Science.gov

Sample records for 2d discrete wavelet

  1. A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform

    PubMed Central

    Tang, Hui; Tong, Dan; Bao, Xudong; Dillenseger, Jean-Louis

    2015-01-01

    Purpose In digital X-ray radiography, an anti-scatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the anti-scatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods The method is as follows. The input image is first recursively decomposed into several smaller sub-images using a multi-scale 2D discrete wavelet transform (DWT). The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these sub-images using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected sub-images to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform (IDWT). Results The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1-dimensional Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time. PMID:25832061

  2. A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform

    SciTech Connect

    Tang, Hui; Tong, Dan; Dong Bao, Xu; Dillenseger, Jean-Louis

    2015-04-15

    Purpose: In digital x-ray radiography, an antiscatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the antiscatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods: The method is as follows. The input image is first recursively decomposed into several smaller subimages using a multiscale 2D discrete wavelet transform. The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these subimages using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected subimages to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform. Results: The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1D Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions: The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time.

  3. The Discrete Wavelet Transform

    DTIC Science & Technology

    1991-06-01

    Split- Band Coding," Proc. ICASSP, May 1977, pp 191-195. 12. Vetterli, M. "A Theory of Multirate Filter Banks ," IEEE Trans. ASSP, 35, March 1987, pp 356...both special cases of a single filter bank structure, the discrete wavelet transform, the behavior of which is governed by one’s choice of filters . In...B-1 ,.iii FIGURES 1.1 A wavelet filter bank structure ..................................... 2 2.1 Diagram illustrating the dialation and

  4. Wavelet transforms with discrete-time continuous-dilation wavelets

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Rao, Raghuveer M.

    1999-03-01

    Wavelet constructions and transforms have been confined principally to the continuous-time domain. Even the discrete wavelet transform implemented through multirate filter banks is based on continuous-time wavelet functions that provide orthogonal or biorthogonal decompositions. This paper provides a novel wavelet transform construction based on the definition of discrete-time wavelets that can undergo continuous parameter dilations. The result is a transformation that has the advantage of discrete-time or digital implementation while circumventing the problem of inadequate scaling resolution seen with conventional dyadic or M-channel constructions. Examples of constructing such wavelets are presented.

  5. Discrete multiscale wavelet shrinkage and integrodifferential equations

    NASA Astrophysics Data System (ADS)

    Didas, S.; Steidl, G.; Weickert, J.

    2008-04-01

    We investigate the relation between discrete wavelet shrinkage and integrodifferential equations in the context of simplification and denoising of one-dimensional signals. In the continuous setting, strong connections between these two approaches were discovered in 6 (see references). The key observation is that the wavelet transform can be understood as derivative operator after the convolution with a smoothing kernel. In this paper, we extend these ideas to the practically relevant discrete setting with both orthogonal and biorthogonal wavelets. In the discrete case, the behaviour of the smoothing kernels for different scales requires additional investigation. The results of discrete multiscale wavelet shrinkage and related discrete versions of integrodifferential equations are compared with respect to their denoising quality by numerical experiments.

  6. 2D Log-Gabor Wavelet Based Action Recognition

    NASA Astrophysics Data System (ADS)

    Li, Ning; Xu, De

    The frequency response of log-Gabor function matches well the frequency response of primate visual neurons. In this letter, motion-salient regions are extracted based on the 2D log-Gabor wavelet transform of the spatio-temporal form of actions. A supervised classification technique is then used to classify the actions. The proposed method is robust to the irregular segmentation of actors. Moreover, the 2D log-Gabor wavelet permits more compact representation of actions than the recent neurobiological models using Gabor wavelet.

  7. Optical Planar Discrete Fourier and Wavelet Transforms

    NASA Astrophysics Data System (ADS)

    Cincotti, Gabriella; Moreolo, Michela Svaluto; Neri, Alessandro

    2007-10-01

    We present all-optical architectures to perform discrete wavelet transform (DWT), wavelet packet (WP) decomposition and discrete Fourier transform (DFT) using planar lightwave circuits (PLC) technology. Any compact-support wavelet filter can be implemented as an optical planar two-port lattice-form device, and different subband filtering schemes are possible to denoise, or multiplex optical signals. We consider both parallel and serial input cases. We design a multiport decoder/decoder that is able to generate/process optical codes simultaneously and a flexible logarithmic wavelength multiplexer, with flat top profile and reduced crosstalk.

  8. A 2D wavelet-based spectral finite element method for elastic wave propagation

    NASA Astrophysics Data System (ADS)

    Pahlavan, L.; Kassapoglou, C.; Suiker, A. S. J.; Gürdal, Z.

    2012-10-01

    A wavelet-based spectral finite element method (WSFEM) is presented that may be used for an accurate and efficient analysis of elastic wave propagation in two-dimensional (2D) structures. The approach is characterised by a temporal transformation of the governing equations to the wavelet domain using a wavelet-Galerkin approach, and subsequently performing the spatial discretisation in the wavelet domain with the finite element method (FEM). The final solution is obtained by transforming the nodal displacements computed in the wavelet domain back to the time domain. The method straightforwardly eliminates artificial temporal edge effects resulting from the discrete wavelet transform and allows for the modelling of structures with arbitrary geometries and boundary conditions. The accuracy and applicability of the method is demonstrated through (i) the analysis of a benchmark problem on axial and flexural waves (Lamb waves) propagating in an isotropic layer, and (ii) the study of a plate subjected to impact loading. The wave propagation response for the impact problem is compared to the result computed with standard FEM equipped with a direct time-integration scheme. The effect of anisotropy on the response is demonstrated by comparing the numerical result for an isotropic plate to that of an orthotropic plate, and to that of a plate made of two dissimilar materials, with and without a cut-out at one of the plate corners. The decoupling of the time-discretised equations in the wavelet domain makes the method inherently suitable for parallel computation, and thus an appealing candidate for efficiently studying high-frequency wave propagation in engineering structures with a large number of degrees of freedom.

  9. Subband image encoder using discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Seong, Hae Kyung; Rhee, Kang Hyeon

    2004-03-01

    Introduction of digital communication network such as Integrated Services Digital Networks (ISDN) and digital storage media have rapidly developed. Due to a large amount of image data, compression is the key techniques in still image and video using digital signal processing for transmitting and storing. Digital image compression provides solutions for various image applications that represent digital image requiring a large amount of data. In this paper, the proposed DWT (Discrete Wavelet Transform) filter bank is consisted of simple architecture, but it is efficiently designed that a user obtains a wanted compression rate as only input parameter. If it is implemented by FPGA chip, the designed encoder operates in 12 MHz.

  10. 2D discrete Fourier transform on sliding windows.

    PubMed

    Park, Chun-Su

    2015-03-01

    Discrete Fourier transform (DFT) is the most widely used method for determining the frequency spectra of digital signals. In this paper, a 2D sliding DFT (2D SDFT) algorithm is proposed for fast implementation of the DFT on 2D sliding windows. The proposed 2D SDFT algorithm directly computes the DFT bins of the current window using the precalculated bins of the previous window. Since the proposed algorithm is designed to accelerate the sliding transform process of a 2D input signal, it can be directly applied to computer vision and image processing applications. The theoretical analysis shows that the computational requirement of the proposed 2D SDFT algorithm is the lowest among existing 2D DFT algorithms. Moreover, the output of the 2D SDFT is mathematically equivalent to that of the traditional DFT at all pixel positions.

  11. Removing Signal Intensity Inhomogeneity From Surface Coil MRI Using Discrete Wavelet Transform and Wavelet Packet

    DTIC Science & Technology

    2001-10-25

    We evaluate a combined discrete wavelet transform (DWT) and wavelet packet algorithm to improve the homogeneity of magnetic resonance imaging when a...image and uses this information to normalize the image intensity variations. Estimation of the coil sensitivity profile based on the wavelet transform of

  12. Discrete directional wavelet bases for image compression

    NASA Astrophysics Data System (ADS)

    Dragotti, Pier L.; Velisavljevic, Vladan; Vetterli, Martin; Beferull-Lozano, Baltasar

    2003-06-01

    The application of the wavelet transform in image processing is most frequently based on a separable construction. Lines and columns in an image are treated independently and the basis functions are simply products of the corresponding one dimensional functions. Such method keeps simplicity in design and computation, but is not capable of capturing properly all the properties of an image. In this paper, a new truly separable discrete multi-directional transform is proposed with a subsampling method based on lattice theory. Alternatively, the subsampling can be omitted and this leads to a multi-directional frame. This transform can be applied in many areas like denoising, non-linear approximation and compression. The results on non-linear approximation and denoising show very interesting gains compared to the standard two-dimensional analysis.

  13. Wavelet=Galerkin discretization of hyperbolic equations

    SciTech Connect

    Restrepo, J.M.; Leaf, G.K.

    1994-12-31

    The relative merits of the wavelet-Galerkin solution of hyperbolic partial differential equations, typical of geophysical problems, are quantitatively and qualitatively compared to traditional finite difference and Fourier-pseudo-spectral methods. The wavelet-Galerkin solution presented here is found to be a viable alternative to the two conventional techniques.

  14. Detecting the BAO using Discrete Wavelet Packets

    NASA Astrophysics Data System (ADS)

    Garcia, Noel Anthony; Wu, Yunyun; Kadowaki, Kevin; Pando, Jesus

    2017-01-01

    We use wavelet packets to investigate the clustering of matter on galactic scales in search of the Baryon Acoustic Oscillations. We do so in two ways. We develop a wavelet packet approach to measure the power spectrum and apply this method to the CMASS galaxy catalogue from the Sloan Digital Sky Survey (SDSS). We compare the resulting power spectrum to published BOSS results by measuring a parameter β that compares our wavelet detected oscillations to the results from the SDSS collaboration. We find that β=1 indicating that our wavelet packet methods are detecting the BAO at a similar level as traditional Fourier techniques. We then use wavelet packets to decompose, denoise, and then reconstruct the galaxy density field. Using this denoised field, we compute the standard two-point correlation function. We are able to successfully detect the BAO at r ≈ 105 h-1 Mpc in line with previous SDSS results. We conclude that wavelet packets do reproduce the results of the key clustering statistics computed by other means. The wavelet packets show distinct advantages in suppressing high frequency noise and in keeping information localized.

  15. The Wavelet Element Method. Part 2; Realization and Additional Features in 2D and 3D

    NASA Technical Reports Server (NTRS)

    Canuto, Claudio; Tabacco, Anita; Urban, Karsten

    1998-01-01

    The Wavelet Element Method (WEM) provides a construction of multiresolution systems and biorthogonal wavelets on fairly general domains. These are split into subdomains that are mapped to a single reference hypercube. Tensor products of scaling functions and wavelets defined on the unit interval are used on the reference domain. By introducing appropriate matching conditions across the interelement boundaries, a globally continuous biorthogonal wavelet basis on the general domain is obtained. This construction does not uniquely define the basis functions but rather leaves some freedom for fulfilling additional features. In this paper we detail the general construction principle of the WEM to the 1D, 2D and 3D cases. We address additional features such as symmetry, vanishing moments and minimal support of the wavelet functions in each particular dimension. The construction is illustrated by using biorthogonal spline wavelets on the interval.

  16. Aircraft target identification based on 2D ISAR images using multiresolution analysis wavelet

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Xiao, Huaitie; Hu, Xiangjiang

    2001-09-01

    The formation of 2D ISAR images for radar target identification hold much promise for additional distinguish- ability between targets. Since an image contains important information is a wide range of scales, and this information is often independent from one scale to another, wavelet analysis provides a method of identifying the spatial frequency content of an image and the local regions within the image where those spatial frequencies exist. In this paper, a multiresolution analysis wavelet method based on 2D ISAR images was proposed for use in aircraft radar target identification under the wide band high range resolution radar background. The proposed method was performed in three steps; first, radar backscatter signals were processed in the form of 2D ISAR images, then, Mallat's wavelet algorithm was used in the decomposition of images, finally, a three layer perceptron neural net was used as classifier. The result of experiments demonstrated that the feasibility of using multiresolution analysis wavelet for target identification.

  17. Electroencephalography data analysis by using discrete wavelet packet transform

    NASA Astrophysics Data System (ADS)

    Karim, Samsul Ariffin Abdul; Ismail, Mohd Tahir; Hasan, Mohammad Khatim; Sulaiman, Jumat; Muthuvalu, Mohana Sundaram; Janier Josefina, B.

    2015-05-01

    Electroencephalography (EEG) is the electrical activity generated by the movement of neurons in the brain. It is categorized into delta waves, theta, alpha, beta and gamma. These waves exist in a different frequency band. This paper is a continuation of our previous research. EEG data will be decomposed using Discrete Wavelet Packet Transform (DWPT). Daubechies wavelets 10 (D10) will be used as the basic functions for research purposes. From the main results, it is clear that the DWPT able to characterize the EEG signal corresponding to each wave at a specific frequency. Furthermore, the numerical results obtained better than the results using DWT. Statistical analysis support our main findings.

  18. Long memory analysis by using maximal overlapping discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Shafie, Nur Amalina binti; Ismail, Mohd Tahir; Isa, Zaidi

    2015-05-01

    Long memory process is the asymptotic decay of the autocorrelation or spectral density around zero. The main objective of this paper is to do a long memory analysis by using the Maximal Overlapping Discrete Wavelet Transform (MODWT) based on wavelet variance. In doing so, stock market of Malaysia, China, Singapore, Japan and United States of America are used. The risk of long term and short term investment are also being looked into. MODWT can be analyzed with time domain and frequency domain simultaneously and decomposing wavelet variance to different scales without loss any information. All countries under studied show that they have long memory. Subprime mortgage crisis in 2007 is occurred in the United States of America are possible affect to the major trading countries. Short term investment is more risky than long term investment.

  19. Comparison of a discrete wavelet transform method and a modified undecimated discrete wavelet transform method for denoising of mammograms.

    PubMed

    Matsuyama, Eri; Tsai, Du-Yih; Lee, Yongbum; Takahashi, Noriyuki

    2013-01-01

    The purpose of this study was to evaluate the performance of a conventional discrete wavelet transform (DWT) method and a modified undecimated discrete wavelet transform (M-UDWT) method applied to mammographic image denoising. Mutual information, mean square error, and signal to noise ratio were used as image quality measures of images processed by the two methods. We examined the performance of the two methods with visual perceptual evaluation. A two-tailed F test was used to measure statistical significance. The difference between the M-UDWT processed images and the conventional DWT-method processed images was statistically significant (P<0.01). The authors confirmed the superiority and effectiveness of the M-UDWT method. The results of this study suggest the M-UDWT method may provide better image quality as compared to the conventional DWT.

  20. Redundant Discrete Wavelet Transform Based Super-Resolution Using Sub-Pixel Image Registration

    DTIC Science & Technology

    2003-03-01

    AFIT/GE/ENG/03-18 REDUNDANT DISCRETE WAVELET TRANSFORM BASED SUPER-RESOLUTION USING SUB-PIXEL IMAGE REGISTRATION THESIS Daniel L. Ward Second...position of the United States Air Force, Department of Defense, or the United States Government. AFIT/GE/ENG/03-18 REDUNDANT DISCRETE WAVELET TRANSFORM BASED...O3-18 REDUNDANT DISCRETE WAVELET TRANSFORM BASED SUPER-RESOLUTION USING SUB-PIXEL IMAGE REGISTRATION THESIS Daniel Lee Ward, B.S.E.E. Second

  1. Mathematics of adaptive wavelet transforms: relating continuous with discrete transforms

    NASA Astrophysics Data System (ADS)

    Szu, Harold H.; Telfer, Brian A.

    1994-07-01

    We prove several theorems and construct explicitly the bridge between the continuous and discrete adaptive wavelet transform (AWT). The computational efficiency of the AWT is a result of its compact support closely matching linearly the signal's time-frequency characteristics, and is also a result of a larger redundancy factor of the superposition-mother s(x) (super-mother), created adaptively by a linear superposition of other admissible mother wavelets. The super-mother always forms a complete basis, but is usually associated with a higher redundancy number than its constituent complete orthonormal bases. The robustness of super-mother suffers less noise contamination (since noise is everywhere, and a redundant sampling by bandpassings can suppress the noise and enhance the signal). Since the continuous super-mother has been created off-line by AWT (using least-mean- squares neural nets), we wish to accomplish fast AWT on line. Thus, we formulate AWT in discrete high-pass (H) and low-pass (L) filter bank coefficients via the quadrature mirror filter, (QMF), a digital subband lossless coding. A linear combination of two special cases of complete biorthogonal normalized (Cbi-ON) QMF [L(z), H(z), L+(z), H+(z)], called (alpha) -bank and (Beta) -bank, becomes a hybrid a(alpha) + b(Beta) -bank (for any real positive constants a and b) that is still admissible, meaning Cbi-ON and lossless. Finally, the power of AWT is the implementation by means of wavelet chips and neurochips, in which each node is a daughter wavelet similar to a radial basis function using dyadic affine scaling.

  2. Magnetic resonance image reconstruction using trained geometric directions in 2D redundant wavelets domain and non-convex optimization.

    PubMed

    Ning, Bende; Qu, Xiaobo; Guo, Di; Hu, Changwei; Chen, Zhong

    2013-11-01

    Reducing scanning time is significantly important for MRI. Compressed sensing has shown promising results by undersampling the k-space data to speed up imaging. Sparsity of an image plays an important role in compressed sensing MRI to reduce the image artifacts. Recently, the method of patch-based directional wavelets (PBDW) which trains geometric directions from undersampled data has been proposed. It has better performance in preserving image edges than conventional sparsifying transforms. However, obvious artifacts are presented in the smooth region when the data are highly undersampled. In addition, the original PBDW-based method does not hold obvious improvement for radial and fully 2D random sampling patterns. In this paper, the PBDW-based MRI reconstruction is improved from two aspects: 1) An efficient non-convex minimization algorithm is modified to enhance image quality; 2) PBDW are extended into shift-invariant discrete wavelet domain to enhance the ability of transform on sparsifying piecewise smooth image features. Numerical simulation results on vivo magnetic resonance images demonstrate that the proposed method outperforms the original PBDW in terms of removing artifacts and preserving edges.

  3. Denoising embolic Doppler ultrasound signals using Dual Tree Complex Discrete Wavelet Transform.

    PubMed

    Serbes, Gorkem; Aydin, Nizamettin

    2010-01-01

    Early and accurate detection of asymptomatic emboli is important for monitoring of preventive therapy in stroke-prone patients. One of the problems in detection of emboli is the identification of an embolic signal caused by very small emboli. The amplitude of the embolic signal may be so small that advanced processing methods are required to distinguish these signals from Doppler signals arising from red blood cells. In this study instead of conventional discrete wavelet transform, the Dual Tree Complex Discrete Wavelet Transform was used for denoising embolic signals. Performances of both approaches were compared. Unlike the conventional discrete wavelet transform discrete complex wavelet transform is a shift invariant transform with limited redundancy. Results demonstrate that the Dual Tree Complex Discrete Wavelet Transform based denoising outperforms conventional discrete wavelet denoising. Approximately 8 dB improvement is obtained by using the Dual Tree Complex Discrete Wavelet Transform compared to the improvement provided by the conventional Discrete Wavelet Transform (less than 5 dB).

  4. Application of the Discrete Wavelet Transform in the Ranging Algorithm of Radio Fuze

    NASA Astrophysics Data System (ADS)

    Chen, X. L.; Yang, J. W.; Yang, J.; Wang, Y. K.

    2006-10-01

    Echo signal of radio fuze is a special transient signal whose wave parameters and arrival time are unknown. In this paper, an echo detection method of radio fuze based on discrete wavelet transform is introduced. The method adopts special wavelet basis function and scale factor, and obtain signal arriving time to realize distance measurement by the relationship that discrete wavelet coefficient of echo signal arrives peak at the corresponding time. Simulating results show that the method is feasible in radio fuze ranging application.

  5. Comparison of 2D and 3D wavelet features for TLE lateralization

    NASA Astrophysics Data System (ADS)

    Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Elisevich, Kost; Patel, Suresh

    2004-04-01

    Intensity and volume features of the hippocampus from MR images of the brain are known to be useful in detecting the abnormality and consequently candidacy of the hippocampus for temporal lobe epilepsy surgery. However, currently, intracranial EEG exams are required to determine the abnormal hippocampus. These exams are lengthy, painful and costly. The aim of this study is to evaluate texture characteristics of the hippocampi from MR images to help physicians determine the candidate hippocampus for surgery. We studied the MR images of 20 epileptic patients. Intracranial EEG results as well as surgery outcome were used as gold standard. The hippocampi were manually segmented by an expert from T1-weighted MR images. Then the segmented regions were mapped on the corresponding FLAIR images for texture analysis. We calculate the average energy features from 2D wavelet transform of each slice of hippocampus as well as the energy features produced by 3D wavelet transform of the whole hippocampus volume. The 2D wavelet transform is calculated both from the original slices as well as from the slices perpendicular to the principal axis of the hippocampus. In order to calculate the 3D wavelet transform we first rotate each hippocampus to fit it in a rectangular prism and then fill the empty area by extrapolating the intensity values. We combine the resulting features with volume feature and compare their ability to distinguish between normal and abnormal hippocampi using linear classifier and fuzzy c-means clustering algorithm. Experimental results show that the texture features can correctly classify the hippocampi.

  6. A wavelet relational fuzzy C-means algorithm for 2D gel image segmentation.

    PubMed

    Rashwan, Shaheera; Faheem, Mohamed Talaat; Sarhan, Amany; Youssef, Bayumy A B

    2013-01-01

    One of the most famous algorithms that appeared in the area of image segmentation is the Fuzzy C-Means (FCM) algorithm. This algorithm has been used in many applications such as data analysis, pattern recognition, and image segmentation. It has the advantages of producing high quality segmentation compared to the other available algorithms. Many modifications have been made to the algorithm to improve its segmentation quality. The proposed segmentation algorithm in this paper is based on the Fuzzy C-Means algorithm adding the relational fuzzy notion and the wavelet transform to it so as to enhance its performance especially in the area of 2D gel images. Both proposed modifications aim to minimize the oversegmentation error incurred by previous algorithms. The experimental results of comparing both the Fuzzy C-Means (FCM) and the Wavelet Fuzzy C-Means (WFCM) to the proposed algorithm on real 2D gel images acquired from human leukemias, HL-60 cell lines, and fetal alcohol syndrome (FAS) demonstrate the improvement achieved by the proposed algorithm in overcoming the segmentation error. In addition, we investigate the effect of denoising on the three algorithms. This investigation proves that denoising the 2D gel image before segmentation can improve (in most of the cases) the quality of the segmentation.

  7. Background Subtraction Based on Three-Dimensional Discrete Wavelet Transform.

    PubMed

    Han, Guang; Wang, Jinkuan; Cai, Xi

    2016-03-30

    Background subtraction without a separate training phase has become a critical task, because a sufficiently long and clean training sequence is usually unavailable, and people generally thirst for immediate detection results from the first frame of a video. Without a training phase, we propose a background subtraction method based on three-dimensional (3D) discrete wavelet transform (DWT). Static backgrounds with few variations along the time axis are characterized by intensity temporal consistency in the 3D space-time domain and, hence, correspond to low-frequency components in the 3D frequency domain. Enlightened by this, we eliminate low-frequency components that correspond to static backgrounds using the 3D DWT in order to extract moving objects. Owing to the multiscale analysis property of the 3D DWT, the elimination of low-frequency components in sub-bands of the 3D DWT is equivalent to performing a pyramidal 3D filter. This 3D filter brings advantages to our method in reserving the inner parts of detected objects and reducing the ringing around object boundaries. Moreover, we make use of wavelet shrinkage to remove disturbance of intensity temporal consistency and introduce an adaptive threshold based on the entropy of the histogram to obtain optimal detection results. Experimental results show that our method works effectively in situations lacking training opportunities and outperforms several popular techniques.

  8. Background Subtraction Based on Three-Dimensional Discrete Wavelet Transform

    PubMed Central

    Han, Guang; Wang, Jinkuan; Cai, Xi

    2016-01-01

    Background subtraction without a separate training phase has become a critical task, because a sufficiently long and clean training sequence is usually unavailable, and people generally thirst for immediate detection results from the first frame of a video. Without a training phase, we propose a background subtraction method based on three-dimensional (3D) discrete wavelet transform (DWT). Static backgrounds with few variations along the time axis are characterized by intensity temporal consistency in the 3D space-time domain and, hence, correspond to low-frequency components in the 3D frequency domain. Enlightened by this, we eliminate low-frequency components that correspond to static backgrounds using the 3D DWT in order to extract moving objects. Owing to the multiscale analysis property of the 3D DWT, the elimination of low-frequency components in sub-bands of the 3D DWT is equivalent to performing a pyramidal 3D filter. This 3D filter brings advantages to our method in reserving the inner parts of detected objects and reducing the ringing around object boundaries. Moreover, we make use of wavelet shrinkage to remove disturbance of intensity temporal consistency and introduce an adaptive threshold based on the entropy of the histogram to obtain optimal detection results. Experimental results show that our method works effectively in situations lacking training opportunities and outperforms several popular techniques. PMID:27043570

  9. Discrete wavelet transform core for image processing applications

    NASA Astrophysics Data System (ADS)

    Savakis, Andreas E.; Carbone, Richard

    2005-02-01

    This paper presents a flexible hardware architecture for performing the Discrete Wavelet Transform (DWT) on a digital image. The proposed architecture uses a variation of the lifting scheme technique and provides advantages that include small memory requirements, fixed-point arithmetic implementation, and a small number of arithmetic computations. The DWT core may be used for image processing operations, such as denoising and image compression. For example, the JPEG2000 still image compression standard uses the Cohen-Daubechies-Favreau (CDF) 5/3 and CDF 9/7 DWT for lossless and lossy image compression respectively. Simple wavelet image denoising techniques resulted in improved images up to 27 dB PSNR. The DWT core is modeled using MATLAB and VHDL. The VHDL model is synthesized to a Xilinx FPGA to demonstrate hardware functionality. The CDF 5/3 and CDF 9/7 versions of the DWT are both modeled and used as comparisons. The execution time for performing both DWTs is nearly identical at approximately 14 clock cycles per image pixel for one level of DWT decomposition. The hardware area generated for the CDF 5/3 is around 15,000 gates using only 5% of the Xilinx FPGA hardware area, at 2.185 MHz max clock speed and 24 mW power consumption.

  10. Discrete directional wavelet bases and frames: analysis and applications

    NASA Astrophysics Data System (ADS)

    Dragotti, Pier Luigi; Velisavljevic, Vladan; Vetterli, Martin; Beferull-Lozano, Baltasar

    2003-11-01

    The application of the wavelet transform in image processing is most frequently based on a separable construction. Lines and columns in an image are treated independently and the basis functions are simply products of the corresponding one dimensional functions. Such method keeps simplicity in design and computation, but is not capable of capturing properly all the properties of an image. In this paper, a new truly separable discrete multi-directional transform is proposed with a subsampling method based on lattice theory. Alternatively, the subsampling can be omitted and this leads to a multi-directional frame. This transform can be applied in many areas like denoising, non-linear approximation and compression. The results on non-linear approximation and denoising show interesting gains compared to the standard two-dimensional analysis.

  11. An Automatic 3D Facial Landmarking Algorithm Using 2D Gabor Wavelets.

    PubMed

    de Jong, Markus A; Wollstein, Andreas; Ruff, Clifford; Dunaway, David; Hysi, Pirro; Spector, Tim; Fan Liu; Niessen, Wiro; Koudstaal, Maarten J; Kayser, Manfred; Wolvius, Eppo B; Bohringer, Stefan

    2016-02-01

    In this paper, we present a novel approach to automatic 3D facial landmarking using 2D Gabor wavelets. Our algorithm considers the face to be a surface and uses map projections to derive 2D features from raw data. Extracted features include texture, relief map, and transformations thereof. We extend an established 2D landmarking method for simultaneous evaluation of these data. The method is validated by performing landmarking experiments on two data sets using 21 landmarks and compared with an active shape model implementation. On average, landmarking error for our method was 1.9 mm, whereas the active shape model resulted in an average landmarking error of 2.3 mm. A second study investigating facial shape heritability in related individuals concludes that automatic landmarking is on par with manual landmarking for some landmarks. Our algorithm can be trained in 30 min to automatically landmark 3D facial data sets of any size, and allows for fast and robust landmarking of 3D faces.

  12. The Discrete, Orthogonal Wavelet Transform, A Protective Approach.

    DTIC Science & Technology

    1995-09-01

    completely determined by the collection of functions onto which it projects. The wavelet transform projects onto a set of functions which satisfy a...simple linear relationship between different levels of dilation. The properties of the wavelet transform are determined by the coefficients of this linear...relationship. This thesis examines the connections between the wavelet transform properties and the linear relationship coefficients. (AN)

  13. Feature Extraction on Brain Computer Interfaces using Discrete Dyadic Wavelet Transform: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Gareis, I.; Gentiletti, G.; Acevedo, R.; Rufiner, L.

    2011-09-01

    The purpose of this work is to evaluate different feature extraction alternatives to detect the event related evoked potential signal on brain computer interfaces, trying to minimize the time employed and the classification error, in terms of sensibility and specificity of the method, looking for alternatives to coherent averaging. In this context the results obtained performing the feature extraction using discrete dyadic wavelet transform using different mother wavelets are presented. For the classification a single layer perceptron was used. The results obtained with and without the wavelet decomposition were compared; showing an improvement on the classification rate, the specificity and the sensibility for the feature vectors obtained using some mother wavelets.

  14. Discrete Wavelet Transforms: The Relationship of the a Trous and Mallat Algorithms

    DTIC Science & Technology

    1991-12-01

    single filter bank structure, the discrete wavelet transform, the behavior of which is governed by one’s choice of filters . In fact, the a trous algorithm...particulierSd’une unique structure banc de filtres, both special cases of a single filter bank structure, the appel6e transforme d’ondelettes discrete, dont le com...tie literature has been devoted to linking discrete implemen- filter bank output will be referred to as the Discrete tations to the continuous

  15. Automated diagnosis of mammogram images of breast cancer using discrete wavelet transform and spherical wavelet transform features: a comparative study.

    PubMed

    Ganesan, Karthikeyan; Acharya, U Rajendra; Chua, Chua Kuang; Min, Lim Choo; Abraham, Thomas K

    2014-12-01

    Mammograms are one of the most widely used techniques for preliminary screening of breast cancers. There is great demand for early detection and diagnosis of breast cancer using mammograms. Texture based feature extraction techniques are widely used for mammographic image analysis. In specific, wavelets are a popular choice for texture analysis of these images. Though discrete wavelets have been used extensively for this purpose, spherical wavelets have rarely been used for Computer-Aided Diagnosis (CAD) of breast cancer using mammograms. In this work, a comparison of the performance between the features of Discrete Wavelet Transform (DWT) and Spherical Wavelet Transform (SWT) based on the classification results of normal, benign and malignant stage was studied. Classification was performed using Linear Discriminant Classifier (LDC), Quadratic Discriminant Classifier (QDC), Nearest Mean Classifier (NMC), Support Vector Machines (SVM) and Parzen Classifier (ParzenC). We have obtained a maximum classification accuracy of 81.73% for DWT and 88.80% for SWT features using SVM classifier.

  16. Region-based image denoising through wavelet and fast discrete curvelet transform

    NASA Astrophysics Data System (ADS)

    Gu, Yanfeng; Guo, Yan; Liu, Xing; Zhang, Ye

    2008-10-01

    Image denoising always is one of important research topics in the image processing field. In this paper, fast discrete curvelet transform (FDCT) and undecimated wavelet transform (UDWT) are proposed for image denoising. A noisy image is first denoised by FDCT and UDWT separately. The whole image space is then divided into edge region and non-edge regions. After that, wavelet transform is performed on the images denoised by FDCT and UDWT respectively. Finally, the resultant image is fused through using both of edge region wavelet cofficients of the image denoised by FDCT and non-edge region wavelet cofficients of the image denoised by UDWT. The proposed method is validated through numerical experiments conducted on standard test images. The experimental results show that the proposed algorithm outperforms wavelet-based and curvelet-based image denoising methods and preserve linear features well.

  17. A Polar Discrete Ordinate Radiation Transport Method for 2D ALE Meshes in HYDRA

    NASA Astrophysics Data System (ADS)

    Chang, Britton; Marinak, Marty; Weber, Chris; Peterson, Luc

    2016-10-01

    The Polar Discrete Ordinate Radiation Transport Method in HYDRA has been extended to handle general 2D r-z meshes. Previously the method was only for orthogonal 2D meshes. The new method can be employed with the ALE methodology for managing mesh motion that is used to simulate Rayleigh-Taylor and Richtmyer-Meshkov instabilities on NIF capsule implosions. The results of an examination of this kind will be compared to those obtained by the corresponding diffusion method. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  18. Noise reduction in LOS wind velocity of Doppler lidar using discrete wavelet analysis

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Liu, Zhishen; Sun, Dapeng

    2003-12-01

    The line of sight (LOS) wind velocity can be determined from the incoherent Doppler lidar backscattering signals. Noise and interference in the measurement greatly degrade the inversion accuracy. In this paper, we apply the discrete wavelet denoising method by using biorthogonal wavelets and adopt a distancedependent thresholds algorithm to improve the accuracy of wind velocity measurement by incoherent Doppler lidar. The noisy simulation data are processed and compared with the true LOS wind velocity. The results are compared by the evaluation of both the standard deviation and correlation coefficient.The results suggest that wavelet denoising with distance-dependent thresholds can considerably reduce the noise and interfering turbulence for wind lidar measurement.

  19. Semi-Discrete Wavelet Transforms of Remote Sensing Data Reveal Long-Range Multifractal Correlations in Cloud Structure

    NASA Astrophysics Data System (ADS)

    Petrov, N. P.; Davis, A. B.

    2001-12-01

    Semi-discrete wavelet transforms are discrete in scale, as in Mallat's multi-resolution analysis, but continuous in position. The number of coefficients and algorithmic complexity then grows only as NlogN where N is the number of points (pixels) in the time-series (image). The redundancy of this representation at each scale has been exploited in denoising and data compression applications but we see it here as an asset when cumulating spatial statistics. Following Arnéodo, the wavelets are normalized in such a way that the scaling exponents of the moments of the coefficients are the same as for structure functions at all orders, at least in nonstationary/stationary-increment signals. We apply 1D and 2D semi-discrete transforms to remote sensing data on cloud structure from a variety of sources: NASA's MODerate Imaging Spectroradiometer (MODIS) on Terra and Thematic Mapper (TM) on LandSat; high-resolution cloud scenes from DOE's Multispectral Thermal Imager (MTI); and an upward-looking mm-radar at one of DOE's climate observation sites supporting the Atmospheric Radiation Measurement (ARM) Program. We show that the scale-dependence of the variance of the wavelet coefficients is always a better discriminator of transition from stationary to nonstationary behavior than conventional methods based on auto-correlation analysis, 2nd-order structure function (a.k.a. the semi-variogram), or spectral analysis. Examples of stationary behavior are (delta-correlated) instrumental noise and large-scale decorrelation of cloudiness; here wavelet coefficients decrease with increasing scale. Examples of nonstationary behavior are the predominant turbulent structure of cloud layers as well as instrumental or physical smoothing in the data; here wavelet coefficients increase with scale. In all of these regimes, we have theoretical expectations and/or empirical evidence of power-law relations for wavelet statistics with respect to scale as is expected in physical (finite

  20. Synthesis of wavelet envelope in 2-D random media having power-law spectra: comparison with FD simulations

    NASA Astrophysics Data System (ADS)

    Sato, Haruo; Fehler, Michael C.

    2016-10-01

    The envelope broadening and the peak delay of the S-wavelet of a small earthquake with increasing travel distance are results of scattering by random velocity inhomogeneities in the earth medium. As a simple mathematical model, Sato proposed a new stochastic synthesis of the scalar wavelet envelope in 3-D von Kármán type random media when the centre wavenumber of the wavelet is in the power-law spectral range of the random velocity fluctuation. The essential idea is to split the random medium spectrum into two components using the centre wavenumber as a reference: the long-scale (low-wavenumber spectral) component produces the peak delay and the envelope broadening by multiple scattering around the forward direction; the short-scale (high-wavenumber spectral) component attenuates wave amplitude by wide angle scattering. The former is calculated by the Markov approximation based on the parabolic approximation and the latter is calculated by the Born approximation. Here, we extend the theory for the envelope synthesis of a wavelet in 2-D random media, which makes it easy to compare with finite difference (FD) simulation results. The synthetic wavelet envelope is analytically written by using the random medium parameters in the angular frequency domain. For the case that the power spectral density function of the random velocity fluctuation has a steep roll-off at large wavenumbers, the envelope broadening is small and frequency independent, and scattering attenuation is weak. For the case of a small roll-off, however, the envelope broadening is large and increases with frequency, and the scattering attenuation is strong and increases with frequency. As a preliminary study, we compare synthetic wavelet envelopes with the average of FD simulation wavelet envelopes in 50 synthesized random media, which are characterized by the RMS fractional velocity fluctuation ε = 0.05, correlation scale a = 5 km and the background wave velocity V0 = 4 km s-1. We use the radiation

  1. Discrete wavelet transform and singular value decomposition based ECG steganography for secured patient information transmission.

    PubMed

    Edward Jero, S; Ramu, Palaniappan; Ramakrishnan, S

    2014-10-01

    ECG Steganography provides secured transmission of secret information such as patient personal information through ECG signals. This paper proposes an approach that uses discrete wavelet transform to decompose signals and singular value decomposition (SVD) to embed the secret information into the decomposed ECG signal. The novelty of the proposed method is to embed the watermark using SVD into the two dimensional (2D) ECG image. The embedding of secret information in a selected sub band of the decomposed ECG is achieved by replacing the singular values of the decomposed cover image by the singular values of the secret data. The performance assessment of the proposed approach allows understanding the suitable sub-band to hide secret data and the signal degradation that will affect diagnosability. Performance is measured using metrics like Kullback-Leibler divergence (KL), percentage residual difference (PRD), peak signal to noise ratio (PSNR) and bit error rate (BER). A dynamic location selection approach for embedding the singular values is also discussed. The proposed approach is demonstrated on a MIT-BIH database and the observations validate that HH is the ideal sub-band to hide data. It is also observed that the signal degradation (less than 0.6%) is very less in the proposed approach even with the secret data being as large as the sub band size. So, it does not affect the diagnosability and is reliable to transmit patient information.

  2. Impedance cardiography signal denoising using discrete wavelet transform.

    PubMed

    Chabchoub, Souhir; Mansouri, Sofienne; Salah, Ridha Ben

    2016-09-01

    Impedance cardiography (ICG) is a non-invasive technique for diagnosing cardiovascular diseases. In the acquisition procedure, the ICG signal is often affected by several kinds of noise which distort the determination of the hemodynamic parameters. Therefore, doctors cannot recognize ICG waveform correctly and the diagnosis of cardiovascular diseases became inaccurate. The aim of this work is to choose the most suitable method for denoising the ICG signal. Indeed, different wavelet families are used to denoise the ICG signal. The Haar, Daubechies (db2, db4, db6, and db8), Symlet (sym2, sym4, sym6, sym8) and Coiflet (coif2, coif3, coif4, coif5) wavelet families are tested and evaluated in order to select the most suitable denoising method. The wavelet family with best performance is compared with two denoising methods: one based on Savitzky-Golay filtering and the other based on median filtering. Each method is evaluated by means of the signal to noise ratio (SNR), the root mean square error (RMSE) and the percent difference root mean square (PRD). The results show that the Daubechies wavelet family (db8) has superior performance on noise reduction in comparison to other methods.

  3. Shape-adaptive discrete wavelet transform for coding arbitrarily shaped texture

    NASA Astrophysics Data System (ADS)

    Li, Shipeng; Li, Weiping

    1997-01-01

    This paper presents a shape adaptive discrete wavelet transform (SA-DWT) scheme for coding arbitrarily shaped texture. The proposed SA-DWT can be used for object-oriented image coding. The number of coefficients after SA-DWT is identical to the number of pels contained in the arbitrarily shaped image objects. The locality property of wavelet transform and self-similarity among subbands are well preserved throughout this process.For a rectangular region, the SA-DWT is identical to a standard wavelet transform. With SA-DWT, conventional wavelet based coding schemes can be readily extended to the coding of arbitrarily shaped objects. The proposed shape adaptive wavelet transform is not unitary but the small energy increase is restricted at the boundary of objects in subbands. Two approaches of using the SA-DWT algorithm for object-oriented image and video coding are presented. One is to combine scalar SA-DWT with embedded zerotree wavelet (EZW) coding technique, the other is an extension of the normal vector wavelet coding (VWC) technique to arbitrarily shaped objects. Results of applying SA-VWC to real arbitrarily shaped texture coding are also given at the end of this paper.

  4. Performance enhancement of rake-receiver using continuous and discrete wavelet transforms analysis through NLOS propagation

    NASA Astrophysics Data System (ADS)

    Fayadh, Rashid A.; Malek, F.; Fadhil, Hilal A.; Dawood, Sameer A.; Abdullah, Farah Salwani

    2015-05-01

    In this paper, three levels of analysis and synthesis filter banks were used to create coefficients for a continuous wavelet transform (CWT) and discrete wavelet transform (DWT). The main property of these wavelet transform schemes is their ability to construct the transmitted signal across a log-normal fading channel over additive white Gaussian noise (AWGN). Wireless rake-receiver structure was chosen as a major application to reduce the inter-symbol interference (ISI) and to minimize the noise. In this work, a new scheme of rake receiver is proposed to receive indoor, multi-path components (MPCs) for ultra-wideband (UWB) wireless communication systems. Rake receivers consist of a continuous wavelet rake (CW-rake) and a discrete wavelet rake (DW-rake), and they use huge bandwidth (7.5 GHz), as reported by the Federal Communications Commission (FCC). The indoor channel models chose for analysis in this research were the non line-of-sight (LOS) channel model (CM4 from 4 to 10 meters) to show the behavior of bit error rate (BER) with respect to signal-to noise ratio (SNR). Two types of rake receiver were used in the simulation, i.e., partial-rake and selective-rake receivers with the maximal ratio combining (MRC) technique to capture the energy of the signal from the output of the rake's fingers.

  5. Optical image compression based on adaptive directional prediction discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhang, Libao; Qiu, Bingchang

    2013-11-01

    The traditional lifting wavelet transform cannot effectively reconstruct the nonhorizontal and nonvertical high-frequency information of an image. In this paper, we present a new image compression method based on adaptive directional prediction discrete wavelet transform (ADP-DWT). We first design a directional prediction model to obtain the optimal transform direction of the lifting wavelet. Then, we execute the directional lifting transform along the optimal transform direction. The edge and texture energy can be reduced in the nonhorizontal and nonvertical directions of the high-frequency sub-bands. Finally, the wavelet coefficients are coded with the set partitioning in hierarchical trees (SPIHT) algorithm. The new method holds the advantages of both adaptive directional lifting (ADL) and direction-adaptive discrete wavelet transform (DA-DWT), and the computational complexity is far lower than that in these methods. For the images containing regular and fine textures or edges, the coding preformance of ADP-DWT is better than that of ADL and DA-DWT.

  6. Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun

    2013-05-01

    Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.

  7. A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG

    PubMed Central

    Chen, Duo; Wan, Suiren; Xiang, Jing; Bao, Forrest Sheng

    2017-01-01

    In the past decade, Discrete Wavelet Transform (DWT), a powerful time-frequency tool, has been widely used in computer-aided signal analysis of epileptic electroencephalography (EEG), such as the detection of seizures. One of the important hurdles in the applications of DWT is the settings of DWT, which are chosen empirically or arbitrarily in previous works. The objective of this study aimed to develop a framework for automatically searching the optimal DWT settings to improve accuracy and to reduce computational cost of seizure detection. To address this, we developed a method to decompose EEG data into 7 commonly used wavelet families, to the maximum theoretical level of each mother wavelet. Wavelets and decomposition levels providing the highest accuracy in each wavelet family were then searched in an exhaustive selection of frequency bands, which showed optimal accuracy and low computational cost. The selection of frequency bands and features removed approximately 40% of redundancies. The developed algorithm achieved promising performance on two well-tested EEG datasets (accuracy >90% for both datasets). The experimental results of the developed method have demonstrated that the settings of DWT affect its performance on seizure detection substantially. Compared with existing seizure detection methods based on wavelet, the new approach is more accurate and transferable among datasets. PMID:28278203

  8. Discrete wavelet transform analysis of surface electromyography for the fatigue assessment of neck and shoulder muscles.

    PubMed

    Chowdhury, Suman Kanti; Nimbarte, Ashish D; Jaridi, Majid; Creese, Robert C

    2013-10-01

    Assessment of neuromuscular fatigue is essential for early detection and prevention of risks associated with work-related musculoskeletal disorders. In recent years, discrete wavelet transform (DWT) of surface electromyography (SEMG) has been used to evaluate muscle fatigue, especially during dynamic contractions when the SEMG signal is non-stationary. However, its application to the assessment of work-related neck and shoulder muscle fatigue is not well established. Therefore, the purpose of this study was to establish DWT analysis as a suitable method to conduct quantitative assessment of neck and shoulder muscle fatigue under dynamic repetitive conditions. Ten human participants performed 40min of fatiguing repetitive arm and neck exertions while SEMG data from the upper trapezius and sternocleidomastoid muscles were recorded. The ten of the most commonly used wavelet functions were used to conduct the DWT analysis. Spectral changes estimated using power of wavelet coefficients in the 12-23Hz frequency band showed the highest sensitivity to fatigue induced by the dynamic repetitive exertions. Although most of the wavelet functions tested in this study reasonably demonstrated the expected power trend with fatigue development and recovery, the overall performance of the "Rbio3.1" wavelet in terms of power estimation and statistical significance was better than the remaining nine wavelets.

  9. Robust electrocardiogram (ECG) beat classification using discrete wavelet transform.

    PubMed

    Minhas, Fayyaz-ul-Amir Afsar; Arif, Muhammad

    2008-05-01

    This paper presents a robust technique for the classification of six types of heartbeats through an electrocardiogram (ECG). Features extracted from the QRS complex of the ECG using a wavelet transform along with the instantaneous RR-interval are used for beat classification. The wavelet transform utilized for feature extraction in this paper can also be employed for QRS delineation, leading to reduction in overall system complexity as no separate feature extraction stage would be required in the practical implementation of the system. Only 11 features are used for beat classification with the classification accuracy of approximately 99.5% through a KNN classifier. Another main advantage of this method is its robustness to noise, which is illustrated in this paper through experimental results. Furthermore, principal component analysis (PCA) has been used for feature reduction, which reduces the number of features from 11 to 6 while retaining the high beat classification accuracy. Due to reduction in computational complexity (using six features, the time required is approximately 4 ms per beat), a simple classifier and noise robustness (at 10 dB signal-to-noise ratio, accuracy is 95%), this method offers substantial advantages over previous techniques for implementation in a practical ECG analyzer.

  10. A 2D Electromechanical Model of Human Atrial Tissue Using the Discrete Element Method

    PubMed Central

    Brocklehurst, Paul; Adeniran, Ismail; Yang, Dongmin; Sheng, Yong; Zhang, Henggui; Ye, Jianqiao

    2015-01-01

    Cardiac tissue is a syncytium of coupled cells with pronounced intrinsic discrete nature. Previous models of cardiac electromechanics often ignore such discrete properties and treat cardiac tissue as a continuous medium, which has fundamental limitations. In the present study, we introduce a 2D electromechanical model for human atrial tissue based on the discrete element method (DEM). In the model, single-cell dynamics are governed by strongly coupling the electrophysiological model of Courtemanche et al. to the myofilament model of Rice et al. with two-way feedbacks. Each cell is treated as a viscoelastic body, which is physically represented by a clump of nine particles. Cell aggregations are arranged so that the anisotropic nature of cardiac tissue due to fibre orientations can be modelled. Each cell is electrically coupled to neighbouring cells, allowing excitation waves to propagate through the tissue. Cell-to-cell mechanical interactions are modelled using a linear contact bond model in DEM. By coupling cardiac electrophysiology with mechanics via the intracellular Ca2+ concentration, the DEM model successfully simulates the conduction of cardiac electrical waves and the tissue's corresponding mechanical contractions. The developed DEM model is numerically stable and provides a powerful method for studying the electromechanical coupling problem in the heart. PMID:26583141

  11. Adaptive 2-D wavelet transform based on the lifting scheme with preserved vanishing moments.

    PubMed

    Vrankic, Miroslav; Sersic, Damir; Sucic, Victor

    2010-08-01

    In this paper, we propose novel adaptive wavelet filter bank structures based on the lifting scheme. The filter banks are nonseparable, based on quincunx sampling, with their properties being pixel-wise adapted according to the local image features. Despite being adaptive, the filter banks retain a desirable number of primal and dual vanishing moments. The adaptation is introduced in the predict stage of the filter bank with an adaptation region chosen independently for each pixel, based on the intersection of confidence intervals (ICI) rule. The image denoising results are presented for both synthetic and real-world images. It is shown that the obtained wavelet decompositions perform well, especially for synthetic images that contain periodic patterns, for which the proposed method outperforms the state of the art in image denoising.

  12. Seismic coherent and random noise attenuation using the undecimated discrete wavelet transform method with WDGA technique

    NASA Astrophysics Data System (ADS)

    Goudarzi, Alireza; Riahi, Mohammad Ali

    2012-12-01

    One of the most crucial challenges in seismic data processing is the reduction of the noise in the data or improving the signal-to-noise ratio. In this study, the 1D undecimated discrete wavelet transform (UDWT) has been acquired to attenuate random noise and ground roll. Wavelet domain ground roll analysis (WDGA) is applied to find the ground roll energy in the wavelet domain. The WDGA will be a substitute method for thresholding in seismic data processing. To compare the effectiveness of the WDGA method, we apply the 1D double density discrete wavelet transform (DDDWT) using soft thresholding in the random noise reduction and ground roll attenuation processes. Seismic signals intersect with ground roll in the time and frequency domains. Random noise and ground roll have many undesirable effects on pre-stack seismic data, and result in an inaccurate velocity analysis for NMO correction. In this paper, the UDWT by using the WDGA technique and DDDWT (using the soft thresholding technique) and the regular Fourier based method as f-k transform will be used and compared for seismic denoising.

  13. Application of the discrete torus wavelet transform to the denoising of magnetic resonance images of uterine and ovarian masses

    NASA Astrophysics Data System (ADS)

    Sarty, Gordon E.; Atkins, M. Stella; Olatunbosun, Femi; Chizen, Donna; Loewy, John; Kendall, Edward J.; Pierson, Roger A.

    1999-10-01

    A new numerical wavelet transform, the discrete torus wavelet transform, is described and an application is given to the denoising of abdominal magnetic resonance imaging (MRI) data. The discrete tori wavelet transform is an undecimated wavelet transform which is computed using a discrete Fourier transform and multiplication instead of by direct convolution in the image domain. This approach leads to a decomposition of the image onto frames in the space of square summable functions on the discrete torus, l2(T2). The new transform was compared to the traditional decimated wavelet transform in its ability to denoise MRI data. By using denoised images as the basis for the computation of a nuclear magnetic resonance spin-spin relaxation-time map through least squares curve fitting, an error map was generated that was used to assess the performance of the denoising algorithms. The discrete torus wavelet transform outperformed the traditional wavelet transform in 88% of the T2 error map denoising tests with phantoms and gynecologic MRI images.

  14. Conservative discontinuous Galerkin discretizations of the 2D incompressible Euler equation

    NASA Astrophysics Data System (ADS)

    Waelbroeck, Francois; Michoski, Craig; Bernard, Tess

    2016-10-01

    Discontinuous Galerkin (DG) methods provide local high-order adaptive numerical schemes for the solution of convection-diffusion problems. They combine the advantages of finite element and finite volume methods. In particular, DG methods automatically ensure the conservation of all first-order invariants provided that single-valued fluxes are prescribed at inter-element boundaries. For the 2D incompressible Euler equation, this implies that the discretized fluxes globally obey Gauss' and Stokes' laws exactly, and that they conserve total vorticity. Liu and Shu have shown that combining a continuous Galerkin (CG) solution of Poisson's equation with a central DG flux for the convection term leads to an algorithm that conserves the principal two quadratic invariants, namely the energy and enstrophy. Here, we present a discretization that applies the DG method to Poisson's equation as well as to the vorticity equation while maintaining conservation of the quadratic invariants. Using a DG algorithm for Poisson's equation can be advantageous when solving problems with mixed Dirichlet-Neuman boundary conditions such as for the injection of fluid through a slit (Bickley jet) or during compact toroid injection for tokamak startup.

  15. Use of switched capacitor filters to implement the discrete wavelet transform

    NASA Technical Reports Server (NTRS)

    Kaiser, Kraig E.; Peterson, James N.

    1993-01-01

    This paper analyzes the use of IIR switched capacitor filters to implement the discrete wavelet transform and the inverse transform, using quadrature mirror filters (QMF) which have the necessary symmetry for reconstruction of the data. This is done by examining the sensitivity of the QMF transforms to the manufacturing variance in the desired capacitances. The performance is evaluated at the outputs of the separate filter stages and the error in the reconstruction of the inverse transform is compared with the desired results.

  16. Bernstein copula approach to model direction-length dependency for 2D discrete fracture network simulation

    NASA Astrophysics Data System (ADS)

    Mendoza-Torres, F.; Diaz-Viera, M. A.

    2015-12-01

    In many natural fractured porous media, such as aquifers, soils, oil and geothermal reservoirs, fractures play a crucial role in their flow and transport properties. An approach that has recently gained popularity for modeling fracture systems is the Discrete Fracture Network (DFN) model. This approach consists in applying a stochastic boolean simulation method, also known as object simulation method, where fractures are represented as simplified geometric objects (line segments in 2D and polygons in 3D). One of the shortcomings of this approach is that it usually does not consider the dependency relationships that may exist between the geometric properties of fractures (direction, length, aperture, etc), that is, each property is simulated independently. In this work a method for modeling such dependencies by copula theory is introduced. In particular, a nonparametric model using Bernstein copulas for direction-length fracture dependency in 2D is presented. The application of this method is illustrated in a case study for a fractured rock sample from a carbonate reservoir outcrop.

