the Dual Tree Complex Wavelet Transform (DTCWT) using almost symmetric Hilbert pair of wavelets. After the preprocessing step, the identification of peptides is done using the database search approach. The performance of the proposed preprocessing technique is evaluated by comparing its performance against Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT). The preprocessing performed using DTCWT identified more peptides compared to DWT and SWT. PMID:26004826

  2. Multiscale quantum propagation using compact-support wavelets in space and time

    SciTech Connect

    Wang Haixiang; Acevedo, Ramiro; Molle, Heather; Mackey, Jeffrey L.; Kinsey, James L.; Johnson, Bruce R.

    2004-10-22

    Orthogonal compact-support Daubechies wavelets are employed as bases for both space and time variables in the solution of the time-dependent Schroedinger equation. Initial value conditions are enforced using special early-time wavelets analogous to edge wavelets used in boundary-value problems. It is shown that the quantum equations may be solved directly and accurately in the discrete wavelet representation, an important finding for the eventual goal of highly adaptive multiresolution Schroedinger equation solvers. While the temporal part of the basis is not sharp in either time or frequency, the Chebyshev method used for pure time-domain propagations is adapted to use in the mixed domain and is able to take advantage of Hamiltonian matrix sparseness. The orthogonal separation into different time scales is determined theoretically to persist throughout the evolution and is demonstrated numerically in a partially adaptive treatment of scattering from an asymmetric Eckart barrier.

  3. Groundwater Level Short-Term Forecasting Under Tailings Recharge Using Wavelet-Bootstrap-Neural Network Models

    NASA Astrophysics Data System (ADS)

    Adamowski, J. F.; Khalil, B. E.; Broda, S.; Ozga-Zielinski, B.

    2014-12-01

    In this study, five data-driven models were evaluated for groundwater level short-term forecasting under tailings recharge from an abandoned mine in Quebec, Canada. Multiple linear regression (MLR) models were used as a linear model, while artificial neural network (ANN) models were used as a non-linear model. In addition, two hybrid models that utilize wavelet transforms for data preprocessing with MLR or ANN models (W-MLR, W-ANN) were considered for the evaluation of the usefulness of wavelet analysis with linear and nonlinear models. The fifth model was a wavelet bootstrap ANN (W-B-ANN) model. Three predictors were considered as inputs: the tailing recharge, total precipitation, and mean air temperature. Results showed that models using wavelets for data preprocessing (W-MLR and W-ANN) performed better than their corresponding basic models (MLR and ANN), which highlights the ability of wavelet transforms to decompose non-stationary data into discrete wavelet components, highlighting cyclic patterns and trends in the time series at varying temporal scales, rendering the data usable in forecasting. In general, with or without wavelets, ANN models performed better than MLR models; this indicates the nonlinear relationship between the three predictors and the groundwater level. Overall, the W-B-ANN model outperformed all models for each of the three lead-times, which highlights the usefulness of bootstrap modeling, and ensuring model robustness along with improved reliability by reducing variance.

  4. A corroborative study on improving pitch determination by time-frequency cepstrum decomposition using wavelets.

    PubMed

    Bahja, Fadoua; Di Martino, Joseph; Ibn Elhaj, Elhassan; Aboutajdine, Driss

    2016-01-01

    A new wavelet-based method is presented in this work for estimating and tracking the pitch period. The main idea of the proposed new approach consists in extracting the cepstrum excitation signal and applying on it a wavelet transform whose resulting approximation coefficients are smoothed, for a better pitch determination. Although the principle of the algorithms proposed has already been considered previously, the novelty of our methods relies in the use of powerful wavelet transforms well adapted to pitch determination. The wavelet transforms considered in this article are the discrete wavelet transform and the dual tree complex wavelet transform. This article, by all the provided experimental results, corroborates the idea of decomposing the cepstrum excitation by using wavelet transforms for improving pitch detection. Another interesting point of this article relies in using a simple but efficient voicing decision (which actually improves a similar voicing criterion we proposed in a preceding published study) which on one hand respects the real-time process with low latency and on the other hand allows obtaining low classifications errors. The accuracy of the proposed pitch tracking algorithms has been evaluated using the international Bagshaw and the Keele databases which include male and female speakers. Our various experimental results demonstrate that the proposed methods provide important performance improvements when compared with previously published pitch determination algorithms. PMID:27213131

  5. Time sequence image analysis of positron emission tomography using wavelet transformation.

    PubMed

    Hsu, Chih-Yu; Lai, Yeong-Lin; Chen, Chih-Cheng; Lee, Yu-Tzu; Tseng, Kuo-Kun; Lai, Yeong-Kang; Zheng, Chun-Yi; Jheng, Huai-Cian

    2015-01-01

    This paper presents the time sequence image analysis technique of positron emission tomography (PET) using a wavelet transformation method. The abdominal cavity of a person taking [18F]Fluoro-2-deoxy-2-D-glucose (18F-FDG) was scanned by the dynamic PET. The organ selection with dynamic PET images was conducted by the wavelet transformation to implement automatic selection of the region of interest (ROI). The image segmentation was carried out by the processes of sampling, wavelet transformation, erosion, dilation, and superimposition. Wavelet constructed image (WCI) contours were created by sampling 512 images from 1960 consecutive dynamic sequence PET images. The image segmentation technology developed can help doctors automatically select ROI, accurately identify lesion locations of organs, and thus effectively reduce human operation time and errors. PMID:26578275

  6. High-order wavelet reconstruction/differentiation filters and Gibbs phenomena

    NASA Astrophysics Data System (ADS)

    Lombardini, Richard; Acevedo, Ramiro; Kuczala, Alexander; Keys, Kerry; Goodrich, Carl; Johnson, Bruce

    2016-03-01

    We have developed an efficient method to accurately represent 1D or 2D, smooth or discontinuous, solutions to partial differential equations (PDE's), such as Schrodinger or Maxwell's equations, in an orthogonal Daubechies wavelet basis. This is a crucial step in the future development of a wavelet method that solves these PDE's. There are two main developments from this research. First, a reconstruction transform for smooth functions, discovered in previous works [Keinert and Kwon (1997) and Neelov and Goedecker (2006)], is generalized in order to develop a systematic way of tuning its error. This transform converts the wavelet basis representation back to the actual point values of the function. Since this reconstruction can far exceed the wavelet approximation order, it is shown that shorter wavelets can be used while maintaining a high-order accuracy resulting in an increase of computational efficiency. Second, a new ``truncated'' reconstruction transform is developed, using pieces of wavelets, or ``tail functions'', which can be applied to discontinuous functions. Not only does it avoid the wavelet Gibbs phenomenon, but also maintains a tunable accuracy similar to the smooth function case.

  7. A Haar wavelet collocation method for coupled nonlinear Schrödinger-KdV equations

    NASA Astrophysics Data System (ADS)

    Oruç, Ömer; Esen, Alaattin; Bulut, Fatih

    2016-04-01

    In this paper, to obtain accurate numerical solutions of coupled nonlinear Schrödinger-Korteweg-de Vries (KdV) equations a Haar wavelet collocation method is proposed. An explicit time stepping scheme is used for discretization of time derivatives and nonlinear terms that appeared in the equations are linearized by a linearization technique and space derivatives are discretized by Haar wavelets. In order to test the accuracy and reliability of the proposed method L2, L∞ error norms and conserved quantities are used. Also obtained results are compared with previous ones obtained by finite element method, Crank-Nicolson method and radial basis function meshless methods. Error analysis of Haar wavelets is also given.

  8. Domain structure of a disoriented chiral condensate from a wavelet perspective

    SciTech Connect

    Huang, Z.; Sarcevic, I.; Thews, R.; Wang, X.

    1996-07-01

    We present a novel method for studying the formation of a disoriented chiral condensate (DCC) in high energy heavy-ion collisions utilizing a discrete wavelet transformation. Because of its salient feature of space-scale locality, the discrete wavelet proves to be very effective in probing physics simultaneously at different locations in phase space and at different scales. We show that the probability distributions of the neutral pion fraction for various rapidity-bin sizes have distinctive shapes in the case of a DCC and exhibit a delay in approaching the Gaussian distribution required by the central limit theorem. We find the wavelet power spectrum for a DCC to exhibit a strong dependence on the scale while an equilibrium system and the standard dynamical models such as HIJING have a flat spectrum. {copyright} {ital 1996 The American Physical Society.}

  9. Finite element-wavelet hybrid algorithm for atmospheric tomography.

    PubMed

    Yudytskiy, Mykhaylo; Helin, Tapio; Ramlau, Ronny

    2014-03-01

    Reconstruction of the refractive index fluctuations in the atmosphere, or atmospheric tomography, is an underlying problem of many next generation adaptive optics (AO) systems, such as the multiconjugate adaptive optics or multiobject adaptive optics (MOAO). The dimension of the problem for the extremely large telescopes, such as the European Extremely Large Telescope (E-ELT), suggests the use of iterative schemes as an alternative to the matrix-vector multiply (MVM) methods. Recently, an algorithm based on the wavelet representation of the turbulence has been introduced in [Inverse Probl.29, 085003 (2013)] by the authors to solve the atmospheric tomography using the conjugate gradient iteration. The authors also developed an efficient frequency-dependent preconditioner for the wavelet method in a later work. In this paper we study the computational aspects of the wavelet algorithm. We introduce three new techniques, the dual domain discretization strategy, a scale-dependent preconditioner, and a ground layer multiscale method, to derive a method that is globally O(n), parallelizable, and compact with respect to memory. We present the computational cost estimates and compare the theoretical numerical performance of the resulting finite element-wavelet hybrid algorithm with the MVM. The quality of the method is evaluated in terms of an MOAO simulation for the E-ELT on the European Southern Observatory (ESO) end-to-end simulation system OCTOPUS. The method is compared to the ESO version of the Fractal Iterative Method [Proc. SPIE7736, 77360X (2010)] in terms of quality. PMID:24690653

  10. Noise reduction in ultrasonic NDT using undecimated wavelet transforms.

    PubMed

    Pardo, E; San Emeterio, J L; Rodriguez, M A; Ramos, A

    2006-12-22

    Translation-invariant wavelet processing is applied to grain noise reduction in ultrasonic non-destructive testing of materials. In particular, the undecimated wavelet transform (UWT), which is essentially a discrete wavelet transform (DWT) that avoids decimation, is used. Two different UWT processors have been specifically developed for that purpose, based on two UWT implementation schemes: the "à trous" algorithm and the cycle-spinning scheme. The performance of these two UWT processors is compared with that of a classical DWT processor, by using synthetic grain noise registers and experimental pulse-echo NDT traces. The synthetic ultrasonic traces have been generated by an own-developed frequency-domain model that includes frequency dependence in both material attenuation and scattering. The experimental ultrasonic traces have been obtained by inspecting a piece of carbon-fiber reinforced plastic composite in which we have mechanized artificial flaws. Decomposition level-dependent thresholds, which are suitable for correlated noise, are specifically determined in all cases. Soft thresholding, Daubechies db6 mother wavelet and the three well-known threshold selection rules, Universal, Minimax and SURE, are applied to the different decomposition levels. The performance of the different de-noising procedures for single echo detection has been comparatively evaluated in terms of signal-to-noise ratio enhancement. PMID:16797651

  11. Hyperspectral imaging with wavelet transform for classification of colon tissue biopsy samples

    NASA Astrophysics Data System (ADS)

    Masood, Khalid

    2008-08-01

    Automatic classification of medical images is a part of our computerised medical imaging programme to support the pathologists in their diagnosis. Hyperspectral data has found its applications in medical imagery. Its usage is increasing significantly in biopsy analysis of medical images. In this paper, we present a histopathological analysis for the classification of colon biopsy samples into benign and malignant classes. The proposed study is based on comparison between 3D spectral/spatial analysis and 2D spatial analysis. Wavelet textural features in the wavelet domain are used in both these approaches for classification of colon biopsy samples. Experimental results indicate that the incorporation of wavelet textural features using a support vector machine, in 2D spatial analysis, achieve best classification accuracy.

  12. A Novel 2D Image Compression Algorithm Based on Two Levels DWT and DCT Transforms with Enhanced Minimize-Matrix-Size Algorithm for High Resolution Structured Light 3D Surface Reconstruction

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2015-09-01

    Image compression techniques are widely used on 2D image 2D video 3D images and 3D video. There are many types of compression techniques and among the most popular are JPEG and JPEG2000. In this research, we introduce a new compression method based on applying a two level discrete cosine transform (DCT) and a two level discrete wavelet transform (DWT) in connection with novel compression steps for high-resolution images. The proposed image compression algorithm consists of four steps. (1) Transform an image by a two level DWT followed by a DCT to produce two matrices: DC- and AC-Matrix, or low and high frequency matrix, respectively, (2) apply a second level DCT on the DC-Matrix to generate two arrays, namely nonzero-array and zero-array, (3) apply the Minimize-Matrix-Size algorithm to the AC-Matrix and to the other high-frequencies generated by the second level DWT, (4) apply arithmetic coding to the output of previous steps. A novel decompression algorithm, Fast-Match-Search algorithm (FMS), is used to reconstruct all high-frequency matrices. The FMS-algorithm computes all compressed data probabilities by using a table of data, and then using a binary search algorithm for finding decompressed data inside the table. Thereafter, all decoded DC-values with the decoded AC-coefficients are combined in one matrix followed by inverse two levels DCT with two levels DWT. The technique is tested by compression and reconstruction of 3D surface patches. Additionally, this technique is compared with JPEG and JPEG2000 algorithm through 2D and 3D root-mean-square-error following reconstruction. The results demonstrate that the proposed compression method has better visual properties than JPEG and JPEG2000 and is able to more accurately reconstruct surface patches in 3D.

  13. Iterative image coding with overcomplete complex wavelet transforms

    NASA Astrophysics Data System (ADS)

    Kingsbury, Nick G.; Reeves, Tanya

    2003-06-01

    Overcomplete transforms, such as the Dual-Tree Complex Wavelet Transform, can offer more flexible signal representations than critically-sampled transforms such as the Discrete Wavelet Transform. However the process of selecting the optimal set of coefficients to code is much more difficult because many different sets of transform coefficients can represent the same decoded image. We show that large numbers of transform coefficients can be set to zero without much reconstruction quality loss by forcing compensatory changes in the remaining coefficients. We develop a system for achieving these coding aims of coefficient elimination and compensation, based on iterative projection of signals between the image domain and transform domain with a non-linear process (e.g.~centre-clipping or quantization) applied in the transform domain. The convergence properties of such non-linear feedback loops are discussed and several types of non-linearity are proposed and analyzed. The compression performance of the overcomplete scheme is compared with that of the standard Discrete Wavelet Transform, both objectively and subjectively, and is found to offer advantages of up to 0.65 dB in PSNR and significant reduction in visibility of some types of coding artifacts.

  14. Wavelet networks for face processing

    NASA Astrophysics Data System (ADS)

    Krüger, V.; Sommer, G.

    2002-06-01

    Wavelet networks (WNs) were introduced in 1992 as a combination of artificial neural radial basis function (RBF) networks and wavelet decomposition. Since then, however, WNs have received only a little attention. We believe that the potential of WNs has been generally underestimated. WNs have the advantage that the wavelet coefficients are directly related to the image data through the wavelet transform. In addition, the parameters of the wavelets in the WNs are subject to optimization, which results in a direct relation between the represented function and the optimized wavelets, leading to considerable data reduction (thus making subsequent algorithms much more efficient) as well as to wavelets that can be used as an optimized filter bank. In our study we analyze some WN properties and highlight their advantages for object representation purposes. We then present a series of results of experiments in which we used WNs for face tracking. We exploit the efficiency that is due to data reduction for face recognition and face-pose estimation by applying the optimized-filter-bank principle of the WNs.

  15. Multi-scale dynamics of glow discharge plasma through wavelets: self-similar behavior to neutral turbulence and dissipation.

    PubMed

    Giri, Bapun K; Mitra, Chiranjit; Panigrahi, Prasanta K; Iyengar, A N Sekar

    2014-12-01

    The multiscale dynamics of glow discharge plasma is analysed through wavelet transform, whose scale dependent variable window size aptly captures both transients and non-stationary periodic behavior. The optimal time-frequency localization ability of the continuous Morlet wavelet is found to identify the scale dependent periodic modulations efficiently, as also the emergence of neutral turbulence and dissipation, whereas the discrete Daubechies basis set has been used for detrending the temporal behavior to reveal the multi-fractality of the underlying dynamics. The scaling exponents and the Hurst exponent have been estimated through wavelet based detrended fluctuation analysis, and also Fourier methods and rescale range analysis. PMID:25554055

  16. Why are wavelets so effective

    SciTech Connect

    Resnikoff, H.L. )

    1993-01-01

    The theory of compactly supported wavelets is now 4 yr old. In that short period, it has stimulated significant research in pure mathematics; has been the source of new numerical methods for the solution of nonlinear partial differential equations, including Navier-Stokes; and has been applied to digital signal-processing problems, ranging from signal detection and classification to signal compression for speech, audio, images, seismic signals, and sonar. Wavelet channel coding has even been proposed for code division multiple access digital telephony. In each of these applications, prototype wavelet solutions have proved to be competitive with established methods, and in many cases they are already superior.

  17. Peak finding using biorthogonal wavelets

    SciTech Connect

    Tan, C.Y.

    2000-02-01

    The authors show in this paper how they can find the peaks in the input data if the underlying signal is a sum of Lorentzians. In order to project the data into a space of Lorentzian like functions, they show explicitly the construction of scaling functions which look like Lorentzians. From this construction, they can calculate the biorthogonal filter coefficients for both the analysis and synthesis functions. They then compare their biorthogonal wavelets to the FBI (Federal Bureau of Investigations) wavelets when used for peak finding in noisy data. They will show that in this instance, their filters perform much better than the FBI wavelets.

  18. Generalized orthogonal wavelet phase reconstruction.

    PubMed

    Axtell, Travis W; Cristi, Roberto

    2013-05-01

    Phase reconstruction is used for feedback control in adaptive optics systems. To achieve performance metrics for high actuator density or with limited processing capabilities on spacecraft, a wavelet signal processing technique is advantageous. Previous derivations of this technique have been limited to the Haar wavelet. This paper derives the relationship and algorithms to reconstruct phase with O(n) computational complexity for wavelets with the orthogonal property. This has additional benefits for performance with noise in the measurements. We also provide details on how to handle the boundary condition for telescope apertures. PMID:23695316

  19. Kinematics of segregating granular mixtures in quasi-2D heaps

    NASA Astrophysics Data System (ADS)

    Fan, Yi; Umbanhowar, Paul; Ottino, Julio; Lueptow, Richard

    2012-11-01

    Segregation of granular mixtures of different sized particles in heap flow appears in a variety of contexts. Our recent experiments showed that when bi-disperse mixtures of different sized spherical particles fill a quasi-two dimensional (2D) silo, three different final heap configurations - stratified, segregated, and mixed - occur, depending on either 2D flow rate or heap rise velocity. However, since it is difficult to measure the kinematic details of the segregating granular mixtures in heap flow experimentally, the underlying mechanisms for how 2D flow rate or heap rise velocity influences final particle configurations have not been well understood. In this work, we use the discrete element method (DEM) to simulate heap flow of bi-disperse mixtures in experimental scale quasi-2D heaps. The final particle distributions in the simulations agree quantitatively with experiments. We measure several key kinematic properties of the segregating granular mixtures including the local flow rate, velocity, and flowing layer thickness. We correlate the characteristics of these kinematic properties with the local particle distributions of the mixtures. This provides new insights for understanding the mechanisms of segregation and stratification in heap flow including the linear decrease in flow rate and maximum velocity down the heap as well as the relatively constant flowing layer thickness along the length of the heap. Funded by Dow Chemical Co.

  20. Wavelet/scalar quantization compression standard for fingerprint images

    SciTech Connect

    Brislawn, C.M.

    1996-06-12

    US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class of potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.

  1. Adaptive window-length detection of underwater transients using wavelets.

    PubMed

    Carevic, Dragana

    2005-05-01

    This paper describes a detection method that adapts to unknown characteristics of the underlying transient signal, such as location, length, and time-frequency content. It applies a set of embedded detectors tuned to a number of signal partitions. The detectors are based on the wavelet theory, whereby two different techniques are examined, one using local Fourier transform and the other using discrete wavelet transform. The detection statistics are computed so as to enable prewhitening of unknown colored noise and to allow for a constant false-alarm rate detection. An adapted segmentation of the signal is next obtained with a goal of finding the largest detection statistics within each segment of the partition. The detectors are tested using several underwater acoustic transient signals buried in ambient sea noise. PMID:15957761

  2. Compression of Ultrasonic NDT Image by Wavelet Based Local Quantization

    NASA Astrophysics Data System (ADS)

    Cheng, W.; Li, L. Q.; Tsukada, K.; Hanasaki, K.

    2004-02-01

    Compression on ultrasonic image that is always corrupted by noise will cause `over-smoothness' or much distortion. To solve this problem to meet the need of real time inspection and tele-inspection, a compression method based on Discrete Wavelet Transform (DWT) that can also suppress the noise without losing much flaw-relevant information, is presented in this work. Exploiting the multi-resolution and interscale correlation property of DWT, a simple way named DWCs classification, is introduced first to classify detail wavelet coefficients (DWCs) as dominated by noise, signal or bi-effected. A better denoising can be realized by selective thresholding DWCs. While in `Local quantization', different quantization strategies are applied to the DWCs according to their classification and the local image property. It allocates the bit rate more efficiently to the DWCs thus achieve a higher compression rate. Meanwhile, the decompressed image shows the effects of noise suppressed and flaw characters preserved.

