Science.gov

Sample records for 2d dose distribution

  1. A novel time dependent gamma evaluation function for dynamic 2D and 3D dose distributions.

    PubMed

    Podesta, Mark; Persoon, Lucas C G G; Verhaegen, Frank

    2014-10-21

    Modern external beam radiotherapy requires detailed verification and quality assurance so that confidence can be placed on both the delivery of a single treatment fraction and on the consistency of delivery throughout the treatment course. To verify dose distributions, a comparison between prediction and measurement must be made. Comparisons between two dose distributions are commonly performed using a Gamma evaluation which is a calculation of two quantities on a pixel by pixel basis; the dose difference, and the distance to agreement. By providing acceptance criteria (e.g. 3%, 3 mm), the function will find the most appropriate match within its two degrees of freedom. For complex dynamic treatments such as IMRT or VMAT it is important to verify the dose delivery in a time dependent manner and so a gamma evaluation that includes a degree of freedom in the time domain via a third parameter, time to agreement, is presented here. A C++ (mex) based gamma function was created that could be run on either CPU and GPU computing platforms that would allow a degree of freedom in the time domain. Simple test cases were created in both 2D and 3D comprising of simple geometrical shapes with well-defined boundaries varying over time. Changes of varying magnitude in either space or time were introduced and repeated gamma analyses were performed varying the criteria. A clinical VMAT case was also included, artificial air bubbles of varying size were introduced to a patient geometry, along with shifts of varying magnitude in treatment time. For all test cases where errors in distance, dose or time were introduced, the time dependent gamma evaluation could accurately highlight the errors.The time dependent gamma function presented here allows time to be included as a degree of freedom in gamma evaluations. The function allows for 2D and 3D data sets which are varying over time to be compared using appropriate criteria without penalising minor offsets of subsequent radiation fields

  2. Quantitative comparison of dose distribution in radiotherapy plans using 2D gamma maps and X-ray computed tomography

    PubMed Central

    Balosso, Jacques

    2016-01-01

    Background The advanced dose calculation algorithms implemented in treatment planning system (TPS) have remarkably improved the accuracy of dose calculation especially the modeling of electrons transport in the low density medium. The purpose of this study is to evaluate the use of 2D gamma (γ) index to quantify and evaluate the impact of the calculation of electrons transport on dose distribution for lung radiotherapy. Methods X-ray computed tomography images were used to calculate the dose for twelve radiotherapy treatment plans. The doses were originally calculated with Modified Batho (MB) 1D density correction method, and recalculated with anisotropic analytical algorithm (AAA), using the same prescribed dose. Dose parameters derived from dose volume histograms (DVH) and target coverage indices were compared. To compare dose distribution, 2D γ-index was applied, ranging from 1%/1 mm to 6%/6 mm. The results were displayed using γ-maps in 2D. Correlation between DVH metrics and γ passing rates was tested using Spearman’s rank test and Wilcoxon paired test to calculate P values. Results the plans generated with AAA predicted more heterogeneous dose distribution inside the target, with P<0.05. However, MB overestimated the dose predicting more coverage of the target by the prescribed dose. The γ analysis showed that the difference between MB and AAA could reach up to ±10%. The 2D γ-maps illustrated that AAA predicted more dose to organs at risks, as well as lower dose to the target compared to MB. Conclusions Taking into account of the electrons transport on radiotherapy plans showed a significant impact on delivered dose and dose distribution. When considering the AAA represent the true cumulative dose, a readjusting of the prescribed dose and an optimization to protect the organs at risks should be taken in consideration in order to obtain the better clinical outcome. PMID:27429908

  3. Curtailing patient-specific IMRT QA procedures from 2D dose error distribution.

    PubMed

    Kurosu, Keita; Sumida, Iori; Mizuno, Hirokazu; Otani, Yuki; Oda, Michio; Isohashi, Fumiaki; Seo, Yuji; Suzuki, Osamu; Ogawa, Kazuhiko

    2016-06-01

    A patient-specific quality assurance (QA) test is conducted to verify the accuracy of dose delivery. It generally consists of three verification processes: the absolute point dose difference, the planar dose differences at each gantry angle, and the planar dose differences by 3D composite irradiation. However, this imposes a substantial workload on medical physicists. The objective of this study was to determine whether our novel method that predicts the 3D delivered dose allows certain patient-specific IMRT QAs to be curtailed. The object was IMRT QA for the pelvic region with regard to point dose and composite planar dose differences. We compared measured doses, doses calculated in the treatment planning system, and doses predicted by in-house software. The 3D predicted dose was reconstructed from the per-field measurement by incorporating the relative dose error distribution into the original dose grid of each beam. All point dose differences between the measured and the calculated dose were within ±3%, whereas 93.3% of them between the predicted and the calculated dose were within ±3%. As for planar dose differences, the gamma passing rates between the calculated and the predicted dose were higher than those between the calculated and the measured dose. Comparison and statistical analysis revealed a correlation between the predicted and the measured dose with regard to both point dose and planar dose differences. We concluded that the prediction-based approach is an accurate substitute for the conventional measurement-based approach in IMRT QA for the pelvic region. Our novel approach will help medical physicists save time on IMRT QA. PMID:26661854

  4. Curtailing patient-specific IMRT QA procedures from 2D dose error distribution

    PubMed Central

    Kurosu, Keita; Sumida, Iori; Mizuno, Hirokazu; Otani, Yuki; Oda, Michio; Isohashi, Fumiaki; Seo, Yuji; Suzuki, Osamu; Ogawa, Kazuhiko

    2016-01-01

    A patient-specific quality assurance (QA) test is conducted to verify the accuracy of dose delivery. It generally consists of three verification processes: the absolute point dose difference, the planar dose differences at each gantry angle, and the planar dose differences by 3D composite irradiation. However, this imposes a substantial workload on medical physicists. The objective of this study was to determine whether our novel method that predicts the 3D delivered dose allows certain patient-specific IMRT QAs to be curtailed. The object was IMRT QA for the pelvic region with regard to point dose and composite planar dose differences. We compared measured doses, doses calculated in the treatment planning system, and doses predicted by in-house software. The 3D predicted dose was reconstructed from the per-field measurement by incorporating the relative dose error distribution into the original dose grid of each beam. All point dose differences between the measured and the calculated dose were within ±3%, whereas 93.3% of them between the predicted and the calculated dose were within ±3%. As for planar dose differences, the gamma passing rates between the calculated and the predicted dose were higher than those between the calculated and the measured dose. Comparison and statistical analysis revealed a correlation between the predicted and the measured dose with regard to both point dose and planar dose differences. We concluded that the prediction-based approach is an accurate substitute for the conventional measurement-based approach in IMRT QA for the pelvic region. Our novel approach will help medical physicists save time on IMRT QA. PMID:26661854

  5. Optimal angular dose distribution to acquire 3D and extra 2D images for digital breast tomosynthesis (DBT)

    NASA Astrophysics Data System (ADS)

    Park, Hye-Suk; Kim, Ye-Seul; Lee, Haeng-Hwa; Gang, Won-Suk; Kim, Hee-Joung; Choi, Young-Wook; Choi, JaeGu

    2015-08-01

    The purpose of this study is to determine the optimal non-uniform angular dose distribution to improve the quality of the 3D reconstructed images and to acquire extra 2D projection images. In this analysis, 7 acquisition sets were generated by using four different values for the number of projections (11, 15, 21, and 29) and total angular range (±14°, ±17.5°, ±21°, and ±24.5° ). For all acquisition sets, the zero-degree projection was used as the 2D image that was close to that of standard conventional mammography (CM). Exposures used were 50, 100, 150, and 200 mR for the zero-degree projection, and the remaining dose was distributed over the remaining projection angles. To quantitatively evaluate image quality, we computed the CNR (contrast-to-noise ratio) and the ASF (artifact spread function) for the same radiation dose. The results indicate that, for microcalcifications, acquisition sets with approximately 4 times higher exposure on the zero-degree projection than the average exposure for the remaining projection angles yielded higher CNR values and were 3% higher than the uniform distribution. However, very high dose concentrations toward the zero-degree projection may reduce the quality of the reconstructed images due to increasing noise in the peripheral views. The zero-degree projection of the non-uniform dose distribution offers a 2D image similar to that of standard CM, but with a significantly lower radiation dose. Therefore, we need to evaluate the diagnostic potential of extra 2D projection image when diagnose breast cancer by using 3D images with non-uniform angular dose distributions.

  6. High-resolution mapping of 1D and 2D dose distributions using X-band electron paramagnetic resonance imaging.

    PubMed

    Kolbun, N; Adolfsson, E; Gustafsson, H; Lund, E

    2014-06-01

    Electron paramagnetic resonance imaging (EPRI) was performed to visualise 2D dose distributions of homogenously irradiated potassium dithionate tablets and to demonstrate determination of 1D dose profiles along the height of the tablets. Mathematical correction was applied for each relative dose profile in order to take into account the inhomogeneous response of the resonator using X-band EPRI. The dose profiles are presented with the spatial resolution of 0.6 mm from the acquired 2D images; this value is limited by pixel size, and 1D dose profiles from 1D imaging with spatial resolution of 0.3 mm limited by the intrinsic line-width of potassium dithionate. In this paper, dose profiles from 2D reconstructed electron paramagnetic resonance (EPR) images using the Xepr software package by Bruker are focussed. The conclusion is that using potassium dithionate, the resolution 0.3 mm is sufficient for mapping steep dose gradients if the dosemeters are covering only ±2 mm around the centre of the resonator. PMID:24748487

  7. 2D dose distribution images of a hybrid low field MRI-γ detector

    NASA Astrophysics Data System (ADS)

    Abril, A.; Agulles-Pedrós, L.

    2016-07-01

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the 99mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  8. Non-destructive readout of 2D and 3D dose distributions using a disk-type radiophotoluminescent glass plate

    NASA Astrophysics Data System (ADS)

    Kurobori, T.; Maruyama, Y.; Miyamoto, Y.; Sasaki, T.; Nanto, H.

    2015-04-01

    Novel disk-type X-ray two- and three-dimensional (2D, 3D) dose distributions have been developed using atomic-scale defects as minimum luminescent units, such as radiation- induced silver (Ag)-related species in a Ag-activated phosphate glass. This luminescent detector is based on the radiophotoluminescence(RPL) phenomenon. Accurate accumulated dose distributions with a high spatial resolution on the order of microns over large areas, a wide dynamic range covering three orders of magnitude and a non-destructive readout were successfully demonstrated for the first time by using a disk-type glass plate with a 100-mm diameter and a 1-mm thickness. In addition, the combination of a confocal optical detection system with a transparent glass detector enables 3D reconstruction by piling up each dose image at different depths within the material.

  9. A computerized framework for monitoring four-dimensional dose distributions during stereotactic body radiation therapy using a portal dose image-based 2D/3D registration approach.

    PubMed

    Nakamoto, Takahiro; Arimura, Hidetaka; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Mizoguchi, Asumi; Hirose, Taka-Aki; Honda, Hiroshi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Hirata, Hideki

    2015-03-01

    A computerized framework for monitoring four-dimensional (4D) dose distributions during stereotactic body radiation therapy based on a portal dose image (PDI)-based 2D/3D registration approach has been proposed in this study. Using the PDI-based registration approach, simulated 4D "treatment" CT images were derived from the deformation of 3D planning CT images so that a 2D planning PDI could be similar to a 2D dynamic clinical PDI at a breathing phase. The planning PDI was calculated by applying a dose calculation algorithm (a pencil beam convolution algorithm) to the geometry of the planning CT image and a virtual water equivalent phantom. The dynamic clinical PDIs were estimated from electronic portal imaging device (EPID) dynamic images including breathing phase data obtained during a treatment. The parameters of the affine transformation matrix were optimized based on an objective function and a gamma pass rate using a Levenberg-Marquardt (LM) algorithm. The proposed framework was applied to the EPID dynamic images of ten lung cancer patients, which included 183 frames (mean: 18.3 per patient). The 4D dose distributions during the treatment time were successfully obtained by applying the dose calculation algorithm to the simulated 4D "treatment" CT images. The mean±standard deviation (SD) of the percentage errors between the prescribed dose and the estimated dose at an isocenter for all cases was 3.25±4.43%. The maximum error for the ten cases was 14.67% (prescribed dose: 1.50Gy, estimated dose: 1.72Gy), and the minimum error was 0.00%. The proposed framework could be feasible for monitoring the 4D dose distribution and dose errors within a patient's body during treatment. PMID:25592290

  10. Measurement of 2D birefringence distribution

    NASA Astrophysics Data System (ADS)

    Noguchi, Masato; Ishikawa, Tsuyoshi; Ohno, Masahiro; Tachihara, Satoru

    1992-10-01

    A new measuring method of 2-D birefringence distribution has been developed. It has not been an easy job to get a birefringence distribution in an optical element with conventional ellipsometry because of its lack of scanning means. Finding an analogy between the rotating analyzer method in ellipsometry and the phase-shifting method in recently developed digital interferometry, we have applied the phase-shifting algorithm to ellipsometry, and have developed a new method that makes the measurement of 2-D birefringence distribution easy and possible. The system contains few moving parts, assuring reliability, and measures a large area of a sample at one time, making the measuring time very short.

  11. A dosimetric study of a heterogeneous phantom for lung stereotactic body radiation therapy comparing Monte Carlo and pencil beam calculations to dose distributions measured with a 2-D diode array

    NASA Astrophysics Data System (ADS)

    Curley, Casey Michael

    Monte Carlo (MC) and Pencil Beam (PB) calculations are compared to their measured planar dose distributions using a 2-D diode array for lung Stereotactic Body Radiation Therapy (SBRT). The planar dose distributions were studied for two different phantom types: an in-house heterogeneous phantom and a homogeneous phantom. The motivation is to mimic the human anatomy during a lung SBRT treatment and incorporate heterogeneities into the pre-treatment Quality Assurance process, where measured and calculated planar dose distributions are compared before the radiation treatment. Individual and combined field dosimetry has been performed for both fixed gantry angle (anterior to posterior) and planned gantry angle delivery. A gamma analysis has been performed for all beam arrangements. The measurements were obtained using the 2-D diode array MapCHECK 2(TM). MC and PB calculations were performed using the BrainLAB iPlan RTRTM Dose software. The results suggest that with the heterogeneous phantom as a quality assurance device, the MC calculations result in closer agreements to the measured values, when using the planned gantry angle delivery method for composite beams. For the homogeneous phantom, the results suggest that the preferred delivery method is at the fixed anterior to posterior gantry angle. Furthermore, the MC and PB calculations do not show significant differences for dose difference and distance to agreement criteria 3%/3mm. However, PB calculations are in better agreement with the measured values for more stringent gamma criteria when considering individual beam whereas MC agreements are closer for composite beam measurements.

  12. Toward IMRT 2D dose modeling using artificial neural networks: A feasibility study

    SciTech Connect

    Kalantzis, Georgios; Vasquez-Quino, Luis A.; Zalman, Travis; Pratx, Guillem; Lei, Yu

    2011-10-15

    Purpose: To investigate the feasibility of artificial neural networks (ANN) to reconstruct dose maps for intensity modulated radiation treatment (IMRT) fields compared with those of the treatment planning system (TPS). Methods: An artificial feed forward neural network and the back-propagation learning algorithm have been used to replicate dose calculations of IMRT fields obtained from PINNACLE{sup 3} v9.0. The ANN was trained with fluence and dose maps of IMRT fields for 6 MV x-rays, which were obtained from the amorphous silicon (a-Si) electronic portal imaging device of Novalis TX. Those fluence distributions were imported to the TPS and the dose maps were calculated on the horizontal midpoint plane of a water equivalent homogeneous cylindrical virtual phantom. Each exported 2D dose distribution from the TPS was classified into two clusters of high and low dose regions, respectively, based on the K-means algorithm and the Euclidian metric in the fluence-dose domain. The data of each cluster were divided into two sets for the training and validation phase of the ANN, respectively. After the completion of the ANN training phase, 2D dose maps were reconstructed by the ANN and isodose distributions were created. The dose maps reconstructed by ANN were evaluated and compared with the TPS, where the mean absolute deviation of the dose and the {gamma}-index were used. Results: A good agreement between the doses calculated from the TPS and the trained ANN was achieved. In particular, an average relative dosimetric difference of 4.6% and an average {gamma}-index passing rate of 93% were obtained for low dose regions, and a dosimetric difference of 2.3% and an average {gamma}-index passing rate of 97% for high dose region. Conclusions: An artificial neural network has been developed to convert fluence maps to corresponding dose maps. The feasibility and potential of an artificial neural network to replicate complex convolution kernels in the TPS for IMRT dose calculations

  13. Interfractional trend analysis of dose differences based on 2D transit portal dosimetry

    NASA Astrophysics Data System (ADS)

    Persoon, L. C. G. G.; Nijsten, S. M. J. J. G.; Wilbrink, F. J.; Podesta, M.; Snaith, J. A. D.; Lustberg, T.; van Elmpt, W. J. C.; van Gils, F.; Verhaegen, F.

    2012-10-01

    Dose delivery of a radiotherapy treatment can be influenced by a number of factors. It has been demonstrated that the electronic portal imaging device (EPID) is valuable for transit portal dosimetry verification. Patient related dose differences can emerge at any time during treatment and can be categorized in two types: (1) systematic—appearing repeatedly, (2) random—appearing sporadically during treatment. The aim of this study is to investigate how systematic and random information appears in 2D transit dose distributions measured in the EPID plane over the entire course of a treatment and how this information can be used to examine interfractional trends, building toward a methodology to support adaptive radiotherapy. To create a trend overview of the interfractional changes in transit dose, the predicted portal dose for the different beams is compared to a measured portal dose using a γ evaluation. For each beam of the delivered fraction, information is extracted from the γ images to differentiate systematic from random dose delivery errors. From the systematic differences of a fraction for a projected anatomical structures, several metrics are extracted like percentage pixels with |γ| > 1. We demonstrate for four example cases the trends and dose difference causes which can be detected with this method. Two sample prostate cases show the occurrence of a random and systematic difference and identify the organ that causes the difference. In a lung cancer case a trend is shown of a rapidly diminishing atelectasis (lung fluid) during the course of treatment, which was detected with this trend analysis method. The final example is a breast cancer case where we show the influence of set-up differences on the 2D transit dose. A method is presented based on 2D portal transit dosimetry to record dose changes throughout the course of treatment, and to allow trend analysis of dose discrepancies. We show in example cases that this method can identify the causes of

  14. Analysis of the dose calculation accuracy for IMRT in lung: a 2D approach.

    PubMed

    Dvorak, Pavel; Stock, Markus; Kroupa, Bernhard; Bogner, Joachim; Georg, Dietmar

    2007-01-01

    The purpose of this study was to compare the dosimetric accuracy of IMRT plans for targets in lung with the accuracy of standard uniform-intensity conformal radiotherapy for different dose calculation algorithms. Tests were performed utilizing a special phantom manufactured from cork and polystyrene in order to quantify the uncertainty of two commercial TPS for IMRT in the lung. Ionization and film measurements were performed at various measuring points/planes. Additionally, single-beam and uniform-intensity multiple-beam tests were performed, in order to investigate deviations due to other characteristics of IMRT. Helax-TMS V6.1(A) was tested for 6, 10 and 25 MV and BrainSCAN 5.2 for 6 MV photon beams, respectively. Pencil beam (PB) with simple inhomogeneity correction and 'collapsed cone' (CC) algorithms were applied for dose calculations. However, the latter was not incorporated during optimization hence only post-optimization recalculation was tested. Two-dimensional dose distributions were evaluated applying the gamma index concept. Conformal plans showed the same accuracy as IMRT plans. Ionization chamber measurements detected deviations of up to 5% when a PB algorithm was used for IMRT dose calculations. Significant improvement (deviations approximately 2%) was observed when IMRT plans were recalculated with the CC algorithm, especially for the highest nominal energy. All gamma evaluations confirmed substantial improvement with the CC algorithm in 2D. While PB dose distributions showed most discrepancies in lower (<50%) and high (>90%) dose regions, the CC dose distributions deviated mainly in the high dose gradient (20-80%) region. The advantages of IMRT (conformity, intra-target dose control) should be counterbalanced with possible calculation inaccuracies for targets in the lung. Until no superior dose calculation algorithms are involved in the iterative optimization process it should be used with great care. When only PB algorithm with simple

  15. A scintillating gas detector for 2D dose measurements in clinical carbon beams.

    PubMed

    Seravalli, E; de Boer, M; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E; Voss, B

    2008-09-01

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies. PMID:18695295

  16. A scintillating gas detector for 2D dose measurements in clinical carbon beams

    NASA Astrophysics Data System (ADS)

    Seravalli, E.; de Boer, M.; Geurink, F.; Huizenga, J.; Kreuger, R.; Schippers, J. M.; van Eijk, C. W. E.; Voss, B.

    2008-09-01

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  17. Simulation of 2D Fields of Raindrop Size Distributions

    NASA Astrophysics Data System (ADS)

    Berne, A.; Schleiss, M.; Uijlenhoet, R.

    2008-12-01

    The raindrop size distribution (DSD hereafter) is of primary importance for quantitative applications of weather radar measurements. The radar reflectivity~Z (directly measured by radar) is related to the power backscattered by the ensemble of hydrometeors within the radar sampling volume. However, the rain rate~R (the flux of water to the surface) is the variable of interest for many applications (hydrology, weather forecasting, air traffic for example). Usually, radar reflectivity is converted into rain rate using a power law such as Z=aRb. The coefficients a and b of the Z-R relationship depend on the DSD. The variability of the DSD in space and time has to be taken into account to improve radar rain rate estimates. Therefore, the ability to generate a large number of 2D fields of DSD which are statistically homogeneous provides a very useful simulation framework that nicely complements experimental approaches based on DSD data, in order to investigate radar beam propagation through rain as well as radar retrieval techniques. The proposed approach is based on geostatistics for structural analysis and stochastic simulation. First, the DSD is assumed to follow a gamma distribution. Hence a 2D field of DSDs can be adequately described as a 2D field of a multivariate random function consisting of the three DSD parameters. Such fields are simulated by combining a Gaussian anamorphosis and a multivariate Gaussian random field simulation algorithm. Using the (cross-)variogram models fitted on data guaranties that the spatial structure of the simulated fields is consistent with the observed one. To assess its validity, the proposed method is applied to data collected during intense Mediterranean rainfall. As only time series are available, Taylor's hypothesis is assumed to convert time series in 1D range profile. Moreover, DSD fields are assumed to be isotropic so that the 1D structure can be used to simulate 2D fields. A large number of 2D fields of DSD parameters are

  18. Evaluation of low-dose limits in 3D-2D rigid registration for surgical guidance

    NASA Astrophysics Data System (ADS)

    Uneri, A.; Wang, A. S.; Otake, Y.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Gallia, G. L.; Gokaslan, Z. L.; Siewerdsen, J. H.

    2014-09-01

    An algorithm for intensity-based 3D-2D registration of CT and C-arm fluoroscopy is evaluated for use in surgical guidance, specifically considering the low-dose limits of the fluoroscopic x-ray projections. The registration method is based on a framework using the covariance matrix adaptation evolution strategy (CMA-ES) to identify the 3D patient pose that maximizes the gradient information similarity metric. Registration performance was evaluated in an anthropomorphic head phantom emulating intracranial neurosurgery, using target registration error (TRE) to characterize accuracy and robustness in terms of 95% confidence upper bound in comparison to that of an infrared surgical tracking system. Three clinical scenarios were considered: (1) single-view image + guidance, wherein a single x-ray projection is used for visualization and 3D-2D guidance; (2) dual-view image + guidance, wherein one projection is acquired for visualization, combined with a second (lower-dose) projection acquired at a different C-arm angle for 3D-2D guidance; and (3) dual-view guidance, wherein both projections are acquired at low dose for the purpose of 3D-2D guidance alone (not visualization). In each case, registration accuracy was evaluated as a function of the entrance surface dose associated with the projection view(s). Results indicate that images acquired at a dose as low as 4 μGy (approximately one-tenth the dose of a typical fluoroscopic frame) were sufficient to provide TRE comparable or superior to that of conventional surgical tracking, allowing 3D-2D guidance at a level of dose that is at most 10% greater than conventional fluoroscopy (scenario #2) and potentially reducing the dose to approximately 20% of the level in a conventional fluoroscopically guided procedure (scenario #3).

  19. A generalized 2D pencil beam scaling algorithm for proton dose calculation in heterogeneous slab geometries

    PubMed Central

    Westerly, David C.; Mo, Xiaohu; Tomé, Wolfgang A.; Mackie, Thomas R.; DeLuca, Paul M.

    2013-01-01

    Purpose: Pencil beam algorithms are commonly used for proton therapy dose calculations. Szymanowski and Oelfke [“Two-dimensional pencil beam scaling: An improved proton dose algorithm for heterogeneous media,” Phys. Med. Biol. 47, 3313–3330 (2002)10.1088/0031-9155/47/18/304] developed a two-dimensional (2D) scaling algorithm which accurately models the radial pencil beam width as a function of depth in heterogeneous slab geometries using a scaled expression for the radial kernel width in water as a function of depth and kinetic energy. However, an assumption made in the derivation of the technique limits its range of validity to cases where the input expression for the radial kernel width in water is derived from a local scattering power model. The goal of this work is to derive a generalized form of 2D pencil beam scaling that is independent of the scattering power model and appropriate for use with any expression for the radial kernel width in water as a function of depth. Methods: Using Fermi-Eyges transport theory, the authors derive an expression for the radial pencil beam width in heterogeneous slab geometries which is independent of the proton scattering power and related quantities. The authors then perform test calculations in homogeneous and heterogeneous slab phantoms using both the original 2D scaling model and the new model with expressions for the radial kernel width in water computed from both local and nonlocal scattering power models, as well as a nonlocal parameterization of Molière scattering theory. In addition to kernel width calculations, dose calculations are also performed for a narrow Gaussian proton beam. Results: Pencil beam width calculations indicate that both 2D scaling formalisms perform well when the radial kernel width in water is derived from a local scattering power model. Computing the radial kernel width from a nonlocal scattering model results in the local 2D scaling formula under-predicting the pencil beam width by as

  20. Assessing dose rate distributions in VMAT plans

    NASA Astrophysics Data System (ADS)

    Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2016-04-01

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within  ±0.4 s and doses  ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional

  1. On characterization of dose variations of 2-D proteomics maps by matrix invariants.

    PubMed

    Randíc, Milan; Novic, Marjana; Vracko, Marjan

    2002-01-01

    We explore the characterization of 2-D electrophoresis proteomics maps by certain structural invariants derived from matrixes constructed by considering for all pairs of spots in a proteomics maps the shortest (Euclidean) distances and distances measured along zigzag lines connecting protein spots of the neighboring abundance. This paper is a sequel to previous papers in which we outlined the idea of characterizing 2-D proteomics maps by graph-theoretical descriptors. To illustrate the approach, we selected data of Anderson et al. (Anderson, N. L.; Esquer-Blasco, R.; Richardson, F.; Foxworthy, P.; Eacho, P. The effects of peroxisome proliferators on protein abundances in mouse liver. Toxicol. Appl. Pharmacol. 1996, 137, 75-89) on protein abundance in mouse liver under a series of dose of peroxisome proliferator LY1711883. We found strong linear correlation between the experimentally applied doses and the leading eigenvalue of a D/D-type matrix (Randić, M.; Kleiner, A. F.; DeAlba, L. M. Distance/ distance matrices. J. Chem. lnf. Comput. Sci. 1994, 34, 277-286) constructed for the experimental proteomics maps. PMID:12645898

  2. Comparison of 3D anatomical dose verification and 2D phantom dose verification of IMRT/VMAT treatments for nasopharyngeal carcinoma

    PubMed Central

    2014-01-01

    Background The two-dimensional phantom dose verification (2D-PDV) using hybrid plan and planar dose measurement has been widely used for IMRT treatment QA. Due to the lack of information about the correlations between the verification results and the anatomical structure of patients, it is inadequate in clinical evaluation. A three-dimensional anatomical dose verification (3D-ADV) method was used in this study to evaluate the IMRT/VMAT treatment delivery for nasopharyngeal carcinoma and comparison with 2D-PDV was analyzed. Methods Twenty nasopharyngeal carcinoma (NPC) patients treated with IMRT/VMAT were recruited in the study. A 2D ion-chamber array was used for the 2D-PDV in both single-gantry-angle composite (SGAC) and multi-gantry-angle composite (MGAC) verifications. Differences in the gamma pass rate between the 2 verification methods were assessed. Based on measurement of irradiation dose fluence, the 3D dose distribution was reconstructed for 3D-ADV in the above cases. The reconstructed dose homogeneity index (HI), conformity index (CI) of the planning target volume (PTV) were calculated. Gamma pass rate and deviations in the dose-volume histogram (DVH) of each PTV and organ at risk (OAR) were analyzed. Results In 2D-PDV, the gamma pass rate (3%, 3 mm) of SGAC (99.55% ± 0.83%) was significantly higher than that of MGAC (92.41% ± 7.19%). In 3D-ADV, the gamma pass rates (3%, 3 mm) were 99.75% ± 0.21% in global, 83.82% ± 16.98% to 93.71% ± 6.22% in the PTVs and 45.12% ± 32.78% to 98.08% ± 2.29% in the OARs. The maximum HI increment in PTVnx was 19.34%, while the maximum CI decrement in PTV1 and PTV2 were -32.45% and -6.93%, respectively. Deviations in dose volume of PTVs were all within ±5%. D2% of the brainstem, spinal cord, left/right optic nerves, and the mean doses to the left/right parotid glands maximally increased by 3.5%, 6.03%, 31.13%/26.90% and 4.78%/4.54%, respectively. Conclusion The 2D-PDV and global gamma

  3. Distribution of CYP2D6 alleles and phenotypes in the Brazilian population.

    PubMed

    Friedrich, Deise C; Genro, Júlia P; Sortica, Vinicius A; Suarez-Kurtz, Guilherme; de Moraes, Maria Elizabete; Pena, Sergio D J; dos Santos, Andrea K Ribeiro; Romano-Silva, Marco A; Hutz, Mara H

    2014-01-01

    The CYP2D6 enzyme is one of the most important members of the cytochrome P450 superfamily. This enzyme metabolizes approximately 25% of currently prescribed medications. The CYP2D6 gene presents a high allele heterogeneity that determines great inter-individual variation. The aim of this study was to evaluate the variability of CYP2D6 alleles, genotypes and predicted phenotypes in Brazilians. Eleven single nucleotide polymorphisms and CYP2D6 duplications/multiplications were genotyped by TaqMan assays in 1020 individuals from North, Northeast, South, and Southeast Brazil. Eighteen CYP2D6 alleles were identified in the Brazilian population. The CYP2D6*1 and CYP2D6*2 alleles were the most frequent and widely distributed in different geographical regions of Brazil. The highest number of CYPD6 alleles observed was six and the frequency of individuals with more than two copies ranged from 6.3% (in Southern Brazil) to 10.2% (Northern Brazil). The analysis of molecular variance showed that CYP2D6 is homogeneously distributed across different Brazilian regions and most of the differences can be attributed to inter-individual differences. The most frequent predicted metabolic status was EM (83.5%). Overall 2.5% and 3.7% of Brazilians were PMs and UMs respectively. Genomic ancestry proportions differ only in the prevalence of intermediate metabolizers. The IM predicted phenotype is associated with a higher proportion of African ancestry and a lower proportion of European ancestry in Brazilians. PM and UM classes did not vary among regions and/or ancestry proportions therefore unique CYP2D6 testing guidelines for Brazilians are possible and could potentially avoid ineffective or adverse events outcomes due to drug prescriptions. PMID:25329392

  4. Distribution of CYP2D6 Alleles and Phenotypes in the Brazilian Population

    PubMed Central

    Sortica, Vinicius A.; Suarez-Kurtz, Guilherme; de Moraes, Maria Elizabete; Pena, Sergio D. J.; dos Santos, Ândrea K. Ribeiro; Romano-Silva, Marco A.; Hutz, Mara H.

    2014-01-01

    Abstract The CYP2D6 enzyme is one of the most important members of the cytochrome P450 superfamily. This enzyme metabolizes approximately 25% of currently prescribed medications. The CYP2D6 gene presents a high allele heterogeneity that determines great inter-individual variation. The aim of this study was to evaluate the variability of CYP2D6 alleles, genotypes and predicted phenotypes in Brazilians. Eleven single nucleotide polymorphisms and CYP2D6 duplications/multiplications were genotyped by TaqMan assays in 1020 individuals from North, Northeast, South, and Southeast Brazil. Eighteen CYP2D6 alleles were identified in the Brazilian population. The CYP2D6*1 and CYP2D6*2 alleles were the most frequent and widely distributed in different geographical regions of Brazil. The highest number of CYPD6 alleles observed was six and the frequency of individuals with more than two copies ranged from 6.3% (in Southern Brazil) to 10.2% (Northern Brazil). The analysis of molecular variance showed that CYP2D6 is homogeneously distributed across different Brazilian regions and most of the differences can be attributed to inter-individual differences. The most frequent predicted metabolic status was EM (83.5%). Overall 2.5% and 3.7% of Brazilians were PMs and UMs respectively. Genomic ancestry proportions differ only in the prevalence of intermediate metabolizers. The IM predicted phenotype is associated with a higher proportion of African ancestry and a lower proportion of European ancestry in Brazilians. PM and UM classes did not vary among regions and/or ancestry proportions therefore unique CYP2D6 testing guidelines for Brazilians are possible and could potentially avoid ineffective or adverse events outcomes due to drug prescriptions. PMID:25329392

  5. CYP2D6 genotype- and endoxifen-guided tamoxifen dose escalation increases endoxifen serum concentrations without increasing side effects.

    PubMed

    Dezentjé, V O; Opdam, F L; Gelderblom, H; Hartigh den, J; Van der Straaten, T; Vree, R; Maartense, E; Smorenburg, C H; Putter, H; Dieudonné, A S; Neven, P; Van de Velde, C J H; Nortier, J W R; Guchelaar, H-J

    2015-10-01

    Breast cancer patients with absent or reduced CYP2D6 activity and consequently low endoxifen levels may benefit less from tamoxifen treatment. CYP2D6 poor and intermediate metabolizers may need a personalized increased tamoxifen dose to achieve effective endoxifen serum concentrations, without increasing toxicity. From a prospective study population of early breast cancer patients using tamoxifen (CYPTAM: NTR1509), 12 CYP2D6 poor and 12 intermediate metabolizers were selected and included in a one-step tamoxifen dose escalation study during 2 months. The escalated dose was calculated by multiplying the individual's endoxifen level at baseline relative to the average endoxifen concentration observed in CYP2D6 extensive metabolizers by 20 mg (120 mg maximum). Endoxifen levels and tamoxifen toxicity were determined at baseline and after 2 months, just before patients returned to the standard dose of 20 mg. Tamoxifen dose escalation in CYP2D6 poor and intermediate metabolizers significantly increased endoxifen concentrations (p < 0.001; p = 0.002, respectively) without increasing side effects. In intermediate metabolizers, dose escalation increased endoxifen to levels comparable with those observed in extensive metabolizers. In poor metabolizers, the mean endoxifen level increased from 24 to 81 % of the mean concentration in extensive metabolizers. In all patients, the endoxifen threshold of 5.97 ng/ml (=16.0 nM) reported by Madlensky et al. was reached following dose escalation. CYP2D6 genotype- and endoxifen-guided tamoxifen dose escalation increased endoxifen concentrations without increasing short-term side effects. Whether such tamoxifen dose escalation is effective and safe in view of long-term toxic effects is uncertain and needs to be explored. PMID:26369533

  6. An algorithm for kilovoltage x-ray dose calculations with applications in kV-CBCT scans and 2D planar projected radiographs

    NASA Astrophysics Data System (ADS)

    Pawlowski, Jason M.; Ding, George X.

    2014-04-01

    A new model-based dose calculation algorithm is presented for kilovoltage x-rays and is tested for the cases of calculating the radiation dose from kilovoltage cone-beam CT (kV-CBCT) and 2D planar projected radiographs. This algorithm calculates the radiation dose to water-like media as the sum of primary and scattered dose components. The scatter dose is calculated by convolution of a newly introduced, empirically parameterized scatter dose kernel with the primary photon fluence. Several approximations are introduced to increase the scatter dose calculation efficiency: (1) the photon energy spectrum is approximated as monoenergetic; (2) density inhomogeneities are accounted for by implementing a global distance scaling factor in the scatter kernel; (3) kernel tilting is ignored. These approximations allow for efficient calculation of the scatter dose convolution with the fast Fourier transform. Monte Carlo simulations were used to obtain the model parameters. The accuracy of using this model-based algorithm was validated by comparing with the Monte Carlo method for calculating dose distributions for real patients resulting from radiotherapy image guidance procedures including volumetric kV-CBCT scans and 2D planar projected radiographs. For all patients studied, mean dose-to-water errors for kV-CBCT are within 0.3% with a maximum standard deviation error of 4.1%. Using a medium-dependent correction method to account for the effects of photoabsorption in bone on the dose distribution, mean dose-to-medium errors for kV-CBCT are within 3.6% for bone and 2.4% for soft tissues. This algorithm offers acceptable accuracy and has the potential to extend the applicability of model-based dose calculation algorithms from megavoltage to kilovoltage photon beams.

  7. Deformable 3D-2D registration for CT and its application to low dose tomographic fluoroscopy

    NASA Astrophysics Data System (ADS)

    Flach, Barbara; Brehm, Marcus; Sawall, Stefan; Kachelrieß, Marc

    2014-12-01

    Many applications in medical imaging include image registration for matching of images from the same or different modalities. In the case of full data sampling, the respective reconstructed images are usually of such a good image quality that standard deformable volume-to-volume (3D-3D) registration approaches can be applied. But research in temporal-correlated image reconstruction and dose reductions increases the number of cases where rawdata are available from only few projection angles. Here, deteriorated image quality leads to non-acceptable deformable volume-to-volume registration results. Therefore a registration approach is required that is robust against a decreasing number of projections defining the target position. We propose a deformable volume-to-rawdata (3D-2D) registration method that aims at finding a displacement vector field maximizing the alignment of a CT volume and the acquired rawdata based on the sum of squared differences in rawdata domain. The registration is constrained by a regularization term in accordance with a fluid-based diffusion. Both cost function components, the rawdata fidelity and the regularization term, are optimized in an alternating manner. The matching criterion is optimized by a conjugate gradient descent for nonlinear functions, while the regularization is realized by convolution of the vector fields with Gaussian kernels. We validate the proposed method and compare it to the demons algorithm, a well-known 3D-3D registration method. The comparison is done for a range of 4-60 target projections using datasets from low dose tomographic fluoroscopy as an application example. The results show a high correlation to the ground truth target position without introducing artifacts even in the case of very few projections. In particular the matching in the rawdata domain is improved compared to the 3D-3D registration for the investigated range. The proposed volume-to-rawdata registration increases the robustness regarding sparse

  8. Deformable 3D-2D registration for CT and its application to low dose tomographic fluoroscopy.

    PubMed

    Flach, Barbara; Brehm, Marcus; Sawall, Stefan; Kachelrieß, Marc

    2014-12-21

    Many applications in medical imaging include image registration for matching of images from the same or different modalities. In the case of full data sampling, the respective reconstructed images are usually of such a good image quality that standard deformable volume-to-volume (3D-3D) registration approaches can be applied. But research in temporal-correlated image reconstruction and dose reductions increases the number of cases where rawdata are available from only few projection angles. Here, deteriorated image quality leads to non-acceptable deformable volume-to-volume registration results. Therefore a registration approach is required that is robust against a decreasing number of projections defining the target position. We propose a deformable volume-to-rawdata (3D-2D) registration method that aims at finding a displacement vector field maximizing the alignment of a CT volume and the acquired rawdata based on the sum of squared differences in rawdata domain. The registration is constrained by a regularization term in accordance with a fluid-based diffusion. Both cost function components, the rawdata fidelity and the regularization term, are optimized in an alternating manner. The matching criterion is optimized by a conjugate gradient descent for nonlinear functions, while the regularization is realized by convolution of the vector fields with Gaussian kernels. We validate the proposed method and compare it to the demons algorithm, a well-known 3D-3D registration method. The comparison is done for a range of 4-60 target projections using datasets from low dose tomographic fluoroscopy as an application example. The results show a high correlation to the ground truth target position without introducing artifacts even in the case of very few projections. In particular the matching in the rawdata domain is improved compared to the 3D-3D registration for the investigated range. The proposed volume-to-rawdata registration increases the robustness regarding sparse

  9. SU-E-P-35: Real-Time Patient Transit Dose Verification of Volumetric Modulated Arc Radiotherapy by a 2D Ionization Chamber Array

    SciTech Connect

    Liu, X

    2015-06-15

    Purpose: To explore the real-time dose verification method in volumetric modulated arc radiotherapy (VMAT) with a 2D array ion chamber array. Methods: The 2D ion chamber array was fixed on the panel of electronic portal imaging device (EPID). Source-detector distance (SDD)was 140cm. 8mm RW3 solid water was added to the detector panel to achieve maximum readings.The patient plans for esophageal, prostate and liver cancers were selected to deliver on the cylindrical Cheese phantom 5 times in order to validate the reproducibility of doses. Real-time patient transit dose measurements were performed at each fraction. Dose distributions wereevaluated using gamma index criteria of 3mm DTA and 3% dose difference referred to the firsttime Result. Results: The gamma index pass rate in the Cheese phantom were about 98%; The gamma index pass rate for esophageal, liver and prostate cancer patient were about 92%,94%, and 92%, respectively; Gamma pass rate for all single fraction were more than 90%. Conclusion: The 2D array is capable of monitoring the real time transit doses during VMAT delivery. It is helpful to improve the treatment accuracy.

  10. Normalized ion distribution function in expanding sheaths of 2D grid electrodes

    NASA Astrophysics Data System (ADS)

    Yi, Changho; Namkung, Won; Cho, Moohyun

    2016-04-01

    Ion distributions in expanding collisionless sheaths of two-dimensional (2D) grid electrodes were studied by using XOOPIC (particle-in-cell) simulations when short pulses of negative high-voltage were applied to electrodes immersed in plasmas. 2D grid electrodes consist of a periodic array of cylindrical electrodes, and the opening ratio of the grid electrodes is defined by the ratio of the spacing between cylindrical electrodes to the periodic length of the grid electrodes. In this paper, we introduce a normalized ion distribution function in normalized coordinates, and it is shown by simulation that the normalized ion distribution function depends only on the opening ratio of the grid electrodes. When the opening ratio of the grid electrodes is fixed, the ion distribution in expanding sheaths can be easily found in various conditions using only a single run of a PIC simulation, and the computation time can be significantly reduced.

  11. A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions

    USGS Publications Warehouse

    Kong, M.; Bhattacharya, R.N.; James, C.; Basu, A.

    2005-01-01

    Size distribution of rigidly embedded spheres in a groundmass is usually determined from measurements of the radii of the two-dimensional (2D) circular cross sections of the spheres in random flat planes of a sample, such as in thin sections or polished slabs. Several methods have been devised to find a simple factor to convert the mean of such 2D size distributions to the actual 3D mean size of the spheres without a consensus. We derive an entirely theoretical solution based on well-established probability laws and not constrained by limitations of absolute size, which indicates that the ratio of the means of measured 2D and estimated 3D grain size distribution should be r/4 (=.785). Actual 2D size distribution of the radii of submicron sized, pure Fe0 globules in lunar agglutinitic glass, determined from backscattered electron images, is tested to fit the gamma size distribution model better than the log-normal model. Numerical analysis of 2D size distributions of Fe0 globules in 9 lunar soils shows that the average mean of 2D/3D ratio is 0.84, which is very close to the theoretical value. These results converge with the ratio 0.8 that Hughes (1978) determined for millimeter-sized chondrules from empirical measurements. We recommend that a factor of 1.273 (reciprocal of 0.785) be used to convert the determined 2D mean size (radius or diameter) of a population of spheres to estimate their actual 3D size. ?? 2005 Geological Society of America.

  12. Dose-dependent effect of the CYP2D6 genotype on the steady-state fluvoxamine concentration.

    PubMed

    Watanabe, Junzo; Suzuki, Yutaro; Fukui, Naoki; Sugai, Takuro; Ono, Shin; Inoue, Yoshimasa; Someya, Toshiyuki

    2008-12-01

    Several studies have reported that the cytochrome P450 (CYP) 2D6 plays an important role in the fluvoxamine metabolism. However, some other studies have reported that the CYP2D6 genotype has no major impact on the fluvoxamine concentration. This study investigated the dose-dependent effect of CYP2D6-variant alleles on the steady-state fluvoxamine concentration. There were 23 patients whose plasma concentrations of fluvoxamine were measured at 4 doses (50, 100, 150, and 200 mg/d). The differences in the plasma fluvoxamine concentration were analyzed between 2 genotype groups divided by the number of CYP2D6-variant alleles (with 0 and 1 or 2 variant alleles). The results demonstrated the nonlinear kinetics of fluvoxamine metabolism, and the degree of nonlinear kinetics decreased as the dose was increased. Significant differences in fluvoxamine concentration were observed between the subjects with 0 variant alleles and the subjects with 1 or 2 variant alleles (P = 0.044) when they were treated by 50 mg of fluvoxamine. There were no significant differences in the plasma concentration of fluvoxamine at 100, 150, and 200 mg/d. The present study suggests that the effect of the CYP2D6 genotype on fluvoxamine metabolism is greater at lower doses of fluvoxamine. PMID:18978520

  13. Functional Stereology for 3D Particle Size Distributions from 2D Observations: a Practical Approach

    NASA Astrophysics Data System (ADS)

    Proussevitch, A. A.; Sahagian, D. L.; Jutzeler, M.

    2010-12-01

    Functional stereology applies known deconvolution techniques to obtain 3D size distributions from 2D cross-section data based on an assumption that both 2D and 3D statistics have known distribution functions with unknown parameters. A new stereological approach enables us to solve this problem by utilizing function minimization to find parameters of the distribution functions. There is no limit to continuous distribution function types that could be used, such as Gaussian, Logistic, Weibull, Gamma, and others. As compared to previously known 2D to 3D conversion methods (e.g. Sahagian and Proussevitch, 1998), functional stereology has much greater practical application to non-spherical particles/objects because it is free of uncontrollable error propagation for all particles shapes. The new practical method of functional stereology has been implemented in Stereonet software adapted for both a) direct logarithmic scales of particle/voids volumes, and b) Phi units of linear dimensions (-log2 of size). Applications of the method include distribution of voids/bubbles in all types of volcanic rocks, pore networks in sedimentary rocks, mineral and grain sizes, volcanic clasts, breccia, and texture features of a wide range of rock formations. Such applications demonstrate utility of this functional stereology approach.