  17. Plasma Plume Oscillations Monitoring during Laser Welding of Stainless Steel by Discrete Wavelet Transform Application

    PubMed Central

    Sibillano, Teresa; Ancona, Antonio; Rizzi, Domenico; Lupo, Valentina; Tricarico, Luigi; Lugarà, Pietro Mario

    2010-01-01

    The plasma optical radiation emitted during CO2 laser welding of stainless steel samples has been detected with a Si-PIN photodiode and analyzed under different process conditions. The discrete wavelet transform (DWT) has been used to decompose the optical signal into various discrete series of sequences over different frequency bands. The results show that changes of the process settings may yield different signal features in the range of frequencies between 200 Hz and 30 kHz. Potential applications of this method to monitor in real time the laser welding processes are also discussed. PMID:22319311

  18. Multirate-based fast parallel algorithms for 2-D DHT-based real-valued discrete Gabor transform.

    PubMed

    Tao, Liang; Kwan, Hon Keung

    2012-07-01

    Novel algorithms for the multirate and fast parallel implementation of the 2-D discrete Hartley transform (DHT)-based real-valued discrete Gabor transform (RDGT) and its inverse transform are presented in this paper. A 2-D multirate-based analysis convolver bank is designed for the 2-D RDGT, and a 2-D multirate-based synthesis convolver bank is designed for the 2-D inverse RDGT. The parallel channels in each of the two convolver banks have a unified structure and can apply the 2-D fast DHT algorithm to speed up their computations. The computational complexity of each parallel channel is low and is independent of the Gabor oversampling rate. All the 2-D RDGT coefficients of an image are computed in parallel during the analysis process and can be reconstructed in parallel during the synthesis process. The computational complexity and time of the proposed parallel algorithms are analyzed and compared with those of the existing fastest algorithms for 2-D discrete Gabor transforms. The results indicate that the proposed algorithms are the fastest, which make them attractive for real-time image processing.

  19. Stratus cloud structure from MM-radar transects and satellite images: scaling properties and artifact detection with semi-discrete wavelet analysis

    SciTech Connect

    Davis, A. B.; Petrov, N. P.; Clothiaux, E. E.; Marshak, A.

    2002-01-01

    Spatial and/or temporal variabilities of clouds is of paramount importance for at least two in tensely researched sub-problems in global and regional climate modeling: (1) cloud-radiation interaction where correlations can trigger 3D radiative transfer effects; and (2) dynamical cloud modeling where the goal is to realistically reproduce the said correlations. We propose wavelets as a simple yet powerful way of quantifying cloud variability. More precisely, we use 'semi-discrete' wavelet transforms which, at least in the present statistical applications, have advantages over both its continuous and discrete counterparts found in the bulk of the wavelet literature. With the particular choice of normalization we adopt, the scale-dependence of the variance of the wavelet coefficients (i.e,, the wavelet energy spectrum) is always a better discriminator of transition from 'stationary' to 'nonstationary' behavior than conventional methods based on auto-correlation analysis, second-order structure function (a.k.a. the semi-variogram), or Fourier analysis. Indeed, the classic statistics go at best from monotonically scale- or wavenumber-dependent to flat at such a transition; by contrast, the wavelet spectrum changes the sign of its derivative with respect to scale. We apply 1D and 2D semi-discrete wavelet transforms to remote sensing data on cloud structure from two sources: (1) an upward-looking milli-meter cloud radar (MMCR) at DOE's climate observation site in Oklahoma deployed as part of the Atmospheric Radiation Measurement (ARM) Progrm; and (2) DOE's Multispectral Thermal Imager (MTI), a high-resolution space-borne instrument in sunsynchronous orbit that is described in sufficient detail for our present purposes by Weber et al. (1999). For each type of data, we have at least one theoretical prediction - with empirical validation already in existence - for a power-law relation for wavelet statistics with respect to scale. This is what is expected in physical (i

  20. Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyong; Zhou, Ping; Chen, Gang; Guo, Ledong

    2014-11-01

    This study investigated the performance and potential of a hybrid model that combined the discrete wavelet transform and support vector regression (the DWT-SVR model) for daily and monthly streamflow forecasting. Three key factors of the wavelet decomposition phase (mother wavelet, decomposition level, and edge effect) were proposed to consider for improving the accuracy of the DWT-SVR model. The performance of DWT-SVR models with different combinations of these three factors was compared with the regular SVR model. The effectiveness of these models was evaluated using the root-mean-squared error (RMSE) and Nash-Sutcliffe model efficiency coefficient (NSE). Daily and monthly streamflow data observed at two stations in Indiana, United States, were used to test the forecasting skill of these models. The results demonstrated that the different hybrid models did not always outperform the SVR model for 1-day and 1-month lead time streamflow forecasting. This suggests that it is crucial to consider and compare the three key factors when using the DWT-SVR model (or other machine learning methods coupled with the wavelet transform), rather than choosing them based on personal preferences. We then combined forecasts from multiple candidate DWT-SVR models using a model averaging technique based upon Akaike's information criterion (AIC). This ensemble prediction was superior to the single best DWT-SVR model and regular SVR model for both 1-day and 1-month ahead predictions. With respect to longer lead times (i.e., 2- and 3-day and 2-month), the ensemble predictions using the AIC averaging technique were consistently better than the best DWT-SVR model and SVR model. Therefore, integrating model averaging techniques with the hybrid DWT-SVR model would be a promising approach for daily and monthly streamflow forecasting. Additionally, we strongly recommend considering these three key factors when using wavelet-based SVR models (or other wavelet-based forecasting models).

  1. Efficient local statistical analysis via integral histograms with discrete wavelet transform.

    PubMed

    Lee, Teng-Yok; Shen, Han-Wei

    2013-12-01

    Histograms computed from local regions are commonly used in many visualization applications, and allowing the user to query histograms interactively in regions of arbitrary locations and sizes plays an important role in feature identification and tracking. Computing histograms in regions with arbitrary location and size, nevertheless, can be time consuming for large data sets since it involves expensive I/O and scan of data elements. To achieve both performance- and storage-efficient query of local histograms, we present a new algorithm called WaveletSAT, which utilizes integral histograms, an extension of the summed area tables (SAT), and discrete wavelet transform (DWT). Similar to SAT, an integral histogram is the histogram computed from the area between each grid point and the grid origin, which can be be pre-computed to support fast query. Nevertheless, because one histogram contains multiple bins, it will be very expensive to store one integral histogram at each grid point. To reduce the storage cost for large integral histograms, WaveletSAT treats the integral histograms of all grid points as multiple SATs, each of which can be converted into a sparse representation via DWT, allowing the reconstruction of axis-aligned region histograms of arbitrary sizes from a limited number of wavelet coefficients. Besides, we present an efficient wavelet transform algorithm for SATs that can operate on each grid point separately in logarithmic time complexity, which can be extended to parallel GPU-based implementation. With theoretical and empirical demonstration, we show that WaveletSAT can achieve fast preprocessing and smaller storage overhead than the conventional integral histogram approach with close query performance.

  2. A hybrid group method of data handling with discrete wavelet transform for GDP forecasting

    NASA Astrophysics Data System (ADS)

    Isa, Nadira Mohamed; Shabri, Ani

    2013-09-01

    This study is proposed the application of hybridization model using Group Method of Data Handling (GMDH) and Discrete Wavelet Transform (DWT) in time series forecasting. The objective of this paper is to examine the flexibility of the hybridization GMDH in time series forecasting by using Gross Domestic Product (GDP). A time series data set is used in this study to demonstrate the effectiveness of the forecasting model. This data are utilized to forecast through an application aimed to handle real life time series. This experiment compares the performances of a hybrid model and a single model of Wavelet-Linear Regression (WR), Artificial Neural Network (ANN), and conventional GMDH. It is shown that the proposed model can provide a promising alternative technique in GDP forecasting.

  3. A new time-adaptive discrete bionic wavelet transform for enhancing speech from adverse noise environment

    NASA Astrophysics Data System (ADS)

    Palaniswamy, Sumithra; Duraisamy, Prakash; Alam, Mohammad Showkat; Yuan, Xiaohui

    2012-04-01

    Automatic speech processing systems are widely used in everyday life such as mobile communication, speech and speaker recognition, and for assisting the hearing impaired. In speech communication systems, the quality and intelligibility of speech is of utmost importance for ease and accuracy of information exchange. To obtain an intelligible speech signal and one that is more pleasant to listen, noise reduction is essential. In this paper a new Time Adaptive Discrete Bionic Wavelet Thresholding (TADBWT) scheme is proposed. The proposed technique uses Daubechies mother wavelet to achieve better enhancement of speech from additive non- stationary noises which occur in real life such as street noise and factory noise. Due to the integration of human auditory system model into the wavelet transform, bionic wavelet transform (BWT) has great potential for speech enhancement which may lead to a new path in speech processing. In the proposed technique, at first, discrete BWT is applied to noisy speech to derive TADBWT coefficients. Then the adaptive nature of the BWT is captured by introducing a time varying linear factor which updates the coefficients at each scale over time. This approach has shown better performance than the existing algorithms at lower input SNR due to modified soft level dependent thresholding on time adaptive coefficients. The objective and subjective test results confirmed the competency of the TADBWT technique. The effectiveness of the proposed technique is also evaluated for speaker recognition task under noisy environment. The recognition results show that the TADWT technique yields better performance when compared to alternate methods specifically at lower input SNR.

  4. Quantifying the ON and OFF Contributions to the Flash ERG with the Discrete Wavelet Transform

    PubMed Central

    Gauvin, Mathieu; Sustar, Maja; Little, John M.; Brecelj, Jelka; Lina, Jean-Marc; Lachapelle, Pierre

    2017-01-01

    Purpose Discrete wavelet transform (DWT) analyses suggest that the 20- and 40-Hz components of the short-flash photopic electroretinogram (ERG) are closely related to the ON and OFF pathways, respectively. With the DWT, we examined how the ERG ON and OFF components are modulated by the stimulus intensity and/or duration. Methods Discrete wavelet transform descriptors (20, 40 Hz and 40:20-Hz ratio) were extracted from ERGs evoked to 25 combinations of flash durations (150–5 ms) and strengths (0.8–2.8 log cd.m−2). Results In ERGs evoked to the 150-ms stimulus (to separate the ON and OFF ERGs), the 40:20-Hz ratio of ON ERGs (mean ± SD: 0.49 ± 0.04) was significantly smaller (P < 0.05) than that of OFF ERGs (1.71 ± 0.18) owing to a significantly (P < 0.05) higher contribution of the 20 and 40 Hz components to the ON and OFF ERGs, respectively. With brighter stimuli, the ON and OFF components increased similarly (P < 0.05). While progressively shorter flashes had no impact (P > 0.05) on the ON component, it exponentially enhanced (P < 0.05) the OFF component. Conclusions Discrete wavelet transform allows for an accurate determination of ON and OFF retinal pathways even in ERGs evoked to a short flash. To our knowledge, the significant OFF facilitatory effect evidenced with shorter stimuli has not previously been reported. Translational Relevance The DWT approach should offer a rapid, easy, and reproducible approach to retrospectively and prospectively evaluate the function of the retinal ON and OFF pathways using the standard (short-flash duration) clinical ERG stimulus. PMID:28097047

  5. 2D wavelet-analysis-based calibration technique for flat-panel imaging detectors: application in cone beam volume CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.

    1999-05-01

    The application of the newly developed flat panel x-ray imaging detector in cone beam volume CT has attracted increasing interest recently. Due to an imperfect solid state array manufacturing process, however, defective elements, gain non-uniformity and offset image unavoidably exist in all kinds of flat panel x-ray imaging detectors, which will cause severe streak and ring artifacts in a cone beam reconstruction image and severely degrade image quality. A calibration technique, in which the artifacts resulting from the defective elements, gain non-uniformity and offset image can be reduced significantly, is presented in this paper. The detection of defective elements is distinctively based upon two-dimensional (2D) wavelet analysis. Because of its inherent localizability in recognizing singularities or discontinuities, wavelet analysis possesses the capability of detecting defective elements over a rather large x-ray exposure range, e.g., 20% to approximately 60% of the dynamic range of the detector used. Three-dimensional (3D) images of a low-contrast CT phantom have been reconstructed from projection images acquired by a flat panel x-ray imaging detector with and without calibration process applied. The artifacts caused individually by defective elements, gain non-uniformity and offset image have been separated and investigated in detail, and the correlation with each other have also been exposed explicitly. The investigation is enforced by quantitative analysis of the signal to noise ratio (SNR) and the image uniformity of the cone beam reconstruction image. It has been demonstrated that the ring and streak artifacts resulting from the imperfect performance of a flat panel x-ray imaging detector can be reduced dramatically, and then the image qualities of a cone beam reconstruction image, such as contrast resolution and image uniformity are improved significantly. Furthermore, with little modification, the calibration technique presented here is also applicable

  6. Denoising of arterial and venous Doppler signals using discrete wavelet transform: effect on clinical parameters.

    PubMed

    Tokmakçi, Mahmut; Erdoğan, Nuri

    2009-05-01

    In this paper, the effects of a wavelet transform based denoising strategy on clinical Doppler parameters are analyzed. The study scheme included: (a) Acquisition of arterial and venous Doppler signals by sampling the audio output of an ultrasound scanner from 20 healthy volunteers, (b) Noise reduction via decomposition of the signals through discrete wavelet transform, (c) Spectral analysis of noisy and noise-free signals with short time Fourier transform, (d) Curve fitting to spectrograms, (e) Calculation of clinical Doppler parameters, (f) Statistical comparison of parameters obtained from noisy and noise-free signals. The decomposition level was selected as the highest level at which the maximum power spectral density and its corresponding frequency were preserved. In all subjects, noise-free spectrograms had smoother trace with less ripples. In both arterial and venous spectrograms, denoising resulted in a significant decrease in the maximum (systolic) and mean frequency, with no statistical difference in the minimum (diastolic) frequency. In arterial signals, this leads to a significant decrease in the calculated parameters such as Systolic/Diastolic Velocity Ratio, Resistivity Index, Pulsatility Index and Acceleration Time. Acceleration Index did not change significantly. Despite a successful denoising, the effects of wavelet decomposition on high frequency components in the Doppler signal should be challenged by comparison with reference data, or, through clinical investigations.

  7. Application of discrete wavelet transform for analysis of genomic sequences of Mycobacterium tuberculosis.

    PubMed

    Saini, Shiwani; Dewan, Lillie

    2016-01-01

    This paper highlights the potential of discrete wavelet transforms in the analysis and comparison of genomic sequences of Mycobacterium tuberculosis (MTB) with different resistance characteristics. Graphical representations of wavelet coefficients and statistical estimates of their parameters have been used to determine the extent of similarity between different sequences of MTB without the use of conventional methods such as Basic Local Alignment Search Tool. Based on the calculation of the energy of wavelet decomposition coefficients of complete genomic sequences, their broad classification of the type of resistance can be done. All the given genomic sequences can be grouped into two broad categories wherein the drug resistant and drug susceptible sequences form one group while the multidrug resistant and extensive drug resistant sequences form the other group. This method of segregation of the sequences is faster than conventional laboratory methods which require 3-4 weeks of culture of sputum samples. Thus the proposed method can be used as a tool to enhance clinical diagnostic investigations in near real-time.

  8. Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech.

    NASA Astrophysics Data System (ADS)

    Campo, D.; Quintero, O. L.; Bastidas, M.

    2016-04-01

    We propose a study of the mathematical properties of voice as an audio signal. This work includes signals in which the channel conditions are not ideal for emotion recognition. Multiresolution analysis- discrete wavelet transform - was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states. ANNs proved to be a system that allows an appropriate classification of such states. This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features. Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify.

  9. Optimized discrete wavelet transforms in the cubed sphere with the lifting scheme—implications for global finite-frequency tomography

    NASA Astrophysics Data System (ADS)

    Chevrot, Sébastien; Martin, Roland; Komatitsch, Dimitri

    2012-12-01

    Wavelets are extremely powerful to compress the information contained in finite-frequency sensitivity kernels and tomographic models. This interesting property opens the perspective of reducing the size of global tomographic inverse problems by one to two orders of magnitude. However, introducing wavelets into global tomographic problems raises the problem of computing fast wavelet transforms in spherical geometry. Using a Cartesian cubed sphere mapping, which grids the surface of the sphere with six blocks or 'chunks', we define a new algorithm to implement fast wavelet transforms with the lifting scheme. This algorithm is simple and flexible, and can handle any family of discrete orthogonal or bi-orthogonal wavelets. Since wavelet coefficients are local in space and scale, aliasing effects resulting from a parametrization with global functions such as spherical harmonics are avoided. The sparsity of tomographic models expanded in wavelet bases implies that it is possible to exploit the power of compressed sensing to retrieve Earth's internal structures optimally. This approach involves minimizing a combination of a ℓ2 norm for data residuals and a ℓ1 norm for model wavelet coefficients, which can be achieved through relatively minor modifications of the algorithms that are currently used to solve the tomographic inverse problem.

  10. Energy Detection Based on Undecimated Discrete Wavelet Transform and Its Application in Magnetic Anomaly Detection

    PubMed Central

    Nie, Xinhua; Pan, Zhongming; Zhang, Dasha; Zhou, Han; Chen, Min; Zhang, Wenna

    2014-01-01

    Magnetic anomaly detection (MAD) is a passive approach for detection of a ferromagnetic target, and its performance is often limited by external noises. In consideration of one major noise source is the fractal noise (or called 1/f noise) with a power spectral density of 1/fa (0wavelet decomposition can play the role of a Karhunen-Loève-type expansion to the 1/f-type signal by its decorrelation abilities, an effective energy detection method based on undecimated discrete wavelet transform (UDWT) is proposed in this paper. Firstly, the foundations of magnetic anomaly detection and UDWT are introduced in brief, while a possible detection system based on giant magneto-impedance (GMI) magnetic sensor is also given out. Then our proposed energy detection based on UDWT is described in detail, and the probabilities of false alarm and detection for given the detection threshold in theory are presented. It is noticeable that no a priori assumptions regarding the ferromagnetic target or the magnetic noise probability are necessary for our method, and different from the discrete wavelet transform (DWT), the UDWT is shift invariant. Finally, some simulations are performed and the results show that the detection performance of our proposed detector is better than that of the conventional energy detector even utilized in the Gaussian white noise, especially when the spectral parameter α is less than 1.0. In addition, a real-world experiment was done to demonstrate the advantages of the proposed method. PMID:25343484

  11. Representation of discrete Steklov-Poincare operator arising in domain decomposition methods in wavelet basis

    SciTech Connect

    Jemcov, A.; Matovic, M.D.

    1996-12-31

    This paper examines the sparse representation and preconditioning of a discrete Steklov-Poincare operator which arises in domain decomposition methods. A non-overlapping domain decomposition method is applied to a second order self-adjoint elliptic operator (Poisson equation), with homogeneous boundary conditions, as a model problem. It is shown that the discrete Steklov-Poincare operator allows sparse representation with a bounded condition number in wavelet basis if the transformation is followed by thresholding and resealing. These two steps combined enable the effective use of Krylov subspace methods as an iterative solution procedure for the system of linear equations. Finding the solution of an interface problem in domain decomposition methods, known as a Schur complement problem, has been shown to be equivalent to the discrete form of Steklov-Poincare operator. A common way to obtain Schur complement matrix is by ordering the matrix of discrete differential operator in subdomain node groups then block eliminating interface nodes. The result is a dense matrix which corresponds to the interface problem. This is equivalent to reducing the original problem to several smaller differential problems and one boundary integral equation problem for the subdomain interface.

  12. COMPARISON OF THE ACCURACY OF VARIOUS SPATIAL DISCRETIZATION SCHEMES OF THE DISCRETE ORDINATES EQUATIONS IN 2D CARTESIAN GEOMETRY

    SciTech Connect

    Sebastian Schunert; Yousry Y. Azmy; Damien Fournier

    2011-05-01

    We present a comprehensive error estimation of four spatial discretization schemes of the two-dimensional Discrete Ordinates (SN) equations on Cartesian grids utilizing a Method of Manufactured Solution (MMS) benchmark suite based on variants of Larsen’s benchmark featuring different orders of smoothness of the underlying exact solution. The considered spatial discretization schemes include the arbitrarily high order transport methods of the nodal (AHOTN) and characteristic (AHOTC) types, the discontinuous Galerkin Finite Element method (DGFEM) and the recently proposed higher order diamond difference method (HODD) of spatial expansion orders 0 through 3. While AHOTN and AHOTC rely on approximate analytical solutions of the transport equation within a mesh cell, DGFEM and HODD utilize a polynomial expansion to mimick the angular flux profile across each mesh cell. Intuitively, due to the higher degree of analyticity, we expect AHOTN and AHOTC to feature superior accuracy compared with DGFEM and HODD, but at the price of potentially longer grind times and numerical instabilities. The latter disadvantages can result from the presence of exponential terms evaluated at the cell optical thickness that arise from the semianalytical solution process. This work quantifies the order of accuracy and the magnitude of the error of all four discretization methods for different optical thicknesses, scattering ratios and degrees of smoothness of the underlying exact solutions in order to verify or contradict the aforementioned intuitive expectation.

  13. Damage Detection on Sudden Stiffness Reduction Based on Discrete Wavelet Transform

    PubMed Central

    Chen, Bo; Chen, Zhi-wei; Wang, Gan-jun; Xie, Wei-ping

    2014-01-01

    The sudden stiffness reduction in a structure may cause the signal discontinuity in the acceleration responses close to the damage location at the damage time instant. To this end, the damage detection on sudden stiffness reduction of building structures has been actively investigated in this study. The signal discontinuity of the structural acceleration responses of an example building is extracted based on the discrete wavelet transform. It is proved that the variation of the first level detail coefficients of the wavelet transform at damage instant is linearly proportional to the magnitude of the stiffness reduction. A new damage index is proposed and implemented to detect the damage time instant, location, and severity of a structure due to a sudden change of structural stiffness. Numerical simulation using a five-story shear building under different types of excitation is carried out to assess the effectiveness and reliability of the proposed damage index for the building at different damage levels. The sensitivity of the damage index to the intensity and frequency range of measurement noise is also investigated. The made observations demonstrate that the proposed damage index can accurately identify the sudden damage events if the noise intensity is limited. PMID:24991647

  14. Peak load demand forecasting using two-level discrete wavelet decomposition and neural network algorithm

    NASA Astrophysics Data System (ADS)

    Bunnoon, Pituk; Chalermyanont, Kusumal; Limsakul, Chusak

    2010-02-01

    This paper proposed the discrete transform and neural network algorithms to obtain the monthly peak load demand in mid term load forecasting. The mother wavelet daubechies2 (db2) is employed to decomposed, high pass filter and low pass filter signals from the original signal before using feed forward back propagation neural network to determine the forecasting results. The historical data records in 1997-2007 of Electricity Generating Authority of Thailand (EGAT) is used as reference. In this study, historical information of peak load demand(MW), mean temperature(Tmean), consumer price index (CPI), and industrial index (economic:IDI) are used as feature inputs of the network. The experimental results show that the Mean Absolute Percentage Error (MAPE) is approximately 4.32%. This forecasting results can be used for fuel planning and unit commitment of the power system in the future.

  15. Hybrid Discrete Wavelet Transform and Gabor Filter Banks Processing for Features Extraction from Biomedical Images

    PubMed Central

    Lahmiri, Salim; Boukadoum, Mounir

    2013-01-01

    A new methodology for automatic feature extraction from biomedical images and subsequent classification is presented. The approach exploits the spatial orientation of high-frequency textural features of the processed image as determined by a two-step process. First, the two-dimensional discrete wavelet transform (DWT) is applied to obtain the HH high-frequency subband image. Then, a Gabor filter bank is applied to the latter at different frequencies and spatial orientations to obtain new Gabor-filtered image whose entropy and uniformity are computed. Finally, the obtained statistics are fed to a support vector machine (SVM) binary classifier. The approach was validated on mammograms, retina, and brain magnetic resonance (MR) images. The obtained classification accuracies show better performance in comparison to common approaches that use only the DWT or Gabor filter banks for feature extraction. PMID:27006906

  16. Two-dimensional discrete wavelets transform for optical phase extraction: application on speckle correlation fringes

    NASA Astrophysics Data System (ADS)

    Ghlaifan, Abdulatef; Tounsi, Yassine; Zada, Sara; Muhire, Desire; Nassim, Abdelkrim

    2016-12-01

    A method for optical phase extraction based on two-dimensional discrete wavelets transform (2-DWT) decomposition is shown. From modulated fringe pattern, phase distribution is extracted by the ratio between detail and approximation. Modulation process is realized digitally by introducing high-frequency spatial carrier, and this process needs two π/2-shifted fringe patterns. We propose to use only single fringe and generate its quadrature by spiral phase transform (SPT). After validation by computer simulation, we apply the 2-DWT algorithm on experimental speckle fringe correlation taken for hard disk surface. The extracted phase using SPT quadrature was compared with that given using this time experimental quadrature, and we show a good performance by multiscale structural similarity metric.

  17. Hybrid Discrete Wavelet Transform and Gabor Filter Banks Processing for Features Extraction from Biomedical Images.

    PubMed

    Lahmiri, Salim; Boukadoum, Mounir

    2013-01-01

    A new methodology for automatic feature extraction from biomedical images and subsequent classification is presented. The approach exploits the spatial orientation of high-frequency textural features of the processed image as determined by a two-step process. First, the two-dimensional discrete wavelet transform (DWT) is applied to obtain the HH high-frequency subband image. Then, a Gabor filter bank is applied to the latter at different frequencies and spatial orientations to obtain new Gabor-filtered image whose entropy and uniformity are computed. Finally, the obtained statistics are fed to a support vector machine (SVM) binary classifier. The approach was validated on mammograms, retina, and brain magnetic resonance (MR) images. The obtained classification accuracies show better performance in comparison to common approaches that use only the DWT or Gabor filter banks for feature extraction.

  18. Assessment of Power Quality based on Fuzzy Logic and Discrete Wavelet Transform for Nonstationary Disturbances

    NASA Astrophysics Data System (ADS)

    Sinha, Pampa; Nath, Sudipta

    2010-10-01

    The main aspects of power system delivery are reliability and quality. If all the customers of a power system get uninterrupted power through the year then the system is considered to be reliable. The term power quality may be referred to as maintaining near sinusoidal voltage at rated frequency at the consumers end. The power component definitions are defined according to the IEEE Standard 1459-2000 both for single phase and three phase unbalanced systems based on Fourier Transform (FFT). In the presence of nonstationary power quality (PQ) disturbances results in accurate values due to its sensitivity to the spectral leakage problem. To overcome these limitations the power quality components are calculated using Discrete Wavelet Transform (DWT). In order to handle the uncertainties associated with electric power systems operations fuzzy logic has been incorporated in this paper. A new power quality index has been introduced here which can assess the power quality under nonstationary disturbances.

  19. A parallel 3-D discrete wavelet transform architecture using pipelined lifting scheme approach for video coding

    NASA Astrophysics Data System (ADS)

    Hegde, Ganapathi; Vaya, Pukhraj

    2013-10-01

    This article presents a parallel architecture for 3-D discrete wavelet transform (3-DDWT). The proposed design is based on the 1-D pipelined lifting scheme. The architecture is fully scalable beyond the present coherent Daubechies filter bank (9, 7). This 3-DDWT architecture has advantages such as no group of pictures restriction and reduced memory referencing. It offers low power consumption, low latency and high throughput. The computing technique is based on the concept that lifting scheme minimises the storage requirement. The application specific integrated circuit implementation of the proposed architecture is done by synthesising it using 65 nm Taiwan Semiconductor Manufacturing Company standard cell library. It offers a speed of 486 MHz with a power consumption of 2.56 mW. This architecture is suitable for real-time video compression even with large frame dimensions.

  20. Lamb wave feature extraction using discrete wavelet transformation and Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Ghodsi, Mojtaba; Ziaiefar, Hamidreza; Amiryan, Milad; Honarvar, Farhang; Hojjat, Yousef; Mahmoudi, Mehdi; Al-Yahmadi, Amur; Bahadur, Issam

    2016-04-01

    In this research, a new method is presented for eliciting the proper features for recognizing and classifying the kinds of the defects by guided ultrasonic waves. After applying suitable preprocessing, the suggested method extracts the base frequency band from the received signals by discrete wavelet transform and discrete Fourier transform. This frequency band can be used as a distinctive feature of ultrasonic signals in different defects. Principal Component Analysis with improving this feature and decreasing extra data managed to improve classification. In this study, ultrasonic test with A0 mode lamb wave is used and is appropriated to reduce the difficulties around the problem. The defects under analysis included corrosion, crack and local thickness reduction. The last defect is caused by electro discharge machining (EDM). The results of the classification by optimized Neural Network depicts that the presented method can differentiate different defects with 95% precision and thus, it is a strong and efficient method. Moreover, comparing the elicited features for corrosion and local thickness reduction and also the results of the two's classification clarifies that modeling the corrosion procedure by local thickness reduction which was previously common, is not an appropriate method and the signals received from the two defects are different from each other.

  1. A 2D systems approach to iterative learning control for discrete linear processes with zero Markov parameters

    NASA Astrophysics Data System (ADS)

    Hladowski, Lukasz; Galkowski, Krzysztof; Cai, Zhonglun; Rogers, Eric; Freeman, Chris T.; Lewin, Paul L.

    2011-07-01

    In this article a new approach to iterative learning control for the practically relevant case of deterministic discrete linear plants with uniform rank greater than unity is developed. The analysis is undertaken in a 2D systems setting that, by using a strong form of stability for linear repetitive processes, allows simultaneous consideration of both trial-to-trial error convergence and along the trial performance, resulting in design algorithms that can be computed using linear matrix inequalities (LMIs). Finally, the control laws are experimentally verified on a gantry robot that replicates a pick and place operation commonly found in a number of applications to which iterative learning control is applicable.

  2. Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform

    NASA Astrophysics Data System (ADS)

    Liu, Bao-Lei; Yang, Zhao-Hua; Liu, Xia; Wu, Ling-An

    2017-02-01

    We propose and demonstrate a computational imaging technique that uses structured illumination based on a two-dimensional discrete cosine transform to perform imaging with a single-pixel detector. A scene is illuminated by a projector with two sets of orthogonal patterns, then by applying an inverse cosine transform to the spectra obtained from the single-pixel detector a full-color image is retrieved. This technique can retrieve an image from sub-Nyquist measurements, and the background noise is easily canceled to give excellent image quality. Moreover, the experimental setup is very simple.

  3. Effective filtering and interpolation of 2D discrete velocity fields with Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Saumier, Louis-Philippe; Khouider, Boualem; Agueh, Martial

    2016-11-01

    We introduce a new variational technique to interpolate and filter a two-dimensional velocity vector field which is discretely sampled in a region of {{{R}}}2 and sampled only once at a time, on a small time-interval [0,{{Δ }}t]. The main idea is to find a solution of the Navier-Stokes equations that is closest to a prescribed field in the sense that it minimizes the l 2 norm of the difference between this solution and the target field. The minimization is performed on the initial vorticity by expanding it into radial basis functions of Gaussian type, with a fixed size expressed by a parameter ɛ. In addition, a penalty term with parameter k e is added to the minimizing functional in order to select a solution with a small kinetic energy. This additional term makes the minimizing functional strongly convex, and therefore ensures that the minimization problem is well-posed. The interplay between the parameters k e and ɛ effectively contributes to smoothing the discrete velocity field, as demonstrated by the numerical experiments on synthetic and real data.

  4. Non-fragile robust optimal guaranteed cost control of uncertain 2-D discrete state-delayed systems

    NASA Astrophysics Data System (ADS)

    Tandon, Akshata; Dhawan, Amit

    2016-10-01

    This paper is concerned with the problem of non-fragile robust optimal guaranteed cost control for a class of uncertain two-dimensional (2-D) discrete state-delayed systems described by the general model with norm-bounded uncertainties. Our attention is focused on the design of non-fragile state feedback controllers such that the resulting closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible parameter uncertainties and controller gain variations. A sufficient condition for the existence of such controllers is established under the linear matrix inequality framework. Moreover, a convex optimisation problem is proposed to select a non-fragile robust optimal guaranteed cost controller stabilising the 2-D discrete state-delayed system as well as achieving the least guaranteed cost for the resulting closed-loop system. The proposed method is compared with the previously reported criterion. Finally, illustrative examples are given to show the potential of the proposed technique.

  5. Carbonate fracture stratigraphy: An integrated outcrop and 2D discrete element modelling study

    NASA Astrophysics Data System (ADS)

    Spence, Guy; Finch, Emma

    2013-04-01

    Constraining fracture stratigraphy is important as natural fractures control primary fluid flow in low matrix permeability naturally fractured carbonate hydrocarbon reservoirs. Away from the influence of folds and faults, stratigraphic controls are known to be the major control on fracture networks. The fracture stratigraphy of carbonate nodular-chert rhythmite successions are investigated using a Discrete Element Modelling (DEM) technique and validated against observations from outcrops. Comparisons are made to the naturally fractured carbonates of the Eocene Thebes Formation exposed in the west central Sinai of Egypt, which form reservoir rocks in the nearby East Ras Budran Field. DEM allows mechanical stratigraphy to be defined as the starting conditions from which forward numerical modelling can generate fracture stratigraphy. DEM can incorporate both stratigraphic and lateral heterogeneity, and enable mechanical and fracture stratigraphy to be characterised separately. Stratally bound stratified chert nodules below bedding surfaces generate closely spaced lateral heterogeneity in physical properties at stratigraphic mechanical interfaces. This generates extra complexity in natural fracture networks in addition to that caused by bed thickness and lithological physical properties. A series of representative geologically appropriate synthetic mechanical stratigraphic models were tested. Fracture networks generated in 15 DEM experiments designed to isolate and constrain the effects of nodular chert rhythmites on carbonate fracture stratigraphy are presented. The discrete element media used to model the elastic strengths of rocks contain 72,866 individual elements. Mechanical stratigraphies and the fracture networks generated are placed in a sequence stratigraphic framework. Nodular chert rhythmite successions are shown to be a distinct type of naturally fractured carbonate reservoir. Qualitative stratigraphic rules for predicting the distribution, lengths, spacing

  6. Effective Temperature of 2D Dusty Plasma Liquids at the Discrete Level

    SciTech Connect

    Io, C.-W.; Chan, C.-L.; I Lin

    2007-07-13

    Fluctuation-dissipation theory has been used to measure the effective temperature of non-equilibrium system. In this work, using a 2D dusty plasma liquid formed by the negatively charged fine particles suspending in weakly ionized discharges and sheared by two CW counter parallel laser beams, we measure the micro-transport at the kinetic level. The effective temperatures Teff at different time scales are obtained through the Stokes-Einstein relation which relates the diffusion coefficient (D) and the viscosity ({eta}). The external energy is cascaded from the slow hopping modes to the fast caging modes through mutual coupling, which leads to the higher effective temperature of the slow hopping modes.

  7. Wavelets

    NASA Astrophysics Data System (ADS)

    DeVore, Ronald A.; Lucier, Bradley J.

    The subject of `wavelets' is expanding at such a tremendous rate that it is impossible to give, within these few pages, a complete introduction to all aspects of its theory. We hope, however, to allow the reader to become sufficiently acquainted with the subject to understand, in part, the enthusiasm of its proponents toward its potential application to various numerical problems. Furthermore, we hope that our exposition can guide the reader who wishes to make more serious excursions into the subject. Our viewpoint is biased by our experience in approximation theory and data compression; we warn the reader that there are other viewpoints that are either not represented here or discussed only briefly. For example, orthogonal wavelets were developed primarily in the context of signal processing, an application upon which we touch only indirectly. However, there are several good expositions (e.g. Daubechies (1990) and Rioul and Vetterli (1991)) of this application. A discussion of wavelet decompositions in the context of Littlewood-Paley theory can be found in the monograph of Frazier et al. (1991). We shall also not attempt to give a complete discussion of the history of wavelets. Historical accounts can be found in the book of Meyer (1990) and the introduction of the article of Daubechies (1990). We shall try to give sufficient historical commentary in the course of our presentation to provide some feeling for the subject's development.

  8. 2D phase tomography of biotissues: IV. Wavelet processing of phase tomograms of the background and precancerous endometrial states

    NASA Astrophysics Data System (ADS)

    Peresunko, A. P.; Zavadovskya, I. G.

    2004-06-01

    The paper deals with the studying of prognostic possibilities of determining the orientation structure of endometrial strome in the normal state and hiperplasia. The laser diagnostic of endometrial state is based on the principles of optical changes of laser radiation during its passing through the histological sample with the following investigation of its wavelet coefficients.

  9. Transversal versus lifting approach to motion-compensated temporal discrete wavelet transform of image sequences: equivalence and tradeoffs

    NASA Astrophysics Data System (ADS)

    Konrad, Janusz

    2004-01-01

    Lifting-based implementations of various discrete wavelet transforms applied in the temporal direction under motion compensation have recently become a very powerful tool in video compression research. We present in this paper a theoretical analysis of motion compensation in both transversal and lifted implementations of such transforms. We derive conditions for perfect reconstruction in the case of motion-compensated transversal discrete wavelet transform. We also derive conditions on motion transformation assuring that a motion-compensated lifting scheme is exactly equivalent to its transversal counterpart. In general, these conditions require that motion transformation allow composition and be invertible. Unfortunately, many motion models do not obey these properties, thus inducing subband decomposition errors (prior to compression). We propose an alternative approach to motion compensation in the case of Haar transform. This new approach poses no constraints on motion; motion-compensated lifted Haar transform exactly implements its transversal implementation, and the latter obeys perfect reconstruction, both regardless of motion transformation used. This new approach, however, does not extend to the 5/3 or any higher-order discrete wavelet transform.

  10. Image denoising with the dual-tree complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Yaseen, Alauldeen S.; Pavlova, Olga N.; Pavlov, Alexey N.; Hramov, Alexander E.

    2016-04-01

    The purpose of this study is to compare image denoising techniques based on real and complex wavelet-transforms. Possibilities provided by the classical discrete wavelet transform (DWT) with hard and soft thresholding are considered, and influences of the wavelet basis and image resizing are discussed. The quality of image denoising for the standard 2-D DWT and the dual-tree complex wavelet transform (DT-CWT) is studied. It is shown that DT-CWT outperforms 2-D DWT at the appropriate selection of the threshold level.

  11. Speckle noise reduction in ultrasound images using a discrete wavelet transform-based image fusion technique.

    PubMed

    Choi, Hyun Ho; Lee, Ju Hwan; Kim, Sung Min; Park, Sung Yun

    2015-01-01

    Here, the speckle noise in ultrasonic images is removed using an image fusion-based denoising method. To optimize the denoising performance, each discrete wavelet transform (DWT) and filtering technique was analyzed and compared. In addition, the performances were compared in order to derive the optimal input conditions. To evaluate the speckle noise removal performance, an image fusion algorithm was applied to the ultrasound images, and comparatively analyzed with the original image without the algorithm. As a result, applying DWT and filtering techniques caused information loss and noise characteristics, and did not represent the most significant noise reduction performance. Conversely, an image fusion method applying SRAD-original conditions preserved the key information in the original image, and the speckle noise was removed. Based on such characteristics, the input conditions of SRAD-original had the best denoising performance with the ultrasound images. From this study, the best denoising technique proposed based on the results was confirmed to have a high potential for clinical application.

  12. Efficient feature selection for sleep staging based on maximal overlap discrete wavelet transform and SVM.

    PubMed

    Khalighi, Sirvan; Sousa, Teresa; Oliveira, Dulce; Pires, Gabriel; Nunes, Urbano

    2011-01-01

    In this paper, a novel algorithm is proposed with application in sleep/awake detection and in multiclass sleep stage classification (awake, non rapid eye movement (NREM) sleep and REM sleep). In turn, NREM is further divided into three stages denoted here by S1, S2, and S3. Six electroencephalographic (EEG) and two electro-oculographic (EOG) channels were used in this study. The maximum overlap discrete wavelet transform (MODWT) with the multi-resolution Analysis is applied to extract relevant features from EEG and EOG signals. The extracted feature set is transformed and normalized to reduce the effect of extreme values of features. A set of significant features are selected by mRMR which is a powerful feature selection method. Finally the selected feature set is classified using support vector machines (SVMs). The system achieved 95.0% of average accuracy for sleep/awake detection. As concerns the multiclass case, the average accuracy of sleep stages classification was 93.0%.

  13. A discrete wavelet based feature extraction and hybrid classification technique for microarray data analysis.

    PubMed

    Bennet, Jaison; Ganaprakasam, Chilambuchelvan Arul; Arputharaj, Kannan

    2014-01-01

    Cancer classification by doctors and radiologists was based on morphological and clinical features and had limited diagnostic ability in olden days. The recent arrival of DNA microarray technology has led to the concurrent monitoring of thousands of gene expressions in a single chip which stimulates the progress in cancer classification. In this paper, we have proposed a hybrid approach for microarray data classification based on nearest neighbor (KNN), naive Bayes, and support vector machine (SVM). Feature selection prior to classification plays a vital role and a feature selection technique which combines discrete wavelet transform (DWT) and moving window technique (MWT) is used. The performance of the proposed method is compared with the conventional classifiers like support vector machine, nearest neighbor, and naive Bayes. Experiments have been conducted on both real and benchmark datasets and the results indicate that the ensemble approach produces higher classification accuracy than conventional classifiers. This paper serves as an automated system for the classification of cancer and can be applied by doctors in real cases which serve as a boon to the medical community. This work further reduces the misclassification of cancers which is highly not allowed in cancer detection.

  14. Segmentation of Breast Lesions in Ultrasound Images through Multiresolution Analysis Using Undecimated Discrete Wavelet Transform.

    PubMed

    Prabusankarlal, K M; Thirumoorthy, P; Manavalan, R

    2016-11-01

    Earliest detection and diagnosis of breast cancer reduces mortality rate of patients by increasing the treatment options. A novel method for the segmentation of breast ultrasound images is proposed in this work. The proposed method utilizes undecimated discrete wavelet transform to perform multiresolution analysis of the input ultrasound image. As the resolution level increases, although the effect of noise reduces, the details of the image also dilute. The appropriate resolution level, which contains essential details of the tumor, is automatically selected through mean structural similarity. The feature vector for each pixel is constructed by sampling intra-resolution and inter-resolution data of the image. The dimensionality of feature vectors is reduced by using principal components analysis. The reduced set of feature vectors is segmented into two disjoint clusters using spatial regularized fuzzy c-means algorithm. The proposed algorithm is evaluated by using four validation metrics on a breast ultrasound database of 150 images including 90 benign and 60 malignant cases. The algorithm produced significantly better segmentation results (Dice coef = 0.8595, boundary displacement error = 9.796, dvi = 1.744, and global consistency error = 0.1835) than the other three state of the art methods.

  15. Discrete wavelet transform to improve guided-wave-based health monitoring of tendons and cables

    NASA Astrophysics Data System (ADS)

    Rizzo, Piervincenzo; Lanza di Scalea, Francesco

    2004-07-01

    Multi-wire steel strands are used in civil structures as pre-stressing tendons in prestressed concrete and as stay-cables in cable-stayed and suspension bridges. Monitoring the structural performance of these components is important to ensure the proper functioning and safety of the entire structure. Among the various NDE techniques that are under investigation for monitoring tendons and cables, the use of ultrasonic guided waves shows good promises. The main advantage of this approach is the possibility for the simultaneous monitoring of loads and detection of defects, such as corrosion and broken wires, by using the same ultrasonic setup. Load monitoring is achieved by measuring the travel time of the wave across a given length of the cable. Defect detection is achieved by measuring the reflections of the wave from the geometrical discontinuities. The new contributions of the current paper are two-fold. First, the study identifies those ultrasonic frequencies propagating with low attenuation for long-range defect detection. Second, the technique is substantially improved by implementing the Discrete Wavelet Transform (DWT) as a data post-processing tool. The data de-noising and data compression abilities of the DWT allow for greater sensitivity, larger ranges and higher monitoring speed. It is shown that the implementation of the DWT in the ultrasonic guided-wave technique becomes necessary for monitoring tendons and cables in the field.

  16. A high-throughput two channel discrete wavelet transform architecture for the JPEG2000 standard

    NASA Astrophysics Data System (ADS)

    Badakhshannoory, Hossein; Hashemi, Mahmoud R.; Aminlou, Alireza; Fatemi, Omid

    2005-07-01

    The Discrete Wavelet Transform (DWT) is increasingly recognized in image and video compression standards, as indicated by its use in JPEG2000. The lifting scheme algorithm is an alternative DWT implementation that has a lower computational complexity and reduced resource requirement. In the JPEG2000 standard two lifting scheme based filter banks are introduced: the 5/3 and 9/7. In this paper a high throughput, two channel DWT architecture for both of the JPEG2000 DWT filters is presented. The proposed pipelined architecture has two separate input channels that process the incoming samples simultaneously with minimum memory requirement for each channel. The architecture had been implemented in VHDL and synthesized on a Xilinx Virtex2 XCV1000. The proposed architecture applies DWT on a 2K by 1K image at 33 fps with a 75 MHZ clock frequency. This performance is achieved with 70% less resources than two independent single channel modules. The high throughput and reduced resource requirement has made this architecture the proper choice for real time applications such as Digital Cinema.

  17. Denoising of magnetotelluric signals by polarization analysis in the discrete wavelet domain

    NASA Astrophysics Data System (ADS)

    Carbonari, R.; D'Auria, L.; Di Maio, R.; Petrillo, Z.

    2017-03-01

    Magnetotellurics (MT) is one of the prominent geophysical methods for underground deep exploration and, thus, appropriate for applications to petroleum and geothermal research. However, it is not completely reliable when applied in areas characterized by intense urbanization, as the presence of cultural noise may significantly affect the MT impedance tensor estimates and, consequently, the apparent resistivity values that describe the electrical behaviour of the investigated buried structures. The development of denoising techniques of MT data is thus one of the main objectives to make magnetotellurics reliably even in urban or industrialized environments. In this work we propose an algorithm for filtering of MT data affected by temporally localized noise. It exploits the discrete wavelet transform (DWT) that, thanks to the possibility to operates in both time and frequency domain, allows to detect transient components of the MT signal, likely due to disturbances of anthropic nature. The implemented filter relies on the estimate of the ellipticity of the polarized MT wave. The application of the filter to synthetic and field MT data has proven its ability in detecting and removing cultural noise, thus providing apparent resistivity curves more smoothed than those obtained by using raw signals.

  18. Importance of motion in motion-compensated temporal discrete wavelet transforms

    NASA Astrophysics Data System (ADS)

    Konrad, Janusz; Bozinovic, Nikola

    2005-03-01

    Discrete wavelet transforms (DWTs) applied temporally under motion compensation (MC) have recently become a very powerful tool in video compression, especially when implemented through lifting. A recent theoretical analysis has established conditions for perfect reconstruction in the case of transversal MC-DWT, and also for the equivalence of lifted and transversal implementations of MC-DWT. For Haar MC-DWT these conditions state that motion must be invertible, while for higher-order transforms they state that motion composition must be a well-defined operator. Since many popular motion models do not obey these properties, thus inducing errors (prior to compression), it is important to understand what is the impact of motion non-invertibility or quasi-invertibility on the performance of video compression. In this paper, we present new experimental results of a study aiming at a quantitative evaluation of such impact in case of block-based motion. We propose a new metric to measure the degree with which two motion fields are not inverses of each other. Using this metric we investigate several motion inversion schemes, from simple temporal sample-and-hold, through spatial nearest-neighbor, to advanced spline-based inversion, and we compare compression performance of each method to that of independently-estimated forward and backward motion fields. We observe that compression performance monotonically improves with the reduction of the proposed motion inversion error, up to 1-1.5dB for the advanced spline-based inversion. We also generalize the problem of "unconnected" pixels by extending it to both update and prediction steps, as opposed to the update step only used in conventional methods. Initial tests show favorable results compared to previously reported techniques.

  19. Combining 2D wavelet edge highlighting and 3D thresholding for lung segmentation in thin-slice CT.

    PubMed

    Korfiatis, P; Skiadopoulos, S; Sakellaropoulos, P; Kalogeropoulou, C; Costaridou, L

    2007-12-01

    The first step in lung analysis by CT is the identification of the lung border. To deal with the increased number of sections per scan in thin-slice multidetector CT, it has been crucial to develop accurate and automated lung segmentation algorithms. In this study, an automated method for lung segmentation of thin-slice CT data is presented. The method exploits the advantages of a two-dimensional wavelet edge-highlighting step in lung border delineation. Lung volume segmentation is achieved with three-dimensional (3D) grey level thresholding, using a minimum error technique. 3D thresholding, combined with the wavelet pre-processing step, successfully deals with lung border segmentation challenges, such as anterior or posterior junction lines and juxtapleural nodules. Finally, to deal with mediastinum border under-segmentation, 3D morphological closing with a spherical structural element is applied. The performance of the proposed method is quantitatively assessed on a dataset originating from the Lung Imaging Database Consortium (LIDC) by comparing automatically derived borders with the manually traced ones. Segmentation performance, averaged over left and right lung volumes, for lung volume overlap is 0.983+/-0.008, whereas for shape differentiation in terms of mean distance it is 0.770+/-0.251 mm (root mean square distance is 0.520+/-0.008 mm; maximum distance is 3.327+/-1.637 mm). The effect of the wavelet pre-processing step was assessed by comparing the proposed method with the 3D thresholding technique (applied on original volume data). This yielded statistically significant differences for all segmentation metrics (p<0.01). Results demonstrate an accurate method that could be used as a first step in computer lung analysis by CT.

  20. A Robust and Non-Blind Watermarking Scheme for Gray Scale Images Based on the Discrete Wavelet Transform Domain

    NASA Astrophysics Data System (ADS)

    Bakhouche, A.; Doghmane, N.

    2008-06-01

    In this paper, a new adaptive watermarking algorithm is proposed for still image based on the wavelet transform. The two major applications for watermarking are protecting copyrights and authenticating photographs. Our robust watermarking [3] [22] is used for copyright protection owners. The main reason for protecting copyrights is to prevent image piracy when the provider distributes the image on the Internet. Embed watermark in low frequency band is most resistant to JPEG compression, blurring, adding Gaussian noise, rescaling, rotation, cropping and sharpening but embedding in high frequency is most resistant to histogram equalization, intensity adjustment and gamma correction. In this paper, we extend the idea to embed the same watermark in two bands (LL and HH bands or LH and HL bands) at the second level of Discrete Wavelet Transform (DWT) decomposition. Our generalization includes all the four bands (LL, HL, LH, and HH) by modifying coefficients of the all four bands in order to compromise between acceptable imperceptibility level and attacks' resistance.

  1. Joint application of continuous and discrete wavelet transform on gravity data to identify shallow and deep sources

    NASA Astrophysics Data System (ADS)

    Fedi, M.; Primiceri, R.; Quarta, T.; Villani, A. V.

    2004-01-01

    The discrete wavelet transform (dwt), using the good property of localization of wavelet bases has been used as a powerful tool in filtering and denoising problems. The continuous wavelet transform (cwt) exploits the upward continuation properties of the field horizontal derivative and allows the location of potential field singularities in a simple geometrical manner. Within the cwt space-scale framework, the lines formed by joining, at different scales, the modulus maxima of the wavelet coefficients (multiscale edge detection method) intersect each other at the position of the point source or along the edges of the causative body. As long as the multiscale edge detection method is applied to experimental data the procedure may, however, fail, since the observed anomalies are the superposition of effects of sources having different density contrast, geometrical size and depths. We show that wavelet transform modulus maxima lines attributed to deep sources do not converge toward the true depths, but yield completely erroneous solutions. On the other hand, use of nth-order derivatives of the potential field allows the enhancement of the shallowest source effects, preventing us from obtaining information on the deeper ones. In this paper we therefore try to overcome this problem by a joint application of cwt and dwt. A localized dwt filter coupled to compactness criterion allows the separation of the effects due to the deeper sources from those of the shallower ones. Hence, the multiscale edge detection method, applied separately to the original and the filtered signals enabled the estimation of the depth of shallower and deeper sources, respectively. This analysis, performed on the gravity anomalies of Sardinia (Italy), has given estimations of the depths to both the Campidano graben and the Moho discontinuity, in good agreement with previous interpretations of gravity and seismic data.

  2. Wavelet Analysis of Bioacoustic Scattering and Marine Mammal Vocalizations

    DTIC Science & Technology

    2005-09-01

    17 B. DISCRETE WAVELET TRANSFORM .....................................................17 1. Mother Wavelet ...LEFT BLANK 11 III. WAVELET THEORY There are two distinct classes of wavelet transforms : the continuous wavelet transform (CWT) and the discrete ... wavelet transform (DWT). The discrete wavelet transform is a compact representation of the data and is particularly useful for noise reduction and

  3. Estimation of moisture and oil content of in-shell nuts with a capacitance sensor using discrete wavelet analysis

    NASA Astrophysics Data System (ADS)

    Kandala, Chari V.; Sundaram, Jaya; Govindarajan, K. N.; Butts, Chris L.; Subbiah, Jeyam

    2009-03-01

    Moisture and oil contents are important quality factors often measured and monitored in the processing and storage of food products such as corn and peanuts. For estimating these parameters for peanuts nondestructively a parallel-plate capacitance sensor was used in conjunction with an impedance analyzer. Impedance, phase angle and dissipation factor were measured for the parallel-plate system, holding the in-shell peanut samples between its plates, at frequencies ranging between 1MHz and 30 MHz in intervals of 0.5 MHz. The acquired signals were analyzed with discrete wavelet analysis. The signals were decomposed to 6 levels using Daubechies mother wavelet. The decomposition coefficients of the sixth level were passed onto a stepwise variable selection routine to select significant variables. A linear regression was developed using only the significant variables to predict the moisture and oil content of peanut pods (inshell peanuts) from the impedance measurements. The wavelet analysis yielded similar R2 values with fewer variables as compared to multiple linear and partial least squares regressions. The estimated values were found to be in good agreement with the standard values for the samples tested. Ability to estimate the moisture and oil contents in peanuts without shelling them will be of considerable help to the peanut industry.