  3. Design of Steerable Wavelets to Detect Multifold Junctions.

    PubMed

    Püspöki, Zsuzsanna; Uhlmann, Virginie; Vonesch, Cédric; Unser, Michael

    2016-02-01

    We propose a framework for the detection of junctions in images. Although the detection of edges and key points is a well examined and described area, the multiscale detection of junction centers, especially for odd orders, poses a challenge in pattern analysis. The goal of this paper is to build optimal junction detectors based on 2D steerable wavelets that are polar-separable in the Fourier domain. The approaches we develop are general and can be used for the detection of arbitrary symmetric and asymmetric junctions. The backbone of our construction is a multiscale pyramid with a radial wavelet function where the directional components are represented by circular harmonics and encoded in a shaping matrix. We are able to detect M -fold junctions in different scales and orientations. We provide experimental results on both simulated and real data to demonstrate the effectiveness of the algorithm. PMID:26685237

  4. Birdsong Denoising Using Wavelets.

    PubMed

    Priyadarshani, Nirosha; Marsland, Stephen; Castro, Isabel; Punchihewa, Amal

    2016-01-01

    Automatic recording of birdsong is becoming the preferred way to monitor and quantify bird populations worldwide. Programmable recorders allow recordings to be obtained at all times of day and year for extended periods of time. Consequently, there is a critical need for robust automated birdsong recognition. One prominent obstacle to achieving this is low signal to noise ratio in unattended recordings. Field recordings are often very noisy: birdsong is only one component in a recording, which also includes noise from the environment (such as wind and rain), other animals (including insects), and human-related activities, as well as noise from the recorder itself. We describe a method of denoising using a combination of the wavelet packet decomposition and band-pass or low-pass filtering, and present experiments that demonstrate an order of magnitude improvement in noise reduction over natural noisy bird recordings. PMID:26812391

  5. Birdsong Denoising Using Wavelets

    PubMed Central

    Priyadarshani, Nirosha; Marsland, Stephen; Castro, Isabel; Punchihewa, Amal

    2016-01-01

    Automatic recording of birdsong is becoming the preferred way to monitor and quantify bird populations worldwide. Programmable recorders allow recordings to be obtained at all times of day and year for extended periods of time. Consequently, there is a critical need for robust automated birdsong recognition. One prominent obstacle to achieving this is low signal to noise ratio in unattended recordings. Field recordings are often very noisy: birdsong is only one component in a recording, which also includes noise from the environment (such as wind and rain), other animals (including insects), and human-related activities, as well as noise from the recorder itself. We describe a method of denoising using a combination of the wavelet packet decomposition and band-pass or low-pass filtering, and present experiments that demonstrate an order of magnitude improvement in noise reduction over natural noisy bird recordings. PMID:26812391

  6. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  7. Wavelet theory and its applications

    SciTech Connect

    Faber, V.; Bradley, JJ.; Brislawn, C.; Dougherty, R.; Hawrylycz, M.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We investigated the theory of wavelet transforms and their relation to Laboratory applications. The investigators have had considerable success in the past applying wavelet techniques to the numerical solution of optimal control problems for distributed- parameter systems, nonlinear signal estimation, and compression of digital imagery and multidimensional data. Wavelet theory involves ideas from the fields of harmonic analysis, numerical linear algebra, digital signal processing, approximation theory, and numerical analysis, and the new computational tools arising from wavelet theory are proving to be ideal for many Laboratory applications. 10 refs.

  8. 2D/1D approximations to the 3D neutron transport equation. II: Numerical comparisons

    SciTech Connect

    Kelley, B. W.; Collins, B.; Larsen, E. W.

    2013-07-01

    In a companion paper [1], (i) several new '2D/1D equations' are introduced as accurate approximations to the 3D Boltzmann transport equation, (ii) the simplest of these approximate equations is systematically discretized, and (iii) a theoretically stable iteration scheme is developed to solve the discrete equations. In this paper, numerical results are presented that confirm the theoretical predictions made in [1]. (authors)

  9. A wavelet phase filter for emission tomography

    SciTech Connect

    Olsen, E.T.; Lin, B.

    1995-07-01

    The presence of a high level of noise is a characteristic in some tomographic imaging techniques such as positron emission tomography (PET). Wavelet methods can smooth out noise while preserving significant features of images. Mallat et al. proposed a wavelet based denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise. In this study, the authors explore the properties of wavelet phase, with a focus on reconstruction of emission tomography images. Specifically, they show that the wavelet phase of regular Poisson noise under a Haar-type wavelet transform converges in distribution to a random variable uniformly distributed on [0, 2{pi}). They then propose three wavelet-phase-based denoising schemes which exploit this property: edge tracking, local phase variance thresholding, and scale phase variation thresholding. Some numerical results are also presented. The numerical experiments indicate that wavelet phase techniques show promise for wavelet based denoising methods.

  10. A signal invariant wavelet function selection algorithm.

    PubMed

    Garg, Girisha

    2016-04-01

    This paper addresses the problem of mother wavelet selection for wavelet signal processing in feature extraction and pattern recognition. The problem is formulated as an optimization criterion, where a wavelet library is defined using a set of parameters to find the best mother wavelet function. For estimating the fitness function, adopted to evaluate the performance of the wavelet function, analysis of variance is used. Genetic algorithm is exploited to optimize the determination of the best mother wavelet function. For experimental evaluation, solutions for best mother wavelet selection are evaluated on various biomedical signal classification problems, where the solutions of the proposed algorithm are assessed and compared with manual hit-and-trial methods. The results show that the solutions of automated mother wavelet selection algorithm are consistent with the manual selection of wavelet functions. The algorithm is found to be invariant to the type of signals used for classification. PMID:26253283

  11. Heart Disease Detection Using Wavelets

    NASA Astrophysics Data System (ADS)

    González S., A.; Acosta P., J. L.; Sandoval M., M.

    2004-09-01

    We develop a wavelet based method to obtain standardized gray-scale chart of both healthy hearts and of hearts suffering left ventricular hypertrophy. The hypothesis that early bad functioning of heart can be detected must be tested by comparing the wavelet analysis of the corresponding ECD with the limit cases. Several important parameters shall be taken into account such as age, sex and electrolytic changes.

  12. Low-Oscillation Complex Wavelets

    NASA Astrophysics Data System (ADS)

    ADDISON, P. S.; WATSON, J. N.; FENG, T.

    2002-07-01

    In this paper we explore the use of two low-oscillation complex wavelets—Mexican hat and Morlet—as powerful feature detection tools for data analysis. These wavelets, which have been largely ignored to date in the scientific literature, allow for a decomposition which is more “temporal than spectral” in wavelet space. This is shown to be useful for the detection of small amplitude, short duration signal features which are masked by much larger fluctuations. Wavelet transform-based methods employing these wavelets (based on both wavelet ridges and modulus maxima) are developed and applied to sonic echo NDT signals used for the analysis of structural elements. A new mobility scalogram and associated reflectogram is defined for analysis of impulse response characteristics of structural elements and a novel signal compression technique is described in which the pertinent signal information is contained within a few modulus maxima coefficients. As an example of its usefulness, the signal compression method is employed as a pre-processor for a neural network classifier. The authors believe that low oscillation complex wavelets have wide applicability to other practical signal analysis problems. Their possible application to two such problems is discussed briefly—the interrogation of arrhythmic ECG signals and the detection and characterization of coherent structures in turbulent flow fields.

  13. Wavelet-based polarimetry analysis

    NASA Astrophysics Data System (ADS)

    Ezekiel, Soundararajan; Harrity, Kyle; Farag, Waleed; Alford, Mark; Ferris, David; Blasch, Erik

    2014-06-01

    Wavelet transformation has become a cutting edge and promising approach in the field of image and signal processing. A wavelet is a waveform of effectively limited duration that has an average value of zero. Wavelet analysis is done by breaking up the signal into shifted and scaled versions of the original signal. The key advantage of a wavelet is that it is capable of revealing smaller changes, trends, and breakdown points that are not revealed by other techniques such as Fourier analysis. The phenomenon of polarization has been studied for quite some time and is a very useful tool for target detection and tracking. Long Wave Infrared (LWIR) polarization is beneficial for detecting camouflaged objects and is a useful approach when identifying and distinguishing manmade objects from natural clutter. In addition, the Stokes Polarization Parameters, which are calculated from 0°, 45°, 90°, 135° right circular, and left circular intensity measurements, provide spatial orientations of target features and suppress natural features. In this paper, we propose a wavelet-based polarimetry analysis (WPA) method to analyze Long Wave Infrared Polarimetry Imagery to discriminate targets such as dismounts and vehicles from background clutter. These parameters can be used for image thresholding and segmentation. Experimental results show the wavelet-based polarimetry analysis is efficient and can be used in a wide range of applications such as change detection, shape extraction, target recognition, and feature-aided tracking.

  14. Tests for Wavelets as a Basis Set

    NASA Astrophysics Data System (ADS)

    Baker, Thomas; Evenbly, Glen; White, Steven

    A wavelet transformation is a special type of filter usually reserved for image processing and other applications. We develop metrics to evaluate wavelets for general problems on test one-dimensional systems. The goal is to eventually use a wavelet basis in electronic structure calculations. We compare a variety of orthogonal wavelets such as coiflets, symlets, and daubechies wavelets. We also evaluate a new type of orthogonal wavelet with dilation factor three which is both symmetric and compact in real space. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award #DE-SC008696.

  15. General inversion formulas for wavelet transforms

    NASA Astrophysics Data System (ADS)

    Holschneider, Matthias

    1993-09-01

    This article is the continuation of a series of articles about group theory and wavelet analysis [A. Grossmann, J. Morlet, and T. Paul, J. Math. Phys. 26, 2473 (1985)]. As is well-known in the case of the afine group, the reconstruction wavelet and the analyzing wavelet need not be identic. In this article it is shown that this holds for arbitrary groups. In addition it is shown that even for nonadmissible analyzing wavelets the wavelet transform may be inverted. Accordingly the image of the wavelet transform can be characterized by many different reproducing kernels.

  16. Wavelet Transform for Real-Time Detection of Action Potentials in Neural Signals

    PubMed Central

    Quotb, Adam; Bornat, Yannick; Renaud, Sylvie

    2011-01-01

    We present a study on wavelet detection methods of neuronal action potentials (APs). Our final goal is to implement the selected algorithms on custom integrated electronics for on-line processing of neural signals; therefore we take real-time computing as a hard specification and silicon area as a price to pay. Using simulated neural signals including APs, we characterize an efficient wavelet method for AP extraction by evaluating its detection rate and its implementation cost. We compare software implementation for three methods: adaptive threshold, discrete wavelet transform (DWT), and stationary wavelet transform (SWT). We evaluate detection rate and implementation cost for detection functions dynamically comparing a signal with an adaptive threshold proportional to its SD, where the signal is the raw neural signal, respectively: (i) non-processed; (ii) processed by a DWT; (iii) processed by a SWT. We also use different mother wavelets and test different data formats to set an optimal compromise between accuracy and silicon cost. Detection accuracy is evaluated together with false negative and false positive detections. Simulation results show that for on-line AP detection implemented on a configurable digital integrated circuit, APs underneath the noise level can be detected using SWT with a well-selected mother wavelet, combined to an adaptive threshold. PMID:21811455

  17. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  18. Application of the dual-tree complex wavelet transform in biomedical signal denoising.

    PubMed

    Wang, Fang; Ji, Zhong

    2014-01-01

    In biomedical signal processing, Gibbs oscillation and severe frequency aliasing may occur when using the traditional discrete wavelet transform (DWT). Herein, a new denoising algorithm based on the dual-tree complex wavelet transform (DTCWT) is presented. Electrocardiogram (ECG) signals and heart sound signals are denoised based on the DTCWT. The results prove that the DTCWT is efficient. The signal-to-noise ratio (SNR) and the mean square error (MSE) are used to compare the denoising effect. Results of the paired samples t-test show that the new method can remove noise more thoroughly and better retain the boundary and texture of the signal. PMID:24211889

  19. Retrieval of terahertz spectroscopic signatures in the presence of rough surface scattering using wavelet methods

    NASA Astrophysics Data System (ADS)

    Arbab, M. H.; Winebrenner, D. P.; Thorsos, E. I.; Chen, A.

    2010-11-01

    Scattering of terahertz waves by surface roughness can obscure spectral signatures of chemicals at these frequencies. We demonstrate this effect using controlled levels of surface scattering on α-lactose monohydrate pellets. Furthermore, we show an implementation of wavelet methods that can retrieve terahertz spectral information from rough surface targets. We use a multiresolution analysis of the rough-surface-scattered signal utilizing the maximal overlap discrete wavelet transform (MODWT) to extract the resonant signature of lactose. We present a periodic extension technique to circumvent the circular boundary conditions of MODWT, which can be robustly used in an automated terahertz stand-off detection device.

  20. Group-normalized wavelet packet signal processing

    NASA Astrophysics Data System (ADS)

    Shi, Zhuoer; Bao, Zheng

    1997-04-01

    Since the traditional wavelet and wavelet packet coefficients do not exactly represent the strength of signal components at the very time(space)-frequency tilling, group- normalized wavelet packet transform (GNWPT), is presented for nonlinear signal filtering and extraction from the clutter or noise, together with the space(time)-frequency masking technique. The extended F-entropy improves the performance of GNWPT. For perception-based image, soft-logic masking is emphasized to remove the aliasing with edge preserved. Lawton's method for complex valued wavelets construction is extended to generate the complex valued compactly supported wavelet packets for radar signal extraction. This kind of wavelet packets are symmetry and unitary orthogonal. Well-defined wavelet packets are chosen by the analysis remarks on their time-frequency characteristics. For real valued signal processing, such as images and ECG signal, the compactly supported spline or bi- orthogonal wavelet packets are preferred for perfect de- noising and filtering qualities.

  1. A Mellin transform approach to wavelet analysis

    NASA Astrophysics Data System (ADS)

    Alotta, Gioacchino; Di Paola, Mario; Failla, Giuseppe

    2015-11-01

    The paper proposes a fractional calculus approach to continuous wavelet analysis. Upon introducing a Mellin transform expression of the mother wavelet, it is shown that the wavelet transform of an arbitrary function f(t) can be given a fractional representation involving a suitable number of Riesz integrals of f(t), and corresponding fractional moments of the mother wavelet. This result serves as a basis for an original approach to wavelet analysis of linear systems under arbitrary excitations. In particular, using the proposed fractional representation for the wavelet transform of the excitation, it is found that the wavelet transform of the response can readily be computed by a Mellin transform expression, with fractional moments obtained from a set of algebraic equations whose coefficient matrix applies for any scale a of the wavelet transform. Robustness and computationally efficiency of the proposed approach are shown in the paper.

  2. Wavelet compression techniques for hyperspectral data

    NASA Technical Reports Server (NTRS)

    Evans, Bruce; Ringer, Brian; Yeates, Mathew

    1994-01-01

    Hyperspectral sensors are electro-optic sensors which typically operate in visible and near infrared bands. Their characteristic property is the ability to resolve a relatively large number (i.e., tens to hundreds) of contiguous spectral bands to produce a detailed profile of the electromagnetic spectrum. In contrast, multispectral sensors measure relatively few non-contiguous spectral bands. Like multispectral sensors, hyperspectral sensors are often also imaging sensors, measuring spectra over an array of spatial resolution cells. The data produced may thus be viewed as a three dimensional array of samples in which two dimensions correspond to spatial position and the third to wavelength. Because they multiply the already large storage/transmission bandwidth requirements of conventional digital images, hyperspectral sensors generate formidable torrents of data. Their fine spectral resolution typically results in high redundancy in the spectral dimension, so that hyperspectral data sets are excellent candidates for compression. Although there have been a number of studies of compression algorithms for multispectral data, we are not aware of any published results for hyperspectral data. Three algorithms for hyperspectral data compression are compared. They were selected as representatives of three major approaches for extending conventional lossy image compression techniques to hyperspectral data. The simplest approach treats the data as an ensemble of images and compresses each image independently, ignoring the correlation between spectral bands. The second approach transforms the data to decorrelate the spectral bands, and then compresses the transformed data as a set of independent images. The third approach directly generalizes two-dimensional transform coding by applying a three-dimensional transform as part of the usual transform-quantize-entropy code procedure. The algorithms studied all use the discrete wavelet transform. In the first two cases, a wavelet

  3. Wavelet correlations in the [ital p] model

    SciTech Connect

    Greiner, M. Institut fuer Theoretische Physik, Justus Liebig Universitaet, 35392 Geien ); Lipa, P.; Carruthers, P. )

    1995-03-01

    We suggest applying the concept of wavelet transforms to the study of correlations in multiparticle physics. Both the usual correlation functions as well as the wavelet transformed ones are calculated for the [ital p] model, which is a simple but tractable random cascade model. For this model, the wavelet transform decouples correlations between fluctuations defined on different scales. The advantageous properties of factorial moments are also shared by properly defined factorial wavelet correlations.

  4. Discrete Trials Teaching

    ERIC Educational Resources Information Center

    Ghezzi, Patrick M.

    2007-01-01

    The advantages of emphasizing discrete trials "teaching" over discrete trials "training" are presented first, followed by a discussion of discrete trials as a method of teaching that emerged historically--and as a matter of necessity for difficult learners such as those with autism--from discrete trials as a method for laboratory research. The…

  5. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  6. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  7. Hybrid-Thresholding based Image Super-Resolution Technique by the use of Triplet Half-Band Wavelets

    NASA Astrophysics Data System (ADS)

    Chopade, Pravin B.; Rahulkar, Amol D.; Patil, Pradeep M.

    2016-06-01

    This paper presents a modified image super-resolution scheme based on the wavelet coefficients hybrid-thresholding by the use of triplet half-band wavelets (THW) derived from the generalized half-band polynomial. At first, discrete wavelet transform (DWT) is obtained from triplet half-band kernels and it applied on the low-resolution image to obtain the high frequency sub-bands. These high frequency sub-bands and the original low-resolution image are interpolated to enhance the resolution. Second, stationary wavelet transform is obtained by using THW, which is employed to minimize the loss due to the use of DWT. In addition, hybrid thresholding scheme on wavelet coefficients scheme is proposed on these estimated high-frequency sub-bands in order to reduce the spatial domain noise. These sub-bands are combined together by inverse discrete wavelet transform obtained from THW to generate a high-resolution image. The proposed approach is validated by comparing the quality metrics with existing filter banks and well-known super-resolution scheme.

  8. Wavelet approach to accelerator problems. 2: Metaplectic wavelets

    SciTech Connect

    Fedorova, A.; Zeitlin, M.; Parsa, Z.

    1997-05-01

    This is the second part of a series of talks in which the authors present applications of wavelet analysis to polynomial approximations for a number of accelerator physics problems. According to the orbit method and by using construction from the geometric quantization theory they construct the symplectic and Poisson structures associated with generalized wavelets by using metaplectic structure and corresponding polarization. The key point is a consideration of semidirect product of Heisenberg group and metaplectic group as subgroup of automorphisms group of dual to symplectic space, which consists of elements acting by affine transformations.

  9. Wavelet Representation of Contour Sets

    SciTech Connect

    Bertram, M; Laney, D E; Duchaineau, M A; Hansen, C D; Hamann, B; Joy, K I

    2001-07-19

    We present a new wavelet compression and multiresolution modeling approach for sets of contours (level sets). In contrast to previous wavelet schemes, our algorithm creates a parametrization of a scalar field induced by its contoum and compactly stores this parametrization rather than function values sampled on a regular grid. Our representation is based on hierarchical polygon meshes with subdivision connectivity whose vertices are transformed into wavelet coefficients. From this sparse set of coefficients, every set of contours can be efficiently reconstructed at multiple levels of resolution. When applying lossy compression, introducing high quantization errors, our method preserves contour topology, in contrast to compression methods applied to the corresponding field function. We provide numerical results for scalar fields defined on planar domains. Our approach generalizes to volumetric domains, time-varying contours, and level sets of vector fields.

  10. A wavelet-based feature vector model for DNA clustering.

    PubMed

    Bao, J P; Yuan, R Y

    2015-01-01

    DNA data are important in the bioinformatic domain. To extract useful information from the enormous collection of DNA sequences, DNA clustering is often adopted to efficiently deal with DNA data. The alignment-free method is a very popular way of creating feature vectors from DNA sequences, which are then used to compare DNA similarities. This paper proposes a wavelet-based feature vector (WFV) model, which is also an alignment-free method. From the perspective of signal processing, a DNA sequence is a sequence of digital signals. However, most traditional alignment-free models only extract features in the time domain. The WFV model uses discrete wavelet transform to adaptively yield feature vectors with a fixed dimension based on the features in both the time and frequency domains. The level of wavelet transform is adjusted according to the length of the DNA sequence rather than a fixed manually set value. The WFV model prefers a 32-dimension feature vector, which greatly promotes system performance. We compared the WFV model with the other five alignment-free models, i.e., k-tuple, DMK, TSM, AMI, and CV, on several large-scale DNA datasets on the DNA clustering application by means of the K-means algorithm. The experimental results showed that the WFV model outperformed the other models in terms of both the clustering results and the running time. PMID:26782569

  11. Recent advances in wavelet technology

    NASA Technical Reports Server (NTRS)

    Wells, R. O., Jr.

    1994-01-01

    Wavelet research has been developing rapidly over the past five years, and in particular in the academic world there has been significant activity at numerous universities. In the industrial world, there has been developments at Aware, Inc., Lockheed, Martin-Marietta, TRW, Kodak, Exxon, and many others. The government agencies supporting wavelet research and development include ARPA, ONR, AFOSR, NASA, and many other agencies. The recent literature in the past five years includes a recent book which is an index of citations in the past decade on this subject, and it contains over 1,000 references and abstracts.