  14. Infrared imaging of 2-D temperature distribution during cryogen spray cooling.

    PubMed

    Choi, Bernard; Welch, Ashley J

    2002-12-01

    Cryogen spray cooling (CSC) is used in conjunction with pulsed laser irradiation for treatment of dermatologic indications. The main goal of this study was to determine the radial temperature distribution created by CSC and evaluate the importance of radial temperature gradients upon the subsequent analysis of tissue cooling throughout the skin. Since direct measurement of surface temperatures during CSC are hindered by the formation of a liquid cryogen layer, temperature distributions were estimated using a thin, black aluminum sheet. An infrared focal plane array camera was used to determine the 2-D backside temperature distribution during a cryogen spurt, which preliminary measurements have shown is a good indicator of the front-side temperature distribution. The measured temperature distribution was approximately gaussian in shape. Next, the transient temperature distributions in skin were calculated for two cases: 1) the standard 1-D solution which assumes a uniform cooling temperature distribution, and 2) a 2-D solution using a nonuniform surface cooling temperature distribution based upon the back-side infrared temperature measurements. At the end of a 100-ms cryogen spurt, calculations showed that, for the two cases, large discrepancies in temperatures at the surface and at a 60-micron depth were found at radii greater than 2.5 mm. These results suggest that it is necessary to consider radial temperature gradients during cryogen spray cooling of tissue. PMID:12596634

  15. Relaxation of ferroelectric states in 2D distributions of quantum dots: EELS simulation

    NASA Astrophysics Data System (ADS)

    Cortés, C. M.; Meza-Montes, L.; Moctezuma, R. E.; Carrillo, J. L.

    2016-06-01

    The relaxation time of collective electronic states in a 2D distribution of quantum dots is investigated theoretically by simulating EELS experiments. From the numerical calculation of the probability of energy loss of an electron beam, traveling parallel to the distribution, it is possible to estimate the damping time of ferroelectric-like states. We generate this collective response of the distribution by introducing a mean field interaction among the quantum dots, and then, the model is extended incorporating effects of long-range correlations through a Bragg–Williams approximation. The behavior of the dielectric function, the energy loss function, and the relaxation time of ferroelectric-like states is then investigated as a function of the temperature of the distribution and the damping constant of the electronic states in the single quantum dots. The robustness of the trends and tendencies of our results indicate that this scheme of analysis can guide experimentalists to develop tailored quantum dots distributions for specific applications.

  16. Effect of Different Doses of Oral Cholecalciferol on Serum 1,25(OH)2D in Vitamin D Deficient Schoolchildren.

    PubMed

    Ghazi, A A; Hosseinpanah, F; Abdi, H; Hedayati, M; Hasheminia, M; Ghazi, S; Azizi, F

    2016-06-01

    Data regarding 1,25-dihydroxycholecalciferol in adolescents are limited. We aimed to determine serum levels of this active metabolite of vitamin D and the effects of different doses of vitamin D on its concentration in schoolchildren with high prevalence of vitamin D deficiency. In a previously published randomized double-blind, placebo-controlled trial, 210 subjects, aged 14-20 years, were assigned to 3 regimens of vitamin D treatment: group A (n=70) received 50 000 U oral cholecalciferol monthly, group B (n=70), 50 000 U bimonthly, and group C (n=70), placebo. Serum 25(OH)D, calcium, parathyroid hormone, and bone markers were measured at baseline and after 2 and 5 months of treatment. In the present study, serum levels of 1,25(OH)2D were measured in 97 boys and 95 girls. At baseline, girls had significantly higher concentrations of 1,25(OH)2D than boys (36, IQR: 24, 63 vs. 30, IQR: 15, 57.5 pmol/l; p<0.01). There was no significant correlation between serum levels of 25(OH)D and 1,25(OH)2D in the total population (Spearman rho=- 0.111; p=0.126), boys (Spearman rho=0.008; p=0.941), and girls (Spearman rho=0.036; p=0.729). Also, 1,25(OH)2D values did not change over time in different study groups. Moreover, total and sex-stratified analysis did not show any significant difference between different groups at different times of the study period. In an adolescent population with high prevalence of hypovitaminosis D especially in girls, 1,25(OH)2D values were higher in girls than boys. There was no significant change in 1,25(OH)2D concentrations with different doses of vitamin D. PMID:26975346

  17. Low-dose 2D X-ray angiography enhancement using 2-axis PCA for the preservation of blood-vessel region and noise minimization.

    PubMed

    Lee, Yong Geun; Lee, Jeongjin; Shin, Yeong-Gil; Kang, Ho Chul

    2016-01-01

    Enhancing 2D angiography while maintaining a low radiation dose has become an important research topic. However, it is difficult to enhance images while preserving vessel-structure details because X-ray noise and contrast blood vessels in 2D angiography have similar intensity distributions, which can lead to ambiguous images of vessel structures. In this paper, we propose a novel and fast vessel-enhancement method for 2D angiography. We apply filtering in the principal component analysis domain for vessel regions and background regions separately, using assumptions based on energy compaction. First, we identify an approximate vessel region using a Hessian-based method. Vessel and non-vessel regions are then represented sparsely by calculating their optimal bases separately. This is achieved by identifying periodic motion in the vessel region caused by the flow of the contrast medium through the blood vessels when viewed on the time axis. Finally, we obtain noise-free images by removing noise in the new coordinate domain for the optimal bases. Our method was validated for an X-ray system, using 10 low-dose sets for training and 20 low-dose sets for testing. The results were compared with those for a high-dose dataset with respect to noise-free images. The average enhancement rate was 93.11±0.71%. The average processing time for enhancing video comprising 50-70 frames was 0.80±0.35s, which is much faster than the previously proposed technique. Our method is applicable to 2D angiography procedures such as catheterization, which requires rapid and natural vessel enhancement. PMID:26483302

  18. SU-E-T-422: Correlation Between 2D Passing Rates and 3D Dose Differences for Pretreatment VMAT QA

    SciTech Connect

    Jin, X; Xie, C

    2014-06-01

    Purpose: Volumetric modulated arc therapy (VMAT) quality assurance (QA) is typically using QA methods and action levels taken from fixedbeam intensity-modulated radiotherapy (IMRT) QA methods. However, recent studies demonstrated that there is no correlation between the percent gamma passing rate (%GP) and the magnitude of dose discrepancy between the planned dose and the actual delivered dose for IMRT. The purpose of this study is to investigate whether %GP is correlated with clinical dosimetric difference for VMAT. Methods: Twenty nasopharyngeal cancer (NPC) patients treated with dual-arc simultaneous integrated boost VMAT and 20 esophageal cancer patients treated with one-arc VMAT were enrolled in this study. Pretreatment VMAT QA was performed by a 3D diode array ArcCheck. Acceptance criteria of 2%/2mm, 3%/3mm, and 4%/4mm were applied for 2D %GP. Dose values below 10% of the per-measured normalization maximum dose were ignored.Mean DVH values obtained from 3DVH software and TPS were calculated and percentage dose differences were calculated. Statistical correlation between %GP and percent dose difference was studied by using Pearson correlation. Results: The %GP for criteria 2%/2mm, 3%/3mm, and 4%/4mm were 82.33±4.45, 93.47±2.31, 97.13±2.41, respectively. Dose differences calculated from 3DVH and TPS for beam isocenter, mean dose of PTV, maximum dose of PTV, D2 of PTV and D98 of PTV were -1.04±3.24, -0.74±1.71, 2.92±3.62, 0.89±3.29, -1.46±1.97, respectively. No correction were found between %GP and dose differences. Conclusion: There are weak correlations between the 2D %GP and dose differences calculated from 3DVH. The %GP acceptance criteria of 3%/3mm usually applied for pretreatment QA of IMRT and VMAT is not indicating strong clinical correlation with 3D dose difference. 3D dose reconstructions on patient anatomy may be necessary for physicist to predict the accuracy of delivered dose for VMAT QA.

  19. [Analysis of streamer properties and emission spectroscopy of 2-D OH distribution of pulsed corona discharge].

    PubMed

    Zhao, Lei; Gao, Xiang; Luo, Zhong-Yang; Xuan, Jian-Yong; Jiang, Jian-Ping; Cen, Ke-Fa

    2011-11-01

    Streamer plays a key role in the process of OH radical generation. The propagation of primary and secondary streamers of positive wire-plate pulsed corona discharge was observed using a short gate ICCD in air environment. The influence of the applied voltage on the properties was investigated. It was shown that the primary streamer propagation velocity, electric coverage and length of secondary streamer increased significantly with increasing the applied voltage. Then 2-D OH distribution was investigated by the emission spectrum. With the analysis of the OH emission spectra, the distribution of OH radicals showed a trend of decreasing from the wire electrode to its circumambience. Compared with the streamer propagation trace, the authors found that OH radical distribution and streamer are in the same area. Both OH radical concentration and the intensity of streamer decreased when far away from the wire electrode. PMID:22242481

  20. Single dose, CYP2D6 genotype-stratified pharmacokinetic study of atomoxetine in children with ADHD.

    PubMed

    Brown, J T; Abdel-Rahman, S M; van Haandel, L; Gaedigk, A; Lin, Y S; Leeder, J S

    2016-06-01

    The effect of CYP2D6 genotype on the dose-exposure relationship for atomoxetine has not been well characterized in children. Children 6-17 years of age diagnosed with attention-deficit hyperactivity disorder (ADHD) were stratified by CYP2D6 genotype into groups with 0 (poor metabolizers [PMs], n = 4), 0.5 (intermediate metabolizers [IMs], n = 3), one (extensive metabolizer [EM]1, n = 8) or two (EM2, n = 8) functional alleles and administered a single 0.5 mg/kg oral dose of atomoxetine (ATX). Plasma and urine samples were collected for 24 (IM, EM1, and EM2) or 72 hours (PMs). Dose-corrected ATX systemic exposure (area under the curve [AUC]0-∞ ) varied 29.6-fold across the study cohort, ranging from 4.4 ± 2.7 μM*h in EM2s to 5.8 ± 1.7 μM*h, 16.3 ± 2.9 μM*h, and 50.2 ± 7.3 μM*h in EM1s, IMs, and PMs, respectively (P < 0.0001). Simulated steady state profiles at the maximum US Food and Drug Administration (FDA)-recommended dose suggest that most patients are unlikely to attain adequate ATX exposures. These data support the need for individualized dosing strategies for more effective use of the medication. PMID:26660002

  1. SU-D-BRE-04: Evaluating the Dose Accuracy of a 2D Ion Chamber Array in High Dose Rate Pencil Beam Scanning Proton Beam

    SciTech Connect

    Perles, L; Mascia, A; Piskulich, F; Lepage, R; Zhang, Y; Giebeler, A; Dong, L

    2014-06-01

    Purpose: To evaluate the absolute dose accuracy of the PTW Octavius 729 XDR 2D ion chamber array at a high dose rate pencil beam scanning proton therapy facility. Methods: A set of 18 plans were created in our treatment planning system, each of which comprising a unique combination of field sizes (FS), length of spread out of Bragg peaks (SOBP) and depths. The parameters used were: FS of 5×5cm{sup 2}, 10×10cm{sup 2} and 15×15cm{sup 2}; flat SOBP of 5cm and 10cm; and isocenter depths of 10cm, 15cm and 20cm, which coincides with the center of the SOBP. The 2D array detector was positioned at the machine isocenter and the appropriate amount of solid water was used to match the planned depths of 10, 15 and 20 cm water equivalent depth. Subsequently, we measured the absolute dose at isocenter using a CC04 ion chamber in a 1D water tank. Both 2D array and CC04 were previously cross calibrated. We also collected the MU rates used by our proton machine from the log files. Results: The relative differences between the CC04 and the 2D array can be summarized into two groups, one with 5 cm SOBP and another with 10 cm SOBP. Plotting these datasets against FS shows that the 2D array response for high dose rate fields (FS of 5×5cm{sup 2} and 5cm SOBP) can be up to 2% lower. Similarly, plotting them against isocenter depths reveals the detector's response can be up to 2% lower for higher energy beams (about 200MeV nominal). The MU rate found in the machine log files for 5cm SOBP's were as high as twice the MU rate for the 10cm SOBP. Conclusion: The 2D array dose response showed a dose rate effect in scanning pencil beam delivery, which needs to be corrected to achieve a better dose accuracy.

  2. Probability distribution of the index in gauge theory on 2d non-commutative geometry

    NASA Astrophysics Data System (ADS)

    Aoki, Hajime; Nishimura, Jun; Susaki, Yoshiaki

    2007-10-01

    We investigate the effects of non-commutative geometry on the topological aspects of gauge theory using a non-perturbative formulation based on the twisted reduced model. The configuration space is decomposed into topological sectors labeled by the index ν of the overlap Dirac operator satisfying the Ginsparg-Wilson relation. We study the probability distribution of ν by Monte Carlo simulation of the U(1) gauge theory on 2d non-commutative space with periodic boundary conditions. In general the distribution is asymmetric under ν mapsto -ν, reflecting the parity violation due to non-commutative geometry. In the continuum and infinite-volume limits, however, the distribution turns out to be dominated by the topologically trivial sector. This conclusion is consistent with the instanton calculus in the continuum theory. However, it is in striking contrast to the known results in the commutative case obtained from lattice simulation, where the distribution is Gaussian in a finite volume, but the width diverges in the infinite-volume limit. We also calculate the average action in each topological sector, and provide deeper understanding of the observed phenomenon.

  3. 2D-photochemical modeling of Saturn’s stratosphere: hydrocarbon and water distributions

    NASA Astrophysics Data System (ADS)

    Hue, Vincent; Cavalié, Thibault; Hersant, Franck; Dobrijevic, Michel; Greathouse, Thomas; Lellouch, Emmanuel; Hartogh, Paul; Cassidy, Timothy; Spiga, Aymeric; Guerlet, Sandrine; Sylvestre, Melody

    2014-11-01

    Saturn’s axial tilt of 27° produces seasons in a similar way as on Earth. The seasonal forcing over Saturn’s 30 years period influences the production/loss of the major atmospheric absorbers and coolants through photochemistry, and influences therefore Saturn’s stratospheric temperatures. We have developed a 2D time-dependent photochemical model of Saturn’s atmosphere [Hue et al., in prep.], coupled to a radiative-climate model [Greathouse et al., 2008] to study seasonal effects on its atmospheric composition. Cassini spacecraft has revealed that the distribution of hydrocarbons in Saturn’s stratosphere [Guerlet et al., 2009] differs from pure photochemical predictions, i.e. without meridional transport [Moses et al., 2005]. Differences between the observed distribution of hydrocarbons and 2D-photochemical predictions are likely to be an indicator of dynamical forcing.Disentangling the origin of water in the stratosphere of this planet has been a long-term issue. Due to Saturn’s cold tropopause trap, which acts as a transport barrier, the water vapor observed by the Infrared Space Observatory (ISO) [Feuchtgruber et al., 1997] has an external origin. Three external sources have been identified: (i) permanent flux from interplanetary dust particles, (ii) local sources form planetary environments (rings, satellites), (iii) large cometary impacts, similar to Shoemaker-Levy 9 on Jupiter. Previous observations of Saturn with Herschel’s Hsso program [Hartogh et al., 2009] led to the detection of a water torus around Saturn [Hartogh et al., 2011], fed by Enceladus’ geysers. A substantial fraction of this torus is predicted to be a local source of water for Saturn’s and its satellites, as it will spread in this system [Cassidy et al., 2010]. Using the new 2D-photochemical model, we test here the validity of Enceladus’ torus as the source of Saturn’s stratospheric water.References : Hue et al., in prep. Greathouse et al., 2008. AGU Fall Meeting

  4. 2D AND 3D dose verification at The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital using EPIDs

    NASA Astrophysics Data System (ADS)

    Mijnheer, Ben; Mans, Anton; Olaciregui-Ruiz, Igor; Sonke, Jan-Jakob; Tielenburg, Rene; Van Herk, Marcel; Vijlbrief, Ron; Stroom, Joep

    2010-11-01

    A review is given of the clinical use of EPID dosimetry in the Department of Radiation Oncology of The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital. All curative plans (almost all IMRT or VMAT) are verified with EPID dosimetry, mostly in vivo. The 2D approach for IMRT verification and the 3D method for VMAT verification are elucidated and their clinical implementation described. It has been shown that EPID dosimetry plays an important role in the total chain of verification procedures that are implemented in our department. It provides a safety net for advanced treatments such as IMRT and VMAT, as well as a full account of the dose delivered.

  5. Multicriteria optimization of the spatial dose distribution

    SciTech Connect

    Schlaefer, Alexander; Viulet, Tiberiu; Muacevic, Alexander; Fürweger, Christoph

    2013-12-15

    Purpose: Treatment planning for radiation therapy involves trade-offs with respect to different clinical goals. Typically, the dose distribution is evaluated based on few statistics and dose–volume histograms. Particularly for stereotactic treatments, the spatial dose distribution represents further criteria, e.g., when considering the gradient between subregions of volumes of interest. The authors have studied how to consider the spatial dose distribution using a multicriteria optimization approach.Methods: The authors have extended a stepwise multicriteria optimization approach to include criteria with respect to the local dose distribution. Based on a three-dimensional visualization of the dose the authors use a software tool allowing interaction with the dose distribution to map objectives with respect to its shape to a constrained optimization problem. Similarly, conflicting criteria are highlighted and the planner decides if and where to relax the shape of the dose distribution.Results: To demonstrate the potential of spatial multicriteria optimization, the tool was applied to a prostate and meningioma case. For the prostate case, local sparing of the rectal wall and shaping of a boost volume are achieved through local relaxations and while maintaining the remaining dose distribution. For the meningioma, target coverage is improved by compromising low dose conformality toward noncritical structures. A comparison of dose–volume histograms illustrates the importance of spatial information for achieving the trade-offs.Conclusions: The results show that it is possible to consider the location of conflicting criteria during treatment planning. Particularly, it is possible to conserve already achieved goals with respect to the dose distribution, to visualize potential trade-offs, and to relax constraints locally. Hence, the proposed approach facilitates a systematic exploration of the optimal shape of the dose distribution.

  6. A New 2D-Advection-Diffusion Model Simulating Trace Gas Distributions in the Lowermost Stratosphere

    NASA Astrophysics Data System (ADS)

    Hegglin, M. I.; Brunner, D.; Peter, T.; Wirth, V.; Fischer, H.; Hoor, P.

    2004-12-01

    Tracer distributions in the lowermost stratosphere are affected by both, transport (advective and non-advective) and in situ sources and sinks. They influence ozone photochemistry, radiative forcing, and heating budgets. In-situ measurements of long-lived species during eight measurement campaigns revealed relatively simple behavior of the tracers in the lowermost stratosphere when represented in an equivalent-latitude versus potential temperature framework. We here present a new 2D-advection-diffusion model that simulates the main transport pathways influencing the tracer distributions in the lowermost stratosphere. The model includes slow diabatic descent of aged stratospheric air and vertical and/or horizontal diffusion across the tropopause and within the lowermost stratosphere. The diffusion coefficients used in the model represent the combined effects of different processes with the potential of mixing tropospheric air into the lowermost stratosphere such as breaking Rossby and gravity waves, deep convection penetrating the tropopause, turbulent diffusion, radiatively driven upwelling etc. They were specified by matching model simulations to observed distributions of long-lived trace gases such as CO and N2O obtained during the project SPURT. The seasonally conducted campaigns allow us to study the seasonal dependency of the diffusion coefficients. Despite its simplicity the model yields a surprisingly good description of the small scale features of the measurements and in particular of the observed tracer gradients at the tropopause. The correlation coefficients between modeled and measured trace gas distributions were up to 0.95. Moreover, mixing across isentropes appears to be more important than mixing across surfaces of constant equivalent latitude (or PV). With the aid of the model, the distribution of the fraction of tropospheric air in the lowermost stratosphere can be determined.

  7. Distributed and coupled 2D electro-thermal model of power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Belkacem, Ghania; Lefebvre, Stéphane; Joubert, Pierre-Yves; Bouarroudj-Berkani, Mounira; Labrousse, Denis; Rostaing, Gilles

    2014-05-01

    The development of power electronics in the field of transportations (automotive, aeronautics) requires the use of power semiconductor devices providing protection and diagnostic functions. In the case of series protections power semiconductor devices which provide protection may operate in shortcircuit and act as a current limiting device. This mode of operations is very constraining due to the large dissipation of power. In these particular conditions of operation, electro-thermal models of power semiconductor devices are of key importance in order to optimize their thermal design and increase their reliability. The development of such an electro-thermal model for power MOSFET transistors based on the coupling between two computation softwares (Matlab and Cast3M) is described in this paper. The 2D electro-thermal model is able to predict (i) the temperature distribution on chip surface well as in the volume under short-circuit operations, (ii) the effect of the temperature on the distribution of the current flowing within the die and (iii) the effects of the ageing of the metallization layer on the current density and the temperature. In this paper, the electrical and thermal models are described as well as the implemented coupling scheme.

  8. Comparison of stress distribution between complete denture and implant-retained overdenture-2D FEA.

    PubMed

    Assunção, W G; Tabata, L F; Barão, V A R; Rocha, E P

    2008-10-01

    The aim of this study was to compare the stress distribution induced by posterior functional loads on conventional complete dentures and implant-retained overdentures with different attachment systems using a two-dimentional Finite Element Analysis (FEA-2D). Three models representative of edentulous mandible were constructed on AutoCAD software; Group A (control), a model of edentulous mandible supporting a complete denture; Group B, a model of edentulous mandible supporting an overdenture over two splinted implants connected with the bar-clip system; Group C, a model of edentulous mandible supporting an overdenture over two unsplinted implants with the O-ring system. Evaluation was conducted on Ansys software, with a vertical force of 100 N applied on the mandibular left first molar. When the stress was evaluated in supporting tissues, groups B (51.0 MPa) and C (52.6 MPa) demonstrated higher stress values than group A (10.1 MPa). Within the limits of this study, it may be concluded that the use of an attachment system increased stress values; furthermore, the use of splinted implants associated with the bar-clip attachment system favoured a lower stress distribution over the supporting tissue than the unsplinted implants with an O-ring abutment to retain the mandibular overdenture. PMID:18482352

  9. Drop size distribution comparisons between Parsivel and 2-D video disdrometers

    NASA Astrophysics Data System (ADS)

    Thurai, M.; Petersen, W. A.; Tokay, A.; Schultz, C.; Gatlin, P.

    2011-05-01

    Measurements from a 2-D video disdrometer (2DVD) have been used for drop size distribution (DSD) comparisons with co-located Parsivel measurements in Huntsville, Alabama. The comparisons were made in terms of the mass-weighted mean diameter, Dm, the standard deviation of the mass-spectrum, σm, and the rainfall rate, R, all based on 1-min DSD from the two instruments. Time series comparisons show close agreement in all three parameters for cases where R was less than 20 mm h-1. In four cases, discrepancies in all three parameters were seen for "heavy" events, with the Parsivel showing higher Dm, σm and R, when R reached high values (particularly above 30 mm h-1). Possible causes for the discrepancies include the presence of a small percentage of non-fully melted hydrometers, with higher than expected fall velocity and with very different axis ratios as compared with rain, indicating small hail or ice pellets or graupel. We also present here Parsivel-to-Parsivel comparisons as well as comparisons between two 2DVD instruments, namely a low-profile unit and the latest generation, "compact unit" which was installed at the same site in November 2009. The comparisons are included to assess the variability between the same types of instrument. Correlation coefficients and the fractional standard errors are compared.

  10. The delta envelope: A technique for dose distribution comparison

    SciTech Connect

    Blanpain, Baptiste; Mercier, David

    2009-03-15

    The {gamma} index is a tool that compares a dose distribution with a reference distribution by combining dose-difference and distance-to-agreement criteria. It has been widely used for ten years despite its high computational cost. This cost is due to both a search process for each reference point and the necessity to remove overestimations caused by the discrete nature of dose grids. The method proposed in this paper is much faster since it avoids both these problems. It consists in computing the {delta} envelope formed by the {gamma} ellipsoids around the points of the reference distribution. This {delta} envelope provides dose-difference tolerances that are then used to create new indices, called the {delta} indices, that provide useful information to interpret the deviations. Applied to both 1D and 2D test cases and compared to the {gamma} index, the {delta} indices proved to be very accurate and intuitive. Their computational efficiency was evaluated on a 3D case: the {delta} envelope can be computed in 8 s on a 250x250x50 grid. Moreover it can be precomputed if the reference dose is known in advance. Then the {delta} indices are obtained in less than 2 s.

  11. TH-C-19A-01: Analytic Design Method to Make a 2D Planar, Segmented Ion Chamber Water-Equivalent for Proton Dose Measurements

    SciTech Connect

    Harris, W; Hollebeek, R; Teo, B; Maughan, R; Dolney, D

    2014-06-15

    Purpose: Quality Assurance (QA) measurements of proton therapy fields must accurately measure steep longitudinal dose gradients as well as characterize the dose distribution laterally. Currently, available devices for two-dimensional field measurements perturb the dose distribution such that routine QA measurements performed at multiple depths require multiple field deliveries and are time consuming. Methods: A design procedure for a two-dimensional detector array is introduced whereby the proton energy loss and scatter are adjusted so that the downstream dose distribution is maintained to be equivalent to that which would occur in uniform water. Starting with the design for an existing, functional two-dimensional segmented ion chamber prototype, a compensating material is introduced downstream of the detector to simultaneously equate the energy loss and lateral scatter in the detector assembly to the values in water. An analytic formalism and procedure is demonstrated to calculate the properties of the compensating material in the general case of multiple layers of arbitrary material. The resulting design is validated with Monte Carlo simulations. Results: With respect to the specific prototype design considered, the results indicate that a graphite compensating layer of the proper dimensions can yield proton beam range perturbation less than 0.1mm and beam sigma perturbation less than 2% across the energy range of therapeutic proton beams. Conclusion: We have shown that, for a 2D gas-filled detector array, a graphite-compensating layer can balance the energy loss and multiple Coulomb scattering relative to uniform water. We have demonstrated an analytic formalism and procedure to determine a compensating material in the general case of multiple layers of arbitrary material. This work was supported by the US Army Medical Research and Materiel Command under Contract Agreement No. DAMD17-W81XWH-04-2-0022. Opinions, interpretations, conclusions and recommendations

  12. Spatial Correlation of Rain Drop Size Distribution from Polarimetric Radar and 2D-Video Disdrometers

    NASA Technical Reports Server (NTRS)

    Thurai, Merhala; Bringi, Viswanathan; Gatlin, Patrick N.; Wingo, Matt; Petersen, Walter Arthur; Carey, Lawrence D.

    2011-01-01

    Spatial correlations of two of the main rain drop-size distribution (DSD) parameters - namely the median-volume diameter (Do) and the normalized intercept parameter (Nw) - as well as rainfall rate (R) are determined from polarimetric radar measurements, with added information from 2D video disdrometer (2DVD) data. Two cases have been considered, (i) a widespread, long-duration rain event in Huntsville, Alabama, and (ii) an event with localized intense rain-cells within a convection line which occurred during the MC3E campaign. For the first case, data from a C-band polarimetric radar (ARMOR) were utilized, with two 2DVDs acting as ground-truth , both being located at the same site 15 km from the radar. The radar was operated in a special near-dwelling mode over the 2DVDs. In the second case, data from an S-band polarimetric radar (NPOL) data were utilized, with at least five 2DVDs located between 20 and 30 km from the radar. In both rain event cases, comparisons of Do, log10(Nw) and R were made between radar derived estimates and 2DVD-based measurements, and were found to be in good agreement, and in both cases, the radar data were subsequently used to determine the spatial correlations For the first case, the spatial decorrelation distance was found to be smallest for R (4.5 km), and largest fo Do (8.2 km). For log10(Nw) it was 7.2 km (Fig. 1). For the second case, the corresponding decorrelation distances were somewhat smaller but had a directional dependence. In Fig. 2, we show an example of Do comparisons between NPOL based estimates and 1-minute DSD based estimates from one of the five 2DVDs.

  13. Dosimetric quality assurance of highly conformal external beam treatments: from 2D phantom comparisons to 4D patient dose reconstruction

    NASA Astrophysics Data System (ADS)

    Feygelman, V.; Nelms, B.

    2013-06-01

    As IMRT technology continues to evolve, so do the dosimetric QA methods. A historical review of those is presented, starting with longstanding techniques such as film and ion chamber in a phantom and progressing towards 3D and 4D dose reconstruction in the patient. Regarding patient-specific QA, we envision that the currently prevalent limited comparison of dose distributions in the phantom by γ-analysis will be eventually replaced by clinically meaningful patient dose analyses with improved sensitivity and specificity. In a larger sense, we envision a future of QA built upon lessons from the rich history of "quality" as a science and philosophy. This future will aim to improve quality (and ultimately reduce cost) via advanced commissioning processes that succeed in detecting and rooting out systematic errors upstream of patient treatment, thus reducing our reliance on, and the resource burden associated with, per-beam/per-plan inspection.

  14. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    NASA Astrophysics Data System (ADS)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.

  15. Comparison of 2D and 3D Imaging and Treatment Planning for Postoperative Vaginal Apex High-Dose Rate Brachytherapy for Endometrial Cancer

    SciTech Connect

    Russo, James K.; Armeson, Kent E.; Richardson, Susan

    2012-05-01

    Purpose: To evaluate bladder and rectal doses using two-dimensional (2D) and 3D treatment planning for vaginal cuff high-dose rate (HDR) in endometrial cancer. Methods and Materials: Ninety-one consecutive patients treated between 2000 and 2007 were evaluated. Seventy-one and 20 patients underwent 2D and 3D planning, respectively. Each patient received six fractions prescribed at 0.5 cm to the superior 3 cm of the vagina. International Commission on Radiation Units and Measurements (ICRU) doses were calculated for 2D patients. Maximum and 2-cc doses were calculated for 3D patients. Organ doses were normalized to prescription dose. Results: Bladder maximum doses were 178% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were no different than ICRU doses (p = 0.22). Two-cubic centimeter doses were 59% of maximum doses (p < 0.0001). Rectal maximum doses were 137% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 87% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 64% of maximum doses (p < 0.0001). Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final bladder dose to within 10% for 44%, 59%, 83%, 82%, and 89% of patients by using the ICRU dose, and for 45%, 55%, 80%, 85%, and 85% of patients by using the maximum dose, and for 37%, 68%, 79%, 79%, and 84% of patients by using the 2-cc dose. Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final rectal dose to within 10% for 100%, 100%, 100%, 100%, and 100% of patients by using the ICRU dose, and for 60%, 65%, 70%, 75%, and 75% of patients by using the maximum dose, and for 68%, 95%, 84%, 84%, and 84% of patients by using the 2-cc dose. Conclusions: Doses to organs at risk vary depending on the calculation method. In some cases, final dose accuracy appears to plateau after the third fraction, indicating that simulation and planning may not be necessary in all fractions. A clinically relevant level of accuracy should be determined and further research conducted to address

  16. Dose distributions in regions containing beta sources: Irregularly shaped source distributions in homogeneous media

    SciTech Connect

    Werner, B.L. )

    1991-11-01

    Methods are introduced by which dose rate distributions due to nonuniform, irregularly shaped distributions of beta emitters can be calculated using dose rate distributions for uniform, spherical source distributions. The dose rate distributions can be written in the MIRD formalism.

  17. Volumetric (3D) bladder dose parameters are more reproducible than point (2D) dose parameters in vaginal vault high-dose-rate brachytherapy

    PubMed Central

    Sapienza, Lucas Gomes; Flosi, Adriana; Aiza, Antonio; de Assis Pellizzon, Antonio Cassio; Chojniak, Rubens; Baiocchi, Glauco

    2016-01-01

    There is no consensus on the use of computed tomography in vaginal cuff brachytherapy (VCB) planning. The purpose of this study was to prospectively determine the reproducibility of point bladder dose parameters (DICRU and maximum dose), compared with volumetric-based parameters. Twenty-two patients who were treated with high-dose-rate (HDR) VCB underwent simulation by computed tomography (CT-scan) with a Foley catheter at standard tension (position A) and extra tension (position B). CT-scan determined the bladder ICRU dose point in both positions and compared the displacement and recorded dose. Volumetric parameters (D0.1cc, D1.0cc, D2.0cc, D4.0cc and D50%) and point dose parameters were compared. The average spatial shift in ICRU dose point in the vertical, longitudinal and lateral directions was 2.91 mm (range: 0.10–9.00), 12.04 mm (range: 4.50–24.50) and 2.65 mm (range: 0.60–8.80), respectively. The DICRU ratio for positions A and B was 1.64 (p < 0.001). Moreover, a decrease in Dmax was observed (p = 0.016). Tension level of the urinary catheter did not affect the volumetric parameters. Our data suggest that point parameters (DICRU and Dmax) are not reproducible and are not the ideal choice for dose reporting. PMID:27296459

  18. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors.

    PubMed

    Hicks, J K; Bishop, J R; Sangkuhl, K; Müller, D J; Ji, Y; Leckband, S G; Leeder, J S; Graham, R L; Chiulli, D L; LLerena, A; Skaar, T C; Scott, S A; Stingl, J C; Klein, T E; Caudle, K E; Gaedigk, A

    2015-08-01

    Selective serotonin reuptake inhibitors (SSRIs) are primary treatment options for major depressive and anxiety disorders. CYP2D6 and CYP2C19 polymorphisms can influence the metabolism of SSRIs, thereby affecting drug efficacy and safety. We summarize evidence from the published literature supporting these associations and provide dosing recommendations for fluvoxamine, paroxetine, citalopram, escitalopram, and sertraline based on CYP2D6 and/or CYP2C19 genotype (updates at www.pharmgkb.org). PMID:25974703

  19. Determination of dose distributions and parameter sensitivity

    SciTech Connect

    Napier, B.A.; Farris, W.T.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow's milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows' milk from Feeding Regime 1 as described in Calculation 001.

  20. The evaluation of a 2D diode array in “magic phantom” for use in high dose rate brachytherapy pretreatment quality assurance

    SciTech Connect

    Espinoza, A.; Petasecca, M.; Fuduli, I.; Lerch, M. L. F.; Rosenfeld, A. B.; Howie, A.; Bucci, J.; Corde, S.; Jackson, M.

    2015-02-15

    Purpose: High dose rate (HDR) brachytherapy is a treatment method that is used increasingly worldwide. The development of a sound quality assurance program for the verification of treatment deliveries can be challenging due to the high source activity utilized and the need for precise measurements of dwell positions and times. This paper describes the application of a novel phantom, based on a 2D 11 × 11 diode array detection system, named “magic phantom” (MPh), to accurately measure plan dwell positions and times, compare them directly to the treatment plan, determine errors in treatment delivery, and calculate absorbed dose. Methods: The magic phantom system was CT scanned and a 20 catheter plan was generated to simulate a nonspecific treatment scenario. This plan was delivered to the MPh and, using a custom developed software suite, the dwell positions and times were measured and compared to the plan. The original plan was also modified, with changes not disclosed to the primary authors, and measured again using the device and software to determine the modifications. A new metric, the “position–time gamma index,” was developed to quantify the quality of a treatment delivery when compared to the treatment plan. The MPh was evaluated to determine the minimum measurable dwell time and step size. The incorporation of the TG-43U1 formalism directly into the software allows for dose calculations to be made based on the measured plan. The estimated dose distributions calculated by the software were compared to the treatment plan and to calibrated EBT3 film, using the 2D gamma analysis method. Results: For the original plan, the magic phantom system was capable of measuring all dwell points and dwell times and the majority were found to be within 0.93 mm and 0.25 s, respectively, from the plan. By measuring the altered plan and comparing it to the unmodified treatment plan, the use of the position–time gamma index showed that all modifications made could be

  1. Electron spectra derived from depth dose distributions.

    PubMed

    Faddegon, B A; Blevis, I

    2000-03-01

    The technique of extracting electron energy spectra from measured distributions of dose along the central axis of clinical electron beams is explored in detail. Clinical spectra measured with this simple spectroscopy tool are shown to be sufficient in accuracy and resolution for use in Monte Carlo treatment planning. A set of monoenergetic depth dose curves of appropriate energy spacing, precalculated with Monte Carlo for a simple beam model, are unfolded from the measured depth dose curve. The beam model is comprised of a point electron and photon source placed in vacuum with a source-to-surface distance of 100 cm. Systematic error introduced by this model affects the calculated depth dose curve by no more than 2%/2 mm. The component of the dose due to treatment head bremsstrahlung, subtracted prior to unfolding, is estimated from the thin-target Schiff spectrum within 0.3% of the maximum total dose (from electrons and photons) on the beam axis. Optimal unfolding parameters are chosen, based on physical principles. Unfolding is done with the public-domain code FERDO. Comparisons were made to previously published spectra measured with magnetic spectroscopy and to spectra we calculated with Monte Carlo treatment head simulation. The approach gives smooth spectra with an average resolution for the 27 beams studied of 16+/-3% of the mean peak energy. The mean peak energy of the magnetic spectrometer spectra was calculated within 2% for the AECL T20 scanning beam accelerators, 3% for the Philips SL25 scattering foil based machine. The number of low energy electrons in Monte Carlo spectra is estimated by unfolding with an accuracy of 2%, relative to the total number of electrons in the beam. Central axis depth dose curves calculated from unfolded spectra are within 0.5%/0.5 mm of measured and simulated depth dose curves, except near the practical range, where 1%/1 mm errors are evident. PMID:10757603

  2. Evaluation of Hydrus-2D model for solute distribution in subsurface drip

    NASA Astrophysics Data System (ADS)

    Souza, Claudinei; Bizari, Douglas; Grecco, Katarina

    2015-04-01

    The competition for water use between agriculture, industry and population has become intense over the years, requiring a rational use of this resource for food production. The subsurface drip irrigation can help producers with the optimization of operating parameters such as frequency and duration of irrigation, flow, spacing and depth of the dripper installation. This information can be obtained by numerical simulations using mathematical models, thus the aim of this study was to evaluate the HYDRUS-2D model from experimental data to predict the size of the wet bulbs generated by emitters of different application rates (1.0 and 1.6 L h-1). The results showed that horizontal displacement (bulb diameter) remained the largest in all the bulbs, observed both in experimental trials and estimated by the model and the correlation between them was high, above 0.90 to below 16% error. We conclude that the HYDRUS-2D model can be used to estimate the dimensions of the wet bulb getting new information on the sizing of the irrigation system.

  3. 2D divertor heat flux distribution using a 3D heat conduction solver in National Spherical Torus Experiment.

    PubMed

    Gan, K F; Ahn, J-W; Park, J-W; Maingi, R; McLean, A G; Gray, T K; Gong, X; Zhang, X D

    2013-02-01

    The divertor heat flux footprint in tokamaks is often observed to be non-axisymmetric due to intrinsic error fields, applied 3D magnetic fields or during transients such as edge localized modes. Typically, only 1D radial heat flux profiles are analyzed; however, analysis of the full 2D divertor measurements provides opportunities to study the asymmetric nature of the deposited heat flux. To accomplish this an improved 3D Fourier analysis method has been successfully applied in a heat conduction solver (TACO) to determine the 2D heat flux distribution at the lower divertor surface in the National Spherical Torus Experiment (NSTX) tokamak. This advance enables study of helical heat deposition onto the divertor. In order to account for heat transmission through poorly adhered surface layers on the divertor plate, a heat transmission coefficient, defined as the surface layer thermal conductivity divided by the thickness of the layer, was introduced to the solution of heat conduction equation. This coefficient is denoted as α and a range of values were tested in the model to ensure a reliable heat flux calculation until a specific value of α led to the constant total deposited energy in the numerical solution after the end of discharge. A comparison between 1D heat flux profiles from TACO and from a 2D heat flux calculation code, THEODOR, shows good agreement. Advantages of 2D heat flux distribution over the conventional 1D heat flux profile are also discussed, and examples of 2D data analysis in the study of striated heat deposition pattern as well as the toroidal degree of asymmetry of peak heat flux and heat flux width are demonstrated. PMID:23464209

  4. 2D divertor heat flux distribution using a 3D heat conduction solver in National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Gan, K. F.; Ahn, J.-W.; Park, J.-W.; Maingi, R.; McLean, A. G.; Gray, T. K.; Gong, X.; Zhang, X. D.

    2013-02-01

    The divertor heat flux footprint in tokamaks is often observed to be non-axisymmetric due to intrinsic error fields, applied 3D magnetic fields or during transients such as edge localized modes. Typically, only 1D radial heat flux profiles are analyzed; however, analysis of the full 2D divertor measurements provides opportunities to study the asymmetric nature of the deposited heat flux. To accomplish this an improved 3D Fourier analysis method has been successfully applied in a heat conduction solver (TACO) to determine the 2D heat flux distribution at the lower divertor surface in the National Spherical Torus Experiment (NSTX) tokamak. This advance enables study of helical heat deposition onto the divertor. In order to account for heat transmission through poorly adhered surface layers on the divertor plate, a heat transmission coefficient, defined as the surface layer thermal conductivity divided by the thickness of the layer, was introduced to the solution of heat conduction equation. This coefficient is denoted as α and a range of values were tested in the model to ensure a reliable heat flux calculation until a specific value of α led to the constant total deposited energy in the numerical solution after the end of discharge. A comparison between 1D heat flux profiles from TACO and from a 2D heat flux calculation code, THEODOR, shows good agreement. Advantages of 2D heat flux distribution over the conventional 1D heat flux profile are also discussed, and examples of 2D data analysis in the study of striated heat deposition pattern as well as the toroidal degree of asymmetry of peak heat flux and heat flux width are demonstrated.

  5. Generation and use of measurement-based 3-D dose distributions for 3-D dose calculation verification.

    PubMed

    Stern, R L; Fraass, B A; Gerhardsson, A; McShan, D L; Lam, K L

    1992-01-01

    A 3-D radiation therapy treatment planning system calculates dose to an entire volume of points and therefore requires a 3-D distribution of measured dose values for quality assurance and dose calculation verification. To measure such a volumetric distribution with a scanning ion chamber is prohibitively time consuming. A method is presented for the generation of a 3-D grid of dose values based on beam's-eye-view (BEV) film dosimetry. For each field configuration of interest, a set of BEV films at different depths is obtained and digitized, and the optical densities are converted to dose. To reduce inaccuracies associated with film measurement of megavoltage photon depth doses, doses on the different planes are normalized using an ion-chamber measurement of the depth dose. A 3-D grid of dose values is created by interpolation between BEV planes along divergent beam rays. This matrix of measurement-based dose values can then be compared to calculations over the entire volume of interest. This method is demonstrated for three different field configurations. Accuracy of the film-measured dose values is determined by 1-D and 2-D comparisons with ion chamber measurements. Film and ion chamber measurements agree within 2% in the central field regions and within 2.0 mm in the penumbral regions. PMID:1620042

  6. Be2D: A model to understand the distribution of meteoric 10Be in soilscapes

    NASA Astrophysics Data System (ADS)

    Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Govers, Gerard

    2016-04-01

    Cosmogenic nuclides have revolutionised our understanding of earth surface process rates. They have become one of the standard tools to quantify soil production by weathering, soil redistribution and erosion. Especially Beryllium-10 has gained much attention due to its long half-live and propensity to be relatively conservative in the landscape. The latter makes 10Be an excellent tool to assess denudation rates over the last 1000 to 100 × 103 years, bridging the anthropogenic and geological time scale. Nevertheless, the mobility of meteoric 10Be in soil systems makes translation of meteoric 10Be inventories into erosion and deposition rates difficult. Here we present a coupled soil hillslope model, Be2D, that is applied to synthetic and real topography to address the following three research questions. (i) What is the influence of vertical meteoric Be10 mobility, caused by chemical mobility, clay translocation and bioturbation, on its lateral redistribution over the soilscape, (ii) How does vertical mobility influence erosion rates and soil residence times inferred from meteoric 10Be inventories and (iii) To what extent can a tracer with a half-life of 1.36 Myr be used to distinguish between natural and human-disturbed soil redistribution rates? The model architecture of Be2D is designed to answer these research questions. Be2D is a dynamic model including physical processes such as soil formation, physical weathering, clay migration, bioturbation, creep, overland flow and tillage erosion. Pathways of meteoric 10Be mobility are simulated using a two step approach which is updated each timestep. First, advective and diffusive mobility of meteoric 10Be is simulated within the soil profile and second, lateral redistribution because of lateral soil fluxes is calculated. The performance and functionality of the model is demonstrated through a number of synthetic and real model runs using existing datasets of meteoric 10Be from case-studies in southeastern US. Brute

  7. Calculation of Target-Specific Point Distribution for 2D Mobile Laser Scanners

    PubMed Central

    Cahalane, Conor; McElhinney, Conor P.; Lewis, Paul; McCarthy, Tim

    2014-01-01

    The current generation of Mobile Mapping Systems (MMSs) capture high density spatial data in a short time-frame. The quantity of data is difficult to predict as there is no concrete understanding of the point density that different scanner configurations and hardware settings will exhibit for objects at specific distances. Obtaining the required point density impacts survey time, processing time, data storage and is also the underlying limit of automated algorithms. This paper details a novel method for calculating point and profile information for terrestrial MMSs which are required for any point density calculation. Through application of algorithms utilising 3D surface normals and 2D geometric formulae, the theoretically optimal profile spacing and point spacing are calculated on targets. Both of these elements are a major factor in calculating point density on arbitrary objects, such as road signs, poles or buildings-all important features in asset management surveys. PMID:24871989

  8. Study of the height and density distributions of the 2-D granular system under vertical vibration

    NASA Astrophysics Data System (ADS)

    Pak, Hyuk Kyu; Kim, Kipom; Jun, Yonggun

    1998-03-01

    Melecular dynamic simulations and experiments are used to investigate the pattern formation of the granular materials in a vertically vibrated rigid container. The height and density distributions of the peak of the patterns in two dimensional system are measured using the simulation. The height distribution agrees with the experimental observation. At the peak of height of the pattern the density is observed minimum. From the information of the vertical velocities of the particles, the momentum flux distributions are studied also.

  9. An application of the distributed hydrologic model CASC2D to a tropical montane watershed

    NASA Astrophysics Data System (ADS)

    Marsik, Matt; Waylen, Peter

    2006-11-01

    SummaryIncreased stormflow in the Quebrada Estero watershed (2.5 km 2), in the northwestern Central Valley tectonic depression of Costa Rica, reportedly has caused flooding of the city of San Ramón in recent decades. Although scientifically untested, urban expansion was deemed the cause and remedial measures were recommended by the Programa de Investigación en Desarrollo Humano Sostenible (ProDUS). CASC2D, a physically-based, spatially explicit hydrologic model, was constructed and calibrated to a June 10th 2002 storm that delivered 110.5 mm of precipitation in 4.5 h visibly exceeded the bankfull stage (0.9 m) of the Quebrada flooding portions of San Ramón. The calibrated hydrograph showed a peak discharge 16.68% (2.5 m 3 s -1) higher, an above flood stage duration 20% shorter, and time to peak discharge 11 min later than the same observed discharge hydrograph characteristics. Simulations of changing land cover conditions from 1979 to 1999 showed an increase also in the peak discharge, above flood stage duration, and time to peak discharge. Analysis using a modified location quotient identified increased urbanization in lower portions of the watershed over the time period studied. These results suggest that increased urbanization in the Quebrada Estero watershed have increased flooding peaks, and durations above threshold, confirming the ProDUS report. These results and the CASC2D model offer an easy-to-use, pragmatic planning tool for policymakers in San Ramón to assess future development scenarios and their potential flooding impacts to San Ramón.