  4. A new structure of 3D dual-tree discrete wavelet transforms and applications to video denoising and coding

    NASA Astrophysics Data System (ADS)

    Shi, Fei; Wang, Beibei; Selesnick, Ivan W.; Wang, Yao

    2006-01-01

    This paper introduces an anisotropic decomposition structure of a recently introduced 3-D dual-tree discrete wavelet transform (DDWT), and explores the applications for video denoising and coding. The 3-D DDWT is an attractive video representation because it isolates motion along different directions in separate subbands, and thus leads to sparse video decompositions. Our previous investigation shows that the 3-D DDWT, compared to the standard discrete wavelet transform (DWT), complies better with the statistical models based on sparse presumptions, and gives better visual and numerical results when used for statistical denoising algorithms. Our research on video compression also shows that even with 4:1 redundancy, the 3-D DDWT needs fewer coefficients to achieve the same coding quality (in PSNR) by applying the iterative projection-based noise shaping scheme proposed by Kingsbury. The proposed anisotropic DDWT extends the superiority of isotropic DDWT with more directional subbands without adding to the redundancy. Unlike the original 3-D DDWT which applies dyadic decomposition along all three directions and produces isotropic frequency spacing, it has a non-uniform tiling of the frequency space. By applying this structure, we can improve the denoising results, and the number of significant coefficients can be reduced further, which is beneficial for video coding.

  5. A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Palha, A.; Gerritsma, M.

    2017-01-01

    In this work we present a mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations that in the limit of vanishing dissipation exactly preserves mass, kinetic energy, enstrophy and total vorticity on unstructured triangular grids. The essential ingredients to achieve this are: (i) a velocity-vorticity formulation in rotational form, (ii) a sequence of function spaces capable of exactly satisfying the divergence free nature of the velocity field, and (iii) a conserving time integrator. Proofs for the exact discrete conservation properties are presented together with numerical test cases on highly irregular triangular grids.

  6. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes.

    PubMed

    Casson, Alexander J

    2015-12-17

    Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit which approximates the output of the Discrete Wavelet Transform (DWT) for use in ultra low power wearable sensors. Analog filters are used for the DWT filters and it is demonstrated how these generate analog domain DWT-like information that embeds information from Butterworth and Daubechies maximally flat mother wavelet responses. The Analog DWT is realised in hardware via g(m)C circuits, designed to operate from a 1.3 V coin cell battery, and provide DWT-like signal processing using under 115 nW of power when implemented in a 0.18 μm CMOS process. Practical examples demonstrate the effective use of the new Analog DWT on ECG (electrocardiogram) and EEG (electroencephalogram) signals recorded from humans.

  7. An Analog Circuit Approximation of the Discrete Wavelet Transform for Ultra Low Power Signal Processing in Wearable Sensor Nodes

    PubMed Central

    Casson, Alexander J.

    2015-01-01

    Ultra low power signal processing is an essential part of all sensor nodes, and particularly so in emerging wearable sensors for biomedical applications. Analog signal processing has an important role in these low power, low voltage, low frequency applications, and there is a key drive to decrease the power consumption of existing analog domain signal processing and to map more signal processing approaches into the analog domain. This paper presents an analog domain signal processing circuit which approximates the output of the Discrete Wavelet Transform (DWT) for use in ultra low power wearable sensors. Analog filters are used for the DWT filters and it is demonstrated how these generate analog domain DWT-like information that embeds information from Butterworth and Daubechies maximally flat mother wavelet responses. The Analog DWT is realised in hardware via gmC circuits, designed to operate from a 1.3 V coin cell battery, and provide DWT-like signal processing using under 115 nW of power when implemented in a 0.18 μm CMOS process. Practical examples demonstrate the effective use of the new Analog DWT on ECG (electrocardiogram) and EEG (electroencephalogram) signals recorded from humans. PMID:26694414

  8. Research of Recognition Method of Discrete Wavelet Feature Extraction and PNN Classification of Rats FT-IR Pancreatic Cancer Data

    PubMed Central

    Wan, Chayan; Cao, Wenqing; Cheng, Cungui

    2014-01-01

    Sprague-Dawley (SD) rats' normal and abnormal pancreatic tissues are determined directly by attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy method. In order to diagnose earlier stage of SD rats pancreatic cancer rate with FT-IR, a novel method of extraction of FT-IR feature using discrete wavelet transformation (DWT) analysis and classification with the probability neural network (PNN) was developed. The differences between normal pancreatic and abnormal samples were identified by PNN based on the indices of 4 feature variants. When error goal was 0.01, the total correct rates of pancreatic early carcinoma and advanced carcinoma were 98% and 100%, respectively. It was practical to apply PNN on the basis of ATR-FT-IR to identify abnormal tissues. The research result shows the feasibility of establishing the models with FT-IR-DWT-PNN method to identify normal pancreatic tissues, early carcinoma tissues, and advanced carcinoma tissues. PMID:25548717

  9. A combination of dual-tree discrete wavelet transform and minimum redundancy maximum relevance method for diagnosis of Alzheimer's disease.

    PubMed

    Aggarwal, Namita; Rana, Bharti; Agrawal, R K; Kumaran, Senthil

    2015-01-01

    In this paper, we propose a three-phased method for diagnosis of Alzheimer's disease using the structural magnetic resonance imaging (MRI). In first phase, gray matter tissue probability map is obtained from every brain MRI volume. Further, five regions of interest (ROIs) are extracted as per prior knowledge. In second phase, features are extracted from each ROI using 3D dual-tree discrete wavelet transform. In third phase, relevant features are selected using minimum redundancy maximum relevance features selection technique. The decision model is built with features so obtained, using a classifier. To evaluate the effectiveness of the proposed method, experiments are performed with four well-known classifiers on four data sets, built from a publicly available OASIS database. The performance is evaluated in terms of sensitivity, specificity and classification accuracy. It was observed that the proposed method outperforms existing methods in terms of all three performance measures. This is further validated with statistical tests.

  10. Research of Recognition Method of Discrete Wavelet Feature Extraction and PNN Classification of Rats FT-IR Pancreatic Cancer Data.

    PubMed

    Wan, Chayan; Cao, Wenqing; Cheng, Cungui

    2014-01-01

    Sprague-Dawley (SD) rats' normal and abnormal pancreatic tissues are determined directly by attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy method. In order to diagnose earlier stage of SD rats pancreatic cancer rate with FT-IR, a novel method of extraction of FT-IR feature using discrete wavelet transformation (DWT) analysis and classification with the probability neural network (PNN) was developed. The differences between normal pancreatic and abnormal samples were identified by PNN based on the indices of 4 feature variants. When error goal was 0.01, the total correct rates of pancreatic early carcinoma and advanced carcinoma were 98% and 100%, respectively. It was practical to apply PNN on the basis of ATR-FT-IR to identify abnormal tissues. The research result shows the feasibility of establishing the models with FT-IR-DWT-PNN method to identify normal pancreatic tissues, early carcinoma tissues, and advanced carcinoma tissues.

  11. Designing an Algorithm for Cancerous Tissue Segmentation Using Adaptive K-means Cluttering and Discrete Wavelet Transform

    PubMed Central

    Rezaee, Kh.; Haddadnia, J.

    2013-01-01

    Background: Breast cancer is currently one of the leading causes of death among women worldwide. The diagnosis and separation of cancerous tumors in mammographic images require accuracy, experience and time, and it has always posed itself as a major challenge to the radiologists and physicians. Objective: This paper proposes a new algorithm which draws on discrete wavelet transform and adaptive K-means techniques to transmute the medical images implement the tumor estimation and detect breast cancer tumors in mammograms in early stages. It also allows the rapid processing of the input data. Method: In the first step, after designing a filter, the discrete wavelet transform is applied to the input images and the approximate coefficients of scaling components are constructed. Then, the different parts of image are classified in continuous spectrum. In the next step, by using adaptive K-means algorithm for initializing and smart choice of clusters’ number, the appropriate threshold is selected. Finally, the suspicious cancerous mass is separated by implementing the image processing techniques. Results: We Received 120 mammographic images in LJPEG format, which had been scanned in Gray-Scale with 50 microns size, 3% noise and 20% INU from clinical data taken from two medical databases (mini-MIAS and DDSM). The proposed algorithm detected tumors at an acceptable level with an average accuracy of 92.32% and sensitivity of 90.24%. Also, the Kappa coefficient was approximately 0.85, which proved the suitable reliability of the system performance. Conclusion: The exact positioning of the cancerous tumors allows the radiologist to determine the stage of disease progression and suggest an appropriate treatment in accordance with the tumor growth. The low PPV and high NPV of the system is a warranty of the system and both clinical specialists and patients can trust its output. PMID:25505753

  12. A Piecewise Linear Discontinuous Finite Element Spatial Discretization of the Transport Equation in 2D Cylindrical Geometry

    SciTech Connect

    Bailey, T S; Adams, M L; Chang, J H

    2008-10-01

    We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional cylindrical (RZ) geometry for arbitrary polygonal meshes. This discretization is a discontinuous finite element method that utilizes the piecewise linear basis functions developed by Stone and Adams. We describe an asymptotic analysis that shows this method to be accurate for many problems in the thick diffusion limit on arbitrary polygons, allowing this method to be applied to radiative transfer problems with these types of meshes. We also present numerical results for multiple problems on quadrilateral grids and compare these results to the well-known bi-linear discontinuous finite element method.

  13. A new method based on Adaptive Discrete Wavelet Entropy Energy and Neural Network Classifier (ADWEENN) for recognition of urine cells from microscopic images independent of rotation and scaling.

    PubMed

    Avci, Derya; Leblebicioglu, Mehmet Kemal; Poyraz, Mustafa; Dogantekin, Esin

    2014-02-01

    So far, analysis and classification of urine cells number has become an important topic for medical diagnosis of some diseases. Therefore, in this study, we suggest a new technique based on Adaptive Discrete Wavelet Entropy Energy and Neural Network Classifier (ADWEENN) for Recognition of Urine Cells from Microscopic Images Independent of Rotation and Scaling. Some digital image processing methods such as noise reduction, contrast enhancement, segmentation, and morphological process are used for feature extraction stage of this ADWEENN in this study. Nowadays, the image processing and pattern recognition topics have come into prominence. The image processing concludes operation and design of systems that recognize patterns in data sets. In the past years, very difficulty in classification of microscopic images was the deficiency of enough methods to characterize. Lately, it is seen that, multi-resolution image analysis methods such as Gabor filters, discrete wavelet decompositions are superior to other classic methods for analysis of these microscopic images. In this study, the structure of the ADWEENN method composes of four stages. These are preprocessing stage, feature extraction stage, classification stage and testing stage. The Discrete Wavelet Transform (DWT) and adaptive wavelet entropy and energy is used for adaptive feature extraction in feature extraction stage to strengthen the premium features of the Artificial Neural Network (ANN) classifier in this study. Efficiency of the developed ADWEENN method was tested showing that an avarage of 97.58% recognition succes was obtained.

  14. Fingerprint spoof detection using wavelet based local binary pattern

    NASA Astrophysics Data System (ADS)

    Kumpituck, Supawan; Li, Dongju; Kunieda, Hiroaki; Isshiki, Tsuyoshi

    2017-02-01

    In this work, a fingerprint spoof detection method using an extended feature, namely Wavelet-based Local Binary Pattern (Wavelet-LBP) is introduced. Conventional wavelet-based methods calculate wavelet energy of sub-band images as the feature for discrimination while we propose to use Local Binary Pattern (LBP) operation to capture the local appearance of the sub-band images instead. The fingerprint image is firstly decomposed by two-dimensional discrete wavelet transform (2D-DWT), and then LBP is applied on the derived wavelet sub-band images. Furthermore, the extracted features are used to train Support Vector Machine (SVM) classifier to create the model for classifying the fingerprint images into genuine and spoof. Experiments that has been done on Fingerprint Liveness Detection Competition (LivDet) datasets show the improvement of the fingerprint spoof detection by using the proposed feature.

  15. Fast and robust 2D-shape extraction using discrete-point sampling and centerline grouping in complex images.

    PubMed

    Zhu, Zongxiao; Wang, Guoyou; Liu, Jianguo; Chen, Zhong

    2013-12-01

    This paper initially develops the discrete-point sampling operator's concept, model, and parameters that we have previously proposed, and makes its belt-shaped regions in a discrete-point sampling map more salient and appropriate for centerline extraction. The cross-sectional features of these belt-shaped regions are then analyzed and seven types of feature points are defined to facilitate descriptions of such features. Based on these feature points, a three-level detection system is proposed, including feature points, line segments, and centerlines, to extract centerlines from the belt-shaped regions. Eight basic types of centerlines and five types of relationships among the centerlines are defined by computational geometry algorithms, and Gestalt laws are used to cluster them into groupings. If some prior information about a desired shape is available, retrieval grouping may be carried out by a discrete-point sampling map, the purpose of which is to find centerlines by best matching with prior information. Discrete-point sampling effectually overcomes the influences of interference from noise, textures, and uneven illumination, and greatly reduces the difficulty of centerline extraction. Centerline clustered groupings and retrieval grouping can offer a strong anti-interference ability with nonlinear deformations such as articulation and occlusion. This method can extract large-scale complex shapes combined of lines and planes from complex images. The wheel location results of noise test and other shape extraction experiments show that our method has a strong capability to persist with nonlinear deformations.

  16. Prototyping FM data demodulation in free-space optical communication systems using discrete wavelet transformation

    NASA Astrophysics Data System (ADS)

    Tran, Lan; El-Araby, Esam; Namazi, Nader

    2013-09-01

    Free-Space Optical (FSO) communications is a vital area of research due to its important advantages of providing a very large bandwidth and relatively low cost of implementation. One of the inherent limitations on the quality of an FSO communication link is the degradation of the received beam due to atmospheric turbulence. This paper is concerned with prototyping a wavelet-based algorithm to remove or reduce the effect of the scintillation noise and other unwanted signal on an FSO link that uses analog frequency modulation. The applicability of these concepts will be demonstrated by providing a real-time prototype using reconfigurable hardware, namely Field Programmable Gate Arrays (FPGA), and high-level design tools such as System Generator for DSP from Xilinx. Our proposed prototype was realized on the Virtex-6 FPGA ML605 board using the XC6VLX240T-1FFG1156 device.

  17. Digital implementation of filters for nuclear applications using the discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Garcia-Belmonte, G.; Perez, J. M.; Fernandez-Marron, J. L.; Bisquert, J.

    1996-10-01

    This paper presents a novel digital pulse processing technique based on fast implementations of a modern signal analysis method known as the wavelet transform (WT). From the point of view of standard nuclear filtering, the whole analysis may be understood as the action of a bank of gaussian shapers. The algorithm permits the evaluation of relevant parameters on each pulse and, making use of this information, a spectral improvement is achieved in the response of HgI 2 detectors constructed in our laboratories. As the performance of these detectors is mainly limited by the hole trapping phenomenon, the introduction of a charge loss correction making use of the WT has been considered. In this work, the pulse processing has been carried out by transferring the digital recorded pulses to a computer where a software version of the algorithm is performed.

  18. Frequency Band Analysis of Electrocardiogram (ECG) Signals for Human Emotional State Classification Using Discrete Wavelet Transform (DWT)

    PubMed Central

    Murugappan, Murugappan; Murugappan, Subbulakshmi; Zheng, Bong Siao

    2013-01-01

    [Purpose] Intelligent emotion assessment systems have been highly successful in a variety of applications, such as e-learning, psychology, and psycho-physiology. This study aimed to assess five different human emotions (happiness, disgust, fear, sadness, and neutral) using heart rate variability (HRV) signals derived from an electrocardiogram (ECG). [Subjects] Twenty healthy university students (10 males and 10 females) with a mean age of 23 years participated in this experiment. [Methods] All five emotions were induced by audio-visual stimuli (video clips). ECG signals were acquired using 3 electrodes and were preprocessed using a Butterworth 3rd order filter to remove noise and baseline wander. The Pan-Tompkins algorithm was used to derive the HRV signals from ECG. Discrete wavelet transform (DWT) was used to extract statistical features from the HRV signals using four wavelet functions: Daubechies6 (db6), Daubechies7 (db7), Symmlet8 (sym8), and Coiflet5 (coif5). The k-nearest neighbor (KNN) and linear discriminant analysis (LDA) were used to map the statistical features into corresponding emotions. [Results] KNN provided the maximum average emotion classification rate compared to LDA for five emotions (sadness − 50.28%; happiness − 79.03%; fear − 77.78%; disgust − 88.69%; and neutral − 78.34%). [Conclusion] The results of this study indicate that HRV may be a reliable indicator of changes in the emotional state of subjects and provides an approach to the development of a real-time emotion assessment system with a higher reliability than other systems. PMID:24259846

  19. Frequency Band Analysis of Electrocardiogram (ECG) Signals for Human Emotional State Classification Using Discrete Wavelet Transform (DWT).

    PubMed

    Murugappan, Murugappan; Murugappan, Subbulakshmi; Zheng, Bong Siao

    2013-07-01

    [Purpose] Intelligent emotion assessment systems have been highly successful in a variety of applications, such as e-learning, psychology, and psycho-physiology. This study aimed to assess five different human emotions (happiness, disgust, fear, sadness, and neutral) using heart rate variability (HRV) signals derived from an electrocardiogram (ECG). [Subjects] Twenty healthy university students (10 males and 10 females) with a mean age of 23 years participated in this experiment. [Methods] All five emotions were induced by audio-visual stimuli (video clips). ECG signals were acquired using 3 electrodes and were preprocessed using a Butterworth 3rd order filter to remove noise and baseline wander. The Pan-Tompkins algorithm was used to derive the HRV signals from ECG. Discrete wavelet transform (DWT) was used to extract statistical features from the HRV signals using four wavelet functions: Daubechies6 (db6), Daubechies7 (db7), Symmlet8 (sym8), and Coiflet5 (coif5). The k-nearest neighbor (KNN) and linear discriminant analysis (LDA) were used to map the statistical features into corresponding emotions. [Results] KNN provided the maximum average emotion classification rate compared to LDA for five emotions (sadness - 50.28%; happiness - 79.03%; fear - 77.78%; disgust - 88.69%; and neutral - 78.34%). [Conclusion] The results of this study indicate that HRV may be a reliable indicator of changes in the emotional state of subjects and provides an approach to the development of a real-time emotion assessment system with a higher reliability than other systems.

  20. Fault feature extraction of gearbox by using overcomplete rational dilation discrete wavelet transform on signals measured from vibration sensors

    NASA Astrophysics Data System (ADS)

    Chen, Binqiang; Zhang, Zhousuo; Sun, Chuang; Li, Bing; Zi, Yanyang; He, Zhengjia

    2012-11-01

    Gearbox fault diagnosis is very important for preventing catastrophic accidents. Vibration signals of gearboxes measured by sensors are useful and dependable as they carry key information related to the mechanical faults in gearboxes. Effective signal processing techniques are in necessary demands to extract the fault features contained in the collected gearbox vibration signals. Overcomplete rational dilation discrete wavelet transform (ORDWT) enjoys attractive properties such as better shift-invariance, adjustable time-frequency distributions and flexible wavelet atoms of tunable oscillation in comparison with classical dyadic wavelet transform (DWT). Due to these advantages, ORDWT is presented as a versatile tool that can be adapted to analysis of gearbox fault features of different types, especially in analyzing the non-stationary and transient characteristics of the signals. Aiming to extract the various types of fault features confronted in gearbox fault diagnosis, a fault feature extraction technique based on ORDWT is proposed in this paper. In the routine of the proposed technique, ORDWT is used as the pre-processing decomposition tool, and a corresponding post-processing method is combined with ORDWT to extract the fault feature of a specific type. For extracting periodical impulses in the signal, an impulse matching algorithm is presented. In this algorithm, ORDWT bases of varied time-frequency distributions and varied oscillatory natures are adopted, moreover an improved signal impulsiveness measure derived from kurtosis is developed for choosing optimal ORDWT bases that perfectly match the hidden periodical impulses. For demodulation purpose, an improved instantaneous time-frequency spectrum (ITFS), based on the combination of ORDWT and Hilbert transform, is presented. For signal denoising applications, ORDWT is enhanced by neighboring coefficient shrinkage strategy as well as subband selection step to reveal the buried transient vibration contents. The

  1. An innovative approach for characteristic analysis and state-of-health diagnosis for a Li-ion cell based on the discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Kim, Jonghoon; Cho, B. H.

    2014-08-01

    This paper introduces an innovative approach to analyze electrochemical characteristics and state-of-health (SOH) diagnosis of a Li-ion cell based on the discrete wavelet transform (DWT). In this approach, the DWT has been applied as a powerful tool in the analysis of the discharging/charging voltage signal (DCVS) with non-stationary and transient phenomena for a Li-ion cell. Specifically, DWT-based multi-resolution analysis (MRA) is used for extracting information on the electrochemical characteristics in both time and frequency domain simultaneously. Through using the MRA with implementation of the wavelet decomposition, the information on the electrochemical characteristics of a Li-ion cell can be extracted from the DCVS over a wide frequency range. Wavelet decomposition based on the selection of the order 3 Daubechies wavelet (dB3) and scale 5 as the best wavelet function and the optimal decomposition scale is implemented. In particular, this present approach develops these investigations one step further by showing low and high frequency components (approximation component An and detail component Dn, respectively) extracted from variable Li-ion cells with different electrochemical characteristics caused by aging effect. Experimental results show the clearness of the DWT-based approach for the reliable diagnosis of the SOH for a Li-ion cell.

  2. A General Method for Evaluation of 2D and 3D Domain Integrals Without Domain Discretization and its Application in BEM

    NASA Astrophysics Data System (ADS)

    Hematiyan, M. R.

    2007-03-01

    A robust method is presented to evaluate 2D and 3D domain integrals without domain discretization. Each domain integral is transformed into a double integral, a boundary integral and a 1D integral. Both integrals are evaluated by adaptive Simpson quadrature method. The method can be used to evaluate domain integrals over simply or multiply connected regions with any arbitrary form of integrands. As an application of the method, domain integrals produced in boundary element formulation of potential and elastostatic problems are analyzed. Several examples are provided to show the validity and accuracy of the method.

  3. [Hyper spectral estimation method for soil alkali hydrolysable nitrogen content based on discrete wavelet transform and genetic algorithm in combining with partial least squares DWT-GA-PLS)].

    PubMed

    Chen, Hong-Yan; Zhao, Geng-Xing; Li, Xi-Can; Wang, Xiang-Feng; Li, Yu-Ling

    2013-11-01

    Taking the Qihe County in Shandong Province of East China as the study area, soil samples were collected from the field, and based on the hyperspectral reflectance measurement of the soil samples and the transformation with the first deviation, the spectra were denoised and compressed by discrete wavelet transform (DWT), the variables for the soil alkali hydrolysable nitrogen quantitative estimation models were selected by genetic algorithms (GA), and the estimation models for the soil alkali hydrolysable nitrogen content were built by using partial least squares (PLS) regression. The discrete wavelet transform and genetic algorithm in combining with partial least squares (DWT-GA-PLS) could not only compress the spectrum variables and reduce the model variables, but also improve the quantitative estimation accuracy of soil alkali hydrolysable nitrogen content. Based on the 1-2 levels low frequency coefficients of discrete wavelet transform, and under the condition of large scale decrement of spectrum variables, the calibration models could achieve the higher or the same prediction accuracy as the soil full spectra. The model based on the second level low frequency coefficients had the highest precision, with the model predicting R2 being 0.85, the RMSE being 8.11 mg x kg(-1), and RPD being 2.53, indicating the effectiveness of DWT-GA-PLS method in estimating soil alkali hydrolysable nitrogen content.

  4. Discrete hexamer water clusters and 2D water layer trapped in three luminescent Ag/tetramethylpyrazine/benzene-dicarboxylate hosts: 1D chain, 2D layer and 3D network

    NASA Astrophysics Data System (ADS)

    Mei, Hong-Xin; Zhang, Ting; Huang, Hua-Qi; Huang, Rong-Bin; Zheng, Lan-Sun

    2016-03-01

    Three mix-ligand Ag(I) coordination compounds, namely, {[Ag10(tpyz) 5(L1) 5(H2 O)2].(H2 O)4}n (1, tpyz = 2,3,4,5-tetramethylpyrazine, H2 L1 = phthalic acid), [Ag4(tpyz) 2(L2) 2(H2 O)].(H2 O)5}n (2, H2 L2 = isophthalic acid) {[Ag2(tpyz) 2(L3) (H2 O)4].(H2 O)8}n (3, H2 L3 = terephthalic acid), have been synthesized and characterized by elemental analysis, IR, PXRD and X-ray single-crystal diffraction. 1 exhibits a 2D layer which can be simplified as a (4,4) net. 2 is a 3D network which can be simplified as a (3,3)-connected 2-nodal net with a point symbol of {102.12}{102}. 3 consists of linear [Ag(tpyz) (H2 O)2]n chain. Of particular interest, discrete hexamer water clusters were observed in 1 and 2, while a 2D L10(6) water layer exists in 3. The results suggest that the benzene dicarboxylates play pivotal roles in the formation of the different host architectures as well as different water aggregations. Moreover, thermogravimetric analysis (TGA) and emissive behaviors of these compounds were investigated.

  5. Wavelet analysis and scaling properties of time series

    NASA Astrophysics Data System (ADS)

    Manimaran, P.; Panigrahi, Prasanta K.; Parikh, Jitendra C.

    2005-10-01

    We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior.

  6. FPGA-based smart sensor for drought stress detection in tomato plants using novel physiological variables and discrete wavelet transform.

    PubMed

    Duarte-Galvan, Carlos; Romero-Troncoso, Rene de J; Torres-Pacheco, Irineo; Guevara-Gonzalez, Ramon G; Fernandez-Jaramillo, Arturo A; Contreras-Medina, Luis M; Carrillo-Serrano, Roberto V; Millan-Almaraz, Jesus R

    2014-10-09

    Soil drought represents one of the most dangerous stresses for plants. It impacts the yield and quality of crops, and if it remains undetected for a long time, the entire crop could be lost. However, for some plants a certain amount of drought stress improves specific characteristics. In such cases, a device capable of detecting and quantifying the impact of drought stress in plants is desirable. This article focuses on testing if the monitoring of physiological process through a gas exchange methodology provides enough information to detect drought stress conditions in plants. The experiment consists of using a set of smart sensors based on Field Programmable Gate Arrays (FPGAs) to monitor a group of plants under controlled drought conditions. The main objective was to use different digital signal processing techniques such as the Discrete Wavelet Transform (DWT) to explore the response of plant physiological processes to drought. Also, an index-based methodology was utilized to compensate the spatial variation inside the greenhouse. As a result, differences between treatments were determined to be independent of climate variations inside the greenhouse. Finally, after using the DWT as digital filter, results demonstrated that the proposed system is capable to reject high frequency noise and to detect drought conditions.

  7. Recognition of FT-IR Data Cuscutae Semen, Japanese Dodder, and Sinapis Semen Using Discrete Wavelet Transformation and RBF Networks

    PubMed Central

    Hu, Tao; Weng, Xuexiang; Xu, Lishan; Cheng, Cungui; Yu, Peng

    2013-01-01

    Horizontal attenuation total reflection Fourier transformation infrared spectroscopy (HATR-FT-IR) studies on cuscutae semen and its confusable varieties Japanese dodder and sinapis semen combined with discrete wavelet transformation (DWT) and radial basis function (RBF) neural networks have been conducted in order to classify them. DWT is used to decompose the FT-IRs of cuscutae semen, Japanese dodder, and sinapis semen. Two main scales are selected as the feature extracting space in the DWT domain. According to the distribution of cuscutae semen, Japanese dodder, and sinapis semen's FT-IRs, three feature regions are determined at detail 3, and two feature regions are determined at detail 4 by selecting two scales in the DWT domain. Thus five feature parameters form the feature vector. The feature vector is input to the RBF neural networks to train so as to accurately classify the cuscutae semen, Japanese dodder, and sinapis semen. 120 sets of FT-IR data are used to train and test the proposed method, where 60 sets of data are used to train samples, and another 60 sets of FT-IR data are used to test samples. Experimental results show that the accurate recognition rate of cuscutae semen, Japanese dodder, and sinapis semen is average of 100.00%, 98.33%, and 100.00%, respectively, following the proposed method. PMID:24282653

  8. Efficiency and Flexibility of Fingerprint Scheme Using Partial Encryption and Discrete Wavelet Transform to Verify User in Cloud Computing.

    PubMed

    Yassin, Ali A

    2014-01-01

    Now, the security of digital images is considered more and more essential and fingerprint plays the main role in the world of image. Furthermore, fingerprint recognition is a scheme of biometric verification that applies pattern recognition techniques depending on image of fingerprint individually. In the cloud environment, an adversary has the ability to intercept information and must be secured from eavesdroppers. Unluckily, encryption and decryption functions are slow and they are often hard. Fingerprint techniques required extra hardware and software; it is masqueraded by artificial gummy fingers (spoof attacks). Additionally, when a large number of users are being verified at the same time, the mechanism will become slow. In this paper, we employed each of the partial encryptions of user's fingerprint and discrete wavelet transform to obtain a new scheme of fingerprint verification. Moreover, our proposed scheme can overcome those problems; it does not require cost, reduces the computational supplies for huge volumes of fingerprint images, and resists well-known attacks. In addition, experimental results illustrate that our proposed scheme has a good performance of user's fingerprint verification.

  9. FPGA-Based Smart Sensor for Drought Stress Detection in Tomato Plants Using Novel Physiological Variables and Discrete Wavelet Transform

    PubMed Central

    Duarte-Galvan, Carlos; de J. Romero-Troncoso, Rene; Torres-Pacheco, Irineo; Guevara-Gonzalez, Ramon G.; Fernandez-Jaramillo, Arturo A.; Contreras-Medina, Luis M.; Carrillo-Serrano, Roberto V.; Millan-Almaraz, Jesus R.

    2014-01-01

    Soil drought represents one of the most dangerous stresses for plants. It impacts the yield and quality of crops, and if it remains undetected for a long time, the entire crop could be lost. However, for some plants a certain amount of drought stress improves specific characteristics. In such cases, a device capable of detecting and quantifying the impact of drought stress in plants is desirable. This article focuses on testing if the monitoring of physiological process through a gas exchange methodology provides enough information to detect drought stress conditions in plants. The experiment consists of using a set of smart sensors based on Field Programmable Gate Arrays (FPGAs) to monitor a group of plants under controlled drought conditions. The main objective was to use different digital signal processing techniques such as the Discrete Wavelet Transform (DWT) to explore the response of plant physiological processes to drought. Also, an index-based methodology was utilized to compensate the spatial variation inside the greenhouse. As a result, differences between treatments were determined to be independent of climate variations inside the greenhouse. Finally, after using the DWT as digital filter, results demonstrated that the proposed system is capable to reject high frequency noise and to detect drought conditions. PMID:25302811

  10. Identify submitochondria and subchloroplast locations with pseudo amino acid composition: approach from the strategy of discrete wavelet transform feature extraction.

    PubMed

    Shi, Shao-Ping; Qiu, Jian-Ding; Sun, Xing-Yu; Huang, Jian-Hua; Huang, Shu-Yun; Suo, Sheng-Bao; Liang, Ru-Ping; Zhang, Li

    2011-03-01

    It is very challenging and complicated to predict protein locations at the sub-subcellular level. The key to enhancing the prediction quality for protein sub-subcellular locations is to grasp the core features of a protein that can discriminate among proteins with different subcompartment locations. In this study, a different formulation of pseudoamino acid composition by the approach of discrete wavelet transform feature extraction was developed to predict submitochondria and subchloroplast locations. As a result of jackknife cross-validation, with our method, it can efficiently distinguish mitochondrial proteins from chloroplast proteins with total accuracy of 98.8% and obtained a promising total accuracy of 93.38% for predicting submitochondria locations. Especially the predictive accuracy for mitochondrial outer membrane and chloroplast thylakoid lumen were 82.93% and 82.22%, respectively, showing an improvement of 4.88% and 27.22% when other existing methods were compared. The results indicated that the proposed method might be employed as a useful assistant technique for identifying sub-subcellular locations. We have implemented our algorithm as an online service called SubIdent (http://bioinfo.ncu.edu.cn/services.aspx).

  11. Recognition of FT-IR Data Cuscutae Semen, Japanese Dodder, and Sinapis Semen Using Discrete Wavelet Transformation and RBF Networks.

    PubMed

    Hu, Tao; Weng, Xuexiang; Xu, Lishan; Cheng, Cungui; Yu, Peng

    2013-01-01

    Horizontal attenuation total reflection Fourier transformation infrared spectroscopy (HATR-FT-IR) studies on cuscutae semen and its confusable varieties Japanese dodder and sinapis semen combined with discrete wavelet transformation (DWT) and radial basis function (RBF) neural networks have been conducted in order to classify them. DWT is used to decompose the FT-IRs of cuscutae semen, Japanese dodder, and sinapis semen. Two main scales are selected as the feature extracting space in the DWT domain. According to the distribution of cuscutae semen, Japanese dodder, and sinapis semen's FT-IRs, three feature regions are determined at detail 3, and two feature regions are determined at detail 4 by selecting two scales in the DWT domain. Thus five feature parameters form the feature vector. The feature vector is input to the RBF neural networks to train so as to accurately classify the cuscutae semen, Japanese dodder, and sinapis semen. 120 sets of FT-IR data are used to train and test the proposed method, where 60 sets of data are used to train samples, and another 60 sets of FT-IR data are used to test samples. Experimental results show that the accurate recognition rate of cuscutae semen, Japanese dodder, and sinapis semen is average of 100.00%, 98.33%, and 100.00%, respectively, following the proposed method.

  12. Damage Detection in Wind Turbine Towers using a Finite Element Model and Discrete Wavelet Transform of Strain Signals

    NASA Astrophysics Data System (ADS)

    Kenna, A.; Basu, B.

    2015-07-01

    Wind turbine support towers at heights in excess of 90m are nowadays being formed in steel, concrete and hybrid concrete and steel structures. As is the case for all towers of this height, the towers will be assembled using a number of segments, which will be connected in some way. These local connections are to be viewed as areas of potential local weakness in the overall tower assembly and require care in terms of design and construction. This work concentrates on identifying local damage which can occur at an interface connection by either material or bolt/tendon failure. Spatial strain patterns will be used to try to identify local damage areas around a 3 dimensional tower shell. A Finite Element (FE) model will be assembled which will describe a hybrid tower as a continuum of four-noded, two-dimensional Reisser- Mindlin shell elements. In order to simulate local damage, an element around the circumference of the tower interface will be subjected to a reduced stiffness. Strain patterns will be observed both in the undamaged and damaged states and these signals will be processed using a Discrete Wavelet Transform (DWT) algorithm to investigate if the damaged element can be identified.

  13. Efficiency and Flexibility of Fingerprint Scheme Using Partial Encryption and Discrete Wavelet Transform to Verify User in Cloud Computing

    PubMed Central

    Yassin, Ali A.

    2014-01-01

    Now, the security of digital images is considered more and more essential and fingerprint plays the main role in the world of image. Furthermore, fingerprint recognition is a scheme of biometric verification that applies pattern recognition techniques depending on image of fingerprint individually. In the cloud environment, an adversary has the ability to intercept information and must be secured from eavesdroppers. Unluckily, encryption and decryption functions are slow and they are often hard. Fingerprint techniques required extra hardware and software; it is masqueraded by artificial gummy fingers (spoof attacks). Additionally, when a large number of users are being verified at the same time, the mechanism will become slow. In this paper, we employed each of the partial encryptions of user's fingerprint and discrete wavelet transform to obtain a new scheme of fingerprint verification. Moreover, our proposed scheme can overcome those problems; it does not require cost, reduces the computational supplies for huge volumes of fingerprint images, and resists well-known attacks. In addition, experimental results illustrate that our proposed scheme has a good performance of user's fingerprint verification. PMID:27355051

  14. Transient Detection Using Wavelets.

    DTIC Science & Technology

    1995-03-01

    signaL and transients are nonstationary. A new technique for the analysis of this type of signal, called the Wavelet Transform , was applied to artificial...and real signals. A brief theoretical comparison between the Short Time Fourier Transform and the Wavelet Transform is introduced A multisolution...analysis approach for implementing the transform was used. Computer code for the Discrete Wavelet Transform was implemented. Different types of wavelets to use as basis functions were evaluated. (KAR) P. 2

  15. Discrete wavelet transform-based investigation into the variability of standardized precipitation index in Northwest China during 1960-2014

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Xia, Jun; Zhan, Chesheng; Zhang, Yongyong; Hu, Sheng

    2017-02-01

    In this study, the temporal variations of the standard precipitation index (SPI) were analyzed at different scales in Northwest China (NWC). Discrete wavelet transform (DWT) was used in conjunction with the Mann-Kendall (MK) test in this study. This study also investigated the relationships between original precipitation and different periodic components of SPI series with datasets spanning 55 years (1960-2014). The results showed that with the exception of the annual and summer SPI in the Inner Mongolia Inland Rivers Basin (IMIRB), spring SPI in the Qinghai Lake Rivers Basin (QLRB), and spring SPI in the Central Asia Rivers Basin (CARB), it had an increasing trend in other regions for other time series. In the spring, summer, and autumn series, though the MK trends test in most areas was at the insignificant level, they showed an increasing trend in precipitation. Meanwhile, the SPI series in most subbasins of NWC displayed a turning point in 1980-1990, with the significant increasing levels after 2000. Additionally, there was a significant difference between the trend of the original SPI series and the largest approximations. The annual and seasonal SPI series were composed of the short periodicities, which were less than a decade. The MK value would increase by adding the multiple D components (and approximations), and the MK value of the combined series was in harmony with that of the original series. Additionally, the major trend of the annual SPI in NWC was based on the four kinds of climate indices (e.g., Atlantic Oscillation [AO], North Atlantic Oscillation [NAO], Pacific Decadal Oscillation [PDO], and El Nino-Southern Oscillation index [ENSO/NINO]), especially the ENSO.

  16. Induction motors airgap-eccentricity detection through the discrete wavelet transform of the apparent power signal under non-stationary operating conditions.

    PubMed

    Yahia, K; Cardoso, A J M; Ghoggal, A; Zouzou, S E

    2014-03-01

    Fast Fourier transform (FFT) analysis has been successfully used for fault diagnosis in induction machines. However, this method does not always provide good results for the cases of load torque, speed and voltages variation, leading to a variation of the motor-slip and the consequent FFT problems that appear due to the non-stationary nature of the involved signals. In this paper, the discrete wavelet transform (DWT) of the apparent-power signal for the airgap-eccentricity fault detection in three-phase induction motors is presented in order to overcome the above FFT problems. The proposed method is based on the decomposition of the apparent-power signal from which wavelet approximation and detail coefficients are extracted. The energy evaluation of a known bandwidth permits to define a fault severity factor (FSF). Simulation as well as experimental results are provided to illustrate the effectiveness and accuracy of the proposed method presented even for the case of load torque variations.

  17. Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Wong, Allan C. L.; Childs, Paul A.; Peng, Gang-Ding

    2006-02-01

    We present a multiplexed fibre Fizeau interferometer (FFI) and fibre Bragg grating (FBG) sensor system for simultaneous measurement of quasi-static strain and temperature. A combined spatial-frequency and wavelength- division multiplexing scheme is employed to multiplex the FFI and FBG sensors. A demodulation technique based on the discrete wavelet transform with signal processing enhancements is used to determine the measurand- induced physical changes of the sensors. The noise associated with the sensor signal is reduced by the block-level-thresholding wavelet denoising method, which is applied via the demodulation technique. This sensor system yields a high accuracy and resolution, and low crosstalk. It is well suited for long-term quasi-static measurements, especially for the structural health monitoring of large-scale structures.

  18. Applications of a fast, continuous wavelet transform

    SciTech Connect

    Dress, W.B.

    1997-02-01

    A fast, continuous, wavelet transform, based on Shannon`s sampling theorem in frequency space, has been developed for use with continuous mother wavelets and sampled data sets. The method differs from the usual discrete-wavelet approach and the continuous-wavelet transform in that, here, the wavelet is sampled in the frequency domain. Since Shannon`s sampling theorem lets us view the Fourier transform of the data set as a continuous function in frequency space, the continuous nature of the functions is kept up to the point of sampling the scale-translation lattice, so the scale-translation grid used to represent the wavelet transform is independent of the time- domain sampling of the signal under analysis. Computational cost and nonorthogonality aside, the inherent flexibility and shift invariance of the frequency-space wavelets has advantages. The method has been applied to forensic audio reconstruction speaker recognition/identification, and the detection of micromotions of heavy vehicles associated with ballistocardiac impulses originating from occupants` heart beats. Audio reconstruction is aided by selection of desired regions in the 2-D representation of the magnitude of the transformed signal. The inverse transform is applied to ridges and selected regions to reconstruct areas of interest, unencumbered by noise interference lying outside these regions. To separate micromotions imparted to a mass-spring system (e.g., a vehicle) by an occupants beating heart from gross mechanical motions due to wind and traffic vibrations, a continuous frequency-space wavelet, modeled on the frequency content of a canonical ballistocardiogram, was used to analyze time series taken from geophone measurements of vehicle micromotions. By using a family of mother wavelets, such as a set of Gaussian derivatives of various orders, features such as the glottal closing rate and word and phrase segmentation may be extracted from voice data.

  19. Investigation of Multiple Frequency Ranges Using Discrete Wavelet Decomposition of Resting-State Functional Connectivity in Mild Traumatic Brain Injury Patients

    PubMed Central

    Chen, Haoxing; Roys, Steven; Zhuo, Jiachen; Varshney, Amitabh; Gullapalli, Rao P.

    2015-01-01

    Abstract The aim of this study was to investigate if discrete wavelet decomposition provides additional insight into resting-state processes through the analysis of functional connectivity within specific frequency ranges within the default mode network (DMN) that may be affected by mild traumatic brain injury (mTBI). Participants included 32 mTBI patients (15 with postconcussive syndrome [PCS+] and 17 without [PCS−]). mTBI patients received resting-state functional magnetic resonance imaging (rs-fMRI) at acute (within 10 days of injury) and chronic (6 months postinjury) time points and were compared with 31 controls (healthy control [HC]). The wavelet decomposition divides the time series into multiple frequency ranges based on four scaling factors (SF1: 0.125–0.250 Hz, SF2: 0.060–0.125 Hz, SF3: 0.030–0.060 Hz, SF4: 0.015–0.030 Hz). Within each SF, wavelet connectivity matrices for nodes of the DMN were created for each group (HC, PCS+, PCS−), and bivariate measures of strength and diversity were calculated. The results demonstrate reduced strength of connectivity in PCS+ patients compared with PCS− patients within SF1 during both the acute and chronic stages of injury, as well as recovery of connectivity within SF1 across the two time points. Furthermore, the PCS− group demonstrated greater network strength compared with controls at both time points, suggesting a potential compensatory or protective mechanism in these patients. These findings stress the importance of investigating resting-state connectivity within multiple frequency ranges; however, many of our findings are within SF1, which may overlap with frequencies associated with cardiac and respiratory activities. PMID:25808612

  20. An Introduction to Wavelet Theory and Analysis

    SciTech Connect

    Miner, N.E.

    1998-10-01

    This report reviews the history, theory and mathematics of wavelet analysis. Examination of the Fourier Transform and Short-time Fourier Transform methods provides tiormation about the evolution of the wavelet analysis technique. This overview is intended to provide readers with a basic understanding of wavelet analysis, define common wavelet terminology and describe wavelet amdysis algorithms. The most common algorithms for performing efficient, discrete wavelet transforms for signal analysis and inverse discrete wavelet transforms for signal reconstruction are presented. This report is intended to be approachable by non- mathematicians, although a basic understanding of engineering mathematics is necessary.

  1. Higher-order wavelet reconstruction/differentiation filters and Gibbs phenomena

    NASA Astrophysics Data System (ADS)

    Lombardini, Richard; Acevedo, Ramiro; Kuczala, Alexander; Keys, Kerry P.; Goodrich, Carl P.; Johnson, Bruce R.

    2016-01-01

    An orthogonal wavelet basis is characterized by its approximation order, which relates to the ability of the basis to represent general smooth functions on a given scale. It is known, though perhaps not widely known, that there are ways of exceeding the approximation order, i.e., achieving higher-order error in the discretized wavelet transform and its inverse. The focus here is on the development of a practical formulation to accomplish this first for 1D smooth functions, then for 1D functions with discontinuities and then for multidimensional (here 2D) functions with discontinuities. It is shown how to transcend both the wavelet approximation order and the 2D Gibbs phenomenon in representing electromagnetic fields at discontinuous dielectric interfaces that do not simply follow the wavelet-basis grid.

  2. Edge-preserving image compression using adaptive lifting wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhang, Libao; Qiu, Bingchang

    2015-07-01

    In this paper, a novel 2-D adaptive lifting wavelet transform is presented. The proposed algorithm is designed to further reduce the high-frequency energy of wavelet transform, improve the image compression efficiency and preserve the edge or texture of original images more effectively. In this paper, a new optional direction set, covering the surrounding integer pixels and sub-pixels, is designed. Hence, our algorithm adapts far better to the image orientation features in local image blocks. To obtain the computationally efficient and coding performance, the complete processes of 2-D adaptive lifting wavelet transform is introduced and implemented. Compared with the traditional lifting-based wavelet transform, the adaptive directional lifting and the direction-adaptive discrete wavelet transform, the new structure reduces the high-frequency wavelet coefficients more effectively, and the texture structures of the reconstructed images are more refined and clear than that of the other methods. The peak signal-to-noise ratio and the subjective quality of the reconstructed images are significantly improved.

  3. Study on the Identification of Radix Bupleuri from Its Unofficial Varieties Based on Discrete Wavelet Transformation Feature Extraction of ATR-FTIR Spectroscopy Combined with Probability Neural Network.

    PubMed

    Jin, Wenying; Wan, Chayan; Cheng, Cungui

    2015-01-01

    The attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) was employed to acquire the infrared spectra of Radix Bupleuri and its unofficial varieties: the root of Bupleurum smithii Wolff and the root of Bupleurum bicaule Helm. The infrared spectra and spectra of Fourier self-deconvolution (FSD), discrete wavelet transform (DWT), and probability neural network (PNN) of these species were analyzed. By the method of FSD, there were conspicuous differences of the infrared absorption peak intensity of different types between Radix Bupleuri and its unofficial varieties. But it is hard to tell the differences between the root of Bupleurum smithii Wolff and the root of Bupleurum bicaule. The differences could be shown more clearly when the DWT was used. The research result shows that by the DWT technology it is easier to identify Radix Bupleuri from its unofficial varieties the root of Bupleurum smithii Wolff and the root of Bupleurum bicaule.

  4. Enhancement of the Wear Particle Monitoring Capability of Oil Debris Sensors Using a Maximal Overlap Discrete Wavelet Transform with Optimal Decomposition Depth

    PubMed Central

    Li, Chuan; Peng, Juan; Liang, Ming

    2014-01-01

    Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements. PMID:24686730

  5. Wavelet-Based Multiresolution Analyses of Signals

    DTIC Science & Technology

    1992-06-01

    classification. Some signals, notably those of a transient nature, are inherently difficult to analyze with these traditional tools. The Discrete Wavelet Transform has...scales. This thesis investigates dyadic discrete wavelet decompositions of signals. A new multiphase wavelet transform is proposed and investigated. The

  6. Wavelets in Physics

    NASA Astrophysics Data System (ADS)

    van den Berg, J. C.

    1999-08-01

    A guided tour J. C. van den Berg; 1. Wavelet analysis, a new tool in physics J.-P. Antoine; 2. The 2-D wavelet transform, physical applications J.-P. Antoine; 3. Wavelets and astrophysical applications A. Bijaoui; 4. Turbulence analysis, modelling and computing using wavelets M. Farge, N. K.-R. Kevlahan, V. Perrier and K. Schneider; 5. Wavelets and detection of coherent structures in fluid turbulence L. Hudgins and J. H. Kaspersen; 6. Wavelets, non-linearity and turbulence in fusion plasmas B. Ph. van Milligen; 7. Transfers and fluxes of wind kinetic energy between orthogonal wavelet components during atmospheric blocking A. Fournier; 8. Wavelets in atomic physics and in solid state physics J.-P. Antoine, Ph. Antoine and B. Piraux; 9. The thermodynamics of fractals revisited with wavelets A. Arneodo, E. Bacry and J. F. Muzy; 10. Wavelets in medicine and physiology P. Ch. Ivanov, A. L. Goldberger, S. Havlin, C.-K. Peng, M. G. Rosenblum and H. E. Stanley; 11. Wavelet dimension and time evolution Ch.-A. Guérin and M. Holschneider.

  7. Wavelets in Physics

    NASA Astrophysics Data System (ADS)

    van den Berg, J. C.

    2004-03-01

    A guided tour J. C. van den Berg; 1. Wavelet analysis, a new tool in physics J.-P. Antoine; 2. The 2-D wavelet transform, physical applications J.-P. Antoine; 3. Wavelets and astrophysical applications A. Bijaoui; 4. Turbulence analysis, modelling and computing using wavelets M. Farge, N. K.-R. Kevlahan, V. Perrier and K. Schneider; 5. Wavelets and detection of coherent structures in fluid turbulence L. Hudgins and J. H. Kaspersen; 6. Wavelets, non-linearity and turbulence in fusion plasmas B. Ph. van Milligen; 7. Transfers and fluxes of wind kinetic energy between orthogonal wavelet components during atmospheric blocking A. Fournier; 8. Wavelets in atomic physics and in solid state physics J.-P. Antoine, Ph. Antoine and B. Piraux; 9. The thermodynamics of fractals revisited with wavelets A. Arneodo, E. Bacry and J. F. Muzy; 10. Wavelets in medicine and physiology P. Ch. Ivanov, A. L. Goldberger, S. Havlin, C.-K. Peng, M. G. Rosenblum and H. E. Stanley; 11. Wavelet dimension and time evolution Ch.-A. Guérin and M. Holschneider.

  8. Applications of a fast continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Dress, William B.

    1997-04-01

    A fast, continuous, wavelet transform, justified by appealing to Shannon's sampling theorem in frequency space, has been developed for use with continuous mother wavelets and sampled data sets. The method differs from the usual discrete-wavelet approach and from the standard treatment of the continuous-wavelet transform in that, here, the wavelet is sampled in the frequency domain. Since Shannon's sampling theorem lets us view the Fourier transform of the data set as representing the continuous function in frequency space, the continuous nature of the functions is kept up to the point of sampling the scale-translation lattice, so the scale-translation grid used to represent the wavelet transform is independent of the time-domain sampling of the signal under analysis. Although more computationally costly and not represented by an orthogonal basis, the inherent flexibility and shift invariance of the frequency-space wavelets are advantageous for certain applications. The method has been applied to forensic audio reconstruction, speaker recognition/identification, and the detection of micromotions of heavy vehicles associated with ballistocardiac impulses originating from occupants' heart beats. Audio reconstruction is aided by selection of desired regions in the 2D representation of the magnitude of the transformed signals. The inverse transform is applied to ridges and selected regions to reconstruct areas of interest, unencumbered by noise interference lying outside these regions. To separate micromotions imparted to a mass- spring system by an occupant's beating heart from gross mechanical motions due to wind and traffic vibrations, a continuous frequency-space wavelet, modeled on the frequency content of a canonical ballistocardiogram, was used to analyze time series taken from geophone measurements of vehicle micromotions. By using a family of mother wavelets, such as a set of Gaussian derivatives of various orders, different features may be extracted from voice

  9. Performance of a Discrete Wavelet Transform for Compressing Plasma Count Data and its Application to the Fast Plasma Investigation on NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Barrie, Alexander C.; Yeh, Penshu; Dorelli, John C.; Clark, George B.; Paterson, William R.; Adrian, Mark L.; Holland, Matthew P.; Lobell, James V.; Simpson, David G.; Pollock, Craig J.; Moore, Thomas E.

    2015-01-01

    Plasma measurements in space are becoming increasingly faster, higher resolution, and distributed over multiple instruments. As raw data generation rates can exceed available data transfer bandwidth, data compression is becoming a critical design component. Data compression has been a staple of imaging instruments for years, but only recently have plasma measurement designers become interested in high performance data compression. Missions will often use a simple lossless compression technique yielding compression ratios of approximately 2:1, however future missions may require compression ratios upwards of 10:1. This study aims to explore how a Discrete Wavelet Transform combined with a Bit Plane Encoder (DWT/BPE), implemented via a CCSDS standard, can be used effectively to compress count information common to plasma measurements to high compression ratios while maintaining little or no compression error. The compression ASIC used for the Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale mission (MMS) is used for this study. Plasma count data from multiple sources is examined: resampled data from previous missions, randomly generated data from distribution functions, and simulations of expected regimes. These are run through the compression routines with various parameters to yield the greatest possible compression ratio while maintaining little or no error, the latter indicates that fully lossless compression is obtained. Finally, recommendations are made for future missions as to what can be achieved when compressing plasma count data and how best to do so.

  10. Wavelet Transforms using VTK-m

    SciTech Connect

    Li, Shaomeng; Sewell, Christopher Meyer

    2016-09-27

    These are a set of slides that deal with the topics of wavelet transforms using VTK-m. First, wavelets are discussed and detailed, then VTK-m is discussed and detailed, then wavelets and VTK-m are looked at from a performance comparison, then from an accuracy comparison, and finally lessons learned, conclusion, and what is next. Lessons learned are the following: Launching worklets is expensive; Natural logic of performing 2D wavelet transform: Repeat the same 1D wavelet transform on every row, repeat the same 1D wavelet transform on every column, invoke the 1D wavelet worklet every time: num_rows x num_columns; VTK-m approach of performing 2D wavelet transform: Create a worklet for 2D that handles both rows and columns, invoke this new worklet only one time; Fast calculation, but cannot reuse 1D implementations.

  11. Applications of discrete multiwavelet techniques to image denoising

    NASA Astrophysics Data System (ADS)

    Wang, Haihui; Peng, Jiaxiong; Wu, Wei; Ye, Bin

    2003-09-01

    In this paper, we present a new method by using 2-D discrete multiwavelet transform in image denoising. The developments in wavelet theory have given rise to the wavelet thresholding method, for extracting a signal from noisy data. The method of signal denoising via wavelet thresholding was popularized. Multiwavelets have recently been introduced and they offer simultaneous orthogonality, symmetry and short support. This property makes multiwavelets more suitable for various image processing applications, especially denoising. It is based on thresholding of multiwavelet coefficients arising from the standard scalar orthogonal wavelet transform. It takes into account the covariance structure of the transform. Denoising is images via thresholding of the multiwavelet coefficients result from preprocessing and the discrete multiwavelet transform can be carried out by threating the output in this paper. The form of the threshold is carefully formulated and is the key to the excellent results obtained in the extensive numerical simulations of image denoising. The performances of multiwavelets are compared with those of scalar wavelets. Simulations reveal that multiwavelet based image denoising schemes outperform wavelet based method both subjectively and objectively.