  12. Compact support wavelet representations for solution of quantum and electromagnetic equations: Eigenvalues and dynamics

    NASA Astrophysics Data System (ADS)

    Acevedo, Ramiro, Jr.

    discretization, is simultaneously low-operation-count and low-storage. A modified CSL algorithm is used for solution of Maxwell's time-domain equations in Hamiltonian form for non-lossy media. The matrix-free algorithm is expected to complement previous work and to decrease both storage and computational overhead. It is expected- that near-field electromagnetic solutions around nanoparticles will benefit from these wavelet-based tools. Such systems are of importance in plasmon-enhanced spectroscopies.

  13. Light field morphing using 2D features.

    PubMed

    Wang, Lifeng; Lin, Stephen; Lee, Seungyong; Guo, Baining; Shum, Heung-Yeung

    2005-01-01

    We present a 2D feature-based technique for morphing 3D objects represented by light fields. Existing light field morphing methods require the user to specify corresponding 3D feature elements to guide morph computation. Since slight errors in 3D specification can lead to significant morphing artifacts, we propose a scheme based on 2D feature elements that is less sensitive to imprecise marking of features. First, 2D features are specified by the user in a number of key views in the source and target light fields. Then the two light fields are warped view by view as guided by the corresponding 2D features. Finally, the two warped light fields are blended together to yield the desired light field morph. Two key issues in light field morphing are feature specification and warping of light field rays. For feature specification, we introduce a user interface for delineating 2D features in key views of a light field, which are automatically interpolated to other views. For ray warping, we describe a 2D technique that accounts for visibility changes and present a comparison to the ideal morphing of light fields. Light field morphing based on 2D features makes it simple to incorporate previous image morphing techniques such as nonuniform blending, as well as to morph between an image and a light field. PMID:15631126

  14. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  15. Inertial solvation in femtosecond 2D spectra

    NASA Astrophysics Data System (ADS)

    Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David

    2001-03-01

    We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.

  16. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  17. Smart-phone based electrocardiogram wavelet decomposition and neural network classification

    NASA Astrophysics Data System (ADS)

    Jannah, N.; Hadjiloucas, S.; Hwang, F.; Galvão, R. K. H.

    2013-06-01

    This paper discusses ECG classification after parametrizing the ECG waveforms in the wavelet domain. The aim of the work is to develop an accurate classification algorithm that can be used to diagnose cardiac beat abnormalities detected using a mobile platform such as smart-phones. Continuous time recurrent neural network classifiers are considered for this task. Records from the European ST-T Database are decomposed in the wavelet domain using discrete wavelet transform (DWT) filter banks and the resulting DWT coefficients are filtered and used as inputs for training the neural network classifier. Advantages of the proposed methodology are the reduced memory requirement for the signals which is of relevance to mobile applications as well as an improvement in the ability of the neural network in its generalization ability due to the more parsimonious representation of the signal to its inputs.

  18. CW-THz image contrast enhancement using wavelet transform and Retinex

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Zhang, Min; Hu, Qi-fan; Huang, Ying-Xue; Liang, Hua-Wei

    2015-10-01

    To enhance continuous wave terahertz (CW-THz) scanning images contrast and denoising, a method based on wavelet transform and Retinex theory was proposed. In this paper, the factors affecting the quality of CW-THz images were analysed. Second, an approach of combination of the discrete wavelet transform (DWT) and a designed nonlinear function in wavelet domain for the purpose of contrast enhancing was applied. Then, we combine the Retinex algorithm for further contrast enhancement. To evaluate the effectiveness of the proposed method in qualitative and quantitative, it was compared with the adaptive histogram equalization method, the homomorphic filtering method and the SSR(Single-Scale-Retinex) method. Experimental results demonstrated that the presented algorithm can effectively enhance the contrast of CW-THZ image and obtain better visual effect.

  19. Wavelet packets feasibility study for the design of an ECG compressor.

    PubMed

    Blanco-Velasco, Manuel; Cruz-Roldán, Fernando; Godino-Llorente, Juan Ignacio; Barner, Kenneth E

    2007-04-01

    Most of the recent electrocardiogram (ECG) compression approaches developed with the wavelet transform are implemented using the discrete wavelet transform. Conversely, wavelet packets (WP) are not extensively used, although they are an adaptive decomposition for representing signals. In this paper, we present a thresholding-based method to encode ECG signals using WP. The design of the compressor has been carried out according to two main goals: (1) The scheme should be simple to allow real-time implementation; (2) quality, i.e., the reconstructed signal should be as similar as possible to the original signal. The proposed scheme is versatile as far as neither QRS detection nor a priori signal information is required. As such, it can thus be applied to any ECG. Results show that WP perform efficiently and can now be considered as an alternative in ECG compression applications. PMID:17405386

  20. Speech signal denoising with wavelet-transforms and the mean opinion score characterizing the filtering quality

    NASA Astrophysics Data System (ADS)

    Yaseen, Alauldeen S.; Pavlov, Alexey N.; Hramov, Alexander E.

    2016-03-01

    Speech signal processing is widely used to reduce noise impact in acquired data. During the last decades, wavelet-based filtering techniques are often applied in communication systems due to their advantages in signal denoising as compared with Fourier-based methods. In this study we consider applications of a 1-D double density complex wavelet transform (1D-DDCWT) and compare the results with the standard 1-D discrete wavelet-transform (1DDWT). The performances of the considered techniques are compared using the mean opinion score (MOS) being the primary metric for the quality of the processed signals. A two-dimensional extension of this approach can be used for effective image denoising.

  1. Tomographic inversion using L1-regularization of Wavelet Coefficients

    NASA Astrophysics Data System (ADS)

    Loris, I.; Nolet, G.; Daubechies, I.; Dahlen, T.

    2006-12-01

    Like most geophysical inverse problems, the inverse problem in seismic tomography is underdetermined, or at best offers a mix of over- and underdetermined parameters. One usually regularizes the inverse problem by minimizing the norm (|m|) or roughness of the model (|∇ m| or |∇2 m|) to obtain a solution that is void of unwarranted structural detail. The notion that we seek the 'simplest' model that is in agreement with a given data set is intuitively equivalent to the notion that the model should be describable with a small number of parameters. But clearly, limiting the model to a few Fourier coefficients, or large scale blocks, does not necessarily lead to a geophysically plausible solution. We investigate if a wavelet basis can serve as a basis with enough flexibility to represent the class of models we seek. We propose a regularization method based on the assumption that the model m is sparse in a wavelet basis, meaning that it can be faithfully represented by a small number of nonzero wavelet coefficients. This allows for models that vary smoothly without sacrificing the sharp boundaries by a smoothing operator to regularize the inversion. To regularize the inversion, we minimize I= ∥ d - Am ∥2 + 2 τ ∥ w ∥1, where w is a vector of wavelet coefficients (m=Ww), τ the damping parameter, d-Am the vector of data residuals and 1 and 2 denote the ℓ1 and ℓ2 norm, respectively. the system is solved using Landweber iteration: w(n+1)= Sτ [ WATd + (I - WATAWT)w(n)], where Sτ is a soft thresholding operator (Sτ(x)=0 for |x|<τ and x ± τ elsewhere). In synthetic tests on a 2D tomographic model we show that minimizing the ℓ1 norm of a wavelet decomposition of the model leads to tomographic images that are parsimonious in the sense that they represent both smooth and sharp features well without introducing significant blurring or artifacts. The ℓ1 norm performs significantly better than an ℓ2 regularization on either the model or its wavelet

  2. The EM Method in a Probabilistic Wavelet-Based MRI Denoising.

    PubMed

    Martin-Fernandez, Marcos; Villullas, Sergio

    2015-01-01

    Human body heat emission and others external causes can interfere in magnetic resonance image acquisition and produce noise. In this kind of images, the noise, when no signal is present, is Rayleigh distributed and its wavelet coefficients can be approximately modeled by a Gaussian distribution. Noiseless magnetic resonance images can be modeled by a Laplacian distribution in the wavelet domain. This paper proposes a new magnetic resonance image denoising method to solve this fact. This method performs shrinkage of wavelet coefficients based on the conditioned probability of being noise or detail. The parameters involved in this filtering approach are calculated by means of the expectation maximization (EM) method, which avoids the need to use an estimator of noise variance. The efficiency of the proposed filter is studied and compared with other important filtering techniques, such as Nowak's, Donoho-Johnstone's, Awate-Whitaker's, and nonlocal means filters, in different 2D and 3D images. PMID:26089959

  3. The EM Method in a Probabilistic Wavelet-Based MRI Denoising

    PubMed Central

    2015-01-01

    Human body heat emission and others external causes can interfere in magnetic resonance image acquisition and produce noise. In this kind of images, the noise, when no signal is present, is Rayleigh distributed and its wavelet coefficients can be approximately modeled by a Gaussian distribution. Noiseless magnetic resonance images can be modeled by a Laplacian distribution in the wavelet domain. This paper proposes a new magnetic resonance image denoising method to solve this fact. This method performs shrinkage of wavelet coefficients based on the conditioned probability of being noise or detail. The parameters involved in this filtering approach are calculated by means of the expectation maximization (EM) method, which avoids the need to use an estimator of noise variance. The efficiency of the proposed filter is studied and compared with other important filtering techniques, such as Nowak's, Donoho-Johnstone's, Awate-Whitaker's, and nonlocal means filters, in different 2D and 3D images. PMID:26089959

  4. Wavelets based on Hermite cubic splines

    NASA Astrophysics Data System (ADS)

    Cvejnová, Daniela; Černá, Dana; Finěk, Václav

    2016-06-01

    In 2000, W. Dahmen et al. designed biorthogonal multi-wavelets adapted to the interval [0,1] on the basis of Hermite cubic splines. In recent years, several more simple constructions of wavelet bases based on Hermite cubic splines were proposed. We focus here on wavelet bases with respect to which both the mass and stiffness matrices are sparse in the sense that the number of nonzero elements in any column is bounded by a constant. Then, a matrix-vector multiplication in adaptive wavelet methods can be performed exactly with linear complexity for any second order differential equation with constant coefficients. In this contribution, we shortly review these constructions and propose a new wavelet which leads to improved Riesz constants. Wavelets have four vanishing wavelet moments.

  5. 2D Seismic Reflection Data across Central Illinois

    SciTech Connect

    Smith, Valerie; Leetaru, Hannes

    2014-09-30

    In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made

  6. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  7. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  8. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  9. 2D electronic materials for army applications

    NASA Astrophysics Data System (ADS)

    O'Regan, Terrance; Perconti, Philip

    2015-05-01

    The record electronic properties achieved in monolayer graphene and related 2D materials such as molybdenum disulfide and hexagonal boron nitride show promise for revolutionary high-speed and low-power electronic devices. Heterogeneous 2D-stacked materials may create enabling technology for future communication and computation applications to meet soldier requirements. For instance, transparent, flexible and even wearable systems may become feasible. With soldier and squad level electronic power demands increasing, the Army is committed to developing and harnessing graphene-like 2D materials for compact low size-weight-and-power-cost (SWAP-C) systems. This paper will review developments in 2D electronic materials at the Army Research Laboratory over the last five years and discuss directions for future army applications.

  10. 2-d Finite Element Code Postprocessor

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  11. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083

  12. Foveated wavelet image quality index

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Bovik, Alan C.; Lu, Ligang; Kouloheris, Jack L.

    2001-12-01

    The human visual system (HVS) is highly non-uniform in sampling, coding, processing and understanding. The spatial resolution of the HVS is highest around the point of fixation (foveation point) and decreases rapidly with increasing eccentricity. Currently, most image quality measurement methods are designed for uniform resolution images. These methods do not correlate well with the perceived foveated image quality. Wavelet analysis delivers a convenient way to simultaneously examine localized spatial as well as frequency information. We developed a new image quality metric called foveated wavelet image quality index (FWQI) in the wavelet transform domain. FWQI considers multiple factors of the HVS, including the spatial variance of the contrast sensitivity function, the spatial variance of the local visual cut-off frequency, the variance of human visual sensitivity in different wavelet subbands, and the influence of the viewing distance on the display resolution and the HVS features. FWQI can be employed for foveated region of interest (ROI) image coding and quality enhancement. We show its effectiveness by using it as a guide for optimal bit assignment of an embedded foveated image coding system. The coding system demonstrates very good coding performance and scalability in terms of foveated objective as well as subjective quality measurement.

  13. Group theoretical methods and wavelet theory: coorbit theory and applications

    NASA Astrophysics Data System (ADS)

    Feichtinger, Hans G.

    2013-05-01

    Before the invention of orthogonal wavelet systems by Yves Meyer1 in 1986 Gabor expansions (viewed as discretized inversion of the Short-Time Fourier Transform2 using the overlap and add OLA) and (what is now perceived as) wavelet expansions have been treated more or less at an equal footing. The famous paper on painless expansions by Daubechies, Grossman and Meyer3 is a good example for this situation. The description of atomic decompositions for functions in modulation spaces4 (including the classical Sobolev spaces) given by the author5 was directly modeled according to the corresponding atomic characterizations by Frazier and Jawerth,6, 7 more or less with the idea of replacing the dyadic partitions of unity of the Fourier transform side by uniform partitions of unity (so-called BUPU's, first named as such in the early work on Wiener-type spaces by the author in 19808). Watching the literature in the subsequent two decades one can observe that the interest in wavelets "took over", because it became possible to construct orthonormal wavelet systems with compact support and of any given degree of smoothness,9 while in contrast the Balian-Low theorem is prohibiting the existence of corresponding Gabor orthonormal bases, even in the multi-dimensional case and for general symplectic lattices.10 It is an interesting historical fact that* his construction of band-limited orthonormal wavelets (the Meyer wavelet, see11) grew out of an attempt to prove the impossibility of the existence of such systems, and the final insight was that it was not impossible to have such systems, and in fact quite a variety of orthonormal wavelet system can be constructed as we know by now. Meanwhile it is established wisdom that wavelet theory and time-frequency analysis are two different ways of decomposing signals in orthogonal resp. non-orthogonal ways. The unifying theory, covering both cases, distilling from these two situations the common group theoretical background lead to the

  14. Extended 2D generalized dilaton gravity theories

    NASA Astrophysics Data System (ADS)

    de Mello, R. O.

    2008-09-01

    We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincaré algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincaré algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson Sigma models based on a nonlinear deformation of the extended Poincaré algebra.

  15. Uncertainty Principle and Elementary Wavelet

    NASA Astrophysics Data System (ADS)

    Bliznetsov, M.

    This paper is aimed to define time-and-spectrum characteristics of elementary wavelet. An uncertainty relation between the width of a pulse amplitude spectrum and its time duration and extension in space is investigated in the paper. Analysis of uncertainty relation is carried out for the causal pulses with minimum-phase spectrum. Amplitude spectra of elementary pulses are calculated using modified Fourier spectral analysis. Modification of Fourier analysis is justified by the necessity of solving zero frequency paradox in amplitude spectra that are calculated with the help of standard Fourier anal- ysis. Modified Fourier spectral analysis has the same resolution along the frequency axis and excludes physically unobservable values from time-and-spectral presenta- tions and determines that Heaviside unit step function has infinitely wide spectrum equal to 1 along the whole frequency range. Dirac delta function has the infinitely wide spectrum in the infinitely high frequency scope. Difference in propagation of wave and quasi-wave forms of energy motion is established from the analysis of un- certainty relation. Unidirectional pulse velocity depends on the relative width of the pulse spectra. Oscillating pulse velocity is constant in given nondispersive medium. Elementary wavelet has the maximum relative spectrum width and minimum time du- ration among all the oscillating pulses whose velocity is equal to the velocity of casual harmonic components of the pulse spectra. Relative width of elementary wavelet spec- trum in regard to resonance frequency is square root of 4/3 and approximately equal to 1.1547.... Relative width of this wavelet spectrum in regard to the center frequency is equal to 1. The more relative width of unidirectional pulse spectrum exceeds rela- tive width of elementary wavelet spectrum the higher velocity of unidirectional pulse propagation. The concept of velocity exceeding coefficient is introduced for pulses presenting quasi-wave form of energy

  16. Enhancing phase retrieval speed for real-time interferometer and ESPI by two-dimensional continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Hsiung; Hsu, Kuan-Yu; Lee, Chih-Kung

    2016-03-01

    A real-time three-dimensional surface profile metrology system was implemented by integrating Fourier Transform (FT) based algorithms to convert interference intensity fringes to wrapped frequency phase maps and then to unwrapped phase maps. The revival of this field can find its roots in recognizing the development of high-resolution high-speed CCD/CMOS over the years. Two-dimensional Continuous Wavelet Transform (2D-CWT), which possesses the ability to construct daughter wavelets of good time and frequency localization according to different fringes conditions from a characteristic mother wavelet, was implemented with an attempt to reduce redundant fitting process of ordinary Short Time Fourier Transform (STFT), also known as Windowed Fourier Transform (WFT), and therefore to accelerate the FT-related algorithms needed. Implemented with the efficient wavelet construction process by using 2D-CWT, Electronic Speckle Pattern Interferometer (ESPI) was adopted to take advantage of this new process. Different from using several phase shifting steps before to solve the direction ambiguity, which takes time to capture multiple intensity maps during measurement, the phase maps needed were retrieved from a single frame interference fringes. It is to be noted that this one-image interference fringe was captured by having a pre-introduced spatial carrier frequency embedded within the experimental setup so as to remove the directional ambiguity. 2D-CWT dealing with different signal-to-noise ratios was also designed by selecting wavelet parameters properly, which is expected to achieve higher accuracy and faster processing speed. For phase unwrapping, Poisson's equation with Neumann boundary condition was solved by using FFT. The benefit of using 2D-CWTs with different wavelets as compared to WFT was demonstrated experimentally.

  17. Anisotropic multi-resolution analysis in 2D, application to long-range correlations in cloud mm-radar fields

    SciTech Connect

    Davis, A.B.; Clothiaux, E.

    1999-03-01

    Because of Earth`s gravitational field, its atmosphere is strongly anisotropic with respect to the vertical; the effect of the Earth`s rotation on synoptic wind patterns also causes a more subtle form of anisotropy in the horizontal plane. The authors survey various approaches to statistically robust anisotropy from a wavelet perspective and present a new one adapted to strongly non-isotropic fields that are sampled on a rectangular grid with a large aspect ratio. This novel technique uses an anisotropic version of Multi-Resolution Analysis (MRA) in image analysis; the authors form a tensor product of the standard dyadic Haar basis, where the dividing ratio is {lambda}{sub z} = 2, and a nonstandard triadic counterpart, where the dividing ratio is {lambda}{sub x} = 3. The natural support of the field is therefore 2{sup n} pixels (vertically) by 3{sup n} pixels (horizontally) where n is the number of levels in the MRA. The natural triadic basis includes the French top-hat wavelet which resonates with bumps in the field whereas the Haar wavelet responds to ramps or steps. The complete 2D basis has one scaling function and five wavelets. The resulting anisotropic MRA is designed for application to the liquid water content (LWC) field in boundary-layer clouds, as the prevailing wind advects them by a vertically pointing mm-radar system. Spatial correlations are notoriously long-range in cloud structure and the authors use the wavelet coefficients from the new MRA to characterize these correlations in a multifractal analysis scheme. In the present study, the MRA is used (in synthesis mode) to generate fields that mimic cloud structure quite realistically although only a few parameters are used to control the randomness of the LWC`s wavelet coefficients.

  18. MULTISCALE DISCRETIZATION OF SHAPE CONTOURS

    SciTech Connect

    Prasad, L.; Rao, R.

    2000-09-01

    We present an efficient multi-scale scheme to adaptively approximate the continuous (or densely sampled) contour of a planar shape at varying resolutions. The notion of shape is intimately related to the notion of contour, and the efficient representation of the contour of a shape is vital to a computational understanding of the shape. Any polygonal approximation of a planar smooth curve is equivalent to a piecewise constant approximation of the parameterized X and Y coordinate functions of a discrete point set obtained by densely sampling the curve. Using the Haar wavelet transform for the piecewise approximation yields a hierarchical scheme in which the size of the approximating point set is traded off against the morphological accuracy of the approximation. Our algorithm compresses the representation of the initial shape contour to a sparse sequence of points in the plane defining the vertices of the shape's polygonal approximation. Furthermore, it is possible to control the overall resolution of the approximation by a single, scale-independent parameter.

  19. Dual tree complex wavelet transform based denoising of optical microscopy images.

    PubMed

    Bal, Ufuk

    2012-12-01

    Photon shot noise is the main noise source of optical microscopy images and can be modeled by a Poisson process. Several discrete wavelet transform based methods have been proposed in the literature for denoising images corrupted by Poisson noise. However, the discrete wavelet transform (DWT) has disadvantages such as shift variance, aliasing, and lack of directional selectivity. To overcome these problems, a dual tree complex wavelet transform is used in our proposed denoising algorithm. Our denoising algorithm is based on the assumption that for the Poisson noise case threshold values for wavelet coefficients can be estimated from the approximation coefficients. Our proposed method was compared with one of the state of the art denoising algorithms. Better results were obtained by using the proposed algorithm in terms of image quality metrics. Furthermore, the contrast enhancement effect of the proposed method on collagen fıber images is examined. Our method allows fast and efficient enhancement of images obtained under low light intensity conditions. PMID:23243573

  20. Optical cryptosystem of color images using random phase masks in the fractional wavelet transform domain

    NASA Astrophysics Data System (ADS)

    Singh, Hukum

    2016-05-01

    An optical color image encryption in the Fractional Wavelet Transform (FWT) domain is carried out. The original images are segregated into three colors components: R (red), G (green) and B (blue). After that the components are encrypted separately using double random phase encoding (DRPE) in the FWT domain. Random phase masks (RPMs) are used in the input as well as in Fourier plane. The images to be encrypted are transformed with the discrete wavelet transform (DWT), the resulting coefficients from the DWT are multiplied each one by masks different form RPM. Masks are independent each other and the results are applied an inverse discrete Wavelet Transform (IDWT), obtaining the encrypted images. The input images are recovered from their corresponding encrypted images by using the correct parameters of the FWT, and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The mother wavelet family and fractional orders associated with the FWT are extra keys that access difficulty an attacker; thereby the scheme is more secure as compared to conventional techniques. The sensitivity of proposed scheme is verified with encryption parameters, occlusions, and noise attacks.