  10. Ullmann coupling reaction of aryl chlorides on Au(111) using dosed Cu as a catalyst and the programmed growth of 2D covalent organic frameworks.

    PubMed

    Shi, Ke Ji; Zhang, Xin; Shu, Chen Hui; Li, Deng Yuan; Wu, Xin Yan; Liu, Pei Nian

    2016-07-01

    The efficiency of Ullmann reaction of aryl chlorides on an Au(111) surface has been substantially increased by using dosed Cu as a catalyst. The different reactivity of aryl bromides and aryl chlorides has been exploited to design a programmed, on-surface synthesis to form 2D covalent organic frameworks. PMID:27334002

  11. Electron Momentum Distribution Mapping of Trans-Stilbene Projected to [101] by Positron 2D-ACAR

    NASA Astrophysics Data System (ADS)

    Selvakumar, S.; Sivaji, K.; Smith, S. V.

    Electron momentum distribution (EMD) on trans-stilbene single crystal projected along [101] direction has been studied by using positron two dimensional -angular correlation of annihilation radiation (2D-ACAR). The projected EMD is explained with respect to the molecular arrangement in the plane. The EMD features reflected the delocalized electronic states in [101] direction. The results of EMD mapping did not show a characteristic ellipsoidal distribution at lower momentum region (LMR) as observed in trans-stilbene projected to [010] direction at room temperature. The LMR region exhibits a hexagonal contour projected to [101] direction.

  12. 2D mapping of the MV photon fluence and 3D dose reconstruction in real time for quality assurance during radiotherapy treatment

    NASA Astrophysics Data System (ADS)

    Alrowaili, Z. A.; Lerch, M. L. F.; Carolan, M.; Fuduli, I.; Porumb, C.; Petasecca, M.; Metcalfe, P.; Rosenfeld, A. B.

    2015-09-01

    Summary: the photon irradiation response of a 2D solid state transmission detector array mounted in a linac block tray is used to reconstruct the projected 2D dose map in a homogenous phantom along rays that diverge from the X-ray source and pass through each of the 121 detector elements. A unique diode response-to-dose scaling factor, applied to all detectors, is utilised in the reconstruction to demonstrate that real time QA during radiotherapy treatment is feasible. Purpose: to quantitatively demonstrate reconstruction of the real time radiation dose from the irradiation response of the 11×11 silicon Magic Plate (MP) detector array operated in Transmission Mode (MPTM). Methods and Materials: in transmission mode the MP is positioned in the block tray of a linac so that the central detector of the array lies on the central axis of the radiation beam. This central detector is used to determine the conversion factor from measured irradiation response to reconstructed dose at any point on the central axis within a homogenous solid water phantom. The same unique conversion factor is used for all MP detector elements lying within the irradiation field. Using the two sets of data, the 2D or 3D dose map is able to be reconstructed in the homogenous phantom. The technique we have developed is illustrated here for different depths and irradiation field sizes, (5 × 5 cm2 to 40 × 40 cm2) as well as a highly non uniform irradiation field. Results: we find that the MPTM response is proportional to the projected 2D dose map measured at a specific phantom depth, the "sweet depth". A single factor, for several irradiation field sizes and depths, is derived to reconstruct the dose in the phantom along rays projected from the photon source through each MPTM detector element. We demonstrate that for all field sizes using the above method, the 2D reconstructed and measured doses agree to within ± 2.48% (2 standard deviation) for all in-field MP detector elements. Conclusions: a

  13. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration

    NASA Astrophysics Data System (ADS)

    Soto, Marcelo A.; Ramírez, Jaime A.; Thévenaz, Luc

    2016-03-01

    Distributed optical fibre sensors possess the unique capability of measuring the spatial and temporal map of environmental quantities that can be of great interest for several field applications. Although existing methods for performance enhancement have enabled important progresses in the field, they do not take full advantage of all information present in the measured data, still giving room for substantial improvement over the state-of-the-art. Here we propose and experimentally demonstrate an approach for performance enhancement that exploits the high level of similitude and redundancy contained on the multidimensional information measured by distributed fibre sensors. Exploiting conventional image and video processing, an unprecedented boost in signal-to-noise ratio and measurement contrast is experimentally demonstrated. The method can be applied to any white-noise-limited distributed fibre sensor and can remarkably provide a 100-fold improvement in the sensor performance with no hardware modification.

  14. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration

    PubMed Central

    Soto, Marcelo A.; Ramírez, Jaime A.; Thévenaz, Luc

    2016-01-01

    Distributed optical fibre sensors possess the unique capability of measuring the spatial and temporal map of environmental quantities that can be of great interest for several field applications. Although existing methods for performance enhancement have enabled important progresses in the field, they do not take full advantage of all information present in the measured data, still giving room for substantial improvement over the state-of-the-art. Here we propose and experimentally demonstrate an approach for performance enhancement that exploits the high level of similitude and redundancy contained on the multidimensional information measured by distributed fibre sensors. Exploiting conventional image and video processing, an unprecedented boost in signal-to-noise ratio and measurement contrast is experimentally demonstrated. The method can be applied to any white-noise-limited distributed fibre sensor and can remarkably provide a 100-fold improvement in the sensor performance with no hardware modification. PMID:26927698

  15. Origins, distribution and expression of the Duarte-2 (D2) allele of galactose-1-phosphate uridylyltransferase

    PubMed Central

    Carney, Amanda E.; Sanders, Rebecca D.; Garza, Kerry R.; McGaha, Lee Anne; Bean, Lora J. H.; Coffee, Bradford W.; Thomas, James W.; Cutler, David J.; Kurtkaya, Natalie L.; Fridovich-Keil, Judith L.

    2009-01-01

    Duarte galactosemia is a mild to asymptomatic condition that results from partial impairment of galactose-1-phosphate uridylyltransferase (GALT). Patients with Duarte galactosemia demonstrate reduced GALT activity and carry one profoundly impaired GALT allele (G) along with a second, partially impaired GALT allele (Duarte-2, D2). Molecular studies reveal at least five sequence changes on D2 alleles: a p.N314D missense substitution, three intronic base changes and a 4 bp deletion in the 5′ proximal sequence. The four non-coding sequence changes are unique to D2. The p.N314D substitution, however, is not; it is found together with a silent polymorphism, p.L218(TTA), on functionally normal Duarte-1 alleles (D1, also called Los Angeles or LA alleles). The HapMap database reveals that p.N314D is a common human variant, and cross-species comparisons implicate D314 as the ancestral allele. The p.N314D substitution is also functionally neutral in mammalian cell and yeast expression studies. In contrast, the 4 bp 5′ deletion characteristic of D2 alleles appears to be functionally impaired in reporter gene transfection studies. Here we present allele-specific qRT–PCR evidence that D2 alleles express less mRNA in vivo than their wild-type counterparts; the difference is small but statistically significant. Furthermore, we characterize the prevalence of the 4 bp deletion in GG, NN and DG populations; the deletion appears exclusive to D2 alleles. Combined, these data strongly implicate the 4 bp 5′ deletion as a causal mutation in Duarte galactosemia and suggest that direct tests for this deletion, as proposed here, could enhance or supplant current tests, which define D2 alleles on the basis of the presence and absence of linked coding sequence polymorphisms. PMID:19224951

  16. Calculation of external dose from distributed source

    SciTech Connect

    Kocher, D.C.

    1986-01-01

    This paper discusses a relatively simple calculational method, called the point kernel method (Fo68), for estimating external dose from distributed sources that emit photon or electron radiations. The principles of the point kernel method are emphasized, rather than the presentation of extensive sets of calculations or tables of numerical results. A few calculations are presented for simple source geometries as illustrations of the method, and references and descriptions are provided for other caluclations in the literature. This paper also describes exposure situations for which the point kernel method is not appropriate and other, more complex, methods must be used, but these methods are not discussed in any detail.

  17. Influence of anthraquinone scaffold on E/Z isomer distribution of two thiosemicarbazone derivatives. 2D NMR and DFT studies

    NASA Astrophysics Data System (ADS)

    Marković, Violeta; Joksović, Milan D.; Marković, Svetlana; Jakovljević, Ivan

    2014-01-01

    A distribution of possible isomeric and tautomeric forms of two tautomerizable anthraquinone-thiosemicarbazones with pronounced cytotoxic potential was investigated using 2D NMR and DFT studies. Conformational analysis of the E and Z isomers of both thiosemicarbazones was performed to find out the most stable conformation for each molecule. It was found that superior stability of E-isomers results from ten-membered intramolecular hydrogen bond between thiosemicarbazone N2H and anthraquinone carbonyl group. This hydrogen bond is stronger than that between thiosemicarbazone N2H and ester oxygen, owing to the large partial negative charge on the anthraquinone oxygen.

  18. Electron-positron momentum density distribution of Gd from 2D ACAR data via Maximum Entropy and Cormack's methods

    NASA Astrophysics Data System (ADS)

    Pylak, M.; Kontrym-Sznajd, G.; Dobrzyński, L.

    2011-08-01

    A successful application of the Maximum Entropy Method (MEM) to the reconstruction of electron-positron momentum density distribution in gadolinium out of the experimental of 2D ACAR data is presented. Formally, the algorithm used was prepared for two-dimensional reconstructions from line integrals. For the first time the results of MEM, applied to such data, are compared in detail with the ones obtained by means of Cormack's method. It is also shown how the experimental uncertainties may influence the results of the latter analysis. Preliminary calculations, using WIEN2k code, of band structure and Fermi surface have been done as well.

  19. Distributed Computing Architecture for Image-Based Wavefront Sensing and 2 D FFTs

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey S.; Dean, Bruce H.; Haghani, Shadan

    2006-01-01

    Image-based wavefront sensing (WFS) provides significant advantages over interferometric-based wavefi-ont sensors such as optical design simplicity and stability. However, the image-based approach is computational intensive, and therefore, specialized high-performance computing architectures are required in applications utilizing the image-based approach. The development and testing of these high-performance computing architectures are essential to such missions as James Webb Space Telescope (JWST), Terrestial Planet Finder-Coronagraph (TPF-C and CorSpec), and Spherical Primary Optical Telescope (SPOT). The development of these specialized computing architectures require numerous two-dimensional Fourier Transforms, which necessitate an all-to-all communication when applied on a distributed computational architecture. Several solutions for distributed computing are presented with an emphasis on a 64 Node cluster of DSPs, multiple DSP FPGAs, and an application of low-diameter graph theory. Timing results and performance analysis will be presented. The solutions offered could be applied to other all-to-all communication and scientifically computationally complex problems.

  20. An active microwave imaging system for reconstruction of 2-D electrical property distributions.

    PubMed

    Meaney, P M; Paulsen, K D; Hartov, A; Crane, R K

    1995-10-01

    The goal of this work is to develop a microwave-based imaging system for hyperthermia treatment monitoring and assessment. Toward this end, a four transmit channel and four receive channel hardware device and concomitant image reconstruction algorithm have been realized. The hardware is designed to measure electric fields (i.e., amplitude and phase) at various locations in a phantom tank with and without the presence of various heterogeneities using standard heterodyning principles. Particular attention has been paid to designing a receiver with better than 115 dB of linear dynamic range which is necessary for imaging biological tissue which often has very high conductivity, especially for tissues with high water content. A calibration procedure has been developed to compensate for signal loss due to three-dimensional radiation in the measured data, since the reconstruction process is only two-dimensional at the present time. Results are shown which demonstrate the stability and accuracy of the measurement system, the extent to which the forward computational model agrees with the measured field distribution when the electrical properties are known, and image reconstructions of electrically unknown targets of varying diameter. In the latter case, images of both the reactive and resistive component of the electrical property distribution have been recoverable. Quantitative information on object location, size, and electrical properties results when the target is approximately one-half wavelength in size. Images of smaller objects lack the same level of quantitative information, but remain qualitatively correct. PMID:8582719

  1. Influence of CYP2D6 activity on the pharmacokinetics and pharmacodynamics of a single 20 mg dose of ibogaine in healthy volunteers.

    PubMed

    Glue, Paul; Winter, Helen; Garbe, Kira; Jakobi, Hannah; Lyudin, Alexander; Lenagh-Glue, Zoe; Hung, C Tak

    2015-06-01

    Conversion of ibogaine to its active metabolite noribogaine appears to be mediated primarily by CYP2D6. We compared 168 hours pharmacokinetic profiles of both analytes after a single oral 20 mg dose of ibogaine in 21 healthy subjects who had been pretreated for 6 days with placebo or the CYP2D6 inhibitor paroxetine. In placebo-pretreated subjects, ibogaine was rapidly converted to noribogaine. Median peak noribogaine concentrations occurred at 4 hours. Compared with placebo-pretreated subjects, paroxetine-pretreated subjects had rapid (Tmax  = 1.5 hours) and substantial absorption of ibogaine, with detectable levels out to 72 hours, and an elimination half-life of 10.2 hours. In this group, ibogaine was also rapidly converted to noribogaine with a median Tmax of 3 hours. Extent of noribogaine exposure was similar in both groups. CYP2D6 phenotype was robustly correlated with ibogaine AUC0-t (r = 0.82) and Cmax (r = 0.77). Active moiety (ibogaine plus noribogaine) exposure was ∼2-fold higher in paroxetine-pretreated subjects. Single 20 mg ibogaine doses were safe and well tolerated in all subjects. The doubling of exposure to active moiety in subjects with reduced CYP2D6 activity suggests it may be prudent to genotype patients awaiting ibogaine treatment, and to at least halve the intended dose of ibogaine in CYP2D6 poor metabolizers. PMID:25651476

  2. Assessing HYDRUS-2D model to estimate soil water contents and olive tree transpiration fluxes under different water distribution systems

    NASA Astrophysics Data System (ADS)

    Autovino, Dario; Negm, Amro; Rallo, Giovanni; Provenzano, Giuseppe

    2016-04-01

    In Mediterranean countries characterized by limited water resources for agricultural and societal sectors, irrigation management plays a major role to improve water use efficiency at farm scale, mainly where irrigation systems are correctly designed to guarantee a suitable application efficiency and the uniform water distribution throughout the field. In the last two decades, physically-based agro-hydrological models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere (SPA) system. Mechanistic models like HYDRUS 2D/3D (Šimunek et al., 2011) have been proposed to simulate all the components of water balance, including actual crop transpiration fluxes estimated according to a soil potential-dependent sink term. Even though the suitability of these models to simulate the temporal dynamics of soil and crop water status has been reported in the literature for different horticultural crops, a few researches have been considering arboreal crops where the higher gradients of root water uptake are the combination between the localized irrigation supply and the three dimensional root system distribution. The main objective of the paper was to assess the performance of HYDRUS-2D model to evaluate soil water contents and transpiration fluxes of an olive orchard irrigated with two different water distribution systems. Experiments were carried out in Castelvetrano (Sicily) during irrigation seasons 2011 and 2012, in a commercial farm specialized in the production of table olives (Olea europaea L., var. Nocellara del Belice), representing the typical variety of the surrounding area. During the first season, irrigation water was provided by a single lateral placed along the plant row with four emitters per plant (ordinary irrigation), whereas during the second season a grid of emitters laid on the soil was installed in order to irrigate the whole soil surface around the selected trees. The model performance was assessed based on the

  3. 2D He+ Pickup Ion Velocity Distribution Functions: STEREO PLASTIC Observations

    NASA Astrophysics Data System (ADS)

    Drews, C.; Berger, L.; Peleikis, T.; Wimmer-Schweingruber, R. F.

    2014-12-01

    He+ pickup ions are either born from the ionization of interstellar neutral helium atoms inside our heliosphere, the so called interstellar pickup ions, or through the interaction of solar wind ions with small dust particles close to the Sun, the so called inner-source of pickup ions. Until now, most observations of He+ pickup ions were limited to reduced 1D velocity spectra, which are insufficient to study certain characteristics of the He+ Velocity Distribution Function (VDF). It is generally assumed that rapid pitch-angle scattering of freshly created pickup ions quickly leads to a fully isotropic He+ VDF. In the light of recent observations, this assumption has found to be oversimplified and needs to be re-investigated. Using He+ pickup ion data from the PLASTIC instrument on board the STEREO A spacecraft we reconstruct a reduced form of the He+ VDF in 2 dimensions (see figure). The reduced form of the He+ VDF allows us to study the pitch-angle distribution and anisotropy of the He+ VDF as a function of the solar magnetic field, B. Our observations show clear signs of a significant anisotropy of the He+ VDF and even indicates that, at least for certain configurations of B, it is not even fully gyrotropic. Our results further suggest, that the observed velocity and pitch-angle of He+ depends strongly on the solar magnetic field vector, B, the ecliptic longitude, λ, the solar wind speed, vsw, and the history of B. Consequently, we argue that reduced 1D velocity spectra of He+ are insufficient to study quantities like the pitch-angle scattering rate, τ, or the adiabatic cooling index γ.

  4. The cone penetration test and 2D imaging resistivity as tools to simulate the distribution of hydrocarbons in soil

    NASA Astrophysics Data System (ADS)

    Pérez-Corona, M.; García, J. A.; Taller, G.; Polgár, D.; Bustos, E.; Plank, Z.

    2016-02-01

    The purpose of geophysical electrical surveys is to determine the subsurface resistivity distribution by making measurements on the ground surface. From these measurements, the true resistivity of the subsurface can be estimated. The ground resistivity is related to various geological parameters, such as the mineral and fluid content, porosity and degree of water saturation in the rock. Electrical resistivity surveys have been used for many decades in hydrogeological, mining and geotechnical investigations. More recently, they have been used for environmental surveys. To obtain a more accurate subsurface model than is possible with a simple 1-D model, a more complex model must be used. In a 2-D model, the resistivity values are allowed to vary in one horizontal direction (usually referred to as the x direction) but are assumed to be constant in the other horizontal (the y) direction. A more realistic model would be a fully 3-D model where the resistivity values are allowed to change in all three directions. In this research, a simulation of the cone penetration test and 2D imaging resistivity are used as tools to simulate the distribution of hydrocarbons in soil.

  5. 2-D resistivity distribution in the seismo-genic zone of the 2011 Tohoku earthquake (M9.0)

    NASA Astrophysics Data System (ADS)

    Ichihara, H.; Kasaya, T.; Baba, K.

    2012-12-01

    We discussed 2-D resistivity distribution around the rupture zone of the 2011 Tohoku earthquake (M9.0) in order to clarify structural properties that enabled such a large fault slip. Electro-magnetic time series were collected using ocean bottom electro-magnetometers (OBEMs) along a survey line in the latitude 38N between 2009 and 2011. The MT responses show the out of the quadrant phases in TE mode. The out of quadrant phases were explained by coastal effect inducing strong distortion especially in the magnetic field [Key and Constable, 2011] and indicate strong resistivity contrast between seawater and crustal area. Then we carried out 2-D resistivity inversion after the correction of 3-D bathymetric effect. The inverted resistivity model entirely consists of conductive surface layer (< 3 ohm-m) and subsequence resistive area (> 300 ohm-m). While the main rupture zone shows high resistivity (> 3000 ohm-m), resistivity near the trench and the deeper area along the plate boundary is relatively low. The former conductive zone probably reflects thick sediments containing large amount of fluid. The lower conductive zone possibly indicates connected pore fluids due to dehydration. Thus the main rupture zone seems to be located on a resistive area sandwiched by conductive zones. It implies that heterogeneous distribution of fluid controlled fault activity of the 2011 earthquake.

  6. Characterizing 3D grain size distributions from 2D sections in mylonites using a modified version of the Saltykov method

    NASA Astrophysics Data System (ADS)

    Lopez-Sanchez, Marco; Llana-Fúnez, Sergio

    2016-04-01

    The understanding of creep behaviour in rocks requires knowledge of 3D grain size distributions (GSD) that result from dynamic recrystallization processes during deformation. The methods to estimate directly the 3D grain size distribution -serial sectioning, synchrotron or X-ray-based tomography- are expensive, time-consuming and, in most cases and at best, challenging. This means that in practice grain size distributions are mostly derived from 2D sections. Although there are a number of methods in the literature to derive the actual 3D grain size distributions from 2D sections, the most popular in highly deformed rocks is the so-called Saltykov method. It has though two major drawbacks: the method assumes no interaction between grains, which is not true in the case of recrystallised mylonites; and uses histograms to describe distributions, which limits the quantification of the GSD. The first aim of this contribution is to test whether the interaction between grains in mylonites, i.e. random grain packing, affects significantly the GSDs estimated by the Saltykov method. We test this using the random resampling technique in a large data set (n = 12298). The full data set is built from several parallel thin sections that cut a completely dynamically recrystallized quartz aggregate in a rock sample from a Variscan shear zone in NW Spain. The results proved that the Saltykov method is reliable as long as the number of grains is large (n > 1000). Assuming that a lognormal distribution is an optimal approximation for the GSD in a completely dynamically recrystallized rock, we introduce an additional step to the Saltykov method, which allows estimating a continuous probability distribution function of the 3D grain size population. The additional step takes the midpoints of the classes obtained by the Saltykov method and fits a lognormal distribution with a trust region using a non-linear least squares algorithm. The new protocol is named the two-step method. The

  7. CVD diamond wafers as large-area thermoluminescence detectors for measuring the spatial distribution of dose

    NASA Astrophysics Data System (ADS)

    Marczewska, B.; Bilski, P.; Olko, P.; Olko, P.; Nesládek, M.; Bergonzo, P.; Rbisz, M.; Waligórski, M. P. R.

    2003-09-01

    The applicability of large-area CVD diamond wafers (diameter about 5 cm, thickness about 0.1 mm), read out as thermoluminescence (TL) detectors, for assessing two-dimensional (2-D) dose distribution over their area, was investigated. To obtain 2-D TL images, a special TL reader equipped with large-area planchet and a CCD camera instead of the usual PM tube was developed. Several 2-D TL images: of an alpha source (Am-241), a Ra-226 needle source and a Ru-106 ophthalmic applicator, were measured and high-resolution digital images obtained. Our preliminary results demonstrate the potential capability of large-area CVD diamond wafers, read out as TL detectors, in 2-D dosimetry for medical applications. (

  8. Improvement of vertical profiles of raindrop size distribution from micro rain radar using 2D video disdrometer measurements

    NASA Astrophysics Data System (ADS)

    Adirosi, E.; Baldini, L.; Roberto, N.; Gatlin, P.; Tokay, A.

    2016-03-01

    A measurement scheme aimed at investigating precipitation properties based on collocated disdrometer and profiling instruments is used in many experimental campaigns. Raindrop size distribution (RSD) estimated by disdrometer is referred to the ground level; the collocated profiling instrument is supposed to provide complementary estimation at different heights of the precipitation column above the instruments. As part of the Special Observation Period 1 of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, conducted between 5 September and 6 November 2012, a K-band vertically pointing micro rain radar (MRR) and a 2D video disdrometer (2DVD) were installed close to each other at a site in the historic center of Rome (Italy). The raindrop size distributions collected by 2D video disdrometer are considered to be fairly accurate within the typical sizes of drops. Vertical profiles of raindrop sizes up to 1085 m are estimated from the Doppler spectra measured by the micro rain radar with a height resolution of 35 m. Several issues related to vertical winds, attenuation correction, Doppler spectra aliasing, and range-Doppler ambiguity limit the performance of MRR in heavy precipitation or in convection, conditions that frequently occur in late summer or in autumn in Mediterranean regions. In this paper, MRR Doppler spectra are reprocessed, exploiting the 2DVD measurements at ground to estimate the effects of vertical winds at 105 m (the most reliable MRR lower height), in order to provide a better estimation of vertical profiles of raindrop size distribution from MRR spectra. Results show that the reprocessing procedure leads to a better agreement between the reflectivity computed at 105 m from the reprocessed MRR spectra and that obtained from the 2DVD data. Finally, vertical profiles of MRR-estimated RSDs and their relevant moments (namely median volume diameter and reflectivity) are presented and discussed in order to investigate the

  9. Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI–LINAC systems

    SciTech Connect

    Gargett, Maegan Rosenfeld, Anatoly; Oborn, Brad; Metcalfe, Peter

    2015-02-15

    Purpose: MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named “magic plate,” for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. Methods: GEANT4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-line and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm{sup 3}) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm{sup 2} area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm{sup 2} photon field size. Results: The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. Conclusions: A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI

  10. Particle Size Distributions Obtained Through Unfolding 2D Sections: Towards Accurate Distributions of Nebular Solids in the Allende Meteorite

    NASA Technical Reports Server (NTRS)

    Christoffersen, P. A.; Simon, Justin I.; Ross, D. K.; Friedrich, J. M.; Cuzzi, J. N.

    2012-01-01

    Size distributions of nebular solids in chondrites suggest an efficient sorting of these early forming objects within the protoplanetary disk. The effect of this sorting has been documented by investigations of modal abundances of CAIs (e.g., [1-4]) and chondrules (e.g., [5-8]). Evidence for aerodynamic sorting in the disk is largely qualitative, and needs to be carefully assessed. It may be a way of concentrating these materials into planetesimal-mass clumps, perhaps 100 fs of ka after they formed. A key parameter is size/density distributions of particles (i.e., chondrules, CAIs, and metal grains), and in particular, whether the radius-density product (rxp) is a better metric for defining the distribution than r alone [9]. There is no consensus between r versus rxp based models. Here we report our initial tests and preliminary results, which when expanded will be used to test the accuracy of current dynamical disk models.

  11. [An empirical model for calculating electron dose distributions].

    PubMed

    Leistner, H; Schüler, W

    1990-01-01

    Dose-distributions in radiation fields are calculated for purpose of irradiation planning from measured depth dose and cross-distributions predominantly. Especially in electron fields the measuring effort is high to this, because these distributions have to be measured for all occurring irradiation parameters and in many different tissue depths. At the very least it can be shown for the 6...10 MeV electron radiation of the linear accelerator Neptun 10p that all required distributions can be calculated from each separately measured depth dose and cross-distribution. For this depth dose distribution and the measured border decrease of cross-distribution are tabulated and the abscissas are submitted to a linear transformation x' = k.x. In case of depth dose distribution the transformation factor k is dependent on electron energy only and in cross-distribution on tissue depth and source-surface-distance additionally. PMID:2356295

  12. First dose-map measured with a polycrystalline diamond 2D dosimeter under an intensity modulated radiotherapy beam

    NASA Astrophysics Data System (ADS)

    Scaringella, M.; Zani, M.; Baldi, A.; Bucciolini, M.; Pace, E.; de Sio, A.; Talamonti, C.; Bruzzi, M.

    2015-10-01

    A prototype of bidimensional dosimeter made on a 2.5×2.5 cm2 active area polycrystalline Chemical Vapour Deposited (pCVD) diamond film, equipped with a matrix of 12×12 contacts connected to the read-out electronics, has been used to evaluate a map of dose under Intensity Modulated Radiation Therapy (IMRT) fields for a possible application in pre-treatment verifications of cancer treatments. Tests have been performed under a 6-10 MVRX beams with IMRT fields for prostate and breast cancer. Measurements have been taken by measuring the 144 pixels in different positions, obtained by shifting the device along the x/y axes to span a total map of 14.4×10 cm2. Results show that absorbed doses measured by our pCVD diamond device are consistent with those calculated by the Treatment Planning System (TPS).

  13. The 2D Distribution of Iron-rich Ejecta in the Remnant of SN 1885 in M31

    NASA Astrophysics Data System (ADS)

    Fesen, Robert A.; Höflich, Peter A.; Hamilton, Andrew J. S.

    2015-05-01

    We present Hubble Space Telescope (HST) ultraviolet Fe i and Fe ii images of the remnant of Supernova 1885 (S And) which is observed in absorption against the bulge of the Andromeda galaxy, M31. We compare these Fe i and Fe ii absorption line images to previous HST absorption images of S And, of which the highest quality and theoretically cleanest is Ca ii H and K. Because the remnant is still in free expansion, these images provide a 2D look at the distribution of iron synthesized in this probable Type Ia explosion, thus providing insights and constraints for theoretical SN Ia models. The Fe i images show extended absorption offset to the east from the remnant’s center as defined by Ca ii images and is likely an ionization effect due to self-shielding. More significant is the remnant’s apparent Fe ii distribution which consists of four streams or plumes of Fe-rich material seen in absorption that extend from remnant center out to about 10,000 km s-1. This is in contrast to the remnant’s Ca ii absorption, which is concentrated in a clumpy, broken shell spanning velocities of 1000-5000 km s-1 but which extends out to 12,500 km s-1. The observed distributions of Ca- and Fe-rich ejecta in the SN 1885 remnant are consistent with delayed detonation white dwarf models. The largely spherical symmetry of the Ca-rich layer argues against a highly anisotropic explosion as might result from a violent merger of two white dwarfs. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract No. NAS5-26555.

  14. Distribution of hydroxylated vitamin D metabolites [25OHD3 and 1,25(OH)2D3] in domestic pigs: evidence that 1,25(OH)2D3 is stored outside the blood circulation?

    PubMed

    Rungby, J; Mortensen, L; Jakobsen, K; Brock, A; Mosekilde, L

    1993-03-01

    1. The distribution of 25-hydroxycholecalciferol (25OHD3) and 1,25-dihydroxycholecalciferol [1,25(OH)2D3] in various organs from domestic pigs was examined by HPLC. 2. Plasma levels of both metabolites corresponded to those found in healthy human subjects. 3. Tissue concentrations of 25OHD3 in fat, kidney, liver, and intestinal mucosa were low (< 1/3 of plasma levels), whereas tissue concentrations of 1,25(OH)2D3 exceeded plasma levels by factors 3-7, adipose tissue concentrations being the highest. 4. Substantial amounts of activated vitamin D are stored outside the blood-streams and may actively participate in vitamin D and calcium homeostasis. PMID:8097149

  15. Raindrop axis ratios, fall velocities and size distribution over Sumatra from 2D-Video Disdrometer measurement

    NASA Astrophysics Data System (ADS)

    Marzuki; Randeu, Walter L.; Kozu, Toshiaki; Shimomai, Toyoshi; Hashiguchi, Hiroyuki; Schönhuber, Michael

    2013-01-01

    Raindrop axis ratio, falling velocity and size distribution are important in broad list of applications. However, they are not frequently observed in the equatorial region. This paper elucidated the characteristics of raindrop axis ratio, falling velocity and size distribution based on 2D-Video Disdrometer (2DVD) data that have been collected in the equatorial Indonesia, particularly at Kototabang (hereafter called KT), west Sumatra, Indonesia (0.20°S, 100.32°E, 864 m above sea level). A comprehensive follow-up of the previous study on the natural variability of raindrop size distributions (DSDs) is presented. Precipitation was classified through 1.3-GHz wind profiler observation. The dependence of raindrop falling velocity and axis ratio on rainfall type was not clearly observed. Overall, measured raindrop fall velocities were in good agreement with Gunn-Kinzer's data. Raindrop axis ratio at KT was more spherical than that of artificial rain and equilibrium model, and close to the values reported in the turbulent high shear zone of surface layer which can be partially due to the effect of the instrument errors (e.g., location and container shape). Of some natural variations of DSD investigated, the dependence of DSD on rainfall rate and rainfall type as well as diurnal variation was clearly visible. A striking contrast between the stratiform and convective rains is that the size distributions from the stratiform (convective) rains tend to narrow (broaden) with increasing rainfall rates. For rainfall rate R < 10 mm/h, the size distribution of stratiform was broader than that of convective. On the other hand, at higher rainfall rate more large-sized drops were found in convective rain. During the convective rain, very large-sized drops were found mainly at the very start of rain event while for the stratiform they were found to be associated with a strong bright band. In diurnal basis, the DSDs in the morning hours were narrower than those in the evening which was

  16. A comparison of needle tip localization accuracy using 2D and 3D trans-rectal ultrasound for high-dose-rate prostate cancer brachytherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Hrinivich, W. Thomas; Hoover, Douglas A.; Surry, Kathleen; Edirisinghe, Chandima; Montreuil, Jacques; D'Souza, David; Fenster, Aaron; Wong, Eugene

    2016-03-01

    Background: High-dose-rate brachytherapy (HDR-BT) is a prostate cancer treatment option involving the insertion of hollow needles into the gland through the perineum to deliver a radioactive source. Conventional needle imaging involves indexing a trans-rectal ultrasound (TRUS) probe in the superior/inferior (S/I) direction, using the axial transducer to produce an image set for organ segmentation. These images have limited resolution in the needle insertion direction (S/I), so the sagittal transducer is used to identify needle tips, requiring a manual registration with the axial view. This registration introduces a source of uncertainty in the final segmentations and subsequent treatment plan. Our lab has developed a device enabling 3D-TRUS guided insertions with high S/I spatial resolution, eliminating the need to align axial and sagittal views. Purpose: To compare HDR-BT needle tip localization accuracy between 2D and 3D-TRUS. Methods: 5 prostate cancer patients underwent conventional 2D TRUS guided HDR-BT, during which 3D images were also acquired for post-operative registration and segmentation. Needle end-length measurements were taken, providing a gold standard for insertion depths. Results: 73 needles were analyzed from all 5 patients. Needle tip position differences between imaging techniques was found to be largest in the S/I direction with mean+/-SD of -2.5+/-4.0 mm. End-length measurements indicated that 3D TRUS provided statistically significantly lower mean+/-SD insertion depth error of -0.2+/-3.4 mm versus 2.3+/-3.7 mm with 2D guidance (p < .001). Conclusions: 3D TRUS may provide more accurate HDR-BT needle localization than conventional 2D TRUS guidance for the majority of HDR-BT needles.

  17. Verification of patient-specific dose distributions in proton therapy using a commercial two-dimensional ion chamber array

    SciTech Connect

    Arjomandy, Bijan; Sahoo, Narayan; Ciangaru, George; Zhu, Ronald; Song Xiaofei; Gillin, Michael

    2010-11-15

    Purpose: The purpose of this study was to determine whether a two-dimensional (2D) ion chamber array detector quickly and accurately measures patient-specific dose distributions in treatment with passively scattered and spot scanning proton beams. Methods: The 2D ion chamber array detector MatriXX was used to measure the dose distributions in plastic water phantom from passively scattered and spot scanning proton beam fields planned for patient treatment. Planar dose distributions were measured using MatriXX, and the distributions were compared to those calculated using a treatment-planning system. The dose distributions generated by the treatment-planning system and a film dosimetry system were similarly compared. Results: For passively scattered proton beams, the gamma index for the dose-distribution comparison for treatment fields for three patients with prostate cancer and for one patient with lung cancer was less than 1.0 for 99% and 100% of pixels for a 3% dose tolerance and 3 mm distance-to-dose agreement, respectively. For spot scanning beams, the mean ({+-} standard deviation) percentages of pixels with gamma indices meeting the passing criteria were 97.1%{+-}1.4% and 98.8%{+-}1.4% for MatriXX and film dosimetry, respectively, for 20 fields used to treat patients with prostate cancer. Conclusions: Unlike film dosimetry, MatriXX provides not only 2D dose-distribution information but also absolute dosimetry in fractions of minutes with acceptable accuracy. The results of this study indicate that MatriXX can be used to verify patient-field specific dose distributions in proton therapy.

  18. Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders

    SciTech Connect

    Supe, Sanjay S. Bijina, T.K.; Varatharaj, C.; Shwetha, B.; Arunkumar, T.; Sathiyan, S.; Ganesh, K.M.; Ravikumar, M.

    2009-04-01

    Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of this study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and three dome

  19. Histochemical examination of the effects of high-dose 1,25(OH)2D3 on bone remodeling in young growing rats.

    PubMed

    Sun, Jing; Sun, Bao; Wang, Wei; Han, Xiuchun; Liu, Hongrui; Du, Juan; Feng, Wei; Liu, Bo; Amizuka, Norio; Li, Minqi

    2016-08-01

    Vitamin D has an anabolic effect on bone developmental processes and is involved in maintaining skeletal integrity. In recent years, pediatric cases of vitamin D intoxication have attracted attention. Therefore, the aim of this study was to investigate the influence of long-term administration of physiologically-high-dose calcitriol (1,25(OH)2D3) on bone remodeling in young developing rats. Neonatal rats received once-daily subcutaneous injection of calcitriol (250 ng/kg body weight), or PBS only as a control, for 3 weeks. At 1, 2 and 4 weeks' post-administration, rats were sacrificed and fixed by transcardial perfusion with 4 % paraformaldehyde, following which tibiae were extracted for histochemical analysis. Compared with the control group, the number of tartrate-resistant acid phosphatase- and Cathepsin K-positive osteoclasts were significantly increased, and the expression of alkaline phosphatase in osteoblasts was decreased in trabecular bone of rats administered high-dose 1,25(OH)2D3, leading to decreased trabecular bone volume. In addition, the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) was increased, while that of osteoprotegerin was weaker in osteoblasts in the experimental group compared with the control group. Moreover, there was weaker immunoreactivity for EphrinB2 in osteoclasts and EphB4 in osteoblasts of trabecular bone in the experimental group compared with the control group. These findings suggest that long-term use of physiologically-high dose calcitriol may result in bone loss through RANKL/RANK/osteoprotegerin and EphrinB2-EphB4 signaling pathways, and that these negative effects could continue after drug withdrawal. Therefore, optimal limits for vitamin D administration need to be established for children and adolescents. PMID:27255234

  20. Anaerobic degradation of solid material: importance of initiation centers for methanogenesis, mixing intensity, and 2D distributed model.

    PubMed

    Vavilin, V A; Angelidaki, I

    2005-01-01

    Batch anaerobic codigestion of municipal household solid waste (MHSW) and digested manure in mesophilic conditions was carried out. The different waste-to-biomass ratios and intensity of mixing were studied theoretically and experimentally. The experiments showed that when organic loading was high, intensive mixing resulted in acidification and failure of the process, while low mixing intensity was crucial for successful digestion. However, when loading was low, mixing intensity had no significant effect on the process. We hypothesized that mixing was preventing establishment of methanogenic zones in the reactor space. The methanogenic zones are important to withstand inhibition due to development of acids formed during acidogenesis. The 2D distributed models of symmetrical cylinder reactor are presented based on the hypothesis of the necessity of a minimum size of methanogenic zones that can propagate and establish a good methanogenic environment. The model showed that at high organic loading rate spatial separation of the initial methanogenic centers from active acidogenic areas is the key factor for efficient conversion of solids to methane. The initial level of methanogenic biomass in the initiation centers is a critical factor for the survival of these centers. At low mixing, most of the initiation methanogenic centers survive and expand over the reactor volume. However, at vigorous mixing the initial methanogenic centers are reduced in size, averaged over the reactor volume, and finally dissipate. Using fluorescence in situ hybridization, large irregular cocci of microorganisms were observed in the case with minimal mixing, while in the case with high stirring mainly dead cells were found. PMID:15540194

  1. Calibration of the 2D Hydrodynamic Model Floodos and Implications of Distributed Friction on Sediment Transport Capacity

    NASA Astrophysics Data System (ADS)

    Croissant, T.; Lague, D.; Davy, P.

    2014-12-01

    Numerical models of floodplain dynamics often use a simplified 1D description of flow hydraulics and sediment transport that cannot fully account for differential friction between vegetated banks and low friction in the main channel. Key parameters of such models are the friction coefficient and the description of the channel bathymetry which strongly influence predicted water depth and velocity, and therefore sediment transport capacity. In this study, we use a newly developed 2D hydrodynamic model, Floodos, whose efficiency is a major advantage for exploring channel morphodynamics from a flood event to millennial time scales. We evaluate the quality of Floodos predictions in the Whataroa river, New Zealand and assess the effect of a spatially distributed friction coefficient (SDFC) on long term sediment transport. Predictions from the model are compared to water depth data from a gauging station located on the Whataroa River in Southern Alps, New Zealand. The Digital Elevation Model (DEM) of the 2.5 km long studied reach is derived from a 2010 LiDAR acquisition with 2 m resolution and an interpolated bathymetry. The several large floods experienced by this river during 2010 allow us to access water depth for a wide range of possible river discharges and to retrieve the scaling between these two parameters. The high resolution DEM used has a non-negligible part of submerged bathymetry that airborne LiDAR was not able to capture. Bathymetry can be reconstructed by interpolation methods that introduce several uncertainties concerning water depth predictions. We address these uncertainties inherent to the interpolation using a simplified channel with a geometry (slope and width) similar to the Whataroa river. We then explore the effect of a SDFC on velocity pattern, water depth and sediment transport capacity and discuss its relevance on long term predictions of sediment transport and channel morphodynamics.

  2. Separating stratiform and convective rain types based on the drop size distribution characteristics using 2D video disdrometer data

    NASA Astrophysics Data System (ADS)

    Thurai, M.; Gatlin, P. N.; Bringi, V. N.

    2016-03-01

    A technique for separating stratiform and convective rain types using the characteristics of two of the main drop size distribution (DSD) parameters is presented. The method was originally developed based on observations from dual-frequency profiler and dual-polarization radar observations in Darwin, Australia. In this paper, we will present the testing of the method using data from 2D video disdrometers (2DVD) from two very different locations, namely, Ontario, Canada, and Huntsville, Alabama, USA. One-minute DSDs from 2DVD are used as input to a gamma-fitting procedure and our separation technique uses the fitted values of log10(NW) and D0 (where NW is the scaling parameter and D0 is the median volume diameter) and an "index" to quantify where the points lie in the log10(NW) versus D0 domain. For the Ontario location, the output of the classification is compared with simultaneous observations from a collocated, vertically pointing, X-band Doppler radar. A "bright-band" detection algorithm is used to classify each height profile as either stratiform or convective, depending on whether or not a clearly defined melting layer is present at an expected height. If present, the maximum reflectivity within the melting layer and the corresponding height are determined. Similar testing is carried out for two events in Huntsville and compared with observations from a collocated UHF profiler (with Doppler capability). Additional case studies are required, but these results indicate our separation technique seems to be applicable to many different locations and climatologies based on previously published data.

  3. Computation and Optimization of Dose Distributions for Rotational Stereotactic Radiosurgery

    NASA Astrophysics Data System (ADS)

    Fox, Timothy Harold

    1994-01-01

    The stereotactic radiosurgery technique presented in this work is the patient rotator method which rotates the patient in a sitting position with a stereotactic head frame attached to the skull while collimated non-coplanar radiation beams from a 6 MV medical linear accelerator are delivered to the target point. The hypothesis of this dissertation is that accurate, three-dimensional dose distributions can be computed and optimized for the patient rotator method used in stereotactic radiosurgery. This dissertation presents research results in three areas related to computing and optimizing dose distributions for the patient rotator method. A three-dimensional dose model was developed to calculate the dose at any point in the cerebral cortex using a circular and adjustable collimator system and the geometry of the radiation beam with respect to the target point. The computed dose distributions compared to experimental measurements had an average maximum deviation of <0.7 mm for the relative isodose distributions greater than 50%. A system was developed to qualitatively and quantitatively visualize the computed dose distributions with patient anatomy. A registration method was presented for transforming each dataset to a common reference system. A method for computing the intersections of anatomical contour's boundaries was developed to calculate dose-volume information. The system efficiently and accurately reduced the large computed, volumetric sets of dose data, medical images, and anatomical contours to manageable images and graphs. A computer-aided optimization method was developed for rigorously selecting beam angles and weights for minimizing the dose to normal tissue. Linear programming was applied as the optimization method. The computed optimal beam angles and weights for a defined objective function and dose constraints exhibited a superior dose distribution compared to a standard plan. The developed dose model, qualitative and quantitative visualization

  4. Thyroid dose distribution in dental radiography

    SciTech Connect

    Bristow, R.G.; Wood, R.E.; Clark, G.M. )

    1989-10-01

    The anatomic position and proven radiosensitivity of the thyroid gland make it an organ of concern in dental radiography. A calibrated thermoluminescent dosimetry system was used to investigate the absorbed dose (microGy) to the thyroid gland resultant from a minimum irradiated volume, intraoral full-mouth radiography technique with the use of rectangular collimation with a lead-backed image receptor, and conventional panoramic radiography performed with front and rear lead aprons. Use of the minimum irradiated volume technique resulted in a significantly decreased absorbed dose over the entire thyroid region ranging from 100% to 350% (p less than 0.05). Because this intraoral technique results in radiographs with greater image quality and also exposes the thyroid gland to less radiation than the panoramic, this technique may be an alternative to the panoramic procedure.

  5. Noninvasive real-time 2D imaging of temperature distribution during the plastic pellet cooling process by using electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Hirose, Yusuke; Sapkota, Achyut; Sugawara, Michiko; Takei, Masahiro

    2016-01-01

    This study has launched a concept to image a real-time 2D temperature distribution noninvasively by a combination of the electrical capacitance tomography (ECT) technique and a permittivity-temperature calibration equation for the plastic pellet cooling process. The concept has two steps, which are the relative permittivity calculation from the measured capacitance among the many electrodes by the ECT technique, and the temperature distribution imaging from the relative permittivity by the permittivity-temperature calibration equation. An ECT sensor with 12 electrodes was designed to image the cross-sectional temperature distribution during the polymethyl methacrylate pellets cooling process. The images of temperature distribution were successfully reconstructed from the relative permittivity distribution at every time step during the process. The images reasonably indicate the temperature diffusion in a 2D space and time within a 0.0065 and 0.0175 time-dependent temperature deviation, as compared to an analytical thermal conductance simulation and thermocouple measurement.

  6. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT.

    PubMed

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-05-21

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements. PMID:27100169

  7. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT

    NASA Astrophysics Data System (ADS)

    Visser, R.; Godart, J.; Wauben, D. J. L.; Langendijk, J. A.; van’t Veld, A. A.; Korevaar, E. W.