  12. Comparative analysis of interferogram noise filtration using wavelet transform and spin filtering algorithms

    NASA Astrophysics Data System (ADS)

    Zielinski, B.; Patorski, K.

    2010-06-01

    The aim of this paper is to analyze 2D fringe pattern denoising performed by two chosen methods based on quasi-1D two-arm spin filter and 2D discrete wavelet transform (DWT) signal decomposition and thresholding. The ultimate aim of this comparison is to estimate which algorithm is better suited for high-accuracy measurements by phase shifting interferometry (PSI) with the phase step evaluation using the lattice site approach. The spin filtering method proposed by Yu et al. (1994) was designed to minimize possible fringe blur and distortion. The 2D DWT also presents such features due to a lossless nature of the signal wavelet decomposition. To compare both methods, a special 2D histogram introduced by Gutman and Weber (1998) is used to evaluate intensity errors introduced by each of the presented algorithms.

  13. Wavelet despiking of fractographs

    NASA Astrophysics Data System (ADS)

    Aubry, Jean-Marie; Saito, Naoki

    2000-12-01

    Fractographs are elevation maps of the fracture zone of some broken material. The technique employed to create these maps often introduces noise composed of positive or negative 'spikes' that must be removed before further analysis. Since the roughness of these maps contains useful information, it must be preserved. Consequently, conventional denoising techniques cannot be employed. We use continuous and discrete wavelet transforms of these images, and the properties of wavelet coefficients related to pointwise Hoelder regularity, to detect and remove the spikes.

  14. Wavelet analysis in neurodynamics

    NASA Astrophysics Data System (ADS)

    Pavlov, Aleksei N.; Hramov, Aleksandr E.; Koronovskii, Aleksei A.; Sitnikova, Evgenija Yu; Makarov, Valeri A.; Ovchinnikov, Alexey A.

    2012-09-01

    Results obtained using continuous and discrete wavelet transforms as applied to problems in neurodynamics are reviewed, with the emphasis on the potential of wavelet analysis for decoding signal information from neural systems and networks. The following areas of application are considered: (1) the microscopic dynamics of single cells and intracellular processes, (2) sensory data processing, (3) the group dynamics of neuronal ensembles, and (4) the macrodynamics of rhythmical brain activity (using multichannel EEG recordings). The detection and classification of various oscillatory patterns of brain electrical activity and the development of continuous wavelet-based brain activity monitoring systems are also discussed as possibilities.

  15. Wavelet-Based Adaptive Denoising of Phonocardiographic Records

    DTIC Science & Technology

    2007-11-02

    the approximated signal, and d the signal details at the given scale; h and g are biorthogonal filters, corresponding to the selected mother wavelet ...dyadic scale can be written as: where is the orthogonal mother wavelet , and: The discrete version of the dyadic wavelet transform can be based on... wavelet with 4 moments equal to zero (Coiflet-2) as the mother wavelet . The two channels were wavelet decomposed up to the 9th order (i = 0, 1 ... 8

  16. Gearbox Fault Diagnosis Using Adaptive Wavelet Filter

    NASA Astrophysics Data System (ADS)

    LIN, J.; ZUO, M. J.

    2003-11-01

    Vibration signals from a gearbox are usually noisy. As a result, it is difficult to find early symptoms of a potential failure in a gearbox. Wavelet transform is a powerful tool to disclose transient information in signals. An adaptive wavelet filter based on Morlet wavelet is introduced in this paper. The parameters in the Morlet wavelet function are optimised based on the kurtosis maximisation principle. The wavelet used is adaptive because the parameters are not fixed. The adaptive wavelet filter is found to be very effective in detection of symptoms from vibration signals of a gearbox with early fatigue tooth crack. Two types of discrete wavelet transform (DWT), the decimated with DB4 wavelet and the undecimated with harmonic wavelet, are also used to analyse the same signals for comparison. No periodic impulses appear on any scale in either DWT decomposition.

  17. Automatic sleep staging using empirical mode decomposition, discrete wavelet transform, time-domain, and nonlinear dynamics features of heart rate variability signals.

    PubMed

    Ebrahimi, Farideh; Setarehdan, Seyed-Kamaledin; Ayala-Moyeda, Jose; Nazeran, Homer

    2013-10-01

    The conventional method for sleep staging is to analyze polysomnograms (PSGs) recorded in a sleep lab. The electroencephalogram (EEG) is one of the most important signals in PSGs but recording and analysis of this signal presents a number of technical challenges, especially at home. Instead, electrocardiograms (ECGs) are much easier to record and may offer an attractive alternative for home sleep monitoring. The heart rate variability (HRV) signal proves suitable for automatic sleep staging. Thirty PSGs from the Sleep Heart Health Study (SHHS) database were used. Three feature sets were extracted from 5- and 0.5-min HRV segments: time-domain features, nonlinear-dynamics features and time-frequency features. The latter was achieved by using empirical mode decomposition (EMD) and discrete wavelet transform (DWT) methods. Normalized energies in important frequency bands of HRV signals were computed using time-frequency methods. ANOVA and t-test were used for statistical evaluations. Automatic sleep staging was based on HRV signal features. The ANOVA followed by a post hoc Bonferroni was used for individual feature assessment. Most features were beneficial for sleep staging. A t-test was used to compare the means of extracted features in 5- and 0.5-min HRV segments. The results showed that the extracted features means were statistically similar for a small number of features. A separability measure showed that time-frequency features, especially EMD features, had larger separation than others. There was not a sizable difference in separability of linear features between 5- and 0.5-min HRV segments but separability of nonlinear features, especially EMD features, decreased in 0.5-min HRV segments. HRV signal features were classified by linear discriminant (LD) and quadratic discriminant (QD) methods. Classification results based on features from 5-min segments surpassed those obtained from 0.5-min segments. The best result was obtained from features using 5-min HRV

  18. Comparative analysis of the interferogram noise filtration using wavelet transform and spin filtering algorithms

    NASA Astrophysics Data System (ADS)

    Zielinski, B.; Patorski, K.

    2008-12-01

    The aim of this paper is to analyze the accuracy of 2D fringe pattern denoising performed by two chosen methods using quasi-1D two-arm spin filter and 2D Discrete Wavelet Transform (DWT) signal decomposition and thresholding. The ultimate aim of this comparison is to estimate which algorithm is better suited for high-accuracy interferometric measurements. In spite of the fact that both algorithms are designed to minimize possible fringe blur and distortion, the evaluation of errors introduced by each algorithm is essential for proper estimation of their performance.

  19. Adaptive boxcar/wavelet transform

    NASA Astrophysics Data System (ADS)

    Sezer, Osman G.; Altunbasak, Yucel

    2009-01-01

    This paper presents a new adaptive Boxcar/Wavelet transform for image compression. Boxcar/Wavelet decomposition emphasizes the idea of average-interpolation representation which uses dyadic averages and their interpolation to explain a special case of biorthogonal wavelet transforms (BWT). This perspective for image compression together with lifting scheme offers the ability to train an optimum 2-D filter set for nonlinear prediction (interpolation) that will adapt to the context around the low-pass wavelet coefficients for reducing energy in the high-pass bands. Moreover, the filters obtained after training is observed to posses directional information with some textural clues that can provide better prediction performance. This work addresses a firrst step towards obtaining this new set of training-based fillters in the context of Boxcar/Wavelet transform. Initial experimental results show better subjective quality performance compared to popular 9/7-tap and 5/3-tap BWTs with comparable results in objective quality.

  20. Wavelet transform of neural spike trains

    NASA Astrophysics Data System (ADS)

    Kim, Youngtae; Jung, Min Whan; Kim, Yunbok

    2000-02-01

    Wavelet transform of neural spike trains recorded with a tetrode in the rat primary somatosensory cortex is described. Continuous wavelet transform (CWT) of the spike train clearly shows singularities hidden in the noisy or chaotic spike trains. A multiresolution analysis of the spike train is also carried out using discrete wavelet transform (DWT) for denoising and approximating at different time scales. Results suggest that this multiscale shape analysis can be a useful tool for classifying the spike trains.

  1. Periodized wavelets

    SciTech Connect

    Schlossnagle, G.; Restrepo, J.M.; Leaf, G.K.

    1993-12-01

    The properties of periodized Daubechies wavelets on [0,1] are detailed and contrasted against their counterparts which form a basis for L{sup 2}(R). Numerical examples illustrate the analytical estimates for convergence and demonstrate by comparison with Fourier spectral methods the superiority of wavelet projection methods for approximations. The analytical solution to inner products of periodized wavelets and their derivatives, which are known as connection coefficients, is presented, and several tabulated values are included.

  2. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  3. Wavelet transforms as solutions of partial differential equations

    SciTech Connect

    Zweig, G.

    1997-10-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Wavelet transforms are useful in representing transients whose time and frequency structure reflect the dynamics of an underlying physical system. Speech sound, pressure in turbulent fluid flow, or engine sound in automobiles are excellent candidates for wavelet analysis. This project focused on (1) methods for choosing the parent wavelet for a continuous wavelet transform in pattern recognition applications and (2) the more efficient computation of continuous wavelet transforms by understanding the relationship between discrete wavelet transforms and discretized continuous wavelet transforms. The most interesting result of this research is the finding that the generalized wave equation, on which the continuous wavelet transform is based, can be used to understand phenomena that relate to the process of hearing.

  4. Dyadic wavelet for image coding implementation on a Xilinx MicroBlaze processor: application to neutron radiography.

    PubMed

    Saadi, Slami; Touiza, Maamar; Kharfi, Fayçal; Guessoum, Abderrezak

    2013-12-01

    In this work, we present a mixed software/hardware implementation of 2-D signals encoder/decoder using dyadic discrete wavelet transform (DWT) based on quadrature mirror filters (QMF); using fast wavelet Mallat's algorithm. This work is designed and compiled on the embedded development kit EDK6.3i, and the synthesis software, ISE6.3i, which is available with Xilinx Virtex-IIV2MB1000 FPGA. Huffman coding scheme is used to encode the wavelet coefficients so that they can be transmitted progressively through an Ethernet TCP/IP based connection. The possible reconfiguration can be exploited to attain higher performance. The design will be integrated with the neutron radiography system that is used with the Es-Salem research reactor.

  5. Diagnosis of cervical cancer cell taken from scanning electron and atomic force microscope images of the same patients using discrete wavelet entropy energy and Jensen Shannon, Hellinger, Triangle Measure classifier

    NASA Astrophysics Data System (ADS)

    Aytac Korkmaz, Sevcan

    2016-05-01

    The aim of this article is to provide early detection of cervical cancer by using both Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) images of same patient. When the studies in the literature are examined, it is seen that the AFM and SEM images of the same patient are not used together for early diagnosis of cervical cancer. AFM and SEM images can be limited when using only one of them for the early detection of cervical cancer. Therefore, multi-modality solutions which give more accuracy results than single solutions have been realized in this paper. Optimum feature space has been obtained by Discrete Wavelet Entropy Energy (DWEE) applying to the 3 × 180 AFM and SEM images. Then, optimum features of these images are classified with Jensen Shannon, Hellinger, and Triangle Measure (JHT) Classifier for early diagnosis of cervical cancer. However, between classifiers which are Jensen Shannon, Hellinger, and triangle distance have been validated the measures via relationships. Afterwards, accuracy diagnosis of normal, benign, and malign cervical cancer cell was found by combining mean success rates of Jensen Shannon, Hellinger, and Triangle Measure which are connected with each other. Averages of accuracy diagnosis for AFM and SEM images by averaging the results obtained from these 3 classifiers are found as 98.29% and 97.10%, respectively. It has been observed that AFM images for early diagnosis of cervical cancer have higher performance than SEM images. Also in this article, surface roughness of malign AFM images in the result of the analysis made for the AFM images, according to the normal and benign AFM images is observed as larger, If the volume of particles has found as smaller. She has been a Faculty Member at Fırat University in the Electrical- Electronic Engineering Department since 2007. Her research interests include image processing, computer vision systems, pattern recognition, data fusion, wavelet theory, artificial neural

  6. Optical Wavelet Signals Processing and Multiplexing

    NASA Astrophysics Data System (ADS)

    Cincotti, Gabriella; Moreolo, Michela Svaluto; Neri, Alessandro

    2005-12-01

    We present compact integrable architectures to perform the discrete wavelet transform (DWT) and the wavelet packet (WP) decomposition of an optical digital signal, and we show that the combined use of planar lightwave circuits (PLC) technology and multiresolution analysis (MRA) can add flexibility to current multiple access optical networks. We furnish the design guidelines to synthesize wavelet filters as two-port lattice-form planar devices, and we give some examples of optical signal denoising and compression/decompression techniques in the wavelet domain. Finally, we present a fully optical wavelet packet division multiplexing (WPDM) scheme where data signals are waveform-coded onto wavelet atom functions for transmission, and numerically evaluate its performances.

  7. A Wavelet Perspective on the Allan Variance.

    PubMed

    Percival, Donald B

    2016-04-01

    The origins of the Allan variance trace back 50 years ago to two seminal papers, one by Allan (1966) and the other by Barnes (1966). Since then, the Allan variance has played a leading role in the characterization of high-performance time and frequency standards. Wavelets first arose in the early 1980s in the geophysical literature, and the discrete wavelet transform (DWT) became prominent in the late 1980s in the signal processing literature. Flandrin (1992) briefly documented a connection between the Allan variance and a wavelet transform based upon the Haar wavelet. Percival and Guttorp (1994) noted that one popular estimator of the Allan variance-the maximal overlap estimator-can be interpreted in terms of a version of the DWT now widely referred to as the maximal overlap DWT (MODWT). In particular, when the MODWT is based on the Haar wavelet, the variance of the resulting wavelet coefficients-the wavelet variance-is identical to the Allan variance when the latter is multiplied by one-half. The theory behind the wavelet variance can thus deepen our understanding of the Allan variance. In this paper, we review basic wavelet variance theory with an emphasis on the Haar-based wavelet variance and its connection to the Allan variance. We then note that estimation theory for the wavelet variance offers a means of constructing asymptotically correct confidence intervals (CIs) for the Allan variance without reverting to the common practice of specifying a power-law noise type a priori. We also review recent work on specialized estimators of the wavelet variance that are of interest when some observations are missing (gappy data) or in the presence of contamination (rogue observations or outliers). It is a simple matter to adapt these estimators to become estimators of the Allan variance. Finally we note that wavelet variances based upon wavelets other than the Haar offer interesting generalizations of the Allan variance.

  8. VHDL implementation of wavelet packet transforms using SIMULINK tools

    NASA Astrophysics Data System (ADS)

    Shirvaikar, Mukul; Bushnaq, Tariq

    2008-02-01

    The wavelet transform is currently being used in many engineering fields. The real-time implementation of the Discrete Wavelet Transform (DWT) is a current area of research as it is one of the most time consuming steps in the JPEG2000 standard. The standard implements two different wavelet transforms: irreversible and reversible Daubechies. The former is a lossy transform, whereas the latter is a lossless transform. Many current JPEG2000 implementations are software-based and not efficient enough to meet real-time deadlines. Field Programmable Gate Arrays (FPGAs) are revolutionizing image and signal processing. Many major FPGA vendors like Altera and Xilinx have recently developed SIMULINK tools to support their FPGAs. These tools are intended to provide a seamless path from system-level algorithm design to FPGA implementation. In this paper, we investigate FPGA implementation of 2-D lifting-based Daubechies 9/7 and Daubechies 5/3 transforms using a Matlab/Simulink tool that generates synthesizable VHSIC Hardware Description Language (VHDL) code. The goal is to study the feasibility of this approach for real time image processing by comparing the performance of the high-level toolbox with a handwritten VHDL implementation. The hardware platform used is an Altera DE2 board with a 50MHz Cyclone II FPGA chip and the Simulink tool chosen is DSPBuilder by Altera.

  9. Adaptive solution of the biharmonic problem with shortly supported cubic spline-wavelets

    NASA Astrophysics Data System (ADS)

    Černá, Dana; Finěk, Václav

    2012-09-01

    In our contribution, we design a cubic spline-wavelet basis on the interval. The basis functions have small support and wavelets have vanishing moments. We show that stiffness matrices arising from discretization of the two-dimensional biharmonic problem using a constructed wavelet basis have uniformly bounded condition numbers and these condition numbers are very small. We compare quantitative behavior of adaptive wavelet method with a constructed basis and other cubic spline-wavelet bases, and show the superiority of our construction.

  10. Psychophysical evaluation of the effect of JPEG, full-frame discrete cosine transform (DCT) and wavelet image compression on signal detection in medical image noise

    NASA Astrophysics Data System (ADS)

    Eckstein, Miguel P.; Morioka, Craig A.; Whiting, James S.; Eigler, Neal L.

    1995-04-01

    Image quality associated with image compression has been either arbitrarily evaluated through visual inspection, loosely defined in terms of some subjective criteria such as image sharpness or blockiness, or measured by arbitrary measures such as the mean square error between the uncompressed and compressed image. The present paper psychophysically evaluated the effect of three different compression algorithms (JPEG, full-frame, and wavelet) on human visual detection of computer-simulated low-contrast lesions embedded in real medical image noise from patient coronary angiogram. Performance identifying the signal present location as measure by d' index of detectability decreased for all three algorithms by approximately 30% and 62% for the 16:1 and 30:1 compression rations respectively. We evaluated the ability of two previously proposed measures of image quality, mean square error (MSE) and normalized nearest neighbor difference (NNND), to determine the best compression algorithm. The MSE predicted significantly higher image quality for the JPEG algorithm in the 16:1 compression ratio and for both JPEG and full-frame for the 30:1 compression ratio. The NNND predicted significantly high image quality for the full-frame algorithm for both compassion rations. These findings suggest that these two measures of image quality may lead to erroneous conclusions in evaluations and/or optimizations if image compression algorithms.

  11. Signal extrapolation based on wavelet representation

    NASA Astrophysics Data System (ADS)

    Xia, Xiang-Gen; Kuo, C.-C. Jay; Zhang, Zhen

    1993-11-01

    The Papoulis-Gerchberg (PG) algorithm is well known for band-limited signal extrapolation. We consider the generalization of the PG algorithm to signals in the wavelet subspaces in this research. The uniqueness of the extrapolation for continuous-time signals is examined, and sufficient conditions on signals and wavelet bases for the generalized PG (GPG) algorithm to converge are given. We also propose a discrete GPG algorithm for discrete-time signal extrapolation, and investigate its convergence. Numerical examples are given to illustrate the performance of the discrete GPG algorithm.

  12. Perceptually Lossless Wavelet Compression

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Yang, Gloria Y.; Solomon, Joshua A.; Villasenor, John

    1996-01-01

    The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter, which we call DWT uniform quantization noise. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2(exp -1), where r is display visual resolution in pixels/degree, and L is the wavelet level. Amplitude thresholds increase rapidly with spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from low-pass to horizontal/vertical to diagonal. We propose a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a 'perceptually lossless' quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  13. Implementing a global DEM database on the sphere based on spherical wavelets

    NASA Astrophysics Data System (ADS)

    Zhao, Di; Zhao, Xuesheng; Shan, Shigang; Yao, Liangjun

    2010-11-01

    Wavelets have been proven to be an exceedingly powerful and highly efficient tool for fast computational algorithms in the fields of image data analysis and compression. Traditionally, the classical constructed wavelets are often employed to Euclidean infinite domains (such as the real line R and plane R2). In this paper, a spherical wavelet constructed for discrete DEM data based on the sphere is approached. Firstly, the discrete biorthogonal spherical wavelet with custom properties is constructed with the lifting scheme based on wavelet toolbox in Matlab. Then, the decomposition and reconstruction algorithms are proposed for efficient computation and the related wavelet coefficients are obtained. Finally, different precise images are displayed and analyzed at the different percentage of wavelet coefficients. The efficiency of this spherical wavelet algorithm is tested by using the GTOPO30 DEM data and the results show that at the same precision, the spherical wavelet algorithm consumes smaller storage volume. The results are good and acceptable.

  14. Implementing a global DEM database on the sphere based on spherical wavelets

    NASA Astrophysics Data System (ADS)

    Zhao, Di; Zhao, Xuesheng; Shan, Shigang; Yao, Liangjun

    2009-09-01

    Wavelets have been proven to be an exceedingly powerful and highly efficient tool for fast computational algorithms in the fields of image data analysis and compression. Traditionally, the classical constructed wavelets are often employed to Euclidean infinite domains (such as the real line R and plane R2). In this paper, a spherical wavelet constructed for discrete DEM data based on the sphere is approached. Firstly, the discrete biorthogonal spherical wavelet with custom properties is constructed with the lifting scheme based on wavelet toolbox in Matlab. Then, the decomposition and reconstruction algorithms are proposed for efficient computation and the related wavelet coefficients are obtained. Finally, different precise images are displayed and analyzed at the different percentage of wavelet coefficients. The efficiency of this spherical wavelet algorithm is tested by using the GTOPO30 DEM data and the results show that at the same precision, the spherical wavelet algorithm consumes smaller storage volume. The results are good and acceptable.

  15. Compression of biomedical signals with mother wavelet optimization and best-basis wavelet packet selection.

    PubMed

    Brechet, Laurent; Lucas, Marie-Françoise; Doncarli, Christian; Farina, Dario

    2007-12-01

    We propose a novel scheme for signal compression based on the discrete wavelet packet transform (DWPT) decompositon. The mother wavelet and the basis of wavelet packets were optimized and the wavelet coefficients were encoded with a modified version of the embedded zerotree algorithm. This signal dependant compression scheme was designed by a two-step process. The first (internal optimization) was the best basis selection that was performed for a given mother wavelet. For this purpose, three additive cost functions were applied and compared. The second (external optimization) was the selection of the mother wavelet based on the minimal distortion of the decoded signal given a fixed compression ratio. The mother wavelet was parameterized in the multiresolution analysis framework by the scaling filter, which is sufficient to define the entire decomposition in the orthogonal case. The method was tested on two sets of ten electromyographic (EMG) and ten electrocardiographic (ECG) signals that were compressed with compression ratios in the range of 50%-90%. For 90% compression ratio of EMG (ECG) signals, the percent residual difference after compression decreased from (mean +/- SD) 48.6 +/- 9.9% (21.5 +/- 8.4%) with discrete wavelet transform (DWT) using the wavelet leading to poorest performance to 28.4 +/- 3.0% (6.7 +/- 1.9%) with DWPT, with optimal basis selection and wavelet optimization. In conclusion, best basis selection and optimization of the mother wavelet through parameterization led to substantial improvement of performance in signal compression with respect to DWT and randon selection of the mother wavelet. The method provides an adaptive approach for optimal signal representation for compression and can thus be applied to any type of biomedical signal.

  16. Wavelet frames and admissibility in higher dimensions

    NASA Astrophysics Data System (ADS)

    Führ, Hartmut

    1996-12-01

    This paper is concerned with the relations between discrete and continuous wavelet transforms on k-dimensional Euclidean space. We start with the construction of continuous wavelet transforms with the help of square-integrable representations of certain semidirect products, thereby generalizing results of Bernier and Taylor. We then turn to frames of L2(Rk) and to the question, when the functions occurring in a given frame are admissible for a given continuous wavelet transform. For certain frames we give a characterization which generalizes a result of Daubechies to higher dimensions.

  17. Transionospheric signal detection with chirped wavelets

    SciTech Connect

    Doser, A.B.; Dunham, M.E.

    1997-11-01

    Chirped wavelets are utilized to detect dispersed signals in the joint time scale domain. Specifically, pulses that become dispersed by transmission through the ionosphere and are received by satellites as nonlinear chirps are investigated. Since the dispersion greatly lowers the signal to noise ratios, it is difficult to isolate the signals in the time domain. Satellite data are examined with discrete wavelet expansions. Detection is accomplished via a template matching threshold scheme. Quantitative experimental results demonstrate that the chirped wavelet detection scheme is successful in detecting the transionospheric pulses at very low signal to noise ratios.

  18. Diagnosis of cervical cancer cell taken from scanning electron and atomic force microscope images of the same patients using discrete wavelet entropy energy and Jensen Shannon, Hellinger, Triangle Measure classifier.

    PubMed

    Aytac Korkmaz, Sevcan

    2016-05-05

    The aim of this article is to provide early detection of cervical cancer by using both Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) images of same patient. When the studies in the literature are examined, it is seen that the AFM and SEM images of the same patient are not used together for early diagnosis of cervical cancer. AFM and SEM images can be limited when using only one of them for the early detection of cervical cancer. Therefore, multi-modality solutions which give more accuracy results than single solutions have been realized in this paper. Optimum feature space has been obtained by Discrete Wavelet Entropy Energy (DWEE) applying to the 3×180 AFM and SEM images. Then, optimum features of these images are classified with Jensen Shannon, Hellinger, and Triangle Measure (JHT) Classifier for early diagnosis of cervical cancer. However, between classifiers which are Jensen Shannon, Hellinger, and triangle distance have been validated the measures via relationships. Afterwards, accuracy diagnosis of normal, benign, and malign cervical cancer cell was found by combining mean success rates of Jensen Shannon, Hellinger, and Triangle Measure which are connected with each other. Averages of accuracy diagnosis for AFM and SEM images by averaging the results obtained from these 3 classifiers are found as 98.29% and 97.10%, respectively. It has been observed that AFM images for early diagnosis of cervical cancer have higher performance than SEM images. Also in this article, surface roughness of malign AFM images in the result of the analysis made for the AFM images, according to the normal and benign AFM images is observed as larger, If the volume of particles has found as smaller.

  19. Higher-density dyadic wavelet transform and its application

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Tang, Baoping; Wang, Jiaxu

    2010-04-01

    This paper proposes a higher-density dyadic wavelet transform with two generators, whose corresponding wavelet filters are band-pass and high-pass. The wavelet coefficients at each scale in this case have the same length as the signal. This leads to a new redundant dyadic wavelet transform, which is strictly shift invariant and further increases the sampling in the time dimension. We describe the definition of higher-density dyadic wavelet transform, and discuss the condition of perfect reconstruction of the signal from its wavelet coefficients. The fast implementation algorithm for the proposed transform is given as well. Compared with the higher-density discrete wavelet transform, the proposed transform is shift invariant. Applications into signal denoising indicate that the proposed wavelet transform has better denoising performance than other commonly used wavelet transforms. In the end, various typical wavelet transforms are applied to analyze the vibration signals of two faulty roller bearings, the results show that the proposed wavelet transform can more effectively extract the fault characteristics of the roller bearings than the other wavelet transforms.

  20. A secure double-image sharing scheme based on Shamir's three-pass protocol and 2D Sine Logistic modulation map in discrete multiple-parameter fractional angular transform domain

    NASA Astrophysics Data System (ADS)

    Sui, Liansheng; Duan, Kuaikuai; Liang, Junli

    2016-05-01

    A secure double-image sharing scheme is proposed by using the Shamir's three-pass protocol in the discrete multiple-parameter fractional angular transform domain. First, an enlarged image is formed by assembling two plain images successively in the horizontal direction and scrambled in the chaotic permutation process, in which the sequences of chaotic pairs are generated by the two-dimensional Sine Logistic modulation map. Second, the scrambled image is divided into two components which are used to constitute a complex image. One component is normalized and regarded as the phase part of the complex image as well as other is considered as the amplitude part. Finally, the complex image is shared between the sender and the receiver by using the Shamir's three-pass protocol, in which the discrete multiple-parameter fractional angular transform is used as the encryption function due to its commutative property. The proposed double-image sharing scheme has an obvious advantage that the key management is convenient without distributing the random phase mask keys in advance. Moreover, the security of the image sharing scheme is enhanced with the help of extra parameters of the discrete multiple-parameter fractional angular transform. To the best of our knowledge, this is the first report on integrating the Shamir's three-pass protocol with double-image sharing scheme in the information security field. Simulation results and security analysis verify the feasibility and effectiveness of the proposed scheme.

  1. Wavelet-Based Signal and Image Processing for Target Recognition

    DTIC Science & Technology

    2002-01-01

    in target recognition applications. Classical spatial and frequency domain image processing algorithms were generalized to process discrete wavelet ... transform (DWT) data. Results include adaptation of classical filtering, smoothing and interpolation techniques to DWT. From 2003 the research

  2. Compression of echocardiographic scan line data using wavelet packet transform

    NASA Technical Reports Server (NTRS)

    Hang, X.; Greenberg, N. L.; Qin, J.; Thomas, J. D.

    2001-01-01

    An efficient compression strategy is indispensable for digital echocardiography. Previous work has suggested improved results utilizing wavelet transforms in the compression of 2D echocardiographic images. Set partitioning in hierarchical trees (SPIHT) was modified to compress echocardiographic scanline data based on the wavelet packet transform. A compression ratio of at least 94:1 resulted in preserved image quality.

  3. Wavelet and wavelet packet compression of electrocardiograms.

    PubMed

    Hilton, M L

    1997-05-01

    Wavelets and wavelet packets have recently emerged as powerful tools for signal compression. Wavelet and wavelet packet-based compression algorithms based on embedded zerotree wavelet (EZW) coding are developed for electrocardiogram (ECG) signals, and eight different wavelets are evaluated for their ability to compress Holter ECG data. Pilot data from a blind evaluation of compressed ECG's by cardiologists suggest that the clinically useful information present in original ECG signals is preserved by 8:1 compression, and in most cases 16:1 compressed ECG's are clinically useful.

  4. Wavelet modulation: An alternative modulation with low energy consumption

    NASA Astrophysics Data System (ADS)

    Chafii, Marwa; Palicot, Jacques; Gribonval, Rémi

    2017-02-01

    This paper presents wavelet modulation, based on the discrete wavelet transform, as an alternative modulation with low energy consumption. The transmitted signal has low envelope variations, which induces a good efficiency for the power amplifier. Wavelet modulation is analyzed and compared for different wavelet families with orthogonal frequency division multiplexing (OFDM) in terms of peak-to-average power ratio (PAPR), power spectral density (PSD) properties, and the impact of the power amplifier on the spectral regrowth. The performance in terms of bit error rate and complexity of implementation are also evaluated, and several trade-offs are characterized. xml:lang="fr"

  5. Perception-based reversible watermarking for 2D vector maps

    NASA Astrophysics Data System (ADS)

    Men, Chaoguang; Cao, Liujuan; Li, Xiang

    2010-07-01

    This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.

  6. On a Wavelet-Based Method for the Numerical Simulation of Wave Propagation

    NASA Astrophysics Data System (ADS)

    Hong, Tae-Kyung; Kennett, B. L. N.

    2002-12-01

    A wavelet-based method for the numerical simulation of acoustic and elastic wave propagation is developed. Using a displacement-velocity formulation and treating spatial derivatives with linear operators, the wave equations are rewritten as a system of equations whose evolution in time is controlled by first-order derivatives. The linear operators for spatial derivatives are implemented in wavelet bases using an operator projection technique with nonstandard forms of wavelet transform. Using a semigroup approach, the discretized solution in time can be represented in an explicit recursive form, based on Taylor expansion of exponential functions of operator matrices. The boundary conditions are implemented by augmenting the system of equations with equivalent force terms at the boundaries. The wavelet-based method is applied to the acoustic wave equation with rigid boundary conditions at both ends in 1-D domain and to the elastic wave equation with a traction-free boundary conditions at a free surface in 2-D spatial media. The method can be applied directly to media with plane surfaces, and surface topography can be included with the aid of distortion of the grid describing the properties of the medium. The numerical results are compared with analytic solutions based on the Cagniard technique and show high accuracy. The wavelet-based approach is also demonstrated for complex media including highly varying topography or stochastic heterogeneity with rapid variations in physical parameters. These examples indicate the value of the approach as an accurate and stable tool for the simulation of wave propagation in general complex media.

  7. Digital transceiver implementation for wavelet packet modulation

    NASA Astrophysics Data System (ADS)

    Lindsey, Alan R.; Dill, Jeffrey C.

    1998-03-01

    Current transceiver designs for wavelet-based communication systems are typically reliant on analog waveform synthesis, however, digital processing is an important part of the eventual success of these techniques. In this paper, a transceiver implementation is introduced for the recently introduced wavelet packet modulation scheme which moves the analog processing as far as possible toward the antenna. The transceiver is based on the discrete wavelet packet transform which incorporates level and node parameters for generalized computation of wavelet packets. In this transform no particular structure is imposed on the filter bank save dyadic branching, and a maximum level which is specified a priori and dependent mainly on speed and/or cost considerations. The transmitter/receiver structure takes a binary sequence as input and, based on the desired time- frequency partitioning, processes the signal through demultiplexing, synthesis, analysis, multiplexing and data determination completely in the digital domain - with exception of conversion in and out of the analog domain for transmission.

  8. Visibility of wavelet quantization noise

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.

    1997-01-01

    The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  9. Wavelet Approximation in Data Assimilation

    NASA Technical Reports Server (NTRS)

    Tangborn, Andrew; Atlas, Robert (Technical Monitor)

    2002-01-01

    Estimation of the state of the atmosphere with the Kalman filter remains a distant goal because of high computational cost of evolving the error covariance for both linear and nonlinear systems. Wavelet approximation is presented here as a possible solution that efficiently compresses both global and local covariance information. We demonstrate the compression characteristics on the the error correlation field from a global two-dimensional chemical constituent assimilation, and implement an adaptive wavelet approximation scheme on the assimilation of the one-dimensional Burger's equation. In the former problem, we show that 99%, of the error correlation can be represented by just 3% of the wavelet coefficients, with good representation of localized features. In the Burger's equation assimilation, the discrete linearized equations (tangent linear model) and analysis covariance are projected onto a wavelet basis and truncated to just 6%, of the coefficients. A nearly optimal forecast is achieved and we show that errors due to truncation of the dynamics are no greater than the errors due to covariance truncation.

  10. One and Two Dimensional Discrete Wavelet Transforms

    DTIC Science & Technology

    1992-09-01

    dimensional case in Chapter IV. Chapter V proposes another method for decomposing the data at the expense of physical memory , the so-called multiple-phase...more efficient. Practically, this savings in memory is very insignificant, since the number of practical resolution levels is approximately [log2( I...filters, N, and the current resolution level, m: Ie.1 = Ic0I + (N-1)(2`-1) (43) So enough memory must be allocated if we desire lower and lower

  11. Image encoding with triangulation wavelets

    NASA Astrophysics Data System (ADS)

    Hebert, D. J.; Kim, HyungJun

    1995-09-01

    We demonstrate some wavelet-based image processing applications of a class of simplicial grids arising in finite element computations and computer graphics. The cells of a triangular grid form the set of leaves of a binary tree and the nodes of a directed graph consisting of a single cycle. The leaf cycle of a uniform grid forms a pattern for pixel image scanning and for coherent computation of coefficients of splines and wavelets. A simple form of image encoding is accomplished with a 1D quadrature mirror filter whose coefficients represent an expansion of the image in terms of 2D Haar wavelets with triangular support. A combination the leaf cycle and an inherent quadtree structure allow efficient neighbor finding, grid refinement, tree pruning and storage. Pruning of the simplex tree yields a partially compressed image which requires no decoding, but rather may be rendered as a shaded triangulation. This structure and its generalization to n-dimensions form a convenient setting for wavelet analysis and computations based on simplicial grids.

  12. Discrete and infinite 1D, 2D/3D cage frameworks with inclusion of anionic species and anion-exchange reactions of Ag3L2 type receptor with tetrahedral and octahedral anions.

    PubMed

    Liu, Hong-Ke; Huang, Xiaohua; Lu, Tianhong; Wang, Xiujian; Sun, Wei-Yin; Kang, Bei-Sheng

    2008-06-28

    Complexes [PF6 subset(Ag3(titmb)2](PF6)2 (8) and {SbF6 subset[Ag3(titmb)2](SbF6)2}.H2O.1.5 CH3OH (9) are obtained by reaction of titmb and Ag+ salts with different anions (PF6(-) and SbF6(-)), and crystal structures reveal that they are both M3L2 cage complexes with short Ag...F interactions between the silver atoms and the fluorine atoms of the anions. In complex 8, a novel cage dimer is formed by weak Ag...F contacts; an unique cage tetramer formed via Ag...pi interactions (Ag...eta5-imidazole) between dimers and an infinite 1D cage chain is presented. However, each of the external non-disordered SbF6(-) anions connect with six cage 9s via Ag...F contacts, and each cage 9 in turn connects with three SbF6(-) anions to form a 2D network cage layer; and the layers are connected by pi-pi interactions to form a 3D network. The anion-exchange reactions of four Ag3L2 type complexes ([BF4 subset(Ag3(titmb)2](BF4)2 (6), [ClO4 subset(Ag3(titmb)2](ClO4)2 (7b), [PF6 subset(Ag3(titmb)2](PF6)2 (8) and [SbF6 subset(Ag3(titmb)2](SbF6)2.1.5CH3OH (9)) with tetrahedral and octahedral anions (ClO4(-), BF4(-), PF6(-) and SbF6(-)) are also reported. The anion-exchange experiments demonstrate that the anion selective order is SbF6(-) > PF6(-) > BF4(-), ClO4(-), and this anion receptor is preferred to trap octahedral and tetrahedral anions rather than linear or triangle anions; SbF6(-) is the biggest and most preferable one, so far. The dimensions of cage complexes with or without internal anions, anion-exchange reactions, cage assembly and anion inclusions, silver(I) coordination environments, Ag-F and Ag-pi interactions of Ag3L2 complexes 1-9 are discussed.

  13. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  14. Compatible, energy and symmetry preserving 2D Lagrangian hydrodynamics in rz-cylindrical coordinates

    SciTech Connect

    Shashkov, Mikhail; Wendroff, Burton; Burton, Donald; Barlow, A; Hongbin, Guo

    2009-01-01

    We present a new discretization for 2D Lagrangian hydrodynamics in rz geometry (cylindrical coordinates) that is compatible, energy conserving and symmetry preserving. We describe discretization of the basic Lagrangian hydrodynamics equations.

  15. Optimal wavelet denoising for smart biomonitor systems

    NASA Astrophysics Data System (ADS)

    Messer, Sheila R.; Agzarian, John; Abbott, Derek

    2001-03-01

    Future smart-systems promise many benefits for biomedical diagnostics. The ideal is for simple portable systems that display and interpret information from smart integrated probes or MEMS-based devices. In this paper, we will discuss a step towards this vision with a heart bio-monitor case study. An electronic stethoscope is used to record heart sounds and the problem of extracting noise from the signal is addressed via the use of wavelets and averaging. In our example of heartbeat analysis, phonocardiograms (PCGs) have many advantages in that they may be replayed and analysed for spectral and frequency information. Many sources of noise may pollute a PCG including foetal breath sounds if the subject is pregnant, lung and breath sounds, environmental noise and noise from contact between the recording device and the skin. Wavelets can be employed to denoise the PCG. The signal is decomposed by a discrete wavelet transform. Due to the efficient decomposition of heart signals, their wavelet coefficients tend to be much larger than those due to noise. Thus, coefficients below a certain level are regarded as noise and are thresholded out. The signal can then be reconstructed without significant loss of information in the signal. The questions that this study attempts to answer are which wavelet families, levels of decomposition, and thresholding techniques best remove the noise in a PCG. The use of averaging in combination with wavelet denoising is also addressed. Possible applications of the Hilbert Transform to heart sound analysis are discussed.

  16. 2D semiconductor optoelectronics

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  17. Adaptive wavelet collocation methods for initial value boundary problems of nonlinear PDE's

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Wang, Jian-Zhong

    1993-01-01

    We have designed a cubic spline wavelet decomposition for the Sobolev space H(sup 2)(sub 0)(I) where I is a bounded interval. Based on a special 'point-wise orthogonality' of the wavelet basis functions, a fast Discrete Wavelet Transform (DWT) is constructed. This DWT transform will map discrete samples of a function to its wavelet expansion coefficients in O(N log N) operations. Using this transform, we propose a collocation method for the initial value boundary problem of nonlinear PDE's. Then, we test the efficiency of the DWT transform and apply the collocation method to solve linear and nonlinear PDE's.

  18. Leg Motion Classification with Artificial Neural Networks Using Wavelet-Based Features of Gyroscope Signals

    PubMed Central

    Ayrulu-Erdem, Birsel; Barshan, Billur

    2011-01-01

    We extract the informative features of gyroscope signals using the discrete wavelet transform (DWT) decomposition and provide them as input to multi-layer feed-forward artificial neural networks (ANNs) for leg motion classification. Since the DWT is based on correlating the analyzed signal with a prototype wavelet function, selection of the wavelet type can influence the performance of wavelet-based applications significantly. We also investigate the effect of selecting different wavelet families on classification accuracy and ANN complexity and provide a comparison between them. The maximum classification accuracy of 97.7% is achieved with the Daubechies wavelet of order 16 and the reverse bi-orthogonal (RBO) wavelet of order 3.1, both with similar ANN complexity. However, the RBO 3.1 wavelet is preferable because of its lower computational complexity in the DWT decomposition and reconstruction. PMID:22319378

  19. Leg motion classification with artificial neural networks using wavelet-based features of gyroscope signals.

    PubMed

    Ayrulu-Erdem, Birsel; Barshan, Billur

    2011-01-01

    We extract the informative features of gyroscope signals using the discrete wavelet transform (DWT) decomposition and provide them as input to multi-layer feed-forward artificial neural networks (ANNs) for leg motion classification. Since the DWT is based on correlating the analyzed signal with a prototype wavelet function, selection of the wavelet type can influence the performance of wavelet-based applications significantly. We also investigate the effect of selecting different wavelet families on classification accuracy and ANN complexity and provide a comparison between them. The maximum classification accuracy of 97.7% is achieved with the Daubechies wavelet of order 16 and the reverse bi-orthogonal (RBO) wavelet of order 3.1, both with similar ANN complexity. However, the RBO 3.1 wavelet is preferable because of its lower computational complexity in the DWT decomposition and reconstruction.

  20. The Sea of Wavelets

    NASA Astrophysics Data System (ADS)

    Jones, B. J. T.

    Wavelet analysis has become a major tool in many aspects of data handling, whether it be statistical analysis, noise removal or image reconstruction. Wavelet analysis has worked its way into fields as diverse as economics, medicine, geophysics, music and cosmology.

  1. Adaptive Wavelet Transforms

    SciTech Connect

    Szu, H.; Hsu, C.

    1996-12-31

    Human sensors systems (HSS) may be approximately described as an adaptive or self-learning version of the Wavelet Transforms (WT) that are capable to learn from several input-output associative pairs of suitable transform mother wavelets. Such an Adaptive WT (AWT) is a redundant combination of mother wavelets to either represent or classify inputs.

  2. Visibility of Wavelet Quantization Noise

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Yang, Gloria Y.; Solomon, Joshua A.; Villasenor, John; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter, which we call DWT uniform quantization noise. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2(exp)-L , where r is display visual resolution in pixels/degree, and L is the wavelet level. Amplitude thresholds increase rapidly with spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from low-pass to horizontal/vertical to diagonal. We describe a mathematical model to predict DWT noise detection thresholds as a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  3. Random seismic noise attenuation using the Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Aliouane, L.; Ouadfeul, S.; Boudella, A.; Eladj, S.

    2012-04-01

    In this paper we propose a technique of random noises attenuation from seismic data using the discrete and continuous wavelet transforms. Firstly the discrete wavelet transform (DWT) is applied to denoise seismic data. This last is based on the threshold method applied at the modulus of the DWT. After we calculate the continuous wavelet transform of the denoised seismic seismogram, the final denoised seismic seismogram is the continuous wavelet transform coefficients at the low scale. Application at a synthetic seismic seismogram shows the robustness of the proposed tool for random noises attenuation. We have applied this idea at a real seismic data of a vertical seismic profile realized in Algeria. Keywords: Seismic data, denoising, DWT, CWT, random noise.

  4. Image coding based on energy-sorted wavelet packets

    NASA Astrophysics Data System (ADS)

    Kong, Lin-Wen; Lay, Kuen-Tsair

    1995-04-01

    The discrete wavelet transform performs multiresolution analysis, which effectively decomposes a digital image into components with different degrees of details. In practice, it is usually implemented in the form of filter banks. If the filter banks are cascaded and both the low-pass and the high-pass components are further decomposed, a wavelet packet is obtained. The coefficients of the wavelet packet effectively represent subimages in different resolution levels. In the energy-sorted wavelet- packet decomposition, all subimages in the packet are then sorted according to their energies. The most important subimages, as measured by the energy, are preserved and coded. By investigating the histogram of each subimage, it is found that the pixel values are well modelled by the Laplacian distribution. Therefore, the Laplacian quantization is applied to quantized the subimages. Experimental results show that the image coding scheme based on wavelet packets achieves high compression ratio while preserving satisfactory image quality.

  5. Method and system for progressive mesh storage and reconstruction using wavelet-encoded height fields

    NASA Technical Reports Server (NTRS)

    Baxes, Gregory A. (Inventor); Linger, Timothy C. (Inventor)

    2011-01-01

    Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.

  6. Phase-preserving speckle reduction based on soft thresholding in quaternion wavelet domain

    NASA Astrophysics Data System (ADS)

    Liu, Yipeng; Jin, Jing; Wang, Qiang; Shen, Yi

    2012-10-01

    Speckle reduction is a difficult task for ultrasound image processing because of low resolution and contrast. As a novel tool of image analysis, quaternion wavelet (QW) has some superior properties compared to discrete wavelets, such as nearly shift-invariant wavelet coefficients and phase-based texture presentation. We aim to exploit the excellent performance of speckle reduction in quaternion wavelet domain based on the soft thresholding method. First, we exploit the characteristics of magnitude and phases in quaternion wavelet transform (QWT) to the denoising application, and find that the QWT phases of the images are little influenced by the noises. Then we model the QWT magnitude using the Rayleigh distribution, and derive the thresholding criterion. Furthermore, we conduct several experiments on synthetic speckle images and real ultrasound images. The performance of the proposed speckle reduction algorithm, using QWT with soft thresholding, demonstrates superiority to those using discrete wavelet transform and classical algorithms.

  7. Method and system for progressive mesh storage and reconstruction using wavelet-encoded height fields

    NASA Technical Reports Server (NTRS)

    Baxes, Gregory A. (Inventor)

    2010-01-01

    Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.

  8. A comparison of wavelet analysis techniques in digital holograms

    NASA Astrophysics Data System (ADS)

    Molony, Karen M.; Maycock, Jonathan; McDonald, John B.; Hennelly, Bryan M.; Naughton, Thomas J.

    2008-04-01

    This study explores the effectiveness of wavelet analysis techniques on digital holograms of real-world 3D objects. Stationary and discrete wavelet transform techniques have been applied for noise reduction and compared. Noise is a common problem in image analysis and successful reduction of noise without degradation of content is difficult to achieve. These wavelet transform denoising techniques are contrasted with traditional noise reduction techniques; mean filtering, median filtering, Fourier filtering. The different approaches are compared in terms of speckle reduction, edge preservation and resolution preservation.

  9. Wavelet applied to computer vision in astrophysics

    NASA Astrophysics Data System (ADS)

    Bijaoui, Albert; Slezak, Eric; Traina, Myriam

    2004-02-01

    Multiscale analyses can be provided by application wavelet transforms. For image processing purposes, we applied algorithms which imply a quasi isotropic vision. For a uniform noisy image, a wavelet coefficient W has a probability density function (PDF) p(W) which depends on the noise statistic. The PDF was determined for many statistical noises: Gauss, Poission, Rayleigh, exponential. For CCD observations, the Anscombe transform was generalized to a mixed Gasus+Poisson noise. From the discrete wavelet transform a set of significant wavelet coefficients (SSWC)is obtained. Many applications have been derived like denoising and deconvolution. Our main application is the decomposition of the image into objects, i.e the vision. At each scale an image labelling is performed in the SSWC. An interscale graph linking the fields of significant pixels is then obtained. The objects are identified using this graph. The wavelet coefficients of the tree related to a given object allow one to reconstruct its image by a classical inverse method. This vision model has been applied to astronomical images, improving the analysis of complex structures.

  10. Biorthogonal wavelet-based method of moments for electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Qinke

    Wavelet analysis is a technique developed in recent years in mathematics and has found usefulness in signal processing and many other engineering areas. The practical use of wavelets for the solution of partial differential and integral equations in computational electromagnetics has been investigated in this dissertation, with the emphasis on development of biorthogonal wavelet based method of moments for the solution of electric and magnetic field integral equations. The fundamentals and numerical analysis aspects of wavelet theory have been studied. In particular, a family of compactly supported biorthogonal spline wavelet bases on the n-cube (0,1) n has been studied in detail. The wavelet bases were used in this work as a building block to construct biorthogonal wavelet bases on general domain geometry. A specific and practical way of adapting the wavelet bases to certain n- dimensional blocks or elements is proposed based on the domain decomposition and local transformation techniques used in traditional finite element methods and computer aided graphics. The element, with the biorthogonal wavelet base embedded in it, is called a wavelet element in this work. The physical domains which can be treated with this method include general curves, surfaces in 2D and 3D, and 3D volume domains. A two-step mapping is proposed for the purpose of taking full advantage of the zero-moments of wavelets. The wavelet element approach appears to offer several important advantages. It avoids the need of generating very complicated meshes required in traditional finite element based methods, and makes the adaptive analysis easy to implement. A specific implementation procedure for performing adaptive analysis is proposed. The proposed biorthogonal wavelet based method of moments (BWMoM) has been implemented by using object-oriented programming techniques. The main computational issues have been detailed, discussed, and implemented in the whole package. Numerical examples show

  11. Dependence and risk assessment for oil prices and exchange rate portfolios: A wavelet based approach

    NASA Astrophysics Data System (ADS)

    Aloui, Chaker; Jammazi, Rania

    2015-10-01

    In this article, we propose a wavelet-based approach to accommodate the stylized facts and complex structure of financial data, caused by frequent and abrupt changes of markets and noises. Specifically, we show how the combination of both continuous and discrete wavelet transforms with traditional financial models helps improve portfolio's market risk assessment. In the empirical stage, three wavelet-based models (wavelet-EGARCH with dynamic conditional correlations, wavelet-copula, and wavelet-extreme value) are considered and applied to crude oil price and US dollar exchange rate data. Our findings show that the wavelet-based approach provides an effective and powerful tool for detecting extreme moments and improving the accuracy of VaR and Expected Shortfall estimates of oil-exchange rate portfolios after noise is removed from the original data.

  12. Wavelet transform: fundamentals, applications, and implementation using acousto-optic correlators

    NASA Astrophysics Data System (ADS)

    DeCusatis, Casimer M.; Koay, J.; Litynski, Daniel M.; Das, Pankaj K.

    1995-10-01

    In recent years there has been a great deal of interest in the use of wavelets to supplement or replace conventional Fourier transform signal processing. This paper provides a review of wavelet transforms for signal processing applications, and discusses several emerging applications which benefit from the advantages of wavelets. The wavelet transform can be implemented as an acousto-optic correlator; perfect reconstruction of digital signals may also be achieved using acousto-optic finite impulse response filter banks. Acousto-optic image correlators are discussed as a potential implementation of the wavelet transform, since a 1D wavelet filter bank may be encoded as a 2D image. We discuss applications of the wavelet transform including nondestructive testing of materials, biomedical applications in the analysis of EEG signals, and interference excision in spread spectrum communication systems. Computer simulations and experimental results for these applications are also provided.

  13. Nonstationary Dynamics Data Analysis with Wavelet-SVD Filtering

    NASA Technical Reports Server (NTRS)

    Brenner, Marty; Groutage, Dale; Bessette, Denis (Technical Monitor)

    2001-01-01

    Nonstationary time-frequency analysis is used for identification and classification of aeroelastic and aeroservoelastic dynamics. Time-frequency multiscale wavelet processing generates discrete energy density distributions. The distributions are processed using the singular value decomposition (SVD). Discrete density functions derived from the SVD generate moments that detect the principal features in the data. The SVD standard basis vectors are applied and then compared with a transformed-SVD, or TSVD, which reduces the number of features into more compact energy density concentrations. Finally, from the feature extraction, wavelet-based modal parameter estimation is applied.

  14. 2-D Signal Generation Using State-Space Formulation.

    DTIC Science & Technology

    1985-12-01

    published that have established nonoptical .~ -~ Iimage processing as a viable area of research. A large portion of this research emphasizes the linear...research and the study of time-discrete linear systems. This thesis develops the discrete model of Roesser [Ref. 5] for linear image processing which... THESIS 2-D SIGNAL GENERATION USING STATE-SPACE FORMULATION - • by (.) Evangelos Theofilou December 1985 • Thesis Advisor: Sydney R. Parker Approved

  15. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined

  16. Unbalanced multiple description wavelet coding for scalable video transmission

    NASA Astrophysics Data System (ADS)

    Choupani, Roya; Wong, Stephan; Tolun, Mehmet

    2012-10-01

    Scalable video coding and multiple description coding are the two different adaptation schemes for video transmission over heterogeneous and best-effort networks such as the Internet. We propose a new method to encode video for unreliable networks with rate adaptation capability. Our proposed method groups three dimensional discrete wavelet transform coefficients in different descriptions and applies a modified embedded zero tree data for rate adaptation. The proposed method optimizes the bit-rates of the descriptions with respect to the channel bit rates and the maximum acceptable distortion. The experimental results in the presence of one description loss indicate that on average the videos at the rate of 1000 Kbit/s are reconstructed with Y-component of peak signal to noise ratio (Y-PSNR) value of 36.2 dB. The dynamic allocation of descriptions to the network channels is optimized for rate distortion minimization. The improvement in term of Y-PSNR achieved by rate distortion optimization has been between 0.7 and 5.3 dB in different bit rates.

  17. Proper orthogonal decomposition and wavelet methods for noise reduction in particle-based transport calculations

    NASA Astrophysics Data System (ADS)

    Nguyen van Ye, Romain; Del-Castillo-Negrete, Diego; Spong, D.; Hirshman, S.; Farge, M.