  1. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques.

    PubMed

    Amin, Hafeez Ullah; Malik, Aamir Saeed; Ahmad, Rana Fayyaz; Badruddin, Nasreen; Kamel, Nidal; Hussain, Muhammad; Chooi, Weng-Tink

    2015-03-01

    This paper describes a discrete wavelet transform-based feature extraction scheme for the classification of EEG signals. In this scheme, the discrete wavelet transform is applied on EEG signals and the relative wavelet energy is calculated in terms of detailed coefficients and the approximation coefficients of the last decomposition level. The extracted relative wavelet energy features are passed to classifiers for the classification purpose. The EEG dataset employed for the validation of the proposed method consisted of two classes: (1) the EEG signals recorded during the complex cognitive task--Raven's advance progressive metric test and (2) the EEG signals recorded in rest condition--eyes open. The performance of four different classifiers was evaluated with four performance measures, i.e., accuracy, sensitivity, specificity and precision values. The accuracy was achieved above 98 % by the support vector machine, multi-layer perceptron and the K-nearest neighbor classifiers with approximation (A4) and detailed coefficients (D4), which represent the frequency range of 0.53-3.06 and 3.06-6.12 Hz, respectively. The findings of this study demonstrated that the proposed feature extraction approach has the potential to classify the EEG signals recorded during a complex cognitive task by achieving a high accuracy rate. PMID:25649845

  2. Robust wavelet-based video watermarking scheme for copyright protection using the human visual system

    NASA Astrophysics Data System (ADS)

    Preda, Radu O.; Vizireanu, Dragos Nicolae

    2011-01-01

    The development of the information technology and computer networks facilitates easy duplication, manipulation, and distribution of digital data. Digital watermarking is one of the proposed solutions for effectively safeguarding the rightful ownership of digital images and video. We propose a public digital watermarking technique for video copyright protection in the discrete wavelet transform domain. The scheme uses binary images as watermarks. These are embedded in the detail wavelet coefficients of the middle wavelet subbands. The method is a combination of spread spectrum and quantization-based watermarking. Every bit of the watermark is spread over a number of wavelet coefficients with the use of a secret key by means of quantization. The selected wavelet detail coefficients from different subbands are quantized using an optimal quantization model, based on the characteristics of the human visual system (HVS). Our HVS-based scheme is compared to a non-HVS approach. The resilience of the watermarking algorithm is tested against a series of different spatial, temporal, and compression attacks. To improve the robustness of the algorithm, we use error correction codes and embed the watermark with spatial and temporal redundancy. The proposed method achieves a good perceptual quality and high resistance to a large spectrum of attacks.

  3. Detection method of flexion relaxation phenomenon based on wavelets for patients with low back pain

    NASA Astrophysics Data System (ADS)

    Nougarou, François; Massicotte, Daniel; Descarreaux, Martin

    2012-12-01

    The flexion relaxation phenomenon (FRP) can be defined as a reduction or silence of myoelectric activity of the lumbar erector spinae muscle during full trunk flexion. It is typically absent in patients with chronic low back pain (LBP). Before any broad clinical utilization of this neuromuscular response can be made, effective, standardized, and accurate methods of identifying FRP limits are needed. However, this phenomenon is clearly more difficult to detect for LBP patients than for healthy patients. The main goal of this study is to develop an automated method based on wavelet transformation that would improve time point limits detection of surface electromyography signals of the FRP in case of LBP patients. Conventional visual identification and proposed automated methods of time point limits detection of relaxation phase were compared on experimental data using criteria of accuracy and repeatability based on physiological properties. The evaluation demonstrates that the use of wavelet transform (WT) yields better results than methods without wavelet decomposition. Furthermore, methods based on wavelet per packet transform are more effective than algorithms employing discrete WT. Compared to visual detection, in addition to demonstrating an obvious saving of time, the use of wavelet per packet transform improves the accuracy and repeatability in the detection of the FRP limits. These results clearly highlight the value of the proposed technique in identifying onset and offset of the flexion relaxation response in LBP subjects.

  4. Wavelet crosstalk matrix and its application to assessment of shift-variant imaging systems

    SciTech Connect

    Qi, Jinyi; Huesman, Ronald H.

    2002-11-01

    The objective assessment of image quality is essential for design of imaging systems. Barrett and Gifford [1] introduced the Fourier cross talk matrix. Because it is diagonal for continuous linear shift-invariant imaging systems, the Fourier cross talk matrix is a powerful technique for discrete imaging systems that are close to shift invariant. However, for a system that is intrinsically shift variant, Fourier techniques are not particularly effective. Because Fourier bases have no localization property, the shift-variance of the imaging system cannot be shown by the response of individual Fourier bases; rather, it is shown in the correlation between the Fourier coefficients. This makes the analysis and optimization quite difficult. In this paper, we introduce a wavelet cross talk matrix based on wavelet series expansions. The wavelet cross talk matrix allows simultaneous study of the imaging system in both the frequency and spatial domains. Hence it is well suited for shift variant systems. We compared the wavelet cross talk matrix with the Fourier cross talk matrix for several simulated imaging systems, namely the interior and exterior tomography problems, limited angle tomography, and a rectangular geometry positron emission tomograph. The results demonstrate the advantages of the wavelet cross talk matrix in analyzing shift-variant imaging systems.

  5. Wavelet entropy: a new tool for analysis of short duration brain electrical signals.

    PubMed

    Rosso, O A; Blanco, S; Yordanova, J; Kolev, V; Figliola, A; Schürmann, M; Başar, E

    2001-01-30

    Since traditional electrical brain signal analysis is mostly qualitative, the development of new quantitative methods is crucial for restricting the subjectivity in the study of brain signals. These methods are particularly fruitful when they are strongly correlated with intuitive physical concepts that allow a better understanding of brain dynamics. Here, new method based on orthogonal discrete wavelet transform (ODWT) is applied. It takes as a basic element the ODWT of the EEG signal, and defines the relative wavelet energy, the wavelet entropy (WE) and the relative wavelet entropy (RWE). The relative wavelet energy provides information about the relative energy associated with different frequency bands present in the EEG and their corresponding degree of importance. The WE carries information about the degree of order/disorder associated with a multi-frequency signal response, and the RWE measures the degree of similarity between different segments of the signal. In addition, the time evolution of the WE is calculated to give information about the dynamics in the EEG records. Within this framework, the major objective of the present work was to characterize in a quantitative way functional dynamics of order/disorder microstates in short duration EEG signals. For that aim, spontaneous EEG signals under different physiological conditions were analyzed. Further, specific quantifiers were derived to characterize how stimulus affects electrical events in terms of frequency synchronization (tuning) in the event related potentials. PMID:11166367

  6. Wavelet methodology to improve single unit isolation in primary motor cortex cells.

    PubMed

    Ortiz-Rosario, Alexis; Adeli, Hojjat; Buford, John A

    2015-05-15

    The proper isolation of action potentials recorded extracellularly from neural tissue is an active area of research in the fields of neuroscience and biomedical signal processing. This paper presents an isolation methodology for neural recordings using the wavelet transform (WT), a statistical thresholding scheme, and the principal component analysis (PCA) algorithm. The effectiveness of five different mother wavelets was investigated: biorthogonal, Daubachies, discrete Meyer, symmetric, and Coifman; along with three different wavelet coefficient thresholding schemes: fixed form threshold, Stein's unbiased estimate of risk, and minimax; and two different thresholding rules: soft and hard thresholding. The signal quality was evaluated using three different statistical measures: mean-squared error, root-mean squared, and signal to noise ratio. The clustering quality was evaluated using two different statistical measures: isolation distance, and L-ratio. This research shows that the selection of the mother wavelet has a strong influence on the clustering and isolation of single unit neural activity, with the Daubachies 4 wavelet and minimax thresholding scheme performing the best. PMID:25794461

  7. Optical wavelet transform for fingerprint identification

    NASA Astrophysics Data System (ADS)

    MacDonald, Robert P.; Rogers, Steven K.; Burns, Thomas J.; Fielding, Kenneth H.; Warhola, Gregory T.; Ruck, Dennis W.

    1994-03-01

    The Federal Bureau of Investigation (FBI) has recently sanctioned a wavelet fingerprint image compression algorithm developed for reducing storage requirements of digitized fingerprints. This research implements an optical wavelet transform of a fingerprint image, as the first step in an optical fingerprint identification process. Wavelet filters are created from computer- generated holograms of biorthogonal wavelets, the same wavelets implemented in the FBI algorithm. Using a detour phase holographic technique, a complex binary filter mask is created with both symmetry and linear phase. The wavelet transform is implemented with continuous shift using an optical correlation between binarized fingerprints written on a Magneto-Optic Spatial Light Modulator and the biorthogonal wavelet filters. A telescopic lens combination scales the transformed fingerprint onto the filters, providing a means of adjusting the biorthogonal wavelet filter dilation continuously. The wavelet transformed fingerprint is then applied to an optical fingerprint identification process. Comparison between normal fingerprints and wavelet transformed fingerprints shows improvement in the optical identification process, in terms of rotational invariance.

  8. 2D/1D approximations to the 3D neutron transport equation. I: Theory

    SciTech Connect

    Kelley, B. W.; Larsen, E. W.

    2013-07-01

    A new class of '2D/1D' approximations is proposed for the 3D linear Boltzmann equation. These approximate equations preserve the exact transport physics in the radial directions x and y and diffusion physics in the axial direction z. Thus, the 2D/1D equations are more accurate approximations of the 3D Boltzmann equation than the conventional 3D diffusion equation. The 2D/1D equations can be systematically discretized, to yield accurate simulation methods for 3D reactor core problems. The resulting solutions will be more accurate than 3D diffusion solutions, and less expensive to generate than standard 3D transport solutions. In this paper, we (i) show that the simplest 2D/1D equation has certain desirable properties, (ii) systematically discretize this equation, and (iii) derive a stable iteration scheme for solving the discrete system of equations. In a companion paper [1], we give numerical results that confirm the theoretical predictions of accuracy and iterative stability. (authors)

  9. Coherent vortex extraction in 3D homogeneous turbulence: comparison between orthogonal and biorthogonal wavelet decompositions

    NASA Astrophysics Data System (ADS)

    Roussel, O.; Schneider, K.; Farge, M.

    A comparison between two different ways of extracting coherent vortices in three-dimensional (3D) homogeneous isotropic turbulence is performed, using either orthogonal or biorthogonal wavelets. The method is based on a wavelet decomposition of the vorticity field and a subsequent thresholding of the wavelet coefficients. The coherent vorticity is reconstructed from a few strong wavelet coefficients, while the incoherent vorticity is reconstructed from the remaining weak coefficients. The choice of the threshold, which has no adjustable parameters, is motivated for the orthogonal case from the denoising theory. Using only 3 % of the coefficients we show that both decompositions, that is orthogonal and biorthogonal, extract the coherent vortices. They contain most of the energy (around 99 % in both cases) and retain 74 % and 68 % of the enstrophy in the orthogonal and biorthogonal cases, respectively. The incoherent background flow for the orthogonal decomposition, which corresponds to 97 % of the wavelet coefficients, is structureless, decorrelated, and has a Gaussian velocity probability distribution function (PDF). In contrast, for the biorthogonal decomposition, the background flow exhibits quasi-two-dimensional (2D) structures and yields an exponential velocity PDF. Moreover, the biorthogonal decomposition loses 3.7% of both enstrophy and helicity, while they are conserved by the orthogonal decomposition.

  10. Coherent vortex extraction in homogeneous isotropic turbulence using wavelets: orthogonal versus biorthogonal decompositions

    NASA Astrophysics Data System (ADS)

    Farge, Marie; Roussel, Olivier; Schneider, Kai

    2004-11-01

    We compare the extraction of coherent vortices in 3D homogeneous isotropic turbulence computed by DNS using either orthogonal or biorthogonal wavelets. The method is based on a wavelet decomposition of the vorticity field and a subsequent thresholding of the wavelet coefficients (PRL, 87(5), 2001, Phys. Fluids 15(10), 2003). The coherent vorticity is reconstructed from few strong wavelet coefficients while the incoherent vorticity is reconstructed from the remaining weak coefficients. In the orthogonal case the choice of the threshold is motivated from statistical denoising theory and has no adjustable parameters. Using 3% of the coefficients we show that both decompositions extract the coherent vortices out of the turbulent flow. They contain 99.6% of the energy and retain 74% and 68% of the enstrophy in the orthogonal and biorthogonal case, respectively. Concerning the incoherent background flow, it is structureless and decorrelated for the orthogonal decomposition, with a Gaussian velocity PDF. In contrast, the biorthogonal decomposition yields a background flow which exhibits quasi-2D sheet-like structures with an exponetial velocity PDF instead. In conclusion, modeling the incoherent background flow might be more difficult using biorthogonal wavelets for the CVS (Coherent Vortex Simulation, cf. Flow, Turbulence and Combustion 66(4), 2001).

  11. Wavelet analysis of hemispheroid flow separation toward understanding human vocal fold pathologies

    NASA Astrophysics Data System (ADS)

    Plesniak, Daniel H.; Carr, Ian A.; Bulusu, Kartik V.; Plesniak, Michael W.

    2014-11-01

    Physiological flows observed in human vocal fold pathologies, such as polyps and nodules, can be modeled by flow over a wall-mounted protuberance. The experimental investigation of flow separation over a surface-mounted hemispheroid was performed using particle image velocimetry (PIV) and measurements of surface pressure in a low-speed wind tunnel. This study builds on the hypothesis that the signatures of vortical structures associated with flow separation are imprinted on the surface pressure distributions. Wavelet decomposition methods in one- and two-dimensions were utilized to elucidate the flow behavior. First, a complex Gaussian wavelet was used for the reconstruction of surface pressure time series from static pressure measurements acquired from ports upstream, downstream, and on the surface of the hemispheroid. This was followed by the application of a novel continuous wavelet transform algorithm (PIVlet 1.2) using a 2D-Ricker wavelet for coherent structure detection on instantaneous PIV-data. The goal of this study is to correlate phase shifts in surface pressure with Strouhal numbers associated with the vortex shedding. Ultimately, the wavelet-based analytical framework will be aimed at addressing pulsatile flows. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  12. A Wavelet-Based Method for Simulation of Seismic Wave Propagation

    NASA Astrophysics Data System (ADS)

    Hong, T.; Kennett, B. L.

    2001-12-01

    Seismic wave propagation (e.g., both P-SV and SH in 2-D) can be modeled using wavelets. The governing elastic wave equations are transformed to a first-order differential equation system in time with a displacement-velocity formulation. Spatial derivatives are represented with a wavelet expansion using a semigroup approach. The evolution equations in time are derived from a Taylor expansion in terms of wavelet operators. The wavelet representation allows high accuracy for the spatial derivatives. Absorbing boundary conditions are implemented by including attenuation terms in the formulation of the equations. The traction-free condition at a free surface can be introduced with an equivalent force system. Irregular boundaries can be handled through a remapping of the coordinate system. The method is based on a displacement-velocity scheme which reduces memory requirements by about 30% compared to the use of velocity-stress. The new approach gives excellent agreement with analytic results for simple models including the Rayleigh waves at a free surface. A major strength of the wavelet approach is that the formulation can be employed for highly heterogeneous media and so can be used for complex situations.

  13. ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data

    NASA Astrophysics Data System (ADS)

    Akca, Irfan

    2016-04-01

    ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discretized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole inversion procedure. The inversion routine is based on the smoothness constrained least squares method. In order to verify the program, responses of two test models and field data sets were inverted. The models inverted from the synthetic data sets are consistent with the original test models in both DC resistivity and IP cases. A field data set acquired in an archaeological site is also used for the verification of outcomes of the program in comparison with the excavation results.

  14. Sigma-delta cellular neural network for 2D modulation.

    PubMed

    Aomori, Hisashi; Otake, Tsuyoshi; Takahashi, Nobuaki; Tanaka, Mamoru

    2008-01-01

    Although sigma-delta modulation is widely used for analog-to-digital (A/D) converters, sigma-delta concepts are only for 1D signals. Signal processing in the digital domain is extremely useful for 2D signals such as used in image processing, medical imaging, ultrasound imaging, and so on. The intricate task that provides true 2D sigma-delta modulation is feasible in the spatial domain sigma-delta modulation using the discrete-time cellular neural network (DT-CNN) with a C-template. In the proposed architecture, the A-template is used for a digital-to-analog converter (DAC), the C-template works as an integrator, and the nonlinear output function is used for the bilevel output. In addition, due to the cellular neural network (CNN) characteristics, each pixel of an image corresponds to a cell of a CNN, and each cell is connected spatially by the A-template. Therefore, the proposed system can be thought of as a very large-scale and super-parallel sigma-delta modulator. Moreover, the spatio-temporal dynamics is designed to obtain an optimal reconstruction signal. The experimental results show the excellent reconstruction performance and capabilities of the CNN as a sigma-delta modulator. PMID:18215502

  15. The unitary conformal field theory behind 2D Asymptotic Safety

    NASA Astrophysics Data System (ADS)

    Nink, Andreas; Reuter, Martin

    2016-02-01

    Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in d > 2 dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge c = 25. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a complete quenching of the a priori expected Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling. A possible connection of this prediction to Monte Carlo results obtained in the discrete approach to 2D quantum gravity based upon causal dynamical triangulations is mentioned. Similarities of the fixed point theory to, and differences from, non-critical string theory are also described. On the technical side, we provide a detailed analysis of an intriguing connection between the Einstein-Hilbert action in d > 2 dimensions and Polyakov's induced gravity action in two dimensions.

  16. Wavelet-based analysis of gastric microcirculation in rats with ulcer bleedings

    NASA Astrophysics Data System (ADS)

    Pavlov, A. N.; Rodionov, M. A.; Pavlova, O. N.; Semyachkina-Glushkovskaya, O. V.; Berdnikova, V. A.; Kuznetsova, Ya. V.; Semyachkin-Glushkovskij, I. A.

    2012-03-01

    Studying of nitric oxide (NO) dependent mechanisms of regulation of microcirculation in a stomach can provide important diagnostic markers of the development of stress-induced ulcer bleedings. In this work we use a multiscale analysis based on the discrete wavelet-transform to characterize a latent stage of illness formation in rats. A higher sensitivity of stomach vessels to the NO-level in ill rats is discussed.

  17. Progress in 2D photonic crystal Fano resonance photonics

    NASA Astrophysics Data System (ADS)

    Zhou, Weidong; Zhao, Deyin; Shuai, Yi-Chen; Yang, Hongjun; Chuwongin, Santhad; Chadha, Arvinder; Seo, Jung-Hun; Wang, Ken X.; Liu, Victor; Ma, Zhenqiang; Fan, Shanhui

    2014-01-01

    In contrast to a conventional symmetric Lorentzian resonance, Fano resonance is predominantly used to describe asymmetric-shaped resonances, which arise from the constructive and destructive interference of discrete resonance states with broadband continuum states. This phenomenon and the underlying mechanisms, being common and ubiquitous in many realms of physical sciences, can be found in a wide variety of nanophotonic structures and quantum systems, such as quantum dots, photonic crystals, plasmonics, and metamaterials. The asymmetric and steep dispersion of the Fano resonance profile promises applications for a wide range of photonic devices, such as optical filters, switches, sensors, broadband reflectors, lasers, detectors, slow-light and non-linear devices, etc. With advances in nanotechnology, impressive progress has been made in the emerging field of nanophotonic structures. One of the most attractive nanophotonic structures for integrated photonics is the two-dimensional photonic crystal slab (2D PCS), which can be integrated into a wide range of photonic devices. The objective of this manuscript is to provide an in depth review of the progress made in the general area of Fano resonance photonics, focusing on the photonic devices based on 2D PCS structures. General discussions are provided on the origins and characteristics of Fano resonances in 2D PCSs. A nanomembrane transfer printing fabrication technique is also reviewed, which is critical for the heterogeneous integrated Fano resonance photonics. The majority of the remaining sections review progress made on various photonic devices and structures, such as high quality factor filters, membrane reflectors, membrane lasers, detectors and sensors, as well as structures and phenomena related to Fano resonance slow light effect, nonlinearity, and optical forces in coupled PCSs. It is expected that further advances in the field will lead to more significant advances towards 3D integrated photonics, flat

  18. Optical modulators with 2D layered materials

    NASA Astrophysics Data System (ADS)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  19. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  20. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  1. 2D microwave imaging reflectometer electronics

    NASA Astrophysics Data System (ADS)

    Spear, A. G.; Domier, C. W.; Hu, X.; Muscatello, C. M.; Ren, X.; Tobias, B. J.; Luhmann, N. C.

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  2. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247

  3. 2D-Crystal-Based Functional Inks.