    2016-05-01

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  ‑10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU’s for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  8. Fast range-corrected proton dose approximation method using prior dose distribution

    NASA Astrophysics Data System (ADS)

    Park, Peter C.; Cheung, Joey; Zhu, X. Ronald; Sahoo, Narayan; Court, Laurence; Dong, Lei

    2012-06-01

    For robust plan optimization and evaluation purposes, one needs a computationally efficient way to calculate dose distributions and dose-volume histograms (DVHs) under various changes in the variables associated with beam delivery and images. In this study, we report an approximate method for rapid calculation of dose when setup errors and anatomical changes occur during proton therapy. This fast dose approximation method calculates new dose distributions under various circumstances based on the prior knowledge of dose distribution from a reference setting. In order to validate the method, we calculated and compared the dose distributions from our approximation method to the dose distributions calculated from a clinically commissioned treatment planning system which was used as the ground truth. The overall accuracy of the proposed method was tested against varying degrees of setup error and anatomical deformation for selected patient cases. The setup error was simulated by rigid shifts of the patient; while the anatomical deformation was introduced using weekly acquired repeat CT data sets. We evaluated the agreement between the dose approximation method and full dose recalculation using a 3D gamma index and the root-mean-square (RMS) and maximum deviation of the cumulative dose volume histograms (cDVHs). The average passing rate of 3D gamma analysis under 3% dose and 3 mm distance-to-agreement criteria were 96% and 89% for setup errors and severe anatomy changes, respectively. The average of RMS and maximum deviation of the cDVHs under the setup error was 0.5% and 1.5%, respectively for all structures considered. Similarly, the average of RMS and maximum deviations under the weekly anatomical change were 0.6% and 2.7%, respectively. Our results show that the fast dose approximation method was able to account for the density variation of the patient due to the setup and anatomical changes with acceptable accuracy while significantly improving the computation time.

  9. Estimation of raindrop drop size distribution vertical profile from simultaneous micro rain radar and 2D video disdrometer measurements

    NASA Astrophysics Data System (ADS)

    Adirosi, Elisa; Baldini, Luca; Roberto, Nicoletta; Montopoli, Mario; Gorgucci, Eugenio; Gatlin, Patrick; Tokay, Ali

    2016-04-01

    Experimental field campaigns of rain precipitation usually require the coexistence of several ground and satellite based observations in order to guarantee a more complete analysis of the collected case studies at the various spatial and temporal scales of interest. In the framework of the Ground Validation programme of the NASAA/JAXA Global Precipitation Measurement (GPM) mission, several climate regions of the Earth have been interested by various field campaigns involving experimental setup which include one or more ground based disdrometers and profilers. In such situation a typical implementation of the measurement scheme consists of a pair of K-band vertically pointing micro rain radar (MRR) and a 2D video disdrometer (2DVD) installed close each other. Since 2DVD estimates are referred to the ground level, the co-located MRR is supposed to provide complementary vertical profiles of drop size distribution (DSD) measurements. However, if not properly processed MRR and 2DVD raw data can lead to erroneous interpretations of the underlying microphysics. In this work, we investigate some typical issues occurring when dealing with MRR and 2DVD observations proposing techniques to ensure the adequate data quality required in typical field validation campaigns. More in detail, MRR is an affordable continuous wave frequency-modulated radar (CWFM) typically used at vertical incidence. In the MMR configuration used, DSD profiles are estimated from Doppler spectra determined by drops falling at different velocities and at different heights from 1000 meters almost up to the ground level with a vertical resolution of 35 meters and time resolution up to 10 seconds. The importance of the microphysical measurements from MRR are related to the effects of the vertical gradients of rain precipitation at the sub-resolution scale of the measurements based remote sensing instruments such as those provided by the dual frequency radar of GPM as well as by ground based weather radars

  10. [A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system].

    PubMed

    Dubousset, Jean; Charpak, Georges; Dorion, Irène; Skalli, Wafa; Lavaste, François; Deguise, Jacques; Kalifa, Gabriel; Ferey, Solène

    2005-02-01

    Close collaboration between multidisciplinary specialists (physicists, biomecanical engineers, medical radiologists and pediatric orthopedic surgeons) has led to the development of a new low-dose radiation device named EOS. EOS has three main advantages: The use of a gaseous X-ray detector, invented by Georges Charpak (Nobel Prizewinner 1992), the dose necessary to obtain a 2D image of the skeletal system has been reduced by 8 to 10 times, while that required to obtain a 3D reconstruction from CT slices has fallen by a factor of 800 to 1000. The accuracy of the 3D reconstruction obtained with EOS is as good as that obtained with CT. The patient is examined in the standing (or seated) position, and is scanned simultaneously from head to feet, both frontally and laterally. This is a major advantage over conventional CT which requires the patient to be placed horizontally. -The 3D reconstructions of each element of the osteo-articular system are as precise as those obtained by conventional CT. EOS is also rapid, taking only 15 to 30 minutes to image the entire spine. PMID:16114859

  11. 2D Size Distribution of Chondrules and Chondritic Fragments of an Ordinary Chondrite from Lut Desert (Iran)

    NASA Astrophysics Data System (ADS)

    Pourkhorsandi, H.; Mirnejad, H.

    2014-09-01

    2D size measurement of chondrules and chondiritic fragments of a meteorite from Lut desert of Iran is conducted. Chondrules exhibit a size range of 55-1800 µm (average 437 µm). Chondiritic fragments show a size range of 46-1220 µm (average 261 µm).

  12. An influence of solar activity on latitudinal distribution of atmospheric ozone and temperature in 2-D radiative-photochemical model

    NASA Technical Reports Server (NTRS)

    Dyominov, I. G.

    1989-01-01

    On the basis of the 2-D radiative-photochemical model of the ozone layer at heights 0 to 60 km in the Northern Hemisphere there are revealed and analyzed in detail the characteristic features of the season-altitude-latitude variations of ozone and temperature due to changes of the solar flux during the 11 year cycle, electron and proton precipitations.

  13. Differential dose contributions on total dose distribution of 125I brachytherapy source

    PubMed Central

    Camgöz, B.; Yeğin, G.; Kumru, M.N.

    2010-01-01

    This work provides an improvement of the approach using Monte Carlo simulation for the Amersham Model 6711 125I brachytherapy seed source, which is well known by many theoretical and experimental studies. The source which has simple geometry was researched with respect to criteria of AAPM Tg-43 Report. The approach offered by this study involves determination of differential dose contributions that come from virtual partitions of a massive radioactive element of the studied source to a total dose at analytical calculation point. Some brachytherapy seeds contain multi-radioactive elements so the dose at any point is a total of separate doses from each element. It is momentous to know well the angular and radial dose distributions around the source that is located in cancerous tissue for clinical treatments. Interior geometry of a source is effective on dose characteristics of a distribution. Dose information of inner geometrical structure of a brachytherapy source cannot be acquired by experimental methods because of limits of physical material and geometry in the healthy tissue, so Monte Carlo simulation is a required approach of the study. EGSnrc Monte Carlo simulation software was used. In the design of a simulation, the radioactive source was divided into 10 rings, partitioned but not separate from each other. All differential sources were simulated for dose calculation, and the shape of dose distribution was determined comparatively distribution of a single-complete source. In this work anisotropy function was examined also mathematically. PMID:24376927

  14. Detailed dose distribution prediction of Cf-252 brachytherapy source with boron loading dose enhancement.

    PubMed

    Ghassoun, J; Mostacci, D; Molinari, V; Jehouani, A

    2010-02-01

    The purpose of this work is to evaluate the dose rate distribution and to determine the boron effect on dose rate distribution for (252)Cf brachytherapy source. This study was carried out using a Monte Carlo simulation. To validate the Monte Carlo computer code, the dosimetric parameters were determined following the updated TG-43 formalism and compared with current literature data. The validated computer code was then applied to evaluate the neutron and photon dose distribution and to illustrate the boron loading effect. PMID:19889549

  15. Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.

    PubMed

    Madas, Balázs G

    2016-07-01

    Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses. PMID:27218294

  16. A {gamma} dose distribution evaluation technique using the k-d tree for nearest neighbor searching

    SciTech Connect

    Yuan Jiankui; Chen Weimin

    2010-09-15

    Purpose: The authors propose an algorithm based on the k-d tree for nearest neighbor searching to improve the {gamma} calculation time for 2D and 3D dose distributions. Methods: The {gamma} calculation method has been widely used for comparisons of dose distributions in clinical treatment plans and quality assurances. By specifying the acceptable dose and distance-to-agreement criteria, the method provides quantitative measurement of the agreement between the reference and evaluation dose distributions. The {gamma} value indicates the acceptability. In regions where {gamma}{<=}1, the predefined criterion is satisfied and thus the agreement is acceptable; otherwise, the agreement fails. Although the concept of the method is not complicated and a quick naieve implementation is straightforward, an efficient and robust implementation is not trivial. Recent algorithms based on exhaustive searching within a maximum radius, the geometric Euclidean distance, and the table lookup method have been proposed to improve the computational time for multidimensional dose distributions. Motivated by the fact that the least searching time for finding a nearest neighbor can be an O(log N) operation with a k-d tree, where N is the total number of the dose points, the authors propose an algorithm based on the k-d tree for the {gamma} evaluation in this work. Results: In the experiment, the authors found that the average k-d tree construction time per reference point is O(log N), while the nearest neighbor searching time per evaluation point is proportional to O(N{sup 1/k}), where k is between 2 and 3 for two-dimensional and three-dimensional dose distributions, respectively. Conclusions: Comparing with other algorithms such as exhaustive search and sorted list O(N), the k-d tree algorithm for {gamma} evaluation is much more efficient.

  17. Measurements and calculations of electron dose distributions in circular materials

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Zhou, Xinzhi; An, Zhu; Zhou, Youyi; Wang, Shiming

    2002-03-01

    In this paper, the absorbed dose distributions of 0.6-2.0 MeV electrons in circular compound materials have been calculated by the calculation method of electron energy deposition in multi-layer media based on bipartition model of electron transport. In addition, the blue cellophane film dosimeters have been used to measure the electron absorbed dose distributions in some circular objects. The calculation results are in agreement with some measurement data. The results indicate the usefulness of the calculation and measurement methods for electron dose monitoring and control in radiation processing of wire and cable.

  18. Space Radiation Absorbed Dose Distribution in a Human Phantom Torso

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Yang, T.; Atwell, W.

    2000-01-01

    The flight of a human phantom torso with head that containing active dosimeters at 5 organ sites and 1400 TLDs distributed in 34 1" thick sections is described. Experimental dose rates and quality factors are compared with calculations for shielding distributions at the sites using the Computerized Anatomical Male (CAM) model. The measurements were complemented with those obtained from other instruments. These results have provided the most comprehensive data set to map the dose distribution inside a human and to assess the accuracy of radiation transport models and astronaut radiation risk.

  19. Obtaining T1-T2 distribution functions from 1-dimensional T1 and T2 measurements: The pseudo 2-D relaxation model

    NASA Astrophysics Data System (ADS)

    Williamson, Nathan H.; Röding, Magnus; Galvosas, Petrik; Miklavcic, Stanley J.; Nydén, Magnus

    2016-08-01

    We present the pseudo 2-D relaxation model (P2DRM), a method to estimate multidimensional probability distributions of material parameters from independent 1-D measurements. We illustrate its use on 1-D T1 and T2 relaxation measurements of saturated rock and evaluate it on both simulated and experimental T1-T2 correlation measurement data sets. Results were in excellent agreement with the actual, known 2-D distribution in the case of the simulated data set. In both the simulated and experimental case, the functional relationships between T1 and T2 were in good agreement with the T1-T2 correlation maps from the 2-D inverse Laplace transform of the full 2-D data sets. When a 1-D CPMG experiment is combined with a rapid T1 measurement, the P2DRM provides a double-shot method for obtaining a T1-T2 relationship, with significantly decreased experimental time in comparison to the full T1-T2 correlation measurement.

  20. Obtaining T1-T2 distribution functions from 1-dimensional T1 and T2 measurements: The pseudo 2-D relaxation model.

    PubMed

    Williamson, Nathan H; Röding, Magnus; Galvosas, Petrik; Miklavcic, Stanley J; Nydén, Magnus

    2016-08-01

    We present the pseudo 2-D relaxation model (P2DRM), a method to estimate multidimensional probability distributions of material parameters from independent 1-D measurements. We illustrate its use on 1-D T1 and T2 relaxation measurements of saturated rock and evaluate it on both simulated and experimental T1-T2 correlation measurement data sets. Results were in excellent agreement with the actual, known 2-D distribution in the case of the simulated data set. In both the simulated and experimental case, the functional relationships between T1 and T2 were in good agreement with the T1-T2 correlation maps from the 2-D inverse Laplace transform of the full 2-D data sets. When a 1-D CPMG experiment is combined with a rapid T1 measurement, the P2DRM provides a double-shot method for obtaining a T1-T2 relationship, with significantly decreased experimental time in comparison to the full T1-T2 correlation measurement. PMID:27344611

  1. Neural network modelling of dose distribution and dose uniformity in the Tunisian Gamma Irradiator.

    PubMed

    Manai, K; Trabelsi, A

    2013-11-01

    In this paper an approach to model dose distributions, isodose curves and dose uniformity in the Tunisian Gamma Irradiation Facility using artificial neural networks (ANNs) are described. For this purpose, measurements were carried out at different points in the irradiation cell using polymethyl methacrylate dosemeters. The calculated and experimental results are compared and good agreement is observed showing that ANNs can be used as an efficient tool for modelling dose distribution in the gamma irradiation facility. Monte Carlo (MC) photon-transport simulation techniques have been used to evaluate the spatial dose distribution for extensive benchmarking. ANN approach appears to be a significant advance over the time-consuming MC or the less accurate regression methods for dose mapping. As a second application, a detailed dose mapping using two different product densities was carried out. The minimum and maximum dose locations and dose uniformity as a function of the irradiated volume for each product density were determined. Good agreement between ANN modelling and experimental results was achieved. PMID:23633649

  2. Space radiation absorbed dose distribution in a human phantom.

    PubMed

    Badhwar, G D; Atwell, W; Badavi, F F; Yang, T C; Cleghorn, T F

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  3. Space radiation absorbed dose distribution in a human phantom

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  4. Measurement of three-dimensional radiation dose distributions using MRI.

    PubMed

    Prasad, P V; Nalcioglu, O; Rabbani, B

    1991-10-01

    Recent investigations have shown that nuclear magnetic resonance (NMR) can be used in conjunction with a suitable chemical dosimeter to estimate the dose from ionizing radiation (Gore et al., Phys Med. Biol. 29, 1189-1197, 1984). Based on this fact it was proposed that spatial dose distributions can be measured in gels infused with the chemical dosimeter using NMR imaging. There have been few such attempts and they provided only qualitative results. In this paper, we report results demonstrating the feasibility of obtaining quantitative dose distribution measurements by this technique. It is shown that quantitative dose distribution measurements necessitate the calculation of relaxation rate maps. We have determined that the spin-spin relaxation rate is a more sensitive parameter than the spin-lattice relaxation rate. It is also demonstrated that the addition of chemical sensitizers could improve the dose sensitivity of the measured NMR parameters. The two features characterizing a photon beam, depth-dose relationship, and beam profile as measured by this technique are in good agreement with the measurements using conventional methods, ionization chambers, and film dosimetry. PMID:1924718

  5. Automation and validation of micronucleus detection in the 3D EpiDerm™ human reconstructed skin assay and correlation with 2D dose responses.

    PubMed

    Chapman, K E; Thomas, A D; Wills, J W; Pfuhler, S; Doak, S H; Jenkins, G J S

    2014-05-01

    Recent restrictions on the testing of cosmetic ingredients in animals have resulted in the need to test the genotoxic potential of chemicals exclusively in vitro prior to licensing. However, as current in vitro tests produce some misleading positive results, sole reliance on such tests could prevent some chemicals with safe or beneficial exposure levels from being marketed. The 3D human reconstructed skin micronucleus (RSMN) assay is a promising new in vitro approach designed to assess genotoxicity of dermally applied compounds. The assay utilises a highly differentiated in vitro model of the human epidermis. For the first time, we have applied automated micronucleus detection to this assay using MetaSystems Metafer Slide Scanning Platform (Metafer), demonstrating concordance with manual scoring. The RSMN assay's fixation protocol was found to be compatible with the Metafer, providing a considerably shorter alternative to the recommended Metafer protocol. Lowest observed genotoxic effect levels (LOGELs) were observed for mitomycin-C at 4.8 µg/ml and methyl methanesulfonate (MMS) at 1750 µg/ml when applied topically to the skin surface. In-medium dosing with MMS produced a LOGEL of 20 µg/ml, which was very similar to the topical LOGEL when considering the total mass of MMS added. Comparisons between 3D medium and 2D LOGELs resulted in a 7-fold difference in total mass of MMS applied to each system, suggesting a protective function of the 3D microarchitecture. Interestingly, hydrogen peroxide (H2O2), a positive clastogen in 2D systems, tested negative in this assay. A non-genotoxic carcinogen, methyl carbamate, produced negative results, as expected. We also demonstrated expression of the DNA repair protein N-methylpurine-DNA glycosylase in EpiDerm™. Our preliminary validation here demonstrates that the RSMN assay may be a valuable follow-up to the current in vitro test battery, and together with its automation, could contribute to minimising unnecessary in vivo

  6. Automation and validation of micronucleus detection in the 3D EpiDerm™ human reconstructed skin assay and correlation with 2D dose responses

    PubMed Central

    Chapman, K. E.; Thomas, A. D.; Jenkins, G. J. S.

    2014-01-01

    Recent restrictions on the testing of cosmetic ingredients in animals have resulted in the need to test the genotoxic potential of chemicals exclusively in vitro prior to licensing. However, as current in vitro tests produce some misleading positive results, sole reliance on such tests could prevent some chemicals with safe or beneficial exposure levels from being marketed. The 3D human reconstructed skin micronucleus (RSMN) assay is a promising new in vitro approach designed to assess genotoxicity of dermally applied compounds. The assay utilises a highly differentiated in vitro model of the human epidermis. For the first time, we have applied automated micronucleus detection to this assay using MetaSystems Metafer Slide Scanning Platform (Metafer), demonstrating concordance with manual scoring. The RSMN assay’s fixation protocol was found to be compatible with the Metafer, providing a considerably shorter alternative to the recommended Metafer protocol. Lowest observed genotoxic effect levels (LOGELs) were observed for mitomycin-C at 4.8 µg/ml and methyl methanesulfonate (MMS) at 1750 µg/ml when applied topically to the skin surface. In-medium dosing with MMS produced a LOGEL of 20 µg/ml, which was very similar to the topical LOGEL when considering the total mass of MMS added. Comparisons between 3D medium and 2D LOGELs resulted in a 7-fold difference in total mass of MMS applied to each system, suggesting a protective function of the 3D microarchitecture. Interestingly, hydrogen peroxide (H2O2), a positive clastogen in 2D systems, tested negative in this assay. A non-genotoxic carcinogen, methyl carbamate, produced negative results, as expected. We also demonstrated expression of the DNA repair protein N-methylpurine-DNA glycosylase in EpiDerm™. Our preliminary validation here demonstrates that the RSMN assay may be a valuable follow-up to the current in vitro test battery, and together with its automation, could contribute to minimising unnecessary in

  7. Computational determination of absorbed dose distributions from gamma ray sources

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanyu; Inanc, Feyzi

    2001-04-01

    A biomedical procedure known as brachytherapy involves insertion of many radioactive seeds into a sick gland for eliminating sick tissue. For such implementations, the spatial distribution of absorbed dose is very important. A simulation tool has been developed to determine the spatial distribution of absorbed dose in heterogeneous environments where the gamma ray source consists of many small internal radiation emitters. The computation is base on integral transport method and the computations are done in a parallel fashion. Preliminary results involving 137Cs and 125I sources surrounded by water and comparison of the results to the experimental and computational data available in the literature are presented.

  8. Longevity of duct tape in residential air distribution systems: 1-D, 2-D, and 3-D joints

    SciTech Connect

    Abushakra, Bass

    2002-05-30

    The aging tests conducted so far showed that duct tape tends to degrade in its performance as the joint it is applied to requires a geometrical description of a higher number of space dimensions (1-D, 2-D, 3-D). One-dimensional joints are the easiest to seal with duct tape, and thus the least to experience failure. Two-dimensional joints, such as the flexible duct core-to-collar joints tested in this study, are less likely to fail than three-dimensional collar-to-plenum joints, as the shrinkage could have a positive effect in tightening the joint. Three-dimensional joints are the toughest to seal and the most likely to experience failure. The 2-D flexible duct core-to-collar joints passed the six-month period of the aging test in terms of leakage, but with the exception of the foil-butyl tape, showed degradation in terms hardening, brittleness, partial peeling, shrinkage, wrinkling, delamination of the tape layers, flaking, cracking, bubbling, oozing and discoloration. The baking test results showed that the failure in the duct tape joints could be attributed to the type of combination of the duct tape and the material it is applied to, as the duct tape behaves differently with different substrates. Overall, the foil-butyl tape (Tape 4) had the best results, while the film tape (Tape 3) showed the most deterioration. The conventional duct tapes tested (Tape 1 and Tape 2) were between these two extremes, with Tape 2 performing better than Tape 1. Lastly, we found that plastic straps became discolored and brittle during the tests, and a couple of straps broke completely. Therefore, we recommend that clamping the duct-taped flexible core-to-collar joints should be done with metallic adjustable straps.

  9. Dose distributions using kilovoltage x-rays and dose enhancement from iodine contrast agents

    NASA Astrophysics Data System (ADS)

    Mesa, A. V.; Norman, A.; Solberg, T. D.; Demarco, J. J.; Smathers, J. B.

    1999-08-01

    In x-ray phototherapy of brain tumours, the tumour is loaded with iodine and exposed to kilovoltage x-rays. Due to the high photoelectric cross sections of iodine, substantial photoelectric interactions occur. The flux of photoelectrons, characteristic x-rays and Auger electrons produce a localized dose enhancement. A modified computed tomography scanner, CTRx, can be used both for tumour localization and delivery of the dose enhancement therapy. Monte Carlo methods were employed to simulate the treatment of iodinated brain tumours with a CTRx. The calculated results reveal the effect of tumour iodine concentration on dose distribution, the degree of skull bone sparing with the application of multiple arcs, and the homogeneity of tumour dose distribution versus iodine concentration. A comparison with 10 MV stereotactic radiosurgery treatment shows the potential of CTRx treatment relative to conventional treatment modalities.

  10. Three-dimensional gamma analysis of dose distributions in individual structures for IMRT dose verification.

    PubMed

    Tomiyama, Yuuki; Araki, Fujio; Oono, Takeshi; Hioki, Kazunari

    2014-07-01

    Our purpose in this study was to implement three-dimensional (3D) gamma analysis for structures of interest such as the planning target volume (PTV) or clinical target volume (CTV), and organs at risk (OARs) for intensity-modulated radiation therapy (IMRT) dose verification. IMRT dose distributions for prostate and head and neck (HN) cancer patients were calculated with an analytical anisotropic algorithm in an Eclipse (Varian Medical Systems) treatment planning system (TPS) and by Monte Carlo (MC) simulation. The MC dose distributions were calculated with EGSnrc/BEAMnrc and DOSXYZnrc user codes under conditions identical to those for the TPS. The prescribed doses were 76 Gy/38 fractions with five-field IMRT for the prostate and 33 Gy/17 fractions with seven-field IMRT for the HN. TPS dose distributions were verified by the gamma passing rates for the whole calculated volume, PTV or CTV, and OARs by use of 3D gamma analysis with reference to MC dose distributions. The acceptance criteria for the 3D gamma analysis were 3/3 and 2 %/2 mm for a dose difference and a distance to agreement. The gamma passing rates in PTV and OARs for the prostate IMRT plan were close to 100 %. For the HN IMRT plan, the passing rates of 2 %/2 mm in CTV and OARs were substantially lower because inhomogeneous tissues such as bone and air in the HN are included in the calculation area. 3D gamma analysis for individual structures is useful for IMRT dose verification. PMID:24796955

  11. Dose distribution to spinal structures from intrathecally administered yttrium-90

    NASA Astrophysics Data System (ADS)

    Mardirossian, George; Hall, Michael; Montebello, Joseph; Stevens, Patrick

    2006-01-01

    Previous treatment of cerebrospinal fluid (CSF) malignancies by intrathecal administration of 131I-radiolabelled monoclonal antibodies has led to the assumption that more healthy tissue will be spared when a pure beta-emitter such as 90Y replaces 131I. The purpose of this study is to compare and quantitatively evaluate the dose distribution from 90Y to the CSF space and its surrounding spinal structures to 131I. A 3D digital phantom of a section of the T-spine was constructed from the visible human project series of images which included the spinal cord, central canal, subarachnoid space, pia mater, arachnoid, dura mater, vertebral bone marrow and intervertebral disc. Monte Carlo N-particle (MCNP4C) was used to model the 90Y and 131I radiation distribution. Images of the CSF compartment were convolved with the radiation distribution to determine the dose within the subarachnoid space and surrounding tissues. 90Y appears to be a suitable radionuclide in the treatment of central nervous system (CNS) malignancies when attached to mAb's and the dose distribution would be confined largely within the vertebral foramen. This choice may offer favourable dose improvement to the subarachnoid and surface of spinal cord over 131I in such an application.

  12. The CU 2-D-MAX-DOAS instrument - Part 1: Retrieval of 3-D distributions of NO2 and azimuth-dependent OVOC ratios

    NASA Astrophysics Data System (ADS)

    Ortega, I.; Koenig, T.; Sinreich, R.; Thomson, D.; Volkamer, R.

    2015-06-01

    We present an innovative instrument telescope and describe a retrieval method to probe three-dimensional (3-D) distributions of atmospheric trace gases that are relevant to air pollution and tropospheric chemistry. The University of Colorado (CU) two-dimensional (2-D) multi-axis differential optical absorption spectroscopy (CU 2-D-MAX-DOAS) instrument measures nitrogen dioxide (NO2), formaldehyde (HCHO), glyoxal (CHOCHO), oxygen dimer (O2-O2, or O4), and water vapor (H2O); nitrous acid (HONO), bromine monoxide (BrO), and iodine monoxide (IO) are among other gases that can in principle be measured. Information about aerosols is derived through coupling with a radiative transfer model (RTM). The 2-D telescope has three modes of operation: mode 1 measures solar scattered photons from any pair of elevation angle (-20° < EA < +90° or zenith; zero is to the horizon) and azimuth angle (-180° < AA < +180°; zero being north); mode 2 measures any set of azimuth angles (AAs) at constant elevation angle (EA) (almucantar scans); and mode 3 tracks the direct solar beam via a separate view port. Vertical profiles of trace gases are measured and used to estimate mixing layer height (MLH). Horizontal distributions are then derived using MLH and parameterization of RTM (Sinreich et al., 2013). NO2 is evaluated at different wavelengths (350, 450, and 560 nm), exploiting the fact that the effective path length varies systematically with wavelength. The area probed is constrained by O4 observations at nearby wavelengths and has a diurnal mean effective radius of 7.0 to 25 km around the instrument location; i.e., up to 1960 km2 can be sampled with high time resolution. The instrument was deployed as part of the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) in Mainz, Germany, from 7 June to 6 July 2013. We present first measurements (modes 1 and 2 only) and describe a four-step retrieval to derive (a) boundary layer vertical profiles and MLH of NO2; (b

  13. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  14. Determination of dose distributions and parameter sensitivity. Hanford Environmental Dose Reconstruction Project; dose code recovery activities; Calculation 005

    SciTech Connect

    Napier, B.A.; Farris, W.T.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow`s milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1 as described in Calculation 001.

  15. Fault-tolerant quantum computation and communication on a distributed 2D array of small local systems

    SciTech Connect

    Fujii, K.; Yamamoto, T.; Imoto, N.; Koashi, M.

    2014-12-04

    We propose a scheme for distributed quantum computation with small local systems connected via noisy quantum channels. We show that the proposed scheme tolerates errors with probabilities ∼30% and ∼ 0.1% in quantum channels and local operations, respectively, both of which are improved substantially compared to the previous works.

  16. The Validity of a New Low-Dose Stereoradiography System to Perform 2D and 3D Knee Prosthetic Alignment Measurements

    PubMed Central

    Meijer, Marrigje F.; Velleman, Ton; Boerboom, Alexander L.; Bulstra, Sjoerd K.; Otten, Egbert; Stevens, Martin; Reininga, Inge H. F.

    2016-01-01

    Introduction The EOS stereoradiography system has shown to provide reliable varus/valgus (VV) measurements of the lower limb in 2D (VV2D) and 3D (VV3D) after total knee arthroplasty (TKA). Validity of these measurements has not been investigated yet, therefore the purpose of this study was to determine validity of EOS VV2D and VV3D. Methods EOS images were made of a lower limb phantom containing a knee prosthesis, while varying VV angle from 15° varus to 15° valgus and flexion angle from 0° to 20°, and changing rotation from 20° internal to 20° external rotation. Differences between the actual VV position of the lower limb phantom and its position as measured on EOS 2D and 3D images were investigated. Results Rotation, flexion or VV angle alone had no major impact on VV2D or VV3D. Combination of VV angle and rotation with full extension did not show major differences in VV2D measurements either. Combination of flexion and rotation with a neutral VV angle showed variation of up to 7.4° for VV2D; maximum variation for VV3D was only 1.5°. A combination of the three variables showed an even greater distortion of VV2D, while VV3D stayed relatively constant. Maximum measurement difference between preset VV angle and VV2D was 9.8°, while the difference with VV3D was only 1.9°. The largest differences between the preset VV angle and VV2D were found when installing the leg in extreme angles, for example 15° valgus, 20° flexion and 20° internal rotation. Conclusions After TKA, EOS VV3D were more valid than VV2D, indicating that 3D measurements compensate for malpositioning during acquisition. Caution is warranted when measuring VV angle on a conventional radiograph of a knee with a flexion contracture, varus or valgus angle and/or rotation of the knee joint during acquisition. PMID:26771177

  17. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    SciTech Connect

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei

    2013-05-15

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  18. Spatial dose distribution in polymer pipes exposed to electron beam

    NASA Astrophysics Data System (ADS)

    Ponomarev, Alexander V.

    2016-01-01

    Non-uniform distribution of absorbed dose in cross-section of any polymeric pipe is caused by non-uniform thickness of polymer layer penetrated by unidirectional electron beam. The special computer program was created for a prompt estimation of dose non-uniformity in pipes subjected to an irradiation by 1-10 MeV electron beam. Irrespective of electron beam energy, the local doses absorbed in the bulk of a material can be calculated on the basis of the universal correlations offered in the work. Incomplete deceleration of electrons in shallow layers of a polymer was taken into account. Possibilities for wide variation of pipe sizes, polymer properties and irradiation modes were provided by the algorithm. Both the unilateral and multilateral irradiation can be simulated.

  19. Spin-dependent momentum density distribution and Fermi surface of Ho via 2D-ACAR measurements

    NASA Astrophysics Data System (ADS)

    Hamid, A. S.; Uedono, A.

    2004-03-01

    The first direct measurements of the spin-dependent positron-electron momentum density and Fermi surface of Ho are presented. The measurements were performed using two-dimensional angular correlation of annihilation radiation (ACAR) experiments with reversal magnetic field directions parallel and anti-parallel to the polarization direction of the positron. The analysis confirmed that two hybrid bands influence the Fermi surface of Ho. They are 5d-6s conduction hybrid bands and partial hybridization of 4f-5d bands. In fact, the measured Fermi surface revealed the behavior of the magnetic electrons. Further, the reciprocal lattice points revealed the electronic spin density distribution behavior. The general layout of the Fermi surface of Ho showed a multiply connected surface as an open hole running along the A axis with minority spin distribution and two electron surfaces centered on K and H points, respectively. Furthermore, this Fermi surface showed anti-ferromagnetic character. The measured Fermi surface of Ho showed agreement with the results of a previous band structure calculation method. (

  20. Effect of different mucosa thickness and resiliency on stress distribution of implant-retained overdentures-2D FEA.

    PubMed

    Barão, Valentim Adelino Ricardo; Assunção, Wirley Gonçalves; Tabata, Lucas Fernando; de Sousa, Edson Antonio Capello; Rocha, Eduardo Passos

    2008-11-01

    The study aimed to evaluate the effect of different mucosa thickness and resiliency on stress distribution of implant-retained overdentures using a two-dimensional finite element analysis. Models were used in order to simulate two situations. In group A, model represented an edentulous mandible supporting an overdenture retained by two-splinted-implants connected with bar-clip system while in group B, model simulated an edentulous mandible supporting an overdenture retained by two-splinted-implants connected with bar-clip system associated with two-distally placed o'ring system. In each group, mucosa assumed three characteristics of thickness (1, 3 and 5 mm) in the resiliencies: hard, resilient and soft, respectively. Evaluation was performed on Ansys software. Group A showed higher stress values regardless of the mucosa characteristics. Overall, stress decreased at the supporting tissues as mucosa thickness and resiliency increased. Regarding supporting tissues, cortical bone showed the highest stress values. The use of bar-clip attachment system with distally placed o'ring attachment design optimized the stress distribution. PMID:18783845

  1. Environmental dose rate distribution along the Romanian Black Sea shore

    NASA Astrophysics Data System (ADS)

    Duliu, Octavian G.; Margineanu, Romul M.; Blebea-Apostu, Ana-Maria; Gomoiu, Claudia; Bercea, Sorin

    2013-04-01

    The radiometric investigation of the natural radioactivity dose rate distribution along the most important Romanian Black Sea tourist resorts showed values between 34 and 54 nSv/h, lower than the 59 nSv/h, the average background reported for the entire Romanian territory. At the same time we have noticed that the experimental dose rates monotonously increase northward, reaching a maximum in the vicinity of Vadu and Corbu beaches, both on the southern part of the Chituc sandbank. Concurrent gamma ray spectrometric measurements, performed at the Slanic-Prahova Low-Background Radiation Laboratory for sand samples collected from the same location, have shown that the natural radionuclides have a major contribution to background radiation while anthropogenic Cs-137 plays, 26 years after Chernobyl catastrophe, a negligible role. The experimental values of activity concentrations of all radionuclides present in sand samples were used to calculate the corresponding values of dose rates to which, by adding the contribution of cosmic rays, we have obtained values coincident, within experimental uncertainties, with the experimental ones. At the same time, on Chituc sandbank, a transverse profile of dose rate distribution revealed the presence of some local maxima, two to thee times higher then the average ones. Subsequent gamma ray spectrometry showed an increased content of natural radionuclides, most probably due to a local accumulation of heavy minerals, a common occurrence in the vicinity of river deltas, in our case the Danube Delta. In such a way, the monitoring of local dose rate distribution could be very useful not only in attesting the environmental quality of various resorts and beaches, but also, in signaling the presence of heavy minerals, with beneficent economic consequences.

  2. 3 dimensional distributions of NO2, CHOCHO, and HCHO measured by the University of Colorado 2D-MAX-DOAS during MAD-CAT

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Sinreich, Roman; Volkamer, Rainer

    2014-05-01

    We present results of 2 dimensional Multi Axis-DOAS (2D-MAX-DOAS) measurements to infer 3-dimensional measurements of trace gases by characterizing boundary layer vertical profiles and near surface azimuth horizontal distribution of NO2 (14 angles covering 360°). We combine the established optimal estimation inversion with a new parameterization approach; the first method to derive NO2 tropospheric vertical profiles and boundary layer height and the second one to retrieve the azimuth horizontal distribution of near surface NO2 mixing ratios, both at multiple wavelengths (350 nm, 450 nm, and 560 nm). This was conducted for three cloud-free days in the framework of the intensive Multi Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) in Mainz, Germany 2013. By retrieving NO2 at multiple wavelengths range-resolved distributions of NO2 are derived using an 'Onion-peeling' approach, i.e., exploiting the fact that the optical path lengths at different wavelengths probe different horizontal air masses. We also measure glyoxal (CHOCHO) and formaldehyde (HCHO) distributions, and present to our knowledge the first 3-dimesional trace-gas distribution measurements of CHOCHO by a ground-based instrument. We expand the 2D-MAX-DOAS capabilities to calculate azimuth ratios of HCHO-to-NO2 (RFN) and CHOCHO-to-NO2 (RGN) to pinpoint volatile organic compound (VOC) oxidation chemistry and CHOCHO-to-HCHO (RGF) ratios as an indicator of biogenic and/or anthropogenic VOC emissions. The results of RFN correlate well with RGN and we identify azimuth variations that indicate gradients in the VOC/NOx chemistry that leads to O3 and secondary aerosol production. While there is a clear diurnal pattern in the RFN and RGN, no such variations are observed in the RGF, which shows rather constant values below 0.04 throughout the day, consistent with previous measurements, and indicative of urban air masses.

  3. Spatio-temporal groundwater recharge assessment using a lumped-parameter distributed model of the unsaturated zone (pyEARTH-2D)

    NASA Astrophysics Data System (ADS)

    Francés, Alain Pascal; Berhe, Ermias; Lubczynski, Maciek

    2010-05-01

    Numerical flow models are nowadays a powerful and widely used tool for groundwater management. Their reliability requires both an accurate physical representation of an aquifer system and appropriate boundary conditions. While the hydraulic parameters like hydraulic conductivity (K) and storativity (S) are spatially dependent and time invariant, groundwater fluxes such as recharge (R), evapotranspiration from groundwater (ETg) and groundwater inflow/outflow (Qgw) can vary in both space and time. Multiplicity of combinations between parameters and fluxes leads to a non-uniqueness of model solutions which limits their reliability and forecasting capability. We propose to constrain groundwater models at the catchment scale by the spatio-temporal assessment of fluxes in the unsaturated zone. Although the physically based models that involve the Darcy's law and the conservation of mass through the Richard's equation constitute the most appropriate tools for fluxes assessment in the unsaturated zone, they are computationally demanding and require a complex parameterization and boundary condition definition, which restricts their application to large and regional scales. We have thus chosen to develop and apply a lumped-parameter unsaturated zone model because it uses simplified representations of the physical processes and limits the number of parameters. We present in this study the development and application of a spatio-temporal recharge model (pyEARTH-2D) coupled with the numerical flow model MODFLOW at the catchment scale. pyEARTH-2D is a lumped-parameter distributed (grid-based) model that shares the same spatial discretization of the MODFLOW model for coupling purpose. pyEARTH-2D solves the water balance in the topsoil layer using linear relations between fluxes and soil moisture on a daily basis. The partitioning of rainfall is done by taking into consideration interception, evapotranspiration, percolation, soil moisture storage and surface storage and runoff

  4. Three dimensional dose distribution comparison of simple and complex acquisition trajectories in dedicated breast CT

    PubMed Central

    Shah, Jainil P.; Mann, Steve D.; McKinley, Randolph L.; Tornai, Martin P.

    2015-01-01

    Purpose: A novel breast CT system capable of arbitrary 3D trajectories has been developed to address cone beam sampling insufficiency as well as to image further into the patient’s chest wall. The purpose of this study was to characterize any trajectory-related differences in 3D x-ray dose distribution in a pendant target when imaged with different orbits. Methods: Two acquisition trajectories were evaluated: circular azimuthal (no-tilt) and sinusoidal (saddle) orbit with ±15° tilts around a pendant breast, using Monte Carlo simulations as well as physical measurements. Simulations were performed with tungsten (W) filtration of a W-anode source; the simulated source flux was normalized to the measured exposure of a W-anode source. A water-filled cylindrical phantom was divided into 1 cm3 voxels, and the cumulative energy deposited was tracked in each voxel. Energy deposited per voxel was converted to dose, yielding the 3D distributed dose volumes. Additionally, three cylindrical phantoms of different diameters (10, 12.5, and 15 cm) and an anthropomorphic breast phantom, initially filled with water (mimicking pure fibroglandular tissue) and then with a 75% methanol-25% water mixture (mimicking 50–50 fibroglandular-adipose tissues), were used to simulate the pendant breast geometry and scanned on the physical system. Ionization chamber calibrated radiochromic film was used to determine the dose delivered in a 2D plane through the center of the volume for a fully 3D CT scan using the different orbits. Results: Measured experimental results for the same exposure indicated that the mean dose measured throughout the central slice for different diameters ranged from 3.93 to 5.28 mGy, with the lowest average dose measured on the largest cylinder with water mimicking a homogeneously fibroglandular breast. These results align well with the cylinder phantom Monte Carlo studies which also showed a marginal difference in dose delivered by a saddle trajectory in the

  5. On the influence of using binary and distributed information for 2D hydraulic model calibration and uncertainty evaluation

    NASA Astrophysics Data System (ADS)

    Tito Aronica, Giuseppe; Neal, Jeff; Candela, Angela; Bates, Paul D.

    2013-04-01

    Floods are considered the most frequent natural disaster world-wide and may have serious socio economic impacts in a community. In order to accomplish flood risk mitigation, flood risk analysis and assessment are required to provide information on current or future flood hazard and risks. Hazard and risk maps involve different data, expertise and effort, depending also on the end-users. More or less advanced deterministic approaches can be used, but intuitively probabilistic approaches seem to be more correct and suited for modelling flood inundation given typical uncertainties. Two very important matters remain open for research: the calibration of hydraulic models (oriented towards the estimation of effective roughness parameters) and the uncertainties (e.g. related to data, model structure and parameterisation) affecting flood hazard mapping results. Both matters are strictly connected and the performance measures represent the "metric" of this connection. Here, we test the ability of different performance measures based on binary and distributed information to calibrate and evaluate model predictions in a credible and consistent way and to reduce the uncertainty in probabilistic flood inundation maps for two hydraulic models: a two-dimensional inertial finite element model and a recently developed version of the LISFLOOD-FP model which solves a reduced form of the full shallow water equations in a highly efficient manner. These models are applied to the Imera river basin in Sicily probabilistic flood inundation maps constructed for each performance measure calibration. Through a comparison of the resulting hazard maps, the influence these measure data on calibration and derivation of probabilistic flood mapping will be shown.

  6. Selecting radiotherapy dose distributions by means of constrained optimization problems.

    PubMed

    Alfonso, J C L; Buttazzo, G; García-Archilla, B; Herrero, M A; Núñez, L

    2014-05-01

    The main steps in planning radiotherapy consist in selecting for any patient diagnosed with a solid tumor (i) a prescribed radiation dose on the tumor, (ii) bounds on the radiation side effects on nearby organs at risk and (iii) a fractionation scheme specifying the number and frequency of therapeutic sessions during treatment. The goal of any radiotherapy treatment is to deliver on the tumor a radiation dose as close as possible to that selected in (i), while at the same time conforming to the constraints prescribed in (ii). To this day, considerable uncertainties remain concerning the best manner in which such issues should be addressed. In particular, the choice of a prescription radiation dose is mostly based on clinical experience accumulated on the particular type of tumor considered, without any direct reference to quantitative radiobiological assessment. Interestingly, mathematical models for the effect of radiation on biological matter have existed for quite some time, and are widely acknowledged by clinicians. However, the difficulty to obtain accurate in vivo measurements of the radiobiological parameters involved has severely restricted their direct application in current clinical practice.In this work, we first propose a mathematical model to select radiation dose distributions as solutions (minimizers) of suitable variational problems, under the assumption that key radiobiological parameters for tumors and organs at risk involved are known. Second, by analyzing the dependence of such solutions on the parameters involved, we then discuss the manner in which the use of those minimizers can improve current decision-making processes to select clinical dosimetries when (as is generally the case) only partial information on model radiosensitivity parameters is available. A comparison of the proposed radiation dose distributions with those actually delivered in a number of clinical cases strongly suggests that solutions of our mathematical model can be

  7. Dose distribution in a human phantom onboard aircraft

    NASA Astrophysics Data System (ADS)

    Berger, T.; Meier, M.; Reitz, G.; Schridde, M.

    The exposure of aircrew personnel to cosmic radiation has been considered as occupational exposure in the European Union since the European Council Directive 96 29 EURATOM became effective on May 13 1996 In Germany the corresponding safety standards for aircrew which include dose assessment among other things are regulated by the German Radiation Protection Ordinance which implemented the European law and was amended in 2001 The radiation exposure of most German aircrew is calculated by the DLR Institute of Aerospace Medicine in Cologne applying the calculation program EPCARD in the framework of the aircrew dose determination system CALVADOS underline CAL culated and underline V erified underline A viation underline DOS imetry Beside the operational dose calculations DLR performs measuring flights applying active e g TEPC DOSTEL etc and passive TLDs bubble detectors radiation detectors to verify the calculation codes Within these activities the project BODO underline BO dy underline DO simetry comprised a long term exposure of a RANDO copyright anthropomorphic phantom to measure for the first time the skin and the depth dose distribution inside a simulated human torso at aviation altitudes The torso was flown for three months from mid of July to mid of October 2004 onboard a Lufthansa Cargo aircraft This torso made up of 27 polyurethane slices with different densities -- simulating tissue and organs -- was equipped with passive thermoluminescence detectors TLDs of different types namely TLD 600 6 LiF Mg

  8. Impact of stratospheric aircraft on calculations of nitric acid trihydrate cloud surface area densities using NMC temperatures and 2D model constituent distributions

    NASA Technical Reports Server (NTRS)

    Considine, David B.; Douglass, Anne R.

    1994-01-01

    A parameterization of NAT (nitric acid trihydrate) clouds is developed for use in 2D models of the stratosphere. The parameterization uses model distributions of HNO3 and H2O to determine critical temperatures for NAT formation as a function of latitude and pressure. National Meteorological Center temperature fields are then used to determine monthly temperature frequency distributions, also as a function of latitude and pressure. The fractions of these distributions which fall below the critical temperatures for NAT formation are then used to determine the NAT cloud surface area density for each location in the model grid. By specifying heterogeneous reaction rates as functions of the surface area density, it is then possible to assess the effects of the NAT clouds on model constituent distributions. We also consider the increase in the NAT cloud formation in the presence of a fleet of stratospheric aircraft. The stratospheric aircraft NO(x) and H2O perturbations result in increased HNO3 as well as H2O. This increases the probability of NAT formation substantially, especially if it is assumed that the aircraft perturbations are confined to a corridor region.

  9. Joint pharmacy/nursing procedure for monitoring unit dose distribution and unadministered doses.

    PubMed

    Dahl, F C; Conway, M F; Henderson, C M

    1986-09-01

    This article describes a procedure that uses a multidisciplinary approach to quality assurance in a unit-dose distribution system. The procedure described here uses an assigned nurse and one member of the pharmacy staff (pharmacist, technician/intern) on each nursing unit to check the physical contents of medication cassettes as well as compare pharmacy patient profiles with nursing medication administration records. In examining data from a 184 calendar day period, there was an average of 822 doses of medication per day, including IV admixtures and piggybacks, checked using this system. The time spent in the checking process was approximately 40 minutes per day for each of the three pharmacy staff members performing the check. The average daily census during this period was 60 patients, located on two medical/surgical nursing units, a combined short-procedure unit/detox unit, and an eight-bed critical care unit. The procedure presented also includes a mechanism for the nursing staff to easily document unadministered doses in a manner that provides the pharmacy department with this information. The procedure described makes it extremely difficult for certain types of medication errors to extend beyond a 24-hour period. It also controls missing doses. We found during the 184-day period that only 12 doses were reported missing from the cassettes after the check process. The low number of missing doses reported can be attributed to the fact that the assigned nurse and member of the pharmacy staff verify the presence of a 24-hour supply of medication. PMID:10278987

  10. Electron momentum distribution and singlet-singlet annihilation in the organic anthracene molecular crystals using positron 2D-ACAR and fluorescence spectroscopy.