    2008-11-01

    A limitation of particle-based transport calculations is the noise due to limited statistical sampling. Thus, a key element for the success of these calculations is the development of efficient denoising methods. Here we discuss denoising techniques based on Proper Orthogonal Decomposition (POD) and Wavelet Decomposition (WD). The goal is the reconstruction of smooth (denoised) particle distribution functions from discrete particle data obtained from Monte Carlo simulations. In 2-D, the POD method is based on low rank truncations of the singular value decomposition of the data. For 3-D we propose the use of a generalized low rank approximation of matrices technique. The WD denoising is based on the thresholding of empirical wavelet coefficients [Donoho et al., 1996]. The methods are illustrated and tested with Monte-Carlo particle simulation data of plasma collisional relaxation including pitch angle and energy scattering. As an application we consider guiding-center transport with collisions in a magnetically confined plasma in toroidal geometry. The proposed noise reduction methods allow to achieve high levels of smoothness in the particle distribution function using significantly less particles in the computations.

  18. Exact reconstruction with directional wavelets on the sphere

    NASA Astrophysics Data System (ADS)

    Wiaux, Y.; McEwen, J. D.; Vandergheynst, P.; Blanc, O.

    2008-08-01

    A new formalism is derived for the analysis and exact reconstruction of band-limited signals on the sphere with directional wavelets. It represents an evolution of a previously developed wavelet formalism developed by Antoine & Vandergheynst and Wiaux et al. The translations of the wavelets at any point on the sphere and their proper rotations are still defined through the continuous three-dimensional rotations. The dilations of the wavelets are directly defined in harmonic space through a new kernel dilation, which is a modification of an existing harmonic dilation. A family of factorized steerable functions with compact harmonic support which are suitable for this kernel dilation are first identified. A scale-discretized wavelet formalism is then derived, relying on this dilation. The discrete nature of the analysis scales allows the exact reconstruction of band-limited signals. A corresponding exact multi-resolution algorithm is finally described and an implementation is tested. The formalism is of interest notably for the denoising or the deconvolution of signals on the sphere with a sparse expansion in wavelets. In astrophysics, it finds a particular application for the identification of localized directional features in the cosmic microwave background data, such as the imprint of topological defects, in particular, cosmic strings, and for their reconstruction after separation from the other signal components.

  19. Three-dimensional compression scheme based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Yang, Wu; Xu, Hui; Liao, Mengyang

    1999-03-01

    In this paper, a 3D compression method based on separable wavelet transform is discussed in detail. The most commonly used digital modalities generate multiple slices in a single examination, which are normally anatomically or physiologically correlated to each other. 3D wavelet compression methods can achieve more efficient compression by exploring the correlation between slices. The first step is based on a separable 3D wavelet transform. Considering the difference between pixel distances within a slice and those between slices, one biorthogonal Antoninin filter bank is applied within 2D slices and a second biorthogonal Villa4 filter bank on the slice direction. Then, S+P transform is applied in the low-resolution wavelet components and an optimal quantizer is presented after analysis of the quantization noise. We use an optimal bit allocation algorithm, which, instead of eliminating the coefficients of high-resolution components in smooth areas, minimizes the system reconstruction distortion at a given bit-rate. Finally, to remain high coding efficiency and adapt to different properties of each component, a comprehensive entropy coding method is proposed, in which arithmetic coding method is applied in high-resolution components and adaptive Huffman coding method in low-resolution components. Our experimental results are evaluated by several image measures and our 3D wavelet compression scheme is proved to be more efficient than 2D wavelet compression.

  20. Reversible wavelet filter banks with side informationless spatially adaptive low-pass filters

    NASA Astrophysics Data System (ADS)

    Abhayaratne, Charith

    2011-07-01

    Wavelet transforms that have an adaptive low-pass filter are useful in applications that require the signal singularities, sharp transitions, and image edges to be left intact in the low-pass signal. In scalable image coding, the spatial resolution scalability is achieved by reconstructing the low-pass signal subband, which corresponds to the desired resolution level, and discarding other high-frequency wavelet subbands. In such applications, it is vital to have low-pass subbands that are not affected by smoothing artifacts associated with low-pass filtering. We present the mathematical framework for achieving 1-D wavelet transforms that have a spatially adaptive low-pass filter (SALP) using the prediction-first lifting scheme. The adaptivity decisions are computed using the wavelet coefficients, and no bookkeeping is required for the perfect reconstruction. Then, 2-D wavelet transforms that have a spatially adaptive low-pass filter are designed by extending the 1-D SALP framework. Because the 2-D polyphase decompositions are used in this case, the 2-D adaptivity decisions are made nonseparable as opposed to the separable 2-D realization using 1-D transforms. We present examples using the 2-D 5/3 wavelet transform and their lossless image coding and scalable decoding performances in terms of quality and resolution scalability. The proposed 2-D-SALP scheme results in better performance compared to the existing adaptive update lifting schemes.

  1. Wavelet Analyses and Applications

    ERIC Educational Resources Information Center

    Bordeianu, Cristian C.; Landau, Rubin H.; Paez, Manuel J.

    2009-01-01

    It is shown how a modern extension of Fourier analysis known as wavelet analysis is applied to signals containing multiscale information. First, a continuous wavelet transform is used to analyse the spectrum of a nonstationary signal (one whose form changes in time). The spectral analysis of such a signal gives the strength of the signal in each…

  2. Wavelets and Scattering

    DTIC Science & Technology

    1994-07-29

    Douglas (MDA). This has been extended to the use of local SVD methods and the use of wavelet packets to provide a controlled sparsening. The goal is to be...possibilities for segmenting, compression and denoising signals and one of us (GVW) is using these wavelets to study edge sets with Prof. B. Jawerth. The

  3. Image denoising based on wavelet cone of influence analysis

    NASA Astrophysics Data System (ADS)

    Pang, Wei; Li, Yufeng

    2009-11-01

    Donoho et al have proposed a method for denoising by thresholding based on wavelet transform, and indeed, the application of their method to image denoising has been extremely successful. But this method is based on the assumption that the type of noise is only additive Gaussian white noise, which is not efficient to impulse noise. In this paper, a new image denoising algorithm based on wavelet cone of influence (COI) analyzing is proposed, and which can effectively remove the impulse noise and preserve the image edges via undecimated discrete wavelet transform (UDWT). Furthermore, combining with the traditional wavelet thresholding denoising method, it can be also used to restrain more widely type of noise such as Gaussian noise, impulse noise, poisson noise and other mixed noise. Experiment results illustrate the advantages of this method.

  4. Terahertz digital holography image denoising using stationary wavelet transform

    NASA Astrophysics Data System (ADS)

    Cui, Shan-Shan; Li, Qi; Chen, Guanghao

    2015-04-01

    Terahertz (THz) holography is a frontier technology in terahertz imaging field. However, reconstructed images of holograms are inherently affected by speckle noise, on account of the coherent nature of light scattering. Stationary wavelet transform (SWT) is an effective tool in speckle noise removal. In this paper, two algorithms for despeckling SAR images are implemented to THz images based on SWT, which are threshold estimation and smoothing operation respectively. Denoised images are then quantitatively assessed by speckle index. Experimental results show that the stationary wavelet transform has superior denoising performance and image detail preservation to discrete wavelet transform. In terms of the threshold estimation, high levels of decomposing are needed for better denoising result. The smoothing operation combined with stationary wavelet transform manifests the optimal denoising effect at single decomposition level, with 5×5 average filtering.

  5. Mathematical theorems of adaptive wavelet transform

    NASA Astrophysics Data System (ADS)

    Szu, Harold H.; Telfer, Brian A.

    1994-03-01

    The computational efficiency of the adaptive wavelet transform (AWT) is due both to the compact support closely matching with signal characteristics, and to a larger redundancy factor of the superposition-mother (s(x), or in short super-mother, created adaptively by a linear superposition of other admissible mother wavelets. We prove that the super-mother always forms a complete basis, but usually associated with a higher redundancy number than its constituent C.O.N. bases. Then, in terms of Daubechies frame redundancy, we prove that the robustness of super-mother in suffering less noise contamination (since noise is everywhere, and a redundant sampling by band-passings can suppress the noise and enhance the signal). Since the continuous function of super- mother has been created with least-mean-squares (LMS) off-line using neural nets and is formulated in discrete approximation in terms of high-pass and low-pass filter bank coefficients, then such a digital subband coding via QMF saves the in-situ computational time of AWT. Moreover, the power of such an adaptive wavelet transform is due to the potential of massive parallel real-time implementation by means of artificial neural networks, where each node is a daughter wavelet similar to a radial basis function using dyadic affine scaling.

  6. An Explicitly Correlated Wavelet Method for the Electronic Schroedinger Equation

    SciTech Connect

    Bachmayr, Markus

    2010-09-30

    A discretization for an explicitly correlated formulation of the electronic Schroedinger equation based on hyperbolic wavelets and exponential sum approximations of potentials is described, covering mathematical results as well as algorithmic realization, and discussing in particular the potential of methods of this type for parallel computing.

  7. Wavelet formulation of the polarizable continuum model.

    PubMed

    Weijo, Ville; Randrianarivony, Maharavo; Harbrecht, Helmut; Frediani, Luca

    2010-05-01

    The first implementation of a wavelet discretization of the Integral Equation Formalism (IEF) for the Polarizable Continuum Model (PCM) is presented here. The method is based on the application of a general purpose wavelet solver on the cavity boundary to solve the integral equations of the IEF-PCM problem. Wavelet methods provide attractive properties for the solution of the electrostatic problem at the cavity boundary: the system matrix is highly sparse and iterative solution schemes can be applied efficiently; the accuracy of the solver can be increased systematically and arbitrarily; for a given system, discretization error accuracy is achieved at a computational expense that scales linearly with the number of unknowns. The scaling of the computational time with the number of atoms N is formally quadratic but a N(1.5) scaling has been observed in practice. The current bottleneck is the evaluation of the potential integrals at the cavity boundary which scales linearly with the system size. To reduce this overhead, interpolation of the potential integrals on the cavity surface has been successfully used.

  8. Multispectral multisensor image fusion using wavelet transforms

    USGS Publications Warehouse

    Lemeshewsky, George P.

    1999-01-01

    Fusion techniques can be applied to multispectral and higher spatial resolution panchromatic images to create a composite image that is easier to interpret than the individual images. Wavelet transform-based multisensor, multiresolution fusion (a type of band sharpening) was applied to Landsat thematic mapper (TM) multispectral and coregistered higher resolution SPOT panchromatic images. The objective was to obtain increased spatial resolution, false color composite products to support the interpretation of land cover types wherein the spectral characteristics of the imagery are preserved to provide the spectral clues needed for interpretation. Since the fusion process should not introduce artifacts, a shift invariant implementation of the discrete wavelet transform (SIDWT) was used. These results were compared with those using the shift variant, discrete wavelet transform (DWT). Overall, the process includes a hue, saturation, and value color space transform to minimize color changes, and a reported point-wise maximum selection rule to combine transform coefficients. The performance of fusion based on the SIDWT and DWT was evaluated with a simulated TM 30-m spatial resolution test image and a higher resolution reference. Simulated imagery was made by blurring higher resolution color-infrared photography with the TM sensors' point spread function. The SIDWT based technique produced imagery with fewer artifacts and lower error between fused images and the full resolution reference. Image examples with TM and SPOT 10-m panchromatic illustrate the reduction in artifacts due to the SIDWT based fusion.

  9. Pedestrian detection based on redundant wavelet transform

    NASA Astrophysics Data System (ADS)

    Huang, Lin; Ji, Liping; Hu, Ping; Yang, Tiejun

    2016-10-01

    Intelligent video surveillance is to analysis video or image sequences captured by a fixed or mobile surveillance camera, including moving object detection, segmentation and recognition. By using it, we can be notified immediately in an abnormal situation. Pedestrian detection plays an important role in an intelligent video surveillance system, and it is also a key technology in the field of intelligent vehicle. So pedestrian detection has very vital significance in traffic management optimization, security early warn and abnormal behavior detection. Generally, pedestrian detection can be summarized as: first to estimate moving areas; then to extract features of region of interest; finally to classify using a classifier. Redundant wavelet transform (RWT) overcomes the deficiency of shift variant of discrete wavelet transform, and it has better performance in motion estimation when compared to discrete wavelet transform. Addressing the problem of the detection of multi-pedestrian with different speed, we present an algorithm of pedestrian detection based on motion estimation using RWT, combining histogram of oriented gradients (HOG) and support vector machine (SVM). Firstly, three intensities of movement (IoM) are estimated using RWT and the corresponding areas are segmented. According to the different IoM, a region proposal (RP) is generated. Then, the features of a RP is extracted using HOG. Finally, the features are fed into a SVM trained by pedestrian databases and the final detection results are gained. Experiments show that the proposed algorithm can detect pedestrians accurately and efficiently.

  10. Using optical wavelet packet transform to improve the performance of an optoelectronic iris recognition system

    NASA Astrophysics Data System (ADS)

    Cai, De; Tan, Qiaofeng; Yan, Yingbai; Jin, Guofan; He, Qingsheng

    2005-01-01

    Iris, one important biometric feature, has unique advantages: it has complex texture and is almost unchanged for the lifespan. So iris recognition has been widely studied for intelligent personal identification. Most of researchers use wavelets as iris feature extractor. And their systems obtain high accuracy. But wavelet transform is time consuming, so the problem is to enhance the useful information but still keep high processing speed. This is the reason we propose an opto-electronic system for iris recognition because of high parallelism of optics. In this system, we use eigen-images generated corresponding to optimally chosen wavelet packets to compress the iris image bank. After optical correlation between eigen-images and input, the statistic features are extracted. Simulation shows that wavelet packets preprocessing of the input images results in higher identification rate. And this preprocessing can be fulfilled by optical wavelet packet transform (OWPT), a new optical transform introduced by us. To generate the approximations of 2-D wavelet packet basis functions for implementing OWPT, mother wavelet, which has scaling functions, is utilized. Using the cascade algorithm and 2-D separable wavelet transform scheme, an optical wavelet packet filter is constructed based on the selected best bases. Inserting this filter makes the recognition performance better.

  11. Implemented Wavelet Packet Tree based Denoising Algorithm in Bus Signals of a Wearable Sensorarray

    NASA Astrophysics Data System (ADS)

    Schimmack, M.; Nguyen, S.; Mercorelli, P.

    2015-11-01

    This paper introduces a thermosensing embedded system with a sensor bus that uses wavelets for the purposes of noise location and denoising. From the principle of the filter bank the measured signal is separated in two bands, low and high frequency. The proposed algorithm identifies the defined noise in these two bands. With the Wavelet Packet Transform as a method of Discrete Wavelet Transform, it is able to decompose and reconstruct bus input signals of a sensor network. Using a seminorm, the noise of a sequence can be detected and located, so that the wavelet basis can be rearranged. This particularly allows for elimination of any incoherent parts that make up unavoidable measuring noise of bus signals. The proposed method was built based on wavelet algorithms from the WaveLab 850 library of the Stanford University (USA). This work gives an insight to the workings of Wavelet Transformation.

  12. 3D Wavelet-Based Filter and Method

    DOEpatents

    Moss, William C.; Haase, Sebastian; Sedat, John W.

    2008-08-12

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  13. Transition to turbulence: 2D directed percolation

    NASA Astrophysics Data System (ADS)

    Chantry, Matthew; Tuckerman, Laurette; Barkley, Dwight

    2016-11-01

    The transition to turbulence in simple shear flows has been studied for well over a century, yet in the last few years has seen major leaps forward. In pipe flow, this transition shows the hallmarks of (1 + 1) D directed percolation, a universality class of continuous phase transitions. In spanwisely confined Taylor-Couette flow the same class is found, suggesting the phenomenon is generic to shear flows. However in plane Couette flow the largest simulations and experiments to-date find evidence for a discrete transition. Here we study a planar shear flow, called Waleffe flow, devoid of walls yet showing the fundamentals of planar transition to turbulence. Working with a quasi-2D yet Navier-Stokes derived model of this flow we are able to attack the (2 + 1) D transition problem. Going beyond the system sizes previously possible we find all of the required scalings of directed percolation and thus establish planar shears flow in this class.

  14. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  15. Analyzing Planck-Like Data with Wavelets

    NASA Astrophysics Data System (ADS)

    Sanz, J. L.; Barreiro, R. B.; Cayón, L.; Martinez-González, E.; Ruiz, G. A.; Diaz, F. J.; Argüeso, F.; Toffolatti, L.

    Basics on the continuous and discrete wavelet transform with two scales are outlined. We study maps representing anisotropies in the cosmic microwave background radiation (CMB) and the relation to the standard approach, based on the Cl's, is establised through the introduction of a wavelet spectrum. We apply this technique to small angular scale CMB map simulations of size 12.8 x 12.8 degrees and filtered with a 4'.5 Gaussian beam. This resolution resembles the experimental one expected for future high resolution experiments (e.g. the Planck mission). We consider temperature fluctuations derived from standard, open and flat-Lambda CDM models. We also introduce Gaussian noise (uniform and non-uniform) at different S/N levels and results are given regarding denoising.

  16. The discrete Kalman filtering approach for seismic signals deconvolution

    SciTech Connect

    Kurniadi, Rizal; Nurhandoko, Bagus Endar B.

    2012-06-20

    Seismic signals are a convolution of reflectivity and seismic wavelet. One of the most important stages in seismic data processing is deconvolution process; the process of deconvolution is inverse filters based on Wiener filter theory. This theory is limited by certain modelling assumptions, which may not always valid. The discrete form of the Kalman filter is then used to generate an estimate of the reflectivity function. The main advantage of Kalman filtering is capability of technique to handling continually time varying models and has high resolution capabilities. In this work, we use discrete Kalman filter that it was combined with primitive deconvolution. Filtering process works on reflectivity function, hence the work flow of filtering is started with primitive deconvolution using inverse of wavelet. The seismic signals then are obtained by convoluting of filtered reflectivity function with energy waveform which is referred to as the seismic wavelet. The higher frequency of wavelet gives smaller wave length, the graphs of these results are presented.

  17. Continuous wavelet analysis of coherent structures

    NASA Technical Reports Server (NTRS)

    Farge, M.; Guezennec, Y.; Ho, C. M.; Meneveau, C.

    1990-01-01

    We perform an analysis of planar cuts through three dimensional turbulent fields (planar channel flow and mixing layer) using the 2D continuous wavelet transform. We propose two new diagnostics: (1) a measure of intermittency I(r, vector x), which is the ratio of local energy and average energy at a given scale r; and (2) a local Reynolds number, defined on the local velocity contribution at a given scale, computed from the wavelet transform of the three velocity components, the scale of the transform, and molecular viscosity; this gives a representation of the local non-linearity of the flow viewed in both space and scale. We find, for the analyzed flows, strong small-scale intermittency located in the ejection regions for the channel flow and in the vortex core of the mixing layer.

  18. A Non-Homogeneous, Spatio-Temporal, Wavelet Multiresolution Analysis and Its Application to the Analysis of Motion

    DTIC Science & Technology

    1993-12-01

    36 iv Page 3.3 Discrete Multiresolution Decomposition Algorithm ..... ........... 40 3.4 Spatio-Temporal Filter Bank Representation...List of Figures Figure Page 1. Spatial and temporal frequency sensitivity of motion cells ................... 3 2. STFT and wavelet filter banks ...construction of a wavelet filter bank that provides directional selectivity, 5) combining the coefficients obtained in the decomposition process to

  19. Classification of mammographic microcalcifications using wavelets

    NASA Astrophysics Data System (ADS)

    Chitre, Yateen S.; Dhawan, Atam P.; Moskowitz, Myron; Sarwal, Alok; Bonasso, Christine; Narayan, Suresh B.

    1995-05-01

    Breast cancer is the leading cause of death among women. Breast cancer can be detected earlier by mammography than any other non-invasive examination. About 30% to 50% of breast cancers demonstrate tiny granulelike deposits of calcium called microcalcifications. It is difficult to distinguish between benign and malignant cases based on an examination of calcification regions, especially in hard-to-diagnose cases. We investigate the potential of using energy and entropy features computed from wavelet packets for their correlation with malignancy. Two types of Daubechies discrete filters were used as prototype wavelets. The energy and entropy features were computed for 128 benign and 63 malignant cases and analyzed using a multivariate cluster analysis and a univariate statistical analysis to reduce the feature set to a `five best set of features.' The efficacy of the reduced feature set to discriminate between the malignant and benign categories was evaluated using different multilayer perceptron architectures. The multilayer perceptron was trained using the backpropagation algorithm for various training and test set sizes. For each case 40 partitions of the data set were used to set up the training and test sets. The performance of the features was evaluated by computing the best area under the relative operating characteristic (ROC) curve and the average area under the ROC curve. The performance of the features computed from the wavelet packets was compared to a second set of features consisting of the wavelet packet features, image structure features and cluster features. The classification results are encouraging and indicate the potential of using features derived from wavelet packets in discriminating microcalcification regions into benign and malignant categories.

  20. Wavelets and Multifractal Analysis

    DTIC Science & Technology

    2004-07-01

    distribution unlimited 13. SUPPLEMENTARY NOTES See also ADM001750, Wavelets and Multifractal Analysis (WAMA) Workshop held on 19-31 July 2004., The original...f)] . . . 16 2.5.4 Detrended Fluctuation Analysis [DFA(m)] . . . . . . . . . . . . . . . 17 2.6 Scale-Independent Measures...18 2.6.1 Detrended -Fluctuation- Analysis Power-Law Exponent (αD) . . . . . . 18 2.6.2 Wavelet-Transform Power-Law Exponent

  1. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  2. Wavelet-based analysis of circadian behavioral rhythms.

    PubMed

    Leise, Tanya L

    2015-01-01

    The challenging problems presented by noisy biological oscillators have led to the development of a great variety of methods for accurately estimating rhythmic parameters such as period and amplitude. This chapter focuses on wavelet-based methods, which can be quite effective for assessing how rhythms change over time, particularly if time series are at least a week in length. These methods can offer alternative views to complement more traditional methods of evaluating behavioral records. The analytic wavelet transform can estimate the instantaneous period and amplitude, as well as the phase of the rhythm at each time point, while the discrete wavelet transform can extract the circadian component of activity and measure the relative strength of that circadian component compared to those in other frequency bands. Wavelet transforms do not require the removal of noise or trend, and can, in fact, be effective at removing noise and trend from oscillatory time series. The Fourier periodogram and spectrogram are reviewed, followed by descriptions of the analytic and discrete wavelet transforms. Examples illustrate application of each method and their prior use in chronobiology is surveyed. Issues such as edge effects, frequency leakage, and implications of the uncertainty principle are also addressed.

  3. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1989-03-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  4. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1988-08-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculation assumes local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  5. Biomedical image and signal de-noising using dual tree complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Rizi, F. Yousefi; Noubari, H. Ahmadi; Setarehdan, S. K.

    2011-10-01

    Dual tree complex wavelet transform(DTCWT) is a form of discrete wavelet transform, which generates complex coefficients by using a dual tree of wavelet filters to obtain their real and imaginary parts. The purposes of de-noising are reducing noise level and improving signal to noise ratio (SNR) without distorting the signal or image. This paper proposes a method for removing white Gaussian noise from ECG signals and biomedical images. The discrete wavelet transform (DWT) is very valuable in a large scope of de-noising problems. However, it has limitations such as oscillations of the coefficients at a singularity, lack of directional selectivity in higher dimensions, aliasing and consequent shift variance. The complex wavelet transform CWT strategy that we focus on in this paper is Kingsbury's and Selesnick's dual tree CWT (DTCWT) which outperforms the critically decimated DWT in a range of applications, such as de-noising. Each complex wavelet is oriented along one of six possible directions, and the magnitude of each complex wavelet has a smooth bell-shape. In the final part of this paper, we present biomedical image and signal de-noising by the means of thresholding magnitude of the wavelet coefficients.

  6. Wavelet decomposition-based efficient face liveness detection

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2016-04-01

    Existing face recognition systems are susceptible to spoofing attacks. So, Face liveness detection is a pivotal part for reliable face recognition, which has recently acknowledged vast attention. In this paper we propose a wavelet decomposition based face liveness recognition system using an energy calculation technique. Live faces contain high energy components compared to fake or printed image. In this paper, we calculate energy components of live face as well as fake face using discrete wavelet decomposition method. We analyze percentage of energy at different levels as well as for different wavelet basis function. We also analyze percentage of energy at different RGB bands and efficient face liveness detection method has been proposed. Discrete wavelet representation has been used to calculate decomposed energy components. Moreover, it provides differentiation of several spatial orientations as well as average and detailed information which are missing in the fake faces. This technique provides excellent discrimination capability when compared to the previously reported works based on the discrete Fourier transform and n-dimensional Fourier transform operations. To verify the proposed approach, we tested the performance using various face antispoofing datasets such as university of south Alabama (UFAD), and MSU face antispoofing dataset which incorporates different types of attacks. The test results obtained using the proposed technique shows better performance compared to existing techniques.

  7. Analysis and removing noise from speech using wavelet transform

    NASA Astrophysics Data System (ADS)

    Tomala, Karel; Voznak, Miroslav; Partila, Pavol; Rezac, Filip; Safarik, Jakub

    2013-05-01

    The paper discusses the use of Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT) wavelet in removing noise from voice samples and evaluation of its impact on speech quality. One significant part of Quality of Service (QoS) in communication technology is the speech quality assessment. However, this part is seriously overlooked as telecommunication providers often focus on increasing network capacity, expansion of services offered and their enforcement in the market. Among the fundamental factors affecting the transmission properties of the communication chain is noise, either at the transmitter or the receiver side. A wavelet transform (WT) is a modern tool for signal processing. One of the most significant areas in which wavelet transforms are used is applications designed to suppress noise in signals. To remove noise from the voice sample in our experiment, we used the reference segment of the voice which was distorted by Gaussian white noise. An evaluation of the impact on speech quality was carried out by an intrusive objective algorithm Perceptual Evaluation of Speech Quality (PESQ). DWT and SWT transformation was applied to voice samples that were devalued by Gaussian white noise. Afterwards, we determined the effectiveness of DWT and SWT by means of objective algorithm PESQ. The decisive criterion for determining the quality of a voice sample once the noise had been removed was Mean Opinion Score (MOS) which we obtained in PESQ. The contribution of this work lies in the evaluation of efficiency of wavelet transformation to suppress noise in voice samples.

  8. Wavelet-based denoising using local Laplace prior

    NASA Astrophysics Data System (ADS)

    Rabbani, Hossein; Vafadust, Mansur; Selesnick, Ivan

    2007-09-01

    Although wavelet-based image denoising is a powerful tool for image processing applications, relatively few publications have addressed so far wavelet-based video denoising. The main reason is that the standard 3-D data transforms do not provide useful representations with good energy compaction property, for most video data. For example, the multi-dimensional standard separable discrete wavelet transform (M-D DWT) mixes orientations and motions in its subbands, and produces the checkerboard artifacts. So, instead of M-D DWT, usually oriented transforms suchas multi-dimensional complex wavelet transform (M-D DCWT) are proposed for video processing. In this paper we use a Laplace distribution with local variance to model the statistical properties of noise-free wavelet coefficients. This distribution is able to simultaneously model the heavy-tailed and intrascale dependency properties of wavelets. Using this model, simple shrinkage functions are obtained employing maximum a posteriori (MAP) and minimum mean squared error (MMSE) estimators. These shrinkage functions are proposed for video denoising in DCWT domain. The simulation results shows that this simple denoising method has impressive performance visually and quantitatively.

  9. Principal square root of 3-subdivision-based biorthogonal wavelets.

    PubMed

    Wang, Huawei; Qin, Kaihuai; Sun, Hanqiu

    2007-01-01

    A new efficient biorthogonal wavelet analysis based on the principal square root of subdivision is proposed in the paper by using the lifting scheme. Since the principal square root of subdivision is of the slowest topological refinement among the traditional triangular subdivisions, the multiresolution analysis based on the principal square root of subdivision is more balanced than the existing wavelet analyses on triangular meshes, and accordingly offers more levels of detail for processing polygonal models. In order to optimize the multiresolution analysis process, the new wavelets, no matter whether they are interior or on boundaries, are orthogonalized with the local scaling functions based on a discrete inner product with subdivision masks. Because the wavelet analysis and synthesis algorithms are actually composed of a series of local lifting operations, they can be performed in linear time. The experiments demonstrate the efficiency and stability of the wavelet analysis for both closed and open triangular meshes with principal square root of subdivision connectivity. The principal square root of -subdivision-based biorthogonal wavelets can be used in many applications such as progressive transmission, shape approximation, multiresolution editing and rendering of 3D geometric models.

  10. Riesz wavelets and multiresolution structures

    NASA Astrophysics Data System (ADS)

    Larson, David R.; Tang, Wai-Shing; Weber, Eric

    2001-12-01

    Multiresolution structures are important in applications, but they are also useful for analyzing properties of associated wavelets. Given a nonorthogonal (multi-) wavelet in a Hilbert space, we construct a core subspace. Subsequently, the dilates of the core subspace defines a ladder of nested subspaces. Of fundamental importance are two questions: 1) when is the core subspace shift invariant; and if yes, then 2) when is the core subspace generated by shifts of a single vector, i.e. there exists a scaling vector. If the wavelet generates a Riesz basis then the answer to question 1) is yes if and only if the wavelet is a biorthogonal wavelet. Additionally, if the wavelet generates a tight frame of arbitrary frame constant, then the core subspace is shift invariant. Question 1) is still open in case the wavelet generates a non-tight frame. We also present some known results to question 2) and provide some preliminary improvements. Our analysis here arises from investigating the dimension function and the multiplicity function of a wavelet. These two functions agree if the wavelet is orthogonal. Finally, we discuss how these questions are important for considering linear perturbation of wavelets. Utilizing the idea of the local commutant of a unitary system developed by Dai and Larson, we show that nearly all linear perturbations of two orthonormal wavelets form a Riesz wavelet. If in fact these wavelets correspond to a von Neumann algebra in the local commutant of a base wavelet, then the interpolated wavelet is biorthogonal. Moreover, we demonstrate that in this case the interpolated wavelets have a scaling vector if the base wavelet has a scaling vector.

  11. Motion-compensated wavelet video coding using adaptive mode selection

    NASA Astrophysics Data System (ADS)

    Zhai, Fan; Pappas, Thrasyvoulos N.

    2004-01-01

    A motion-compensated wavelet video coder is presented that uses adaptive mode selection (AMS) for each macroblock (MB). The block-based motion estimation is performed in the spatial domain, and an embedded zerotree wavelet coder (EZW) is employed to encode the residue frame. In contrast to other motion-compensated wavelet video coders, where all the MBs are forced to be in INTER mode, we construct the residue frame by combining the prediction residual of the INTER MBs with the coding residual of the INTRA and INTER_ENCODE MBs. Different from INTER MBs that are not coded, the INTRA and INTER_ENCODE MBs are encoded separately by a DCT coder. By adaptively selecting the quantizers of the INTRA and INTER_ENCODE coded MBs, our goal is to equalize the characteristics of the residue frame in order to improve the overall coding efficiency of the wavelet coder. The mode selection is based on the variance of the MB, the variance of the prediction error, and the variance of the neighboring MBs' residual. Simulations show that the proposed motion-compensated wavelet video coder achieves a gain of around 0.7-0.8dB PSNR over MPEG-2 TM5, and a comparable PSNR to other 2D motion-compensated wavelet-based video codecs. It also provides potential visual quality improvement.

  12. Lung tissue classification using wavelet frames.

    PubMed

    Depeursinge, Adrien; Sage, Daniel; Hidki, Asmâa; Platon, Alexandra; Poletti, Pierre-Alexandre; Unser, Michael; Müller, Henning

    2007-01-01

    We describe a texture classification system that identifies lung tissue patterns from high-resolution computed tomography (HRCT) images of patients affected with interstitial lung diseases (ILD). This pattern recognition task is part of an image-based diagnostic aid system for ILDs. Five lung tissue patterns (healthy, emphysema, ground glass, fibrosis and microdules) selected from a multimedia database are classified using the overcomplete discrete wavelet frame decompostion combined with grey-level histogram features. The overall multiclass accuracy reaches 92.5% of correct matches while combining the two types of features, which are found to be complementary.

  13. Image coding by way of wavelets

    NASA Technical Reports Server (NTRS)

    Shahshahani, M.

    1993-01-01

    The application of two wavelet transforms to image compression is discussed. It is noted that the Haar transform, with proper bit allocation, has performance that is visually superior to an algorithm based on a Daubechies filter and to the discrete cosine transform based Joint Photographic Experts Group (JPEG) algorithm at compression ratios exceeding 20:1. In terms of the root-mean-square error, the performance of the Haar transform method is basically comparable to that of the JPEG algorithm. The implementation of the Haar transform can be achieved in integer arithmetic, making it very suitable for applications requiring real-time performance.

  14. Wavelets for approximate Fourier transform and data compression

    NASA Astrophysics Data System (ADS)

    Guo, Haitao

    This dissertation has two parts. In the first part, we develop a wavelet-based fast approximate Fourier transform algorithm. The second part is devoted to the developments of several wavelet-based data compression techniques for image and seismic data. We propose an algorithm that uses the discrete wavelet transform (DWT) as a tool to compute the discrete Fourier transform (DFT). The classical Cooley-Tukey FFT is shown to be a special case of the proposed algorithm when the wavelets in use are trivial. The main advantage of our algorithm is that the good time and frequency localization of wavelets can be exploited to approximate the Fourier transform for many classes of signals, resulting in much less computation. Thus the new algorithm provides an efficient complexity versus accuracy tradeoff. When approximations are allowed, under certain sparsity conditions, the algorithm can achieve linear complexity, i.e. O(N). The proposed algorithm also has built-in noise reduction capability. For waveform and image compression, we propose a novel scheme using the recently developed Burrows-Wheeler transform (BWT). We show that the discrete wavelet transform (DWT) should be used before the Burrows-Wheeler transform to improve the compression performance for many natural signals and images. We demonstrate that the simple concatenation of the DWT and BWT coding performs comparably as the embedded zerotree wavelet (EZW) compression for images. Various techniques that significantly improve the performance of our compression scheme are also discussed. The phase information is crucial for seismic data processing. However, traditional compression schemes do not pay special attention to preserving the phase of the seismic data, resulting in the loss of critical information. We propose a lossy compression method that preserves the phase as much as possible. The method is based on the self-adjusting wavelet transform that adapts to the locations of the significant signal components

  15. Morphology of the Galaxy Distribution from Wavelet Denoising

    NASA Astrophysics Data System (ADS)

    Martínez, Vicent J.; Starck, Jean-Luc; Saar, Enn; Donoho, David L.; Reynolds, Simon C.; de la Cruz, Pablo; Paredes, Silvestre

    2005-11-01

    We have developed a method based on wavelets to obtain the true underlying smooth density from a point distribution. The goal has been to reconstruct the density field in an optimal way, ensuring that the morphology of the reconstructed field reflects the true underlying morphology of the point field, which, as the galaxy distribution, has a genuinely multiscale structure, with near-singular behavior on sheets, filaments, and hot spots. If the discrete distributions are smoothed using Gaussian filters, the morphological properties tend to be closer to those expected for a Gaussian field. The use of wavelet denoising provides us with a unique and more accurate morphological description.

  16. Highly crystalline 2D superconductors

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-12-01

    Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.

  17. Extensions of 2D gravity

    SciTech Connect

    Sevrin, A.

    1993-06-01

    After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.

  18. Lossless to lossy compression for hyperspectral imagery based on wavelet and integer KLT transforms with 3D binary EZW

    NASA Astrophysics Data System (ADS)

    Cheng, Kai-jen; Dill, Jeffrey

    2013-05-01

    In this paper, a lossless to lossy transform based image compression of hyperspectral images based on Integer Karhunen-Loève Transform (IKLT) and Integer Discrete Wavelet Transform (IDWT) is proposed. Integer transforms are used to accomplish reversibility. The IKLT is used as a spectral decorrelator and the 2D-IDWT is used as a spatial decorrelator. The three-dimensional Binary Embedded Zerotree Wavelet (3D-BEZW) algorithm efficiently encodes hyperspectral volumetric image by implementing progressive bitplane coding. The signs and magnitudes of transform coefficients are encoded separately. Lossy and lossless compressions of signs are implemented by conventional EZW algorithm and arithmetic coding respectively. The efficient 3D-BEZW algorithm is applied to code magnitudes. Further compression can be achieved using arithmetic coding. The lossless and lossy compression performance is compared with other state of the art predictive and transform based image compression methods on Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images. Results show that the 3D-BEZW performance is comparable to predictive algorithms. However, its computational cost is comparable to transform- based algorithms.

  19. Steerable pyramids and tight wavelet frames in L2(R(d)).

    PubMed

    Unser, Michael; Chenouard, Nicolas; Van de Ville, Dimitri

    2011-10-01

    We present a functional framework for the design of tight steerable wavelet frames in any number of dimensions. The 2-D version of the method can be viewed as a generalization of Simoncelli's steerable pyramid that gives access to a larger palette of steerable wavelets via a suitable parametrization. The backbone of our construction is a primal isotropic wavelet frame that provides the multiresolution decomposition of the signal. The steerable wavelets are obtained by applying a one-to-many mapping (Nth-order generalized Riesz transform) to the primal ones. The shaping of the steerable wavelets is controlled by an M×M unitary matrix (where M is the number of wavelet channels) that can be selected arbitrarily; this allows for a much wider range of solutions than the traditional equiangular configuration (steerable pyramid). We give a complete functional description of these generalized wavelet transforms and derive their steering equations. We describe some concrete examples of transforms, including some built around a Mallat-type multiresolution analysis of L(2)(R(d)), and provide a fast Fourier transform-based decomposition algorithm. We also propose a principal-component-based method for signal-adapted wavelet design. Finally, we present some illustrative examples together with a comparison of the denoising performance of various brands of steerable transforms. The results are in favor of an optimized wavelet design (equalized principal component analysis), which consistently performs best.

  20. Dual tree complex wavelet transform based denoising of optical microscopy images.

    PubMed

    Bal, Ufuk

    2012-12-01

    Photon shot noise is the main noise source of optical microscopy images and can be modeled by a Poisson process. Several discrete wavelet transform based methods have been proposed in the literature for denoising images corrupted by Poisson noise. However, the discrete wavelet transform (DWT) has disadvantages such as shift variance, aliasing, and lack of directional selectivity. To overcome these problems, a dual tree complex wavelet transform is used in our proposed denoising algorithm. Our denoising algorithm is based on the assumption that for the Poisson noise case threshold values for wavelet coefficients can be estimated from the approximation coefficients. Our proposed method was compared with one of the state of the art denoising algorithms. Better results were obtained by using the proposed algorithm in terms of image quality metrics. Furthermore, the contrast enhancement effect of the proposed method on collagen fıber images is examined. Our method allows fast and efficient enhancement of images obtained under low light intensity conditions.

  1. Detection Of Ventricular Late Potentials Using Wavelet Transform And ANT Colony Optimization

    NASA Astrophysics Data System (ADS)

    Subramanian, A. Sankara; Gurusamy, G.; Selvakumar, G.

    2010-10-01

    Ventricular late Potentials (VLPs) are low-level high frequency signals that are usually found with in the terminal part of the QRS complex from patients after Myocardial Infraction. Patients with VLPs are at risk of developing Ventricular Tachycardia, which is the major cause of death if patients suffering from heart disease. In this paper the Discrete Wavelet Transform was used to detect VLPs and then ANT colony optimization (ACO) was applied to classify subjects with and without VLPs. A set of Discrete Wavelet Transform (DWT) coefficients is selected from the wavelet decomposition. Three standard parameters of VLPs such as QRST, D40 and V40 are also established. After that a novel clustering algorithm based on Ant Colony Optimization is developed for classifying arrhythmia types. The wavelet decomposition enabled us to perform the task efficiently and produced reliable results.

  2. A comparison between wavelet based static and dynamic neural network approaches for runoff prediction

    NASA Astrophysics Data System (ADS)

    Shoaib, Muhammad; Shamseldin, Asaad Y.; Melville, Bruce W.; Khan, Mudasser Muneer

    2016-04-01

    In order to predict runoff accurately from a rainfall event, the multilayer perceptron type of neural network models are commonly used in hydrology. Furthermore, the wavelet coupled multilayer perceptron neural network (MLPNN) models has also been found superior relative to the simple neural network models which are not coupled with wavelet. However, the MLPNN models are considered as static and memory less networks and lack the ability to examine the temporal dimension of data. Recurrent neural network models, on the other hand, have the ability to learn from the preceding conditions of the system and hence considered as dynamic models. This study for the first time explores the potential of wavelet coupled time lagged recurrent neural network (TLRNN) models for runoff prediction using rainfall data. The Discrete Wavelet Transformation (DWT) is employed in this study to decompose the input rainfall data using six of the most commonly used wavelet functions. The performance of the simple and the wavelet coupled static MLPNN models is compared with their counterpart dynamic TLRNN models. The study found that the dynamic wavelet coupled TLRNN models can be considered as alternative to the static wavelet MLPNN models. The study also investigated the effect of memory depth on the performance of static and dynamic neural network models. The memory depth refers to how much past information (lagged data) is required as it is not known a priori. The db8 wavelet function is found to yield the best results with the static MLPNN models and with the TLRNN models having small memory depths. The performance of the wavelet coupled TLRNN models with large memory depths is found insensitive to the selection of the wavelet function as all wavelet functions have similar performance.

  3. Motion estimation using low-band-shift method for wavelet-based moving-picture coding.

    PubMed

    Park, H W; Kim, H S

    2000-01-01

    The discrete wavelet transform (DWT) has several advantages of multiresolution analysis and subband decomposition, which has been successfully used in image processing. However, the shift-variant property is intrinsic due to the decimation process of the wavelet transform, and it makes the wavelet-domain motion estimation and compensation inefficient. To overcome the shift-variant property, a low-band-shift method is proposed and a motion estimation and compensation method in the wavelet-domain is presented. The proposed method has a superior performance to the conventional motion estimation methods in terms of the mean absolute difference (MAD) as well as the subjective quality. The proposed method can be a model method for the motion estimation in wavelet-domain just like the full-search block matching in the spatial domain.

  4. Wavelets on Planar Tesselations

    SciTech Connect

    Bertram, M.; Duchaineau, M.A.; Hamann, B.; Joy, K.I.

    2000-02-25

    We present a new technique for progressive approximation and compression of polygonal objects in images. Our technique uses local parameterizations defined by meshes of convex polygons in the plane. We generalize a tensor product wavelet transform to polygonal domains to perform multiresolution analysis and compression of image regions. The advantage of our technique over conventional wavelet methods is that the domain is an arbitrary tessellation rather than, for example, a uniform rectilinear grid. We expect that this technique has many applications image compression, progressive transmission, radiosity, virtual reality, and image morphing.

  5. A Wavelet-Based Methodology for Grinding Wheel Condition Monitoring

    SciTech Connect

    Liao, T. W.; Ting, C.F.; Qu, Jun; Blau, Peter Julian

    2007-01-01

    Grinding wheel surface condition changes as more material is removed. This paper presents a wavelet-based methodology for grinding wheel condition monitoring based on acoustic emission (AE) signals. Grinding experiments in creep feed mode were conducted to grind alumina specimens with a resinoid-bonded diamond wheel using two different conditions. During the experiments, AE signals were collected when the wheel was 'sharp' and when the wheel was 'dull'. Discriminant features were then extracted from each raw AE signal segment using the discrete wavelet decomposition procedure. An adaptive genetic clustering algorithm was finally applied to the extracted features in order to distinguish different states of grinding wheel condition. The test results indicate that the proposed methodology can achieve 97% clustering accuracy for the high material removal rate condition, 86.7% for the low material removal rate condition, and 76.7% for the combined grinding conditions if the base wavelet, the decomposition level, and the GA parameters are properly selected.

  6. Blocking geophysical borehole log data using the continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Cooper, Gordon R. J.; Cowan, Duncan R.

    2009-06-01

    The interpretation of geophysical log data is frequently difficult due to the noisy downhole environment. Blocking algorithms attempt to smooth the log data while leaving the boundaries between different geological units sharp. This paper introduces a method for the determination of the boundaries based on the zero contour of the continuous wavelet transform (CWT) of the data. The amount of blocking can be controlled by the choice of the scale of the wavelet used. The method is compared with results from the median filter and with discrete wavelet transform (DWT) blocking methods, and is here applied to log data from Australia. The application of the new CWT method overcomes the rounding and shifting of boundaries inherent in median filtering, and provides greater flexibility by overcoming the power of two limitations in the DWT log blocking.

  7. ECG Signal Analysis and Arrhythmia Detection using Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Kaur, Inderbir; Rajni, Rajni; Marwaha, Anupma

    2016-12-01

    Electrocardiogram (ECG) is used to record the electrical activity of the heart. The ECG signal being non-stationary in nature, makes the analysis and interpretation of the signal very difficult. Hence accurate analysis of ECG signal with a powerful tool like discrete wavelet transform (DWT) becomes imperative. In this paper, ECG signal is denoised to remove the artifacts and analyzed using Wavelet Transform to detect the QRS complex and arrhythmia. This work is implemented in MATLAB software for MIT/BIH Arrhythmia database and yields the sensitivity of 99.85 %, positive predictivity of 99.92 % and detection error rate of 0.221 % with wavelet transform. It is also inferred that DWT outperforms principle component analysis technique in detection of ECG signal.

  8. The effects of wavelet compression on Digital Elevation Models (DEMs)

    USGS Publications Warehouse

    Oimoen, M.J.

    2004-01-01

    This paper investigates the effects of lossy compression on floating-point digital elevation models using the discrete wavelet transform. The compression of elevation data poses a different set of problems and concerns than does the compression of images. Most notably, the usefulness of DEMs depends largely in the quality of their derivatives, such as slope and aspect. Three areas extracted from the U.S. Geological Survey's National Elevation Dataset were transformed to the wavelet domain using the third order filters of the Daubechies family (DAUB6), and were made sparse by setting 95 percent of the smallest wavelet coefficients to zero. The resulting raster is compressible to a corresponding degree. The effects of the nulled coefficients on the reconstructed DEM are noted as residuals in elevation, derived slope and aspect, and delineation of drainage basins and streamlines. A simple masking technique also is presented, that maintains the integrity and flatness of water bodies in the reconstructed DEM.

  9. The wavelet/scalar quantization compression standard for digital fingerprint images

    SciTech Connect

    Bradley, J.N.; Brislawn, C.M.

    1994-04-01

    A new digital image compression standard has been adopted by the US Federal Bureau of Investigation for use on digitized gray-scale fingerprint images. The algorithm is based on adaptive uniform scalar quantization of a discrete wavelet transform image decomposition and is referred to as the wavelet/scalar quantization standard. The standard produces archival quality images at compression ratios of around 20:1 and will allow the FBI to replace their current database of paper fingerprint cards with digital imagery.

  10. Dual tree fractional quaternion wavelet transform for disparity estimation.

    PubMed

    Kumar, Sanoj; Kumar, Sanjeev; Sukavanam, Nagarajan; Raman, Balasubramanian

    2014-03-01

    This paper proposes a novel phase based approach for computing disparity as the optical flow from the given pair of consecutive images. A new dual tree fractional quaternion wavelet transform (FrQWT) is proposed by defining the 2D Fourier spectrum upto a single quadrant. In the proposed FrQWT, each quaternion wavelet consists of a real part (a real DWT wavelet) and three imaginary parts that are organized according to the quaternion algebra. First two FrQWT phases encode the shifts of image features in the absolute horizontal and vertical coordinate system, while the third phase has the texture information. The FrQWT allowed a multi-scale framework for calculating and adjusting local disparities and executing phase unwrapping from coarse to fine scales with linear computational efficiency.

  11. Detection of microcalcifications in mammograms using wavelets

    NASA Astrophysics Data System (ADS)

    Strickland, Robin N.; Hahn, Hee I.

    1994-10-01

    Clusters of fine, granular microcalcifications in mammograms may be an early sign of disease. Individual grains are difficult to detect and segment due to size and shape variability and because the background mammogram texture is typically inhomogeneous. We present a two- stage method based on wavelet transforms for detecting and segmenting calcifications. The first stage consists of a full resolution wavelet transform, which is simply the conventional filter bank implementation without downsampling, so that all sub-bands remain at full size. Four octaves are computed with two inter-octave voices for finer scale resolution. By appropriate selection of the wavelet basis the detection of microcalcifications in the relevant size range can be nearly optimized in the details sub-bands. In fact, the separable 2D filters which transform the input image into the HH details sub-bands are closely related to pre- whitening matched filters for detecting Gaussian objects (idealized microcalcifications) in Markov noise (background noise). The second stage is designed to overcome the limitations of the simplistic Gaussian assumption and provides a useful segmentation of calcifications boundaries. Detected pixel sites in the LH, HL, and HH sub-bands are heavily weighted before computing the inverse wavelet transform. The LL component is omitted since gross spatial variations are of little interest. Individual microcalcifications are often greatly enhanced in the output image, to the point where straightforward thresholding can be applied to segment them. FROC curves are computed from tests using a well-known database of digitized mammograms. A true positive fraction of 85% is achieved at 0.5 false positives per image.

  12. Blind source separation of multichannel electroencephalogram based on wavelet transform and ICA

    NASA Astrophysics Data System (ADS)

    You, Rong-Yi; Chen, Zhong

    2005-11-01

    Combination of the wavelet transform and independent component analysis (ICA) was employed for blind source separation (BSS) of multichannel electroencephalogram (EEG). After denoising the original signals by discrete wavelet transform, high frequency components of some noises and artifacts were removed from the original signals. The denoised signals were reconstructed again for the purpose of ICA, such that the drawback that ICA cannot distinguish noises from source signals can be overcome effectively. The practical processing results showed that this method is an effective way to BSS of multichannel EEG. The method is actually a combination of wavelet transform with adaptive neural network, so it is also useful for BBS of other complex signals.

  13. Coherent noise removal in seismic data with dual-tree M-band wavelets

    NASA Astrophysics Data System (ADS)

    Duval, Laurent; Chaux, Caroline; Ker, Stéphan

    2007-09-01

    Seismic data and their complexity still challenge signal processing algorithms in several applications. The advent of wavelet transforms has allowed improvements in tackling denoising problems. We propose here coherent noise filtering in seismic data with the dual-tree M-band wavelet transform. They offer the possibility to decompose data locally with improved multiscale directions and frequency bands. Denoising is performed in a deterministic fashion in the directional subbands, depending of the coherent noise properties. Preliminary results show that they consistently better preserve seismic signal of interest embedded in highly energetic directional noises than discrete critically sampled and redundant separable wavelet transforms.

  14. A method of image compression based on lifting wavelet transform and modified SPIHT

    NASA Astrophysics Data System (ADS)

    Lv, Shiliang; Wang, Xiaoqian; Liu, Jinguo

    2016-11-01

    In order to improve the efficiency of remote sensing image data storage and transmission we present a method of the image compression based on lifting scheme and modified SPIHT(set partitioning in hierarchical trees) by the design of FPGA program, which realized to improve SPIHT and enhance the wavelet transform image compression. The lifting Discrete Wavelet Transform (DWT) architecture has been selected for exploiting the correlation among the image pixels. In addition, we provide a study on what storage elements are required for the wavelet coefficients. We present lena's image using the 3/5 lifting scheme.

  15. Detection and Classification of Power Quality Disturbancewaveform Using MRA Based Modified Wavelet Transfrom and Neural Networks

    NASA Astrophysics Data System (ADS)

    Chandrasekar, Perumal; Kamaraj, Vijayarajan

    2010-07-01

    In this paper, the modified wavelet based artificial neural network (ANN) is implemented and tested for power signal disturbances. The power signal is decomposed by using modified wavelet transform and the classification is carried by using ANN. Discrete modified wavelet transforms based signal decomposition technique is integrated with the back propagation artificial neural network model is proposed. Varieties of power quality events including voltage sag, swell, momentary interruption, harmonics, transient oscillation and voltage fluctuation are used to test the performance of the proposed approach. The simulation is carried out by using MATLAB software. The simulation results show that the proposed scheme offers superior detection and classification compared to the conventional approaches.

  16. Denoising performance of modified dual-tree complex wavelet transform for processing quadrature embolic Doppler signals.

    PubMed

    Serbes, Gorkem; Aydin, Nizamettin

    2014-01-01

    Quadrature signals are dual-channel signals obtained from the systems employing quadrature demodulation. Embolic Doppler ultrasound signals obtained from stroke-prone patients by using Doppler ultrasound systems are quadrature signals caused by emboli, which are particles bigger than red blood cells within circulatory system. Detection of emboli is an important step in diagnosing stroke. Most widely used parameter in detection of emboli is embolic signal-to-background signal ratio. Therefore, in order to increase this ratio, denoising techniques are employed in detection systems. Discrete wavelet transform has been used for denoising of embolic signals, but it lacks shift invariance property. Instead, dual-tree complex wavelet transform having near-shift invariance property can be used. However, it is computationally expensive as two wavelet trees are required. Recently proposed modified dual-tree complex wavelet transform, which reduces the computational complexity, can also be used. In this study, the denoising performance of this method is extensively evaluated and compared with the others by using simulated and real quadrature signals. The quantitative results demonstrated that the modified dual-tree-complex-wavelet-transform-based denoising outperforms the conventional discrete wavelet transform with the same level of computational complexity and exhibits almost equal performance to the dual-tree complex wavelet transform with almost half computational cost.

  17. Embedded morphological dilation coding for 2D and 3D images

    NASA Astrophysics Data System (ADS)

    Lazzaroni, Fabio; Signoroni, Alberto; Leonardi, Riccardo

    2002-01-01

    Current wavelet-based image coders obtain high performance thanks to the identification and the exploitation of the statistical properties of natural images in the transformed domain. Zerotree-based algorithms, as Embedded Zerotree Wavelets (EZW) and Set Partitioning In Hierarchical Trees (SPIHT), offer high Rate-Distortion (RD) coding performance and low computational complexity by exploiting statistical dependencies among insignificant coefficients on hierarchical subband structures. Another possible approach tries to predict the clusters of significant coefficients by means of some form of morphological dilation. An example of a morphology-based coder is the Significance-Linked Connected Component Analysis (SLCCA) that has shown performance which are comparable to the zerotree-based coders but is not embedded. A new embedded bit-plane coder is proposed here based on morphological dilation of significant coefficients and context based arithmetic coding. The algorithm is able to exploit both intra-band and inter-band statistical dependencies among wavelet significant coefficients. Moreover, the same approach is used both for two and three-dimensional wavelet-based image compression. Finally we the algorithms are tested on some 2D images and on a medical volume, by comparing the RD results to those obtained with the state-of-the-art wavelet-based coders.