    PubMed

    Bonaccorso, Francesco; Bartolotta, Antonino; Coleman, Jonathan N; Backes, Claudia

    2016-08-01

    The possibility to produce and process graphene, related 2D crystals, and heterostructures in the liquid phase makes them promising materials for an ever-growing class of applications as composite materials, sensors, in flexible optoelectronics, and energy storage and conversion. In particular, the ability to formulate functional inks with on-demand rheological and morphological properties, i.e., lateral size and thickness of the dispersed 2D crystals, is a step forward toward the development of industrial-scale, reliable, inexpensive printing/coating processes, a boost for the full exploitation of such nanomaterials. Here, the exfoliation strategies of graphite and other layered crystals are reviewed, along with the advances in the sorting of lateral size and thickness of the exfoliated sheets together with the formulation of functional inks and the current development of printing/coating processes of interest for the realization of 2D-crystal-based devices. PMID:27273554

  4. CAS2D- NONROTATING BLADE-TO-BLADE, STEADY, POTENTIAL TRANSONIC CASCADE FLOW ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1994-01-01

    An exact, full-potential-equation model for the steady, irrotational, homoentropic, and homoenergetic flow of a compressible, inviscid fluid through a two-dimensional planar cascade together with its appropriate boundary conditions has been derived. The CAS2D computer program numerically solves an artificially time-dependent form of the actual full-potential-equation, providing a nonrotating blade-to-blade, steady, potential transonic cascade flow analysis code. Comparisons of results with test data and theoretical solutions indicate very good agreement. In CAS2D, the governing equation is discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field is discretized by providing a boundary-fitted, nonuniform computational mesh. This mesh is generated by using a sequence of conformal mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the full-potential equation is solved iteratively by using successive line over relaxation. Possible isentropic shocks are captured by the explicit addition of an artificial viscosity in a conservative form. In addition, a four-level, consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two-dimensional cascade flows. The results from CAS2D are not directly applicable to three-dimensional, potential, rotating flows through a cascade of blades because CAS2D does not consider the effects of the Coriolis force that would be present in the three-dimensional case. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 200K of 8 bit bytes. The CAS2D program was developed in 1980.

  5. Wavelet analysis of internal gravity waves

    NASA Astrophysics Data System (ADS)

    Hawkins, J.; Warn-Varnas, A.; Chin-Bing, S.; King, D.; Smolarkiewicsz, P.

    2005-05-01

    A series of model studies of internal gravity waves (igw) have been conducted for several regions of interest. Dispersion relations from the results have been computed using wavelet analysis as described by Meyers (1993). The wavelet transform is repeatedly applied over time and the components are evaluated with respect to their amplitude and peak position (Torrence and Compo, 1998). In this sense we have been able to compute dispersion relations from model results and from measured data. Qualitative agreement has been obtained in some cases. The results from wavelet analysis must be carefully interpreted because the igw models are fully nonlinear and wavelet analysis is fundamentally a linear technique. Nevertheless, a great deal of information describing igw propagation can be obtained from the wavelet transform. We address the domains over which wavelet analysis techniques can be applied and discuss the limits of their applicability.

  6. On the wavelet optimized finite difference method

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1994-01-01

    When one considers the effect in the physical space, Daubechies-based wavelet methods are equivalent to finite difference methods with grid refinement in regions of the domain where small scale structure exists. Adding a wavelet basis function at a given scale and location where one has a correspondingly large wavelet coefficient is, essentially, equivalent to adding a grid point, or two, at the same location and at a grid density which corresponds to the wavelet scale. This paper introduces a wavelet optimized finite difference method which is equivalent to a wavelet method in its multiresolution approach but which does not suffer from difficulties with nonlinear terms and boundary conditions, since all calculations are done in the physical space. With this method one can obtain an arbitrarily good approximation to a conservative difference method for solving nonlinear conservation laws.

  7. The 2D lingual appliance system.

    PubMed

    Cacciafesta, Vittorio

    2013-09-01

    The two-dimensional (2D) lingual bracket system represents a valuable treatment option for adult patients seeking a completely invisible orthodontic appliance. The ease of direct or simplified indirect bonding of 2D lingual brackets in combination with low friction mechanics makes it possible to achieve a good functional and aesthetic occlusion, even in the presence of a severe malocclusion. The use of a self-ligating bracket significantly reduces chair-side time for the orthodontist, and the low-profile bracket design greatly improves patient comfort. PMID:24005953

  8. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938

  9. Measurement of 2D birefringence distribution

    NASA Astrophysics Data System (ADS)

    Noguchi, Masato; Ishikawa, Tsuyoshi; Ohno, Masahiro; Tachihara, Satoru

    1992-10-01

    A new measuring method of 2-D birefringence distribution has been developed. It has not been an easy job to get a birefringence distribution in an optical element with conventional ellipsometry because of its lack of scanning means. Finding an analogy between the rotating analyzer method in ellipsometry and the phase-shifting method in recently developed digital interferometry, we have applied the phase-shifting algorithm to ellipsometry, and have developed a new method that makes the measurement of 2-D birefringence distribution easy and possible. The system contains few moving parts, assuring reliability, and measures a large area of a sample at one time, making the measuring time very short.

  10. Field programmable gate arrays implementation of Dual Tree Complex Wavelet Transform.

    PubMed

    Canbay, Ferhat; Levent, Vecdi Emre; Serbes, Gorkem; Goren, Sezer; Aydin, Nizamettin

    2015-08-01

    Due to the inherent time-varying characteristics of physiological systems, most biomedical signals (BSs) are expected to have non-stationary character. Therefore, any appropriate analysis method for dealing with BSs should exhibit adjustable time-frequency (TF) resolution. The wavelet transform (WT) provides a TF representation of signals, which has good frequency resolution at low frequencies and good time resolution at high frequencies, resulting in an optimized TF resolution. Discrete wavelet transform (DWT), which is used in various medical signal processing applications such as denoising and feature extraction, is a fast and discretized algorithm for classical WT. However, the DWT has some very important drawbacks such as aliasing, lack of directionality, and shift-variance. To overcome these drawbacks, a new improved discrete transform named as Dual Tree Complex Wavelet Transform (DTCWT) can be used. Nowadays, with the improvements in embedded system technology, portable real-time medical devices are frequently used for rapid diagnosis in patients. In this study, in order to implement DTCWT algorithm in FPGAs, which can be used as real-time feature extraction or denoising operator for biomedical signals, a novel hardware architecture is proposed. In proposed architecture, DTCWT is implemented with only one adder and one multiplier. Additionally, considering the multi-channel outputs of biomedical data acquisition systems, this architecture is capable of running N channels in parallel. PMID:26737665

  11. Wavelet analysis in two-dimensional tomography

    NASA Astrophysics Data System (ADS)

    Burkovets, Dimitry N.

    2002-02-01

    The diagnostic possibilities of wavelet-analysis of coherent images of connective tissue in its pathological changes diagnostics. The effectiveness of polarization selection in obtaining wavelet-coefficients' images is also shown. The wavelet structures, characterizing the process of skin psoriasis, bone-tissue osteoporosis have been analyzed. The histological sections of physiological normal and pathologically changed samples of connective tissue of human skin and spongy bone tissue have been analyzed.

  12. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a

  13. Wavelet analysis of epileptic spikes

    NASA Astrophysics Data System (ADS)

    Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.

    2003-05-01

    Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.

  14. Principles of Discrete Time Mechanics

    NASA Astrophysics Data System (ADS)

    Jaroszkiewicz, George

    2014-04-01

    1. Introduction; 2. The physics of discreteness; 3. The road to calculus; 4. Temporal discretization; 5. Discrete time dynamics architecture; 6. Some models; 7. Classical cellular automata; 8. The action sum; 9. Worked examples; 10. Lee's approach to discrete time mechanics; 11. Elliptic billiards; 12. The construction of system functions; 13. The classical discrete time oscillator; 14. Type 2 temporal discretization; 15. Intermission; 16. Discrete time quantum mechanics; 17. The quantized discrete time oscillator; 18. Path integrals; 19. Quantum encoding; 20. Discrete time classical field equations; 21. The discrete time Schrodinger equation; 22. The discrete time Klein-Gordon equation; 23. The discrete time Dirac equation; 24. Discrete time Maxwell's equations; 25. The discrete time Skyrme model; 26. Discrete time quantum field theory; 27. Interacting discrete time scalar fields; 28. Space, time and gravitation; 29. Causality and observation; 30. Concluding remarks; Appendix A. Coherent states; Appendix B. The time-dependent oscillator; Appendix C. Quaternions; Appendix D. Quantum registers; References; Index.

  15. Fusion of digital breast tomosynthesis images via wavelet synthesis for improved lesion conspicuity

    NASA Astrophysics Data System (ADS)

    Hariharan, Harishwaran; Pomponiu, Victor; Zheng, Bin; Whiting, Bruce; Gur, David

    2014-03-01

    Full-field digital mammography (FFDM) is the most common screening procedure for detecting early breast cancer. However, due to complications such as overlapping breast tissue in projection images, the efficacy of FFDM reading is reduced. Recent studies have shown that digital breast tomosynthesis (DBT), in combination with FFDM, increases detection sensitivity considerably while decreasing false-positive, recall rates. There is a huge interest in creating diagnostically accurate 2-D interpretations from the DBT slices. Most of the 2-D syntheses rely on visualizing the maximum intensities (brightness) from each slice through different methods. We propose a wavelet based fusion method, where we focus on preserving holistic information from larger structures such as masses while adding high frequency information that is relevant and helpful for diagnosis. This method enables the spatial generation of a 2D image from a series of DBT images, each of which contains both smooth and coarse structures distributed in the wavelet domain. We believe that the wavelet-synthesized images, generated from their DBT image datasets, provide radiologists with improved lesion and micro-calcification conspicuity as compared with FFDM images. The potential impact of this fusion method is (1) Conception of a device-independent, data-driven modality that increases the conspicuity of lesions, thereby facilitating early detection and potentially reducing recall rates; (2) Reduction of the accompanying radiation dose to the patient.

  16. Wavelet transforms for optical pulse analysis.

    PubMed

    Vázquez, Javier Molina; Mazilu, Michael; Miller, Alan; Galbraith, Ian

    2005-12-01

    An exploration of wavelet transforms for ultrashort optical pulse characterization is given. Some of the most common wavelets are examined to determine the advantages of using the causal quasi-wavelet suggested in Proceedings of the LEOS 15th Annual Meeting (IEEE, 2002), Vol. 2, p. 592, in terms of pulse analysis and, in particular, chirp extraction. Owing to its ability to distinguish between past and future pulse information, the causal quasi-wavelet is found to be highly suitable for optical pulse characterization. PMID:16396051

  17. Entangled Husimi Distribution and Complex Wavelet Transformation

    NASA Astrophysics Data System (ADS)

    Hu, Li-Yun; Fan, Hong-Yi

    2010-05-01

    Similar in spirit to the preceding work (Int. J. Theor. Phys. 48:1539, 2009) where the relationship between wavelet transformation and Husimi distribution function is revealed, we study this kind of relationship to the entangled case. We find that the optical complex wavelet transformation can be used to study the entangled Husimi distribution function in phase space theory of quantum optics. We prove that, up to a Gaussian function, the entangled Husimi distribution function of a two-mode quantum state | ψ> is just the modulus square of the complex wavelet transform of e^{-\\vert η \\vert 2/2} with ψ( η) being the mother wavelet.

  18. Wavelet Sparse Approximate Inverse Preconditioners

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Tang, W.-P.; Wan, W. L.

    1996-01-01

    There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle and Chow and Saad also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse entries so that sparse approximate inverse is possible. However, for the class of matrices that, come from elliptic PDE problems, this assumption may not necessarily hold. Our main idea is to look for a basis, other than the standard one, such that a sparse representation of the inverse is feasible. A crucial observation is that the kind of matrices we are interested in typically have a piecewise smooth inverse. We exploit this fact, by applying wavelet techniques to construct a better sparse approximate inverse in the wavelet basis. We shall justify theoretically and numerically that our approach is effective for matrices with smooth inverse. We emphasize that in this paper we have only presented the idea of wavelet approximate inverses and demonstrated its potential but have not yet developed a highly refined and efficient algorithm.

  19. A Glove for Tapping and Discrete 1D/2D Input

    NASA Technical Reports Server (NTRS)

    Miller, Sam A.; Smith, Andy; Bahram, Sina; SaintAmant, Robert

    2012-01-01

    This paper describes a glove with which users enter input by tapping fingertips with the thumb or by rubbing the thumb over the palmar surfaces of the middle and index fingers. The glove has been informally tested as the controller for two semi-autonomous robots in a a 3D simulation environment. A preliminary evaluation of the glove s performance is presented.

  20. Parallel stitching of 2D materials

    DOE PAGESBeta

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; et al

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  1. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-01

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits. PMID:26813882

  2. Baby universes in 2d quantum gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Jain, Sanjay; Thorleifsson, Gudmar

    1993-06-01

    We investigate the fractal structure of 2d quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent γstring.

  3. UV spectrophotometric simultaneous determination of cefoperazone and sulbactam in pharmaceutical formulations by derivative, Fourier and wavelet transforms.

    PubMed

    Hoang, Vu Dang; Loan, Nguyen Thi; Tho, Vu Thi; Nguyen, Hue Minh Thi

    2014-01-01

    Signal processing methods based on the use of derivative, Fourier and wavelet transforms were proposed for the spectrophotometric simultaneous determination of cefoperazone and sulbactam in powders for injection. These transforms were successfully applied to UV spectra and ratio spectra to find suitable working wavelengths. Wavelet signal processing was proved to have distinct advantages (i.e. higher peak intensity obtained, additional smooth function and scaling factor process eliminated) over derivative and Fourier transforms. Especially, a better resolution of spectral overlapping bands was obtained by the use of double signal transform in the sequences such as (i) spectra pre-processed by Fractional Wavelet Transform and subsequently subjected to Continuous Wavelet Transform or Discrete Wavelet Transform, and (ii) derivative - wavelet transforms combined. Calibration graphs for cefoperazone and sulbactam were recorded for the range 10-35 mg/L. Good accuracy and precision were reported for all proposed methods by analyzing synthetic mixtures of cefoperazone and sulbactam. Furthermore, these methods were statistically comparable to RP-HPLC. PMID:24374557

  4. On application of fast and adaptive periodic Battle-Lemarie wavelets to modeling of multiple lossy transmission lines

    SciTech Connect

    Zhu, Xiaojun; Lei, Guangtsai; Pan, Guangwen

    1997-04-01

    In this paper, the continuous operator is discretized into matrix forms by Galerkin`s procedure, using periodic Battle-Lemarie wavelets as basis/testing functions. The polynomial decomposition of wavelets is applied to the evaluation of matrix elements, which makes the computational effort of the matrix elements no more expensive than that of method of moments (MoM) with conventional piecewise basis/testing functions. A new algorithm is developed employing the fast wavelet transform (FWT). Owing to localization, cancellation, and orthogonal properties of wavelets, very sparse matrices have been obtained, which are then solved by the LSQR iterative method. This algorithm is also adaptive in that one can add at will finer wavelet bases in the regions where fields vary rapidly, without any damage to the system orthogonality of the wavelet basis functions. To demonstrate the effectiveness of the new algorithm, we applied it to the evaluation of frequency-dependent resistance and inductance matrices of multiple lossy transmission lines. Numerical results agree with previously published data and laboratory measurements. The valid frequency range of the boundary integral equation results has been extended two to three decades in comparison with the traditional MoM approach. The new algorithm has been integrated into the computer aided design tool, MagiCAD, which is used for the design and simulation of high-speed digital systems and multichip modules Pan et al. 29 refs., 7 figs., 6 tabs.

  5. Wavelet time-frequency analysis and least squares support vector machines for the identification of voice disorders.

    PubMed

    Fonseca, Everthon Silva; Guido, Rodrigo Capobianco; Scalassara, Paulo Rogério; Maciel, Carlos Dias; Pereira, José Carlos

    2007-04-01

    This work describes a novel algorithm to identify laryngeal pathologies, by the digital analysis of the voice. It is based on Daubechies' discrete wavelet transform (DWT-db), linear prediction coefficients (LPC), and least squares support vector machines (LS-SVM). Wavelets with different support-sizes and three LS-SVM kernels are compared. Particularly, the proposed approach, implemented with modest computer requirements, leads to an adequate larynx pathology classifier to identify nodules in vocal folds. It presents over 90% of classification accuracy and has a low order of computational complexity in relation to the speech signal's length. PMID:17078942

  6. The Wavelet ToolKat: A set of tools for the analysis of series through wavelet transforms. Application to the channel curvature and the slope control of three free meandering rivers in the Amazon basin.

    NASA Astrophysics Data System (ADS)

    Vaudor, Lise; Piegay, Herve; Wawrzyniak, Vincent; Spitoni, Marie

    2016-04-01

    The form and functioning of a geomorphic system result from processes operating at various spatial and temporal scales. Longitudinal channel characteristics thus exhibit complex patterns which vary according to the scale of study, might be periodic or segmented, and are generally blurred by noise. Describing the intricate, multiscale structure of such signals, and identifying at which scales the patterns are dominant and over which sub-reach, could help determine at which scales they should be investigated, and provide insights into the main controlling factors. Wavelet transforms aim at describing data at multiple scales (either in time or space), and are now exploited in geophysics for the analysis of nonstationary series of data. They provide a consistent, non-arbitrary, and multiscale description of a signal's variations and help explore potential causalities. Nevertheless, their use in fluvial geomorphology, notably to study longitudinal patterns, is hindered by a lack of user-friendly tools to help understand, implement, and interpret them. We have developed a free application, The Wavelet ToolKat, designed to facilitate the use of wavelet transforms on temporal or spatial series. We illustrate its usefulness describing longitudinal channel curvature and slope of three freely meandering rivers in the Amazon basin (the Purus, Juruá and Madre de Dios rivers), using topographic data generated from NASA's Shuttle Radar Topography Mission (SRTM) in 2000. Three types of wavelet transforms are used, with different purposes. Continuous Wavelet Transforms are used to identify in a non-arbitrary way the dominant scales and locations at which channel curvature and slope vary. Cross-wavelet transforms, and wavelet coherence and phase are used to identify scales and locations exhibiting significant channel curvature and slope co-variations. Maximal Overlap Discrete Wavelet Transforms decompose data into their variations at a series of scales and are used to provide

  7. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  8. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  9. Wavelet analysis and high quality JPEG2000 compression using Daubechies wavelet

    NASA Astrophysics Data System (ADS)

    Khalid, Azra; Afsheen, Uzma; Umer Baig, Saad

    2011-10-01

    Wavelet analysis and its application has found much attention in recent times. It is vastly applied in many applications such as involving transient signal analysis, image processing, signal processing and data compression. It has gained popularity because of its multiresolution, subband coding and feature extraction features. The paper describes efficient application of wavelet analysis for image compression, exploring Daubechies wavelet as the basis function. Wavelets have scaling properties. They are localized in time and frequency. Wavelets separate the image into different scales on the basis of frequency content. The resulting compressed image can then be easily stored or transmitted saving crucial communication bandwidth. Wavelet analysis because of its high quality compression is one of the feature blocks in the new JPEG2000 image compression standard. The paper proposes Daubechies wavelet analysis, quantization and Huffman encoding scheme which results in high compression and good quality reconstruction.

  10. Static & Dynamic Response of 2D Solids

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less

  11. Stochastic Inversion of 2D Magnetotelluric Data

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  12. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  13. Explicit 2-D Hydrodynamic FEM Program

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  14. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  15. A gear rattle metric based on the wavelet multi-resolution analysis: Experimental investigation

    NASA Astrophysics Data System (ADS)

    Brancati, Renato; Rocca, Ernesto; Savino, Sergio

    2015-01-01

    In the article an investigation about the feasibility of a wavelet analysis for gear rattle metric in transmission gears, due to tooth impacts under unloaded conditions, is conducted. The technique adopts the discrete wavelet transform (DWT), following the Multi-resolution analysis, to decompose an experimental signal of the relative angular motion of gears into an approximation and in some detail vectors. The described procedure, previously developed by the authors, permits the qualitative evaluation of the impacts occurring between the teeth by examining in particular the detail vectors coming out from the wavelet decomposition. The technique enables discriminating between the impacts occurring on the two different sides of tooth. This situation is typical of the double-sided gear rattle produced in the automotive gear boxes. This paper considers the influence of oil lubricant, inserted between the teeth, in reducing the impacts. Analysis is performed by comparing three different lubrication conditions, and some of the classical wavelet functions adopted in literature are tested as "mother" wavelet. Moreover, comparisons with a metric based on the harmonic analysis by means of the Fast Fourier Transform (FFT), often adopted in this field, are conducted to put in evidence the advantages of the Wavelet technique with reference to the influence of some fundamental operative parameters. The experimental signals of the relative angular rotation of gear are acquired by two high resolution incremental encoders on a specific test rig for lightly loaded gears. The results of the proposed method appear optimistic also in the detection of defects that could produce little variations in the dynamic behavior of unloaded gears.

  16. 3D steerable wavelets in practice.

    PubMed

    Chenouard, Nicolas; Unser, Michael

    2012-11-01

    We introduce a systematic and practical design for steerable wavelet frames in 3D. Our steerable wavelets are obtained by applying a 3D version of the generalized Riesz transform to a primary isotropic wavelet frame. The novel transform is self-reversible (tight frame) and its elementary constituents (Riesz wavelets) can be efficiently rotated in any 3D direction by forming appropriate linear combinations. Moreover, the basis functions at a given location can be linearly combined to design custom (and adaptive) steerable wavelets. The features of the proposed method are illustrated with the processing and analysis of 3D biomedical data. In particular, we show how those wavelets can be used to characterize directional patterns and to detect edges by means of a 3D monogenic analysis. We also propose a new inverse-problem formalism along with an optimization algorithm for reconstructing 3D images from a sparse set of wavelet-domain edges. The scheme results in high-quality image reconstructions which demonstrate the feature-reduction ability of the steerable wavelets as well as their potential for solving inverse problems. PMID:22752138

  17. Layer Engineering of 2D Semiconductor Junctions.

    PubMed

    He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel

    2016-07-01

    A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275

  18. 2dF mechanical engineering

    NASA Astrophysics Data System (ADS)

    Smith, Greg; Lankshear, Allan

    1998-07-01

    2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.