    PubMed

    Selvakumar, Sellaiyan; Sivaji, Krishnan; Arulchakkaravarthi, Arjunan; Sankar, Sambasivam

    2014-08-14

    We present the mapping of electron momentum distribution (EMD) in a single crystal of anthracene by two-dimensional angular correlation of positron annihilation radiation (2D-ACAR). The projected EMD is explained on the basis of the crystallographic features of the material. The EMD spectra provide information about the positron states and their behavior and also about the hindrance of the positronium (Ps) formation in this material. The EMD has exhibited evidence for the absence of free volume defects. The characteristic EMD features regarding the delocalized electronic states are explained. Further, scintillation characteristics such as fluorescence and time-correlated single photon counting have also been studied. The emission peaks are attributed to vibrational bands of fluorescence emission from the singlet excitons and lifetime components are observed to be due to singlet fission and the singlet-singlet excitons annihilation. PMID:24963608

  11. Improvement of depth dose distribution using multiple-field irradiation in boron neutron capture therapy.

    PubMed

    Fujimoto, N; Tanaka, H; Sakurai, Y; Takata, T; Kondo, N; Narabayashi, M; Nakagawa, Y; Watanabe, T; Kinashi, Y; Masunaga, S; Maruhashi, A; Ono, K; Suzuki, M

    2015-12-01

    It is important that improvements are made to depth dose distribution in boron neutron capture therapy, because the neutrons do not reach the innermost regions of the human body. Here, we evaluated the dose distribution obtained using multiple-field irradiation in simulation. From a dose volume histogram analysis, it was found that the mean and minimum tumor doses were increased using two-field irradiation, because of improved dose distribution for deeper-sited tumors. PMID:26282566

  12. Influence of anisotropic grain boundary properties on the evolution of grain boundary character distribution during grain growth—a 2D level set study

    NASA Astrophysics Data System (ADS)

    Hallberg, Håkan

    2014-12-01

    The present study elaborates on a 2D level set model of polycrystal microstructures that was recently established by adding the influence of anisotropic grain boundary energy and mobility on microstructure evolution. The new model is used to trace the evolution of grain boundary character distribution during grain growth. The employed level set formulation conveniently allows the grain boundary characteristics to be quantified in terms of coincidence site lattice (CSL) type per unit of grain boundary length, providing a measure of the distribution of such boundaries. In the model, both the mobility and energy of the grain boundaries are allowed to vary with misorientation. In addition, the influence of initial polycrystal texture is studied by comparing results obtained from a polycrystal with random initial texture against results from a polycrystal that initially has a cube texture. It is shown that the proposed level set formulation can readily incorporate anisotropic grain boundary properties and the simulation results further show that anisotropic grain boundary properties only have a minor influence on the evolution of CSL boundary distribution during grain growth. As anisotropic boundary properties are considered, the most prominent changes in the CSL distributions are an increase of general low-angle Σ1 boundaries as well as a more stable presence of Σ3 boundaries. The observations also hold for the case of an initially cube-textured polycrystal. The presence of this kind of texture has little influence over the evolution of the CSL distribution. Taking into consideration the anisotropy of grain boundary properties, grain growth alone does not seem to be sufficient to promote any significantly increased overall presence of CSL boundaries.

  13. Practical dose point-based methods to characterize dose distribution in a stationary elliptical body phantom for a cone-beam C-arm CT system

    PubMed Central

    Choi, Jang-Hwan; Constantin, Dragos; Ganguly, Arundhuti; Girard, Erin; Morin, Richard L.; Dixon, Robert L.; Fahrig, Rebecca

    2015-01-01

    Purpose: To propose new dose point measurement-based metrics to characterize the dose distributions and the mean dose from a single partial rotation of an automatic exposure control-enabled, C-arm-based, wide cone angle computed tomography system over a stationary, large, body-shaped phantom. Methods: A small 0.6 cm3 ion chamber (IC) was used to measure the radiation dose in an elliptical body-shaped phantom made of tissue-equivalent material. The IC was placed at 23 well-distributed holes in the central and peripheral regions of the phantom and dose was recorded for six acquisition protocols with different combinations of minimum kVp (109 and 125 kVp) and z-collimator aperture (full: 22.2 cm; medium: 14.0 cm; small: 8.4 cm). Monte Carlo (MC) simulations were carried out to generate complete 2D dose distributions in the central plane (z = 0). The MC model was validated at the 23 dose points against IC experimental data. The planar dose distributions were then estimated using subsets of the point dose measurements using two proposed methods: (1) the proximity-based weighting method (method 1) and (2) the dose point surface fitting method (method 2). Twenty-eight different dose point distributions with six different point number cases (4, 5, 6, 7, 14, and 23 dose points) were evaluated to determine the optimal number of dose points and their placement in the phantom. The performances of the methods were determined by comparing their results with those of the validated MC simulations. The performances of the methods in the presence of measurement uncertainties were evaluated. Results: The 5-, 6-, and 7-point cases had differences below 2%, ranging from 1.0% to 1.7% for both methods, which is a performance comparable to that of the methods with a relatively large number of points, i.e., the 14- and 23-point cases. However, with the 4-point case, the performances of the two methods decreased sharply. Among the 4-, 5-, 6-, and 7-point cases, the 7-point case (1.0% [±0

  14. SU-E-T-223: Investigation of the Accuracy of Two-Dimensional Dose Distributions Measurement From High-Dose-Rate Brachytherapy Ir-192 Source Using Multiple-Diode-Array Detector (MapCheck2)

    SciTech Connect

    Taguenang, J; De La Fuente, T Herman; Ahmad, S; Ali, I

    2014-06-01

    Purpose: To investigate the dosimetric accuracy of multiple-diode-array detector (Mapcheck2) for high-dose-rate brachytherapy Ir-192 source. The two-dimensional (2D) dose distributions measured with MapCheck2 were validated with EBT2 Gafchromic film measurement and AAPM task-group- 43 (TG-43) modeling. Methods: 2D-dose distributions from Ir-192 source were measured with MapCheck2 and EBT2-films. MapCheck2 response was corrected for effects: directional dependence, diode and phantom heterogeneity. Optical density growth of the film was controlled by synchronized scanning of the film exposed to Ir-192 and calibration films exposed to 6 MV linac beams. Similarly, MapCheck2 response was calibrated to dose using 6 MV beams. An empirical model was developed for the dose distributions measured with Mapcheck2 that considered directional, diode and phantom heterogeneity corrections. The dose deposited in solid-state-detectors was modeled using a cavity theory model for the diode. This model was then validated with measurements using EBT2-films and calculations with TG-43. Results: The response of MapCheck2 has been corrected for different effects including: (a) directional dependence of 0–20% over angular range 0o–90o, (b) phantom heterogeneity (3%) and (c) diode heterogeneity (9%). The corrected dose distributions measured with MapCheck2 agreed well with the measured dose distributions from EBT2-film and with calculations using TG-43 within 5% over a wide range of dose levels and rates. The advantages of MapCheck2 include less noisy, linear and stable response compared with film. The response of MapCheck2 exposed to 192Ir-source showed no energy dependence similar to its response to MV energy beam. Detection spatial-resolution of individual diodes was 0.8×0.8 mm2, however, 2DMapCheck2 resolution is limited by distance between diodes (7.07 mm). Conclusion: The dose distribution measured with MapCheck2 agreed well within 5% with that measured using EBT2-films; and

  15. Dose Distribution Calculation in Skin Cancer Treatment Using Leipzig Applicator

    NASA Astrophysics Data System (ADS)

    Mowlawi, Ali Asghar; Yazdani, Majed

    The combination of 192Ir seed with the Leipzig applicators is used in a considerable number of clinical trials for skin cancer treatment. As is known, the beneficial effects of ionizing radiation for tumor treatment depends on the dosimetry accuracy. Nowadays, dosimetry calculations are supported by the characteristics provided by the manufacturer, which have been obtained from measurements with an ionization chamber in a phantom. Despite their benefit, the experimental data involves errors related to the positioning, energy, and angular dependence of the detectors. Thus, in order to get a detailed and more accurate dosimetry, the Monte Carlo code MCNP4C2 — Monte Carlo Neutron Particle, 4C2 version — has been employed to analyze the dose distribution in depth and at the surface in the skin cancer treatment using Leipzig applicators. On the other hand, some different measurements have been taken to validate the method and compare results. The results for this material of phantom (the skin with 0.5 cm thick over infinite soft tissue) can be used in treatment planning systems and also for computation of model dependent parameters like anisotropy dose function.

  16. Non-uniform dose distributions in cranial radiation therapy

    NASA Astrophysics Data System (ADS)

    Bender, Edward T.

    Radiation treatments are often delivered to patients with brain metastases. For those patients who receive radiation to the entire brain, there is a risk of long-term neuro-cognitive side effects, which may be due to damage to the hippocampus. In clinical MRI and CT scans it can be difficult to identify the hippocampus, but once identified it can be partially spared from radiation dose. Using deformable image registration we demonstrate a semi-automatic technique for obtaining an estimated location of this structure in a clinical MRI or CT scan. Deformable image registration is a useful tool in other areas such as adaptive radiotherapy, where the radiation oncology team monitors patients during the course of treatment and adjusts the radiation treatments if necessary when the patient anatomy changes. Deformable image registration is used in this setting, but there is a considerable level of uncertainty. This work represents one of many possible approaches at investigating the nature of these uncertainties utilizing consistency metrics. We will show that metrics such as the inverse consistency error correlate with actual registration uncertainties. Specifically relating to brain metastases, this work investigates where in the brain metastases are likely to form, and how the primary cancer site is related. We will show that the cerebellum is at high risk for metastases and that non-uniform dose distributions may be advantageous when delivering prophylactic cranial irradiation for patients with small cell lung cancer in complete remission.

  17. Distribution and analgesia of [3H][D-Pen2, D-Pen5]enkephalin and two halogenated analogs after intravenous administration.

    PubMed

    Weber, S J; Greene, D L; Sharma, S D; Yamamura, H I; Kramer, T H; Burks, T F; Hruby, V J; Hersh, L B; Davis, T P

    1991-12-01

    To improve pharmacological characteristics of the delta-selective, cyclic peptide [D-Pen2, D-Pen5]enkephalin (DPDPE), modification by halogenation at the Phe4 residue was undertaken. The present study was to determine the extent [3H]DPDPE, [3H][p-Cl-Phe4]DPDPE and [p-125IPhe4]DPDPE crosses the blood-brain barrier, elicits analgesia and to characterize selective organ distribution and stability after i.v. administration. A significantly greater percentage of total [3H][p-Cl-Phe4]DPDPE reached the brain after 10, 20 and 40 min as compared to [3H]DPDPE and both peptides were significantly displaced by pretreatment with naloxone or naltrindole. The amount of [3H]DPDPE detected in the brain was greater than that of [p-125IPhe4]DPDPE. Distribution results revealed large amounts of the administered peptides were sequestered rapidly in the gall bladder and secreted into the small intestine. Hot-plate antinociception tests 5 min after i.v. administration (30 and 60 mg/kg) revealed [p-Cl-Phe4]DPDPE to elicit a much greater analgesic effect as compared to DPDPE or [p-125IPhe4]DPDPE. These results provide evidence that [p-Cl-Phe4]DPDPE has a greater apparent distribution to the brain and has a greater effect on the antinociception threshold as tested on the hot-plate than DPDPE or [p-125IPhe4]DPDPE. Stability of unlabeled and tritiated DPDPE and [p-Cl-Phe4]DPDPE was determined both in vitro and in vivo; both unlabeled and tritiated DPDPE and [p-Cl-Phe4]DPDPE remain intact. PMID:1762065

  18. Scaling neutron absorbed dose distributions from one medium to another

    SciTech Connect

    Awschalom, M.; Rosenberg, I.; Ten Haken, R.K.

    1982-11-01

    Central axis depth dose (CADD) and off-axis absorbed dose ratio (OAR) measurements were made in water, muscle and whole skeletal bone TE-solutions, mineral oil and glycerin with a clinical neutron therapy beam. These measurements show that, for a given neutron beam quality and field size, there is a universal CADD distribution at infinity if the depth in the phantom is expressed in terms of appropriate scaling lengths. These are essentially the kerma-weighted neutron mean free paths in the media. The method used in ICRU No. 26 to scale the CADD by the ratio of the densities is shown to give incorrect results. the OAR's measured in different media at depths proportional to the respective mean free paths were also found to be independent of the media to a good approximation. It is recommended that relative CADD and OAR measurements be performed in water because of its universality and convenience. A table of calculated scaling lengths is given for various neutron energy spectra and for various tissues and materials of practical importance in neutron dosimetry.

  19. Comparison of Kodak EDR2 and Gafchromic EBT film for intensity-modulated radiation therapy dose distribution verification

    SciTech Connect

    Sankar, A. . E-mail: asankar_phy@yahoo.co.in; Ayyangar, Komanduri M.; Nehru, R. Mothilal; Gopalakrishna Kurup, P.G.; Murali, V.; Enke, Charles A.; Velmurugan, J.

    2006-01-01

    The quantitative dose validation of intensity-modulated radiation therapy (IMRT) plans require 2-dimensional (2D) high-resolution dosimetry systems with uniform response over its sensitive region. The present work deals with clinical use of commercially available self-developing Radio Chromic Film, Gafchromic EBT film, for IMRT dose verification. Dose response curves were generated for the films using a VXR-16 film scanner. The results obtained with EBT films were compared with the results of Kodak extended dose range 2 (EDR2) films. The EBT film had a linear response between the dose range of 0 to 600 cGy. The dose-related characteristics of the EBT film, such as post irradiation color growth with time, film uniformity, and effect of scanning orientation, were studied. There was up to 8.6% increase in the color density between 2 to 40 hours after irradiation. There was a considerable variation, up to 8.5%, in the film uniformity over its sensitive region. The quantitative differences between calculated and measured dose distributions were analyzed using DTA and Gamma index with the tolerance of 3% dose difference and 3-mm distance agreement. The EDR2 films showed consistent results with the calculated dose distributions, whereas the results obtained using EBT were inconsistent. The variation in the film uniformity limits the use of EBT film for conventional large-field IMRT verification. For IMRT of smaller field sizes (4.5 x 4.5 cm), the results obtained with EBT were comparable with results of EDR2 films.

  20. Dose distributions in regions containing beta sources: Uniform spherical source regions in homogeneous media

    SciTech Connect

    Werner, B.L.; Rahman, M.; Salk, W.N. ); Kwok, C.S. )

    1991-11-01

    The energy-averaged transport model for the calculation of dose rate distributions is applied to uniform, spherical source distributions in homogeneous media for radii smaller than the electron range. The model agrees well with Monte Carlo based calculations for source distributions with radii greater than half the continuous slowing down approximation range. The dose rate distributions can be written in the medical internal radiation dose (MIRD) formalism.

  1. Examination of the relevance of using radiochromic films in measuring entrance skin dose distribution in conventional digital mammography.

    PubMed

    Soliman, K; Bakkari, M

    2015-07-01

    Based on manufacturer specifications, radiochromic films are sensitive enough to be used for dosimetry in digital mammography (DM). The aim of this work was to study the feasibility of measuring entrance surface dose (ESD) distribution using Gafchromic XR-QA2 films. The films were irradiated following a standard clinical two-view screening mammography protocol using a full-field digital mammography (FFDM) imaging system. The films were then digitised using a flatbed scanner. The calibration curve relating the readings from a calibrated ionisation chamber and the films' net optical density (NOD) could not be obtained. The examination of the calibration data revealed non-sensitivity of the films to resolve dose differences below 20 mGy at 28 kVp. Therefore, radiochromic films were found not to be suitable for measuring ESD profiles in DM. A 2D map of the NOD of the irradiated films obtained using in-house developed MATLAB computer program is presented. PMID:25852183

  2. Cerebral morphology and dopamine D2/D3receptor distribution in humans: A combined [18F]fallypride and voxel-based morphometry study

    PubMed Central

    Woodward, Neil D.; Zald, David H.; Ding, Zhaohua; Riccardi, Patrizia; Ansari, M. Sib; Baldwin, Ronald M.; Cowan, Ronald L.; Li, Rui; Kessler, Robert M.

    2009-01-01

    The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D2/D3 ligand [18F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BPND) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BPND were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BPND throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BPND and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BPND were observed. Overall, grey matter density appeared more strongly correlated with BPND than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [18F]fallypride BPND in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization. PMID:19457373

  3. A linear programming model for optimizing HDR brachytherapy dose distributions with respect to mean dose in the DVH-tail

    SciTech Connect

    Holm, Åsa; Larsson, Torbjörn; Tedgren, Åsa Carlsson

    2013-08-15

    Purpose: Recent research has shown that the optimization model hitherto used in high-dose-rate (HDR) brachytherapy corresponds weakly to the dosimetric indices used to evaluate the quality of a dose distribution. Although alternative models that explicitly include such dosimetric indices have been presented, the inclusion of the dosimetric indices explicitly yields intractable models. The purpose of this paper is to develop a model for optimizing dosimetric indices that is easier to solve than those proposed earlier.Methods: In this paper, the authors present an alternative approach for optimizing dose distributions for HDR brachytherapy where dosimetric indices are taken into account through surrogates based on the conditional value-at-risk concept. This yields a linear optimization model that is easy to solve, and has the advantage that the constraints are easy to interpret and modify to obtain satisfactory dose distributions.Results: The authors show by experimental comparisons, carried out retrospectively for a set of prostate cancer patients, that their proposed model corresponds well with constraining dosimetric indices. All modifications of the parameters in the authors' model yield the expected result. The dose distributions generated are also comparable to those generated by the standard model with respect to the dosimetric indices that are used for evaluating quality.Conclusions: The authors' new model is a viable surrogate to optimizing dosimetric indices and quickly and easily yields high quality dose distributions.

  4. Dosimetry of dose distributions in radiotherapy of patients with surgical implants

    NASA Astrophysics Data System (ADS)

    Brożyna, Bogusław; Chełmiński, Krzysztof; Bulski, Wojciech; Giżyńska, Marta; Grochowska, Paulina; Walewska, Agnieszka; Zalewska, Marta; Kawecki, Andrzej; Krajewski, Romuald

    2014-11-01

    The investigation was performed in order to evaluate the use of Gafchromic EBT films for measurements of dose distributions created during radiotherapy in tissues surrounding titanium or resorbable implants used for joining and consolidating facial bones. Inhomogeneous dose distributions at implant-tissue interfaces can be the reason of normal tissue complications observed in radiotherapy patients after surgery with implants. The dose measured at a depth of 2.5 cm on contact surfaces, proximal and distal to the beam source, between the titanium implant and the phantom material was 109% and 92% respectively of the reference dose measured in a homogeneous phantom. For the resorbable implants the doses measured on the proximal and the distal contact surfaces were 102% and 101% respectively of the reference dose. The resorbable implants affect the homogeneity of dose distribution at a significantly lesser degree than the titanium implants. Gafchromic EBT films allowed for precise dose distribution measurements at the contact surfaces between tissue equivalent materials and implants. We measured doses at contact surfaces between titanium implants and RW3 phantom. We measured doses at contact surfaces between resorbable implants and RW3 phantom. We compared doses measured on contact surfaces and doses in homogeneous phantom. Doses at contact surfaces between RW3 phantom and titanium were distorted about 8-9%. Doses at RW3 phantom and resorbable implant contact surfaces were distorted about 2%.

  5. Proton dose distribution measurements using a MOSFET detector with a simple dose-weighted correction method for LET effects.

    PubMed

    Kohno, Ryosuke; Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-01-01

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L-shaped bolus. The dose reproducibility, angular dependence and depth-dose response were evaluated using a 190 MeV proton beam. Depth-output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose-weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L-shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors. PMID:21587191

  6. Effect of tissue inhomogeneities on dose distributions from Cf-252 brachytherapy source.

    PubMed

    Ghassoun, J

    2013-01-01

    The Monte Carlo method was used to determine the effect of tissue inhomogeneities on dose distribution from a Cf-252 brachytherapy source. Neutron and gamma-ray fluences, energy spectra and dose rate distributions were determined in both homogenous and inhomogeneous phantoms. Simulations were performed using the MCNP5 code. Obtained results were compared with experimentally measured values published in literature. Results showed a significant change in neutron dose rate distributions in presence of heterogeneities. However, their effect on gamma rays dose distribution is minimal. PMID:23069196

  7. Modeling multicellular response to nonuniform distributions of radioactivity: differences in cellular response to self-dose and cross-dose.

    PubMed

    Howell, Roger W; Neti, Prasad V S V

    2005-02-01

    Radiopharmaceuticals are distributed nonuniformly in tissue. While distributions of radioactivity often appear uniform at the organ level, in fact, microscopic examination reveals that only a fraction of the cells in tissue are labeled. Labeled cells and unlabeled cells often receive different absorbed doses depending on the extent of the nonuniformity and the characteristics of the emitted radiations. The labeled cells receive an absorbed dose from radioactivity within the cell (self-dose) as well as an absorbed dose from radioactivity in surrounding labeled cells (cross-dose). Unlabeled cells receive only a cross-dose. In recent communications, a multicellular cluster model was used to investigate the lethality of microscopic nonuniform distributions of 131I iododeoxyuridine (131IdU). For a given mean absorbed dose to the tissue, the dose response depended on the percentage of cells that were labeled. Specifically, when 1, 10 and 100% of the cells were labeled, a D37 of 6.4, 5.7 and 4.5 Gy, respectively, was observed. The reason for these differences was recently traced to differences in the cellular response to the self- and cross-doses delivered by 131IdU. Systematic isolation of the effects of self-dose resulted in a D37 of 1.2 +/- 0.3 Gy. The cross-dose component yielded a D37 of 6.4 +/- 0.5 Gy. In the present work, the overall survival of multicellular clusters containing 1, 10 and 100% labeled cells is modeled using a semi-empirical approach that uses the mean lethal self- and cross-doses and the fraction of cells labeled. There is excellent agreement between the theoretical model and the experimental data when the surviving fraction is greater than 1%. Therefore, when the distribution of 131I in tissue is nonuniform at the microscopic level, and the cellular response to self- and cross-doses differs, multicellular dosimetry can be used successfully to predict biological response, whereas the mean absorbed dose fails in this regard. PMID:15658898

  8. Radiation dose distributions due to sudden ejection of cobalt device.

    PubMed

    Abdelhady, Amr

    2016-09-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. PMID:27423021

  9. Distribution of exposure concentrations and doses for constituents of environmental tobacco smoke

    SciTech Connect

    LaKind, J.S.; Ginevan, M.E.; Naiman, D.Q.; James, A.C.; Jenkins, R.A.; Dourson, M.L.; Felter, S.P.; Graves, C.G.; Tardiff, R.G.

    1999-06-01

    The ultimate goal of the research reported in this series of three articles is to derive distributions of doses of selected environmental tobacco smoke (ETS)-related chemicals for nonsmoking workers. This analysis uses data from the 16-City Study collected with personal monitors over the course of one workday in workplaces where smoking occurred. In this article, the authors describe distributions of ETS chemical concentrations and the characteristics of those distributions for the workplace exposure. Next, they present population parameters relevant for estimating dose distributions and the methods used for estimating those dose distributions. Finally, they derive distributions of doses of selected ETS-related constituents obtained in the workplace for people in smoking work environments. Estimating dose distributions provided information beyond the usual point estimate of dose and showed that the preponderance of individuals exposed to ETS in the workplace were exposed at the low end of the dose distribution curve. The results of this analysis include estimations of hourly maxima and time-weighted average (TWA) doses of nicotine from workplace exposures to ETS and doses derived from modeled lung burdens of ultraviolet-absorbing particulate matter (UVPM) and solanesol resulting from workplace exposures to ETS (extrapolated from 1 day to 1 year).

  10. Comparison of methods for the measurement of radiation dose distributions in high dose rate (HDR) brachytherapy: Ge-doped optical fiber, EBT3 Gafchromic film, and PRESAGE{sup Registered-Sign} radiochromic plastic

    SciTech Connect

    Palmer, A. L.; Di Pietro, P.; Alobaidli, S.; Issa, F.; Doran, S.; Bradley, D.; Nisbet, A.

    2013-06-15

    conditions used in this study, the useful range from an isolated HDR source was 5-40 mm for fibers, 3-50 mm for EBT3, and 4-21 mm for PRESAGE{sup Registered-Sign }. Fibers demonstrated some over-response at very low dose levels, suffered from volume averaging effects in the dose distribution measurement, and exhibited up to 9% repeatability variation over three repeated measurements. EBT3 demonstrated excellent agreement with Monte Carlo and TPS dose distributions, with up to 3% repeatability over three measurements. PRESAGE{sup Registered-Sign} gave promising results, being the only true 3D dosimeter, but artifacts and noise were apparent. Conclusions: The comparative response of three emerging dosimetry systems for clinical brachytherapy dose distribution measurement has been investigated. Ge-doped optical fibers have excellent spatial resolution for single-direction measurement but are currently too large for complex dose distribution assessment. The use of PRESAGE{sup Registered-Sign} with optical-CT readout gave promising results in the measurement of true 3D dose distributions but further development work is required to reduce noise and improve dynamic range for brachytherapy dose distribution measurements. EBT3 Gafchromic film with multichannel analysis demonstrated accurate and reproducible measurement of dose distributions in HDR brachytherapy. Calibrated dose measurements were possible with agreement within 1.5% of TPS dose calculations. The suitability of EBT3 as a dosimeter for 2D quality control or commissioning work has been demonstrated.

  11. Estimation of radiation-induced cancer from three-dimensional dose distributions: Concept of organ equivalent dose

    SciTech Connect

    Schneider, Uwe . E-mail: uwe.schneider@psi.ch; Zwahlen, Daniel; Ross, Dieter; Kaser-Hotz, Barbara

    2005-04-01

    Purpose: Estimates of secondary cancer risk after radiotherapy are becoming more important for comparative treatment planning. Modern treatment planning systems provide accurate three-dimensional dose distributions for each individual patient. These data open up new possibilities for more precise estimates of secondary cancer incidence rates in the irradiated organs. We report a new method to estimate organ-specific radiation-induced cancer incidence rates. The concept of an organ equivalent dose (OED) for radiation-induced cancer assumes that any two dose distributions in an organ are equivalent if they cause the same radiation-induced cancer incidence. Methods and Materials: The two operational parameters of the OED concept are the organ-specific cancer incidence rate at low doses, which is taken from the data of the atomic bomb survivors, and cell sterilization at higher doses. The effect of cell sterilization in various organs was estimated by analyzing the secondary cancer incidence data of patients with Hodgkin's disease who were treated with radiotherapy in between 1962 and 1993. The radiotherapy plans used at the time the patients had been treated were reconstructed on a fully segmented whole body CT scan. The dose distributions were calculated in individual organs for which cancer incidence data were available. The model parameter that described cell sterilization was obtained by analyzing the dose and cancer incidence rates for the individual organs. Results: We found organ-specific cell radiosensitivities that varied from 0.017 for the mouth and pharynx up to 1.592 for the bladder. Using the two model parameters (organ-specific cancer incidence rate and the parameter characterizing cell sterilization), the OED concept can be applied to any three-dimensional dose distribution to analyze cancer incidence. Conclusion: We believe that the concept of OED presented in this investigation represents a first step in assessing the potential risk of secondary

  12. WE-A-17A-12: The Influence of Eye Plaque Design On Dose Distributions and Dose- Volume Histograms

    SciTech Connect

    Aryal, P; Molloy, JA; Rivard, MJ

    2014-06-15

    Purpose: To investigate the effect of slot design of the model EP917 plaque on dose distributions and dose-volume histograms (DVHs). Methods: The dimensions and orientation of the slots in EP917 plaques were measured. In the MCNP5 radiation simulation geometry, dose distributions on orthogonal planes and DVHs for a tumor and sclera were generated for comparisons. 27 slot designs and 13 plaques were evaluated and compared with the published literature and the Plaque Simulator clinical treatment planning system. Results: The dosimetric effect of the gold backing composition and mass density was < 3%. Slot depth, width, and length changed the central axis (CAX) dose distributions by < 1% per 0.1 mm in design variation. Seed shifts in the slot towards the eye and shifts of the {sup 125} I-coated Ag rod within the capsule had the greatest impact on CAX dose distribution, increasing by 14%, 9%, 4%, and 2.5% at 1, 2, 5, and 10 mm, respectively, from the inner sclera. Along the CAX, dose from the full plaque geometry using the measured slot design was 3.4% ± 2.3% higher than the manufacturer-provided geometry. D{sub 10} for the simulated tumor, inner sclera, and outer sclera for the measured plaque was also higher, but 9%, 10%, and 20%, respectively. In comparison to the measured plaque design, a theoretical plaque having narrow and deep slots delivered 30%, 37%, and 62% lower D{sub 10} doses to the tumor, inner sclera, and outer sclera, respectively. CAX doses at −1, 0, 1, and 2 mm were also lower by a factor of 2.6, 1.4, 1.23, and 1.13, respectively. Conclusion: The study identified substantial sensitivity of the EP917 plaque dose distributions to slot design. However, it did not identify substantial dosimetric variations based on radionuclide choice ({sup 125}I, {sup 103}Pd, or {sup 131}Cs). COMS plaques provided lower scleral doses with similar tumor dose coverage.

  13. Optimization of Dose Distribution for the System of Linear Accelerator-Based Stereotactic Radiosurgery.

    NASA Astrophysics Data System (ADS)

    Suh, Tae-Suk

    The work suggested in this paper addresses a method for obtaining an optimal dose distribution for stereotactic radiosurgery. Since stereotactic radiosurgery utilizes multiple noncoplanar arcs and a three-dimensional dose evaluation technique, many beam parameters and complex optimization criteria are included in the dose optimization. Consequently, a lengthy computation time is required to optimize even the simplest case by a trial and error method. The basic approach presented here is to use both an analytical and an experimental optimization to minimize the dose to critical organs while maintaining a dose shaped to the target. The experimental approach is based on shaping the target volumes using multiple isocenters from dose experience, or on field shaping using a beam's eye view technique. The analytical approach is to adapt computer -aided design optimization to find optimum parameters automatically. Three-dimensional approximate dose models are developed to simulate the exact dose model using a spherical or cylindrical coordinate system. Optimum parameters are found much faster with the use of computer-aided design optimization techniques. The implementation of computer-aided design algorithms with the approximate dose model and the application of the algorithms to several cases are discussed. It is shown that the approximate dose model gives dose distributions similar to those of the exact dose model, which makes the approximate dose model an attractive alternative to the exact dose model, and much more efficient in terms of computer -aided design and visual optimization.

  14. Comparison of dose distributions for Hounsfield number conversion methods in GEANT4

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Dong; Kim, Byung Yong; Kim, Eng Chan; Yun, Sang Mo; Kang, Jeong Ku; Kim, Sung Kyu

    2014-06-01

    The conversion of patient computed tomography (CT) data to voxel phantoms is essential for CT-based Monte Carlo (MC) dose calculations, and incorrect assignments of materials and mass densities can lead to large errors in dose distributions. We investigated the effects of mass density and material assignments on GEANT4-based photon dose calculations. Three material conversion methods and four density conversion methods were compared for a lung tumor case. The dose calculations for 6-MV photon beams with a field size of 10 × 10 cm2 were performed using a 0.5 × 0.5 × 0.5 cm3 voxel with 1.2 × 109 histories. The material conversion methods led to different material assignment percentages in converted voxel regions. The GEANT4 example and the modified Schneider material conversion methods showed large local dose differences relative to the BEAMnrc default method for lung and other tissues. For mass density conversion methods when only water was used, our results showed only slight dose differences. Gaussian-like distributions, with mean values close to zero, were obtained when the reference method was compared with the other methods. The maximum dose difference of ˜2% indicated that the dose distributions agreed relatively well. Material assignment methods probably have more significant impacts on dose distributions than mass density assignment methods. The study confirms that material assignment methods cause significant dose differences in GEANT4-based photon dose calculations.

  15. Tomotherapy dose distribution verification using MAGIC-f polymer gel dosimetry

    SciTech Connect

    Pavoni, J. F.; Pike, T. L.; Snow, J.; DeWerd, L.; Baffa, O.

    2012-05-15

    Purpose: This paper presents the application of MAGIC-f gel in a three-dimensional dose distribution measurement and its ability to accurately measure the dose distribution from a tomotherapy unit. Methods: A prostate intensity-modulated radiation therapy (IMRT) irradiation was simulated in the gel phantom and the treatment was delivered by a TomoTherapy equipment. Dose distribution was evaluated by the R2 distribution measured in magnetic resonance imaging. Results: A high similarity was found by overlapping of isodoses of the dose distribution measured with the gel and expected by the treatment planning system (TPS). Another analysis was done by comparing the relative absorbed dose profiles in the measured and in the expected dose distributions extracted along indicated lines of the volume and the results were also in agreement. The gamma index analysis was also applied to the data and a high pass rate was achieved (88.4% for analysis using 3%/3 mm and of 96.5% using 4%/4 mm). The real three-dimensional analysis compared the dose-volume histograms measured for the planning volumes and expected by the treatment planning, being the results also in good agreement by the overlapping of the curves. Conclusions: These results show that MAGIC-f gel is a promise for tridimensional dose distribution measurements.

  16. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    SciTech Connect

    Purwaningsih, Anik

    2014-09-30

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  17. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    NASA Astrophysics Data System (ADS)

    Purwaningsih, Anik

    2014-09-01

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  18. Evaluation of dose distributions in gamma chamber using glass plate detector

    PubMed Central

    Narayan, Pradeep; Vaijapurkar, S. G.; Bhatnagar, P. K.

    2008-01-01

    A commercial glass plate of thickness 1.75 mm has been utilized for evaluation of dose distributions inside the irradiation volume of gamma chamber using optical densitometry technique. The glass plate showed linear response in the dose range 0.10 Kilo Gray (kGy) to 10 kGy of cobalt-60 gamma radiation with optical sensitivity 0.04 Optical Density (OD) /kGy. The change in the optical density at each identified spatial dose matrix on the glass plate in relation to the position in the irradiation volume has been presented as dose distributions inside the gamma chamber. The optical density changes have been graphically plotted in the form of surface diagram of color washes for different percentage dose rate levels as isodose distributions in gamma chamber. The variation in dose distribution inside the gamma chamber unit, GC 900, BRIT India make, using this technique has been observed within ± 15%. This technique can be used for routine quality assurances and dose distribution validation of any gamma chamber during commissioning and source replacement. The application of commercial glass plate for dose mapping in gamma chambers has been found very promising due to its wider dose linearity, quick measurement, and lesser expertise requirement in application of the technique. PMID:19893695

  19. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  20. Dose distribution under external eye shields for high energy electrons

    SciTech Connect

    Rustgi, S.N.

    1986-01-01

    Effectiveness of eye shields in reducing the dose to the eye lens from 6 and 9 MeV electron beams from a linear accelerator has been evaluated. The thickness of the shields made from cerrobend was such that only bremsstrahlung photons were transmitted. A shield with a diameter of 1.3 cm and thickness of 1 cm was adequate for the 9 MeV electron beam. The optimum shield to phantom surface distance was 1 cm or less. The same shield with a thickness of 0.5 cm was found to be ineffective with a 6 MeV electron beam. The dose under the shield is greater than predicted by transmission measurements because of the contribution of phantom and electron cone generated scattered electrons.

  1. Potential dose distributions at proposed surface radioactvity clearance levels resulting from occupational scenarios.

    SciTech Connect

    Kamboj, S.; Yu, C.; Rabovsky, J.

    2011-08-02

    The purpose of this report is to evaluate the potential dose distribution resulting from surface radioactivity, using occupational radiation exposure scenarios. The surface radioactivity clearance values considered in this analysis may ultimately replace those currently specified in the U.S. Department of Energy (DOE) requirements and guidance for radiological protection of workers, the public and the environment. The surface contamination values apply to radioactive contamination deposited on a surface (i.e., not incorporated into the interior of the material). For these calculations, the dose coefficients for intake of radionuclides were taken from ICRP Publication 68 (ICRP 1994), and external exposure dose coefficients were taken from the compact disc (CD) that accompanied Federal Guidance Report (FGR) 13 (Eckerman et al. 1999). The ICRP Publication 68 dose coefficients were based on ICRP Publication 60 (ICRP 1990) and were used specifically for worker dose calculations. The calculated dose in this analysis is the 'effective dose' (ED), rather than the 'effective dose equivalent' (EDE).

  2. Dose distribution around a needle-like anode X-ray tube: dye-film vs. planar thermoluminescent detectors.

    PubMed

    Budzanowski, M; Olko, P; Marczewska, B; Czopyk, L; Slapa, M; Stras, W; Traczyk, M; Talejko, M

    2006-01-01

    The dosimetry around the X-ray tube with a needle-like anode (NAXT), developed at the Institute of Nuclear Studies, for interstitial brachytherapy has been performed using (1) dye films (Gafchromic XR-T), (2) large-area thermoluminescent (TL) detectors--prepared either by gluing TL powder onto thin Al foil (so-called planar detectors with spatial resolution of 0.1 mm) and (3) miniature (2 mm diameter and 0.5 mm thick) TL detectors. The measurements were performed in following geometries. (1) Needle inside a PMMA cylinder--the planar TL detector mounted on the surface of the cylinder. (2) Needle inside a thick block of PMMA and TL detector mounted vertically 7 mm from needle axis. TL detectors were read with the planar (2D) thermoluminescence reader, developed at IFJ, with a sensitive CCD (charge couple device) camera. Gafchromic films were evaluated with a system based on Agfa Arcus 1200 scanner and calibrated with X rays (35 kV) filtered with 0.03 mm Mo and with Co-60 photons. The intensity distribution of TL light on the planar detector was calibrated in terms of absorbed dose to water, using (137)Cs gamma-rays. TL planar detectors seem to be a promising tool for 2D dosimetry of miniature X-ray sources. Obtained results for TLDs and Gafchromic films seem to be comparable but differences have been found. Both methods are useful for measurements of dose distribution around the NAXT X-rays source. PMID:16614087

  3. Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Pawlicki, T.; Jiang, S. B.; Li, J. S.; Deng, J.; Mok, E.; Kapur, A.; Xing, L.; Ma, L.; Boyer, A. L.

    2000-09-01

    The purpose of this work was to use Monte Carlo simulations to verify the accuracy of the dose distributions from a commercial treatment planning optimization system (Corvus, Nomos Corp., Sewickley, PA) for intensity-modulated radiotherapy (IMRT). A Monte Carlo treatment planning system has been implemented clinically to improve and verify the accuracy of radiotherapy dose calculations. Further modifications to the system were made to compute the dose in a patient for multiple fixed-gantry IMRT fields. The dose distributions in the experimental phantoms and in the patients were calculated and used to verify the optimized treatment plans generated by the Corvus system. The Monte Carlo calculated IMRT dose distributions agreed with the measurements to within 2% of the maximum dose for all the beam energies and field sizes for both the homogeneous and heterogeneous phantoms. The dose distributions predicted by the Corvus system, which employs a finite-size pencil beam (FSPB) algorithm, agreed with the Monte Carlo simulations and measurements to within 4% in a cylindrical water phantom with various hypothetical target shapes. Discrepancies of more than 5% (relative to the prescribed target dose) in the target region and over 20% in the critical structures were found in some IMRT patient calculations. The FSPB algorithm as implemented in the Corvus system is adequate for homogeneous phantoms (such as prostate) but may result in significant under- or over-estimation of the dose in some cases involving heterogeneities such as the air-tissue, lung-tissue and tissue-bone interfaces.

  4. Extrapolation of the dna fragment-size distribution after high-dose irradiation to predict effects at low doses

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Cucinotta, F. A.; Sachs, R. K.; Brenner, D. J.; Peterson, L. E.

    2001-01-01

    The patterns of DSBs induced in the genome are different for sparsely and densely ionizing radiations: In the former case, the patterns are well described by a random-breakage model; in the latter, a more sophisticated tool is needed. We used a Monte Carlo algorithm with a random-walk geometry of chromatin, and a track structure defined by the radial distribution of energy deposition from an incident ion, to fit the PFGE data for fragment-size distribution after high-dose irradiation. These fits determined the unknown parameters of the model, enabling the extrapolation of data for high-dose irradiation to the low doses that are relevant for NASA space radiation research. The randomly-located-clusters formalism was used to speed the simulations. It was shown that only one adjustable parameter, Q, the track efficiency parameter, was necessary to predict DNA fragment sizes for wide ranges of doses. This parameter was determined for a variety of radiations and LETs and was used to predict the DSB patterns at the HPRT locus of the human X chromosome after low-dose irradiation. It was found that high-LET radiation would be more likely than low-LET radiation to induce additional DSBs within the HPRT gene if this gene already contained one DSB.

  5. SU-E-CAMPUS-T-03: Four-Dimensional Dose Distribution Measurement Using Plastic Scintillator

    SciTech Connect

    Hashimoto, M; Kozuka, T; Oguchi, M; Nishio, T; Haga, A; Hanada, T; Kabuki, S

    2014-06-15

    Purpose: To develop the detector for the four-dimensional dose distribution measurement. Methods: We made the prototype detector for four-dimensional dose distribution measurement using a cylindrical plastic scintillator (5 cm diameter) and a conical reflection grass. The plastic scintillator is used as a phantom. When the plastic scintillator is irradiated, the scintillation light was emitted according to absorbed dose distribution. The conical reflection grass was arranged to surround the plastic scintillator, which project to downstream the projection images of the scintillation light. Then, the projection image was reflected to 45 degree direction by flat reflection grass, and was recorded by camcorder. By reconstructing the three-dimensional dose distribution from the projection image recorded in each frame, we could obtain the four-dimensional dose distribution. First, we tested the characteristic according to the amount of emitted light. Then we compared of the light profile and the dose profile calculated with the radiotherapy treatment planning system. Results: The dose dependency of the amount of light showed linearity. The pixel detecting smaller amount of light had high sensitivity than the pixel detecting larger amount of light. However the difference of the sensitivity could be corrected from the amount of light detected in each pixel. Both of the depth light profile through the conical reflection grass and the depth dose profile showed the same attenuation in the region deeper than peak depth. In lateral direction, the difference of the both profiles was shown at outside field and penumbra region. We consider that the difference is occurred due to the scatter of the scintillation light in the plastic scintillator block. Conclusion: It was possible to obtain the amount of light corresponding to the absorbed dose distribution from the prototype detector. Four-dimensional dose distributions can be reconstructed with high accuracy by the correction of

  6. Mesh2d

    SciTech Connect

    Greg Flach, Frank Smith

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.

  7. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  8. SU-D-BRB-07: Lipiodol Impact On Dose Distribution in Liver SBRT After TACE

    SciTech Connect

    Kawahara, D; Ozawa, S; Hioki, K; Suzuki, T; Lin, Y; Okumura, T; Ochi, Y; Nakashima, T; Ohno, Y; Kimura, T; Murakami, Y; Nagata, Y

    2015-06-15

    Purpose: Stereotactic body radiotherapy (SBRT) combining transarterial chemoembolization (TACE) with Lipiodol is expected to improve local control. This study aims to evaluate the impact of Lipiodol on dose distribution by comparing the dosimetric performance of the Acuros XB (AXB) algorithm, anisotropic analytical algorithm (AAA), and Monte Carlo (MC) method using a virtual heterogeneous phantom and a treatment plan for liver SBRT after TACE. Methods: The dose distributions calculated using AAA and AXB algorithm, both in Eclipse (ver. 11; Varian Medical Systems, Palo Alto, CA), and EGSnrc-MC were compared. First, the inhomogeneity correction accuracy of the AXB algorithm and AAA was evaluated by comparing the percent depth dose (PDD) obtained from the algorithms with that from the MC calculations using a virtual inhomogeneity phantom, which included water and Lipiodol. Second, the dose distribution of a liver SBRT patient treatment plan was compared between the calculation algorithms. Results In the virtual phantom, compared with the MC calculations, AAA underestimated the doses just before and in the Lipiodol region by 5.1% and 9.5%, respectively, and overestimated the doses behind the region by 6.0%. Furthermore, compared with the MC calculations, the AXB algorithm underestimated the doses just before and in the Lipiodol region by 4.5% and 10.5%, respectively, and overestimated the doses behind the region by 4.2%. In the SBRT plan, the AAA and AXB algorithm underestimated the maximum doses in the Lipiodol region by 9.0% in comparison with the MC calculations. In clinical cases, the dose enhancement in the Lipiodol region can approximately 10% increases in tumor dose without increase of dose to normal tissue. Conclusion: The MC method demonstrated a larger increase in the dose in the Lipiodol region than the AAA and AXB algorithm. Notably, dose enhancement were observed in the tumor area; this may lead to a clinical benefit.

  9. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  10. SU-E-I-15: Quantitative Evaluation of Dose Distributions From Axial, Helical and Cone-Beam CT Imaging by Measurement Using a Two-Dimensional Diode-Array Detector

    SciTech Connect

    Chacko, M; Aldoohan, S; Sonnad, J; Ahmad, S; Ali, I

    2015-06-15

    Purpose: To evaluate quantitatively dose distributions from helical, axial and cone-beam CT clinical imaging techniques by measurement using a two-dimensional (2D) diode-array detector. Methods: 2D-dose distributions from selected clinical protocols used for axial, helical and cone-beam CT imaging were measured using a diode-array detector (MapCheck2). The MapCheck2 is composed from solid state diode detectors that are arranged in horizontal and vertical lines with a spacing of 10 mm. A GE-Light-Speed CT-simulator was used to acquire axial and helical CT images and a kV on-board-imager integrated with a Varian TrueBeam-STx machine was used to acquire cone-beam CT (CBCT) images. Results: The dose distributions from axial, helical and cone-beam CT were non-uniform over the region-of-interest with strong spatial and angular dependence. In axial CT, a large dose gradient was measured that decreased from lateral sides to the middle of the phantom due to large superficial dose at the side of the phantom in comparison with larger beam attenuation at the center. The dose decreased at the superior and inferior regions in comparison to the center of the phantom in axial CT. An asymmetry was found between the right-left or superior-inferior sides of the phantom which possibly to angular dependence in the dose distributions. The dose level and distribution varied from one imaging technique into another. For the pelvis technique, axial CT deposited a mean dose of 3.67 cGy, helical CT deposited a mean dose of 1.59 cGy, and CBCT deposited a mean dose of 1.62 cGy. Conclusions: MapCheck2 provides a robust tool to measure directly 2D-dose distributions for CT imaging with high spatial resolution detectors in comparison with ionization chamber that provides a single point measurement or an average dose to the phantom. The dose distributions measured with MapCheck2 consider medium heterogeneity and can represent specific patient dose.