  18. A study of stationarity in time series by using wavelet transform

    NASA Astrophysics Data System (ADS)

    Dghais, Amel Abdoullah Ahmed; Ismail, Mohd Tahir

    2014-07-01

    In this work the core objective is to apply discrete wavelet transform (DWT) functions namely Haar, Daubechies, Symmlet, Coiflet and discrete approximation of the meyer wavelets in non-stationary financial time series data from US stock market (DJIA30). The data consists of 2048 daily data of closing index starting from December 17, 2004 until October 23, 2012. From the unit root test the results show that the data is non stationary in the level. In order to study the stationarity of a time series, the autocorrelation function (ACF) is used. Results indicate that, Haar function is the lowest function to obtain noisy series as compared to Daubechies, Symmlet, Coiflet and discrete approximation of the meyer wavelets. In addition, the original data after decomposition by DWT is less noisy series than decomposition by DWT for return time series.

  19. Noise reduction methods applied to two-dimensional correlation spectroscopy (2D-COS) reveal complementary benefits of pre- and post-treatment.

    PubMed

    Foist, Rod B; Schulze, H Georg; Ivanov, Andre; Turner, Robin F B

    2011-05-01

    Two-dimensional correlation spectroscopy (2D-COS) is a powerful spectral analysis technique widely used in many fields of spectroscopy because it can reveal spectral information in complex systems that is not readily evident in the original spectral data alone. However, noise may severely distort the information and thus limit the technique's usefulness. Consequently, noise reduction is often performed before implementing 2D-COS. In general, this is implemented using one-dimensional (1D) methods applied to the individual input spectra, but, because 2D-COS is based on sets of successive spectra and produces 2D outputs, there is also scope for the utilization of 2D noise-reduction methods. Furthermore, 2D noise reduction can be applied either to the original set of spectra before performing 2D-COS ("pretreatment") or on the 2D-COS output ("post-treatment"). Very little work has been done on post-treatment; hence, the relative advantages of these two approaches are unclear. In this work we compare the noise-reduction performance on 2D-COS of pretreatment and post-treatment using 1D (wavelets) and 2D algorithms (wavelets, matrix maximum entropy). The 2D methods generally outperformed the 1D method in pretreatment noise reduction. 2D post-treatment in some cases was superior to pretreatment and, unexpectedly, also provided correlation coefficient maps that were similar to 2D correlation spectroscopy maps but with apparent better contrast.

  20. Adaptive zero-tree structure for curved wavelet image coding

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Wang, Demin; Vincent, André

    2006-02-01

    We investigate the issue of efficient data organization and representation of the curved wavelet coefficients [curved wavelet transform (WT)]. We present an adaptive zero-tree structure that exploits the cross-subband similarity of the curved wavelet transform. In the embedded zero-tree wavelet (EZW) and the set partitioning in hierarchical trees (SPIHT), the parent-child relationship is defined in such a way that a parent has four children, restricted to a square of 2×2 pixels, the parent-child relationship in the adaptive zero-tree structure varies according to the curves along which the curved WT is performed. Five child patterns were determined based on different combinations of curve orientation. A new image coder was then developed based on this adaptive zero-tree structure and the set-partitioning technique. Experimental results using synthetic and natural images showed the effectiveness of the proposed adaptive zero-tree structure for encoding of the curved wavelet coefficients. The coding gain of the proposed coder can be up to 1.2 dB in terms of peak SNR (PSNR) compared to the SPIHT coder. Subjective evaluation shows that the proposed coder preserves lines and edges better than the SPIHT coder.

  1. Multiresolution image representation using combined 2-D and 1-D directional filter banks.

    PubMed

    Tanaka, Yuichi; Ikehara, Masaaki; Nguyen, Truong Q

    2009-02-01

    In this paper, effective multiresolution image representations using a combination of 2-D filter bank (FB) and directional wavelet transform (WT) are presented. The proposed methods yield simple implementation and low computation costs compared to previous 1-D and 2-D FB combinations or adaptive directional WT methods. Furthermore, they are nonredundant transforms and realize quad-tree like multiresolution representations. In applications on nonlinear approximation, image coding, and denoising, the proposed filter banks show visual quality improvements and have higher PSNR than the conventional separable WT or the contourlet.

  2. 2D quasiperiodic plasmonic crystals

    PubMed Central

    Bauer, Christina; Kobiela, Georg; Giessen, Harald

    2012-01-01

    Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871

  3. Valleytronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Schaibley, John R.; Yu, Hongyi; Clark, Genevieve; Rivera, Pasqual; Ross, Jason S.; Seyler, Kyle L.; Yao, Wang; Xu, Xiaodong

    2016-11-01

    Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.

  4. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  5. Rotation invariance principles in 2D/3D registration

    NASA Astrophysics Data System (ADS)

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels C.; Jacob, Augustinus L.; Regazzoni, Pietro; Messmer, Peter

    2003-05-01

    2D/3D patient-to-computed tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 2D/3D registration is the fast that finding a registration includes sovling a minimization problem in six degrees-of-freedom in motion. This results in considerable time expenses since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations aroudn a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of its original value. The method was implemented and extensively tested on simulated x-ray images of a pelvis. We conclude that this hardware-indepenent optimization of 2D/3D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.

  6. Discrete shearlet transform on GPU with applications in anomaly detection and denoising

    NASA Astrophysics Data System (ADS)

    Gibert, Xavier; Patel, Vishal M.; Labate, Demetrio; Chellappa, Rama

    2014-12-01

    Shearlets have emerged in recent years as one of the most successful methods for the multiscale analysis of multidimensional signals. Unlike wavelets, shearlets form a pyramid of well-localized functions defined not only over a range of scales and locations, but also over a range of orientations and with highly anisotropic supports. As a result, shearlets are much more effective than traditional wavelets in handling the geometry of multidimensional data, and this was exploited in a wide range of applications from image and signal processing. However, despite their desirable properties, the wider applicability of shearlets is limited by the computational complexity of current software implementations. For example, denoising a single 512 × 512 image using a current implementation of the shearlet-based shrinkage algorithm can take between 10 s and 2 min, depending on the number of CPU cores, and much longer processing times are required for video denoising. On the other hand, due to the parallel nature of the shearlet transform, it is possible to use graphics processing units (GPU) to accelerate its implementation. In this paper, we present an open source stand-alone implementation of the 2D discrete shearlet transform using CUDA C++ as well as GPU-accelerated MATLAB implementations of the 2D and 3D shearlet transforms. We have instrumented the code so that we can analyze the running time of each kernel under different GPU hardware. In addition to denoising, we describe a novel application of shearlets for detecting anomalies in textured images. In this application, computation times can be reduced by a factor of 50 or more, compared to multicore CPU implementations.

  7. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  8. Quantum coherence selective 2D Raman-2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-03-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  9. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    PubMed

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  10. Wavelet Signal Processing for Transient Feature Extraction

    DTIC Science & Technology

    1992-03-15

    Research was conducted to evaluate the feasibility of applying Wavelets and Wavelet Transform methods to transient signal feature extraction problems... Wavelet transform techniques were developed to extract low dimensional feature data that allowed a simple classification scheme to easily separate

  11. Wavelet Preprocessing of Acoustic Signals

    DTIC Science & Technology

    1991-12-01

    wavelet transform to preprocess acoustic broadband signals in a system that discriminates between different classes of acoustic bursts. This is motivated by the similarity between the proportional bandwidth filters provided by the wavelet transform and those found in biological hearing systems. The experiment involves comparing statistical pattern classifier effects of wavelet and FFT preprocessed acoustic signals. The data used was from the DARPA Phase I database, which consists of artificially generated signals with real ocean background. The

  12. Contrast Sensitivity of the Wavelet, Dual Tree Complex Wavelet, Curvelet and Steerable Pyramid Transforms.

    PubMed

    Hill, Paul; Achim, Alin; Al-Mualla, Mohammed Ebrahim; Bull, David

    2016-04-11

    Accurate estimation of the contrast sensitivity of the human visual system is crucial for perceptually based image processing in applications such as compression, fusion and denoising. Conventional Contrast Sensitivity Functions (CSFs) have been obtained using fixed sized Gabor functions. However, the basis functions of multiresolution decompositions such as wavelets often resemble Gabor functions but are of variable size and shape. Therefore to use conventional contrast sensitivity functions in such cases is not appropriate. We have therefore conducted a set of psychophysical tests in order to obtain the contrast sensitivity function for a range of multiresolution transforms: the Discrete Wavelet Transform (DWT), the Steerable Pyramid, the Dual-Tree Complex Wavelet Transform (DT-CWT) and the Curvelet Transform. These measures were obtained using contrast variation of each transforms' basis functions in a 2AFC experiment combined with an adapted version of the QUEST psychometric function method. The results enable future image processing applications that exploit these transforms such as signal fusion, super-resolution processing, denoising and motion estimation, to be perceptually optimised in a principled fashion. The results are compared to an existing vision model (HDR-VDP2) and are used to show quantitative improvements within a denoising application compared to using conventional CSF values.

  13. Wavelets and Approximation

    DTIC Science & Technology

    2007-11-02

    Daubechies-DeVore (Cohen-Daubechies-Gulleryuz-Orchard) This encoder is optimal on all Besov classes compactly embedded into L2 EZW , Said-Pearlman...DeVore (Cohen-Daubechies-Gulleryuz-Orchard) This encoder is optimal on all Besov classes compactly embedded into L2 EZW , Said-Pearlman, Cargese – p.49...Cohen-Daubechies-Gulleryuz-Orchard) This encoder is optimal on all Besov classes compactly embedded into L2 EZW , Said-Pearlman, Cargese – p.49/49 Wavelet

  14. Wavelet phase synchronization and chaoticity.

    PubMed

    Postnikov, E B

    2009-11-01

    It has been shown that the so-called "wavelet phase" (or "time-scale") synchronization of chaotic signals is actually synchronization of smoothed functions with reduced chaotic fluctuations. This fact is based on the representation of the wavelet transform with the Morlet wavelet as a solution of the Cauchy problem for a simple diffusion equation with initial condition in a form of harmonic function modulated by a given signal. The topological background of the resulting effect is discussed. It is argued that the wavelet phase synchronization provides information about the synchronization of an averaged motion described by bounding tori instead of the fine-level classical chaotic phase synchronization.

  15. Wavelets in medical imaging

    SciTech Connect

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.

    2012-07-17

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  16. Wavelets in medical imaging

    NASA Astrophysics Data System (ADS)

    Zahra, Noor e.; Sevindir, Hulya Kodal; Aslan, Zafer; Siddiqi, A. H.

    2012-07-01

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  17. The berkeley wavelet transform: a biologically inspired orthogonal wavelet transform.

    PubMed

    Willmore, Ben; Prenger, Ryan J; Wu, Michael C-K; Gallant, Jack L

    2008-06-01

    We describe the Berkeley wavelet transform (BWT), a two-dimensional triadic wavelet transform. The BWT comprises four pairs of mother wavelets at four orientations. Within each pair, one wavelet has odd symmetry, and the other has even symmetry. By translation and scaling of the whole set (plus a single constant term), the wavelets form a complete, orthonormal basis in two dimensions. The BWT shares many characteristics with the receptive fields of neurons in mammalian primary visual cortex (V1). Like these receptive fields, BWT wavelets are localized in space, tuned in spatial frequency and orientation, and form a set that is approximately scale invariant. The wavelets also have spatial frequency and orientation bandwidths that are comparable with biological values. Although the classical Gabor wavelet model is a more accurate description of the receptive fields of individual V1 neurons, the BWT has some interesting advantages. It is a complete, orthonormal basis and is therefore inexpensive to compute, manipulate, and invert. These properties make the BWT useful in situations where computational power or experimental data are limited, such as estimation of the spatiotemporal receptive fields of neurons.

  18. Discrete wavelet transform FPGA design using MatLab/Simulink

    NASA Astrophysics Data System (ADS)

    Meyer-Baese, Uwe; Vera, A.; Meyer-Baese, A.; Pattichis, M.; Perry, R.

    2006-04-01

    Design of current DSP applications using state-of-the art multi-million gates devices requires a broad foundation of the engineering shlls ranging from knowledge of hardware-efficient DSP algorithms to CAD design tools. The requirement of short time-to-market, however, requires to replace the traditional HDL based designs by a MatLab/Simulink based design flow. This not only allows the over 1 million MatLab users to design FPGAs but also to by-pass the hardware design engineer leading to a significant reduction in development time. Critical however with this design flow are: (1) quality-of-results, (2) sophistication of Simulink block library, (3) compile time, (4) cost and availability of development boards, and (5) cost, functionality, and ease-of-use of the FPGA vendor provided design tools.

  19. Numerical discretization for nonlinear diffusion filter

    NASA Astrophysics Data System (ADS)

    Mustaffa, I.; Mizuar, I.; Aminuddin, M. M. M.; Dasril, Y.

    2015-05-01

    Nonlinear diffusion filters are famously used in machine vision for image denoising and restoration. This paper presents a study on the effects of different numerical discretization of nonlinear diffusion filter. Several numerical discretization schemes are presented; namely semi-implicit, AOS, and fully implicit schemes. The results of these schemes are compared by visual results, objective measurement e.g. PSNR and MSE. The results are also compared to a Daubechies wavelet denoising method. It is acknowledged that the two preceding scheme have already been discussed in literature, however comparison to the latter scheme has not been made. The semi-implicit scheme uses an additive operator splitting (AOS) developed to overcome the shortcoming of the explicit scheme i.e., stability for very small time steps. Although AOS has proven to be efficient, from the nonlinear diffusion filter results with different discretization schemes, examples shows that implicit schemes are worth pursuing.

  20. Context Modeler for Wavelet Compression of Spectral Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron; Xie, Hua; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    A context-modeling sub-algorithm has been developed as part of an algorithm that effects three-dimensional (3D) wavelet-based compression of hyperspectral image data. The context-modeling subalgorithm, hereafter denoted the context modeler, provides estimates of probability distributions of wavelet-transformed data being encoded. These estimates are utilized by an entropy coding subalgorithm that is another major component of the compression algorithm. The estimates make it possible to compress the image data more effectively than would otherwise be possible. The following background discussion is prerequisite to a meaningful summary of the context modeler. This discussion is presented relative to ICER-3D, which is the name attached to a particular compression algorithm and the software that implements it. The ICER-3D software is summarized briefly in the preceding article, ICER-3D Hyperspectral Image Compression Software (NPO-43238). Some aspects of this algorithm were previously described, in a slightly more general context than the ICER-3D software, in "Improving 3D Wavelet-Based Compression of Hyperspectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. In turn, ICER-3D is a product of generalization of ICER, another previously reported algorithm and computer program that can perform both lossless and lossy wavelet-based compression and decompression of gray-scale-image data. In ICER-3D, hyperspectral image data are decomposed using a 3D discrete wavelet transform (DWT). Following wavelet decomposition, mean values are subtracted from spatial planes of spatially low-pass subbands prior to encoding. The resulting data are converted to sign-magnitude form and compressed. In ICER-3D, compression is progressive, in that compressed information is ordered so that as more of the compressed data stream is received, successive reconstructions of the hyperspectral image data are of successively higher overall fidelity.

  1. Directional dual-tree complex wavelet packet transforms for processing quadrature signals.

    PubMed

    Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin

    2016-03-01

    Quadrature signals containing in-phase and quadrature-phase components are used in many signal processing applications in every field of science and engineering. Specifically, Doppler ultrasound systems used to evaluate cardiovascular disorders noninvasively also result in quadrature format signals. In order to obtain directional blood flow information, the quadrature outputs have to be preprocessed using methods such as asymmetrical and symmetrical phasing filter techniques. These resultant directional signals can be employed in order to detect asymptomatic embolic signals caused by small emboli, which are indicators of a possible future stroke, in the cerebral circulation. Various transform-based methods such as Fourier and wavelet were frequently used in processing embolic signals. However, most of the times, the Fourier and discrete wavelet transforms are not appropriate for the analysis of embolic signals due to their non-stationary time-frequency behavior. Alternatively, discrete wavelet packet transform can perform an adaptive decomposition of the time-frequency axis. In this study, directional discrete wavelet packet transforms, which have the ability to map directional information while processing quadrature signals and have less computational complexity than the existing wavelet packet-based methods, are introduced. The performances of proposed methods are examined in detail by using single-frequency, synthetic narrow-band, and embolic quadrature signals.

  2. MRS3D: 3D Spherical Wavelet Transform on the Sphere

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2011-12-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. We present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We tested the 3D wavelet transform and as a toy-application, applied a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and found we can successfully remove noise without much loss to the large scale structure. The new spherical 3D isotropic wavelet transform, called MRS3D, is ideally suited to analysing and denoising future 3D spherical cosmological surveys; it uses a novel discrete spherical Fourier-Bessel Transform. MRS3D is based on two packages, IDL and Healpix and can be used only if these two packages have been installed.

  3. SFCVQ and EZW coding method based on Karhunen-Loeve transformation and integer wavelet transformation

    NASA Astrophysics Data System (ADS)

    Yan, Jingwen; Chen, Jiazhen

    2007-03-01

    A new hyperspectral image compression method of spectral feature classification vector quantization (SFCVQ) and embedded zero-tree of wavelet (EZW) based on Karhunen-Loeve transformation (KLT) and integer wavelet transformation is represented. In comparison with the other methods, this method not only keeps the characteristics of high compression ratio and easy real-time transmission, but also has the advantage of high computation speed. After lifting based integer wavelet and SFCVQ coding are introduced, a system of nearly lossless compression of hyperspectral images is designed. KLT is used to remove the correlation of spectral redundancy as one-dimensional (1D) linear transform, and SFCVQ coding is applied to enhance compression ratio. The two-dimensional (2D) integer wavelet transformation is adopted for the decorrelation of 2D spatial redundancy. EZW coding method is applied to compress data in wavelet domain. Experimental results show that in comparison with the method of wavelet SFCVQ (WSFCVQ), the method of improved BiBlock zero tree coding (IBBZTC) and the method of feature spectral vector quantization (FSVQ), the peak signal-to-noise ratio (PSNR) of this method can enhance over 9 dB, and the total compression performance is improved greatly.

  4. Remote sensing image denoising by using discrete multiwavelet transform techniques

    NASA Astrophysics Data System (ADS)

    Wang, Haihui; Wang, Jun; Zhang, Jian

    2006-01-01

    We present a new method by using GHM discrete multiwavelet transform in image denoising on this paper. The developments in wavelet theory have given rise to the wavelet thresholding method, for extracting a signal from noisy data. The method of signal denoising via wavelet thresholding was popularized. Multiwavelets have recently been introduced and they offer simultaneous orthogonality, symmetry and short support. This property makes multiwavelets more suitable for various image processing applications, especially denoising. It is based on thresholding of multiwavelet coefficients arising from the standard scalar orthogonal wavelet transform. It takes into account the covariance structure of the transform. Denoising of images via thresholding of the multiwavelet coefficients result from preprocessing and the discrete multiwavelet transform can be carried out by treating the output in this paper. The form of the threshold is carefully formulated and is the key to the excellent results obtained in the extensive numerical simulations of image denoising. We apply the multiwavelet-based to remote sensing image denoising. Multiwavelet transform technique is rather a new method, and it has a big advantage over the other techniques that it less distorts spectral characteristics of the image denoising. The experimental results show that multiwavelet based image denoising schemes outperform wavelet based method both subjectively and objectively.

  5. Data compression by wavelet transforms

    NASA Technical Reports Server (NTRS)

    Shahshahani, M.

    1992-01-01

    A wavelet transform algorithm is applied to image compression. It is observed that the algorithm does not suffer from the blockiness characteristic of the DCT-based algorithms at compression ratios exceeding 25:1, but the edges do not appear as sharp as they do with the latter method. Some suggestions for the improved performance of the wavelet transform method are presented.

  6. A generalized wavelet extrema representation

    SciTech Connect

    Lu, Jian; Lades, M.

    1995-10-01

    The wavelet extrema representation originated by Stephane Mallat is a unique framework for low-level and intermediate-level (feature) processing. In this paper, we present a new form of wavelet extrema representation generalizing Mallat`s original work. The generalized wavelet extrema representation is a feature-based multiscale representation. For a particular choice of wavelet, our scheme can be interpreted as representing a signal or image by its edges, and peaks and valleys at multiple scales. Such a representation is shown to be stable -- the original signal or image can be reconstructed with very good quality. It is further shown that a signal or image can be modeled as piecewise monotonic, with all turning points between monotonic segments given by the wavelet extrema. A new projection operator is introduced to enforce piecewise inonotonicity of a signal in its reconstruction. This leads to an enhancement to previously developed algorithms in preventing artifacts in reconstructed signal.

  7. Wavelet-Based Grid Generation

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1996-01-01

    Wavelets can provide a basis set in which the basis functions are constructed by dilating and translating a fixed function known as the mother wavelet. The mother wavelet can be seen as a high pass filter in the frequency domain. The process of dilating and expanding this high-pass filter can be seen as altering the frequency range that is 'passed' or detected. The process of translation moves this high-pass filter throughout the domain, thereby providing a mechanism to detect the frequencies or scales of information at every location. This is exactly the type of information that is needed for effective grid generation. This paper provides motivation to use wavelets for grid generation in addition to providing the final product: source code for wavelet-based grid generation.

  8. Wavelet preprocessing of acoustic signals

    NASA Astrophysics Data System (ADS)

    Huang, W. Y.; Solorzano, M. R.

    1991-12-01

    This paper describes results using the wavelet transform to preprocess acoustic broadband signals in a system that discriminates between different classes of acoustic bursts. This is motivated by the similarity between the proportional bandwidth filters provided by the wavelet transform and those found in biological hearing systems. The experiment involves comparing statistical pattern classifier effects of wavelet and FFT preprocessed acoustic signals. The data used was from the DARPA Phase 1 database, which consists of artificially generated signals with real ocean background. The results show that the wavelet transform did provide improved performance when classifying in a frame-by-frame basis. The DARPA Phase 1 database is well matched to proportional bandwidth filtering; i.e., signal classes that contain high frequencies do tend to have shorter duration in this database. It is also noted that the decreasing background levels at high frequencies compensate for the poor match of the wavelet transform for long duration (high frequency) signals.

  9. Wavelet-based Multiresolution Particle Methods

    NASA Astrophysics Data System (ADS)

    Bergdorf, Michael; Koumoutsakos, Petros

    2006-03-01

    Particle methods offer a robust numerical tool for solving transport problems across disciplines, such as fluid dynamics, quantitative biology or computer graphics. Their strength lies in their stability, as they do not discretize the convection operator, and appealing numerical properties, such as small dissipation and dispersion errors. Many problems of interest are inherently multiscale, and their efficient solution requires either multiscale modeling approaches or spatially adaptive numerical schemes. We present a hybrid particle method that employs a multiresolution analysis to identify and adapt to small scales in the solution. The method combines the versatility and efficiency of grid-based Wavelet collocation methods while retaining the numerical properties and stability of particle methods. The accuracy and efficiency of this method is then assessed for transport and interface capturing problems in two and three dimensions, illustrating the capabilities and limitations of our approach.

  10. Wavelet treatment of the intrachain correlation functions of homopolymers in dilute solutions

    NASA Astrophysics Data System (ADS)

    Fedorov, M. V.; Chuev, G. N.; Kuznetsov, Yu. A.; Timoshenko, E. G.

    2004-11-01

    Discrete wavelets are applied to the parametrization of the intrachain two-point correlation functions of homopolymers in dilute solutions obtained from Monte Carlo simulations. Several orthogonal and biorthogonal basis sets have been investigated for use in the truncated wavelet approximation. The quality of the approximation has been assessed by calculation of the scaling exponents obtained from the des Cloizeaux ansatz for the correlation functions of homopolymers with different connectivities in a good solvent. The resulting exponents are in better agreement with those from recent renormalization group calculations as compared to the data without the wavelet denoising. We also discuss how the wavelet treatment improves the quality of data for correlation functions from simulations of homopolymers at varied solvent conditions and of heteropolymers.

  11. Adaptive Bayesian-based speck-reduction in SAR images using complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Yan, Wei; Zhang, Peng

    2005-10-01

    In this paper, an improved adaptive speckle reduction method is presented based on dual tree complex wavelet transform (CWT). It combines the characteristics of additive noise reduction of soft thresholding with the CWT's directional selectivity, being its main contribution to adapt the effective threshold to preserve the edge detail. A Bayesian estimator is applied to the decomposed data also to estimate the best value for the noise-free complex wavelet coefficients. This estimation is based on alpha-stable and Gaussian distribution hypotheses for complex wavelet coefficients of the signal and noise, respectively. Experimental results show that the denoising performance is among the state-of-the-art techniques based on real discrete wavelet transform (DWT).

  12. Application of dual tree complex wavelet transform in tandem mass spectrometry.

    PubMed

    Murugesan, Selvaraaju; Tay, David B H; Cooke, Ira; Faou, Pierre

    2015-08-01

    Mass Spectrometry (MS) is a widely used technique in molecular biology for high throughput identification and sequencing of peptides (and proteins). Tandem mass spectrometry (MS/MS) is a specialised mass spectrometry technique whereby the sequence of peptides can be determined. Preprocessing of the MS/MS data is indispensable before performing any statistical analysis on the data. In this work, preprocessing of MS/MS data is proposed based on the Dual Tree Complex Wavelet Transform (DTCWT) using almost symmetric Hilbert pair of wavelets. After the preprocessing step, the identification of peptides is done using the database search approach. The performance of the proposed preprocessing technique is evaluated by comparing its performance against Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT). The preprocessing performed using DTCWT identified more peptides compared to DWT and SWT.

  13. An Investigation into the Potential Application of Wavelets to Modal Testing and Analysis

    NASA Technical Reports Server (NTRS)

    Gwinn, A. Fort, Jr.

    2002-01-01

    The analysis of transient data of the type found in vibrating mechanical systems has been greatly improved through the use of modern techniques such as Fourier analysis. This is especially true when considered in conjunction with the development of the so-called Fast Fourier Transform algorithm by Cooley and the tremendous strides in computational power of the last several decades. The usefulness of the discrete Fourier Transform is its ability to transform sampled data from the "time-domain" to the "frequency domain," thereby allowing the analyst to decompose a signal into its frequency content. More recent developments have led to the wavelet transform. The strength of wavelet analysis is its ability to maintain both time and frequency information, thus making it an attractive candidate for the analysis of non-stationary signals. This report is an overview of wavelet theory and the potential use of the wavelet transform as an alternative to Fourier analysis in modal identification.

  14. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  15. A wavelet-based statistical analysis of FMRI data: I. motivation and data distribution modeling.

    PubMed

    Dinov, Ivo D; Boscardin, John W; Mega, Michael S; Sowell, Elizabeth L; Toga, Arthur W

    2005-01-01

    We propose a new method for statistical analysis of functional magnetic resonance imaging (fMRI) data. The discrete wavelet transformation is employed as a tool for efficient and robust signal representation. We use structural magnetic resonance imaging (MRI) and fMRI to empirically estimate the distribution of the wavelet coefficients of the data both across individuals and spatial locations. An anatomical subvolume probabilistic atlas is used to tessellate the structural and functional signals into smaller regions each of which is processed separately. A frequency-adaptive wavelet shrinkage scheme is employed to obtain essentially optimal estimations of the signals in the wavelet space. The empirical distributions of the signals on all the regions are computed in a compressed wavelet space. These are modeled by heavy-tail distributions because their histograms exhibit slower tail decay than the Gaussian. We discovered that the Cauchy, Bessel K Forms, and Pareto distributions provide the most accurate asymptotic models for the distribution of the wavelet coefficients of the data. Finally, we propose a new model for statistical analysis of functional MRI data using this atlas-based wavelet space representation. In the second part of our investigation, we will apply this technique to analyze a large fMRI dataset involving repeated presentation of sensory-motor response stimuli in young, elderly, and demented subjects.

  16. Numerical solution of the Black-Scholes equation using cubic spline wavelets

    NASA Astrophysics Data System (ADS)

    Černá, Dana

    2016-12-01

    The Black-Scholes equation is used in financial mathematics for computation of market values of options at a given time. We use the θ-scheme for time discretization and an adaptive scheme based on wavelets for discretization on the given time level. Advantages of the proposed method are small number of degrees of freedom, high-order accuracy with respect to variables representing prices and relatively small number of iterations needed to resolve the problem with a desired accuracy. We use several cubic spline wavelet and multi-wavelet bases and discuss their advantages and disadvantages. We also compare an isotropic and anisotropic approach. Numerical experiments are presented for the two-dimensional Black-Scholes equation.

  17. A Haar wavelet collocation method for coupled nonlinear Schrödinger-KdV equations

    NASA Astrophysics Data System (ADS)

    Oruç, Ömer; Esen, Alaattin; Bulut, Fatih

    2016-04-01

    In this paper, to obtain accurate numerical solutions of coupled nonlinear Schrödinger-Korteweg-de Vries (KdV) equations a Haar wavelet collocation method is proposed. An explicit time stepping scheme is used for discretization of time derivatives and nonlinear terms that appeared in the equations are linearized by a linearization technique and space derivatives are discretized by Haar wavelets. In order to test the accuracy and reliability of the proposed method L2, L∞ error norms and conserved quantities are used. Also obtained results are compared with previous ones obtained by finite element method, Crank-Nicolson method and radial basis function meshless methods. Error analysis of Haar wavelets is also given.

  18. Wavelets and spacetime squeeze

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.; Noz, Marilyn E.

    1993-01-01

    It is shown that the wavelet is the natural language for the Lorentz covariant description of localized light waves. A model for covariant superposition is constructed for light waves with different frequencies. It is therefore possible to construct a wave function for light waves carrying a covariant probability interpretation. It is shown that the time-energy uncertainty relation (Delta(t))(Delta(w)) is approximately 1 for light waves is a Lorentz-invariant relation. The connection between photons and localized light waves is examined critically.

  19. All-optical image processing and compression based on Haar wavelet transform.

    PubMed

    Parca, Giorgia; Teixeira, Pedro; Teixeira, Antonio

    2013-04-20

    Fast data processing and compression methods based on wavelet transform are fundamental tools in the area of real-time 2D data/image analysis, enabling high definition applications and redundant data reduction. The need for information processing at high data rates motivates the efforts on exploiting the speed and the parallelism of the light for data analysis and compression. Among several schemes for optical wavelet transform implementation, the Haar transform offers simple design and fast computation, plus it can be easily implemented by optical planar interferometry. We present an all optical scheme based on an asymmetric couplers network for achieving fast image processing and compression in the optical domain. The implementation of Haar wavelet transform through a 3D passive structure is supported by theoretical formulation and simulations results. Asymmetrical coupler 3D network design and optimization are reported and Haar wavelet transform, including compression, was achieved, thus demonstrating the feasibility of our approach.

  20. Wavelet Packets in Wideband Multiuser Communications

    DTIC Science & Technology

    2004-11-01

    developed doubly orthogonal CDMA user spreading waveforms based on wavelet packets. We have also developed and evaluated a wavelet packet based ...inter symbol interferences. Compared with the existing DFT based multicarrier CDMA systems, better performance is achieved with the wavelet packet...23 3.4 Over Loaded Waveform Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4. Wavelet Packet Based Time-Varying

  1. High-order wavelet reconstruction/differentiation filters and Gibbs phenomena

    NASA Astrophysics Data System (ADS)

    Lombardini, Richard; Acevedo, Ramiro; Kuczala, Alexander; Keys, Kerry; Goodrich, Carl; Johnson, Bruce

    2016-03-01

    We have developed an efficient method to accurately represent 1D or 2D, smooth or discontinuous, solutions to partial differential equations (PDE's), such as Schrodinger or Maxwell's equations, in an orthogonal Daubechies wavelet basis. This is a crucial step in the future development of a wavelet method that solves these PDE's. There are two main developments from this research. First, a reconstruction transform for smooth functions, discovered in previous works [Keinert and Kwon (1997) and Neelov and Goedecker (2006)], is generalized in order to develop a systematic way of tuning its error. This transform converts the wavelet basis representation back to the actual point values of the function. Since this reconstruction can far exceed the wavelet approximation order, it is shown that shorter wavelets can be used while maintaining a high-order accuracy resulting in an increase of computational efficiency. Second, a new ``truncated'' reconstruction transform is developed, using pieces of wavelets, or ``tail functions'', which can be applied to discontinuous functions. Not only does it avoid the wavelet Gibbs phenomenon, but also maintains a tunable accuracy similar to the smooth function case.

  2. Finite element-wavelet hybrid algorithm for atmospheric tomography.

    PubMed

    Yudytskiy, Mykhaylo; Helin, Tapio; Ramlau, Ronny

    2014-03-01

    Reconstruction of the refractive index fluctuations in the atmosphere, or atmospheric tomography, is an underlying problem of many next generation adaptive optics (AO) systems, such as the multiconjugate adaptive optics or multiobject adaptive optics (MOAO). The dimension of the problem for the extremely large telescopes, such as the European Extremely Large Telescope (E-ELT), suggests the use of iterative schemes as an alternative to the matrix-vector multiply (MVM) methods. Recently, an algorithm based on the wavelet representation of the turbulence has been introduced in [Inverse Probl.29, 085003 (2013)] by the authors to solve the atmospheric tomography using the conjugate gradient iteration. The authors also developed an efficient frequency-dependent preconditioner for the wavelet method in a later work. In this paper we study the computational aspects of the wavelet algorithm. We introduce three new techniques, the dual domain discretization strategy, a scale-dependent preconditioner, and a ground layer multiscale method, to derive a method that is globally O(n), parallelizable, and compact with respect to memory. We present the computational cost estimates and compare the theoretical numerical performance of the resulting finite element-wavelet hybrid algorithm with the MVM. The quality of the method is evaluated in terms of an MOAO simulation for the E-ELT on the European Southern Observatory (ESO) end-to-end simulation system OCTOPUS. The method is compared to the ESO version of the Fractal Iterative Method [Proc. SPIE7736, 77360X (2010)] in terms of quality.

  3. PSO based Gabor wavelet feature extraction and tracking method

    NASA Astrophysics Data System (ADS)

    Sun, Hongguang; Bu, Qian; Zhang, Huijie

    2008-12-01

    The paper is the study of 2D Gabor wavelet and its application in grey image target recognition and tracking. The new optimization algorithms and technologies in the system realization are studied and discussed in theory and practice. Optimization of Gabor wavelet's parameters of translation, orientation, and scale is used to make it approximates a local image contour region. The method of Sobel edge detection is used to get the initial position and orientation value of optimization in order to improve the convergence speed. In the wavelet characteristic space, we adopt PSO (particle swarm optimization) algorithm to identify points on the security border of the system, it can ensure reliable convergence of the target, which can improve convergence speed; the time of feature extraction is shorter. By test in low contrast image, the feasibility and effectiveness of the algorithm are demonstrated by VC++ simulation platform in experiments. Adopting improve Gabor wavelet method in target tracking and making up its frame of tracking, which realize moving target tracking used algorithm, and realize steady target tracking in circumrotate affine distortion.

  4. Wavelet-based coding of ultraspectral sounder data

    NASA Astrophysics Data System (ADS)

    Garcia-Vilchez, Fernando; Serra-Sagrista, Joan; Auli-Llinas, Francesc

    2005-08-01

    In this paper we provide a study concerning the suitability of well-known image coding techniques originally devised for lossy compression of still natural images when applied to lossless compression of ultraspectral sounder data. We present here the experimental results of six wavelet-based widespread coding techniques, namely EZW, IC, SPIHT, JPEG2000, SPECK and CCSDS-IDC. Since the considered techniques are 2-dimensional (2D) in nature but the ultraspectral data are 3D, a pre-processing stage is applied to convert the two spatial dimensions into a single spatial dimension. All the wavelet-based techniques are competitive when compared either to the benchmark prediction-based methods for lossless compression, CALIC and JPEG-LS, or to two common compression utilities, GZIP and BZIP2. EZW, SPIHT, SPECK and CCSDS-IDC provide a very similar performance, while IC and JPEG2000 improve the compression factor when compared to the other wavelet-based methods. Nevertheless, they are not competitive when compared to a fast precomputed vector quantizer. The benefits of applying a pre-processing stage, the Bias Adjusted Reordering, prior to the coding process in order to further exploit the spectral and/or spatial correlation when 2D techniques are employed, are also presented.

  5. Wavelet Transform Signal Processing Applied to Ultrasonics.

    DTIC Science & Technology

    1995-05-01

    THE WAVELET TRANSFORM IS APPLIED TO THE ANALYSIS OF ULTRASONIC WAVES FOR IMPROVED SIGNAL DETECTION AND ANALYSIS OF THE SIGNALS. In instances where...the mother wavelet is well defined, the wavelet transform has relative insensitivity to noise and does not need windowing. Peak detection of...ultrasonic pulses using the wavelet transform is described and results show good detection even when large white noise was added. The use of the wavelet

  6. Unequal error protection codes for wavelet video transmission over W-CDMA, AWGN, and Rayleigh fading channels

    NASA Astrophysics Data System (ADS)

    Le, Minh Hung; Liyana-Pathirana, Ranjith

    2003-06-01

    The unequal error protection (UEP) codes with wavelet-based algorithm for video compression over wide-band code division multiple access (W-CDMA), additive white Gaussian noise (AWGN) and Rayleigh fading channels are analysed. The utilization of Wavelets has come out to be a powerful method for compress video sequence. The wavelet transform compression technique has shown to be more appropriate to high quality video applications, producing better quality output for the compressed frames of video. A spatially scalable video coding framework of MPEG2 in which motion correspondences between successive video frames are exploited in the wavelet transform domain. The basic motivation for our coder is that motion fields are typically smooth that can be efficiently captured through a multiresolutional framework. Wavelet decomposition is applied to video frames and the coefficients at each level are predicted from the coarser level through backward motion compensation. The proposed algorithms of the embedded zero-tree wavelet (EZW) coder and the 2-D wavelet packet transform (2-D WPT) are investigated.

  7. BOOK REVIEW: The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance

    NASA Astrophysics Data System (ADS)

    Ng, J.; Kingsbury, N. G.

    2004-02-01

    This book provides an overview of the theory and practice of continuous and discrete wavelet transforms. Divided into seven chapters, the first three chapters of the book are introductory, describing the various forms of the wavelet transform and their computation, while the remaining chapters are devoted to applications in fluids, engineering, medicine and miscellaneous areas. Each chapter is well introduced, with suitable examples to demonstrate key concepts. Illustrations are included where appropriate, thus adding a visual dimension to the text. A noteworthy feature is the inclusion, at the end of each chapter, of a list of further resources from the academic literature which the interested reader can consult. The first chapter is purely an introduction to the text. The treatment of wavelet transforms begins in the second chapter, with the definition of what a wavelet is. The chapter continues by defining the continuous wavelet transform and its inverse and a description of how it may be used to interrogate signals. The continuous wavelet transform is then compared to the short-time Fourier transform. Energy and power spectra with respect to scale are also discussed and linked to their frequency counterparts. Towards the end of the chapter, the two-dimensional continuous wavelet transform is introduced. Examples of how the continuous wavelet transform is computed using the Mexican hat and Morlet wavelets are provided throughout. The third chapter introduces the discrete wavelet transform, with its distinction from the discretized continuous wavelet transform having been made clear at the end of the second chapter. In the first half of the chapter, the logarithmic discretization of the wavelet function is described, leading to a discussion of dyadic grid scaling, frames, orthogonal and orthonormal bases, scaling functions and multiresolution representation. The fast wavelet transform is introduced and its computation is illustrated with an example using the Haar

  8. Tailoring wavelets for chaos control.

    PubMed

    Wei, G W; Zhan, Meng; Lai, C-H

    2002-12-31

    Chaos is a class of ubiquitous phenomena and controlling chaos is of great interest and importance. In this Letter, we introduce wavelet controlled dynamics as a new paradigm of dynamical control. We find that by modifying a tiny fraction of the wavelet subspaces of a coupling matrix, we could dramatically enhance the transverse stability of the synchronous manifold of a chaotic system. Wavelet controlled Hopf bifurcation from chaos is observed. Our approach provides a robust strategy for controlling chaos and other dynamical systems in nature.

  9. Peak finding using biorthogonal wavelets

    SciTech Connect

    Tan, C.Y.

    2000-02-01

    The authors show in this paper how they can find the peaks in the input data if the underlying signal is a sum of Lorentzians. In order to project the data into a space of Lorentzian like functions, they show explicitly the construction of scaling functions which look like Lorentzians. From this construction, they can calculate the biorthogonal filter coefficients for both the analysis and synthesis functions. They then compare their biorthogonal wavelets to the FBI (Federal Bureau of Investigations) wavelets when used for peak finding in noisy data. They will show that in this instance, their filters perform much better than the FBI wavelets.

  10. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  11. Wavelet/scalar quantization compression standard for fingerprint images

    SciTech Connect

    Brislawn, C.M.

    1996-06-12

    US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class of potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.

  12. Compression of Ultrasonic NDT Image by Wavelet Based Local Quantization

    NASA Astrophysics Data System (ADS)

    Cheng, W.; Li, L. Q.; Tsukada, K.; Hanasaki, K.

    2004-02-01

    Compression on ultrasonic image that is always corrupted by noise will cause `over-smoothness' or much distortion. To solve this problem to meet the need of real time inspection and tele-inspection, a compression method based on Discrete Wavelet Transform (DWT) that can also suppress the noise without losing much flaw-relevant information, is presented in this work. Exploiting the multi-resolution and interscale correlation property of DWT, a simple way named DWCs classification, is introduced first to classify detail wavelet coefficients (DWCs) as dominated by noise, signal or bi-effected. A better denoising can be realized by selective thresholding DWCs. While in `Local quantization', different quantization strategies are applied to the DWCs according to their classification and the local image property. It allocates the bit rate more efficiently to the DWCs thus achieve a higher compression rate. Meanwhile, the decompressed image shows the effects of noise suppressed and flaw characters preserved.

  13. A wavelet watermarking algorithm based on a tree structure

    NASA Astrophysics Data System (ADS)

    Guitart Pla, Oriol; Lin, Eugene T.; Delp, Edward J., III

    2004-06-01

    We describe a blind watermarking technique for digital images. Our technique constructs an image-dependent watermark in the discrete wavelet transform (DWT) domain and inserts the watermark in the most signifcant coefficients of the image. The watermarked coefficients are determined by using the hierarchical tree structure induced by the DWT, similar in concept to embedded zerotree wavelet (EZW) compression. If the watermarked image is attacked or manipulated such that the set of significant coefficients is changed, the tree structure allows the correlation-based watermark detector to recover synchronization. Our technique also uses a visual adaptive scheme to insert the watermark to minimize watermark perceptibility. The visual adaptive scheme also takes advantage of the tree structure. Finally, a template is inserted into the watermark to provide robustness against geometric attacks. The template detection uses the cross-ratio of four collinear points.

  14. Design of Steerable Wavelets to Detect Multifold Junctions.

    PubMed

    Püspöki, Zsuzsanna; Uhlmann, Virginie; Vonesch, Cédric; Unser, Michael

    2016-02-01

    We propose a framework for the detection of junctions in images. Although the detection of edges and key points is a well examined and described area, the multiscale detection of junction centers, especially for odd orders, poses a challenge in pattern analysis. The goal of this paper is to build optimal junction detectors based on 2D steerable wavelets that are polar-separable in the Fourier domain. The approaches we develop are general and can be used for the detection of arbitrary symmetric and asymmetric junctions. The backbone of our construction is a multiscale pyramid with a radial wavelet function where the directional components are represented by circular harmonics and encoded in a shaping matrix. We are able to detect M -fold junctions in different scales and orientations. We provide experimental results on both simulated and real data to demonstrate the effectiveness of the algorithm.

  15. Birdsong Denoising Using Wavelets

    PubMed Central

    Priyadarshani, Nirosha; Marsland, Stephen; Castro, Isabel; Punchihewa, Amal

    2016-01-01

    Automatic recording of birdsong is becoming the preferred way to monitor and quantify bird populations worldwide. Programmable recorders allow recordings to be obtained at all times of day and year for extended periods of time. Consequently, there is a critical need for robust automated birdsong recognition. One prominent obstacle to achieving this is low signal to noise ratio in unattended recordings. Field recordings are often very noisy: birdsong is only one component in a recording, which also includes noise from the environment (such as wind and rain), other animals (including insects), and human-related activities, as well as noise from the recorder itself. We describe a method of denoising using a combination of the wavelet packet decomposition and band-pass or low-pass filtering, and present experiments that demonstrate an order of magnitude improvement in noise reduction over natural noisy bird recordings. PMID:26812391

  16. Wavelet theory and its applications

    SciTech Connect

    Faber, V.; Bradley, JJ.; Brislawn, C.; Dougherty, R.; Hawrylycz, M.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We investigated the theory of wavelet transforms and their relation to Laboratory applications. The investigators have had considerable success in the past applying wavelet techniques to the numerical solution of optimal control problems for distributed- parameter systems, nonlinear signal estimation, and compression of digital imagery and multidimensional data. Wavelet theory involves ideas from the fields of harmonic analysis, numerical linear algebra, digital signal processing, approximation theory, and numerical analysis, and the new computational tools arising from wavelet theory are proving to be ideal for many Laboratory applications. 10 refs.

  17. Wavelet entropy of stochastic processes

    NASA Astrophysics Data System (ADS)

    Zunino, L.; Pérez, D. G.; Garavaglia, M.; Rosso, O. A.

    2007-06-01

    We compare two different definitions for the wavelet entropy associated to stochastic processes. The first one, the normalized total wavelet entropy (NTWS) family [S. Blanco, A. Figliola, R.Q. Quiroga, O.A. Rosso, E. Serrano, Time-frequency analysis of electroencephalogram series, III. Wavelet packets and information cost function, Phys. Rev. E 57 (1998) 932-940; O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Başar, Wavelet entropy: a new tool for analysis of short duration brain electrical signals, J. Neurosci. Method 105 (2001) 65-75] and a second introduced by Tavares and Lucena [Physica A 357(1) (2005) 71-78]. In order to understand their advantages and disadvantages, exact results obtained for fractional Gaussian noise ( -1<α< 1) and fractional Brownian motion ( 1<α< 3) are assessed. We find out that the NTWS family performs better as a characterization method for these stochastic processes.

  18. Wavelet Analysis of Protein Motion

    PubMed Central

    BENSON, NOAH C.

    2014-01-01

    As high-throughput molecular dynamics simulations of proteins become more common and the databases housing the results become larger and more prevalent, more sophisticated methods to quickly and accurately mine large numbers of trajectories for relevant information will have to be developed. One such method, which is only recently gaining popularity in molecular biology, is the continuous wavelet transform, which is especially well-suited for time course data such as molecular dynamics simulations. We describe techniques for the calculation and analysis of wavelet transforms of molecular dynamics trajectories in detail and present examples of how these techniques can be useful in data mining. We demonstrate that wavelets are sensitive to structural rearrangements in proteins and that they can be used to quickly detect physically relevant events. Finally, as an example of the use of this approach, we show how wavelet data mining has led to a novel hypothesis related to the mechanism of the protein γδ resolvase. PMID:25484480

  19. A new fractional wavelet transform

    NASA Astrophysics Data System (ADS)

    Dai, Hongzhe; Zheng, Zhibao; Wang, Wei

    2017-03-01

    The fractional Fourier transform (FRFT) is a potent tool to analyze the time-varying signal. However, it fails in locating the fractional Fourier domain (FRFD)-frequency contents which is required in some applications. A novel fractional wavelet transform (FRWT) is proposed to solve this problem. It displays the time and FRFD-frequency information jointly in the time-FRFD-frequency plane. The definition, basic properties, inverse transform and reproducing kernel of the proposed FRWT are considered. It has been shown that an FRWT with proper order corresponds to the classical wavelet transform (WT). The multiresolution analysis (MRA) associated with the developed FRWT, together with the construction of the orthogonal fractional wavelets are also presented. Three applications are discussed: the analysis of signal with time-varying frequency content, the FRFD spectrum estimation of signals that involving noise, and the construction of fractional Harr wavelet. Simulations verify the validity of the proposed FRWT.

  20. A wavelet phase filter for emission tomography

    SciTech Connect

    Olsen, E.T.; Lin, B.

    1995-07-01

    The presence of a high level of noise is a characteristic in some tomographic imaging techniques such as positron emission tomography (PET). Wavelet methods can smooth out noise while preserving significant features of images. Mallat et al. proposed a wavelet based denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise. In this study, the authors explore the properties of wavelet phase, with a focus on reconstruction of emission tomography images. Specifically, they show that the wavelet phase of regular Poisson noise under a Haar-type wavelet transform converges in distribution to a random variable uniformly distributed on [0, 2{pi}). They then propose three wavelet-phase-based denoising schemes which exploit this property: edge tracking, local phase variance thresholding, and scale phase variation thresholding. Some numerical results are also presented. The numerical experiments indicate that wavelet phase techniques show promise for wavelet based denoising methods.

  1. Optical HAAR Wavelet Transforms using Computer Generated Holography

    DTIC Science & Technology

    1992-12-17

    This research introduces an optical implementation of the continuous wavelet transform to filter images. The wavelet transform is modeled as a...continuous wavelet transform was performed and that the results compared favorably to digital simulation. Wavelets, Holography, Optical correlators.

  2. Bayesian wavelet PCA methodology for turbomachinery damage diagnosis under uncertainty

    NASA Astrophysics Data System (ADS)

    Xu, Shengli; Jiang, Xiaomo; Huang, Jinzhi; Yang, Shuhua; Wang, Xiaofang

    2016-12-01

    Centrifugal compressor often suffers various defects such as impeller cracking, resulting in forced outage of the total plant. Damage diagnostics and condition monitoring of such a turbomachinery system has become an increasingly important and powerful tool to prevent potential failure in components and reduce unplanned forced outage and further maintenance costs, while improving reliability, availability and maintainability of a turbomachinery system. This paper presents a probabilistic signal processing methodology for damage diagnostics using multiple time history data collected from different locations of a turbomachine, considering data uncertainty and multivariate correlation. The proposed methodology is based on the integration of three advanced state-of-the-art data mining techniques: discrete wavelet packet transform, Bayesian hypothesis testing, and probabilistic principal component analysis. The multiresolution wavelet analysis approach is employed to decompose a time series signal into different levels of wavelet coefficients. These coefficients represent multiple time-frequency resolutions of a signal. Bayesian hypothesis testing is then applied to each level of wavelet coefficient to remove possible imperfections. The ratio of posterior odds Bayesian approach provides a direct means to assess whether there is imperfection in the decomposed coefficients, thus avoiding over-denoising. Power spectral density estimated by the Welch method is utilized to evaluate the effectiveness of Bayesian wavelet cleansing method. Furthermore, the probabilistic principal component analysis approach is developed to reduce dimensionality of multiple time series and to address multivariate correlation and data uncertainty for damage diagnostics. The proposed methodology and generalized framework is demonstrated with a set of sensor data collected from a real-world centrifugal compressor with impeller cracks, through both time series and contour analyses of vibration

  3. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  4. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  5. Heart Disease Detection Using Wavelets

    NASA Astrophysics Data System (ADS)

    González S., A.; Acosta P., J. L.; Sandoval M., M.

    2004-09-01

    We develop a wavelet based method to obtain standardized gray-scale chart of both healthy hearts and of hearts suffering left ventricular hypertrophy. The hypothesis that early bad functioning of heart can be detected must be tested by comparing the wavelet analysis of the corresponding ECD with the limit cases. Several important parameters shall be taken into account such as age, sex and electrolytic changes.

  6. Self-assembled decanuclear Na(I)2Mn(II)4Mn(III)4 complexes: from discrete clusters to 1-D and 2-D structures, with the Mn(II)4Mn(III)4 unit displaying a large spin ground state and probable SMM behaviour.

    PubMed

    Langley, Stuart K; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S

    2011-12-07

    The synthesis, magnetic characterization and X-ray crystal structures are reported for five new manganese compounds, [Mn(III)(teaH(2))(sal)]·(1/2)H(2)O (1), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(4)]·6MeOH (2), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·7MeOH (3), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·2MeOH·Et(2)O (4) and [K(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(H(2)O)(2)](n)·5MeOH (5). Complex 1 is a mononuclear compound, formed via the reaction of Mn(NO(3))(2)·4H(2)O, triethanolamine (teaH(3)) and salicylic acid (salH(2)) in a basic methanolic solution. Compound 2 is a mixed-valent hetero-metallic cluster made up of a Mn(8)Na(2) decanuclear core and is formed via the reaction of sodium azide (NaN(3)) with 1. Compounds 3-5 are isolated as 1- or 2-D coordination polymers, each containing the decanuclear Mn(8)M(2) (M = Na(+) or K(+)) core building block as the repeating unit. Compound 3 is isolated when 1 is reacted with NaN(3) over a very short reaction time and forms a 1-D coordination polymer. Each unit displays inter-cluster bridges via the O-atoms of teaH(2-) ligands bonding to the sodium ions of an adjacent cluster. Increasing the reaction time appears to drive the formation of 4 which forms 2-D polymeric sheets and is a packing polymorph of 3. The addition of KMnO(4) and NaN(3) to 1 resulted in compound 5, which also forms a 1-D coordination polymer of the decanuclear core unit. The 1-D chains are now linked via inter-cluster potassium and salicylate bridges. Solid state DC susceptibility measurements were performed on compounds 1-5. The data for 1 are as expected for an S = 2 Mn(III) ion, with the isothermal M vs. H data being fitted by matrix diagonalization methods to give values of g and the axial (D) and rhombic (E) zero field splitting parameters of 2.02, -2.70 cm(-1) and 0.36 cm(-1) respectively. The data for 2-5, each with an identical Mn(II)(4)Mn(III)(4

  7. ''Super 2D,'' Innovative seismic reprocessing: A case history

    SciTech Connect

    Conne, D.K.M.; Bolander, A.G.; MacDonald, R.J.; Strelioff, D.M.