  19. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  20. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  1. 2D materials: Graphene and others

    NASA Astrophysics Data System (ADS)

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  2. TACO (2D AND 3D). Taco

    SciTech Connect

    Mason, W.E.

    1983-03-01

    A set of finite element codes for the solution of nonlinear, two-dimensional (TACO2D) and three-dimensional (TACO3D) heat transfer problems. Performs linear and nonlinear analyses of both transient and steady state heat transfer problems. Has the capability to handle time or temperature dependent material properties. Materials may be either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions and loadings are available including temperature, flux, convection, radiation, and internal heat generation.

  3. Tomosynthesis imaging with 2D scanning trajectories

    NASA Astrophysics Data System (ADS)

    Khare, Kedar; Claus, Bernhard E. H.; Eberhard, Jeffrey W.

    2011-03-01

    Tomosynthesis imaging in chest radiography provides volumetric information with the potential for improved diagnostic value when compared to the standard AP or LAT projections. In this paper we explore the image quality benefits of 2D scanning trajectories when coupled with advanced image reconstruction approaches. It is intuitively clear that 2D trajectories provide projection data that is more complete in terms of Radon space filling, when compared with conventional tomosynthesis using a linearly scanned source. Incorporating this additional information for obtaining improved image quality is, however, not a straightforward problem. The typical tomosynthesis reconstruction algorithms are based on direct inversion methods e.g. Filtered Backprojection (FBP) or iterative algorithms that are variants of the Algebraic Reconstruction Technique (ART). The FBP approach is fast and provides high frequency details in the image but at the same time introduces streaking artifacts degrading the image quality. The iterative methods can reduce the image artifacts by using image priors but suffer from a slow convergence rate, thereby producing images lacking high frequency details. In this paper we propose using a fast converging optimal gradient iterative scheme that has advantages of both the FBP and iterative methods in that it produces images with high frequency details while reducing the image artifacts. We show that using favorable 2D scanning trajectories along with the proposed reconstruction method has the advantage of providing improved depth information for structures such as the spine and potentially producing images with more isotropic resolution.

  4. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells. PMID:25602462

  5. Using wavelets to learn pattern templates

    NASA Astrophysics Data System (ADS)

    Scott, Clayton D.; Nowak, Robert D.

    2002-07-01

    Despite the success of wavelet decompositions in other areas of statistical signal and image processing, current wavelet-based image models are inadequate for modeling patterns in images, due to the presence of unknown transformations (e.g., translation, rotation, location of lighting source) inherent in most pattern observations. In this paper we introduce a hierarchical wavelet-based framework for modeling patterns in digital images. This framework takes advantage of the efficient image representations afforded by wavelets, while accounting for unknown translation and rotation. Given a trained model, we can use this framework to synthesize pattern observations. If the model parameters are unknown, we can infer them from labeled training data using TEMPLAR (Template Learning from Atomic Representations), a novel template learning algorithm with linear complexity. TEMPLAR employs minimum description length (MDL) complexity regularization to learn a template with a sparse representation in the wavelet domain. We discuss several applications, including template learning, pattern classification, and image registration.

  6. The Hartle-Hawking wave function in 2D causal set quantum gravity

    NASA Astrophysics Data System (ADS)

    Glaser, Lisa; Surya, Sumati

    2016-03-01

    We define the Hartle-Hawking no-boundary wave function for causal set theory (CST) over the discrete analogs of spacelike hypersurfaces. Using Markov Chain Monte Carlo and numerical integration methods we analyze the wave function in non-perturbative 2D CST. We find that in the low-temperature regime it is dominated by causal sets which have no continuum counterparts but possess physically interesting geometric properties. Not only do they exhibit a rapid spatial expansion with respect to the discrete proper time, but a high degree of spatial homogeneity. The latter is due to the extensive overlap of the causal pasts of the elements in the final discrete hypersurface and corresponds to high graph connectivity. Our results thus suggest new possibilities for the role of quantum gravity in the observable Universe.

  7. 2D superconductivity by ionic gating

    NASA Astrophysics Data System (ADS)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  8. Filtering Image Records Using Wavelets and the Zakai Equation

    NASA Technical Reports Server (NTRS)

    Haddad, Ziad S.; Simanca, Santiago R.

    1995-01-01

    Consider the problem of detecting and localizing a faint object moving In an "essentially stationary" background, using a sequence of two-dimensional low-SNR images of the scene. A natural approach consists of "digitizing" each snapshot into a discrete set of observations, sufficiently (perhaps not exactly) matched to the object In question, then tracking the object using an appropriate stochastic filter. The tracking would be expected to make up for the low signal-to-noise ratio, this allowing one to "coherently" process successive images in order to beat down the noise and localize the object. Thus, "tracking" here does not refer to the usual notion of detecting then tracking: rather, we track in order to detect The problem then becomes one of choosing the appropriate image representation as well as the optimal (and necessarily nonlinear filter. We propose exact and approximate solutions using wavelets and the Zakai equation. The smoothness of the wavelets used is required in the derivation of the evolution equation for the conditional density giving the filter, and their orthogonality makes it possible to carry out actual computations of the Ito- and change-of-gauge-terms in the algorithm effectively.

  9. An image adaptive, wavelet-based watermarking of digital images

    NASA Astrophysics Data System (ADS)

    Agreste, Santa; Andaloro, Guido; Prestipino, Daniela; Puccio, Luigia

    2007-12-01

    In digital management, multimedia content and data can easily be used in an illegal way--being copied, modified and distributed again. Copyright protection, intellectual and material rights protection for authors, owners, buyers, distributors and the authenticity of content are crucial factors in solving an urgent and real problem. In such scenario digital watermark techniques are emerging as a valid solution. In this paper, we describe an algorithm--called WM2.0--for an invisible watermark: private, strong, wavelet-based and developed for digital images protection and authenticity. Using discrete wavelet transform (DWT) is motivated by good time-frequency features and well-matching with human visual system directives. These two combined elements are important in building an invisible and robust watermark. WM2.0 works on a dual scheme: watermark embedding and watermark detection. The watermark is embedded into high frequency DWT components of a specific sub-image and it is calculated in correlation with the image features and statistic properties. Watermark detection applies a re-synchronization between the original and watermarked image. The correlation between the watermarked DWT coefficients and the watermark signal is calculated according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has shown to be resistant against geometric, filtering and StirMark attacks with a low rate of false alarm.

  10. Next gen wavelets down-sampling preserving statistics

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Miao, Lidan; Chanyagon, Pornchai; Cader, Masud

    2007-04-01

    We extend the 2 nd Gen Discrete Wavelet Transform (DWT) of Swelden to the Next Generations (NG) Digital Wavelet Transform (DWT) preserving the statistical salient features. The lossless NG DWT accomplishes the data compression of "wellness baseline profiles (WBP)" of aging population at homes. For medical monitoring system at home fronts we translate the military experience to dual usage of veterans & civilian alike with the following three requirements: (i) Data Compression: The necessary down sampling reduces the immense amount of data of individual WBP from hours to days and to weeks for primary caretakers in terms of moments, e.g. mean value, variance, etc., without the artifacts caused by FFT arbitrary windowing. (ii) Lossless: our new NG_DWT must preserve the original data sets. (iii) Phase Transition: NG_DWT must capture the critical phase transition of the wellness toward the sickness with simultaneous display of local statistical moments. According to the Nyquist sampling theory, assuming a band-limited wellness physiology, we must sample the WBP at least twice per day since it is changing diurnally and seasonally. Since NG_DWT, like the 2 nd Gen, is lossless, we can reconstruct the original time series for the physicians' second looks. This technique of NG_DWT can also help stock market day-traders monitoring the volatility of multiple portfolios without artificial horizon artifacts.

  11. Adaptive segmentation of wavelet transform coefficients for video compression

    NASA Astrophysics Data System (ADS)

    Wasilewski, Piotr

    2000-04-01

    This paper presents video compression algorithm suitable for inexpensive real-time hardware implementation. This algorithm utilizes Discrete Wavelet Transform (DWT) with the new Adaptive Spatial Segmentation Algorithm (ASSA). The algorithm was designed to obtain better or similar decompressed video quality in compare to H.263 recommendation and MPEG standard using lower computational effort, especially at high compression rates. The algorithm was optimized for hardware implementation in low-cost Field Programmable Gate Array (FPGA) devices. The luminance and chrominance components of every frame are encoded with 3-level Wavelet Transform with biorthogonal filters bank. The low frequency subimage is encoded with an ADPCM algorithm. For the high frequency subimages the new Adaptive Spatial Segmentation Algorithm is applied. It divides images into rectangular blocks that may overlap each other. The width and height of the blocks are set independently. There are two kinds of blocks: Low Variance Blocks (LVB) and High Variance Blocks (HVB). The positions of the blocks and the values of the WT coefficients belonging to the HVB are encoded with the modified zero-tree algorithms. LVB are encoded with the mean value. Obtained results show that presented algorithm gives similar or better quality of decompressed images in compare to H.263, even up to 5 dB in PSNR measure.

  12. EMG classification using wavelet functions to determine muscle contraction.

    PubMed

    Sharma, Tanu; Veer, Karan

    2016-04-01

    Surface electromyogram (SEMG) is a complex signal and is influenced by several external factors/artifacts. The electromyogram signal from the stump of the subject is picked up through surface electrodes. It is amplified and artifacts are removed before digitising it in a controlled manner so that minimum signal loss occurs due to processing. As removing these artifacts is not easy, feature extraction to obtain useful information hidden inside the signal becomes a different process. This paper presents methods of analysing SEMG signals using discrete wavelet Transform (DWT) for extracting accurate patterns of the signals and the performance of the used algorithms is being analysed rigorously. The obtained results suggest a root mean square difference (RMSD) value for the denoising and quality of reconstruction of the SEMG signal. The result shows that the best mother wavelets for tolerance of noise are second order of symmlets and bior6.8. Results inferred that bior6.8 suitable for the classification and analysis of SEMG signals of different arm motions results in a classification accuracy of 88.90%. PMID:26942656

  13. Wavelet Analysis of Umbral Oscillations

    NASA Astrophysics Data System (ADS)

    Christopoulou, E. B.; Skodras, A.; Georgakilas, A. A.; Koutchmy, S.

    2003-07-01

    We study the temporal behavior of the intensity and velocity chromospheric umbral oscillations, applying wavelet analysis techniques to four sets of observations in the Hα line and one set of simultaneous observations in the Hα and the nonmagnetic Fe I (5576.099 Å) line. The wavelet and Fourier power spectra of the intensity and the velocity at chromospheric levels show both 3 and 5 minute oscillations. Oscillations in the 5 minute band are prominent in the intensity power spectra; they are significantly reduced in the velocity power spectra. We observe multiple peaks of closely spaced cospatial frequencies in the 3 minute band (5-8 mHz). Typically, there are three oscillating modes present: (1) a major one near 5.5 mHz, (2) a secondary near 6.3 mHz, and (3) oscillations with time-varying frequencies around 7.5 mHz that are present for limited time intervals. In the frame of current theories, the oscillating mode near 5.5 mHz should be considered as a fingerprint of the photospheric resonator, while the other two modes can be better explained by the chromospheric resonator. The wavelet spectra show a dynamic temporal behavior of the 3 minute oscillations. We observed (1) frequency drifts, (2) modes that are stable over a long time and then fade away or split up into two oscillation modes, and (3) suppression of frequencies for short time intervals. This behavior can be explained by the coupling between modes closely spaced in frequency or/and by long-term variations of the driving source of the resonators. Based on observations performed on the National Solar Observatory/Sacramento Peak Observatory Richard B. Dunn Solar Telescope (DST) and on the Big Bear Solar Observatory Harold Zirin Telescope.

  14. Wavelet Algorithms for Illumination Computations

    NASA Astrophysics Data System (ADS)

    Schroder, Peter

    One of the core problems of computer graphics is the computation of the equilibrium distribution of light in a scene. This distribution is given as the solution to a Fredholm integral equation of the second kind involving an integral over all surfaces in the scene. In the general case such solutions can only be numerically approximated, and are generally costly to compute, due to the geometric complexity of typical computer graphics scenes. For this computation both Monte Carlo and finite element techniques (or hybrid approaches) are typically used. A simplified version of the illumination problem is known as radiosity, which assumes that all surfaces are diffuse reflectors. For this case hierarchical techniques, first introduced by Hanrahan et al. (32), have recently gained prominence. The hierarchical approaches lead to an asymptotic improvement when only finite precision is required. The resulting algorithms have cost proportional to O(k^2 + n) versus the usual O(n^2) (k is the number of input surfaces, n the number of finite elements into which the input surfaces are meshed). Similarly a hierarchical technique has been introduced for the more general radiance problem (which allows glossy reflectors) by Aupperle et al. (6). In this dissertation we show the equivalence of these hierarchical techniques to the use of a Haar wavelet basis in a general Galerkin framework. By so doing, we come to a deeper understanding of the properties of the numerical approximations used and are able to extend the hierarchical techniques to higher orders. In particular, we show the correspondence of the geometric arguments underlying hierarchical methods to the theory of Calderon-Zygmund operators and their sparse realization in wavelet bases. The resulting wavelet algorithms for radiosity and radiance are analyzed and numerical results achieved with our implementation are reported. We find that the resulting algorithms achieve smaller and smoother errors at equivalent work.

  15. Reservoir characterization using wavelet transforms

    NASA Astrophysics Data System (ADS)

    Rivera Vega, Nestor

    Automated detection of geological boundaries and determination of cyclic events controlling deposition can facilitate stratigraphic analysis and reservoir characterization. This study applies the wavelet transformation, a recent advance in signal analysis techniques, to interpret cyclicity, determine its controlling factors, and detect zone boundaries. We tested the cyclostratigraphic assessments using well log and core data from a well in a fluvio-eolian sequence in the Ormskirk Sandstone, Irish Sea. The boundary detection technique was tested using log data from 10 wells in the Apiay field, Colombia. We processed the wavelet coefficients for each zone of the Ormskirk Formation and determined the wavelengths of the strongest cyclicities. Comparing these periodicities with Milankovitch cycles, we found a strong correspondence of the two. This suggests that climate exercised an important control on depositional cyclicity, as had been concluded in previous studies of the Ormskirk Sandstone. The wavelet coefficients from the log data in the Apiay field were combined to form features. These vectors were used in conjunction with pattern recognition techniques to perform detection in 7 boundaries. For the upper two units, the boundary was detected within 10 feet of their actual depth, in 90% of the wells. The mean detection performance in the Apiay field is 50%. We compared our method with other traditional techniques which do not focus on selecting optimal features for boundary identification. Those methods resulted in detection performances of 40% for the uppermost boundary, which lag behind the 90% performance of our method. Automated determination of geologic boundaries will expedite studies, and knowledge of the controlling deposition factors will enhance stratigraphic and reservoir characterization models. We expect that automated boundary detection and cyclicity analysis will prove to be valuable and time-saving methods for establishing correlations and their

  16. Discrete Element Modeling

    SciTech Connect

    Morris, J; Johnson, S

    2007-12-03

    The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.

  17. Complex wavelet based speckle reduction using multiple ultrasound images

    NASA Astrophysics Data System (ADS)

    Uddin, Muhammad Shahin; Tahtali, Murat; Pickering, Mark R.

    2014-04-01

    Ultrasound imaging is a dominant tool for diagnosis and evaluation in medical imaging systems. However, as its major limitation is that the images it produces suffer from low quality due to the presence of speckle noise, to provide better clinical diagnoses, reducing this noise is essential. The key purpose of a speckle reduction algorithm is to obtain a speckle-free high-quality image whilst preserving important anatomical features, such as sharp edges. As this can be better achieved using multiple ultrasound images rather than a single image, we introduce a complex wavelet-based algorithm for the speckle reduction and sharp edge preservation of two-dimensional (2D) ultrasound images using multiple ultrasound images. The proposed algorithm does not rely on straightforward averaging of multiple images but, rather, in each scale, overlapped wavelet detail coefficients are weighted using dynamic threshold values and then reconstructed by averaging. Validation of the proposed algorithm is carried out using simulated and real images with synthetic speckle noise and phantom data consisting of multiple ultrasound images, with the experimental results demonstrating that speckle noise is significantly reduced whilst sharp edges without discernible distortions are preserved. The proposed approach performs better both qualitatively and quantitatively than previous existing approaches.

  18. Wavelet Regularization Per Nullspace Shuttle

    NASA Astrophysics Data System (ADS)

    Charléty, J.; Nolet, G.; Sigloch, K.; Voronin, S.; Loris, I.; Simons, F. J.; Daubechies, I.; Judd, S.

    2010-12-01

    Wavelet decomposition of models in an over-parameterized Earth and L1-norm minimization in wavelet space is a promising strategy to deal with the very heterogeneous data coverage in the Earth without sacrificing detail in the solution where this is resolved (see Loris et al., abstract this session). However, L1-norm minimizations are nonlinear, and pose problems of convergence speed when applied to large data sets. In an effort to speed up computations we investigate the application of the nullspace shuttle (Deal and Nolet, GJI 1996). The nullspace shuttle is a filter that adds components from the nullspace to the minimum norm solution so as to have the model satisfy additional conditions not imposed by the data. In our case, the nullspace shuttle projects the model on a truncated basis of wavelets. The convergence of this strategy is unproven, in contrast to algorithms using Landweber iteration or one of its variants, but initial computations using a very large data base give reason for optimism. We invert 430,554 P delay times measured by cross-correlation in different frequency windows. The data are dominated by observations with US Array, leading to a major discrepancy in the resolution beneath North America and the rest of the world. This is a subset of the data set inverted by Sigloch et al (Nature Geosci, 2008), excluding only a small number of ISC delays at short distance and all amplitude data. The model is a cubed Earth model with 3,637,248 voxels spanning mantle and crust, with a resolution everywhere better than 70 km, to which 1912 event corrections are added. In each iteration we determine the optimal solution by a least squares inversion with minimal damping, after which we regularize the model in wavelet space. We then compute the residual data vector (after an intermediate scaling step), and solve for a model correction until a satisfactory chi-square fit for the truncated model is obtained. We present our final results on convergence as well as a

  19. Seamless multiresolution isosurfaces using wavelets

    SciTech Connect

    Udeshi, T.; Hudson, R.; Papka, M. E.

    2000-04-11

    Data sets that are being produced by today's simulations, such as the ones generated by DOE's ASCI program, are too large for real-time exploration and visualization. Therefore, new methods of visualizing these data sets need to be investigated. The authors present a method that combines isosurface representations of different resolutions into a seamless solution, virtually free of cracks and overlaps. The solution combines existing isosurface generation algorithms and wavelet theory to produce a real-time solution to multiple-resolution isosurfaces.

  20. Adaptive inpainting algorithm based on DCT induced wavelet regularization.

    PubMed

    Li, Yan-Ran; Shen, Lixin; Suter, Bruce W

    2013-02-01

    In this paper, we propose an image inpainting optimization model whose objective function is a smoothed l(1) norm of the weighted nondecimated discrete cosine transform (DCT) coefficients of the underlying image. By identifying the objective function of the proposed model as a sum of a differentiable term and a nondifferentiable term, we present a basic algorithm inspired by Beck and Teboulle's recent work on the model. Based on this basic algorithm, we propose an automatic way to determine the weights involved in the model and update them in each iteration. The DCT as an orthogonal transform is used in various applications. We view the rows of a DCT matrix as the filters associated with a multiresolution analysis. Nondecimated wavelet transforms with these filters are explored in order to analyze the images to be inpainted. Our numerical experiments verify that under the proposed framework, the filters from a DCT matrix demonstrate promise for the task of image inpainting. PMID:23060331

  1. A real-time earthquake detector with prefiltering by wavelets

    NASA Astrophysics Data System (ADS)

    Botella, F.; Rosa-Herranz, J.; Giner, J. J.; Molina, S.; Galiana-Merino, J. J.

    2003-08-01

    With the recent development and the growth of personal computers technology, we decided to implement a new earthquake detector. This detector, WDetect, can register in continuous mode all signals received from all our stations of the Local Seismic Network in the province of Alicante in the South-East of Spain. Simultaneously, our program can detect and store seismic events using the classical algorithm based on short- and long-term averages (STA and LTA, respectively). As a new improvement in the detection process, we have added signal prefiltering using the discrete wavelet transform, which increases the detection rate and reduces the false alarm rate, in contrast to other detectors like XDetect or XRTP. All this has been achieved without losing any meaningful event. These improvements were verified by an analysis performed during March 2001 on data from the Local Seismic Network in the province of Alicante, where WDetect has been running since the end of year 2000.

  2. Synchronous Discrete Harmonic Oscillator

    SciTech Connect

    Antippa, Adel F.; Dubois, Daniel M.

    2008-10-17

    We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2{pi} in phase space, is an integral multiple N of the discrete time step {delta}t. It is fully synchronous when N is even. It is pseudo-synchronous when T/{delta}t is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is ''blue shifted'' relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval {delta}t. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.

  3. Wavelet and multi-fractal based analysis on DIC images in epithelium region to detect and diagnose the cancer progress among different grades of tissues

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sabyasachi; Das, Nandan K.; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.

    2014-05-01

    DIC (Differential Interference Contrast Image) images of cervical pre-cancer tissues are taken from epithelium region, on which wavelet transform and multi-fractal analysis are applied. Discrete wavelet transform (DWT) through Daubechies basis are done for identifying fluctuations over polynomial trends for clear characterization and differentiation of tissues. A systematic investigation of denoised images is carried out through the continuous Morlet wavelet. The scalogram reveals the changes in coefficient peak values from grade-I to grade-III. Wavelet normalized energy plots are computed in order to show the difference of periodicity among different grades of cancerous tissues. Using the multi-fractal de-trended fluctuation analysis (MFDFA), it is observed that the values of Hurst exponent and width of singularity spectrum decrease as cancer progresses from grade-I to grade-III tissue.