  11. Seasonal influenza vaccine dose distribution in 157 countries (2004-2011).

    PubMed

    Palache, Abraham; Oriol-Mathieu, Valerie; Abelin, Atika; Music, Tamara

    2014-11-12

    Globally there are an estimated 3-5 million cases of severe influenza illness every year, resulting in 250,000-500,000 deaths. At the World Health Assembly in 2003, World Health Organization (WHO) resolved to increase influenza vaccine coverage rates (VCR) for high-risk groups, particularly focusing on at least 75% of the elderly by 2010. But systematic worldwide data have not been available to assist public health authorities to monitor vaccine uptake and review progress toward vaccination coverage targets. In 2008, the International Federation of Pharmaceutical Manufacturers and Associations Influenza Vaccine Supply task force (IFPMA IVS) developed a survey methodology to assess global influenza vaccine dose distribution. The current survey results represent 2011 data and demonstrate the evolution of the absolute number distributed between 2004 and 2011 inclusive, and the evolution in the per capita doses distributed in 2008-2011. Global distribution of IFPMA IVS member doses increased approximately 86.9% between 2004 and 2011, but only approximately 12.1% between 2008 and 2011. The WHO's regions in Eastern Mediterranean (EMRO), Southeast Asian (SEARO) and Africa (AFRO) together account for about 47% of the global population, but only 3.7% of all IFPMA IVS doses distributed. While distributed doses have globally increased, they have decreased in EURO and EMRO since 2009. Dose distribution can provide a reasonable proxy of vaccine utilization. Based on the dose distribution, we conclude that seasonal influenza VCR in many countries remains well below the WHA's VCR targets and below the recommendations of the Council of the European Union in EURO. Inter- and intra-regional disparities in dose distribution trends call into question the impact of current vaccine recommendations at achieving coverage targets. Additional policy measures, particularly those that influence patients adherence to vaccination programs, such as reimbursement, healthcare provider knowledge

  12. Implementation of a dose gradient method into optimization of dose distribution in prostate cancer 3D-CRT plans

    PubMed Central

    Giżyńska, Marta K.; Kukołowicz, Paweł F.; Kordowski, Paweł

    2014-01-01

    Aim The aim of this work is to present a method of beam weight and wedge angle optimization for patients with prostate cancer. Background 3D-CRT is usually realized with forward planning based on a trial and error method. Several authors have published a few methods of beam weight optimization applicable to the 3D-CRT. Still, none on these methods is in common use. Materials and methods Optimization is based on the assumption that the best plan is achieved if dose gradient at ICRU point is equal to zero. Our optimization algorithm requires beam quality index, depth of maximum dose, profiles of wedged fields and maximum dose to femoral heads. The method was tested for 10 patients with prostate cancer, treated with the 3-field technique. Optimized plans were compared with plans prepared by 12 experienced planners. Dose standard deviation in target volume, and minimum and maximum doses were analyzed. Results The quality of plans obtained with the proposed optimization algorithms was comparable to that prepared by experienced planners. Mean difference in target dose standard deviation was 0.1% in favor of the plans prepared by planners for optimization of beam weights and wedge angles. Introducing a correction factor for patient body outline for dose gradient at ICRU point improved dose distribution homogeneity. On average, a 0.1% lower standard deviation was achieved with the optimization algorithm. No significant difference in mean dose–volume histogram for the rectum was observed. Conclusions Optimization shortens very much time planning. The average planning time was 5 min and less than a minute for forward and computer optimization, respectively. PMID:25337411

  13. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    SciTech Connect

    Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji; Suzuki, Osamu; Seo, Yuji; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  14. Relationships of Obesity and Fat Distribution With atherothrombotic Risk Factors: Baseline Results From the Bypass angioplasty Revascularization Investigation 2 Diabetes (BaRI 2D) Trial

    PubMed Central

    Albu, Jeanine B.; Lu, Jiang; Mooradian, Arshag D.; Krone, Ronald J.; Nesto, Richard W.; Porter, Marty H.; Rana, Jamal S.; Rogers, William J.; Sobel, Burton E.; Gottlieb, Sheldon H.

    2015-01-01

    The impact of obesity on cardiovascular disease (CVD) outcomes in patients with type 2 diabetes mellitus (T2DM) and established coronary artery disease (CAD) is controversial; whether BMI and/or waist circumference correlate with atherothrombotic risk factors in such patients is uncertain. We sought to evaluate whether higher BMI or waist circumference are associated with specific risk factors among 2,273 Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) study participants with T2DM and documented CAD (baseline data, mean age 62 years, 66% non-Hispanic white, 71% men). Multiple linear regression models were constructed after adjusting for sex, age, race/ ethnicity, US vs. non-US site, diabetes duration, exercise, smoking, alcohol, and relevant medication use. First-order partial correlations of BMI with risk factors after controlling for waist circumference and of waist circumference with risk factors after controlling for BMI were also evaluated. Ninety percent of the patients were overweight (BMI ≥25 kg/m2); 68% of men and 89% of women had high-risk waist circumference measures (≥102 and ≥88 cm, respectively). BMI and waist circumference, in separate models, explained significant variation in metabolic (insulin, lipids, blood pressure (BP)) and inflammatory/procoagulation (C-reactive protein, PAI-1 activity and antigen, and fibrinogen) risk factors. In partial correlation analyses BMI was independently associated with BP and inflammatory/procoagulation factors, waist circumference with lipids, and both BMI and waist circumference with insulin. We conclude that, in cross-sectional analyses, both BMI and waist circumference, independently, are associated with increased atherothrombotic risk in centrally obese cohorts such as the BARI 2D patients with T2DM and CAD. PMID:19875998

  15. Modelling dose distribution in tubing and cable using CYLTRAN and ACCEPT Monte Carlo simulation code

    SciTech Connect

    Weiss, D.E.; Kensek, R.P.

    1993-12-31

    One of the difficulties in the irradiation of non-slab geometries, such as a tube, is the uneven penetration of the electrons. A simple model of the distribution of dose in a tube or cable in relationship to voltage, composition, wall thickness and diameter can be mapped using the cylinder geometry provided for in the ITS/CYLTRAN code, complete with automatic subzoning. The reality of more complex 3D geometry to include effects of window foil, backscattering fixtures and beam scanning angles can be more completely accounted for by using the ITS/ACCEPT code with a line source update and a system of intersecting wedges to define input zones for mapping dose distributions in a tube. Thus, all of the variables that affect dose distribution can be modelled without the need to run time consuming and costly factory experiments. The effects of composition changes on dose distribution can also be anticipated.

  16. Incorporation of functional imaging data in the evaluation of dose distributions using the generalized concept of equivalent uniform dose

    NASA Astrophysics Data System (ADS)

    Miften, Moyed M.; Das, Shiva K.; Su, Min; Marks, Lawrence B.

    2004-05-01

    Advances in the fields of IMRT and functional imaging have greatly increased the prospect of escalating the dose to highly active or hypoxic tumour sub-volumes and steering the dose away from highly functional critical structure regions. However, current clinical treatment planning and evaluation tools assume homogeneous activity/function status in the tumour/critical structures. A method was developed to incorporate tumour/critical structure heterogeneous functionality in the generalized concept of equivalent uniform dose (EUD). The tumour and critical structures functional EUD (FEUD) values were calculated from the dose-function histogram (DFH), which relates dose to the fraction of total function value at that dose. The DFH incorporates flouro-deoxyglucose positron emission tomography (FDG-PET) functional data for tumour, which describes the distribution of metabolically active tumour clonogens, and single photon emission computed tomography (SPECT) perfusion data for critical structures. To demonstrate the utility of the method, the lung dose distributions of two non-small cell lung caner patients, who received 3D conformal external beam radiotherapy treatment with curative intent, were evaluated. Differences between the calculated lungs EUD and FEUD values of up to 50% were observed in the 3D conformal plans. In addition, a non-small cell lung cancer patient was inversely planned with a target dose prescription of 76 Gy. Two IMRT plans (plan-A and plan-B) were generated for the patient based on the CT, FDG-PET and SPECT treatment planning images using dose-volume objective functions. The IMRT plans were generated with the goal of achieving more critical structures sparing in plan-B than plan-A. Results show the target volume EUD in plan-B is lower than plan-A by 5% with a value of 73.31 Gy, and the FEUD in plan-B is lower than plan-A by 2.6% with a value of 75.77 Gy. The FEUD plan-B values for heart and lungs were lower than plan-A by 22% and 18%, respectively

  17. Evaluation of Patient Residual Deviation and Its Impact on Dose Distribution for Proton Radiotherapy

    SciTech Connect

    Arjomandy, Bijan

    2011-10-01

    The residual deviations after final patient repositioning based on bony anatomy and the impact of such deviations on the proton dose distributions was investigated. Digitally reconstructed radiographs (DRRs) and kilovoltage (kV) 'portal verification' images from 10 patients treated with passively scattered proton radiotherapy was used to estimate the residual deviation. These changes were then applied to the location of isocenter points that, in effect, moved the isocenter relative to the apertures and compensators. A composite verification plan was obtained and compared with the original clinical treatment plan to evaluate any changes in dose distributions. The residual deviations were fitted to a Gaussian distribution with {mu} = -0.9 {+-} 0.1 mm and {sigma} = 2.55 {+-} 0.07 mm. The dose distribution showed under- and overcovered dose spots with complex dose distributions both in the target volumes and in the organs at risk. In some cases, this amounts to 63.5% above the intended clinical plan. Although patient positioning is carefully verified before treatment delivery and setup uncertainties are accounted for by using compensator smearing and aperture margins, a residual shift in a patient's position can considerably affect the dose distribution.

  18. Quantifying the Combined Effect of Radiation Therapy and Hyperthermia in Terms of Equivalent Dose Distributions

    SciTech Connect

    Kok, H. Petra; Crezee, Johannes; Franken, Nicolaas A.P.; Barendsen, Gerrit W.

    2014-03-01

    Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy{sup −1}) and β (Gy{sup −2}) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normal tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from different

  19. Fractal structure of the distributions of air dose rates in Koriyama city in Fukushima.

    PubMed

    Ishihara, Masamichi

    2014-10-01

    The authors investigated the fractal structure of the distributions of air dose rates in Koriyama city in Fukushima using data published by the Fukushima Prefectural and Koriyama City governments. Relative frequency data of air dose rates (strength distribution) could be well fitted with a q-distribution. In the present analysis, the relative frequency decreases approximately as s for high air dose rate values, where the quantity s represents air dose rate. The fractal dimension is a function of the threshold sth of air dose rate. The fractal dimension is approximately 1.59 when sth is the average of the air dose rates in Koriyama (0.9 μSv h) and decreases with increasing the threshold: it is approximately 1.97 for sth = 0.6 μSv h and 1.40 for sth = 1.2 μSv h. These results confirm that the strength distribution behaves like a power function for high air dose rate values and that the fallout pattern can be described as a fractal. PMID:25162424

  20. Clinical usefulness of the management and delivery of radiation dose-distribution images using the Internet.

    PubMed

    Nakagawa, K; Onogi, Y; Aoki, Y; Kozuka, T; Ohtomo, K

    1998-01-01

    Dose distribution images in radiation therapy play important roles in the management of cancer patients. To date, hard copies of these images have been stored for referral by radiation oncologists as needed. In most cases, these images are not available to medical personnel outside the radiation oncology department. We have developed a means to access these dose distribution images from the hospital via the World-Wide Web (WWW). A screen snapshot of a dose distribution image on the CRT of a treatment planning unit is copied to the WWW server and converted to a GIF (graphic interchange format) image. Similarly, we can register dose volume histograms and digitally reconstructed radiographs (DRR) on the WWW. Medical personnel can view these images through the WWW browser from anywhere in the hospital. As a result, radiation oncologists are given detailed information on target definition in treatment planning by expert physicians. The system also helps co-medical personnel in understanding dose distribution and predicting radiation injury. At the same time, it actualizes an electronic archive of dose distribution images, which is a database for quick and reliable review, evaluation, and comparison of treatment plans. This technique also fosters closer relationships among radiation oncologists, physicians, and co-medical personnel. PMID:9814423

  1. [Management and delivery of radiation dose distribution images using the Internet].

    PubMed

    Onogi, Y; Nakagawa, K; Aoki, Y; Kozuka, T; Toyoda, T; Sasaki, Y

    1998-01-01

    Dose distribution images play important roles in the management of cancer patients. To date hard copies of these images have been stored and referred to by radiation oncologists as needed. In most cases, these images were not available to medical personnel outside the radiation oncology department. We have developed a mechanism in the hospital to access these dose distribution images via WWW (World Wide Web). A screen snapshot of a dose distribution image on the CRT of a treatment planning machine is copied to the WWW server and converted to a GIF image. Similarly, we can register dose volume histograms and digitally reconstructed radiographs on the WWW. Medical personnel throughout the hospital can access the images through the WWW browser. As a result, radiation oncologists are given detailed information on target definition in treatment planning by expert physicians. The system also helps co-medical staff in understanding dose distributions and predicting radiation injuries. At the same time, it actualizes an electronic archive of dose distribution images, which is a database for quick and reliable review, evaluation and comparison of treatment plans. This technique also furthers a close relationship among radiation oncologists, physicians, and co-medical personnel. PMID:9493431

  2. Detection of lung nodules in chest digital tomosynthesis (CDT): effects of the different angular dose distribution

    NASA Astrophysics Data System (ADS)

    Jo, Byungdu; Lee, Youngjin; Kim, Dohyeon; Lee, Dong-Hoon; Jin, Seong-Soo; Mu, Shou-Chih; Kim, Hye-Mi; Kim, Hee-Joung

    2015-03-01

    Chest digital tomosynthesis (CDT) is a recently introduced new imaging modality for better detection of high- and smallcontrast lung nodules compared to conventional X-ray radiography. In CDT system, several projection views need to be acquired with limited angular range. The acquisition of insufficient number of projection data can degrade the reconstructed image quality. This image degradation easily affected by acquisition parameters such as angular dose distribution, number of projection views and reconstruction algorithm. To investigate the imaging characteristics, we evaluated the impact of the angular dose distribution on image quality by simulation studies with Geant4 Application for Tomographic Emission (GATE). We designed the different angular dose distribution conditions. The results showed that the contrast-to-noise ratio (CNR) improves when exposed the higher dose at central projection views than peripheral views. While it was found that increasing angular dose distribution at central views improved lung nodule detectability, although both peripheral regions slightly suffer from image noise due to low dose distribution. The improvements of CNR by using proposed image acquisition technique suggest possible directions for further improvement of CDT system for lung nodule detection with high quality imaging capabilities.

  3. SU-E-T-113: Dose Distribution Using Respiratory Signals and Machine Parameters During Treatment

    SciTech Connect

    Imae, T; Haga, A; Saotome, N; Kida, S; Nakano, M; Takeuchi, Y; Shiraki, T; Yano, K; Yamashita, H; Nakagawa, K; Ohtomo, K

    2014-06-01

    Purpose: Volumetric modulated arc therapy (VMAT) is a rotational intensity-modulated radiotherapy (IMRT) technique capable of acquiring projection images during treatment. Treatment plans for lung tumors using stereotactic body radiotherapy (SBRT) are calculated with planning computed tomography (CT) images only exhale phase. Purpose of this study is to evaluate dose distribution by reconstructing from only the data such as respiratory signals and machine parameters acquired during treatment. Methods: Phantom and three patients with lung tumor underwent CT scans for treatment planning. They were treated by VMAT while acquiring projection images to derive their respiratory signals and machine parameters including positions of multi leaf collimators, dose rates and integrated monitor units. The respiratory signals were divided into 4 and 10 phases and machine parameters were correlated with the divided respiratory signals based on the gantry angle. Dose distributions of each respiratory phase were calculated from plans which were reconstructed from the respiratory signals and the machine parameters during treatment. The doses at isocenter, maximum point and the centroid of target were evaluated. Results and Discussion: Dose distributions during treatment were calculated using the machine parameters and the respiratory signals detected from projection images. Maximum dose difference between plan and in treatment distribution was −1.8±0.4% at centroid of target and dose differences of evaluated points between 4 and 10 phases were no significant. Conclusion: The present method successfully evaluated dose distribution using respiratory signals and machine parameters during treatment. This method is feasible to verify the actual dose for moving target.

  4. Distribution of the radiation dose in multislice computer tomography of the chest – phantom study

    PubMed Central

    Gorycki, Tomasz; Kamiński, Kamil; Studniarek, Michał; Szlęzak, Przemysław; Szumska, Agnieszka

    2014-01-01

    Summary Background The most commonly used form of reporting doses in multislice computed tomography involves a CT dose index per slice and dose-length product for the whole series. The purpose of this study was to analyze the actual dose distribution in routine chest CT examination protocols using an antropomorphic phantom. Material/Methods We included in the analysis readings from a phantom filled with thermoluminescent detectors (Art Phantom Canberra) during routine chest CT examinations (64 MDCT TK LIGHT SPEED GE Medical System) performed using three protocols: low-dose, helical and angio-CT. Results Mean dose values (mSv) reported from anterior parts of the phantom sections in low-dose/helical/angio-CT protocols were as follows: 3.74; 16.95; 30.17; from central parts: 3.18; 14.15; 26.71; from posterior parts: 3.01; 12.47; 24.98 respectively. Correlation coefficients for mean doses registered in anterior parts of the phantom between low-dose/helical, low-dose/angio-CT and helical/angio-CT protocols were 0.49; 0.63; 0.36; from central parts: 0.73; 0.66; 0.83, while in posterior parts values were as follows: 0.06; 0.21; 0.57. Conclusions The greatest doses were recorded in anterior parts of all phantom sections in all protocols in reference to largest doses absorbed in the anterior part of the chest during CT examination. The doses were decreasing from anterior to posterior parts of all sections. In the long axis of the phantom, in all protocols, lower doses were measured in the upper part of the phantom and at the very lowest part. PMID:24744819

  5. An investigation of the dose distribution effect related with collimator angle for VMAT method

    NASA Astrophysics Data System (ADS)

    Tas, B.; Bilge, H.; Ozturk, S. Tokdemir

    2016-03-01

    Aim of this study is to investigate the efficacy of dose distribution in eleven prostate cancer patients with single VMAT and double VMAT when varying collimator angle. We generated optimum single and double VMAT treatment plans when collimator angle was 0°. We recalculated single VMAT plans at different collimator angles(0°,15°,30°,45°,60°,75°,90°) for double VMAT plans(0°-0°,15°-345°,30°-330°,45°-315°,60°-300°,75°-285°,90°-270°) without changing any optimization parameters. HI, DVH and %95 dose coverage of PTV calculated and analyzed. We determined better dose distribution with some collimator angles. Plans were verified using the 2 dimensional ion chamber array Matrixx® and 3 dimensional Compass® software program. A higher %95 dose coverage of PTV was found for single VMAT in the 15° collimator angle, for double VMAT in the 60°-300° and 75°-285° collimator angles. Because of lower rectum doses, we suggested 75°-285°. When we compared single and double VMAT's dose distribution, we had better % 95 dose coverage of PTV and lower HI with double VMAT. Our result was significant statistically. These finds are informative for choosing 75°-285° collimator angles in double VMAT plans for prostate cancer.

  6. Effect of Tissue Composition on Dose Distribution in Electron Beam Radiotherapy

    PubMed Central

    Ghorbani, M.; Tabatabaei, Z. S.; Vejdani Noghreiyan, A.; Vosoughi, H.; Knaup, C.

    2015-01-01

    Objective The aim of this study is to evaluate the effect of tissue composition on dose distribution in electron beam radiotherapy. Methods A Siemens Primus linear accelerator and a phantom were simulated using MCNPX Monte Carlo code. In a homogeneous cylindrical phantom, six types of soft tissue and three types of tissue-equivalent materials were investigated. The tissues included muscle (skeletal), adipose tissue, blood (whole), breast tissue, soft tissue (9-components) and soft tissue (4-component). The tissue-equivalent materials were water, A-150 tissue-equivalent plastic and perspex. Electron dose relative to dose in 9-component soft tissue at various depths on the beam’s central axis was determined for 8, 12, and 14 MeV electron energies. Results The results of relative electron dose in various materials relative to dose in 9-component soft tissue were reported for 8, 12 and 14 MeV electron beams as tabulated data. While differences were observed between dose distributions in various soft tissues and tissue-equivalent materials, which vary with the composition of material, electron energy and depth in phantom, they can be ignored due to the incorporated uncertainties in Monte Carlo calculations. Conclusion Based on the calculations performed, differences in dose distributions in various soft tissues and tissue-equivalent materials are not significant. However, due to the difference in composition of various materials, further research in this field with lower uncertainties is recommended. PMID:25973407

  7. Influence of Metal of the Applicator on the Dose Distribution during Brachytherapy

    PubMed Central

    Wu, Chin-Hui; Shiau, An-Cheng; Liao, Yi-Jen; Lin, Hsin-Yu

    2014-01-01

    This study explores how the metal materials of the applicator influence the dose distribution when performing brachytherapy for cervical cancer. A pinpoint ionization chamber, Monte Carlo code MCNPX, and treatment planning system are used to evaluate the dose distribution for a single Ir-192 source positioned in the tandem and ovoid. For dose distribution in water with the presence of the tandem, differences among measurement, MCNPX calculation and treatment planning system results are <5%. For dose distribution in water with the presence of the ovoid, the MCNPX result agrees with the measurement. But the doses calculated from treatment planning system are overestimated by up to a factor of 4. This is due to the shielding effect of the metal materials in the applicator not being considered in the treatment planning system. This result suggests that the treatment planning system should take into account corrections for the metal materials of the applicator in order to improve the accuracy of the radiation dose delivered. PMID:25133789

  8. Target point correction optimized based on the dose distribution of each fraction in daily IGRT

    NASA Astrophysics Data System (ADS)

    Stoll, Markus; Giske, Kristina; Stoiber, Eva M.; Schwarz, Michael; Bendl, Rolf

    2014-03-01

    Purpose: To use daily re-calculated dose distributions for optimization of target point corrections (TPCs) in image guided radiation therapy (IGRT). This aims to adapt fractioned intensity modulated radiation therapy (IMRT) to changes in the dose distribution induced by anatomical changes. Methods: Daily control images from an in-room on-rail spiral CT-Scanner of three head-and-neck cancer patients were analyzed. The dose distribution was re-calculated on each control CT after an initial TPC, found by a rigid image registration method. The clinical target volumes (CTVs) were transformed from the planning CT to the rigidly aligned control CTs using a deformable image registration method. If at least 95% of each transformed CTV was covered by the initially planned D95 value, the TPC was considered acceptable. Otherwise the TPC was iteratively altered to maximize the dose coverage of the CTVs. Results: In 14 (out of 59) fractions the criterion was already fulfilled after the initial TPC. In 10 fractions the TPC can be optimized to fulfill the coverage criterion. In 31 fractions the coverage can be increased but the criterion is not fulfilled. In another 4 fractions the coverage cannot be increased by the TPC optimization. Conclusions: The dose coverage criterion allows selection of patients who would benefit from replanning. Using the criterion to include daily re-calculated dose distributions in the TPC reduces the replanning rate in the analysed three patients from 76% to 59% compared to the rigid image registration TPC.

  9. Analytic characterization of linear accelerator radiosurgery dose distributions for fast optimization

    NASA Astrophysics Data System (ADS)

    Meeks, Sanford L.; Bova, Frank J.; Buatti, John M.; Friedman, William A.; Eyster, Brian; Kendrick, Lance A.

    1999-11-01

    Linear accelerator (linac) radiosurgery utilizes non-coplanar arc therapy delivered through circular collimators. Generally, spherically symmetric arc sets are used, resulting in nominally spherical dose distributions. Various treatment planning parameters may be manipulated to provide dose conformation to irregular lesions. Iterative manipulation of these variables can be a difficult and time-consuming task, because (a) understanding the effect of these parameters is complicated and (b) three-dimensional (3D) dose calculations are computationally expensive. This manipulation can be simplified, however, because the prescription isodose surface for all single isocentre distributions can be approximated by conic sections. In this study, the effects of treatment planning parameter manipulation on the dimensions of the treatment isodose surface were determined empirically. These dimensions were then fitted to analytic functions, assuming that the dose distributions were characterized as conic sections. These analytic functions allowed real-time approximation of the 3D isodose surface. Iterative plan optimization, either manual or automated, is achieved more efficiently using this real time approximation of the dose matrix. Subsequent to iterative plan optimization, the analytic function is related back to the appropriate plan parameters, and the dose distribution is determined using conventional dosimetry calculations. This provides a pseudo-inverse approach to radiosurgery optimization, based solely on geometric considerations.

  10. Analysis of high–dose rate brachytherapy dose distribution resemblance in CyberKnife hypofractionated treatment plans of localized prostate cancer

    SciTech Connect

    Sudahar, H.; Kurup, P.G.G.; Murali, V.; Mahadev, P.; Velmurugan, J.

    2013-01-01

    The present study is to analyze the CyberKnife hypofractionated dose distribution of localized prostate cancer in terms of high–dose rate (HDR) brachytherapy equivalent doses to assess the degree of HDR brachytherapy resemblance of CyberKnife dose distribution. Thirteen randomly selected localized prostate cancer cases treated using CyberKnife with a dose regimen of 36.25 Gy in 5 fractions were considered. HDR equivalent doses were calculated for 30 Gy in 3 fractions of HDR brachytherapy regimen. The D{sub 5%} of the target in the CyberKnife hypofractionation was 41.57 ± 2.41 Gy. The corresponding HDR fractionation (3 fractions) equivalent dose was 32.81 ± 1.86 Gy. The mean HDR fractionation equivalent dose, D{sub 98%}, was 27.93 ± 0.84 Gy. The V{sub 100%} of the prostate target was 95.57% ± 3.47%. The V{sub 100%} of the bladder and the rectum were 717.16 and 79.6 mm{sup 3}, respectively. Analysis of the HDR equivalent dose of CyberKnife dose distribution indicates a comparable resemblance to HDR dose distribution in the peripheral target doses (D{sub 98%} to D{sub 80%}) reported in the literature. However, there is a substantial difference observed in the core high-dose regions especially in D{sub 10%} and D{sub 5%}. The dose fall-off within the OAR is also superior in reported HDR dose distribution than the HDR equivalent doses of CyberKnife.

  11. Imaging of dose distributions using polymer gels based on radiation induced changes in stiffness

    NASA Astrophysics Data System (ADS)

    Crescenti, Remo A.; Bamber, Jeffrey C.; Oberai, Assad A.; Barbone, Paul E.; Richter, Joseph P.; Rivas, Carlos; Bush, Nigel L.; Webb, Steve

    2009-05-01

    Previously, dose determination based on radiation induced stiffness difference measurements has received no or very little attention. Here, a preliminary evaluation of a combined system for dosimetry based on radiation sensitive gels, ultrasonic elastography and a plane strain inverse algorithm is presented. A block of gel was irradiated along one of its axes producing stiff rod-like regions. The dose distribution found with quantitative ultrasound elastography was compared with a reference dose distribution measured with magnetic resonance imaging. In these early results, the high dose areas were clearly detected, while noise in the ultrasound measurement and strong regularisation in the inverse computing introduced shape distortions, noise in the dose estimates and problems estimating the correct dose contrast. Improvements in the experimental setup and inverse computing are possible, for example by acquisition of transversal ultrasound data, which could essentially reduce the noise and restrict direct influence of the experimental boundary condition on the dose estimation by providing additional information for inverse computing. Based on the preliminary results and the potential for improvement it is concluded that further investigations should follow to establish the potential of the rapidly developing field of elastography for measuring radiation dose based on radiation induced changes in stiffness.

  12. The impact of photon dose calculation algorithms on expected dose distributions in lungs under different respiratory phases

    NASA Astrophysics Data System (ADS)

    Fogliata, Antonella; Nicolini, Giorgia; Vanetti, Eugenio; Clivio, Alessandro; Winkler, Peter; Cozzi, Luca

    2008-05-01

    A planning study was carried out on a cohort of CT datasets from breast patients scanned during different respiratory phases. The aim of the study was to investigate the influence of different air filling in lungs on the calculation accuracy of photon dose algorithms and to identify potential patterns of failure with clinical implications. Selected respiratory phases were free breathing (FB), representative of typical end expiration, and deep inspiration breath hold (DIBH), a typical condition for clinical treatment with respiratory gating. Algorithms investigated were the pencil beam (PBC), the anisotropic analytical algorithm (AAA) and the collapsed cone (CC) from the Varian Eclipse or Philips Pinnacle planning system. Reference benchmark calculations were performed with the Voxel Monte Carlo (VMC++). An analysis was performed in terms of physical quantities inspecting either dose-volume or dose-mass histograms and in terms of an extension to three dimensions of the γ index of Low. Results were stratified according to a breathing phase and algorithm. Collectives acquired in FB or DIBH showed well-separated average lung density distributions with mean densities of 0.27 ± 0.04 and 0.16 ± 0.02 g cm-3, respectively, and average peak densities of 0.17 ± 0.03 and 0.09 ± 0.02 g cm-3. Analysis of volume-dose or mass-dose histograms proved the expected deviations on PBC results due to the missing lateral transport of electrons with underestimations in the low dose region and overestimations in the high dose region. From the γ analysis, it resulted that PBC is systematically defective compared to VMC++ over the entire range of lung densities and dose levels with severe violations in both respiratory phases. The fraction of lung voxels with γ > 1 for PBC reached 25% in DIBH and about 15% in FB. CC and AAA performed, in contrast, similarly and with fractions of lung voxels with γ > 1 in average inferior to 2% in FB and 4-5% (AAA) or 6-8% (CC) in DIBH. In summary, PBC

  13. Whole body and brain distribution of [3H]cyclic [D-Pen2,D-Pen5] enkephalin after intraperitoneal, intravenous, oral and subcutaneous administration.

    PubMed

    Weber, S J; Greene, D L; Hruby, V J; Yamamura, H I; Porreca, F; Davis, T P

    1992-12-01

    The route of administration of a given drug can have a significant influence upon whole body distribution. The present study examined whole body distribution of the delta opioid receptor-selective peptide [3H]DPDPE in male CD1 mice after administration by several routes. Additionally, we describe regional brain distribution of [3H]DPDPE after i.v. administration with and without pretreatment with naloxone or the selective delta receptor antagonist naltrindole. Finally, characterization of the inherent enzymatic stability of DPDPE was also examined. Intravenous administration results in a significantly large amount of [3H]DPDPE in the small intestine and flush at 15 and 30 min postadministration, suggesting rapid biliary excretion. The highest level in the brain after i.v. administration occurred at 60 min (0.08%). After i.p. and s.c. administration, large amounts of [3H]DPDPE were found in the small intestine and flush, but not until 60 min postadministration, suggesting a slower rate of absorption from the site of administration. The i.p. and s.c. groups' brain levels peaked at 120 min (0.07 and 0.09%, respectively). The highest levels in the brain after p.o. administration were seen at 240 min (0.03%). Examination of regional brain distribution data showed no significant difference in the levels of [3H]DPDPE between brain regions at any time point studied. However, naloxone pretreatment resulted in significant reductions of [3H]DPDPE in all brain regions at 5 and 10 min. Naltrindole pretreatment resulted in significant reductions in the frontal cortex and striatum at 5 and/or 10 min postadministration, but had no effect on [3H]DPDPE levels in cerebellum, hippocampus or brain stem.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1469637

  14. Approximate distribution of dose among foetal organs for radioiodine uptake via placenta transfer

    NASA Astrophysics Data System (ADS)

    Millard, R. K.; Saunders, M.; Palmer, A. M.; Preece, A. W.

    2001-11-01

    Absorbed radiation doses to internal foetal organs were calculated according to the medical internal radiation dose (MIRD) technique in this study. Anthropomorphic phantoms of the pregnant female as in MIRDOSE3 enabled estimation of absorbed dose to the whole foetus at two stages of gestation. Some foetal organ self-doses could have been estimated by invoking simple spherical models for thyroid, liver, etc, but we investigated the use of the MIRDOSE3 new-born phantom as a surrogate for the stage 3 foetus, scaled to be compatible with total foetal body mean absorbed dose/cumulated activity. We illustrate the method for obtaining approximate dose distribution in the foetus near term following intake of 1 MBq of 123I, 124I, 125I or 131I as sodium iodide by the mother using in vivo biodistribution data examples from a good model of placenta transfer. Doses to the foetal thyroid of up to 1.85 Gy MBq-1 were predicted from the 131I uptake data. Activity in the foetal thyroid was the largest contributor to absorbed dose in the foetal body, brain, heart and thymus. Average total doses to the whole foetus ranged from 0.16 to 1.2 mGy MBq-1 for stages 1 and 3 of pregnancy using the MIRDOSE3 program, and were considerably higher than those predicted from the maternal contributions alone. Doses to the foetal thymus and stomach were similar, around 2-3 mGy MBq-1. Some foetal organ doses from the radioiodides were ten times higher than to the corresponding organs of the mother, and up to 100 times higher to the thyroid. The fraction of activity uptakes in foetal organs were distributed similarly to the maternal ones.

  15. Longitudinal dose distribution and energy absorption in PMMA and water cylinders undergoing CT scans

    SciTech Connect

    Li, Xinhua; Zhang, Da; Liu, Bob

    2014-10-15

    Purpose: The knowledge of longitudinal dose distribution provides the most direct view of the accumulated dose in computed tomography (CT) scanning. The purpose of this work was to perform a comprehensive study of dose distribution width and energy absorption with a wide range of subject sizes and beam irradiated lengths. Methods: Cumulative dose distribution along the z-axis was calculated based on the previously published CT dose equilibration data by Li, Zhang, and Liu [Med. Phys. 40, 031903 (10pp.) (2013)] and a mechanism for computing dose on axial lines by Li, Zhang, and Liu [Med. Phys. 39, 5347–5352 (2012)]. Full width at half maximum (FWHM), full width at tenth maximum (FWTM), the total energy (E) absorbed in a small cylinder of unit mass per centimeter square about the central or peripheral axis, and the energy (E{sub in}) absorbed inside irradiated length (L) were subsequently extracted from the dose distribution. Results: Extensive results of FWHM, FWTM, and E{sub in}/E were presented on the central and peripheral axes of infinitely long PMMA (diameters 6–50 cm) and water (diameters 6–55 cm) cylinders with L < 100 cm. FWHM was greater than the primary beam width only on the central axes of large phantoms and also with L ranging from a few centimeter to about 33 cm. FWTM generally increased with phantom diameter, and could be up to 32 cm longer than irradiated length, depending on L, phantom diameter and axis, but was insensitive to phantom material (PMMA or water). E{sub in}/E increased with L and asymptotically approached unity for large L. As phantom diameter increased, E{sub in}/E generally decreased, but asymptotically approached constant levels on the peripheral axes of large phantoms. A heuristic explanation of dose distribution width results was presented. Conclusions: This study enables the reader to gain a comprehensive view of dose distribution width and energy absorption and provides useful data for estimating doses to organs inside or

  16. SU-E-T-540: MCNPX Simulation of Proton Dose Distributions in a Water Phantom

    SciTech Connect

    Lee, C; Chen, S; Chiang, B; Tung, C; Chao, T

    2015-06-15

    Purpose: In this study, fluence and energy deposition of proton and proton by-products and dose distributions were simulated. Lateral dose distributions were also been discussed to understand the difference between Monte Carlo simulations and pencil beam algorithm. Methods: MCNPX codes were used to build a water phantom by using “repeated structures” technique and the doses and fluences in each cell was recorded by mesh tally. This study includes, proton equilibrium and proton disequilibrium case. For the proton equilibrium case, the doses difference between proton and proton by-products were studied. A 160 MeV proton pencil beam was perpendicularly incident into a 40 × 40 × 50 cm{sup 3} water phantom and the scoring volume was 20 × 20 × 0.2 cm{sup 3}. Energy deposition and fluence were calculated from MCNPX with (1) proton only; and (2) proton and secondary particles. For the proton disequilibrium case, the dose distribution variation using different multiple Coulomb scattering were studied. A 70 MeV proton pencil beam was perpendicularly incident into a 40 × 40 × 10 cm{sup 3} water phantom and two scoring voxel sizes of 0.1 × 0.1 × 0.05 cm{sup 3} and 0.01 × 0.01 × 0.05 cm{sup 3} were used for the depth dose distribution, and 0.01 × 0.01 × 0.05 cm{sup 3} for the lateral profile distribution simulations. Results: In the water phantom, proton fluence and dose in depths beyond the Bragg peak were slightly perturbed by the choice of the simulated particle types. The dose from secondary particles was about three orders smaller, but its simulation consumed significant computing time. The depth dose distributions and lateral dose distributions of 70 MeV proton pencil beam obtained from MCNPX, GEANT4, and the pencil beam algorithm showed the significant deviations, probably caused by multiple Coulomb scattering. Conclusion: Multiple Coulomb scattering is critical when there is in proton disequilibrium.

  17. SU-E-T-520: Four-Dimensional Dose Calculation Algorithm Considering Variations in Dose Distribution Induced by Sinusoidal One-Dimensional Motion Patterns

    SciTech Connect

    Taguenang, J; Algan, O; Ahmad, S; Ali, I

    2014-06-01

    Purpose: To investigate quantitatively the variations in dose-distributions induced by motion by measurements and modeling. A four-dimensional (4D) motion model of dose distributions that accounts for different motion parameters was developed. Methods: Variations in dose distributions induced by sinusoidal phantom motion were measured using a multiple-diode-array-detector (MapCheck2). MapCheck2 was mounted on a mobile platform that moves with adjustable calibrated motion patterns in the superior-inferior direction. Various plans including open and intensity-modulated fields were used to irradiate MapCheck2. A motion model was developed to predict spatial and temporal variations in the dose-distributions and dependence on the motion parameters using pencil-beam spread-out superposition function. This model used the superposition of pencil-beams weighted with a probability function extracted from the motion trajectory. The model was verified with measured dose-distributions obtained from MapCheck2. Results: Dose-distribution varied considerably with motion where in the regions between isocenter and 50% isodose-line, dose decreased with increase of the motion amplitude. Dose levels increased with increase in the motion amplitude in the region beyond 50% isodose-line. When the range of motion (ROM=twice amplitude) was smaller than the field length both central axis dose and the 50% isodose-line did not change with variation of motion amplitude and remained equal to the dose of stationary phantom. As ROM became larger than the field length, the dose level decreased at central axis dose and 50% isodose-line. Motion frequency and phase did not affect the dose distributions which were delivered over an extended time longer than few motion cycles, however, they played an important role for doses delivered with high-dose-rates within one motion cycle . Conclusion: A 4D-dose motion model was developed to predict and correct variations in dose distributions induced by one

  18. [Study on the dose distribution of 8-MeV bremsstrahlung in mantle field techniques (author's transl)].

    PubMed

    Nemec, H W; Walther, E

    1979-08-01

    The dose distribution within the patient was studied with 8-MeV bremsstrahlung from a linear accelerator during mantle field irradiation using molded shielding blocks. Doses and dose distributions in the different layers of a modified Alderson phantom were measured by means of film dosimetry and related to the dose in the central ray beam at the middle of the body. Dose distribution within unshielded regions perpendicular to the central ray beam generally being relatively homogeneous, the highest relative doses, amounting to ca. 115%, are found in the region of the mandibular angle and in the supraclavicular region; the dose to superficial lymph nodes at the supraclavicular region reaches 100% of the dose in the central ray beam. As a cause for these important doses near the surface of the body are discussed the extension of mantle fields as well as the increased exit dose of the opposed field and the oblique incidence of radiation. PMID:473255

  19. Comparison of RTPS and Monte Carlo dose distributions in heterogeneous phantoms for photon beams.

    PubMed

    Nakaguchi, Yuji; Araki, Fujio; Maruyama, Masato; Fukuda, Shogo

    2010-04-20

    The purpose of this study was to compare dose distributions from three different RTPS with those from Monte Carlo (MC) calculations and measurements, in heterogeneous phantoms for photon beams. This study used four algorithms for RTPS: AAA (analytical anisotropic algorithm) implemented in the Eclipse (Varian Medical Systems) treatment planning system, CC (collapsed cone) superposition from the Pinnacle (Philips), and MGS (multigrid superposition) and FFT (fast Fourier transform) convolution from XiO (CMS). The dose distributions from these algorithms were compared with those from MC and measurements in a set of heterogeneous phantoms. Eclipse/AAA underestimated the dose inside the lung region for low energies of 4 and 6 MV. This is because Eclipse/AAA do not adequately account for a scaling of the spread of the pencil (lateral electron transport) based on changes in the electron density at low photon energies. The dose distributions from Pinnacle/CC and XiO/MGS almost agree with those of MC and measurements at low photon energies, but increase errors at high energy of 15 MV, especially for a small field of 3x3 cm(2). The FFT convolution extremely overestimated the dose inside the lung slab compared to MC. The dose distributions from the superposition algorithms almost agree with those from MC as well as measured values at 4 and 6 MV. The dose errors for Eclipse/AAA are lager in lung model phantoms for 4 and 6 MV. It is necessary to use the algorithms comparable to superposition for accuracy of dose calculations in heterogeneous regions. PMID:20625219

  20. Infrared image processing devoted to thermal non-contact characterization-Applications to Non-Destructive Evaluation, Microfluidics and 2D source term distribution for multispectral tomography

    NASA Astrophysics Data System (ADS)

    Batsale, Jean-Christophe; Pradere, Christophe

    2015-11-01

    The cost of IR cameras is more and more decreasing. Beyond the preliminary calibration step and the global instrumentation, the infrared image processing is then one of the key step for achieving in very broad domains. Generally the IR images are coming from the transient temperature field related to the emission of a black surface in response to an external or internal heating (active IR thermography). The first applications were devoted to the so called thermal Non-Destructive Evaluation methods by considering a thin sample and 1D transient heat diffusion through the sample (transverse diffusion). With simplified assumptions related to the transverse diffusion, the in-plane diffusion and transport phenomena can be also considered. A general equation can be applied in order to balance the heat transfer at the pixel scale or between groups of pixels in order to estimate several fields of thermophysical properties (heterogeneous field of in-plane diffusivity, flow distributions, source terms). There is a lot of possible strategies to process the space and time distributed big amount of data (previous integral transformation of the images, compression, elimination of the non useful areas...), generally based on the necessity to analyse the derivative versus space and time of the temperature field. Several illustrative examples related to the Non-Destructive Evaluation of heterogeneous solids, the thermal characterization of chemical reactions in microfluidic channels and the design of systems for multispectral tomography, will be presented.

  1. Lamotrigine kidney distribution in male rats following a single intraperitoneal dose.

    PubMed

    Castel-Branco, M M; Falcão, A C; Figueiredo, I V; Macedo, T R A; Caramona, M M

    2004-02-01

    As it has been previously shown that lamotrigine (LTG) accumulates in the kidney of male rats, the purpose of the present investigation was to characterize the kidney profiles of LTG and its kidney distribution pattern in male rats, in order to confirm if a preferential distribution exists and to analyse if it does or does not affect the LTG systemic pharmacokinetics. Adult male Wistar rats were intraperitoneally injected with 5, 10 and 20 mg/kg of LTG. The concentration-time profiles of LTG in plasma and whole kidney were determined over 120 h postdose. The distribution of LTG in the rat kidney was investigated in another group of rats by measuring LTG levels in the renal cortex and medulla. The LTG plasma concentration-time profiles revealed a linear relationship with dose. However, a slight increase in the LTG elimination half-life with dose was observed. In contrast, a nonlinear relationship was established between LTG kidney levels and the dose administered. Consequently, nonparallel patterns were observed between LTG plasma and kidney profiles. The LTG kidney distribution pattern revealed an accumulation of LTG in the renal cortex. The present study demonstrated that LTG distributes preferentially to the kidneys of the male rat in a dose-dependent manner and suggests that such distribution may slightly affect the systemic kinetics of the drug. PMID:14748754

  2. A revision of the γ-evaluation concept for the comparison of dose distributions

    NASA Astrophysics Data System (ADS)

    Moodie, Trevor; Sykes, Jonathan; Gajewski, Romuald

    2014-12-01

    The Chi index described in the article ‘A revision of the γ-evaluation concept for the comparison of dose distributions’ by Bakai et al (Phys. Med. Biol. 2003 48 3543-53) indicates that smooth acceptance tubes, defining upper and lower limits of dose difference and distance to agreement, can be pre-defined for a given dose distribution based on the local dose gradient. Mathematical analysis and simulations indicate that the Chi index as described by Bakai et al does not produce smooth acceptance criteria in rapidly varying dose gradients. Instead, ‘horns’ are generated in the acceptance tubes which lead to the production of unacceptably large acceptance criteria and the possibility of false negatives.

  3. Treatment planning and delivery of shell dose distribution for precision irradiation

    NASA Astrophysics Data System (ADS)

    Matinfar, Mohammad; Iyer, Santosh; Ford, Eric; Wong, John; Kazanzides, Peter

    2010-02-01

    The motivation for shell dose irradiation is to deliver a high therapeutic dose to the surrounding supplying blood-vessels of a lesion. Our approach's main utility is in enabling laboratory experiments to test the much disputed hypothesis about tumor vascular damage. That is, at high doses, tumor control is driven by damage to the tumor vascular supply and not the damage to the tumor cells themselves. There is new evidence that bone marrow derived cells can reconstitute tumor blood vessels in mice after irradiation. Shell dosimetry is also of interest to study the effect of radiation on neurogenic stem cells that reside in small niche surface of the mouse ventricles, a generalized form of shell. The type of surface that we are considering as a shell is a sphere which is created by intersection of cylinders. The results are then extended to create the contours of different organ shapes. Specifically, we present a routine to identify the 3-D structure of a mouse brain, project it into 2-D contours and convert the contours into trajectories that can be executed by our platform. We use the Small Animal Radiation Research Platform (SARRP) to demonstrate the dose delivery procedure. The SARRP is a portable system for precision irradiation with beam sizes down to 0.5 mm and optimally planned radiation with on-board cone-beam CT guidance.

  4. Comparison of 2D and 3D Gamma calculations for an IMRT QA phantom

    NASA Astrophysics Data System (ADS)

    Lafratta, R.; Ibbott, G.; Adamovics, J.; Followill, D.

    2015-01-01

    Gamma index pass rates were evaluated for an anthropomorphic phantom using both 2D and 3D calculations. The phantom was irradiated with the traditional dosimetry insert loaded with radiochromic film and TLD, and then with a 3D dosimetry insert. A comparison with the calculated dose distribution showed that both the PRESAGE® dosimeter and the film and TLD system agreed with the plan to within 5% using 2D gamma index criteria. The 3D gamma index showed a slightly higher pass rate than the 2D gamma index at 3%/3mm, and comparable pass rates using more generous constraints. The acceptable number of pixels passing the tighter constraints (3%/3mm) might be dependent upon the choice between a 2D calculation versus a 3D calculation.