    1988-01-01

    The ''Super 2D'' processing sequence involves taking a randomly oriented grid of multivintage two-dimensional seismic data and reprocessing to tie the data where required, then interpolating the data set to a regular grid suitable for three-dimensional processing and interpretation. A data set from Alberta, provided by a Canadian oil company, comprises 15 two-dimensional seismic lines collected and processed over a period of 6 years by various contractors. Field conditions, advances in technology, and changing objectives combined to result in a data set that densely sampled a small area, but did not tie in well enough to be interpreted as a whole. The data mistied in time, phase, and frequency, as well as having a problem with multiples in the zone of interest that had been partly attenuated in varying degrees. Therefore, the first objective of reprocessing was to resolve these problems. The authors' current land data processing sequence, which includes frequency balancing followed by source wavelet designature, F/K multiple attenuation, trim statics, and F-X filtering, as well as close attention to statics and velocity control, resolved all the mistie issues and produced a standardized data volume. This data volume was now suitable for the second stage of this sequence (i.e., interpolating to a regular grid and subsequent three-dimensional processing). The volume was three-dimensionally migrated (finite difference), filtered, and scaled. The full range of three-dimensional display and interpretational options, including loading on an interactive system, are now possible. This, along with standardizing the data set and improving the spatial location of events via three-dimensional migration are the key results of the ''Super 2D'' sequence.

  8. [Identification of protoporphyrin IX fluorescence spectrum in human blood serum by biorthogonal spline wavelet].

    PubMed

    Zhu, Dian-ming; Jin, Wan-xiang; Luo, Xiao-sen; Liu, Ying; Shen, Zhong-hua; Lu, Jian; Ni, Xiao-wu

    2008-08-01

    For the low content and weak fluorescence intensity, usually presenting shoulder peaks, it is often hard to locate protoporphyrin IX and identify its fluorescence intensity in human blood serum. Biorthogonal spline wavelet may work for the identification of its weak signal Superimposing protoporphyrin IX fluorescence signal on the background of blood serum spectrum, a series of varied fluorescence spectra of them can be obtained. The protoporphyrin IX fluorescence signal from blood serum background is separated and the fluorescence spectrum can be divided into corresponding discrete approximate signals (a1-a7) and discrete details signals (d1-d7) by biorthogonal spline wavelet bior 5.5 seven levels decomposition. The signal frequency shows a gradual decrease with increasing decomposition. Protoporphyrin IX fluorescence peak emerges when it comes to the 7th decomposition. The signal peak shifts about 2.5 mm downwards as the signal intensity decreases, whereas the signal peak from wavelet filter remains where it was. As the synchronization disappears between signal intensity and signal peak, usually it is hard to assure the fluorescence intensity and peak location. However, signal from wavelet filter may ignore the affect and identify the protoporphyrin IX in human blood serum with the help of biorthogonal spline wavelet. As the linear alternation of wavelet and discrete details signals maintain their inborn linear relations, the authors can carry out the qualitative and quantitative analysis for the precise content and quantity of protoporphyrin IX in blood serum, which provides a feasible method for the application of blood serum fluorescence spectrum to tumor early diagnosis.

  9. Wavelet transform for real-time detection of action potentials in neural signals.

    PubMed

    Quotb, Adam; Bornat, Yannick; Renaud, Sylvie

    2011-01-01

    We present a study on wavelet detection methods of neuronal action potentials (APs). Our final goal is to implement the selected algorithms on custom integrated electronics for on-line processing of neural signals; therefore we take real-time computing as a hard specification and silicon area as a price to pay. Using simulated neural signals including APs, we characterize an efficient wavelet method for AP extraction by evaluating its detection rate and its implementation cost. We compare software implementation for three methods: adaptive threshold, discrete wavelet transform (DWT), and stationary wavelet transform (SWT). We evaluate detection rate and implementation cost for detection functions dynamically comparing a signal with an adaptive threshold proportional to its SD, where the signal is the raw neural signal, respectively: (i) non-processed; (ii) processed by a DWT; (iii) processed by a SWT. We also use different mother wavelets and test different data formats to set an optimal compromise between accuracy and silicon cost. Detection accuracy is evaluated together with false negative and false positive detections. Simulation results show that for on-line AP detection implemented on a configurable digital integrated circuit, APs underneath the noise level can be detected using SWT with a well-selected mother wavelet, combined to an adaptive threshold.

  10. WAVELET-BASED BAYESIAN ESTIMATION OF PARTIALLY LINEAR REGRESSION MODELSWITH LONG MEMORY ERRORS

    PubMed Central

    Ko, Kyungduk; Qu, Leming; Vannucci, Marina

    2013-01-01

    In this paper we focus on partially linear regression models with long memory errors, and propose a wavelet-based Bayesian procedure that allows the simultaneous estimation of the model parameters and the nonparametric part of the model. Employing discrete wavelet transforms is crucial in order to simplify the dense variance-covariance matrix of the long memory error. We achieve a fully Bayesian inference by adopting a Metropolis algorithm within a Gibbs sampler. We evaluate the performances of the proposed method on simulated data. In addition, we present an application to Northern hemisphere temperature data, a benchmark in the long memory literature. PMID:23946613

  11. Application of the dual-tree complex wavelet transform in biomedical signal denoising.

    PubMed

    Wang, Fang; Ji, Zhong

    2014-01-01

    In biomedical signal processing, Gibbs oscillation and severe frequency aliasing may occur when using the traditional discrete wavelet transform (DWT). Herein, a new denoising algorithm based on the dual-tree complex wavelet transform (DTCWT) is presented. Electrocardiogram (ECG) signals and heart sound signals are denoised based on the DTCWT. The results prove that the DTCWT is efficient. The signal-to-noise ratio (SNR) and the mean square error (MSE) are used to compare the denoising effect. Results of the paired samples t-test show that the new method can remove noise more thoroughly and better retain the boundary and texture of the signal.

  12. Wavelet compression techniques for hyperspectral data

    NASA Technical Reports Server (NTRS)

    Evans, Bruce; Ringer, Brian; Yeates, Mathew

    1994-01-01

    Hyperspectral sensors are electro-optic sensors which typically operate in visible and near infrared bands. Their characteristic property is the ability to resolve a relatively large number (i.e., tens to hundreds) of contiguous spectral bands to produce a detailed profile of the electromagnetic spectrum. In contrast, multispectral sensors measure relatively few non-contiguous spectral bands. Like multispectral sensors, hyperspectral sensors are often also imaging sensors, measuring spectra over an array of spatial resolution cells. The data produced may thus be viewed as a three dimensional array of samples in which two dimensions correspond to spatial position and the third to wavelength. Because they multiply the already large storage/transmission bandwidth requirements of conventional digital images, hyperspectral sensors generate formidable torrents of data. Their fine spectral resolution typically results in high redundancy in the spectral dimension, so that hyperspectral data sets are excellent candidates for compression. Although there have been a number of studies of compression algorithms for multispectral data, we are not aware of any published results for hyperspectral data. Three algorithms for hyperspectral data compression are compared. They were selected as representatives of three major approaches for extending conventional lossy image compression techniques to hyperspectral data. The simplest approach treats the data as an ensemble of images and compresses each image independently, ignoring the correlation between spectral bands. The second approach transforms the data to decorrelate the spectral bands, and then compresses the transformed data as a set of independent images. The third approach directly generalizes two-dimensional transform coding by applying a three-dimensional transform as part of the usual transform-quantize-entropy code procedure. The algorithms studied all use the discrete wavelet transform. In the first two cases, a wavelet

  13. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  14. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  15. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  16. 2D/3D switchable displays

    NASA Astrophysics Data System (ADS)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  17. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L. A.; Hallquist, J. O.

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  18. 2D Seismic Reflection Data across Central Illinois

    SciTech Connect

    Smith, Valerie; Leetaru, Hannes

    2014-09-30

    In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made

  19. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  20. Hybrid-Thresholding based Image Super-Resolution Technique by the use of Triplet Half-Band Wavelets

    NASA Astrophysics Data System (ADS)

    Chopade, Pravin B.; Rahulkar, Amol D.; Patil, Pradeep M.

    2016-12-01

    This paper presents a modified image super-resolution scheme based on the wavelet coefficients hybrid-thresholding by the use of triplet half-band wavelets (THW) derived from the generalized half-band polynomial. At first, discrete wavelet transform (DWT) is obtained from triplet half-band kernels and it applied on the low-resolution image to obtain the high frequency sub-bands. These high frequency sub-bands and the original low-resolution image are interpolated to enhance the resolution. Second, stationary wavelet transform is obtained by using THW, which is employed to minimize the loss due to the use of DWT. In addition, hybrid thresholding scheme on wavelet coefficients scheme is proposed on these estimated high-frequency sub-bands in order to reduce the spatial domain noise. These sub-bands are combined together by inverse discrete wavelet transform obtained from THW to generate a high-resolution image. The proposed approach is validated by comparing the quality metrics with existing filter banks and well-known super-resolution scheme.

  1. Edge Detection Using a Complex Wavelet

    DTIC Science & Technology

    1993-12-01

    A complex wavelet of the form Psi(x, y) = C(x jy)exp(-p(x-sq+y-sq))) is used in the continuous wavelet transform to obtain edges from a digital image...and x and y are position variables. The square root of the sum of the squares of the real and imaginary parts of the wavelet transform are used to...radar images and the resulting images are shown. Continuous wavelet transform , Digital image.

  2. Wavelet neural network employment for continuous orbit construction

    NASA Astrophysics Data System (ADS)

    Pavlovčič Prešeren, Polona; Stopar, Bojan

    2010-05-01

    The scope of this paper is to present a comparison between a novel wavelet neural network (WNN) approximation and currently used polynomial and trigonometric interpolations for continuous GNSS (Global Navigation Satellite System) orbit construction. In the first part we propose the wavelet network construction and algorithms for regression estimation. Since the algorithms for non-parametric regression estimation with wavelet networks overcome backpropagation limitations of small input data domain training, this procedure is employed for the GNSS satellite position computations from precise ephemerides. Finally, the performance of WNN and polynomial and trigonometric interpolations is examined and most efficient WNN algorithm is presented. Simulation studies proved that WNN function overcomes traditional interpolation deficiency in better performance near the end of the interval. The method is linked to a single function determination for the entire interval and overcomes the obstacle of several discrete function establishment, which was the basis for the interpolation methods. Furthermore it is shown that WNN approximation offers better solution in storage of data used for GNSS orbit re-construction, but retains the computation efficiency and generalization ability in any function domain.

  3. Adaptive directional lifting-based wavelet transform for image coding.

    PubMed

    Ding, Wenpeng; Wu, Feng; Wu, Xiaolin; Li, Shipeng; Li, Houqiang

    2007-02-01

    We present a novel 2-D wavelet transform scheme of adaptive directional lifting (ADL) in image coding. Instead of alternately applying horizontal and vertical lifting, as in present practice, ADL performs lifting-based prediction in local windows in the direction of high pixel correlation. Hence, it adapts far better to the image orientation features in local windows. The ADL transform is achieved by existing 1-D wavelets and is seamlessly integrated into the global wavelet transform. The predicting and updating signals of ADL can be derived even at the fractional pixel precision level to achieve high directional resolution, while still maintaining perfect reconstruction. To enhance the ADL performance, a rate-distortion optimized directional segmentation scheme is also proposed to form and code a hierarchical image partition adapting to local features. Experimental results show that the proposed ADL-based image coding technique outperforms JPEG 2000 in both PSNR and visual quality, with the improvement up to 2.0 dB on images with rich orientation features.

  4. ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data

    NASA Astrophysics Data System (ADS)

    Akca, Irfan

    2016-04-01

    ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discre-tized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole inversion procedure. The inversion routine is based on the smoothness constrained least squares method. In order to verify the program, responses of two test models and field data sets were inverted. The models inverted from the synthetic data sets are consistent with the original test models in both DC resistivity and IP cases. A field data set acquired in an archaeological site is also used for the verification of outcomes of the program in comparison with the excavation results.

  5. Anisotropic multi-resolution analysis in 2D, application to long-range correlations in cloud mm-radar fields

    SciTech Connect

    Davis, A.B.; Clothiaux, E.

    1999-03-01

    Because of Earth`s gravitational field, its atmosphere is strongly anisotropic with respect to the vertical; the effect of the Earth`s rotation on synoptic wind patterns also causes a more subtle form of anisotropy in the horizontal plane. The authors survey various approaches to statistically robust anisotropy from a wavelet perspective and present a new one adapted to strongly non-isotropic fields that are sampled on a rectangular grid with a large aspect ratio. This novel technique uses an anisotropic version of Multi-Resolution Analysis (MRA) in image analysis; the authors form a tensor product of the standard dyadic Haar basis, where the dividing ratio is {lambda}{sub z} = 2, and a nonstandard triadic counterpart, where the dividing ratio is {lambda}{sub x} = 3. The natural support of the field is therefore 2{sup n} pixels (vertically) by 3{sup n} pixels (horizontally) where n is the number of levels in the MRA. The natural triadic basis includes the French top-hat wavelet which resonates with bumps in the field whereas the Haar wavelet responds to ramps or steps. The complete 2D basis has one scaling function and five wavelets. The resulting anisotropic MRA is designed for application to the liquid water content (LWC) field in boundary-layer clouds, as the prevailing wind advects them by a vertically pointing mm-radar system. Spatial correlations are notoriously long-range in cloud structure and the authors use the wavelet coefficients from the new MRA to characterize these correlations in a multifractal analysis scheme. In the present study, the MRA is used (in synthesis mode) to generate fields that mimic cloud structure quite realistically although only a few parameters are used to control the randomness of the LWC`s wavelet coefficients.

  6. Reconstruction of a 2D seismic wavefield by seismic gradiometry

    NASA Astrophysics Data System (ADS)

    Maeda, Takuto; Nishida, Kiwamu; Takagi, Ryota; Obara, Kazushige

    2016-12-01

    We reconstructed a 2D seismic wavefield and obtained its propagation properties by using the seismic gradiometry method together with dense observations of the Hi-net seismograph network in Japan. The seismic gradiometry method estimates the wave amplitude and its spatial derivative coefficients at any location from a discrete station record by using a Taylor series approximation. From the spatial derivatives in horizontal directions, the properties of a propagating wave packet, including the arrival direction, slowness, geometrical spreading, and radiation pattern can be obtained. In addition, by using spatial derivatives together with free-surface boundary conditions, the 2D vector elastic wavefield can be decomposed into divergence and rotation components. First, as a feasibility test, we performed an analysis with a synthetic seismogram dataset computed by a numerical simulation for a realistic 3D medium and the actual Hi-net station layout. We confirmed that the wave amplitude and its spatial derivatives were very well-reproduced for period bands longer than 25 s. Applications to a real large earthquake showed that the amplitude and phase of the wavefield were well reconstructed, along with slowness vector. The slowness of the reconstructed wavefield showed a clear contrast between body and surface waves and regional non-great-circle-path wave propagation, possibly owing to scattering. Slowness vectors together with divergence and rotation decomposition are expected to be useful for determining constituents of observed wavefields in inhomogeneous media.

  7. 2D Hilbert transform for phase retrieval of speckle fields

    NASA Astrophysics Data System (ADS)

    Gorsky, M. P.; Ryabyi, P. A.; Ivanskyi, D. I.

    2016-09-01

    The paper presents principal approaches to diagnosing the structure forming skeleton of the complex optical field. An analysis of optical field singularity algorithms depending on intensity discretization and image resolution has been carried out. An optimal approach is chosen, which allows to bring much closer the solution of the phase problem of localization speckle-field special points. The use of a "window" 2D Hilbert transform for reconstruction of the phase distribution of the intensity of a speckle field is proposed. It is shown that the advantage of this approach consists in the invariance of a phase map to a change of the position of the kernel of transformation and in a possibility to reconstruct the structure-forming elements of the skeleton of an optical field, including singular points and saddle points. We demonstrate the possibility to reconstruct the equi-phase lines within a narrow confidence interval, and introduce an additional algorithm for solving the phase problem for random 2D intensity distributions.

  8. Implementation of Wavelet-Based Neural Network for the detection of Very Low Frequency (VLF) Whistlers Transients

    NASA Astrophysics Data System (ADS)

    Sondhiya, Deepak Kumar; Gwal, Ashok Kumar; Verma, Shivali; Kasde, Satish Kumar

    Abstract: In this paper, a wavelet-based neural network system for the detection and identification of four types of VLF whistler’s transients (i.e. dispersive, diffuse, spiky and multipath) is implemented and tested. The discrete wavelet transform (DWT) technique is integrated with the feed forward neural network (FFNN) model to construct the identifier. First, the multi-resolution analysis (MRA) technique of DWT and the Parseval’s theorem are employed to extract the characteristics features of the transients at different resolution levels. Second, the FFNN identifies these extracted features to identify the transients according to the features extracted. The proposed methodology can reduce a great quantity of the features of transients without losing its original property; less memory space and computing time are required. Various transient events are tested; the results show that the identifier can detect whistler transients efficiently. Keywords: Discrete wavelets transform, Multi-resolution analysis, Parseval’s theorem and Feed forward neural network

  9. Recent advances in wavelet technology

    NASA Technical Reports Server (NTRS)

    Wells, R. O., Jr.

    1994-01-01

    Wavelet research has been developing rapidly over the past five years, and in particular in the academic world there has been significant activity at numerous universities. In the industrial world, there has been developments at Aware, Inc., Lockheed, Martin-Marietta, TRW, Kodak, Exxon, and many others. The government agencies supporting wavelet research and development include ARPA, ONR, AFOSR, NASA, and many other agencies. The recent literature in the past five years includes a recent book which is an index of citations in the past decade on this subject, and it contains over 1,000 references and abstracts.

  10. Image Segmentation Using Affine Wavelets

    DTIC Science & Technology

    1991-12-12

    Fourier Transform [23:677] ........ .. 3-15 3.6. Typical Wavelet Function and its Fourier Transform [23:577] ............ 3-16 3.7. Orientation of...Wavelet Decomposition Filters ii the Fourier Dcmain [14:65] 3-18 4.1. Datafiow- Diagram of the Wa’velet Decompossii ’n Proga, F.r..t cvc.. A -•A 4.2...global spatial relationships, as does a Fourier transforn."[l 1] The main thrust of Daugman’s article [11] was to show the utility of a neural network

  11. Wavelet filtering of chaotic data

    NASA Astrophysics Data System (ADS)

    Grzesiak, M.

    Satisfactory method of removing noise from experimental chaotic data is still an open problem. Normally it is necessary to assume certain properties of the noise and dynamics, which one wants to extract, from time series. The wavelet based method of denoising of time series originating from low-dimensional dynamical systems and polluted by the Gaussian white noise is considered. Its efficiency is investigated by comparing the correlation dimension of clean and noisy data generated for some well-known dynamical systems. The wavelet method is contrasted with the singular value decomposition (SVD) and finite impulse response (FIR) filter methods.

  12. Phase synchronization based on a Dual-Tree Complex Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Ferreira, Maria Teodora; Domingues, Margarete Oliveira; Macau, Elbert E. N.

    2016-11-01

    In this work, we show the applicability of our Discrete Complex Wavelet Approach (DCWA) to verify the phenomenon of phase synchronization transition in two coupled chaotic Lorenz systems. DCWA is based on the phase assignment from complex wavelet coefficients obtained by using a Dual-Tree Complex Wavelet Transform (DT-CWT). We analyzed two coupled chaotic Lorenz systems, aiming to detect the transition from non-phase synchronization to phase synchronization. In addition, we check how good is the method in detecting periods of 2π phase-slips. In all experiments, DCWA is compared with classical phase detection methods such as the ones based on arctangent and Hilbert transform showing a much better performance.

  13. CW-THz image contrast enhancement using wavelet transform and Retinex

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Zhang, Min; Hu, Qi-fan; Huang, Ying-Xue; Liang, Hua-Wei

    2015-10-01

    To enhance continuous wave terahertz (CW-THz) scanning images contrast and denoising, a method based on wavelet transform and Retinex theory was proposed. In this paper, the factors affecting the quality of CW-THz images were analysed. Second, an approach of combination of the discrete wavelet transform (DWT) and a designed nonlinear function in wavelet domain for the purpose of contrast enhancing was applied. Then, we combine the Retinex algorithm for further contrast enhancement. To evaluate the effectiveness of the proposed method in qualitative and quantitative, it was compared with the adaptive histogram equalization method, the homomorphic filtering method and the SSR(Single-Scale-Retinex) method. Experimental results demonstrated that the presented algorithm can effectively enhance the contrast of CW-THZ image and obtain better visual effect.

  14. Speech signal denoising with wavelet-transforms and the mean opinion score characterizing the filtering quality

    NASA Astrophysics Data System (ADS)

    Yaseen, Alauldeen S.; Pavlov, Alexey N.; Hramov, Alexander E.

    2016-03-01

    Speech signal processing is widely used to reduce noise impact in acquired data. During the last decades, wavelet-based filtering techniques are often applied in communication systems due to their advantages in signal denoising as compared with Fourier-based methods. In this study we consider applications of a 1-D double density complex wavelet transform (1D-DDCWT) and compare the results with the standard 1-D discrete wavelet-transform (1DDWT). The performances of the considered techniques are compared using the mean opinion score (MOS) being the primary metric for the quality of the processed signals. A two-dimensional extension of this approach can be used for effective image denoising.

  15. Smart-phone based electrocardiogram wavelet decomposition and neural network classification

    NASA Astrophysics Data System (ADS)

    Jannah, N.; Hadjiloucas, S.; Hwang, F.; Galvão, R. K. H.

    2013-06-01

    This paper discusses ECG classification after parametrizing the ECG waveforms in the wavelet domain. The aim of the work is to develop an accurate classification algorithm that can be used to diagnose cardiac beat abnormalities detected using a mobile platform such as smart-phones. Continuous time recurrent neural network classifiers are considered for this task. Records from the European ST-T Database are decomposed in the wavelet domain using discrete wavelet transform (DWT) filter banks and the resulting DWT coefficients are filtered and used as inputs for training the neural network classifier. Advantages of the proposed methodology are the reduced memory requirement for the signals which is of relevance to mobile applications as well as an improvement in the ability of the neural network in its generalization ability due to the more parsimonious representation of the signal to its inputs.

  16. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  17. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  18. Orthotropic Piezoelectricity in 2D Nanocellulose.

    PubMed

    García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M

    2016-10-06

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V(-1), ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  19. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  20. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  1. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  2. Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.

    PubMed

    Fang, Yuan; Yushmanov, Pavel V; Furó, István

    2016-12-08

    Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  3. The EM Method in a Probabilistic Wavelet-Based MRI Denoising

    PubMed Central

    2015-01-01

    Human body heat emission and others external causes can interfere in magnetic resonance image acquisition and produce noise. In this kind of images, the noise, when no signal is present, is Rayleigh distributed and its wavelet coefficients can be approximately modeled by a Gaussian distribution. Noiseless magnetic resonance images can be modeled by a Laplacian distribution in the wavelet domain. This paper proposes a new magnetic resonance image denoising method to solve this fact. This method performs shrinkage of wavelet coefficients based on the conditioned probability of being noise or detail. The parameters involved in this filtering approach are calculated by means of the expectation maximization (EM) method, which avoids the need to use an estimator of noise variance. The efficiency of the proposed filter is studied and compared with other important filtering techniques, such as Nowak's, Donoho-Johnstone's, Awate-Whitaker's, and nonlocal means filters, in different 2D and 3D images. PMID:26089959

  4. The EM Method in a Probabilistic Wavelet-Based MRI Denoising.

    PubMed

    Martin-Fernandez, Marcos; Villullas, Sergio

    2015-01-01

    Human body heat emission and others external causes can interfere in magnetic resonance image acquisition and produce noise. In this kind of images, the noise, when no signal is present, is Rayleigh distributed and its wavelet coefficients can be approximately modeled by a Gaussian distribution. Noiseless magnetic resonance images can be modeled by a Laplacian distribution in the wavelet domain. This paper proposes a new magnetic resonance image denoising method to solve this fact. This method performs shrinkage of wavelet coefficients based on the conditioned probability of being noise or detail. The parameters involved in this filtering approach are calculated by means of the expectation maximization (EM) method, which avoids the need to use an estimator of noise variance. The efficiency of the proposed filter is studied and compared with other important filtering techniques, such as Nowak's, Donoho-Johnstone's, Awate-Whitaker's, and nonlocal means filters, in different 2D and 3D images.

  5. Discrimination of walking patterns using wavelet-based fractal analysis.

    PubMed

    Sekine, Masaki; Tamura, Toshiyo; Akay, Metin; Fujimoto, Toshiro; Togawa, Tatsuo; Fukui, Yasuhiro

    2002-09-01

    In this paper, we attempted to classify the acceleration signals for walking along a corridor and on stairs by using the wavelet-based fractal analysis method. In addition, the wavelet-based fractal analysis method was used to evaluate the gait of elderly subjects and patients with Parkinson's disease. The triaxial acceleration signals were measured close to the center of gravity of the body while the subject walked along a corridor and up and down stairs continuously. Signal measurements were recorded from 10 healthy young subjects and 11 elderly subjects. For comparison, two patients with Parkinson's disease participated in the level walking. The acceleration signal in each direction was decomposed to seven detailed signals at different wavelet scales by using the discrete wavelet transform. The variances of detailed signals at scales 7 to 1 were calculated. The fractal dimension of the acceleration signal was then estimated from the slope of the variance progression. The fractal dimensions were significantly different among the three types of walking for individual subjects (p < 0.01) and showed a high reproducibility. Our results suggest that the fractal dimensions are effective for classifying the walking types. Moreover, the fractal dimensions were significantly higher for the elderly subjects than for the young subjects (p < 0.01). For the patients with Parkinson's disease, the fractal dimensions tended to be higher than those of healthy subjects. These results suggest that the acceleration signals change into a more complex pattern with aging and with Parkinson's disease, and the fractal dimension can be used to evaluate the gait of elderly subjects and patients with Parkinson's disease.

  6. 2D Distributed Sensing Via TDR

    DTIC Science & Technology

    2007-11-02

    plate VEGF CompositeSensor Experimental Setup Air 279 mm 61 78 VARTM profile: slope RTM profile: rectangle 22 1 Jul 2003© 2003 University of Delaware...2003 University of Delaware All rights reserved Vision: Non-contact 2D sensing ü VARTM setup constructed within TL can be sensed by its EM field: 2D...300.0 mm/ns. 1 2 1 Jul 2003© 2003 University of Delaware All rights reserved Model Validation “ RTM Flow” TDR Response to 139 mm VEGC

  7. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  8. Denoising and robust nonlinear wavelet analysis

    NASA Astrophysics Data System (ADS)

    Bruce, Andrew G.; Donoho, David L.; Gao, Hong-Ye; Martin, R. D.

    1994-03-01

    In a series of papers, Donoho and Johnstone develop a powerful theory based on wavelets for extracting non-smooth signals from noisy data. Several nonlinear smoothing algorithms are presented which provide high performance for removing Gaussian noise from a wide range of spatially inhomogeneous signals. However, like other methods based on the linear wavelet transform, these algorithms are very sensitive to certain types of non-Gaussian noise, such as outliers. In this paper, we develop outlier resistant wavelet transforms. In these transforms, outliers and outlier patches are localized to just a few scales. By using the outlier resistant wavelet transform, we improve upon the Donoho and Johnstone nonlinear signal extraction methods. The outlier resistant wavelet algorithms are included with the 'S+WAVELETS' object-oriented toolkit for wavelet analysis.

  9. Wavelets based on Hermite cubic splines

    NASA Astrophysics Data System (ADS)

    Cvejnová, Daniela; Černá, Dana; Finěk, Václav

    2016-06-01

    In 2000, W. Dahmen et al. designed biorthogonal multi-wavelets adapted to the interval [0,1] on the basis of Hermite cubic splines. In recent years, several more simple constructions of wavelet bases based on Hermite cubic splines were proposed. We focus here on wavelet bases with respect to which both the mass and stiffness matrices are sparse in the sense that the number of nonzero elements in any column is bounded by a constant. Then, a matrix-vector multiplication in adaptive wavelet methods can be performed exactly with linear complexity for any second order differential equation with constant coefficients. In this contribution, we shortly review these constructions and propose a new wavelet which leads to improved Riesz constants. Wavelets have four vanishing wavelet moments.

  10. Group theoretical methods and wavelet theory: coorbit theory and applications

    NASA Astrophysics Data System (ADS)

    Feichtinger, Hans G.

    2013-05-01

    Before the invention of orthogonal wavelet systems by Yves Meyer1 in 1986 Gabor expansions (viewed as discretized inversion of the Short-Time Fourier Transform2 using the overlap and add OLA) and (what is now perceived as) wavelet expansions have been treated more or less at an equal footing. The famous paper on painless expansions by Daubechies, Grossman and Meyer3 is a good example for this situation. The description of atomic decompositions for functions in modulation spaces4 (including the classical Sobolev spaces) given by the author5 was directly modeled according to the corresponding atomic characterizations by Frazier and Jawerth,6, 7 more or less with the idea of replacing the dyadic partitions of unity of the Fourier transform side by uniform partitions of unity (so-called BUPU's, first named as such in the early work on Wiener-type spaces by the author in 19808). Watching the literature in the subsequent two decades one can observe that the interest in wavelets "took over", because it became possible to construct orthonormal wavelet systems with compact support and of any given degree of smoothness,9 while in contrast the Balian-Low theorem is prohibiting the existence of corresponding Gabor orthonormal bases, even in the multi-dimensional case and for general symplectic lattices.10 It is an interesting historical fact that* his construction of band-limited orthonormal wavelets (the Meyer wavelet, see11) grew out of an attempt to prove the impossibility of the existence of such systems, and the final insight was that it was not impossible to have such systems, and in fact quite a variety of orthonormal wavelet system can be constructed as we know by now. Meanwhile it is established wisdom that wavelet theory and time-frequency analysis are two different ways of decomposing signals in orthogonal resp. non-orthogonal ways. The unifying theory, covering both cases, distilling from these two situations the common group theoretical background lead to the

  11. Enhancing phase retrieval speed for real-time interferometer and ESPI by two-dimensional continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Hsiung; Hsu, Kuan-Yu; Lee, Chih-Kung

    2016-03-01

    A real-time three-dimensional surface profile metrology system was implemented by integrating Fourier Transform (FT) based algorithms to convert interference intensity fringes to wrapped frequency phase maps and then to unwrapped phase maps. The revival of this field can find its roots in recognizing the development of high-resolution high-speed CCD/CMOS over the years. Two-dimensional Continuous Wavelet Transform (2D-CWT), which possesses the ability to construct daughter wavelets of good time and frequency localization according to different fringes conditions from a characteristic mother wavelet, was implemented with an attempt to reduce redundant fitting process of ordinary Short Time Fourier Transform (STFT), also known as Windowed Fourier Transform (WFT), and therefore to accelerate the FT-related algorithms needed. Implemented with the efficient wavelet construction process by using 2D-CWT, Electronic Speckle Pattern Interferometer (ESPI) was adopted to take advantage of this new process. Different from using several phase shifting steps before to solve the direction ambiguity, which takes time to capture multiple intensity maps during measurement, the phase maps needed were retrieved from a single frame interference fringes. It is to be noted that this one-image interference fringe was captured by having a pre-introduced spatial carrier frequency embedded within the experimental setup so as to remove the directional ambiguity. 2D-CWT dealing with different signal-to-noise ratios was also designed by selecting wavelet parameters properly, which is expected to achieve higher accuracy and faster processing speed. For phase unwrapping, Poisson's equation with Neumann boundary condition was solved by using FFT. The benefit of using 2D-CWTs with different wavelets as compared to WFT was demonstrated experimentally.

  12. MULTISCALE DISCRETIZATION OF SHAPE CONTOURS

    SciTech Connect

    Prasad, L.; Rao, R.

    2000-09-01

    We present an efficient multi-scale scheme to adaptively approximate the continuous (or densely sampled) contour of a planar shape at varying resolutions. The notion of shape is intimately related to the notion of contour, and the efficient representation of the contour of a shape is vital to a computational understanding of the shape. Any polygonal approximation of a planar smooth curve is equivalent to a piecewise constant approximation of the parameterized X and Y coordinate functions of a discrete point set obtained by densely sampling the curve. Using the Haar wavelet transform for the piecewise approximation yields a hierarchical scheme in which the size of the approximating point set is traded off against the morphological accuracy of the approximation. Our algorithm compresses the representation of the initial shape contour to a sparse sequence of points in the plane defining the vertices of the shape's polygonal approximation. Furthermore, it is possible to control the overall resolution of the approximation by a single, scale-independent parameter.

  13. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques.

    PubMed

    Amin, Hafeez Ullah; Malik, Aamir Saeed; Ahmad, Rana Fayyaz; Badruddin, Nasreen; Kamel, Nidal; Hussain, Muhammad; Chooi, Weng-Tink

    2015-03-01

    This paper describes a discrete wavelet transform-based feature extraction scheme for the classification of EEG signals. In this scheme, the discrete wavelet transform is applied on EEG signals and the relative wavelet energy is calculated in terms of detailed coefficients and the approximation coefficients of the last decomposition level. The extracted relative wavelet energy features are passed to classifiers for the classification purpose. The EEG dataset employed for the validation of the proposed method consisted of two classes: (1) the EEG signals recorded during the complex cognitive task--Raven's advance progressive metric test and (2) the EEG signals recorded in rest condition--eyes open. The performance of four different classifiers was evaluated with four performance measures, i.e., accuracy, sensitivity, specificity and precision values. The accuracy was achieved above 98 % by the support vector machine, multi-layer perceptron and the K-nearest neighbor classifiers with approximation (A4) and detailed coefficients (D4), which represent the frequency range of 0.53-3.06 and 3.06-6.12 Hz, respectively. The findings of this study demonstrated that the proposed feature extraction approach has the potential to classify the EEG signals recorded during a complex cognitive task by achieving a high accuracy rate.

  14. Optical cryptosystem of color images using random phase masks in the fractional wavelet transform domain

    NASA Astrophysics Data System (ADS)

    Singh, Hukum

    2016-05-01

    An optical color image encryption in the Fractional Wavelet Transform (FWT) domain is carried out. The original images are segregated into three colors components: R (red), G (green) and B (blue). After that the components are encrypted separately using double random phase encoding (DRPE) in the FWT domain. Random phase masks (RPMs) are used in the input as well as in Fourier plane. The images to be encrypted are transformed with the discrete wavelet transform (DWT), the resulting coefficients from the DWT are multiplied each one by masks different form RPM. Masks are independent each other and the results are applied an inverse discrete Wavelet Transform (IDWT), obtaining the encrypted images. The input images are recovered from their corresponding encrypted images by using the correct parameters of the FWT, and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The mother wavelet family and fractional orders associated with the FWT are extra keys that access difficulty an attacker; thereby the scheme is more secure as compared to conventional techniques. The sensitivity of proposed scheme is verified with encryption parameters, occlusions, and noise attacks.

  15. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  16. The basics of 2D DIGE.

    PubMed

    Beckett, Phil

    2012-01-01

    The technique of two-dimensional (2D) gel electrophoresis is a powerful tool for separating complex mixtures of proteins, but since its inception in the mid 1970s, it acquired the stigma of being a very difficult application to master and was generally used to its best effect by experts. The introduction of commercially available immobilized pH gradients in the early 1990s provided enhanced reproducibility and easier protocols, leading to a pronounced increase in popularity of the technique. However gel-to-gel variation was still difficult to control without the use of technical replicates. In the mid 1990s (at the same time as the birth of "proteomics"), the concept of multiplexing fluorescently labeled proteins for 2D gel separation was realized by Jon Minden's group and has led to the ability to design experiments to virtually eliminate gel-to-gel variation, resulting in biological replicates being used for statistical analysis with the ability to detect very small changes in relative protein abundance. This technology is referred to as 2D difference gel electrophoresis (2D DIGE).

  17. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; ...

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  18. An efficient coding algorithm for the compression of ECG signals using the wavelet transform.

    PubMed

    Rajoub, Bashar A

    2002-04-01

    A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%.

  19. Wavelet methodology to improve single unit isolation in primary motor cortex cells

    PubMed Central

    Ortiz-Rosario, Alexis; Adeli, Hojjat; Buford, John A.

    2016-01-01

    The proper isolation of action potentials recorded extracellularly from neural tissue is an active area of research in the fields of neuroscience and biomedical signal processing. This paper presents an isolation methodology for neural recordings using the wavelet transform (WT), a statistical thresholding scheme, and the principal component analysis (PCA) algorithm. The effectiveness of five different mother wavelets was investigated: biorthogonal, Daubachies, discrete Meyer, symmetric, and Coifman; along with three different wavelet coefficient thresholding schemes: fixed form threshold, Stein’s unbiased estimate of risk, and minimax; and two different thresholding rules: soft and hard thresholding. The signal quality was evaluated using three different statistical measures: mean-squared error, root-mean squared, and signal to noise ratio. The clustering quality was evaluated using two different statistical measures: isolation distance, and L-ratio. This research shows that the selection of the mother wavelet has a strong influence on the clustering and isolation of single unit neural activity, with the Daubachies 4 wavelet and minimax thresholding scheme performing the best. PMID:25794461

  20. Detection method of flexion relaxation phenomenon based on wavelets for patients with low back pain

    NASA Astrophysics Data System (ADS)

    Nougarou, François; Massicotte, Daniel; Descarreaux, Martin

    2012-12-01

    The flexion relaxation phenomenon (FRP) can be defined as a reduction or silence of myoelectric activity of the lumbar erector spinae muscle during full trunk flexion. It is typically absent in patients with chronic low back pain (LBP). Before any broad clinical utilization of this neuromuscular response can be made, effective, standardized, and accurate methods of identifying FRP limits are needed. However, this phenomenon is clearly more difficult to detect for LBP patients than for healthy patients. The main goal of this study is to develop an automated method based on wavelet transformation that would improve time point limits detection of surface electromyography signals of the FRP in case of LBP patients. Conventional visual identification and proposed automated methods of time point limits detection of relaxation phase were compared on experimental data using criteria of accuracy and repeatability based on physiological properties. The evaluation demonstrates that the use of wavelet transform (WT) yields better results than methods without wavelet decomposition. Furthermore, methods based on wavelet per packet transform are more effective than algorithms employing discrete WT. Compared to visual detection, in addition to demonstrating an obvious saving of time, the use of wavelet per packet transform improves the accuracy and repeatability in the detection of the FRP limits. These results clearly highlight the value of the proposed technique in identifying onset and offset of the flexion relaxation response in LBP subjects.

  1. Optical wavelet transform for fingerprint identification

    NASA Astrophysics Data System (ADS)

    MacDonald, Robert P.; Rogers, Steven K.; Burns, Thomas J.; Fielding, Kenneth H.; Warhola, Gregory T.; Ruck, Dennis W.

    1994-03-01

    The Federal Bureau of Investigation (FBI) has recently sanctioned a wavelet fingerprint image compression algorithm developed for reducing storage requirements of digitized fingerprints. This research implements an optical wavelet transform of a fingerprint image, as the first step in an optical fingerprint identification process. Wavelet filters are created from computer- generated holograms of biorthogonal wavelets, the same wavelets implemented in the FBI algorithm. Using a detour phase holographic technique, a complex binary filter mask is created with both symmetry and linear phase. The wavelet transform is implemented with continuous shift using an optical correlation between binarized fingerprints written on a Magneto-Optic Spatial Light Modulator and the biorthogonal wavelet filters. A telescopic lens combination scales the transformed fingerprint onto the filters, providing a means of adjusting the biorthogonal wavelet filter dilation continuously. The wavelet transformed fingerprint is then applied to an optical fingerprint identification process. Comparison between normal fingerprints and wavelet transformed fingerprints shows improvement in the optical identification process, in terms of rotational invariance.

  2. A Glove for Tapping and Discrete 1D/2D Input

    NASA Technical Reports Server (NTRS)

    Miller, Sam A.; Smith, Andy; Bahram, Sina; SaintAmant, Robert

    2012-01-01

    This paper describes a glove with which users enter input by tapping fingertips with the thumb or by rubbing the thumb over the palmar surfaces of the middle and index fingers. The glove has been informally tested as the controller for two semi-autonomous robots in a a 3D simulation environment. A preliminary evaluation of the glove s performance is presented.

  3. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  4. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  5. Wavelet-based analysis of gastric microcirculation in rats with ulcer bleedings

    NASA Astrophysics Data System (ADS)

    Pavlov, A. N.; Rodionov, M. A.; Pavlova, O. N.; Semyachkina-Glushkovskaya, O. V.; Berdnikova, V. A.; Kuznetsova, Ya. V.; Semyachkin-Glushkovskij, I. A.

    2012-03-01

    Studying of nitric oxide (NO) dependent mechanisms of regulation of microcirculation in a stomach can provide important diagnostic markers of the development of stress-induced ulcer bleedings. In this work we use a multiscale analysis based on the discrete wavelet-transform to characterize a latent stage of illness formation in rats. A higher sensitivity of stomach vessels to the NO-level in ill rats is discussed.

  6. Insight from modelling discrete fractures using GEOCRACK

    SciTech Connect

    DuTeaux, Robert; Swenson, Daniel; Hardeman, Brian

    1996-01-24

    This work analyzes the behavior of a numerical geothermal reservoir simulation with flow only in discrete fractures. GEOCRACK is a 2-D finite element model developed at Kansas State University for the Hot Dry Rock (HDR) research at Los Alamos National Laboratory. Its numerical simulations couple the mechanics of discrete fracture behavior with the state of earth stress, fluid flow, and heat transfer. This coupled model could also be of value for modeling reinjection and other reservoir operating strategies for liquid dominated fractured reservoirs. Because fracture surfaces cool quickly by fluid convection, and heat does not conduct quickly from the interior of reservoir rock, modeling the injection of cold fluid into a fractured reservoir is better simulated by a model with discrete fractures. This work contains knowledge gained from HDR reservoir simulation and continues to develop the general concept of heat mining, reservoir optimization. and the sensitivity of simulation to the uncertainties of fracture spacing and dynamic flow dispersion.

  7. Principles of Discrete Time Mechanics

    NASA Astrophysics Data System (ADS)

    Jaroszkiewicz, George

    2014-04-01

    1. Introduction; 2. The physics of discreteness; 3. The road to calculus; 4. Temporal discretization; 5. Discrete time dynamics architecture; 6. Some models; 7. Classical cellular automata; 8. The action sum; 9. Worked examples; 10. Lee's approach to discrete time mechanics; 11. Elliptic billiards; 12. The construction of system functions; 13. The classical discrete time oscillator; 14. Type 2 temporal discretization; 15. Intermission; 16. Discrete time quantum mechanics; 17. The quantized discrete time oscillator; 18. Path integrals; 19. Quantum encoding; 20. Discrete time classical field equations; 21. The discrete time Schrodinger equation; 22. The discrete time Klein-Gordon equation; 23. The discrete time Dirac equation; 24. Discrete time Maxwell's equations; 25. The discrete time Skyrme model; 26. Discrete time quantum field theory; 27. Interacting discrete time scalar fields; 28. Space, time and gravitation; 29. Causality and observation; 30. Concluding remarks; Appendix A. Coherent states; Appendix B. The time-dependent oscillator; Appendix C. Quaternions; Appendix D. Quantum registers; References; Index.

  8. Compatible embedding for 2D shape animation.

    PubMed

    Baxter, William V; Barla, Pascal; Anjyo, Ken-Ichi

    2009-01-01

    We present new algorithms for the compatible embedding of 2D shapes. Such embeddings offer a convenient way to interpolate shapes having complex, detailed features. Compared to existing techniques, our approach requires less user input, and is faster, more robust, and simpler to implement, making it ideal for interactive use in practical applications. Our new approach consists of three parts. First, our boundary matching algorithm locates salient features using the perceptually motivated principles of scale-space and uses these as automatic correspondences to guide an elastic curve matching algorithm. Second, we simplify boundaries while maintaining their parametric correspondence and the embedding of the original shapes. Finally, we extend the mapping to shapes' interiors via a new compatible triangulation algorithm. The combination of our algorithms allows us to demonstrate 2D shape interpolation with instant feedback. The proposed algorithms exhibit a combination of simplicity, speed, and accuracy that has not been achieved in previous work.

  9. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  10. Extrinsic Cation Selectivity of 2D Membranes

    PubMed Central

    2017-01-01

    From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333

  11. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  12. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  13. Testing for homogeneity of variance in time series: Long memory, wavelets, and the Nile River

    NASA Astrophysics Data System (ADS)

    Whitcher, B.; Byers, S. D.; Guttorp, P.; Percival, D. B.

    2002-05-01

    We consider the problem of testing for homogeneity of variance in a time series with long memory structure. We demonstrate that a test whose null hypothesis is designed to be white noise can, in fact, be applied, on a scale by scale basis, to the discrete wavelet transform of long memory processes. In particular, we show that evaluating a normalized cumulative sum of squares test statistic using critical levels for the null hypothesis of white noise yields approximately the same null hypothesis rejection rates when applied to the discrete wavelet transform of samples from a fractionally differenced process. The point at which the test statistic, using a nondecimated version of the discrete wavelet transform, achieves its maximum value can be used to estimate the time of the unknown variance change. We apply our proposed test statistic on five time series derived from the historical record of Nile River yearly minimum water levels covering 622-1922 A.D., each series exhibiting various degrees of serial correlation including long memory. In the longest subseries, spanning 622-1284 A.D., the test confirms an inhomogeneity of variance at short time scales and identifies the change point around 720 A.D., which coincides closely with the construction of a new device around 715 A.D. for measuring the Nile River. The test also detects a change in variance for a record of only 36 years.

  14. Field programmable gate arrays implementation of Dual Tree Complex Wavelet Transform.

    PubMed

    Canbay, Ferhat; Levent, Vecdi Emre; Serbes, Gorkem; Goren, Sezer; Aydin, Nizamettin

    2015-01-01

    Due to the inherent time-varying characteristics of physiological systems, most biomedical signals (BSs) are expected to have non-stationary character. Therefore, any appropriate analysis method for dealing with BSs should exhibit adjustable time-frequency (TF) resolution. The wavelet transform (WT) provides a TF representation of signals, which has good frequency resolution at low frequencies and good time resolution at high frequencies, resulting in an optimized TF resolution. Discrete wavelet transform (DWT), which is used in various medical signal processing applications such as denoising and feature extraction, is a fast and discretized algorithm for classical WT. However, the DWT has some very important drawbacks such as aliasing, lack of directionality, and shift-variance. To overcome these drawbacks, a new improved discrete transform named as Dual Tree Complex Wavelet Transform (DTCWT) can be used. Nowadays, with the improvements in embedded system technology, portable real-time medical devices are frequently used for rapid diagnosis in patients. In this study, in order to implement DTCWT algorithm in FPGAs, which can be used as real-time feature extraction or denoising operator for biomedical signals, a novel hardware architecture is proposed. In proposed architecture, DTCWT is implemented with only one adder and one multiplier. Additionally, considering the multi-channel outputs of biomedical data acquisition systems, this architecture is capable of running N channels in parallel.

  15. Quasiparticle interference in unconventional 2D systems

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-01

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  16. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  17. 2D Metals by Repeated Size Reduction.

    PubMed

    Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui

    2016-10-01

    A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers.

  18. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  19. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  20. Irreversibility-inversions in 2D turbulence

    NASA Astrophysics Data System (ADS)

    Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido

    2016-11-01

    We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.

  1. Wavelet analysis of internal gravity waves

    NASA Astrophysics Data System (ADS)

    Hawkins, J.; Warn-Varnas, A.; Chin-Bing, S.; King, D.; Smolarkiewicsz, P.

    2005-05-01

    A series of model studies of internal gravity waves (igw) have been conducted for several regions of interest. Dispersion relations from the results have been computed using wavelet analysis as described by Meyers (1993). The wavelet transform is repeatedly applied over time and the components are evaluated with respect to their amplitude and peak position (Torrence and Compo, 1998). In this sense we have been able to compute dispersion relations from model results and from measured data. Qualitative agreement has been obtained in some cases. The results from wavelet analysis must be carefully interpreted because the igw models are fully nonlinear and wavelet analysis is fundamentally a linear technique. Nevertheless, a great deal of information describing igw propagation can be obtained from the wavelet transform. We address the domains over which wavelet analysis techniques can be applied and discuss the limits of their applicability.

  2. Exploring the impact of wavelet-based denoising in the classification of remote sensing hyperspectral images

    NASA Astrophysics Data System (ADS)

    Quesada-Barriuso, Pablo; Heras, Dora B.; Argüello, Francisco

    2016-10-01

    The classification of remote sensing hyperspectral images for land cover applications is a very intensive topic. In the case of supervised classification, Support Vector Machines (SVMs) play a dominant role. Recently, the Extreme Learning Machine algorithm (ELM) has been extensively used. The classification scheme previously published by the authors, and called WT-EMP, introduces spatial information in the classification process by means of an Extended Morphological Profile (EMP) that is created from features extracted by wavelets. In addition, the hyperspectral image is denoised in the 2-D spatial domain, also using wavelets and it is joined to the EMP via a stacked vector. In this paper, the scheme is improved achieving two goals. The first one is to reduce the classification time while preserving the accuracy of the classification by using ELM instead of SVM. The second one is to improve the accuracy results by performing not only a 2-D denoising for every spectral band, but also a previous additional 1-D spectral signature denoising applied to each pixel vector of the image. For each denoising the image is transformed by applying a 1-D or 2-D wavelet transform, and then a NeighShrink thresholding is applied. Improvements in terms of classification accuracy are obtained, especially for images with close regions in the classification reference map, because in these cases the accuracy of the classification in the edges between classes is more relevant.

  3. 2D superconductivity by ionic gating

    NASA Astrophysics Data System (ADS)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  4. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a

  5. Application and Development of Wavelet Analysis

    DTIC Science & Technology

    1992-08-15

    found that optics is quite suitable to generate and display both the direct and the inverse wavelet transforms in parallel. Unlike the digital...toward identifying the suitability of using optics for the multichannel signal analysis. Both the Gabor and the wavelet transforms were studied in terms...inverse wavelet transforms . This is the case for processing both the one and two dimensional signals. A detail comparison of the space-bandwidth

  6. Develop, Apply and Evaluate Wavelet Technology.

    DTIC Science & Technology

    1992-10-20

    Eddington (1928), A. S . The Nature of the Physical World, Cambridge: Cambridge University Press. [11] Einstein , A. (155), The Meaning of Relativity...Albequerque, NM, 1990. [9] R. A. Gopinath and C. S . Burrus, "Wavelet transforms and filter banks," pp. 603-654 in Wavelets: A Tutorial in Theory and...Resnikoff, "Multidimensional wavelet bases," Aware Technical Report, Aware, Inc., Cambridge, MA 1991. [25] S . G. Mallat, "A Theory for multiresolution

  7. Wavelet analysis in two-dimensional tomography

    NASA Astrophysics Data System (ADS)

    Burkovets, Dimitry N.

    2002-02-01

    The diagnostic possibilities of wavelet-analysis of coherent images of connective tissue in its pathological changes diagnostics. The effectiveness of polarization selection in obtaining wavelet-coefficients' images is also shown. The wavelet structures, characterizing the process of skin psoriasis, bone-tissue osteoporosis have been analyzed. The histological sections of physiological normal and pathologically changed samples of connective tissue of human skin and spongy bone tissue have been analyzed.

  8. 2D DEM model of sand transport with wind interaction

    NASA Astrophysics Data System (ADS)

    Oger, L.; Valance, A.

    2013-06-01

    The advance of the dunes in the desert is a threat to the life of the local people. The dunes invade houses, agricultural land and perturb the circulation on the roads. It is therefore very important to understand the mechanism of sand transport in order to fight against desertification. Saltation in which sand grains are propelled by the wind along the surface in short hops, is the primary mode of blown sand movement [1]. The saltating grains are very energetic and when impact a sand surface, they rebound and consequently eject other particles from the sand bed. The ejected grains, called reptating grains, contribute to the augmentation of the sand flux. Some of them can be promoted to the saltation motion. We use a mechanical model based on the Discrete Element Method to study successive collisions of incident energetic beads with granular packing in the context of Aeolian saltation transport. We investigate the collision process for the case where the incident bead and those from the packing have identical mechanical properties. We analyze the features of the consecutive collision processes made by the transport of the saltating disks by a wind in which its profile is obtained from the counter-interaction between air flow and grain flows. We used a molecular dynamics method known as DEM (soft Discrete Element Method) with a initial static packing of 20000 2D particles. The dilation of the upper surface due to the consecutive collisions is responsible for maintaining the flow at a given energy input due to the wind.

  9. Wavelet Features Based Fingerprint Verification

    NASA Astrophysics Data System (ADS)

    Bagadi, Shweta U.; Thalange, Asha V.; Jain, Giridhar P.

    2010-11-01

    In this work; we present a automatic fingerprint identification system based on Level 3 features. Systems based only on minutiae features do not perform well for poor quality images. In practice, we often encounter extremely dry, wet fingerprint images with cuts, warts, etc. Due to such fingerprints, minutiae based systems show poor performance for real time authentication applications. To alleviate the problem of poor quality fingerprints, and to improve overall performance of the system, this paper proposes fingerprint verification based on wavelet statistical features & co-occurrence matrix features. The features include mean, standard deviation, energy, entropy, contrast, local homogeneity, cluster shade, cluster prominence, Information measure of correlation. In this method, matching can be done between the input image and the stored template without exhaustive search using the extracted feature. The wavelet transform based approach is better than the existing minutiae based method and it takes less response time and hence suitable for on-line verification, with high accuracy.

  10. Multidimensional signaling via wavelet packets

    NASA Astrophysics Data System (ADS)

    Lindsey, Alan R.

    1995-04-01

    This work presents a generalized signaling strategy for orthogonally multiplexed communication. Wavelet packet modulation (WPM) employs the basis functions from an arbitrary pruning of a full dyadic tree structured filter bank as orthogonal pulse shapes for conventional QAM symbols. The multi-scale modulation (MSM) and M-band wavelet modulation (MWM) schemes which have been recently introduced are handled as special cases, with the added benefit of an entire library of potentially superior sets of basis functions. The figures of merit are derived and it is shown that the power spectral density is equivalent to that for QAM (in fact, QAM is another special case) and hence directly applicable in existing systems employing this standard modulation. Two key advantages of this method are increased flexibility in time-frequency partitioning and an efficient all-digital filter bank implementation, making the WPM scheme more robust to a larger set of interferences (both temporal and sinusoidal) and computationally attractive as well.

  11. Wavelet methods in data mining

    NASA Astrophysics Data System (ADS)

    Manchanda, P.