  4. Wavelet Neural Network Using Multiple Wavelet Functions in Target Threat Assessment

    PubMed Central

    Guo, Lihong; Duan, Hong

    2013-01-01

    Target threat assessment is a key issue in the collaborative attack. To improve the accuracy and usefulness of target threat assessment in the aerial combat, we propose a variant of wavelet neural networks, MWFWNN network, to solve threat assessment. How to select the appropriate wavelet function is difficult when constructing wavelet neural network. This paper proposes a wavelet mother function selection algorithm with minimum mean squared error and then constructs MWFWNN network using the above algorithm. Firstly, it needs to establish wavelet function library; secondly, wavelet neural network is constructed with each wavelet mother function in the library and wavelet function parameters and the network weights are updated according to the relevant modifying formula. The constructed wavelet neural network is detected with training set, and then optimal wavelet function with minimum mean squared error is chosen to build MWFWNN network. Experimental results show that the mean squared error is 1.23 × 10−3, which is better than WNN, BP, and PSO_SVM. Target threat assessment model based on the MWFWNN has a good predictive ability, so it can quickly and accurately complete target threat assessment. PMID:23509436

  5. GBL-2D Version 1.0: a 2D geometry boolean library.

    SciTech Connect

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  6. Applications of squeezed states: Bogoliubov transformations and wavelets to the statistical mechanics of water and its bubbles

    NASA Technical Reports Server (NTRS)

    Defacio, Brian; Kim, S.-H.; Vannevel, A.

    1994-01-01

    The squeezed states or Bogoliubov transformations and wavelets are applied to two problems in nonrelativistic statistical mechanics: the dielectric response of liquid water, epsilon(q-vector,w), and the bubble formation in water during insonnification. The wavelets are special phase-space windows which cover the domain and range of L(exp 1) intersection of L(exp 2) of classical causal, finite energy solutions. The multiresolution of discrete wavelets in phase space gives a decomposition into regions of time and scales of frequency thereby allowing the renormalization group to be applied to new systems in addition to the tired 'usual suspects' of the Ising models and lattice gasses. The Bogoliubov transformation: squeeze transformation is applied to the dipolaron collective mode in water and to the gas produced by the explosive cavitation process in bubble formation.

  7. Monthly rainfall prediction using wavelet regression and neural network: an analysis of 1901-2002 data, Assam, India

    NASA Astrophysics Data System (ADS)

    Goyal, Manish Kumar

    2014-10-01

    Rainfall is a principal element of the hydrological cycle and its variability is important from both the scientific as well as practical point of view. Wavelet regression (WR) technique is proposed and developed to analyze and predict the rainfall forecast in this study. The WR model is improved combining two methods, discrete wavelet transform and linear regression model. This study uses rainfall data from 21 stations in Assam, India over 102 years from 1901 to 2002. The calibration and validation performance of the models is evaluated with appropriate statistical methods. The root mean square errors (RMSE), N-S index, and correlation coefficient (R) statistics were used for evaluating the accuracy of the WR models. The accuracy of the WR models was then compared with those of the artificial neural networks (ANN) models. The results of monthly rainfall series modeling indicate that the performances of wavelet regression models are found to be more accurate than the ANN models.

  8. An efficient 2D-WTMM and PNN approach to remove spurious radar echoes

    NASA Astrophysics Data System (ADS)

    Khider, Mohamed; Haddad, Boualem

    2013-03-01

    The proposed method aims to reduce the spurious echoes in weather radar images collected at Melbourne radar site, using parameters from 2D-WTMM method based on the continuous wavelet transform, and including the PNN probabilistic neural network for the classification of pixels into two types of echoes : precipitation or parasite. Indeed, we propose the introduction of parameters related to wavelet transform skeletons, these parameters are proportional to the image texture roughness, anisotropy and the distance of separation between non-zero radar echoes cells and give good separation between rain and non-rain echoes. Radar image is first segmented with Voronoi's cells according to the spatial distribution of Holder exponents. By comparing with a direct method of classification which takes into account only one parameter at a time by using a threshold, it was found that the combination of these three parameters with PNN approach improves the final results in terms of preserving precipitation echoes and elimination of weather radar clutter. Initial results show approximately the removal of 98% of clutter and preservation of 97% of precipitation echoes.

  9. An application of wavelet transform for decomposition of millimeter-wave spectroscopic signals

    SciTech Connect

    Gopalan, K.; Gopalsami, N.; Bakhtiari, S.; Raptis, A.C.

    1994-08-01

    Millimeter-wave technique, based on rotational energy transitions of molecules, holds promise for remote monitoring of environmentally hazardous effluents from processes. Argonne National Laboratory is developing a millimeter-wave sensor based on active swept-frequency radar technique in the frequency range of 220-320 GHz. Because the line widths of millimeter-wave spectra of molecules at atmospheric pressure are broad ({approximately} 4 GHz half-width at half height), the composite spectrum of multicomponent mixtures of chemicals is generally complex and overlapping. This paper presents an application of discrete wavelet transform for efficient representation and decomposition of millimeter-wave spectral data. A two-layer back propagation neural network is trained using multifrequency wavelet coefficients of the signals as input features and the known composition of different chemicals in the mixture as target output vectors. After training, composition of an unknown mixture of the base chemicals is determined using the wavelet representation of its absorption spectra. Simulated and experimental spectral data were used to test the wavelet transform technique. Accurate values of individual chemical compositions resulted for noise-free laboratory data. In addition, the technique showed more robustness than conventional multivariate techniques under noisy conditions.

  10. Feature Extraction using Wavelet Transform for Multi-class Fault Detection of Induction Motor

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.; Konar, P.

    2014-01-01

    In this paper the theoretical aspects and feature extraction capabilities of continuous wavelet transform (CWT) and discrete wavelet transform (DWT) are experimentally verified from the point of view of fault diagnosis of induction motors. Vertical frame vibration signal is analyzed to develop a wavelet based multi-class fault detection scheme. The redundant and high dimensionality information of CWT makes it computationally in-efficient. Using greedy-search feature selection technique (Greedy-CWT) the redundancy is eliminated to a great extent and found much superior to the widely used DWT technique, even in presence of high level of noise. The results are verified using MLP, SVM, RBF classifiers. The feature selection technique has enabled determination of the most relevant CWT scales and corresponding coefficients. Thus, the inherent limitations of CWT like proper selection of scales and redundant information are eliminated. In the present investigation `db8' is found as the best mother wavelet, due to its long period and higher number of vanishing moments, for detection of motor faults.

  11. Application of wavelet-based multiple linear regression model to rainfall forecasting in Australia

    NASA Astrophysics Data System (ADS)

    He, X.; Guan, H.; Zhang, X.; Simmons, C.

    2013-12-01

    In this study, a wavelet-based multiple linear regression model is applied to forecast monthly rainfall in Australia by using monthly historical rainfall data and climate indices as inputs. The wavelet-based model is constructed by incorporating the multi-resolution analysis (MRA) with the discrete wavelet transform and multiple linear regression (MLR) model. The standardized monthly rainfall anomaly and large-scale climate index time series are decomposed using MRA into a certain number of component subseries at different temporal scales. The hierarchical lag relationship between the rainfall anomaly and each potential predictor is identified by cross correlation analysis with a lag time of at least one month at different temporal scales. The components of predictor variables with known lag times are then screened with a stepwise linear regression algorithm to be selectively included into the final forecast model. The MRA-based rainfall forecasting method is examined with 255 stations over Australia, and compared to the traditional multiple linear regression model based on the original time series. The models are trained with data from the 1959-1995 period and then tested in the 1996-2008 period for each station. The performance is compared with observed rainfall values, and evaluated by common statistics of relative absolute error and correlation coefficient. The results show that the wavelet-based regression model provides considerably more accurate monthly rainfall forecasts for all of the selected stations over Australia than the traditional regression model.

  12. Localization and de-noising seismic signals on SASW measurement by wavelet transform

    NASA Astrophysics Data System (ADS)

    Golestani, Alireza; S. Kolbadi, S. Mahdi; Heshmati, Ali Akbar

    2013-11-01

    SASW method is a nondestructive in situ testing method that is used to determine the dynamic properties of soil sites and pavement systems. Phase information and dispersion characteristics of a wave propagating through these systems have a significant role in the processing of recorded data. Inversion of the dispersive phase data provides information on the variation of shear-wave velocity with depth. However, in the case of sanded residual soil, it is not easy to produce the reliable phase spectrum curve. Due to natural noises and other human intervention in surface wave date generation deal with to reliable phase spectrum curve for sanded residual soil turn into the complex issue for geological scientist. In this paper, a time-frequency analysis based on complex Gaussian Derivative wavelet was applied to detect and localize all the events that are not identifiable by conventional signal processing methods. Then, the performance of discrete wavelet transform (DWT) in noise reduction of these recorded seismic signals was evaluated. Furthermore, in particular the influence of the decomposition level choice was investigated on efficiency of this process. This method is developed by various wavelet thresholding techniques which provide many options for controllable de-noising at each level of signal decomposition. Also, it obviates the need for high computation time compare with continuous wavelet transform. According to the results, the proposed method is powerful to visualize the interested spectrum range of seismic signals and to de-noise at low level decomposition.

  13. An application of distributed approximating functional-wavelets to reactive scattering

    SciTech Connect

    Wei, G.W.; Althorpe, S.C.; Kouri, D.J.; Hoffman, D.K.

    1998-05-01

    A newly developed distributed approximating functional (DAF)-wavelet, the Dirichlet{endash}Gabor DAF-wavelet (DGDW), is applied in a calculation of the state-to-state reaction probabilities for the three-dimensional (3-D) (J=0)H+H{sub 2} reaction, using the time-independent wave-packet reactant-product decoupling (TIWRPD) method. The DGDWs are reconstructed from a rigorous mathematical sampling theorem, and are shown to be DAF-wavelet generalizations of both the sine discrete variable representation (sinc-DVR) and the Fourier distributed approximating functionals (DAFs). An important feature of the generalized sinc-DVR representation is that the grid points are distributed at equally spaced intervals and the kinetic energy matrix has a banded, Toeplitz structure. Test calculations show that, in accordance with mathematical sampling theory, the DAF-windowed sinc-DVR converges much more rapidly and to higher accuracy with bandwidth, 2W+1. The results of the H+H{sub 2} calculation are in very close agreement with the results of previous TIWRPD calculations, demonstrating that the DGDW representation is an accurate and efficient representation for use in FFT wave-packet propagation methods, and that, more generally, the theory of wavelets and related techniques have great potential for the study of molecular dynamics. {copyright} {ital 1998 American Institute of Physics.}

  14. An application of distributed approximating functional-wavelets to reactive scattering

    NASA Astrophysics Data System (ADS)

    Wei, G. W.; Althorpe, S. C.; Kouri, D. J.; Hoffman, D. K.

    1998-05-01

    A newly developed distributed approximating functional (DAF)-wavelet, the Dirichlet-Gabor DAF-wavelet (DGDW), is applied in a calculation of the state-to-state reaction probabilities for the three-dimensional (3-D) (J=0)H+H2 reaction, using the time-independent wave-packet reactant-product decoupling (TIWRPD) method. The DGDWs are reconstructed from a rigorous mathematical sampling theorem, and are shown to be DAF-wavelet generalizations of both the sine discrete variable representation (sinc-DVR) and the Fourier distributed approximating functionals (DAFs). An important feature of the generalized sinc-DVR representation is that the grid points are distributed at equally spaced intervals and the kinetic energy matrix has a banded, Toeplitz structure. Test calculations show that, in accordance with mathematical sampling theory, the DAF-windowed sinc-DVR converges much more rapidly and to higher accuracy with bandwidth, 2W+1. The results of the H+H2 calculation are in very close agreement with the results of previous TIWRPD calculations, demonstrating that the DGDW representation is an accurate and efficient representation for use in FFT wave-packet propagation methods, and that, more generally, the theory of wavelets and related techniques have great potential for the study of molecular dynamics.

  15. Evaluation of Wavelet Denoising Methods for Small-Scale Joint Roughness Estimation Using Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Bitenc, M.; Kieffer, D. S.; Khoshelham, K.

    2015-08-01

    The precision of Terrestrial Laser Scanning (TLS) data depends mainly on the inherent random range error, which hinders extraction of small details from TLS measurements. New post processing algorithms have been developed that reduce or eliminate the noise and therefore enable modelling details at a smaller scale than one would traditionally expect. The aim of this research is to find the optimum denoising method such that the corrected TLS data provides a reliable estimation of small-scale rock joint roughness. Two wavelet-based denoising methods are considered, namely Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT), in combination with different thresholding procedures. The question is, which technique provides a more accurate roughness estimates considering (i) wavelet transform (SWT or DWT), (ii) thresholding method (fixed-form or penalised low) and (iii) thresholding mode (soft or hard). The performance of denoising methods is tested by two analyses, namely method noise and method sensitivity to noise. The reference data are precise Advanced TOpometric Sensor (ATOS) measurements obtained on 20 × 30 cm rock joint sample, which are for the second analysis corrupted by different levels of noise. With such a controlled noise level experiments it is possible to evaluate the methods' performance for different amounts of noise, which might be present in TLS data. Qualitative visual checks of denoised surfaces and quantitative parameters such as grid height and roughness are considered in a comparative analysis of denoising methods. Results indicate that the preferred method for realistic roughness estimation is DWT with penalised low hard thresholding.

  16. Tracking of Ice Edges and Ice Floes by Wavelet Analysis of SAR Images

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Martin, Seelye; Kwok, Ronald

    1997-01-01

    This paper demonstrates the use of wavelet transforms in the tracking of sequential ice features in the ERS-1 synthetic aperture radar (SAR) imagery, especially in situations where feature correlation techniques fail to yield reasonable results. Examples include the evolution of the St. Lawrence polynya and summer sea ice change in the Beaufort Sea. For the polynya, the evolution of the region of young ice growth surrounding a polynya can be easily tracked by wavelet analysis due to the large backscatter difference between the young and old ice. Also within the polynya, a 2D fast Fourier transform (FFT) is used to identify the extent of the Langmuir circulation region, which is coincident with the wave-agitated frazil ice growth region, where the sea ice experiences its fastest growth. Therefore, the combination of wavelet and FFT analysis of SAR images provides for the large-scale monitoring of different polynya features. For summer ice, previous work shows that this is the most difficult period for ice trackers due to the lack of features on the sea ice cover. The multiscale wavelet analysis shows that this method delineates the detailed floe shapes during this period, so that between consecutive images, the floe translation and rotation can be estimated.

  17. Interparticle Attraction in 2D Complex Plasmas

    NASA Astrophysics Data System (ADS)

    Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.

    2016-03-01

    Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.

  18. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  19. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  20. A scalable 2-D parallel sparse solver

    SciTech Connect

    Kothari, S.C.; Mitra, S.

    1995-12-01

    Scalability beyond a small number of processors, typically 32 or less, is known to be a problem for existing parallel general sparse (PGS) direct solvers. This paper presents a parallel general sparse PGS direct solver for general sparse linear systems on distributed memory machines. The algorithm is based on the well-known sequential sparse algorithm Y12M. To achieve efficient parallelization, a 2-D scattered decomposition of the sparse matrix is used. The proposed algorithm is more scalable than existing parallel sparse direct solvers. Its scalability is evaluated on a 256 processor nCUBE2s machine using Boeing/Harwell benchmark matrices.

  1. 2D stepping drive for hyperspectral systems

    NASA Astrophysics Data System (ADS)

    Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin

    2015-07-01

    We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.

  2. Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures.

    PubMed

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2015-01-01

    Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices. PMID:26679513

  3. Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures

    PubMed Central

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2015-01-01

    Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices. PMID:26679513

  4. Best tree wavelet packet transform based copyright protection scheme for digital images

    NASA Astrophysics Data System (ADS)

    Rawat, Sanjay; Raman, Balasubramanian

    2012-05-01

    In this paper, a dual watermarking scheme based on discrete wavelet transform (DWT), wavelet packet transform (WPT) with best tree, and singular value decomposition (SVD) is proposed. In our algorithm, the cover image is sub-sampled into four sub-images and then two sub-images, having the highest sum of singular values are selected. Two different gray scale images are embedded in the selected sub-images. For embedding first watermark, one of the selected sub-image is decomposed via WPT. The entropy based algorithm is adopted to find the best tree of WPT. Watermark is embedded in all frequency sub-bands of the best tree. For embedding second watermark, l-level discrete wavelet transform (DWT) is performed on the second selected sub-image. The watermark is embedded by modifying the singular values of the transformed image. To enhance the security of the scheme, Zig-Zag scan in applied on the second watermark before embedding. The robustness of the proposed scheme is demonstrated through a series of attack simulations. Experimental results demonstrate that the proposed scheme has good perceptual invisibility and is also robust against various image processing operations, geometric attacks and JPEG Compression.

  5. Computer-Aided Diagnosis System for Alzheimer's Disease Using Different Discrete Transform Techniques.

    PubMed

    Dessouky, Mohamed M; Elrashidy, Mohamed A; Taha, Taha E; Abdelkader, Hatem M

    2016-05-01

    The different discrete transform techniques such as discrete cosine transform (DCT), discrete sine transform (DST), discrete wavelet transform (DWT), and mel-scale frequency cepstral coefficients (MFCCs) are powerful feature extraction techniques. This article presents a proposed computer-aided diagnosis (CAD) system for extracting the most effective and significant features of Alzheimer's disease (AD) using these different discrete transform techniques and MFCC techniques. Linear support vector machine has been used as a classifier in this article. Experimental results conclude that the proposed CAD system using MFCC technique for AD recognition has a great improvement for the system performance with small number of significant extracted features, as compared with the CAD system based on DCT, DST, DWT, and the hybrid combination methods of the different transform techniques. PMID:26371347

  6. Discrete monotron oscillator

    SciTech Connect

    Carlsten, B.E.; Haynes, W.B.

    1996-08-01

    The authors theoretically and numerically investigate the operation and behavior of the discrete monotron oscillator, a novel high-power microwave source. The discrete monotron differs from conventional monotrons and transit time oscillators by shielding the electron beam from the monotron cavity`s RF fields except at two distinct locations. This makes the discrete monotron act more like a klystron than a distributed traveling wave device. As a result, the oscillator has higher efficiency and can operate with higher beam powers than other single cavity oscillators and has more stable operation without requiring a seed input signal than mildly relativistic, intense-beam klystron oscillators.

  7. Wavelet analysis of electron-density maps.

    PubMed

    Main, P; Wilson, J

    2000-05-01

    The wavelet transform is a powerful technique in signal processing and image analysis and it is shown here that wavelet analysis of low-resolution electron-density maps has the potential to increase their resolution. Like Fourier analysis, wavelet analysis expresses the image (electron density) in terms of a set of orthogonal functions. In the case of the Fourier transform, these functions are sines and cosines and each one contributes to the whole of the image. In contrast, the wavelet functions (simply called wavelets) can be quite localized and may only contribute to a small part of the image. This gives control over the amount of detail added to the map as the resolution increases. The mathematical details are outlined and an algorithm which achieves a resolution increase from 10 to 7 A using a knowledge of the wavelet-coefficient histograms, electron-density histogram and the observed structure amplitudes is described. These histograms are calculated from the electron density of known structures, but it seems likely that the histograms can be predicted, just as electron-density histograms are at high resolution. The results show that the wavelet coefficients contain the information necessary to increase the resolution of electron-density maps. PMID:10771431

  8. Application of wavelets to automatic target recognition

    NASA Astrophysics Data System (ADS)

    Stirman, Charles

    1995-03-01

    'Application of Wavelets to Automatic Target Recognition,' is the second phase of multiphase project to insert compactly supported wavelets into an existing or near-term Department of Defense system such as the Longbow fire control radar for the Apache Attack Helicopter. In this contract, we have concentrated mainly on the classifier function. During the first phase of the program ('Application of Wavelets to Radar Data Processing'), the feasibility of using wavelets to process high range resolution profile (HRRP) amplitude returns from a wide bandwidth radar system was demonstrated. This phase obtained fully polarized wide bandwidth radar HRRP amplitude returns and processed, them with wavelet and wavelet packet or (best basis) transforms. Then, by mathematically defined nonlinear feature selection, we showed that significant improvements in the probability of correct classification are possible, up to 14 percentage points maximum (4 percentage points average) improvement when compared to the current classifier performance. In addition, we addressed the feasibility of using wavelet packets' best basis to address target registration, man made object rejection, clutter discriminations, and synthetic aperture radar scene speckle removal and object registration.

  9. Prostate tissue characterization/classification in 144 patient population using wavelet and higher order spectra features from transrectal ultrasound images.