  5. Effects of target size on the comparison of photon and charged particle dose distributions

    SciTech Connect

    Phillips, M.H.; Frankel, K.A.; Tjoa, T.; Lyman, J.T.; Fabrikant, J.I.; Levy, R.P.

    1989-12-01

    The work presented here is part of an ongoing project to quantify and evaluate the differences in the use of different radiation types and irradiation geometries in radiosurgery. We are examining dose distributions for photons using the Gamma Knife'' and the linear accelerator arc methods, as well as different species of charged particles from protons to neon ions. A number of different factors need to be studied to accurately compare the different modalities such as target size, shape and location, the irradiation geometry, and biological response. This presentation focuses on target size, which has a large effect on the dose distributions in normal tissue surrounding the lesion. This work concentrates on dose distributions found in radiosurgery, as opposed to those usually found in radiotherapy. 5 refs., 2 figs.

  6. Evaluation of the breast absorbed dose distribution using the Fricke Xylenol Gel

    NASA Astrophysics Data System (ADS)

    Czelusniak, C.; Del Lama, L. S.; Moreira, M. V.; De Almeida, A.

    2010-11-01

    During a breast cancer radiotherapy treatment, several issues have to be taken into account, among them, hot spots, gradient of doses delivered over the breast, as well as in the lungs and the heart. The present work aims to apply the Fricke Xylenol Gel (FXG) dosimeter in the study of these issues, using a CCD camera to analyse the dose deposited distribution. Thus, the CCD was used to capture the images of different cuvettes that were filled with FXG and irradiated considering analogous setups employed in breast cancer radiotherapy treatments. Thereafter, these pictures where processed in a MatLab routine and the spatial dose distributions could be evaluated. These distributions were compared with the ones that were obtained from dedicated treatment planning's softwares. According to the results obtained, the FXG, allied with the CCD system, has shown to be a complementary tool in dosimetry, helping to prevent possible complications during breast cancer treatments.

  7. Stereotactic radiosurgery of prostate cancer - dose distribution for VMAT and CyberKnife techniques

    NASA Astrophysics Data System (ADS)

    Ślosarek, Krzysztof; Osewski, Wojciech; Grządziel, Aleksandra; Stąpór-Fudzińska, Małgorzata; Szlag, Marta

    2016-06-01

    New capabilities of biomedical accelerators allow for very precise depositing of the radiation dose and imaging verification during the therapy. In addition, computer algorithms calculating dose distributions are taking into account the increasing number of physical effects. Therefore, administration of high dose fractionation, which is consistent with radiobiology used in oncology, becomes safer and safer. Stereotactic radiosurgery (SRS), which is very precise irradiation with high dose fractionation is increasingly widespread use in radiotherapy of prostate cancer. For this purpose different biomedical accelerators are used. The aim of this study is to compare dose distributions for two techniques: VMAT and CyberKnife. Statistical analysis was performed for the two groups of patients treated by VMAT technique (25 patients), and CyberKnife technique (15 patients). The analysis shows that the dose distributions are comparable, both in the treated area (prostate) and in the critical organs (rectum, urinary bladder, femoral heads). The results show that stereotactic radiosurgery of prostate cancer can be carried out on CyberKnife accelerator as well as on the classical accelerator with the use of VMAT technique.

  8. [The use of polymer gel dosimetry to measure dose distribution around metallic implants].

    PubMed

    Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa

    2014-10-01

    A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances. PMID:25327426

  9. Verification of dose distribution for volumetric modulated arc therapy total marrow irradiation in a humanlike phantom

    SciTech Connect

    Surucu, Murat; Yeginer, Mete; Kavak, Gulbin O.; Fan, John; Radosevich, James A.; Aydogan, Bulent

    2012-01-15

    Purpose: Volumetric modulated arc therapy (VMAT) treatment planning studies have been reported to provide good target coverage and organs at risk (OARs) sparing in total marrow irradiation (TMI). A comprehensive dosimetric study simulating the clinical situation as close as possible is a norm in radiotherapy before a technique can be used to treat a patient. Without such a study, it would be difficult to make a reliable and safe clinical transition especially with a technique as complicated as VMAT-TMI. To this end, the dosimetric feasibility of VMAT-TMI technique in terms of treatment planning, delivery efficiency, and the most importantly three dimensional dose distribution accuracy was investigated in this study. The VMAT-TMI dose distribution inside a humanlike Rando phantom was measured and compared to the dose calculated using RapidArc especially in the field junctions and the inhomogeneous tissues including the lungs, which is the dose-limiting organ in TMI. Methods: Three subplans with a total of nine arcs were used to treat the planning target volume (PTV), which was determined as all the bones plus the 3 mm margin. Thermoluminescent detectors (TLDs) were placed at 39 positions throughout the phantom. The measured TLD doses were compared to the calculated plan doses. Planar dose for each arc was verified using mapcheck. Results: TLD readings demonstrated accurate dose delivery, with a median dose difference of 0.5% (range: -4.3% and 6.6%) from the calculated dose in the junctions and in the inhomogeneous medium including the lungs. Conclusions: The results from this study suggest that RapidArc VMAT technique is dosimetrically accurate, safe, and efficient in delivering TMI within clinically acceptable time frame.

  10. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    SciTech Connect

    Verbeke, Jerome M.

    1999-12-14

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only.

  11. Evaluation of gafchromic EBT film for intensity modulated radiation therapy dose distribution verification

    PubMed Central

    Sankar, A.; Kurup, P. G. Goplakrishna; Murali, V.; Ayyangar, Komanduri M.; Nehru, R. Mothilal; Velmurugan, J.

    2006-01-01

    This work was undertaken with the intention of investigating the possibility of clinical use of commercially available self-developing radiochromic film – Gafchromic EBT film – for IMRT dose verification. The dose response curves were generated for the films using VXR-16 film scanner. The results obtained with EBT films were compared with the results of Kodak EDR2 films. It was found that the EBT film has a linear response between the dose ranges of 0 and 600 cGy. The dose-related characteristics of the EBT film, like post-irradiation color growth with time, film uniformity and effect of scanning orientation, were studied. There is up to 8.6% increase in the color density between 2 and 40 h after irradiation. There was a considerable variation, up to 8.5%, in the film uniformity over its sensitive region. The quantitative difference between calculated and measured dose distributions was analyzed using Gamma index with the tolerance of 3% dose difference and 3 mm distance agreement. EDR2 films showed good and consistent results with the calculated dose distribution, whereas the results obtained using EBT were inconsistent. The variation in the film uniformity limits the use of EBT film for conventional large field IMRT verification. For IMRT of smaller field size (4.5 × 4.5 cm), the results obtained with EBT were comparable with results of EDR2 films. PMID:21206669

  12. Collimator angle influence on dose distribution optimization for vertebral metastases using volumetric modulated arc therapy

    SciTech Connect

    Mancosu, Pietro; Cozzi, Luca; Fogliata, Antonella; Lattuada, Paola; Reggiori, Giacomo; Cantone, Marie Claire; Navarria, Pierina; Scorsetti, Marta

    2010-08-15

    Purpose: The cylindrical symmetry of vertebrae favors the use of volumetric modulated arc therapy in generating a dose ''hole'' on the center of the vertebrae limiting the dose to the spinal cord. The authors have evaluated if collimator angle is a significant parameter for dose distribution optimization in vertebral metastases. Methods: Three patients with one-three vertebrae involved were considered. Twenty-one differently optimized plans (nine single-arc and 12 double-arc plans) were performed, testing various collimator angle positions. Clinical target volume was defined as the whole vertebrae, excluding the spinal cord canal. The planning target volume (PTV) was defined as CTV+5 mm. Dose prescription was 5x4 Gy{sup 2} with normalization to PTV mean dose. The dose at 1 cm{sup 3} of spinal cord was limited to 11.5Gy. Results: The best plans in terms of target coverage and spinal cord sparing were achieved by two arcs and Arc1-80 deg. and Arc2-280 deg. collimator angles for all the cases considered (i.e., leaf travel parallel to the spinal cord primary orientation). If one arc is used, only 80 deg. reached the objectives. Conclusions: This study demonstrated the role of collimation rotation for the vertebrae metastasis irradiation, with the leaf travel parallel to the spinal cord primary orientation to be better than other solutions. Thus, optimal choice of collimator angle increases the optimization freedom to shape a desired dose distribution.

  13. Poster — Thur Eve — 33: The Influence of a Modeled Treatment Couch on Dose Distributions During IMRT and RapidArc Treatment Delivery

    SciTech Connect

    Aldosary, Ghada; Nobah, Ahmad; Al-Zorkani, Faisal; Moftah, Belal; Devic, Slobodan

    2014-08-15

    Treatment couches have been known to perturb dose delivery in patients. This effect is most pronounced in techniques such as IMRT and RapidArc. Although modern treatment planning systems (TPS) include data for a “default” treatment couch, actual couches are not manufactured identically. Thus, variations in their Hounsfield Unit (HU) values may exist. This study demonstrates a practical and simple method of acquiring reliable HU data for any treatment couch. We also investigate the effects of both the default and modeled treatment couches on absorbed dose. Experimental verifications show that by neglecting to incorporate the treatment couch in the TPS, dose differences of up to 9.5% and 7.3% were present for 4 MV and 10 MV photon beams, respectively. Furthermore, a clinical study based on a cohort of 20 RapidArc and IMRT (brain, pelvis and abdominal) cases is performed. 2D dose distributions show that without the couch in the planning phase, differences ≤ 4.6% and 5.9% for RapidArc and IMRT cases are present for the same cases that the default couch was added to. Additionally, in comparison to the default couch, employing the modeled couch in the calculation process influences dose distributions by ≤ 2.7% and 8% for RapidArc and IMRT cases, respectively. This result was found to be site specific; where an accurate couch proves to be preferable for IMRT brain plans. As such, adding the couch during dose calculation decreases dose calculation errors, and a precisely modeled treatment couch offers higher dose delivery accuracy for brain treatment using IMRT.

  14. Optimizing radioimmunotherapy by matching dose distribution with tumor structure using 3D reconstructions of serial images.

    PubMed

    Flynn, A A; Pedley, R B; Green, A J; Boxer, G M; Boden, R; Begent, R H

    2001-10-01

    The biological effect of radioimmunotherapy (RIT) is most commonly assessed in terms of the absorbed radiation dose. In tumor, conventional dosimetry methods assume a uniform radionuclide and calculate a mean dose throughout the tumor. However, the vasculature of solid tumors tends to be highly irregular and the systemic delivery of antibodies is therefore heterogeneous. Tumor-specific antibodies preferentially localize in the viable, radiosensitive parts of the tumor whereas non-specific antibodies can penetrate into the necrosis where the dose is wasted. As a result, the observed biological effect can be very different to the predicted effect from conventional dose estimates. The purpose of this study is to assess the potential for optimizing the biological effect of RIT by matching the dose-distribution with tumor structure through the selection of appropriate antibodies and radionuclides. Storage phosphor plate technology was used to acquire images of the antibody distribution in serial tumor sections. Images of the distributions of a trivalent (TFM), bivalent (A5B7-IgG), monovalent (MFE-23) and a non-specific antibody (MOPC) were obtained. These images were registered with corresponding images showing tumor morphology. Serial images were reconstructed to form 3D maps of the antibody distribution and tumor structure. Convolution of the image of antibody distribution with beta dose point kernals generated dose-rate distributions for 14C, 131I and 90Y. These were statistically compared with the tumor structure. The highest correlation was obtained for the multivalent antibodies combined with 131I, due to specific retention in viable areas of tumor coupled with the fact that much of the dose was deposted locally. With decreasing avidity the correlation also decreased and with the non-specific antibody this correlation was negative, indicating higher concentrations in the necrotic regions. In conclusion, the dose distribution can be optimized in tumor by selecting

  15. SU-E-T-313: The Accuracy of the Acuros XB Advanced Dose Calculation Algorithm for IMRT Dose Distributions in Head and Neck

    SciTech Connect

    Araki, F; Onizuka, R; Ohno, T; Tomiyama, Y; Hioki, K

    2014-06-01

    Purpose: To investigate the accuracy of the Acuros XB version 11 (AXB11) advanced dose calculation algorithm by comparing with Monte Caro (MC) calculations. The comparisons were performed with dose distributions for a virtual inhomogeneity phantom and intensity-modulated radiotherapy (IMRT) in head and neck. Methods: Recently, AXB based on Linear Boltzmann Transport Equation has been installed in the Eclipse treatment planning system (Varian Medical Oncology System, USA). The dose calculation accuracy of AXB11 was tested by the EGSnrc-MC calculations. In additions, AXB version 10 (AXB10) and Analytical Anisotropic Algorithm (AAA) were also used. First the accuracy of an inhomogeneity correction for AXB and AAA algorithms was evaluated by comparing with MC-calculated dose distributions for a virtual inhomogeneity phantom that includes water, bone, air, adipose, muscle, and aluminum. Next the IMRT dose distributions for head and neck were compared with the AXB and AAA algorithms and MC by means of dose volume histograms and three dimensional gamma analysis for each structure (CTV, OAR, etc.). Results: For dose distributions with the virtual inhomogeneity phantom, AXB was in good agreement with those of MC, except the dose in air region. The dose in air region decreased in order of MCdose kernel of water, the doses in regions for air, bone, and aluminum considerably became higher than those of AXB and MC. The pass rates of the gamma analysis for IMRT dose distributions in head and neck were similar to those of MC in order of AXB11dose calculation accuracy of AXB11 was almost equivalent to the MC dose calculation.

  16. Measurement Technique of Dose Rate Distribution of Ionization Sources with Unstable in Time Beam Parameters

    NASA Astrophysics Data System (ADS)

    Stuchebrov, S. G.; Miloichikova, I. A.; Danilova, I. B.

    2016-01-01

    The article describes a new technique for the average values of radiation dose measurement for the unstable gamma-ray sources which are used in non-destructive testing. The method is based on usage of different types of compact accumulative dosimeters. Spatially distributed position sensitive dosimetry system based on compact sensitive elements was created. Size and spatial resolution of the system of the dosimetry system are chosen taking into account sources characteristics. The proposed method has been tested on the measurement of dose distribution of several sources of X-ray and gamma-radiation based on X-ray tubes, electronic accelerator betatrons and linear electron accelerators.

  17. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    SciTech Connect

    Carlsson Tedgren, A; Persson, M; Nilsson, J

    2014-06-15

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.

  18. Isotoxic Dose Escalation in the Treatment of Lung Cancer by Means of Heterogeneous Dose Distributions in the Presence of Respiratory Motion

    SciTech Connect

    Baker, Mariwan; Nielsen, Morten; Hansen, Olfred; Jahn, Jonas Westberg; Korreman, Stine; Brink, Carsten

    2011-11-01

    Purpose: To test, in the presence of intrafractional respiration movement, a margin recipe valid for a homogeneous and conformal dose distribution and to test whether the use of smaller margins combined with heterogeneous dose distributions allows an isotoxic dose escalation when respiratory motion is considered. Methods and Materials: Twenty-three Stage II-III non-small-cell lung cancer patients underwent four-dimensional computed tomography scanning. The gross tumor volume and clinical target volume (CTV) were outlined in the mid-ventilation phase. The CTV-to-planning target volume (PTV) margin was calculated by use of a standard margin recipe and the patient-specific respiration pattern. Standard three-dimensional treatment plans were generated and recalculated on the remaining respiration phases. The planning was repeated for a CTV-to-PTV margin decreased by 2.5 and 5 mm relative to the initial margin in all directions. Time-averaged dose-volume histograms (four-dimensional dose-volume histograms) were calculated to evaluate the CTV-to-PTV margin. Finally, the dose was escalated in the plans with decreased PTV such that the mean lung dose (predictor of radiation-induced pneumonitis) was equal to mean lung dose in the plan by use of the initially calculated margin. Results: A reduction of the standard margin by 2.5 mm compared with the recipe resulted in too low of a minimum dose for some patients. A combination of dose escalation and use of heterogeneous dose distribution was able to increase the minimum dose to the target by approximately 10% and 20% for a CTV-to-PTV margin reduction of 2.5 mm and 5.0 mm, respectively. Conclusion: The margin recipe is valid for intrafractional respiration-induced tumor motions. It is possible to increase the dose to the target without increased mean lung dose with an inhomogeneous dose distribution.

  19. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and Micro Rain Radar data

    NASA Astrophysics Data System (ADS)

    Wen, Long; Zhao, Kun; Zhang, Guifu; Xue, Ming; Zhou, Bowen; Liu, Su; Chen, Xingchao

    2016-03-01

    The characteristics of raindrop size distributions (DSDs) and vertical structures of rainfall during the Asian summer monsoon season in East China are studied using measurements from a ground-based two-dimensional video disdrometer (2DVD) and a vertically pointing Micro Rain Radar (MRR). Based on rainfall intensity and vertical structure of radar reflectivity, the observed rainfall is classified into convective, stratiform, and shallow precipitation types. Among them, shallow precipitation has previously been ignored or treated as outliers due to limitations in traditional surface measurements. Using advanced instruments of 2DVD and MRR, the characteristics of shallow precipitation are quantified. Furthermore, summer rainfall in the study region is found to consist mainly of stratiform rain in terms of frequency of occurrence but is dominated by convective rain in terms of accumulated rainfall amount. Further separation of the summer season into time periods before, during, and after the Meiyu season reveals that intrasummer variation of DSDs is mainly due to changes in percentage occurrence of the three precipitation types, while the characteristics of each type remain largely unchanged throughout the summer. Overall, higher raindrop concentrations and smaller diameters are found compared to monsoon precipitation at other locations in Asia. Higher local aerosol concentration is speculated to be the cause. Finally, rainfall estimation relationships using polarimetric radar measurements are derived and discussed. These new relationships agree well with rain gauge measurements and are more accurate than traditional relations, especially at high and low rain rates.

  20. Determination of the threshold dose distribution in photodynamic action from in vitro experiments.

    PubMed

    de Faria, Clara Maria Gonçalves; Inada, Natalia Mayumi; Kurachi, Cristina; Bagnato, Vanderlei Salvador

    2016-09-01

    The concept of threshold in photodynamic action on cells or microorganisms is well observed in experiments but not fully explored on in vitro experiments. The intercomparison between light and used photosensitizer among many experiments is also poorly evaluated. In this report, we present an analytical model that allows extracting from the survival rate experiments the data of the threshold dose distribution, ie, the distribution of energies and photosensitizer concentration necessary to produce death of cells. Then, we use this model to investigate photodynamic therapy (PDT) data previously published in literature. The concept of threshold dose distribution instead of "single value of threshold" is a rich concept for the comparison of photodynamic action in different situations, allowing analyses of its efficiency as well as determination of optimized conditions for PDT. We observed that, in general, as it becomes more difficult to kill a population, the distribution tends to broaden, which means it presents a large spectrum of threshold values within the same cell type population. From the distribution parameters (center peak and full width), we also observed a clear distinction among cell types regarding their response to PDT that can be quantified. Comparing data obtained from the same cell line and used photosensitizer (PS), where the only distinct condition was the light source's wavelength, we found that the differences on the distribution parameters were comparable to the differences on the PS absorption. At last, we observed evidence that the threshold dose distribution matches the curve of apoptotic activity for some PSs. PMID:27371916

  1. A graphical user interface for calculation of 3D dose distribution using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Chow, J. C. L.; Leung, M. K. K.

    2008-02-01

    A software graphical user interface (GUI) for calculation of 3D dose distribution using Monte Carlo (MC) simulation is developed using MATLAB. This GUI (DOSCTP) provides a user-friendly platform for DICOM CT-based dose calculation using EGSnrcMP-based DOSXYZnrc code. It offers numerous features not found in DOSXYZnrc, such as the ability to use multiple beams from different phase-space files, and has built-in dose analysis and visualization tools. DOSCTP is written completely in MATLAB, with integrated access to DOSXYZnrc and CTCREATE. The program function may be divided into four subgroups, namely, beam placement, MC simulation with DOSXYZnrc, dose visualization, and export. Each is controlled by separate routines. The verification of DOSCTP was carried out by comparing plans with different beam arrangements (multi-beam/photon arc) on an inhomogeneous phantom as well as patient CT between the GUI and Pinnacle3. DOSCTP was developed and verified with the following features: (1) a built-in voxel editor to modify CT-based DOSXYZnrc phantoms for research purposes; (2) multi-beam placement is possible, which cannot be achieved using the current DOSXYZnrc code; (3) the treatment plan, including the dose distributions, contours and image set can be exported to a commercial treatment planning system such as Pinnacle3 or to CERR using RTOG format for plan evaluation and comparison; (4) a built-in RTOG-compatible dose reviewer for dose visualization and analysis such as finding the volume of hot/cold spots in the 3D dose distributions based on a user threshold. DOSCTP greatly simplifies the use of DOSXYZnrc and CTCREATE, and offers numerous features that not found in the original user-code. Moreover, since phase-space beams can be defined and generated by the user, it is a particularly useful tool to carry out plans using specifically designed irradiators/accelerators that cannot be found in the Linac library of commercial treatment planning systems.

  2. Mapping of dose distribution from IMRT onto MRI-guided high dose rate brachytherapy using deformable image registration for cervical cancer treatments: preliminary study with commercially available software

    PubMed Central

    Huq, M. Saiful; Houser, Chris; Beriwal, Sushil; Michalski, Dariusz

    2014-01-01

    Purpose For patients undergoing external beam radiation therapy (EBRT) and brachytherapy, recommendations for target doses and constraints are based on calculation of the equivalent dose in 2 Gy fractions (EQD2) from each phase. At present, the EBRT dose distribution is assumed to be uniform throughout the pelvis. We performed a preliminary study to determine whether deformable dose distribution mapping from the EBRT onto magnetic resonance (MR) images for the brachytherapy would yield differences in doses for organs at risk (OARs) and high-risk clinical target volume (HR-CTV). Material and methods Nine cervical cancer patients were treated to a total dose of 45 Gy in 25 fractions using intensity-modulated radiation therapy (IMRT), followed by MRI-based 3D high dose rate (HDR) brachytherapy. Retrospectively, the IMRT planning CT images were fused with the MR image for each fraction of brachytherapy using deformable image registration. The deformed IMRT dose onto MR images were converted to EQD2 and compared to the uniform dose assumption. Results For all patients, the EQD2 from the EBRT phase was significantly higher with deformable registration than with the conventional uniform dose distribution assumption. The mean EQD2 ± SD for HR-CTV D90 was 45.7 ± 0.7 Gy vs. 44.3 Gy for deformable vs. uniform dose distribution, respectively (p < 0.001). The dose to 2 cc of the bladder, rectum, and sigmoid was 46.4 ± 1.2 Gy, 46.2 ± 1.0 Gy, and 48.0 ± 2.5 Gy, respectively with deformable dose distribution, and was significantly higher than with uniform dose distribution (43.2 Gy for all OAR, p < 0.001). Conclusions This study reveals that deformed EBRT dose distribution to HR-CTV and OARs in MR images for brachytherapy is technically feasible, and achieves differences compared to a uniform dose distribution. Therefore, the assumption that EBRT contributes the same dose value may need to be carefully investigated further based on deformable image registration. PMID:25097559

  3. Retrospective analysis of 2D patient-specific IMRT verifications

    SciTech Connect

    Childress, Nathan L.; White, R. Allen; Bloch, Charles; Salehpour, Mohammad; Dong, Lei; Rosen, Isaac I.

    2005-04-01

    We performed 858 two-dimensional (2D) patient-specific intensity modulated radiotherapy verifications over a period of 18 months. Multifield, composite treatment plans were measured in phantom using calibrated Kodak EDR2 film and compared with the calculated dose extracted from two treatment planning systems. This research summarizes our findings using the normalized agreement test (NAT) index and the percent of pixels failing the gamma index as metrics to represent the agreement between measured and computed dose distributions. An in-house dose comparison software package was used to register and compare all verifications. We found it was important to use an automatic positioning algorithm to achieve maximum registration accuracy, and that our automatic algorithm agreed well with anticipated results from known phantom geometries. We also measured absolute dose for each case using an ion chamber. Because the computed distributions agreed with ion chamber measurements better than the EDR2 film doses, we normalized EDR2 data to the computed distributions. The distributions of both the NAT indices and the percentage of pixels failing the gamma index were found to be exponential distributions. We continue to use both the NAT index and percent of pixels failing gamma with 5%/3 mm criteria to evaluate future verifications, as these two metrics were found to be complementary. Our data showed that using 2%/2 mm or 3%/3 mm criteria produces results similar to those using 5%/3 mm criteria. Normalized comparisons that have a NAT index greater than 45 and/or more than 20% of the pixels failing gamma for 5%/3 mm criteria represent outliers from our clinical data set and require further analysis. Because our QA verification results were exponentially distributed, rather than a tight grouping of similar results, we continue to perform patient-specific QA in order to identify and correct outliers in our verifications. The data from this work could be useful as a reference for

  4. Monte Carlo calculation of dose distributions in oligometastatic patients planned for spine stereotactic ablative radiotherapy

    NASA Astrophysics Data System (ADS)

    Moiseenko, V.; Liu, M.; Loewen, S.; Kosztyla, R.; Vollans, E.; Lucido, J.; Fong, M.; Vellani, R.; Popescu, I. A.

    2013-10-01

    Dosimetric consequences of plans optimized using the analytical anisotropic algorithm (AAA) implemented in the Varian Eclipse treatment planning system for spine stereotactic body radiotherapy were evaluated by re-calculating with BEAMnrc/DOSXYZnrc Monte Carlo. Six patients with spinal vertebral metastases were planned using volumetric modulated arc therapy. The planning goal was to cover at least 80% of the planning target volume with a prescribed dose of 35 Gy in five fractions. Tissue heterogeneity-corrected AAA dose distributions for the planning target volume and spinal canal planning organ-at-risk volume were compared against those obtained from Monte Carlo. The results showed that the AAA overestimated planning target volume coverage with the prescribed dose by up to 13.5% (mean 8.3% +/- 3.2%) when compared to Monte Carlo simulations. Maximum dose to spinal canal planning organ-at-risk volume calculated with Monte Carlo was consistently smaller than calculated with the treatment planning system and remained under spinal cord dose tolerance. Differences in dose distribution appear to be related to the dosimetric effects of accounting for body composition in Monte Carlo simulations. In contrast, the treatment planning system assumes that all tissues are water-equivalent in their composition and only differ in their electron density.

  5. 3D dose and TCP distribution for radionuclide therapy in nuclear medicine

    SciTech Connect

    Valente, M.; Malano, F.; Perez, P.

    2010-08-04

    A common feature to any radiant therapy is that lesion and health tissue dosimetry provides relevant information for treatment optimization along with dose-efficacy and dose-complication correlation studies. Nowadays, different radionuclide therapies are commonly available, assessing both systemic and loco-regional approach and using different alfa-, beta-and gamma-emitting isotopes and binding molecules. It is well established, that specific dosimetric approaches become necessary according to each therapy modality. Sometimes, observed activity distribution can be satisfactory represented by simple geometrical models. However, Monte Carlo techniques are capable of better approaches, therefore becoming sometimes the only way to get dosimetric data since the patient-specific situation can not be adequately represented by conventional dosimetry techniques. Therefore, due to strong limitations of traditional and standard methods, this work concentrates on the development of a dedicated and novel calculation system in order to assess the dose distribution within the irradiated patient. However, physical dose may not be enough information in order to establish real deterministic biological/metabolic effects; therefore complementary radiobiological models have been suitably introduced with the aim of performing realistic 3D dose as well as corresponding Tumor Control Probability distribution calculation.

  6. 3D dose and TCP distribution for radionuclide therapy in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Valente, M.; Malano, F.; Pérez, P.

    2010-08-01

    A common feature to any radiant therapy is that lesion and health tissue dosimetry provides relevant information for treatment optimization along with dose-efficacy and dose-complication correlation studies. Nowadays, different radionuclide therapies are commonly available, assessing both systemic and loco-regional approach and using different alfa-, beta-and gamma-emitting isotopes and binding molecules. It is well established, that specific dosimetric approaches become necessary according to each therapy modality. Sometimes, observed activity distribution can be satisfactory represented by simple geometrical models. However, Monte Carlo techniques are capable of better approaches, therefore becoming sometimes the only way to get dosimetric data since the patient-specific situation can not be adequately represented by conventional dosimetry techniques. Therefore, due to strong limitations of traditional and standard methods, this work concentrates on the development of a dedicated and novel calculation system in order to assess the dose distribution within the irradiated patient. However, physical dose may not be enough information in order to establish real deterministic biological/metabolic effects; therefore complementary radiobiological models have been suitably introduced with the aim of performing realistic 3D dose as well as corresponding Tumor Control Probability distribution calculation.

  7. Effect of dosimeter type for commissioning small photon beams on calculated dose distribution in stereotactic radiosurgery

    SciTech Connect

    García-Garduño, O. A. E-mail: amanda.garcia.g@gmail.com; Rodríguez-Ponce, M.; Gamboa-deBuen, I.; Rodríguez-Villafuerte, M.; Galván de la Cruz, O. O.; and others

    2014-09-15

    Purpose: To assess the impact of the detector used to commission small photon beams on the calculated dose distribution in stereotactic radiosurgery (SRS). Methods: In this study, six types of detectors were used to characterize small photon beams: three diodes [a silicon stereotactic field diode SFD, a silicon diode SRS, and a silicon diode E], an ionization chamber CC01, and two types of radiochromic film models EBT and EBT2. These detectors were used to characterize circular collimated beams that were generated by a Novalis linear accelerator. This study was conducted in two parts. First, the following dosimetric data, which are of particular interest in SRS, were compared for the different detectors: the total scatter factor (TSF), the tissue phantom ratios (TPRs), and the off-axis ratios (OARs). Second, the commissioned data sets were incorporated into the treatment planning system (TPS) to compare the calculated dose distributions and the dose volume histograms (DVHs) that were obtained using the different detectors. Results: The TSFs data measured by all of the detectors were in good agreement with each other within the respective statistical uncertainties: two exceptions, where the data were systematically below those obtained for the other detectors, were the CC01 results for all of the circular collimators and the EBT2 film results for circular collimators with diameters below 10.0 mm. The OAR results obtained for all of the detectors were in excellent agreement for all of the circular collimators. This observation was supported by the gamma-index test. The largest difference in the TPR data was found for the 4.0 mm circular collimator, followed by the 10.0 and 20.0 mm circular collimators. The results for the calculated dose distributions showed that all of the detectors passed the gamma-index test at 100% for the 3 mm/3% criteria. The aforementioned observation was true regardless of the size of the calculation grid for all of the circular collimators

  8. A Monte Carlo study on dose distribution evaluation of Flexisource 192Ir brachytherapy source

    PubMed Central

    Alizadeh, Majid; Ghorbani, Mahdi; Haghparast, Abbas; Zare, Naser; Ahmadi Moghaddas, Toktam

    2015-01-01

    Aim The aim of this study is to evaluate the dose distribution of the Flexisource 192Ir source. Background Dosimetric evaluation of brachytherapy sources is recommended by task group number 43 (TG. 43) of American Association of Physicists in Medicine (AAPM). Materials and methods MCNPX code was used to simulate Flexisource 192Ir source. Dose rate constant and radial dose function were obtained for water and soft tissue phantoms and compared with previous data on this source. Furthermore, dose rate along the transverse axis was obtained by simulation of the Flexisource and a point source and the obtained data were compared with those from Flexiplan treatment planning system (TPS). Results The values of dose rate constant obtained for water and soft tissue phantoms were equal to 1.108 and 1.106, respectively. The values of the radial dose function are listed in the form of tabulated data. The values of dose rate (cGy/s) obtained are shown in the form of tabulated data and figures. The maximum difference between TPS and Monte Carlo (MC) dose rate values was 11% in a water phantom at 6.0 cm from the source. Conclusion Based on dosimetric parameter comparisons with values previously published, the accuracy of our simulation of Flexisource 192Ir was verified. The results of dose rate constant and radial dose function in water and soft tissue phantoms were the same for Flexisource and point sources. For Flexisource 192Ir source, the results of TPS calculations in a water phantom were in agreement with the simulations within the calculation uncertainties. Furthermore, the results from the TPS calculation for Flexisource and MC calculation for a point source were practically equal within the calculation uncertainties. PMID:25949224

  9. Dose distribution in the Russian Segment of the International Space Station.

    PubMed

    Hajek, M; Berger, T; Fugger, M; Fürstner, M; Vana, N; Akatov, Y; Shurshakov, V; Arkhangelsky, V

    2006-01-01

    Absorbed dose and average linear energy transfer (LET) were assessed by means of (7)LiF:Mg,Ti (TLD-700) thermoluminescent (TL) detectors for different panels on-board the Russian Segment of the International Space Station in the timeframe between March and November 2002 (233 d). A technique is presented to correct the measured absorbed dose values for TL efficiency in the radiation climate on-board the spacecraft. Average LET is determined from the high-temperature TL emission in the TLD-700 glow curve and used as a parameter in the TL efficiency correction. Depending on the shielding distribution, the efficiency-corrected absorbed dose varies between 154 +/- 5 microGy d(-1) in panel no. 327 (core block ceiling) and 191 +/- 3 microGy d(-1) in panel no. 110 (core block central axis, floor). The experimental data are compared with the model calculations by using detailed shielding distributions and orbit parameters as inputs. PMID:16606660

  10. HDR Brachytherapy Dose Distribution is Influenced by the Metal Material of the Applicator

    PubMed Central

    Wu, Chin-Hui; Liao, Yi-Jen; Shiau, An-Cheng; Lin, Hsin-Yu; Hsueh Liu, Yen-Wan; Hsu, Shih-Ming

    2015-01-01

    Applicators containing metal have been widely used in recent years when applying brachytherapy to patients with cervical cancer. However, the high dose rate (HDR) treatment-planning system (TPS) that is currently used in brachytherapy still assumes that the treatment environment constitutes a homogeneous water medium and does not include a dose correction for the metal material of the applicator. The primary purpose of this study was to evaluate the HDR 192Ir dose distribution in cervical cancer patients when performing brachytherapy using a metal-containing applicator. Thermoluminescent dosimeter (TLD) measurements and Monte Carlo N-Particle eXtended (MCNPX) code were used to explore the doses to the rectum and bladder when using a Henschke applicator containing metal during brachytherapy. When the applicator was assumed to be present, the absolute dose difference between the TLD measurement and MCNPX simulation values was within approximately 5%. A comparison of the MCNPX simulation and TPS calculation values revealed that the TPS overestimated the International Commission of Radiation Units and Measurement (ICRU) rectum and bladder reference doses by 57.78% and 49.59%, respectively. We therefore suggest that the TPS should be modified to account for the shielding effects of the applicator to ensure the accuracy of the delivered doses. PMID:26658746

  11. HDR Brachytherapy Dose Distribution is Influenced by the Metal Material of the Applicator.

    PubMed

    Wu, Chin-Hui; Liao, Yi-Jen; Shiau, An-Cheng; Lin, Hsin-Yu; Hsueh Liu, Yen-Wan; Hsu, Shih-Ming

    2015-01-01

    Applicators containing metal have been widely used in recent years when applying brachytherapy to patients with cervical cancer. However, the high dose rate (HDR) treatment-planning system (TPS) that is currently used in brachytherapy still assumes that the treatment environment constitutes a homogeneous water medium and does not include a dose correction for the metal material of the applicator. The primary purpose of this study was to evaluate the HDR (192)Ir dose distribution in cervical cancer patients when performing brachytherapy using a metal-containing applicator. Thermoluminescent dosimeter (TLD) measurements and Monte Carlo N-Particle eXtended (MCNPX) code were used to explore the doses to the rectum and bladder when using a Henschke applicator containing metal during brachytherapy. When the applicator was assumed to be present, the absolute dose difference between the TLD measurement and MCNPX simulation values was within approximately 5%. A comparison of the MCNPX simulation and TPS calculation values revealed that the TPS overestimated the International Commission of Radiation Units and Measurement (ICRU) rectum and bladder reference doses by 57.78% and 49.59%, respectively. We therefore suggest that the TPS should be modified to account for the shielding effects of the applicator to ensure the accuracy of the delivered doses. PMID:26658746

  12. Dosimetric verification of stereotactic radiosurgery/stereotactic radiotherapy dose distributions using Gafchromic EBT3

    SciTech Connect

    Cusumano, Davide; Fumagalli, Maria L.; Marchetti, Marcello; Fariselli, Laura; De Martin, Elena

    2015-10-01

    Aim of this study is to examine the feasibility of using the new Gafchromic EBT3 film in a high-dose stereotactic radiosurgery and radiotherapy quality assurance procedure. Owing to the reduced dimensions of the involved lesions, the feasibility of scanning plan verification films on the scanner plate area with the best uniformity rather than using a correction mask was evaluated. For this purpose, signal values dispersion and reproducibility of film scans were investigated. Uniformity was then quantified in the selected area and was found to be within 1.5% for doses up to 8 Gy. A high-dose threshold level for analyses using this procedure was established evaluating the sensitivity of the irradiated films. Sensitivity was found to be of the order of centiGray for doses up to 6.2 Gy and decreasing for higher doses. The obtained results were used to implement a procedure comparing dose distributions delivered with a CyberKnife system to planned ones. The procedure was validated through single beam irradiation on a Gafchromic film. The agreement between dose distributions was then evaluated for 13 patients (brain lesions, 5 Gy/die prescription isodose ~80%) using gamma analysis. Results obtained using Gamma test criteria of 5%/1 mm show a pass rate of 94.3%. Gamma frequency parameters calculation for EBT3 films showed to strongly depend on subtraction of unexposed film pixel values from irradiated ones. In the framework of the described dosimetric procedure, EBT3 films proved to be effective in the verification of high doses delivered to lesions with complex shapes and adjacent to organs at risk.

  13. Intra-tumor distribution of PEGylated liposome upon repeated injection: No possession by prior dose.

    PubMed

    Nakamura, Hiroyuki; Abu Lila, Amr S; Nishio, Miho; Tanaka, Masao; Ando, Hidenori; Kiwada, Hiroshi; Ishida, Tatsuhiro

    2015-12-28

    Liposomes have proven to be a viable means for the delivery of chemotherapeutic agents to solid tumors. However, significant variability has been detected in their intra-tumor accumulation and distribution, resulting in compromised therapeutic outcomes. We recently examined the intra-tumor accumulation and distribution of weekly sequentially administered oxaliplatin (l-OHP)-containing PEGylated liposomes. In that study, the first and second doses of l-OHP-containing PEGylated liposomes were distributed diversely and broadly within tumor tissues, resulting in a potent anti-tumor efficacy. However, little is known about the mechanism underlying such a diverse and broad liposome distribution. Therefore, in the present study, we investigated the influence of dosage interval on the intra-tumor accumulation and distribution of "empty" PEGylated liposomes. Intra-tumor distribution of sequentially administered "empty" PEGylated liposomes was altered in a dosing interval-dependent manner. In addition, the intra-tumor distribution pattern was closely related to the chronological alteration of tumor blood flow as well as vascular permeability in the growing tumor tissue. These results suggest that the sequential administrations of PEGylated liposomes in well-spaced intervals might allow the distribution to different areas and enhance the total bulk accumulation within tumor tissue, resulting in better therapeutic efficacy of the encapsulated payload. This study may provide useful information for a better design of therapeutic regimens involving multiple administrations of nanocarrier drug delivery systems. PMID:26548975

  14. Characterisation of mega-voltage electron pencil beam dose distributions: viability of a measurement-based approach.

    PubMed

    Barnes, M P; Ebert, M A

    2008-03-01

    The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions. PMID:18488959

  15. Dosimetric and Clinical Analysis of Spatial Distribution of the Radiation Dose in Gamma Knife Radiosurgery for Vestibular Schwannoma

    SciTech Connect

    Massager, Nicolas; Lonneville, Sarah; Delbrouck, Carine; Benmebarek, Nadir; Desmedt, Francoise; Devriendt, Daniel

    2011-11-15

    Objectives: We investigated variations in the distribution of radiation dose inside (dose inhomogeneity) and outside (dose falloff) the target volume during Gamma Knife (GK) irradiation of vestibular schwannoma (VS). We analyzed the relationship between some parameters of dose distribution and the clinical and radiological outcome of patients. Methods and Materials: Data from dose plans of 203 patients treated for a vestibular schwannoma by GK C using same prescription dose (12 Gy at the 50% isodose) were collected. Four different dosimetric indexes were defined and calculated retrospectively in all plannings on the basis of dose-volume histograms: Paddick conformity index (PI), gradient index (GI), homogeneity index (HI), and unit isocenter (UI). The different measures related to distribution of the radiation dose were compared with hearing and tumor outcome of 203 patients with clinical and radiological follow-up of minimum 2 years. Results: Mean, median, SD, and ranges of the four indexes of dose distribution analyzed were calculated; large variations were found between dose plans. We found a high correlation between the target volume and PI, GI, and UI. No significant association was found between the indexes of dose distribution calculated in this study and tumor control, tumor volume shrinkage, hearing worsening, loss of functional hearing, or complete hearing loss at last follow-up. Conclusions: Parameters of distribution of the radiation dose during GK radiosurgery for VS can be highly variable between dose plans. The tumor and hearing outcome of patients treated is not significantly related to these global indexes of dose distribution inside and around target volume. In GK radiosurgery for VS, the outcome seems more to be influenced by local radiation dose delivered to specific structures or volumes than by global dose gradients.

  16. Simultaneous optimization of dose distributions and fractionation schemes in particle radiotherapy

    SciTech Connect

    Unkelbach, Jan; Zeng, Chuan; Engelsman, Martijn

    2013-09-15

    Purpose: The paper considers the fractionation problem in intensity modulated proton therapy (IMPT). Conventionally, IMPT fields are optimized independently of the fractionation scheme. In this work, we discuss the simultaneous optimization of fractionation scheme and pencil beam intensities.Methods: This is performed by allowing for distinct pencil beam intensities in each fraction, which are optimized using objective and constraint functions based on biologically equivalent dose (BED). The paper presents a model that mimics an IMPT treatment with a single incident beam direction for which the optimal fractionation scheme can be determined despite the nonconvexity of the BED-based treatment planning problem.Results: For this model, it is shown that a small α/β ratio in the tumor gives rise to a hypofractionated treatment, whereas a large α/β ratio gives rise to hyperfractionation. It is further demonstrated that, for intermediate α/β ratios in the tumor, a nonuniform fractionation scheme emerges, in which it is optimal to deliver different dose distributions in subsequent fractions. The intuitive explanation for this phenomenon is as follows: By varying the dose distribution in the tumor between fractions, the same total BED can be achieved with a lower physical dose. If it is possible to achieve this dose variation in the tumor without varying the dose in the normal tissue (which would have an adverse effect), the reduction in physical dose may lead to a net reduction of the normal tissue BED. For proton therapy, this is indeed possible to some degree because the entrance dose is mostly independent of the range of the proton pencil beam.Conclusions: The paper provides conceptual insight into the interdependence of optimal fractionation schemes and the spatial optimization of dose distributions. It demonstrates the emergence of nonuniform fractionation schemes that arise from the standard BED model when IMPT fields and fractionation scheme are optimized

  17. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  18. Influence of Rotations on Dose Distributions in Spinal Stereotactic Body Radiotherapy (SBRT)

    PubMed Central

    Gutfeld, Orit; Kretzler, Annette E; Kashani, Rojano; Tatro, Daniel; Balter, James M

    2009-01-01

    Purpose To evaluate the impact of rotational setup errors on dose distribution in spinal stereotactic body radiotherapy (SBRT). Methods and Materials 39 Cone Beam CT (CBCT) scans from 16 SBRT treatment courses were analyzed. Alignment (including rotation) to the treatment planning CT was performed, followed by translational alignment that reproduced the actual positioning. The planned fluence was then applied to determine the delivered dose to the targets and organs at risk. Results The mean PTV volume was 71.01 mL (SD ± 60.05, range 22.62 – 250.65 mL). Prescribed dose (to the 62 – 82% isodose) was 14 – 30 Gy in one to six fractions. The average rotational displacements were 0.38 ± 1.21, 1.12 ± 1.82 and −0.51 ± 2.0 degrees with maximal rotations of −4.29, 5.76 and −6.64 degrees along the x (pitch), y (yaw), and z (roll) axes, respectively. PTV coverage changed by an average of −0.07 Gy (SD ± 0.20 Gy) between the rotated and the original plan, representing 0.92% of prescription dose (SD ± 2.65%). For the spinal cord, planned with 2 mm expansion to create a planning organ at risk volume (PRV), the difference in minimum dose to the upper 10% of the PRV volume was 0.03 ± 0.3 Gy (maximum 0.9 Gy). Other organs at risk saw insignificant changes in dose. Conclusions PRV expansion generally assures safe treatment delivery in the face of typically encountered rotations. Given the variability of delivered dose within this expansion for certain cases, caution should be taken to properly interpret doses to the cord when considering clinical dose limits. PMID:19306757

  19. Baby universes in 2d quantum gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Jain, Sanjay; Thorleifsson, Gudmar

    1993-06-01

    We investigate the fractal structure of 2d quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent γstring.