    2012-07-01

    Data mining (knowledge discovery in data base) is comparatively new interdisciplinary field developed by joint efforts of mathematicians, statisticians, computer scientists and engineers. There are twelve important ingredients of this field along with their applications in real world problems. In this chapter, we have reviewed application of wavelet methods to data mining, particularly denoising, dimension reduction, similarity search, feature extraction and prediction. Meteorological data of Saudi Arabia and Stock market data of India are considered for illustration.

  12. UV spectrophotometric simultaneous determination of cefoperazone and sulbactam in pharmaceutical formulations by derivative, Fourier and wavelet transforms

    NASA Astrophysics Data System (ADS)

    Hoang, Vu Dang; Loan, Nguyen Thi; Tho, Vu Thi; Nguyen, Hue Minh Thi

    2014-03-01

    Signal processing methods based on the use of derivative, Fourier and wavelet transforms were proposed for the spectrophotometric simultaneous determination of cefoperazone and sulbactam in powders for injection. These transforms were successfully applied to UV spectra and ratio spectra to find suitable working wavelengths. Wavelet signal processing was proved to have distinct advantages (i.e. higher peak intensity obtained, additional smooth function and scaling factor process eliminated) over derivative and Fourier transforms. Especially, a better resolution of spectral overlapping bands was obtained by the use of double signal transform in the sequences such as (i) spectra pre-processed by Fractional Wavelet Transform and subsequently subjected to Continuous Wavelet Transform or Discrete Wavelet Transform, and (ii) derivative - wavelet transforms combined. Calibration graphs for cefoperazone and sulbactam were recorded for the range 10-35 mg/L. Good accuracy and precision were reported for all proposed methods by analyzing synthetic mixtures of cefoperazone and sulbactam. Furthermore, these methods were statistically comparable to RP-HPLC.

  13. UV spectrophotometric simultaneous determination of cefoperazone and sulbactam in pharmaceutical formulations by derivative, Fourier and wavelet transforms.

    PubMed

    Hoang, Vu Dang; Loan, Nguyen Thi; Tho, Vu Thi; Nguyen, Hue Minh Thi

    2014-01-01

    Signal processing methods based on the use of derivative, Fourier and wavelet transforms were proposed for the spectrophotometric simultaneous determination of cefoperazone and sulbactam in powders for injection. These transforms were successfully applied to UV spectra and ratio spectra to find suitable working wavelengths. Wavelet signal processing was proved to have distinct advantages (i.e. higher peak intensity obtained, additional smooth function and scaling factor process eliminated) over derivative and Fourier transforms. Especially, a better resolution of spectral overlapping bands was obtained by the use of double signal transform in the sequences such as (i) spectra pre-processed by Fractional Wavelet Transform and subsequently subjected to Continuous Wavelet Transform or Discrete Wavelet Transform, and (ii) derivative - wavelet transforms combined. Calibration graphs for cefoperazone and sulbactam were recorded for the range 10-35 mg/L. Good accuracy and precision were reported for all proposed methods by analyzing synthetic mixtures of cefoperazone and sulbactam. Furthermore, these methods were statistically comparable to RP-HPLC.

  14. On application of fast and adaptive periodic Battle-Lemarie wavelets to modeling of multiple lossy transmission lines

    SciTech Connect

    Zhu, Xiaojun; Lei, Guangtsai; Pan, Guangwen

    1997-04-01

    In this paper, the continuous operator is discretized into matrix forms by Galerkin`s procedure, using periodic Battle-Lemarie wavelets as basis/testing functions. The polynomial decomposition of wavelets is applied to the evaluation of matrix elements, which makes the computational effort of the matrix elements no more expensive than that of method of moments (MoM) with conventional piecewise basis/testing functions. A new algorithm is developed employing the fast wavelet transform (FWT). Owing to localization, cancellation, and orthogonal properties of wavelets, very sparse matrices have been obtained, which are then solved by the LSQR iterative method. This algorithm is also adaptive in that one can add at will finer wavelet bases in the regions where fields vary rapidly, without any damage to the system orthogonality of the wavelet basis functions. To demonstrate the effectiveness of the new algorithm, we applied it to the evaluation of frequency-dependent resistance and inductance matrices of multiple lossy transmission lines. Numerical results agree with previously published data and laboratory measurements. The valid frequency range of the boundary integral equation results has been extended two to three decades in comparison with the traditional MoM approach. The new algorithm has been integrated into the computer aided design tool, MagiCAD, which is used for the design and simulation of high-speed digital systems and multichip modules Pan et al. 29 refs., 7 figs., 6 tabs.

  15. Wavelets, signal processing and matrix computations

    NASA Astrophysics Data System (ADS)

    Suter, Bruce W.

    1994-09-01

    Key scientific results were found in the following four areas: (1) multidimensional Malvar wavelets; (2) time/spatial varying filter banks; (3) vector filter banks and vector-valued wavelets; and (4) multirate time-frequency. These results have opened the following new areas of research: nonseparable multidimensional Malvar wavelets, vector-valued wavelets and vector filter banks, and multirate time-frequency analysis. These results also provide fundamental tools in many Air Force and industrial applications, such as modeling of turbulence, compression of images/video images, etc.

  16. Optical Aperture Synthesis Object's Information Extracting Based on Wavelet Denoising

    NASA Astrophysics Data System (ADS)

    Fan, W. J.; Lu, Y.

    2006-10-01

    Wavelet denoising is studied to improve OAS(optical aperture synthesis) object's Fourier information extracting. Translation invariance wavelet denoising based on Donoho wavelet soft threshold denoising is researched to remove Pseudo-Gibbs in wavelet soft threshold image. OAS object's information extracting based on translation invariance wavelet denoising is studied. The study shows that wavelet threshold denoising can improve the precision and the repetition of object's information extracting from interferogram, and the translation invariance wavelet denoising information extracting is better than soft threshold wavelet denoising information extracting.

  17. LIDAR data compression using wavelets

    NASA Astrophysics Data System (ADS)

    Pradhan, B.; Mansor, Shattri; Ramli, Abdul Rahman; Mohamed Sharif, Abdul Rashid B.; Sandeep, K.

    2005-10-01

    The lifting scheme has been found to be a flexible method for constructing scalar wavelets with desirable properties. In this paper, it is extended to the LIDAR data compression. A newly developed data compression approach to approximate the LIDAR surface with a series of non-overlapping triangles has been presented. Generally a Triangulated Irregular Networks (TIN) are the most common form of digital surface model that consists of elevation values with x, y coordinates that make up triangles. But over the years the TIN data representation has become a case in point for many researchers due its large data size. Compression of TIN is needed for efficient management of large data and good surface visualization. This approach covers following steps: First, by using a Delaunay triangulation, an efficient algorithm is developed to generate TIN, which forms the terrain from an arbitrary set of data. A new interpolation wavelet filter for TIN has been applied in two steps, namely splitting and elevation. In the splitting step, a triangle has been divided into several sub-triangles and the elevation step has been used to 'modify' the point values (point coordinates for geometry) after the splitting. Then, this data set is compressed at the desired locations by using second generation wavelets. The quality of geographical surface representation after using proposed technique is compared with the original LIDAR data. The results show that this method can be used for significant reduction of data set.

  18. The Wavelet ToolKat: A set of tools for the analysis of series through wavelet transforms. Application to the channel curvature and the slope control of three free meandering rivers in the Amazon basin.

    NASA Astrophysics Data System (ADS)

    Vaudor, Lise; Piegay, Herve; Wawrzyniak, Vincent; Spitoni, Marie

    2016-04-01

    The form and functioning of a geomorphic system result from processes operating at various spatial and temporal scales. Longitudinal channel characteristics thus exhibit complex patterns which vary according to the scale of study, might be periodic or segmented, and are generally blurred by noise. Describing the intricate, multiscale structure of such signals, and identifying at which scales the patterns are dominant and over which sub-reach, could help determine at which scales they should be investigated, and provide insights into the main controlling factors. Wavelet transforms aim at describing data at multiple scales (either in time or space), and are now exploited in geophysics for the analysis of nonstationary series of data. They provide a consistent, non-arbitrary, and multiscale description of a signal's variations and help explore potential causalities. Nevertheless, their use in fluvial geomorphology, notably to study longitudinal patterns, is hindered by a lack of user-friendly tools to help understand, implement, and interpret them. We have developed a free application, The Wavelet ToolKat, designed to facilitate the use of wavelet transforms on temporal or spatial series. We illustrate its usefulness describing longitudinal channel curvature and slope of three freely meandering rivers in the Amazon basin (the Purus, Juruá and Madre de Dios rivers), using topographic data generated from NASA's Shuttle Radar Topography Mission (SRTM) in 2000. Three types of wavelet transforms are used, with different purposes. Continuous Wavelet Transforms are used to identify in a non-arbitrary way the dominant scales and locations at which channel curvature and slope vary. Cross-wavelet transforms, and wavelet coherence and phase are used to identify scales and locations exhibiting significant channel curvature and slope co-variations. Maximal Overlap Discrete Wavelet Transforms decompose data into their variations at a series of scales and are used to provide

  19. A multiple digital watermarking algorithm based on 1D and 2D chaotic sequences

    NASA Astrophysics Data System (ADS)

    Ji, Zhen; Jiang, Lai; Jin, Jing; Zhang, Jihong

    2003-09-01

    Multiple digital watermarking is attracting more and more researchers because it is more valuable in the practical applications than single watermarking. In this paper, a multiple watermarking algorithm based on 1-D and 2-D chaotic sequences is proposed. The chaotic sequences have the advantages of massive, high security, and weakest correlation. The massive and independent digital watermark signals are generated through 1-D chaotic maps, which are determined by different initial conditions and parameters. The chaotic digital watermark signals effectively resolve the construction of massive watermarks with good performance. The embedding of multiple watermakrs is more complex than the single watermarking scheme. In this paper, each watermark is added to the middle frequency coefficients of wavelet domain randomly by exploiting 2-D chaotic system, so the embedding and extracting of each watermark would not disturb each other. Considering the parameters of 2-D chaotic systsem as the key to embedding procedure can prevent the watermarks to be removed maliciously, therefore the performance of security is better. The capacity of the multiple watermarking is also analyzed in this paper. The experimental results demonstrate that this proposed watermarking algorithm is robust to many common attacks and it is a reliable copyright protection for multiple legal owners.

  20. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  1. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  2. Codon Constraints on Closed 2D Shapes,

    DTIC Science & Technology

    2014-09-26

    19843$ CODON CONSTRAINTS ON CLOSED 2D SHAPES Go Whitman Richards "I Donald D. Hoffman’ D T 18 Abstract: Codons are simple primitives for describing plane...RSONAL AUT"ORtIS) Richards, Whitman & Hoffman, Donald D. 13&. TYPE OF REPORT 13b. TIME COVERED N/A P8 AT F RRrT t~r. Ago..D,) is, PlE COUNT Reprint...outlines, if figure and ground are ignored. Later, we will address the problem of indexing identical codon descriptors that have different figure

  3. Efficiency analysis of parallelized wavelet-based FDTD model for simulating high-index optical devices

    NASA Astrophysics Data System (ADS)

    Ren, Rong; Wang, Jin; Jiang, Xiyan; Lu, Yunqing; Xu, Ji

    2014-10-01

    The finite-difference time-domain (FDTD) method, which solves time-dependent Maxwell's curl equations numerically, has been proved to be a highly efficient technique for numerous applications in electromagnetic. Despite the simplicity of the FDTD method, this technique suffers from serious limitations in case that substantial computer resource is required to solve electromagnetic problems with medium or large computational dimensions, for example in high-index optical devices. In our work, an efficient wavelet-based FDTD model has been implemented and extended in a parallel computation environment, to analyze high-index optical devices. This model is based on Daubechies compactly supported orthogonal wavelets and Deslauriers-Dubuc interpolating functions as biorthogonal wavelet bases, and thus is a very efficient algorithm to solve differential equations numerically. This wavelet-based FDTD model is a high-spatial-order FDTD indeed. Because of the highly linear numerical dispersion properties of this high-spatial-order FDTD, the required discretization can be coarser than that required in the standard FDTD method. In our work, this wavelet-based FDTD model achieved significant reduction in the number of cells, i.e. used memory. Also, as different segments of the optical device can be computed simultaneously, there was a significant gain in computation time. Substantially, we achieved speed-up factors higher than 30 in comparisons to using a single processor. Furthermore, the efficiency of the parallelized computation such as the influence of the discretization and the load sharing between different processors were analyzed. As a conclusion, this parallel-computing model is promising to analyze more complicated optical devices with large dimensions.

  4. Filtering of the Radon transform to enhance linear signal features via wavelet pyramid decomposition

    NASA Astrophysics Data System (ADS)

    Meckley, John R.

    1995-09-01

    The information content in many signal processing applications can be reduced to a set of linear features in a 2D signal transform. Examples include the narrowband lines in a spectrogram, ship wakes in a synthetic aperture radar image, and blood vessels in a medical computer-aided tomography scan. The line integrals that generate the values of the projections of the Radon transform can be characterized as a bank of matched filters for linear features. This localization of energy in the Radon transform for linear features can be exploited to enhance these features and to reduce noise by filtering the Radon transform with a filter explicitly designed to pass only linear features, and then reconstructing a new 2D signal by inverting the new filtered Radon transform (i.e., via filtered backprojection). Previously used methods for filtering the Radon transform include Fourier based filtering (a 2D elliptical Gaussian linear filter) and a nonlinear filter ((Radon xfrm)**y with y >= 2.0). Both of these techniques suffer from the mismatch of the filter response to the true functional form of the Radon transform of a line. The Radon transform of a line is not a point but is a function of the Radon variables (rho, theta) and the total line energy. This mismatch leads to artifacts in the reconstructed image and a reduction in achievable processing gain. The Radon transform for a line is computed as a function of angle and offset (rho, theta) and the line length. The 2D wavelet coefficients are then compared for the Haar wavelets and the Daubechies wavelets. These filter responses are used as frequency filters for the Radon transform. The filtering is performed on the wavelet pyramid decomposition of the Radon transform by detecting the most likely positions of lines in the transform and then by convolving the local area with the appropriate response and zeroing the pyramid coefficients outside of the response area. The response area is defined to contain 95% of the total

  5. Epileptic seizure classifications of single-channel scalp EEG data using wavelet-based features and SVM.

    PubMed

    Janjarasjitt, Suparerk

    2017-02-13

    In this study, wavelet-based features of single-channel scalp EEGs recorded from subjects with intractable seizure are examined for epileptic seizure classification. The wavelet-based features extracted from scalp EEGs are simply based on detail and approximation coefficients obtained from the discrete wavelet transform. Support vector machine (SVM), one of the most commonly used classifiers, is applied to classify vectors of wavelet-based features of scalp EEGs into either seizure or non-seizure class. In patient-based epileptic seizure classification, a training data set used to train SVM classifiers is composed of wavelet-based features of scalp EEGs corresponding to the first epileptic seizure event. Overall, the excellent performance on patient-dependent epileptic seizure classification is obtained with the average accuracy, sensitivity, and specificity of, respectively, 0.9687, 0.7299, and 0.9813. The vector composed of two wavelet-based features of scalp EEGs provide the best performance on patient-dependent epileptic seizure classification in most cases, i.e., 19 cases out of 24. The wavelet-based features corresponding to the 32-64, 8-16, and 4-8 Hz subbands of scalp EEGs are the mostly used features providing the best performance on patient-dependent classification. Furthermore, the performance on both patient-dependent and patient-independent epileptic seizure classifications are also validated using tenfold cross-validation. From the patient-independent epileptic seizure classification validated using tenfold cross-validation, it is shown that the best classification performance is achieved using the wavelet-based features corresponding to the 64-128 and 4-8 Hz subbands of scalp EEGs.

  6. Remarks on thermalization in 2D CFT

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Engelhardt, Dalit

    2016-12-01

    We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.

  7. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  8. Capturing nonlocal effects in 2D granular flows

    NASA Astrophysics Data System (ADS)

    Kamrin, Ken; Koval, Georg

    2013-03-01

    There is an industrial need, and a scientific desire, to produce a continuum model that can predict the flow of dense granular matter in an arbitrary geometry. A viscoplastic continuum approach, developed over recent years, has shown some ability to approximate steady flow and stress profiles in multiple inhomogeneous flow environments. However, the model incorrectly represents phenomena observed in the slow, creeping flow regime. As normalized flow-rate decreases, granular stresses are observed to become largely rate-independent and a dominating length-scale emerges in the mechanics. This talk attempts to account for these effects, in the simplified case of 2D, using the notion of nonlocal fluidity, which has proven successful in treating nonlocal effects in emulsions. The idea is to augment the local granular fluidity law with a diffusive second-order term scaled by the particle size, which spreads flowing zones accordingly. Below the yield stress, the local contribution vanishes and the fluidity becomes rate-independent, as we require. We implement the modified law in multiple geometries and validate its flow and stress predictions in multiple geometries compared against discrete particle simulations. In so doing, we demonstrate that the nonlocal relation proposed is satisfied universally in a seemingly geometry-independent fashion.

  9. Nonlinear standing waves in 2-D acoustic resonators.

    PubMed

    Cervenka, Milan; Bednarik, Michal

    2006-12-22

    This paper deals with 2-D simulation of finite-amplitude standing waves behavior in rectangular acoustic resonators. Set of three partial differential equations in third approximation formulated in conservative form is derived from fundamental equations of gas dynamics. These equations form a closed set for two components of acoustic velocity vector and density, the equations account for external driving force, gas dynamic nonlinearities and thermoviscous dissipation. Pressure is obtained from solution of the set by means of an analytical formula. The equations are formulated in the Cartesian coordinate system. The model equations set is solved numerically in time domain using a central semi-discrete difference scheme developed for integration of sets of convection-diffusion equations with two or more spatial coordinates. Numerical results show various patterns of acoustic field in resonators driven using vibrating piston with spatial distribution of velocity. Excitation of lateral shock-wave mode is observed when resonant conditions are fulfilled for longitudinal as well as for transversal direction along the resonator cavity.

  10. Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures

    PubMed Central

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2015-01-01

    Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices. PMID:26679513

  11. Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures.

    PubMed

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2015-12-18

    Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices.

  12. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    DOE PAGES

    Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; ...

    2016-08-25

    We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less

  13. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    NASA Astrophysics Data System (ADS)

    Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T. H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew

    2016-12-01

    A consistent "2D/1D" neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.

  14. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    SciTech Connect

    Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T. H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew

    2016-08-25

    We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.

  15. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  16. Reducing the condition number for microlocal discretization problems.

    PubMed

    de La Bourdonnaye, Armel; Tolentino, Marc

    2004-03-15

    In this paper, we analyse the conditioning properties of systems arising from microlocal discretizations. These systems use oscillating basis functions to model wave problems in harmonic regime. Facing severe condition numbers, we first interpret the difficulty as coming from an over-discretization, which creates evanescent waves. The first solution we investigate is to project the problem onto the orthogonal of these modes. This is done on a model problem but it is not a satisfactory solution on real-sized systems. Then we propose to transform the linear system by using a wavelet basis. It appears that this transformation discriminates strongly between small and big matrix coefficients. This allows us to threshold the transformed system to obtain a reduced one which is both better conditioned and smaller. The use of wavelets is original, since the transformation is done in the spectral domain thanks to the microlocal discretization. We finally obtain a method that uses between one and two degrees of freedom by wavelength to simulate scattering problems.

  17. Optical Wavelet Transform for Fingerprint Identification

    DTIC Science & Technology

    1993-12-15

    requirements of digitized fingerprints. This research implements an optical wavelet transform of a fingerprint image, as the first step in an optical... wavelet transform is implemented with continuous shift using an optical correlation between binarized fingerprints written on a Magneto-Optic Spatial

  18. Wavelet Local Extrema Applied to Image Processing

    DTIC Science & Technology

    1992-12-01

    The research project had two components. In the first part, we developed a numerical method, based on the wavelet transform , for the solution of...on the orthogonal wavelet transform , that adapts the computational resolution in space and time to the regularity of the solution. This scheme saves

  19. 3D steerable wavelets in practice.

    PubMed

    Chenouard, Nicolas; Unser, Michael

    2012-11-01

    We introduce a systematic and practical design for steerable wavelet frames in 3D. Our steerable wavelets are obtained by applying a 3D version of the generalized Riesz transform to a primary isotropic wavelet frame. The novel transform is self-reversible (tight frame) and its elementary constituents (Riesz wavelets) can be efficiently rotated in any 3D direction by forming appropriate linear combinations. Moreover, the basis functions at a given location can be linearly combined to design custom (and adaptive) steerable wavelets. The features of the proposed method are illustrated with the processing and analysis of 3D biomedical data. In particular, we show how those wavelets can be used to characterize directional patterns and to detect edges by means of a 3D monogenic analysis. We also propose a new inverse-problem formalism along with an optimization algorithm for reconstructing 3D images from a sparse set of wavelet-domain edges. The scheme results in high-quality image reconstructions which demonstrate the feature-reduction ability of the steerable wavelets as well as their potential for solving inverse problems.

  20. Improvements of embedded zerotree wavelet (EZW) coding

    NASA Astrophysics Data System (ADS)

    Li, Jin; Cheng, Po-Yuen; Kuo, C.-C. Jay

    1995-04-01

    In this research, we investigate several improvements of embedded zerotree wavelet (EZW) coding. Several topics addressed include: the choice of wavelet transforms and boundary conditions, the use of arithmetic coder and arithmetic context and the design of encoding order for effective embedding. The superior performance of our improvements is demonstrated with extensive experimental results.

  1. Discrete Element Modeling

    SciTech Connect

    Morris, J; Johnson, S

    2007-12-03

    The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.

  2. Wavelet-based Poisson rate estimation using the Skellam distribution

    NASA Astrophysics Data System (ADS)

    Hirakawa, Keigo; Baqai, Farhan; Wolfe, Patrick J.

    2009-02-01

    Owing to the stochastic nature of discrete processes such as photon counts in imaging, real-world data measurements often exhibit heteroscedastic behavior. In particular, time series components and other measurements may frequently be assumed to be non-iid Poisson random variables, whose rate parameter is proportional to the underlying signal of interest-witness literature in digital communications, signal processing, astronomy, and magnetic resonance imaging applications. In this work, we show that certain wavelet and filterbank transform coefficients corresponding to vector-valued measurements of this type are distributed as sums and differences of independent Poisson counts, taking the so-called Skellam distribution. While exact estimates rarely admit analytical forms, we present Skellam mean estimators under both frequentist and Bayes models, as well as computationally efficient approximations and shrinkage rules, that may be interpreted as Poisson rate estimation method performed in certain wavelet/filterbank transform domains. This indicates a promising potential approach for denoising of Poisson counts in the above-mentioned applications.

  3. Enhancement of the automatic onset time picking via wavelet thresholding

    NASA Astrophysics Data System (ADS)

    Gaci, Said

    2013-04-01

    Since arrival time-picking is a critical step in the analysis of geophysical data, many time picking algorithms have been developed. Nowadays, the ''short-time-average through long-time-average trigger'' (STA/LTA) in different forms are the most commonly used. This study aims at improving this algorithm in the presence of high amplitude noise. The suggested method consists of denoising the seismic trace using the discrete wavelet transform. Therefore, the STA/LTA curve obtained from the denoised trace displays a faster build up at the position of the wave arrival, and the picking error is reduced. The application of this technique is first demonstrated on synthetic seismic traces with varying noise levels, then extended to uphole seismic traces recorded in the Algerian Sahara. The results show that the picked first arrivals are more accurate than those yielded by the standard STA/LTA algorithm and this method can tolerate high noise levels. Keywords: picking, first arrival, seismic wave, wavelet thresholding.

  4. Integer wavelet transform for embedded lossy to lossless image compression.

    PubMed

    Reichel, J; Menegaz, G; Nadenau, M J; Kunt, M

    2001-01-01

    The use of the discrete wavelet transform (DWT) for embedded lossy image compression is now well established. One of the possible implementations of the DWT is the lifting scheme (LS). Because perfect reconstruction is granted by the structure of the LS, nonlinear transforms can be used, allowing efficient lossless compression as well. The integer wavelet transform (IWT) is one of them. This is an interesting alternative to the DWT because its rate-distortion performance is similar and the differences can be predicted. This topic is investigated in a theoretical framework. A model of the degradations caused by the use of the IWT instead of the DWT for lossy compression is presented. The rounding operations are modeled as additive noise. The noise are then propagated through the LS structure to measure their impact on the reconstructed pixels. This methodology is verified using simulations with random noise as input. It predicts accurately the results obtained using images compressed by the well-known EZW algorithm. Experiment are also performed to measure the difference in terms of bit rate and visual quality. This allows to a better understanding of the impact of the IWT when applied to lossy image compression.

  5. Synchronous Discrete Harmonic Oscillator

    SciTech Connect

    Antippa, Adel F.; Dubois, Daniel M.

    2008-10-17

    We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2{pi} in phase space, is an integral multiple N of the discrete time step {delta}t. It is fully synchronous when N is even. It is pseudo-synchronous when T/{delta}t is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is ''blue shifted'' relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval {delta}t. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.

  6. Synchronous Discrete Harmonic Oscillator

    NASA Astrophysics Data System (ADS)

    Antippa, Adel F.; Dubois, Daniel M.

    2008-10-01

    We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2π in phase space, is an integral multiple N of the discrete time step Δt. It is fully synchronous when N is even. It is pseudo-synchronous when T/Δt is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is "blue shifted" relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval Δt. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.

  7. Using wavelets to learn pattern templates

    NASA Astrophysics Data System (ADS)

    Scott, Clayton D.; Nowak, Robert D.

    2002-07-01

    Despite the success of wavelet decompositions in other areas of statistical signal and image processing, current wavelet-based image models are inadequate for modeling patterns in images, due to the presence of unknown transformations (e.g., translation, rotation, location of lighting source) inherent in most pattern observations. In this paper we introduce a hierarchical wavelet-based framework for modeling patterns in digital images. This framework takes advantage of the efficient image representations afforded by wavelets, while accounting for unknown translation and rotation. Given a trained model, we can use this framework to synthesize pattern observations. If the model parameters are unknown, we can infer them from labeled training data using TEMPLAR (Template Learning from Atomic Representations), a novel template learning algorithm with linear complexity. TEMPLAR employs minimum description length (MDL) complexity regularization to learn a template with a sparse representation in the wavelet domain. We discuss several applications, including template learning, pattern classification, and image registration.

  8. Finite element wavelets with improved quantitative properties

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoang; Stevenson, Rob

    2009-08-01

    In [W. Dahmen, R. Stevenson, Element-by-element construction of wavelets satisfying stability and moment conditions, SIAM J. Numer. Anal. 37 (1) (1999) 319-352 (electronic)], finite element wavelets were constructed on polygonal domains or Lipschitz manifolds that are piecewise parametrized by mappings with constant Jacobian determinants. The wavelets could be arranged to have any desired order of cancellation properties, and they generated stable bases for the Sobolev spaces Hs for (or s<=1 on manifolds). Unfortunately, it appears that the quantitative properties of these wavelets are rather disappointing. In this paper, we modify the construction from the above-mentioned work to obtain finite element wavelets which are much better conditioned.

  9. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  10. Simulation of Yeast Cooperation in 2D.

    PubMed

    Wang, M; Huang, Y; Wu, Z

    2016-03-01

    Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse.

  11. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  12. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  13. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  14. Wavelet transforms for electroencephalographic spike and seizure detection

    NASA Astrophysics Data System (ADS)

    Schiff, Steven J.; Milton, John G.

    1993-11-01

    The application of wavelet transforms (WT) to experimental data from the nervous system has been hindered by the lack of a straightforward method to handle noise. A noise reduction technique, developed recently for use in wavelet cluster analysis in cosmology and astronomy, is here adapted for electroencephalographic (EEG) time-series data. Noise is filtered using control surrogate data sets generated from randomized aspects of the original time-series. In this study, WT were applied to EEG data from human patients undergoing brain mapping with implanted subdural electrodes for the localization of epileptic seizure foci. EEG data in 1D were analyzed from individual electrodes, and 2D data from electrode grids. These techniques are a powerful means to identify epileptic spikes in such data, and offer a method to identity the onset and spatial extent of epileptic seizure foci. The method is readily applied to the detection of structure in stationary and non-stationary time-series from a variety of physical systems.

  15. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  16. Seamless multiresolution isosurfaces using wavelets

    SciTech Connect

    Udeshi, T.; Hudson, R.; Papka, M. E.

    2000-04-11

    Data sets that are being produced by today's simulations, such as the ones generated by DOE's ASCI program, are too large for real-time exploration and visualization. Therefore, new methods of visualizing these data sets need to be investigated. The authors present a method that combines isosurface representations of different resolutions into a seamless solution, virtually free of cracks and overlaps. The solution combines existing isosurface generation algorithms and wavelet theory to produce a real-time solution to multiple-resolution isosurfaces.

  17. Application of the wavelet method for the simultaneous quantitative determination of benazepril and hydrochlorothiazide in their mixtures.

    PubMed

    Dinç, Erdal; Baleanu, Dumitru

    2004-01-01

    The discrete and continuous wavelet transforms were applied to the overlapping signal analysis of the ratio data signal for simultaneous quantitative determination of the title subject compounds in samples. The ratio spectra data of the binary mixtures containing benazepril (BE) and hydrochlorothiazide (HCT) were transferred as data vectors into the wavelet domain. Signal compression, followed by a 1-dimension continuous wavelet transform (CWT), was used to obtain coincident transformed signals for pure BE and HCT and their mixtures. The coincident transformed amplitudes corresponding to both maximum and minimum points allowed construction of calibration graphs for each compound in the binary mixture. The validity of CWT calibrations was tested by analyzing synthetic mixtures of the investigated compounds, and successful results were obtained. All calculations were performed within EXCEL, C++, and MATLAB6.5 softwares. The obtained results indicated that our approach was flexible and applicable for the binary mixture analysis.

  18. Applications of squeezed states: Bogoliubov transformations and wavelets to the statistical mechanics of water and its bubbles

    NASA Technical Reports Server (NTRS)

    Defacio, Brian; Kim, S.-H.; Vannevel, A.

    1994-01-01

    The squeezed states or Bogoliubov transformations and wavelets are applied to two problems in nonrelativistic statistical mechanics: the dielectric response of liquid water, epsilon(q-vector,w), and the bubble formation in water during insonnification. The wavelets are special phase-space windows which cover the domain and range of L(exp 1) intersection of L(exp 2) of classical causal, finite energy solutions. The multiresolution of discrete wavelets in phase space gives a decomposition into regions of time and scales of frequency thereby allowing the renormalization group to be applied to new systems in addition to the tired 'usual suspects' of the Ising models and lattice gasses. The Bogoliubov transformation: squeeze transformation is applied to the dipolaron collective mode in water and to the gas produced by the explosive cavitation process in bubble formation.

  19. Computer-Aided Diagnosis System for Alzheimer's Disease Using Different Discrete Transform Techniques.

    PubMed

    Dessouky, Mohamed M; Elrashidy, Mohamed A; Taha, Taha E; Abdelkader, Hatem M

    2016-05-01

    The different discrete transform techniques such as discrete cosine transform (DCT), discrete sine transform (DST), discrete wavelet transform (DWT), and mel-scale frequency cepstral coefficients (MFCCs) are powerful feature extraction techniques. This article presents a proposed computer-aided diagnosis (CAD) system for extracting the most effective and significant features of Alzheimer's disease (AD) using these different discrete transform techniques and MFCC techniques. Linear support vector machine has been used as a classifier in this article. Experimental results conclude that the proposed CAD system using MFCC technique for AD recognition has a great improvement for the system performance with small number of significant extracted features, as compared with the CAD system based on DCT, DST, DWT, and the hybrid combination methods of the different transform techniques.

  20. A faster method for 3D/2D medical image registration—a simulation study

    NASA Astrophysics Data System (ADS)

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Claudius Gellrich, Niels; Jacob, Augustinus Ludwig; Regazzoni, Pietro; Messmer, Peter

    2003-08-01

    3D/2D patient-to-computed-tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Iterative variation of the CT's position between rendering steps finally leads to exact registration. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 3D/2D registration is the fact that finding a registration includes solving a minimization problem in six degrees of freedom (dof) in motion. This results in considerable time requirements since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations around a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of it's original value. The method was implemented and extensively tested on simulated x-ray images of a tibia, a pelvis and a skull base. When using one projective image and a discrete full parameter space search for solving the optimization problem, average accuracy was found to be 1.0 +/- 0.6(°) and 4.1 +/- 1.9 (mm) for a registration in six parameters, and 1.0 +/- 0.7(°) and 4.2 +/- 1.6 (mm) when using the 5 + 1 dof method described in this paper. Time requirements were reduced by a factor 3.1. We conclude that this hardware-independent optimization of 3D/2D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.

  1. A faster method for 3D/2D medical image registration--a simulation study.

    PubMed

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels Claudius; Jacob, Augustinus Ludwig; Regazzoni, Pietro; Messmer, Peter

    2003-08-21

    3D/2D patient-to-computed-tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Iterative variation of the CT's position between rendering steps finally leads to exact registration. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 3D/2D registration is the fact that finding a registration includes solving a minimization problem in six degrees of freedom (dof) in motion. This results in considerable time requirements since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations around a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of it's original value. The method was implemented and extensively tested on simulated x-ray images of a tibia, a pelvis and a skull base. When using one projective image and a discrete full parameter space search for solving the optimization problem, average accuracy was found to be 1.0 +/- 0.6(degrees) and 4.1 +/- 1.9 (mm) for a registration in six parameters, and 1.0 +/- 0.7(degrees) and 4.2 +/- 1.6 (mm) when using the 5 + 1 dof method described in this paper. Time requirements were reduced by a factor 3.1. We conclude that this hardware-independent optimization of 3D/2D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.

  2. Wavelet Neural Network Using Multiple Wavelet Functions in Target Threat Assessment

    PubMed Central

    Guo, Lihong; Duan, Hong

    2013-01-01

    Target threat assessment is a key issue in the collaborative attack. To improve the accuracy and usefulness of target threat assessment in the aerial combat, we propose a variant of wavelet neural networks, MWFWNN network, to solve threat assessment. How to select the appropriate wavelet function is difficult when constructing wavelet neural network. This paper proposes a wavelet mother function selection algorithm with minimum mean squared error and then constructs MWFWNN network using the above algorithm. Firstly, it needs to establish wavelet function library; secondly, wavelet neural network is constructed with each wavelet mother function in the library and wavelet function parameters and the network weights are updated according to the relevant modifying formula. The constructed wavelet neural network is detected with training set, and then optimal wavelet function with minimum mean squared error is chosen to build MWFWNN network. Experimental results show that the mean squared error is 1.23 × 10−3, which is better than WNN, BP, and PSO_SVM. Target threat assessment model based on the MWFWNN has a good predictive ability, so it can quickly and accurately complete target threat assessment. PMID:23509436

  3. Discrete dislocations in graphene

    NASA Astrophysics Data System (ADS)

    Ariza, M. P.; Ortiz, M.

    2010-05-01

    In this work, we present an application of the theory of discrete dislocations of Ariza and Ortiz (2005) to the analysis of dislocations in graphene. Specifically, we discuss the specialization of the theory to graphene and its further specialization to the force-constant model of Aizawa et al. (1990). The ability of the discrete-dislocation theory to predict dislocation core structures and energies is critically assessed for periodic arrangements of dislocation dipoles and quadrupoles. We show that, with the aid of the discrete Fourier transform, those problems are amenable to exact solution within the discrete-dislocation theory, which confers the theory a distinct advantage over conventional atomistic models. The discrete dislocations exhibit 5-7 ring core structures that are consistent with observation and result in dislocation energies that fall within the range of prediction of other models. The asymptotic behavior of dilute distributions of dislocations is characterized analytically in terms of a discrete prelogarithmic energy tensor. Explicit expressions for this discrete prelogarithmic energy tensor are provided up to quadratures.

  4. Evaluation of Wavelet Denoising Methods for Small-Scale Joint Roughness Estimation Using Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Bitenc, M.; Kieffer, D. S.; Khoshelham, K.

    2015-08-01

    The precision of Terrestrial Laser Scanning (TLS) data depends mainly on the inherent random range error, which hinders extraction of small details from TLS measurements. New post processing algorithms have been developed that reduce or eliminate the noise and therefore enable modelling details at a smaller scale than one would traditionally expect. The aim of this research is to find the optimum denoising method such that the corrected TLS data provides a reliable estimation of small-scale rock joint roughness. Two wavelet-based denoising methods are considered, namely Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT), in combination with different thresholding procedures. The question is, which technique provides a more accurate roughness estimates considering (i) wavelet transform (SWT or DWT), (ii) thresholding method (fixed-form or penalised low) and (iii) thresholding mode (soft or hard). The performance of denoising methods is tested by two analyses, namely method noise and method sensitivity to noise. The reference data are precise Advanced TOpometric Sensor (ATOS) measurements obtained on 20 × 30 cm rock joint sample, which are for the second analysis corrupted by different levels of noise. With such a controlled noise level experiments it is possible to evaluate the methods' performance for different amounts of noise, which might be present in TLS data. Qualitative visual checks of denoised surfaces and quantitative parameters such as grid height and roughness are considered in a comparative analysis of denoising methods. Results indicate that the preferred method for realistic roughness estimation is DWT with penalised low hard thresholding.

  5. Novel wavelet threshold denoising method in axle press-fit zone ultrasonic detection

    NASA Astrophysics Data System (ADS)

    Peng, Chaoyong; Gao, Xiaorong; Peng, Jianping; Wang, Ai

    2017-02-01

    Axles are important part of railway locomotives and vehicles. Periodic ultrasonic inspection of axles can effectively detect and monitor axle fatigue cracks. However, in the axle press-fit zone, the complex interface contact condition reduces the signal-noise ratio (SNR). Therefore, the probability of false positives and false negatives increases. In this work, a novel wavelet threshold function is created to remove noise and suppress press-fit interface echoes in axle ultrasonic defect detection. The novel wavelet threshold function with two variables is designed to ensure the precision of optimum searching process. Based on the positive correlation between the correlation coefficient and SNR and with the experiment phenomenon that the defect and the press-fit interface echo have different axle-circumferential correlation characteristics, a discrete optimum searching process for two undetermined variables in novel wavelet threshold function is conducted. The performance of the proposed method is assessed by comparing it with traditional threshold methods using real data. The statistic results of the amplitude and the peak SNR of defect echoes show that the proposed wavelet threshold denoising method not only maintains the amplitude of defect echoes but also has a higher peak SNR.

  6. ECG compression using non-recursive wavelet transform with quality control

    NASA Astrophysics Data System (ADS)

    Liu, Je-Hung; Hung, King-Chu; Wu, Tsung-Ching

    2016-09-01

    While wavelet-based electrocardiogram (ECG) data compression using scalar quantisation (SQ) yields excellent compression performance, a wavelet's SQ scheme, however, must select a set of multilevel quantisers for each quantisation process. As a result of the properties of multiple-to-one mapping, however, this scheme is not conducive for reconstruction error control. In order to address this problem, this paper presents a single-variable control SQ scheme able to guarantee the reconstruction quality of wavelet-based ECG data compression. Based on the reversible round-off non-recursive discrete periodised wavelet transform (RRO-NRDPWT), the SQ scheme is derived with a three-stage design process that first uses genetic algorithm (GA) for high compression ratio (CR), followed by a quadratic curve fitting for linear distortion control, and the third uses a fuzzy decision-making for minimising data dependency effect and selecting the optimal SQ. The two databases, Physikalisch-Technische Bundesanstalt (PTB) and Massachusetts Institute of Technology (MIT) arrhythmia, are used to evaluate quality control performance. Experimental results show that the design method guarantees a high compression performance SQ scheme with statistically linear distortion. This property can be independent of training data and can facilitate rapid error control.

  7. Analysis of embolic signals with directional dual tree rational dilation wavelet transform.

    PubMed

    Serbes, Gorkem; Aydin, Nizamettin; Serbes, Gorkem; Aydin, Nizamettin; Aydin, Nizamettin; Serbes, Gorkem

    2016-08-01

    The dyadic discrete wavelet transform (dyadic-DWT), which is based on fixed integer sampling factor, has been used before for processing piecewise smooth biomedical signals. However, the dyadic-DWT has poor frequency resolution due to the low-oscillatory nature of its wavelet bases and therefore, it is less effective in processing embolic signals (ESs). To process ESs more effectively, a wavelet transform having better frequency resolution than the dyadic-DWT is needed. Therefore, in this study two ESs, containing micro-emboli and artifact waveforms, are analyzed with the Directional Dual Tree Rational-Dilation Wavelet Transform (DDT-RADWT). The DDT-RADWT, which can be directly applied to quadrature signals, is based on rational dilation factors and has adjustable frequency resolution. The analyses are done for both low and high Q-factors. It is proved that, when high Q-factor filters are employed in the DDT-RADWT, clearer representations of ESs can be attained in decomposed sub-bands and artifacts can be successfully separated.

  8. A Wavelet-Based Noise Reduction Algorithm and Its Clinical Evaluation in Cochlear Implants

    PubMed Central

    Ye, Hua; Deng, Guang; Mauger, Stefan J.; Hersbach, Adam A.; Dawson, Pam W.; Heasman, John M.

    2013-01-01

    Noise reduction is often essential for cochlear implant (CI) recipients to achieve acceptable speech perception in noisy environments. Most noise reduction algorithms applied to audio signals are based on time-frequency representations of the input, such as the Fourier transform. Algorithms based on other representations may also be able to provide comparable or improved speech perception and listening quality improvements. In this paper, a noise reduction algorithm for CI sound processing is proposed based on the wavelet transform. The algorithm uses a dual-tree complex discrete wavelet transform followed by shrinkage of the wavelet coefficients based on a statistical estimation of the variance of the noise. The proposed noise reduction algorithm was evaluated by comparing its performance to those of many existing wavelet-based algorithms. The speech transmission index (STI) of the proposed algorithm is significantly better than other tested algorithms for the speech-weighted noise of different levels of signal to noise ratio. The effectiveness of the proposed system was clinically evaluated with CI recipients. A significant improvement in speech perception of 1.9 dB was found on average in speech weighted noise. PMID:24086605

  9. Tracking of Ice Edges and Ice Floes by Wavelet Analysis of SAR Images

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Martin, Seelye; Kwok, Ronald

    1997-01-01

    This paper demonstrates the use of wavelet transforms in the tracking of sequential ice features in the ERS-1 synthetic aperture radar (SAR) imagery, especially in situations where feature correlation techniques fail to yield reasonable results. Examples include the evolution of the St. Lawrence polynya and summer sea ice change in the Beaufort Sea. For the polynya, the evolution of the region of young ice growth surrounding a polynya can be easily tracked by wavelet analysis due to the large backscatter difference between the young and old ice. Also within the polynya, a 2D fast Fourier transform (FFT) is used to identify the extent of the Langmuir circulation region, which is coincident with the wave-agitated frazil ice growth region, where the sea ice experiences its fastest growth. Therefore, the combination of wavelet and FFT analysis of SAR images provides for the large-scale monitoring of different polynya features. For summer ice, previous work shows that this is the most difficult period for ice trackers due to the lack of features on the sea ice cover. The multiscale wavelet analysis shows that this method delineates the detailed floe shapes during this period, so that between consecutive images, the floe translation and rotation can be estimated.

  10. Discrete density of states

    NASA Astrophysics Data System (ADS)

    Aydin, Alhun; Sisman, Altug

    2016-03-01

    By considering the quantum-mechanically minimum allowable energy interval, we exactly count number of states (NOS) and introduce discrete density of states (DOS) concept for a particle in a box for various dimensions. Expressions for bounded and unbounded continua are analytically recovered from discrete ones. Even though substantial fluctuations prevail in discrete DOS, they're almost completely flattened out after summation or integration operation. It's seen that relative errors of analytical expressions of bounded/unbounded continua rapidly decrease for high NOS values (weak confinement or high energy conditions), while the proposed analytical expressions based on Weyl's conjecture always preserve their lower error characteristic.

  11. Maximally Localized Radial Profiles for Tight Steerable Wavelet Frames.

    PubMed

    Pad, Pedram; Uhlmann, Virginie; Unser, Michael

    2016-03-22

    A crucial component of steerable wavelets is the radial profile of the generating function in the frequency domain. In this work, we present an infinite-dimensional optimization scheme that helps us find the optimal profile for a given criterion over the space of tight frames. We consider two classes of criteria that measure the localization of the wavelet. The first class specifies the spatial localization of the wavelet profile, and the second that of the resulting wavelet coefficients. From these metrics and the proposed algorithm, we construct tight wavelet frames that are optimally localized and provide their analytical expression. In particular, one of the considered criterion helps us finding back the popular Simoncelli wavelet profile. Finally, the investigation of local orientation estimation, image reconstruction from detected contours in the wavelet domain, and denoising, indicate that optimizing wavelet localization improves the performance of steerable wavelets, since our new wavelets outperform the traditional ones.

  12. Maximally Localized Radial Profiles for Tight Steerable Wavelet Frames.

    PubMed

    Pad, Pedram; Uhlmann, Virginie; Unser, Michael

    2016-05-01

    A crucial component of steerable wavelets is the radial profile of the generating function in the frequency domain. In this paper, we present an infinite-dimensional optimization scheme that helps us find the optimal profile for a given criterion over the space of tight frames. We consider two classes of criteria that measure the localization of the wavelet. The first class specifies the spatial localization of the wavelet profile, and the second that of the resulting wavelet coefficients. From these metrics and the proposed algorithm, we construct tight wavelet frames that are optimally localized and provide their analytical expression. In particular, one of the considered criterion helps us finding back the popular Simoncelli wavelet profile. Finally, the investigation of local orientation estimation, image reconstruction from detected contours in the wavelet domain, and denoising indicate that optimizing wavelet localization improves the performance of steerable wavelets, since our new wavelets outperform the traditional ones.

  13. The Curvelet Transform in the analysis of 2-D GPR data: Signal enhancement and extraction of orientation-and-scale-dependent information

    NASA Astrophysics Data System (ADS)

    Tzanis, Andreas

    2015-04-01

    The Ground Probing Radar (GPR) is a valuable tool for near surface geological, geotechnical, engineering, environmental, archaeological and other work. GPR images of the subsurface frequently contain geometric information (constant or variable-dip reflections) from various structures such as bedding, cracks, fractures etc. Such features are frequently the target of the survey; however, they are usually not good reflectors and they are highly localized in time and in space. Their scale is therefore a factor significantly affecting their detectability. At the same time, the GPR method is very sensitive to broadband noise from buried small objects, electromagnetic anthropogenic activity and systemic factors, which frequently blurs the reflections from such targets. The purpose of this paper is to investigate the Curvelet Transform (CT) as a means of S/N enhancement and information retrieval from 2-D GPR sections, with particular emphasis on the recovery of features associated with specific temporal or spatial scales and geometry (orientation/dip). The CT is a multiscale and multidirectional expansion that formulates an optimally sparse representation of bivariate functions with singularities on twice-differentiable (C2-continuous) curves (e.g. edges) and allows for the optimal, whole or partial reconstruction of such objects. The CT can be viewed as a higher dimensional extension of the wavelet transform: whereas discrete wavelets are isotropic and provide sparse representations of functions with point singularities, curvelets are highly anisotropic and provide sparse representations of functions with singularities on curves. A GPR section essentially comprises a spatio-temporal sampling of the transient wavefield which contains different arrivals that correspond to different interactions with wave scatterers in the subsurface (wavefronts). These are generally longitudinally piecewise smooth and transversely oscillatory, i.e. they comprise edges. Curvelets can detect

  14. Image coding with geometric wavelets.

    PubMed

    Alani, Dror; Averbuch, Amir; Dekel, Shai

    2007-01-01

    This paper describes a new and efficient method for low bit-rate image coding which is based on recent development in the theory of multivariate nonlinear piecewise polynomial approximation. It combines a binary space partition scheme with geometric wavelet (GW) tree approximation so as to efficiently capture curve singularities and provide a sparse representation of the image. The GW method successfully competes with state-of-the-art wavelet methods such as the EZW, SPIHT, and EBCOT algorithms. We report a gain of about 0.4 dB over the SPIHT and EBCOT algorithms at the bit-rate 0.0625 bits-per-pixels (bpp). It also outperforms other recent methods that are based on "sparse geometric representation." For example, we report a gain of 0.27 dB over the Bandelets algorithm at 0.1 bpp. Although the algorithm is computationally intensive, its time complexity can be significantely reduced by collecting a "global" GW n-term approximation to the image from a collection of GW trees, each constructed separately over tiles of the image.

  15. Damage detection in membrane structures using non-contact laser excitation and wavelet transformation

    NASA Astrophysics Data System (ADS)

    Huda, Feblil; Kajiwara, Itsuro; Hosoya, Naoki

    2014-08-01

    In this paper, a vibration testing and health monitoring system based on an impulse response excited by laser is proposed to detect damage in membrane structures. A high power Nd: YAG pulse laser is used to supply an ideal impulse to a membrane structure by generating shock waves via laser-induced breakdown in air. A health monitoring apparatus is developed with this vibration testing system and a damage detecting algorithm which only requires the vibration mode shape of the damaged membrane. Artificial damage is induced in membrane structure by cutting and tearing the membrane. The vibration mode shapes of the membrane structure extracted from vibration testing by using the laser-induced breakdown and laser Doppler vibrometer are then analyzed by 2-D continuous wavelet transformation. The location of damage is determined by the dominant peak of the wavelet coefficient which can be seen clearly by applying a boundary treatment and the concept of an iso-surface to the 2-D wavelet coefficient. The applicability of the present approach is verified by finite element analysis and experimental results, demonstrating the ability of the method to detect and identify the positions of damage induced on the membrane structure.

  16. Wavelet-based multiscale performance analysis: An approach to assess and improve hydrological models

    NASA Astrophysics Data System (ADS)

    Rathinasamy, Maheswaran; Khosa, Rakesh; Adamowski, Jan; ch, Sudheer; Partheepan, G.; Anand, Jatin; Narsimlu, Boini

    2014-12-01

    The temporal dynamics of hydrological processes are spread across different time scales and, as such, the performance of hydrological models cannot be estimated reliably from global performance measures that assign a single number to the fit of a simulated time series to an observed reference series. Accordingly, it is important to analyze model performance at different time scales. Wavelets have been used extensively in the area of hydrological modeling for multiscale analysis, and have been shown to be very reliable and useful in understanding dynamics across time scales and as these evolve in time. In this paper, a wavelet-based multiscale performance measure for hydrological models is proposed and tested (i.e., Multiscale Nash-Sutcliffe Criteria and Multiscale Normalized Root Mean Square Error). The main advantage of this method is that it provides a quantitative measure of model performance across different time scales. In the proposed approach, model and observed time series are decomposed using the Discrete Wavelet Transform (known as the à trous wavelet transform), and performance measures of the model are obtained at each time scale. The applicability of the proposed method was explored using various case studies--both real as well as synthetic. The synthetic case studies included various kinds of errors (e.g., timing error, under and over prediction of high and low flows) in outputs from a hydrologic model. The real time case studies investigated in this study included simulation results of both the process-based Soil Water Assessment Tool (SWAT) model, as well as statistical models, namely the Coupled Wavelet-Volterra (WVC), Artificial Neural Network (ANN), and Auto Regressive Moving Average (ARMA) methods. For the SWAT model, data from Wainganga and Sind Basin (India) were used, while for the Wavelet Volterra, ANN and ARMA models, data from the Cauvery River Basin (India) and Fraser River (Canada) were used. The study also explored the effect of the

  17. The Discrete Hanging Cable

    ERIC Educational Resources Information Center

    Peters, James V.

    2004-01-01

    Using the methods of finite difference equations the discrete analogue of the parabolic and catenary cable are analysed. The fibonacci numbers and the golden ratio arise in the treatment of the catenary.

  18. Idea Exchange: On Discrete.

    ERIC Educational Resources Information Center

    Crisler, Nancy; Froelich, Gary

    1990-01-01

    Discussed are summary recommendations concerning the integration of some aspects of discrete mathematics into existing secondary mathematics courses. Outlines of course activities are grouped into the three levels of prealgebra, algebra, and geometry. Some sample problems are included. (JJK)

  19. Persistence Measures for 2d Soap Froth

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Ruskin, H. J.; Zhu, B.

    Soap froths as typical disordered cellular structures, exhibiting spatial and temporal evolution, have been studied through their distributions and topological properties. Recently, persistence measures, which permit representation of the froth as a two-phase system, have been introduced to study froth dynamics at different length scales. Several aspects of the dynamics may be considered and cluster persistence has been observed through froth experiment. Using a direct simulation method, we have investigated persistent properties in 2D froth both by monitoring the persistence of survivor cells, a topologically independent measure, and in terms of cluster persistence. It appears that the area fraction behavior for both survivor and cluster persistence is similar for Voronoi froth and uniform froth (with defects). Survivor and cluster persistent fractions are also similar for a uniform froth, particularly when geometries are constrained, but differences observed for the Voronoi case appear to be attributable to the strong topological dependency inherent in cluster persistence. Survivor persistence, on the other hand, depends on the number rather than size and position of remaining bubbles and does not exhibit the characteristic decay to zero.

  20. SEM signal emulation for 2D patterns

    NASA Astrophysics Data System (ADS)

    Sukhov, Evgenii; Muelders, Thomas; Klostermann, Ulrich; Gao, Weimin; Braylovska, Mariya

    2016-03-01

    The application of accurate and predictive physical resist simulation is seen as one important use model for fast and efficient exploration of new patterning technology options, especially if fully qualified OPC models are not yet available at an early pre-production stage. The methodology of using a top-down CD-SEM metrology to extract the 3D resist profile information, such as the critical dimension (CD) at various resist heights, has to be associated with a series of presumptions which may introduce such small, but systematic CD errors. Ideally, the metrology effects should be carefully minimized during measurement process, or if possible be taken into account through proper metrology modeling. In this paper we discuss the application of a fast SEM signal emulation describing the SEM image formation. The algorithm is applied to simulated resist 3D profiles and produces emulated SEM image results for 1D and 2D patterns. It allows estimating resist simulation quality by comparing CDs which were extracted from the emulated and from the measured SEM images. Moreover, SEM emulation is applied for resist model calibration to capture subtle error signatures through dose and defocus. Finally, it should be noted that our SEM emulation methodology is based on the approximation of physical phenomena which are taking place in real SEM image formation. This approximation allows achieving better speed performance compared to a fully physical model.