    PubMed

    Pareek, Gyan; Acharya, U Rajendra; Sree, S Vinitha; Swapna, G; Yantri, Ratna; Martis, Roshan Joy; Saba, Luca; Krishnamurthi, Ganapathy; Mallarini, Giorgio; El-Baz, Ayman; Al Ekish, Shadi; Beland, Michael; Suri, Jasjit S

    2013-12-01

    In this work, we have proposed an on-line computer-aided diagnostic system called "UroImage" that classifies a Transrectal Ultrasound (TRUS) image into cancerous or non-cancerous with the help of non-linear Higher Order Spectra (HOS) features and Discrete Wavelet Transform (DWT) coefficients. The UroImage system consists of an on-line system where five significant features (one DWT-based feature and four HOS-based features) are extracted from the test image. These on-line features are transformed by the classifier parameters obtained using the training dataset to determine the class. We trained and tested six classifiers. The dataset used for evaluation had 144 TRUS images which were split into training and testing sets. Three-fold and ten-fold cross-validation protocols were adopted for training and estimating the accuracy of the classifiers. The ground truth used for training was obtained using the biopsy results. Among the six classifiers, using 10-fold cross-validation technique, Support Vector Machine and Fuzzy Sugeno classifiers presented the best classification accuracy of 97.9% with equally high values for sensitivity, specificity and positive predictive value. Our proposed automated system, which achieved more than 95% values for all the performance measures, can be an adjunct tool to provide an initial diagnosis for the identification of patients with prostate cancer. The technique, however, is limited by the limitations of 2D ultrasound guided biopsy, and we intend to improve our technique by using 3D TRUS images in the future. PMID:23745787

  10. Wavelet-based multiscale performance analysis: An approach to assess and improve hydrological models

    NASA Astrophysics Data System (ADS)

    Rathinasamy, Maheswaran; Khosa, Rakesh; Adamowski, Jan; ch, Sudheer; Partheepan, G.; Anand, Jatin; Narsimlu, Boini

    2014-12-01

    The temporal dynamics of hydrological processes are spread across different time scales and, as such, the performance of hydrological models cannot be estimated reliably from global performance measures that assign a single number to the fit of a simulated time series to an observed reference series. Accordingly, it is important to analyze model performance at different time scales. Wavelets have been used extensively in the area of hydrological modeling for multiscale analysis, and have been shown to be very reliable and useful in understanding dynamics across time scales and as these evolve in time. In this paper, a wavelet-based multiscale performance measure for hydrological models is proposed and tested (i.e., Multiscale Nash-Sutcliffe Criteria and Multiscale Normalized Root Mean Square Error). The main advantage of this method is that it provides a quantitative measure of model performance across different time scales. In the proposed approach, model and observed time series are decomposed using the Discrete Wavelet Transform (known as the à trous wavelet transform), and performance measures of the model are obtained at each time scale. The applicability of the proposed method was explored using various case studies--both real as well as synthetic. The synthetic case studies included various kinds of errors (e.g., timing error, under and over prediction of high and low flows) in outputs from a hydrologic model. The real time case studies investigated in this study included simulation results of both the process-based Soil Water Assessment Tool (SWAT) model, as well as statistical models, namely the Coupled Wavelet-Volterra (WVC), Artificial Neural Network (ANN), and Auto Regressive Moving Average (ARMA) methods. For the SWAT model, data from Wainganga and Sind Basin (India) were used, while for the Wavelet Volterra, ANN and ARMA models, data from the Cauvery River Basin (India) and Fraser River (Canada) were used. The study also explored the effect of the

  11. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  12. Automatic 2D to 3D conversion implemented for real-time applications

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Volodymyr; Ramos-Diaz, Eduardo; Gonzalez Huitron, Victor

    2014-05-01

    Different hardware implementations of designed automatic 2D to 3D video color conversion employing 2D video sequence are presented. The analyzed framework includes together processing of neighboring frames using the following blocks: CIELa*b* color space conversion, wavelet transform, edge detection using HF wavelet sub-bands (HF, LH and HH), color segmentation via k-means on a*b* color plane, up-sampling, disparity map (DM) estimation, adaptive postfiltering, and finally, the anaglyph 3D scene generation. During edge detection, the Donoho threshold is computed, then each sub-band is binarized according to a threshold chosen and finally the thresholding image is formed. DM estimation is performed in the following matter: in left stereo image (or frame), a window with varying sizes is used according to the information obtained from binarized sub-band image, distinguishing different texture areas into LL sub-band image. The stereo matching is performed between two (left and right) LL sub-band images using processing with different window sizes. Upsampling procedure is employed in order to obtain the enhanced DM. Adaptive post-processing procedure is based on median filter and k-means segmentation in a*b* color plane. The SSIM and QBP criteria are applied in order to compare the performance of the proposed framework against other disparity map computation techniques. The designed technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7 and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode.

  13. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  14. Photocurrent spectroscopy of 2D materials

    NASA Astrophysics Data System (ADS)

    Cobden, David

    Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.

  15. Multienzyme Inkjet Printed 2D Arrays.

    PubMed

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  16. Extension of wavelet compression algorithms to 3D and 4D image data: exploitation of data coherence in higher dimensions allows very high compression ratios

    NASA Astrophysics Data System (ADS)

    Zeng, Li; Jansen, Christian; Unser, Michael A.; Hunziker, Patrick

    2001-12-01

    High resolution multidimensional image data yield huge datasets. For compression and analysis, 2D approaches are often used, neglecting the information coherence in higher dimensions, which can be exploited for improved compression. We designed a wavelet compression algorithm suited for data of arbitrary dimensions, and assessed its ability for compression of 4D medical images. Basically, separable wavelet transforms are done in each dimension, followed by quantization and standard coding. Results were compared with conventional 2D wavelet. We found that in 4D heart images, this algorithm allowed high compression ratios, preserving diagnostically important image features. For similar image quality, compression ratios using the 3D/4D approaches were typically much higher (2-4 times per added dimension) than with the 2D approach. For low-resolution images created with the requirement to keep predefined key diagnostic information (contractile function of the heart), compression ratios up to 2000 could be achieved. Thus, higher-dimensional wavelet compression is feasible, and by exploitation of data coherence in higher image dimensions allows much higher compression than comparable 2D approaches. The proven applicability of this approach to multidimensional medical imaging has important implications especially for the fields of image storage and transmission and, specifically, for the emerging field of telemedicine.

  17. On alternative wavelet reconstruction formula: a case study of approximate wavelets.

    PubMed

    Lebedeva, Elena A; Postnikov, Eugene B

    2014-10-01

    The application of the continuous wavelet transform to the study of a wide class of physical processes with oscillatory dynamics is restricted by large central frequencies owing to the admissibility condition. We propose an alternative reconstruction formula for the continuous wavelet transform, which is applicable even if the admissibility condition is violated. The case of the transform with the standard reduced Morlet wavelet, which is an important example of such analysing functions, is discussed. PMID:26064533

  18. Wavelet Applications for Flight Flutter Testing

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Brenner, Marty; Freudinger, Lawrence C.

    1999-01-01

    Wavelets present a method for signal processing that may be useful for analyzing responses of dynamical systems. This paper describes several wavelet-based tools that have been developed to improve the efficiency of flight flutter testing. One of the tools uses correlation filtering to identify properties of several modes throughout a flight test for envelope expansion. Another tool uses features in time-frequency representations of responses to characterize nonlinearities in the system dynamics. A third tool uses modulus and phase information from a wavelet transform to estimate modal parameters that can be used to update a linear model and reduce conservatism in robust stability margins.

  19. FOPEN ultrawideband SAR imaging by wavelet interpolation

    NASA Astrophysics Data System (ADS)

    Guo, Hanwei; Liang, Diannong; Wang, Yan; Huang, Xiaotao; Dong, Zhen

    2003-09-01

    Wave number Domain Imaging algorithm can deal with the problem of foliage-penetrating ultra-wide band synthesis aperture radar (FOPEN UWB SAR) imaging. Stolt interpolation is a key role in Imaging Algorithm and is unevenly interpolation problem. There is no fast computation algorithm on Stolt interpolation. In this paper, A novel 4-4 tap of integer wavelet filters is used as Stolt interpolation base function. A fast interpolation algorithm is put forwards to. There is only plus and shift operation in wavelet interpolation that is easy to realize by hardware. The real data are processed to prove the wavelet interpolation valid for FOPEN UWB SAR imaging.

  20. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  1. The Discrete Hanging Cable

    ERIC Educational Resources Information Center

    Peters, James V.

    2004-01-01

    Using the methods of finite difference equations the discrete analogue of the parabolic and catenary cable are analysed. The fibonacci numbers and the golden ratio arise in the treatment of the catenary.

  2. Discretizations of axisymmetric systems

    NASA Astrophysics Data System (ADS)

    Frauendiener, Jörg

    2002-11-01

    In this paper we discuss stability properties of various discretizations for axisymmetric systems including the so-called cartoon method which was proposed by Alcubierre et al. for the simulation of such systems on Cartesian grids. We show that within the context of the method of lines such discretizations tend to be unstable unless one takes care in the way individual singular terms are treated. Examples are given for the linear axisymmetric wave equation in flat space.

  3. Devil's vortex Fresnel lens phase masks on an asymmetric cryptosystem based on phase-truncation in gyrator wavelet transform domain

    NASA Astrophysics Data System (ADS)

    Singh, Hukum

    2016-06-01

    An asymmetric scheme has been proposed for optical double images encryption in the gyrator wavelet transform (GWT) domain. Grayscale and binary images are encrypted separately using double random phase encoding (DRPE) in the GWT domain. Phase masks based on devil's vortex Fresnel Lens (DVFLs) and random phase masks (RPMs) are jointly used in spatial as well as in the Fourier plane. The images to be encrypted are first gyrator transformed and then single-level discrete wavelet transformed (DWT) to decompose LL , HL , LH and HH matrices of approximation, horizontal, vertical and diagonal coefficients. The resulting coefficients from the DWT are multiplied by other RPMs and the results are applied to inverse discrete wavelet transform (IDWT) for obtaining the encrypted images. The images are recovered from their corresponding encrypted images by using the correct parameters of the GWT, DVFL and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The mother wavelet family, DVFL and gyrator transform orders associated with the GWT are extra keys that cause difficulty to an attacker. Thus, the scheme is more secure as compared to conventional techniques. The efficacy of the proposed scheme is verified by computing mean-squared-error (MSE) between recovered and the original images. The sensitivity of the proposed scheme is verified with encryption parameters and noise attacks.

  4. Investigation of aquifer-estuary interaction using wavelet analysis of fiber-optic temperature data

    USGS Publications Warehouse

    Henderson, R.D.; Day-Lewis, F. D.; Harvey, C.F.

    2009-01-01

    Fiber-optic distributed temperature sensing (FODTS) provides sub-minute temporal and meter-scale spatial resolution over kilometer-long cables. Compared to conventional thermistor or thermocouple-based technologies, which measure temperature at discrete (and commonly sparse) locations, FODTS offers nearly continuous spatial coverage, thus providing hydrologie information at spatiotemporal scales previously impossible. Large and information-rich FODTS datasets, however, pose challenges for data exploration and analysis. To date, FODTS analyses have focused on time-series variance as the means to discriminate between hydrologic phenomena. Here, we demonstrate the continuous wavelet transform (CWT) and cross-wavelet transform (XWT) to analyze FODTS in the context of related hydrologic time series. We apply the CWT and XWT to data from Waquoit Bay, Massachusetts to identify the location and timing of tidal pumping of submarine groundwater Copyright 2009 by the American Geophysical Union.

  5. Blind watermark algorithm on 3D motion model based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Qi, Hu; Zhai, Lang

    2013-12-01

    With the continuous development of 3D vision technology, digital watermark technology, as the best choice for copyright protection, has fused with it gradually. This paper proposed a blind watermark plan of 3D motion model based on wavelet transform, and made it loaded into the Vega real-time visual simulation system. Firstly, put 3D model into affine transform, and take the distance from the center of gravity to the vertex of 3D object in order to generate a one-dimensional discrete signal; then make this signal into wavelet transform to change its frequency coefficients and embed watermark, finally generate 3D motion model with watermarking. In fixed affine space, achieve the robustness in translation, revolving and proportion transforms. The results show that this approach has better performances not only in robustness, but also in watermark- invisibility.

  6. Wavelet-based surrogate time series for multiscale simulation of heterogeneous catalysis

    DOE PAGESBeta

    Savara, Aditya Ashi; Daw, C. Stuart; Xiong, Qingang; Gur, Sourav; Danielson, Thomas L.; Hin, Celine N.; Pannala, Sreekanth; Frantziskonis, George N.

    2016-01-28

    We propose a wavelet-based scheme that encodes the essential dynamics of discrete microscale surface reactions in a form that can be coupled with continuum macroscale flow simulations with high computational efficiency. This makes it possible to simulate the dynamic behavior of reactor-scale heterogeneous catalysis without requiring detailed concurrent simulations at both the surface and continuum scales using different models. Our scheme is based on the application of wavelet-based surrogate time series that encodes the essential temporal and/or spatial fine-scale dynamics at the catalyst surface. The encoded dynamics are then used to generate statistically equivalent, randomized surrogate time series, which canmore » be linked to the continuum scale simulation. As a result, we illustrate an application of this approach using two different kinetic Monte Carlo simulations with different characteristic behaviors typical for heterogeneous chemical reactions.« less

  7. Wavelet-Based Color Pathological Image Watermark through Dynamically Adjusting the Embedding Intensity

    PubMed Central

    Liu, Guoyan; Liu, Hongjun; Kadir, Abdurahman

    2012-01-01

    This paper proposes a new dynamic and robust blind watermarking scheme for color pathological image based on discrete wavelet transform (DWT). The binary watermark image is preprocessed before embedding; firstly it is scrambled by Arnold cat map and then encrypted by pseudorandom sequence generated by robust chaotic map. The host image is divided into n × n blocks, and the encrypted watermark is embedded into the higher frequency domain of blue component. The mean and variance of the subbands are calculated, to dynamically modify the wavelet coefficient of a block according to the embedded 0 or 1, so as to generate the detection threshold. We research the relationship between embedding intensity and threshold and give the effective range of the threshold to extract the watermark. Experimental results show that the scheme can resist against common distortions, especially getting advantage over JPEG compression, additive noise, brightening, rotation, and cropping. PMID:23243463

  8. A linear quality control design for high efficient wavelet-based ECG data compression.

    PubMed

    Hung, King-Chu; Tsai, Chin-Feng; Ku, Cheng-Tung; Wang, Huan-Sheng

    2009-05-01

    In ECG data compression, maintaining reconstructed signal with desired quality is crucial for clinical application. In this paper, a linear quality control design based on the reversible round-off non-recursive discrete periodized wavelet transform (RRO-NRDPWT) is proposed for high efficient ECG data compression. With the advantages of error propagation resistance and octave coefficient normalization, RRO-NRDPWT enables the non-linear quantization control to obtain an approximately linear distortion by using a single control variable. Based on the linear programming, a linear quantization scale prediction model is presented for the quality control of reconstructed ECG signal. Following the use of the MIT-BIH arrhythmia database, the experimental results show that the proposed system, with lower computational complexity, can obtain much better quality control performance than that of other wavelet-based systems. PMID:19070935

  9. Detection of broken rotor bars in induction machines: An approach using wavelet packets in MCSA

    NASA Astrophysics Data System (ADS)

    Escobar-Moreira, León; Antonino-Daviu, José; Riera-Guasp, Martin

    2012-12-01

    Bar breaking diagnosis in electrical induction cage motors is a topic of interest due to their extensive use in industry. In contrast to the typical method of using Fourier analysis of the steady-state stator current, Discrete Wavelet Transform (DWT) methods have been found to better analyze the time changing nature of the current spectrum of these machines at start-up when broken bars exist [1]. This paper advances the analysis to Wavelet Packets (WP) in order to study the high order harmonic components of the spectrum which constitute a useful source of information in situations where tracing the low-frequency fault harmonics (sideband components) may not reach a definite diagnostic (i.e. presence of low-frequency load torque oscillations, effect of inter-bar currents, etc...).

  10. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  11. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  12. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  13. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  14. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  15. Continuous limit of discrete quantum walks

    NASA Astrophysics Data System (ADS)

    M N, Dheeraj; Brun, Todd A.

    2015-06-01

    Quantum walks can be defined in two quite distinct ways: discrete-time and continuous-time quantum walks (DTQWs and CTQWs). For classical random walks, there is a natural sense in which continuous-time walks are a limit of discrete-time walks. Quantum mechanically, in the discrete-time case, an additional "coin space" must be appended for the walk to have nontrivial time evolution. Continuous-time quantum walks, however, have no such constraints. This means that there is no completely straightforward way to treat a CTQW as a limit of a DTQW, as can be done in the classical case. Various approaches to this problem have been taken in the past. We give a construction for walks on d -regular, d -colorable graphs when the coin flip operator is Hermitian: from a standard DTQW we construct a family of discrete-time walks with a well-defined continuous-time limit on a related graph. One can think of this limit as a "coined" continuous-time walk. We show that these CTQWs share some properties with coined DTQWs. In particular, we look at a spatial search by a DTQW over the two-dimensional (2D) torus (a grid with periodic boundary conditions) of size √{N }×√{N } , where it was shown that a coined DTQW can search in time O (√{N }logN ) , but a standard CTQW takes Ω (N ) time to search for a marked element. The continuous limit of the DTQW search over the 2D torus exhibits the O (√{N }logN ) scaling, like the coined walk it is derived from. We also look at the effects of graph symmetry on the limiting walk, and show that the properties are similar to those of the DTQW as shown in Krovi and Brun, Phys. Rev. A 75, 062332 (2007), 10.1103/PhysRevA.75.062332.

  16. Wavelet analysis of the turbulent flow over the very rough surface

    NASA Astrophysics Data System (ADS)

    Kellnerová, R.; Kukačka, L.; Nosek, Š.; Uruba, V.; Jurčáková, K.; Jaňour, Z.

    2014-03-01

    Wavelet analysis is applied to data from PIV measurement in order to recognize a specific structure in the flow. The PIV snaphots achieved on the model of the street canyon was used as a test case. Four flow characteristics that are at disposal from one-point simultaneous two-components measurement (e.g. from 2D LDA) were analyzed by Wavelet method: longitudinal and vertical velocity, momentum flux u'w' and δS - the difference between momentum fluxes associated with a sweep and an ejection. Each of characteristic is useful for detection of certain type of event. We have focused on the sweep and the ejection that seem to be the most convenient for investigation of a significant inflow or an outflow from the street canyon.

  17. Depth migration with Gaussian wave packets based on Poincaré wavelets

    NASA Astrophysics Data System (ADS)

    Gorodnitskiy, Evgeny; Perel, Maria; Geng, Yu; Wu, Ru-Shan

    2016-04-01

    An approach to depth migration, based on an integral representation of seismic data, that is, wavefields recorded on the boundary, is presented in terms of Poincaré wavelets. Each wavelet is taken as a boundary datum for a high-frequency asymptotic solution of the wave equation. This solution, which we call the quasiphoton or the Gaussian wave packet, decreases in a Gaussian manner away from a point running along a ray that is launched from the surface. The deformation of the propagating packet is taken into account in the migration algorithm. A numerical example of zero-offset migration with synthetic seismograms calculated for the 2-D SEG/EAGE salt model is presented. The result, which uses only 3.9 per cent of the total number of coefficients, is a satisfactory image, with a threshold of 0.75 per cent.

  18. The mouse ruby-eye 2(d) (ru2(d) /Hps5(ru2-d) ) allele inhibits eumelanin but not pheomelanin synthesis.

    PubMed

    Hirobe, Tomohisa; Ito, Shosuke; Wakamatsu, Kazumasa

    2013-09-01

    The novel mutation named ru2(d) /Hps5(ru2-d) , characterized by light-colored coats and ruby-eyes, prohibits differentiation of melanocytes by inhibiting tyrosinase (Tyr) activity, expression of Tyr, Tyr-related protein 1 (Tyrp1), Tyrp2, and Kit. However, it is not known whether the ru2(d) allele affects pheomelanin synthesis in recessive yellow (e/Mc1r(e) ) or in pheomelanic stage in agouti (A) mice. In this study, effects of the ru2(d) allele on pheomelanin synthesis were investigated by chemical analysis of melanin present in dorsal hairs of 5-week-old mice from F2 generation between C57BL/10JHir (B10)-co-isogenic ruby-eye 2(d) and B10-congenic recessive yellow or agouti. Eumelanin content was decreased in ruby-eye 2(d) and ruby-eye 2(d) agouti mice, whereas pheomelanin content in ruby-eye 2(d) recessive yellow and ruby-eye 2(d) agouti mice did not differ from the corresponding Ru2(d) /- mice, suggesting that the ru2(d) allele inhibits eumelanin but not pheomelanin synthesis. PMID:23672590

  19. A faster method for 3D/2D medical image registration--a simulation study.

    PubMed

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels Claudius; Jacob, Augustinus Ludwig; Regazzoni, Pietro; Messmer, Peter

    2003-08-21

    3D/2D patient-to-computed-tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Iterative variation of the CT's position between rendering steps finally leads to exact registration. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 3D/2D registration is the fact that finding a registration includes solving a minimization problem in six degrees of freedom (dof) in motion. This results in considerable time requirements since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations around a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of it's original value. The method was implemented and extensively tested on simulated x-ray images of a tibia, a pelvis and a skull base. When using one projective image and a discrete full parameter space search for solving the optimization problem, average accuracy was found to be 1.0 +/- 0.6(degrees) and 4.1 +/- 1.9 (mm) for a registration in six parameters, and 1.0 +/- 0.7(degrees) and 4.2 +/- 1.6 (mm) when using the 5 + 1 dof method described in this paper. Time requirements were reduced by a factor 3.1. We conclude that this hardware-independent optimization of 3D/2D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications. PMID:12974581

  20. Wavelet differential neural network observer.

    PubMed

    Chairez, Isaac

    2009-09-01

    State estimation for uncertain systems affected by external noises is an important problem in control theory. This paper deals with a state observation problem when the dynamic model of a plant contains uncertainties or it is completely unknown. Differential neural network (NN) approach is applied in this uninformative situation but with activation functions described by wavelets. A new learning law, containing an adaptive adjustment rate, is suggested to imply the stability condition for the free parameters of the observer. Nominal weights are adjusted during the preliminary training process using the least mean square (LMS) method. Lyapunov theory is used to obtain the upper bounds for the weights dynamics as well as for the mean squared estimation error. Two numeric examples illustrate this approach: first, a nonlinear electric system, governed by the Chua's equation and second the Lorentz oscillator. Both systems are assumed to be affected by external perturbations and their parameters are unknown. PMID:19674951