  20. Gamma Knife 3-D dose distribution near the area of tissue inhomogeneities by normoxic gel dosimetry

    SciTech Connect

    Isbakan, Fatih; Uelgen, Yekta; Bilge, Hatice; Ozen, Zeynep; Agus, Onur; Buyuksarac, Bora

    2007-05-15

    The accuracy of the Leksell GammaPlan registered , the dose planning system of the Gamma Knife Model-B, was evaluated near tissue inhomogeneities, using the gel dosimetry method. The lack of electronic equilibrium around the small-diameter gamma beams can cause dose calculation errors in the neighborhood of an air-tissue interface. An experiment was designed to investigate the effects of inhomogeneity near the paranosal sinuses cavities. The homogeneous phantom was a spherical glass balloon of 16 cm diameter, filled with MAGIC gel; i.e., the normoxic polymer gel. Two hollow PVC balls of 2 cm radius, filled with N{sub 2} gas, represented the air cavities inside the inhomogeneous phantom. For dose calibration purposes, 100 ml gel-containing vials were irradiated at predefined doses, and then scanned in a MR unit. Linearity was observed between the delivered dose and the reciprocal of the T2 relaxation time constant of the gel. Dose distributions are the results of a single shot of irradiation, obtained by collimating all 201 cobalt sources to a known target in the phantom. Both phantoms were irradiated at the same dose level at the same coordinates. Stereotactic frames and fiducial markers were attached to the phantoms prior to MR scanning. The dose distribution predicted by the Gamma Knife planning system was compared with that of the gel dosimetry. As expected, for the homogeneous phantom the isodose diameters measured by the gel dosimetry and the GammaPlan registered differed by 5% at most. However, with the inhomogeneous phantom, the dose maps in the axial, coronal and sagittal planes were spatially different. The diameters of the 50% isodose curves differed 43% in the X axis and 32% in the Y axis for the Z=90 mm axial plane; by 44% in the X axis and 24% in the Z axis for the Y=90 mm coronal plane; and by 32% in the Z axis and 42% in the Y axis for the X=92 mm sagittal plane. The lack of ability of the GammaPlan registered to predict the rapid dose fall off, due

  1. Gamma Knife 3-D dose distribution near the area of tissue inhomogeneities by normoxic gel dosimetry.

    PubMed

    Isbakan, Fatih; Ulgen, Yekta; Bilge, Hatice; Ozen, Zeynep; Agus, Onur; Buyuksarac, Bora

    2007-05-01

    The accuracy of the Leksell GammaPlan, the dose planning system of the Gamma Knife Model-B, was evaluated near tissue inhomogeneities, using the gel dosimetry method. The lack of electronic equilibrium around the small-diameter gamma beams can cause dose calculation errors in the neighborhood of an air-tissue interface. An experiment was designed to investigate the effects of inhomogeneity near the paranosal sinuses cavities. The homogeneous phantom was a spherical glass balloon of 16 cm diameter, filled with MAGIC gel; i.e., the normoxic polymer gel. Two hollow PVC balls of 2 cm radius, filled with N2 gas, represented the air cavities inside the inhomogeneous phantom. For dose calibration purposes, 100 ml gel-containing vials were irradiated at predefined doses, and then scanned in a MR unit. Linearity was observed between the delivered dose and the reciprocal of the T2 relaxation time constant of the gel. Dose distributions are the results of a single shot of irradiation, obtained by collimating all 201 cobalt sources to a known target in the phantom. Both phantoms were irradiated at the same dose level at the same coordinates. Stereotactic frames and fiducial markers were attached to the phantoms prior to MR scanning. The dose distribution predicted by the Gamma Knife planning system was compared with that of the gel dosimetry. As expected, for the homogeneous phantom the isodose diameters measured by the gel dosimetry and the GammaPlan differed by 5% at most. However, with the inhomogeneous phantom, the dose maps in the axial, coronal and sagittal planes were spatially different. The diameters of the 50% isodose curves differed 43% in the X axis and 32% in the Y axis for the Z =90 mm axial plane; by 44% in the X axis and 24% in the Z axis for the Y=90 mm coronal plane; and by 32% in the Z axis and 42% in the Y axis for the X=92 mm sagittal plane. The lack of ability of the GammaPlan to predict the rapid dose fall off, due to the air cavities behind or near the

  2. Effect of tissue inhomogeneity on dose distribution of point sources of low-energy electrons.

    PubMed

    Kwok, C S; Bialobzyski, P J; Yu, S K; Prestwich, W V

    1990-01-01

    Perturbation in dose distributions of point sources of low-energy electrons at planar interfaces of cortical bone (CB) and red marrow (RM) was investigated experimentally and by Monte Carlo codes EGS and the TIGER series. Ultrathin LiF thermoluminescent dosimeters were used to measure the dose distributions of point sources of 204Tl and 147Pm in RM. When the point sources were at 12 mg/cm2 from a planar interface of CB and RM equivalent plastics, dose enhancement ratios in RM averaged over the region 0-12 mg/cm2 from the interface were measured to be 1.08 +/- 0.03 (SE) and 1.03 +/- 0.03 (SE) for 204Tl and 147Pm, respectively. The Monte Carlo codes predicted 1.05 +/- 0.02 and 1.01 +/- 0.02 for the two nuclides, respectively. However, EGS gave consistently 3% higher dose in the dose scoring region than the TIGER series when point sources of monoenergetic electrons up to 0.75 MeV energy were considered in the homogeneous RM situation or in the CB and RM heterogeneous situation. By means of the TIGER series, it was demonstrated that aluminum, which is normally assumed to be equivalent to CB in radiation dosimetry, leads to an overestimation of backscattering of low-energy electrons in soft tissue at a CB-soft-tissue interface by as much as a factor of 2. PMID:2233564

  3. Liquid ionization chamber measurements of dose distributions in small 6 MV photon beams

    NASA Astrophysics Data System (ADS)

    Dasu, Alexandru; Löfroth, Per-Olov; Wickman, Göran

    1998-01-01

    A new liquid ionization chamber (LIC) design optimized for high spatial resolution was used for measurements of dose distributions in radiation fields intended for stereotactic radiosurgery (SRS). This work was mainly focused on the properties of this detector in radiation fields from linear accelerators for clinical radiotherapy (pulsed radiation with dose rates from approximately 0.5 to and beam diameters down to 8 mm). The narrow beams used in stereotactic radiosurgery require detectors with small sizes in order to provide a good spatial resolution. The LIC is investigated to see whether it can be used as a detector for dose measurements in beams currently used for stereotactic radiosurgery. Its properties are compared with those of silicon diodes. The comparisons include output factor (OF), depth dose and profile measurements in 6 MV photon fields of different sizes. For OF measurements, an NACP air ionization chamber was also used in the comparison. The dependence of the response on the detector orientation in the photon beam is also investigated for the diodes and the LIC. The results suggest that LICs can provide better properties than diodes for measuring dose distributions in narrow photon beams.

  4. Monte Carlo simulation of depth dose distribution in several organic models for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.

    2007-09-01

    Monte Carlo simulations are performed to evaluate depth-dose distributions for possible treatment of cancers by boron neutron capture therapy (BNCT). The ICRU computational model of ADAM & EVA was used as a phantom to simulate tumors at a depth of 5 cm in central regions of the lungs, liver and pancreas. Tumors of the prostate and osteosarcoma were also centered at the depth of 4.5 and 2.5 cm in the phantom models. The epithermal neutron beam from a research reactor was the primary neutron source for the MCNP calculation of the depth-dose distributions in those cancer models. For brain tumor irradiations, the whole-body dose was also evaluated. The MCNP simulations suggested that a lethal dose of 50 Gy to the tumors can be achieved without reaching the tolerance dose of 25 Gy to normal tissue. The whole-body phantom calculations also showed that the BNCT could be applied for brain tumors without significant damage to whole-body organs.

  5. Monte Carlo N Particle code - Dose distribution of clinical electron beams in inhomogeneous phantoms

    PubMed Central

    Nedaie, H. A.; Mosleh-Shirazi, M. A.; Allahverdi, M.

    2013-01-01

    Electron dose distributions calculated using the currently available analytical methods can be associated with large uncertainties. The Monte Carlo method is the most accurate method for dose calculation in electron beams. Most of the clinical electron beam simulation studies have been performed using non- MCNP [Monte Carlo N Particle] codes. Given the differences between Monte Carlo codes, this work aims to evaluate the accuracy of MCNP4C-simulated electron dose distributions in a homogenous phantom and around inhomogeneities. Different types of phantoms ranging in complexity were used; namely, a homogeneous water phantom and phantoms made of polymethyl methacrylate slabs containing different-sized, low- and high-density inserts of heterogeneous materials. Electron beams with 8 and 15 MeV nominal energy generated by an Elekta Synergy linear accelerator were investigated. Measurements were performed for a 10 cm × 10 cm applicator at a source-to-surface distance of 100 cm. Individual parts of the beam-defining system were introduced into the simulation one at a time in order to show their effect on depth doses. In contrast to the first scattering foil, the secondary scattering foil, X and Y jaws and applicator provide up to 5% of the dose. A 2%/2 mm agreement between MCNP and measurements was found in the homogenous phantom, and in the presence of heterogeneities in the range of 1-3%, being generally within 2% of the measurements for both energies in a "complex" phantom. A full-component simulation is necessary in order to obtain a realistic model of the beam. The MCNP4C results agree well with the measured electron dose distributions. PMID:23533162

  6. Monte Carlo N Particle code - Dose distribution of clinical electron beams in inhomogeneous phantoms.

    PubMed

    Nedaie, H A; Mosleh-Shirazi, M A; Allahverdi, M

    2013-01-01

    Electron dose distributions calculated using the currently available analytical methods can be associated with large uncertainties. The Monte Carlo method is the most accurate method for dose calculation in electron beams. Most of the clinical electron beam simulation studies have been performed using non- MCNP [Monte Carlo N Particle] codes. Given the differences between Monte Carlo codes, this work aims to evaluate the accuracy of MCNP4C-simulated electron dose distributions in a homogenous phantom and around inhomogeneities. Different types of phantoms ranging in complexity were used; namely, a homogeneous water phantom and phantoms made of polymethyl methacrylate slabs containing different-sized, low- and high-density inserts of heterogeneous materials. Electron beams with 8 and 15 MeV nominal energy generated by an Elekta Synergy linear accelerator were investigated. Measurements were performed for a 10 cm × 10 cm applicator at a source-to-surface distance of 100 cm. Individual parts of the beam-defining system were introduced into the simulation one at a time in order to show their effect on depth doses. In contrast to the first scattering foil, the secondary scattering foil, X and Y jaws and applicator provide up to 5% of the dose. A 2%/2 mm agreement between MCNP and measurements was found in the homogenous phantom, and in the presence of heterogeneities in the range of 1-3%, being generally within 2% of the measurements for both energies in a "complex" phantom. A full-component simulation is necessary in order to obtain a realistic model of the beam. The MCNP4C results agree well with the measured electron dose distributions. PMID:23533162

  7. Impact of Internal Metallic Ports in Temporary Tissue Expanders on Postmastectomy Radiation Dose Distribution

    SciTech Connect

    Chen, Susie A.; Ogunleye, Tomiwa; Dhabbaan, Anees; Huang, Eugene H.; Losken, Albert; Gabram, Sheryl; Davis, Lawrence; Torres, Mylin A.

    2013-03-01

    Purpose: Temporary tissue expanders (TTE) with an internal magnetic metal port (IMP) have been increasingly used for breast reconstruction in post-mastectomy patients who receive radiation therapy (XRT). We evaluated XRT plans of patients with IMP to determine its effect on XRT dose distribution. Methods and Materials: Original treatment plans with CT simulation scans of 24 consecutive patients who received XRT (ORI), planned without heterogeneity corrections, to a reconstructed breast containing an IMP were used. Two additional treatment plans were then generated: one treatment plan with the IMP assigned the electron density of the rare earth magnet, nickel plated neodymium-iron-boron (HET), and a second treatment plan with the IMP assigned a CT value of 1 to simulate a homogeneous breast without an IMP (BRS). All plans were prescribed 50 Gy to the reconstructed breast (CTV). Results: CTV coverage by 50 Gy was significantly lower in the HET (mean 87.7% CTV) than in either the ORI (mean 99.7% CTV, P<.001) or BRS plans (mean 95.0% CTV, P<.001). The effect of the port was more pronounced on CT slices containing the IMP with prescription dose coverage of the CTV being less in the HET than in either ORI (mean difference 33.6%, P<.01) or BRS plans (mean difference 30.1%, P<.001). HET had a less homogeneous and conformal dose distribution than BRS or ORI. Conclusion: IMPs increase dose heterogeneity and reduce dose to the breast CTV through attenuation of the beam. For optimal XRT treatment, heterogeneity corrections should be used in XRT planning for patients with TTE with IMP, as the IMP impacts dose distribution.

  8. Measurement of LET distribution and dose equivalent on board the space shuttle STS-65

    NASA Technical Reports Server (NTRS)

    Hayashi, T.; Doke, T.; Kikuchi, J.; Takeuchi, R.; Hasebe, N.; Ogura, K.; Nagaoka, S.; Kato, M.; Badhwar, G. D.

    1996-01-01

    Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD)" utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 microSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5 degrees) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15-200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.

  9. Pretreatment verification of IMRT absolute dose distributions using a commercial a-Si EPID

    SciTech Connect

    Talamonti, C.; Casati, M.; Bucciolini, M.

    2006-11-15

    A commercial amorphous silicon electronic portal imaging device (EPID) has been studied to investigate its potential in the field of pretreatment verifications of step and shoot, intensity modulated radiation therapy (IMRT), 6 MV photon beams. The EPID was calibrated to measure absolute exit dose in a water-equivalent phantom at patient level, following an experimental approach, which does not require sophisticated calculation algorithms. The procedure presented was specifically intended to replace the time-consuming in-phantom film dosimetry. The dosimetric response was characterized on the central axis in terms of stability, linearity, and pulse repetition frequency dependence. The a-Si EPID demonstrated a good linearity with dose (within 2% from 1 monitor unit), which represent a prerequisite for the application in IMRT. A series of measurements, in which phantom thickness, air gap between the phantom and the EPID, field size and position of measurement of dose in the phantom (entrance or exit) varied, was performed to find the optimal calibration conditions, for which the field size dependence is minimized. In these conditions (20 cm phantom thickness, 56 cm air gap, exit dose measured at the isocenter), the introduction of a filter for the low-energy scattered radiation allowed us to define a universal calibration factor, independent of field size. The off-axis extension of the dose calibration was performed by applying a radial correction for the beam profile, distorted due to the standard flood field calibration of the device. For the acquisition of IMRT fields, it was necessary to employ home-made software and a specific procedure. This method was applied for the measurement of the dose distributions for 15 clinical IMRT fields. The agreement between the dose distributions, quantified by the gamma index, was found, on average, in 97.6% and 98.3% of the analyzed points for EPID versus TPS and for EPID versus FILM, respectively, thus suggesting a great

  10. A simplified methodology to produce Monte Carlo dose distributions in proton therapy.

    PubMed

    Beltran, Chris; Jia, Yingcui; Slopsema, Roelf; Yeung, Daniel; Li, Zuofeng

    2014-01-01

    The purpose of this study was to develop a simplified methodology that will produce Monte Carlo (MC) dose distribution for proton therapy which can be used as a clinical aid in determining the adequacy of proton plans produced from the treatment planning system (TPS). The Geant4 Monte Carlo toolkit was used for all simulations. The geometry of the double scatter nozzle in the simulation was a simplification of the treatment nozzle. The proton source was modeled as discrete energy layers, each with a unique energy distribution and weighting factor. The simplified MC system was designed to give the same dose distribution as the measured data used to commission the TPS. After the simplified MC system was finalized, a series of verification comparisons were made between it, measurements, and the clinically used TPS. Comparisons included the lateral profile of a stair-shaped compensator that simulated a sharp lateral heterogeneity and depth-dose measurements through heterogeneous materials. The simplified MC system matched measurements to within 2% or 2 mm for all commissioning data under investigation; moreover, the distal edge and lateral penumbra was within 1 mm of the measurements. The simplified MC system was able to better reproduce the measured profiles for a stair-shaped compensator than the TPS. Both MC and TPS matched the measured depth dose through heterogeneous materials to within 2% or 2 mm. The simplified MC system was straightforward to implement, and produced accurate results when compared to measurements. Therefore, it holds promise as a clinically useful methodology to validate the relative dose distribution of patient treatment plans produced by the treatment planning systems. PMID:25207391

  11. SU-E-T-164: Evaluation of Electron Dose Distribution Using Two Algorithms

    SciTech Connect

    Liu, D; Li, Z; Shang, K; Jing, Z; Wang, J; Miao, M; Yang, J

    2014-06-01

    Purpose: To appreciate the difference of electron dose distributions calculated from the Monte Carlo and Electron 3D algorithms of radiotherapy in a heterogeneous phantom. Methods: A phantom consisted of two different materials (lungs mimicked by low-density cork and others by polystyrene) with an 11x16 cm field size (SSD = 100 cm) was utilized to estimate the two-dimensional dose distributions under 6 and 18 MeV beams. On behalf of two different types of tissue, the heterogeneous phantom was comprised of 3 identical slabs in the longitudinal direction with a thickness of 1 cm for each slab and 2 with a thickness of 2.5 cm. The Monte Carlo/MCTP application package constituted of five codes was performed to simulate the electron beams of a Varian Clinac 23IX. A 20x20 cm2 type III (open walled) applicator was used in these simulations. It has been shown elsewhere that the agreement of the phase space data between the calculation results of MCTP application package and the measured data were within 2% on depth-dose and transverse profiles, as well as output factor calculations. The electron 3D algorithm owned by Pinnacle 8.0m and the MCTP application package were applied for the two-dimensional dose distributions calculation. The curves at 50% and 100%-prescribed dose were observed for 6 and 18 MeV beams, respectively. Results: The MC calculations results were compared with the electron 3D calculations in terms of two-dimensional dose distributions for 6 and 18 MeV beams showed excellent agreement except in distal boundary where it was the very junction of the high and low-density region. Conclusions: The Monte Carlo/MCTP method could be used to better reflect the dose variation caused by heterogeneous tissues. Conclusion: A case study showed that the Monte Carlo/MCTP method could be used to better reflect the dose variation caused by heterogeneous tissues.

  12. Benchmark Experiment of Dose Rate Distributions Around the Gamma Knife Medical Apparatus

    SciTech Connect

    Oishi, K.; Kosako, K.; Kobayashi, Y.; Sonoki, I.

    2014-06-15

    Dose rate measurements around a gamma knife apparatus were performed by using an ionization chamber. Analyses have been performed by using the Monte Carlo code MCNP-5. The nuclear library used for the dose rate distribution of {sup 60}Co was MCPLIB04. The calculation model was prepared with a high degree of fidelity, such as the position of each Cobalt source and shielding materials. Comparisons between measured results and calculated ones were performed, and a very good agreement was observed. It is concluded that the Monte Carlo calculation method with its related nuclear data library is very effective for such a complicated radiation oncology apparatus.

  13. Benchmark Experiment of Dose Rate Distributions Around the Gamma Knife Medical Apparatus

    NASA Astrophysics Data System (ADS)

    Oishi, K.; Kosako, K.; Kobayashi, Y.; Sonoki, I.

    2014-06-01

    Dose rate measurements around a gamma knife apparatus were performed by using an ionization chamber. Analyses have been performed by using the Monte Carlo code MCNP-5. The nuclear library used for the dose rate distribution of 60Co was MCPLIB04. The calculation model was prepared with a high degree of fidelity, such as the position of each Cobalt source and shielding materials. Comparisons between measured results and calculated ones were performed, and a very good agreement was observed. It is concluded that the Monte Carlo calculation method with its related nuclear data library is very effective for such a complicated radiation oncology apparatus.

  14. The importance of pharmacist surveillance in a unit dose drug distribution system.

    PubMed

    Jarosinski, P F

    1978-09-01

    A study was conducted at a Public Health Service Hospital to determine if the pharmacist could provide important services to patient care while simultaneously performing the repetitious acts involved in unit dose drug distribution. During two five-week periods, the pharmacist actively questioned requests by the nursing staff for additional doses of medication to determine why these additional doses were needed. Also, during these periods the pharmacy actively questioned all doses returned in the dose medication carts which, according to doctor's orders, should have been administered to the patient. Results of these studies included the detection of some potentially dangerous deviations from accepted medication administration times (i.e., "twice" a day order given only four hours apart) as well as other problems, such as missed orders, medication "borrowing" which sometimes magnified errors, and underdosing. The conclusions from the studies are that the pharmacist can provide essential services while simultaneously performing the repetitious tasks of filling, checking, and exchanging unit dose medication cassettes. PMID:10238815

  15. MCNP simulation of radiation doses distributions in a water phantoms simulating interventional radiology patients

    NASA Astrophysics Data System (ADS)

    He, Wenjun; Mah, Eugene; Huda, Walter; Selby, Bayne; Yao, Hai

    2011-03-01

    Purpose: To investigate the dose distributions in water cylinders simulating patients undergoing Interventional Radiological examinations. Method: The irradiation geometry consisted of an x-ray source, dose-area-product chamber, and image intensifier as currently used in Interventional Radiology. Water cylinders of diameters ranging between 17 and 30 cm were used to simulate patients weighing between 20 and 90 kg. X-ray spectra data with peak x-ray tube voltages ranging from 60 to 120 kV were generated using XCOMP3R. Radiation dose distributions inside the water cylinder (Dw) were obtained using MCNP5. The depth dose distribution along the x-ray beam central axis was normalized to free-in-air air kerma (AK) that is incident on the phantom. Scattered radiation within the water cylinders but outside the directly irradiated region was normalized to the dose at the edge of the radiation field. The total absorbed energy to the directly irradiated volume (Ep) and indirectly irradiated volume (Es) were also determined and investigated as a function of x-ray tube voltage and phantom size. Results: At 80 kV, the average Dw/AK near the x-ray entrance point was 1.3. The ratio of Dw near the entrance point to Dw near the exit point increased from ~ 26 for the 17 cm water cylinder to ~ 290 for the 30 cm water cylinder. At 80 kV, the relative dose for a 17 cm water cylinder fell to 0.1% at 49 cm away from the central ray of the x-ray beam. For a 30 cm water cylinder, the relative dose fell to 0.1% at 53 cm away from the central ray of the x-ray beam. At a fixed x-ray tube voltage of 80 kV, increasing the water cylinder diameter from 17 to 30 cm increased the Es/(Ep+Es) ratio by about 50%. At a fixed water cylinder diameter of 24 cm, increasing the tube voltage from 60 kV to 120 kV increased the Es/(Ep+Es) ratio by about 12%. The absorbed energy from scattered radiation was between 20-30% of the total energy absorbed by the water cylinder, and was affected more by patient size

  16. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    SciTech Connect

    Klüter, Sebastian Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen; Schlegel, Wolfgang; Oelfke, Uwe; Nill, Simeon

    2014-08-15

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  17. Fabrication of 2D sheet-like BiOCl/carbon quantum dot hybrids via a template-free coprecipitation method and their tunable visible-light photocatalytic activities derived from different size distributions of carbon quantum dots.

    PubMed

    Deng, Fang; Lu, Xiaoying; Zhong, Fei; Pei, Xule; Luo, Xubiao; Luo, Shenglian; Dionysiou, Dionysios D; Au, Chaktong

    2016-02-12

    A series of two-dimensional (2D) interlaced BiOCl/carbon quantum dot composites (denoted as BiOCl/CQD composites) were synthesized by a template-free coprecipitation method at room temperature, and the influence of different particle size distributions of the CQDs on the physiochemical properties and photocatalytic activities of the BiOCl/CQD composites was studied. CQDs can change the morphology and increase the specific surface area of the BiOCl/CQD composites. Moreover, the particle size distribution of the CQDs (CQD loading amount) has some effect on the light absorption, separation of photogenerated charge carriers, and photocatalytic performance of  the BiOCl/CQD composites. The optimized size distribution of the CQDs is 50-150 nm. BiOCl/CQD (50-150 nm) composites showed the best improvement of light absorption and the highest photocurrent density of 0.44 μA cm(-2), and exhibited the highest photocatalytic activity with almost 100% 2-nitrophenol removal under visible-light irradiation. The high efficacy of BiOCl/CQD (50-150 nm) composites could be attributed to their excellent light absorption and highly effective separation of photogenerated charge carriers. PMID:26684911

  18. Photon beam dose distributions for patients with implanted temporary tissue expanders

    NASA Astrophysics Data System (ADS)

    Asena, A.; Kairn, T.; Crowe, S. B.; Trapp, J. V.

    2015-01-01

    This study examines the effects of temporary tissue expanders (TTEs) on the dose distributions of photon beams in breast cancer radiotherapy treatments. EBT2 radiochromic film and ion chamber measurements were taken to quantify the attenuation and backscatter effects of the inhomogeneity. Results illustrate that the internal magnetic port present in a tissue expander causes a dose reduction of approximately 25% in photon tangent fields immediately downstream of the implant. It was also shown that the silicone elastomer shell of the tissue expander reduced the dose to the target volume by as much as 8%. This work demonstrates the importance for an accurately modelled high-density implant in the treatment planning system for post-mastectomy breast cancer patients.

  19. MCNP simulation of the dose distribution in liver cancer treatment for BNC therapy

    NASA Astrophysics Data System (ADS)

    Krstic, Dragana; Jovanovic, Zoran; Markovic, Vladimir; Nikezic, Dragoslav; Urosevic, Vlade

    2014-10-01

    The Boron Neutron Capture Therapy ( BNCT) is based on selective uptake of boron in tumour tissue compared to the surrounding normal tissue. Infusion of compounds with boron is followed by irradiation with neutrons. Neutron capture on 10B, which gives rise to an alpha particle and recoiled 7Li ion, enables the therapeutic dose to be delivered to tumour tissue while healthy tissue can be spared. Here, therapeutic abilities of BNCT were studied for possible treatment of liver cancer using thermal and epithermal neutron beam. For neutron transport MCNP software was used and doses in organs of interest in ORNL phantom were evaluated. Phantom organs were filled with voxels in order to obtain depth-dose distributions in them. The result suggests that BNCT using an epithermal neutron beam could be applied for liver cancer treatment.

  20. MCNP simulation of the dose distribution in liver cancer treatment for BNC therapy

    NASA Astrophysics Data System (ADS)

    Krstic, Dragana; Jovanovic, Zoran; Markovic, Vladimir; Nikezic, Dragoslav; Urosevic, Vlade

    2014-10-01

    The Boron Neutron Capture Therapy (BNCT) is based on selective uptake of boron in tumour tissue compared to the surrounding normal tissue. Infusion of compounds with boron is followed by irradiation with neutrons. Neutron capture on 10B, which gives rise to an alpha particle and recoiled 7Li ion, enables the therapeutic dose to be delivered to tumour tissue while healthy tissue can be spared. Here, therapeutic abilities of BNCT were studied for possible treatment of liver cancer using thermal and epithermal neutron beam. For neutron transport MCNP software was used and doses in organs of interest in ORNL phantom were evaluated. Phantom organs were filled with voxels in order to obtain depth-dose distributions in them. The result suggests that BNCT using an epithermal neutron beam could be applied for liver cancer treatment.

  1. Uneven surface absorbed dose distribution in electron-accelerator irradiation of rubber items

    SciTech Connect

    Gorbunov, I.F.; Pashinin, V.I.; Vanyushkin, B.M.

    1988-02-01

    Electron accelerators for industrial use are equipped with scanning devices, where the scan frequency or linear velocity along the window may vary. In a flow technology, where the items are transported to the irradiation zone at a set rate, the speed of an item may be comparable with the scan speed, so there is substantial nonuniformity in the absorbed dose, which adversely affects the quality. We have examined the dose nonuniformity for long rubber items during vulcanization by means of LUE-8-5RV and ELV-2 accelerators. The absorbed dose is calculated for an elementary part along which the irradiation is uniform on the assumption that current density distribution in the unswept beam is uniform as a result of scattering in the foil.

  2. The influence of patient positioning uncertainties in proton radiotherapy on proton range and dose distributions

    SciTech Connect

    Liebl, Jakob; Paganetti, Harald; Zhu, Mingyao; Winey, Brian A.

    2014-09-15

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: Thirty-eight clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50%- and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs), and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: The authors identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 and 5.8 mm for the 90%-dose falloff position, respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. For target volumes TCP decreases by more than 10% (absolute) occurred in less than 2.2% of the considered treatment scenarios for anatomy-based patient positioning and were nonexistent for fiducial-based patient positioning. EUD changes for target volumes were up to 35% (anatomy-based positioning) and 16% (fiducial-based positioning). Conclusions: The influence of patient positioning uncertainties on proton range in therapy of small lesions

  3. SU-E-T-425: Spherical Dose Distributions for Radiosurgery Using a Standardized MLC Plan

    SciTech Connect

    Popple, R; Brezovich, I; Wu, X; Fiveash, J

    2014-06-01

    Purpose: To investigate a standardized MLC treatment plan to generate small spherical dose distributions. Methods: The static virtual cone plan comprised six table positions with clockwise and counterclockwise arcs having collimator angles 45 and 135 degrees, respectively, at each position. The central two leaves of a 2.5 mm leaf width MLC were set to a constant gap. Control points were weighted proportional to the sine of the gantry angle. Plans were created for the 10 MV flattening-filter-free beam of a TrueBeam STx (Varian Medical Systems) with gaps of 1, 1.5, 2, and 3 mm and were delivered to a phantom containing radiochromic film. Dose was calculated using the Eclipse AAA (Varian Medical Systems). A dynamic plan in which the table and gantry moved simultaneously with 1.5 mm gap was also created and delivered using the TrueBeam developer mode. Results: The full-width-half-max (FWHM) varied with leaf gap, ranging from 5.2 to 6.2 mm. Calculated FWHM was smaller than measured by 0.7 mm for the 1 mm gap and ≤ 0.4 mm for the larger gaps. The measured-to-calculated dose ratio was 0.93, 0.96, 1.01, and 0.99 for 1 mm, 1.5 mm, 2 mm, and 3 mm gaps, respectively. The dynamic results were the same as the static. The position deviations between the phantom target position and the center of the dose distribution were < 0.4 mm. Conclusion: The virtual cone can deliver spherical dose distributions suitable for radio surgery of small targets such as the trigeminal nerve. The Eclipse AAA accurately calculates the expected dose, particularly for leaf gap ≥ 1.5 mm. The measured dose distribution is slightly larger than the calculation, which is likely due to systematic leaf position error, isocenter variation due to gantry sag and table eccentricity, and inaccuracy in MLC leaf end modeling.

  4. A Monte Carlo study on dose distribution validation of GZP6 60Co stepping source

    PubMed Central

    Bahreyni Toossi, Mohammad Taghi; Abdollahi, Maliheh; Ghorbani, Mahdi

    2012-01-01

    Aim Stepping source in brachytherapy systems is used to treat a target lesion longer than the effective treatment length of the source. Cancerous lesions in the cervix, esophagus and rectum are examples of such a target lesion. Background In this study, the stepping source of a GZP6 afterloading intracavitary brachytherapy unit was simulated using Monte Carlo (MC) simulation and the results were used for the validation of the GZP6 treatment planning system (TPS). Materials and methods The stepping source was simulated using MCNPX Monte Carlo code. Dose distributions in the longitudinal plane were obtained by using a matrix shift method for esophageal tumor lengths of 8 and 10 cm. A mesh tally has been employed for the absorbed dose calculation in a cylindrical water phantom. A total of 5 × 108 photon histories were scored and the MC statistical error obtained was at the range of 0.008–3.5%, an average of 0.2%. Results The acquired MC and TPS isodose curves were compared and it was shown that the dose distributions in the longitudinal plane were relatively coincidental. In the transverse direction, a maximum dose difference of 7% and 5% was observed for tumor lengths of 8 and 10 cm, respectively. Conclusion Considering that the certified source activity is given with ±10% uncertainty, the obtained difference is reasonable. It can be concluded that the accuracy of the dose distributions produced by GZP6 TPS for the stepping source is acceptable for its clinical applications. PMID:24416537

  5. Analysis of dose-LET distribution in the human body irradiated by high energy hadrons.

    PubMed

    Sato, T; Tsuda, S; Sakamoto, Y; Yamaguchi, Y; Niita, K

    2003-01-01

    For the purposes of radiological protection, it is important to analyse profiles of the particle field inside a human body irradiated by high energy hadrons, since they can produce a variety of secondary particles which play an important role in the energy deposition process, and characterise their radiation qualities. Therefore Monte Carlo calculations were performed to evaluate dose distributions in terms of the linear energy transfer of ionising particles (dose-LET distribution) using a newly developed particle transport code (Particle and Heavy Ion Transport code System, PHITS) for incidences of neutrons, protons and pions with energies from 100 MeV to 200 GeV. Based on these calculations, it was found that more than 80% and 90% of the total deposition energies are attributed to ionisation by particles with LET below 10 keV microm(-1) for the irradiations of neutrons and the charged particles, respectively. PMID:14653335

  6. A matheuristic for the selection of beam directions and dose distribution in Radiotherapy Planning

    NASA Astrophysics Data System (ADS)

    Obal, T. M.; Florentino, H. O.; Gevert, V. G.; Jones, D. F.; Ouelhadj, D.; Volpi, N. M. P.; Wilhelm, V. E.

    2015-05-01

    In this paper a matheuristic using a combined Genetic Algorithm (GA) and exact method approach is proposed for selecting the position of the beams and dose distribution in Intensity Modulated Radiotherapy Planning (IMRT). GA selects a set of beams, for which the dose distribution is determined in the process of the GA's evaluation, using an optimisation model that is solved by an Interior Point method. Two instances are used to evaluate the performance of the matheuristic, comparing to the optimum solution, in terms of solution and computation time, found using the exact methodology of Branch and Bound. The results show that the matheuristic is appropriate to this problem in the case study proposed, as it is extremely faster than the exact method and also have reached the optimum solution in several experiments done.

  7. MCNPX simulation of proton dose distribution in homogeneous and CT phantoms

    NASA Astrophysics Data System (ADS)

    Lee, C. C.; Lee, Y. J.; Tung, C. J.; Cheng, H. W.; Chao, T. C.

    2014-02-01

    A dose simulation system was constructed based on the MCNPX Monte Carlo package to simulate proton dose distribution in homogeneous and CT phantoms. Conversion from Hounsfield unit of a patient CT image set to material information necessary for Monte Carlo simulation is based on Schneider's approach. In order to validate this simulation system, inter-comparison of depth dose distributions among those obtained from the MCNPX, GEANT4 and FLUKA codes for a 160 MeV monoenergetic proton beam incident normally on the surface of a homogeneous water phantom was performed. For dose validation within the CT phantom, direct comparison with measurement is infeasible. Instead, this study took the approach to indirectly compare the 50% ranges (R50%) along the central axis by our system to the NIST CSDA ranges for beams with 160 and 115 MeV energies. Comparison result within the homogeneous phantom shows good agreement. Differences of simulated R50% among the three codes are less than 1 mm. For results within the CT phantom, the MCNPX simulated water equivalent Req,50% are compatible with the CSDA water equivalent ranges from the NIST database with differences of 0.7 and 4.1 mm for 160 and 115 MeV beams, respectively.

  8. Commercial milk distribution profiles and production locations. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Deonigi, D.E.; Anderson, D.M.; Wilfert, G.L.

    1993-12-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate radiation doses that people could have received from nuclear operations at the Hanford Site since 1944. For this period iodine-131 is the most important offsite contributor to radiation doses from Hanford operations. Consumption of milk from cows that ate vegetation contaminated by iodine-131 is the dominant radiation pathway for individuals who drank milk. Information has been developed on commercial milk cow locations and commercial milk distribution during 1945 and 1951. The year 1945 was selected because during 1945 the largest amount of iodine-131 was released from Hanford facilities in a calendar year; therefore, 1945 was the year in which an individual was likely to have received the highest dose. The year 1951 was selected to provide data for comparing the changes that occurred in commercial milk flows (i.e., sources, processing locations, and market areas) between World War II and the post-war period. To estimate the doses people could have received from this milk flow, it is necessary to estimate the amount of milk people consumed, the source of the milk, the specific feeding regime used for milk cows, and the amount of iodine-131 contamination deposited on feed.

  9. Commercial milk distribution profiles and production locations. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Deonigi, D.E.; Anderson, D.M.; Wilfert, G.L.

    1994-04-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate radiation doses that people could have received from nuclear operations at the Hanford Site since 1944. For this period iodine-131 is the most important offsite contributor to radiation doses from Hanford operations. Consumption of milk from cows that ate vegetation contaminated by iodine-131 is the dominant radiation pathway for individuals who drank milk (Napier 1992). Information has been developed on commercial milk cow locations and commercial milk distribution during 1945 and 1951. The year 1945 was selected because during 1945 the largest amount of iodine-131 was released from Hanford facilities in a calendar year (Heeb 1993); therefore, 1945 was the year in which an individual was likely to have received the highest dose. The year 1951 was selected to provide data for comparing the changes that occurred in commercial milk flows (i.e., sources, processing locations, and market areas) between World War II and the post-war period. To estimate the doses people could have received from this milk flow, it is necessary to estimate the amount of milk people consumed, the source of the milk, the specific feeding regime used for milk cows, and the amount of iodine-131 contamination deposited on feed.

  10. Dose distribution and mapping with 3D imaging presentation in intraoral and panoramic examinations

    NASA Astrophysics Data System (ADS)

    Chen, Hsiu-Ling; Huang, Yung-Hui; Wu, Tung-Hsin; Wang, Shih-Yuan; Lee, Jason J. S.

    2011-10-01

    In current medical imaging applications, high quality images not only provide more diagnostic value for anatomic delineation but also offer functional information for treatment direction. However, this approach would potentially subscribe higher radiation dose in dental radiographies, which has been putatively associated with low-birth-weight during pregnancy, which affects the hypothalamus-pituitary-thyroid axis or thereby directly affects the reproductive organs. The aim of this study was to apply the high resolution 3-D image mapping technique to evaluate radiation doses from the following aspects: (1) verifying operating parameters of dental X-ray units, (2) measuring the leakage radiations and (3) mapping dose with 3-D radiographic imaging to evaluate dose distribution in head and neck regions. From the study results, we found that (1) leakage radiation from X-ray units was about 21.31±15.24 mR/h (<100 mR/h), (2) error of actual tube voltage for 60 kVp setting was from 0.2% to 6.5%, with an average of 2.5% (<7%) and (3) the error of exposure time for a 0.5-1.5 s setting was within 0.7-8.5%, with an average of 7.3% (<10%) error as well. Our 3-D dose mapping demonstrated that dose values were relatively lower in soft tissues and higher in bone surfaces compared with other investigations. Multiple causes could contribute to these variations, including irradiation geometry, image equipment and type of technique applied, etc. From the results, we also observed that larger accumulated doses were presented in certain critical organs, such as salivary gland, thyroid gland and bone marrow. Potential biological affects associated with these findings warrant further investigation.

  11. Dual-energy computed tomography of the head: a phantom study assessing axial dose distribution, eye lens dose, and image noise level

    NASA Astrophysics Data System (ADS)

    Matsubara, Kosuke; Kawashima, Hiroki; Hamaguchi, Takashi; Takata, Tadanori; Kobayashi, Masanao; Ichikawa, Katsuhiro; Koshida, Kichiro

    2016-03-01

    The aim of this study was to propose a calibration method for small dosimeters to measure absorbed doses during dual- source dual-energy computed tomography (DECT) and to compare the axial dose distribution, eye lens dose, and image noise level between DE and standard, single-energy (SE) head CT angiography. Three DE (100/Sn140 kVp 80/Sn140 kVp, and 140/80 kVp) and one SE (120 kVp) acquisitions were performed using a second-generation dual-source CT device and a female head phantom, with an equivalent volumetric CT dose index. The axial absorbed dose distribution at the orbital level and the absorbed doses for the eye lens were measured using radiophotoluminescent glass dosimeters. CT attenuation numbers were obtained in the DE composite images and the SE images of the phantom at the orbital level. The doses absorbed at the orbital level and in the eye lens were lower and standard deviations for the CT attenuation numbers were slightly higher in the DE acquisitions than those in the SE acquisition. The anterior surface dose was especially higher in the SE acquisition than that in the DE acquisitions. Thus, DE head CT angiography can be performed with a radiation dose lower than that required for a standard SE head CT angiography, with a slight increase in the image noise level. The 100/Sn140 kVp acquisition revealed the most balanced axial dose distribution. In addition, our proposed method was effective for calibrating small dosimeters to measure absorbed doses in DECT.

  12. Semi-empirical model for the generation of dose distributions produced by a scanning electron beam

    SciTech Connect

    Nath, R.; Gignac, C.E.; Agostinelli, A.G.; Rothberg, S.; Schulz, R.J.

    1980-01-01

    There are linear accelerators (Sagittaire and Saturne accelerators produced by Compagnie Generale de Radiologie (CGR/MeV) Corporation) which produce broad, flat electron fields by magnetically scanning the relatively narrow electron beam as it emerges from the accelerator vacuum system. A semi-empirical model, which mimics the scanning action of this type of accelerator, was developed for the generation of dose distributions in homogeneous media. The model employs the dose distributions of the scanning electron beams. These were measured with photographic film in a polystyrene phantom by turning off the magnetic scanning system. The mean deviation calculated from measured dose distributions is about 0.2%; a few points have deviations as large as 2 to 4% inside of the 50% isodose curve, but less than 8% outside of the 50% isodose curve. The model has been used to generate the electron beam library required by a modified version of a commercially-available computerized treatment-planning system. (The RAD-8 treatment planning system was purchased from the Digital Equipment Corporation. It is currently available from Electronic Music Industries (EMI), Ltd.)

  13. Dose distribution transfer from CyberKnife to Varian treatment planning system

    NASA Astrophysics Data System (ADS)

    Osewski, W.; Ślosarek, K.; Karaszewska, B.

    2014-03-01

    The aim of this paper was to introduce one of the options of the locally developed DDcon.exe which gives the possibility to transfer the dose distribution from CyberKnife (Accuray) treatment planning system (CK TPS) to Varian treatment planning system (Eclipse TPS, Varian). DICOM format is known as a universal format for medical data. The dose distribution is stored as RTdose file in DICOM format, so there should be a possibility to transfer it between different treatment planning systems. Trying to transfer RTdose file from CK TPS to Eclipse TPS the error message occurs. That's because the RTdose file in CK TPS is connected with Structure_Set_Sequence against Eclipse TPS where it's connected with RT_Plan_Sequence. To make it transferable RTdose file from CK TPS have to be 'disconnected' from Structure_Set_Sequence and 'connected' with RT_Plan_Sequence. This is possible thanks DDcon software which creates new RTdose file by changing proper DICOM tags in original RTdose file. New homemade software gives us an opportunity to transfer dose distribution from CyberKnife TPS to TPS Eclipse. This method opens new possibilities to combine or compare different treatment techniques in Varian TPS.

  14. Dose-rate distribution of {sup 32}P-glass microspheres for intra-arterial brachytherapy

    SciTech Connect

    Guimaraes, Carla C.; Moralles, Mauricio; Sene, Frank F.; Martinelli, Jose R.

    2010-02-15

    Purpose: The intra-arterial administration of radioactive glass microspheres is an alternative therapy option for treating primary hepatocellular carcinoma, the main cause of liver cancer death, and metastatic liver cancer, another important kind of cancer induced in the liver. The technique involves the administration of radioactive microspheres in the hepatic artery, which are trapped preferentially in the tumor. Methods: In this work the GEANT4 toolkit was used to calculate the radial dose-rate distributions in water from {sup 32}P-loaded glass microspheres and also from {sup 90}Y-loaded glass microspheres. To validate the toolkit for this application, the authors compared the dose-rate distribution of {sup 32}P and {sup 90}Y point sources in water with data from the International Commission on Radiation Units and Measurements report 72. Results: Tables of radial dose-rate distributions are provided for practical use in brachytherapy planning with these microspheres. Conclusions: The simulations with the microspheres show that the shape of the beta ray energy spectra with respect to the {sup 32}P and {sup 90}Y sources is significantly modified by the glass matrix.

  15. FEASIBILITY OF POSITRON EMISSION TOMOGRAPHY OF DOSE DISTRIBUTION IN PROTON BEAM CANCER THERAPY.

    SciTech Connect

    BEEBE - WANG,J.J.; DILMANIAN,F.A.; PEGGS,S.G.; SCHLYEER,D.J.; VASKA,P.

    2002-06-03

    Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than x-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as {sup 12}C, {sup 14}N, and {sup 16}O. These radioisotopes, mainly {sup 11}C, {sup 13}N and {sup 15}O, allow imaging the therapy dose distribution using positron emission tomography (PET). The resulting PET images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This paper uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner.

  16. Study of the impact of artificial articulations on the dose distribution under medical irradiation

    NASA Astrophysics Data System (ADS)

    Buffard, E.; Gschwind, R.; Makovicka, L.; Martin, E.; Meunier, C.; David, C.

    2005-02-01

    Perturbations due to the presence of high density heterogeneities in the body are not correctly taken into account in the Treatment Planning Systems currently available for external radiotherapy. For this reason, the accuracy of the dose distribution calculations has to be improved by using Monte Carlo simulations. In a previous study, we established a theoretical model by using the Monte Carlo code EGSnrc [I. Kawrakow, D.W.O. Rogers, The EGSnrc code system: MC simulation of electron and photon transport. Technical Report PIRS-701, NRCC, Ottawa, Canada, 2000] in order to obtain the dose distributions around simple heterogeneities. These simulations were then validated by experimental results obtained with thermoluminescent dosemeters and an ionisation chamber. The influence of samples composed of hip prostheses materials (titanium alloy and steel) and a substitute of bone were notably studied. A more complex model was then developed with the Monte Carlo code BEAMnrc [D.W.O. Rogers, C.M. MA, G.X. Ding, B. Walters, D. Sheikh-Bagheri, G.G. Zhang, BEAMnrc Users Manual. NRC Report PPIRS 509(a) rev F, 2001] in order to take into account the hip prosthesis geometry. The simulation results were compared to experimental measurements performed in a water phantom, in the case of a standard treatment of a pelvic cancer for one of the beams passing through the implant. These results have shown the great influence of the prostheses on the dose distribution.

  17. Evaluation of brachytherapy lung implant dose distributions from photon-emitting sources due to tissue heterogeneities

    SciTech Connect

    Yang Yun; Rivard, Mark J.

    2011-11-15

    Purpose: Photon-emitting brachytherapy sources are used for permanent implantation to treat lung cancer. However, the current brachytherapy dose calculation formalism assumes a homogeneous water medium without considering the influence of radiation scatter or tissue heterogeneities. The purpose of this study was to determine the dosimetric effects of tissue heterogeneities for permanent lung brachytherapy. Methods: The MCNP5 v1.40 radiation transport code was used for Monte Carlo (MC) simulations. Point sources with energies of 0.02, 0.03, 0.05, 0.1, 0.2, and 0.4 MeV were simulated to cover the range of pertinent brachytherapy energies and to glean dosimetric trends independent of specific radionuclide emissions. Source positions from postimplant CT scans of five patient implants were used for source coordinates, with dose normalized to 200 Gy at the center of each implant. With the presence of fibrosis (around the implant), cortical bone, lung, and healthy tissues, dose distributions and {sub PTV}DVH were calculated using the MCNP *FMESH4 tally and the NIST mass-energy absorption coefficients. This process was repeated upon replacing all tissues with water. For all photon energies, 10{sup 9} histories were simulated to achieve statistical errors (k = 1) typically of 1%. Results: The mean PTV doses calculated using tissue heterogeneities for all five patients changed (compared to dose to water) by only a few percent over the examined photon energy range, as did PTV dose at the implant center. The {sub PTV}V{sub 100} values were 81.2%, 90.0% (as normalized), 94.3%, 93.9%, 92.7%, and 92.2% for 0.02, 0.03, 0.05, 0.1, 0.2, and 0.4 MeV source photons, respectively. Relative to water, the maximum bone doses were higher by factors of 3.7, 5.1, 5.2, 2.4, 1.2, and 1.0 The maximum lung doses were about 0.98, 0.94, 0.91, 0.94, 0.97, and 0.99. Relative to water, the maximum healthy tissue doses at the mediastinal position were higher by factors of 9.8, 2.2, 1.3, 1.1, 1.1, and

  18. The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions.

    PubMed

    Fonseca, Gabriel Paiva; Landry, Guillaume; White, Shane; D'Amours, Michel; Yoriyaz, Hélio; Beaulieu, Luc; Reniers, Brigitte; Verhaegen, Frank

    2014-10-01

    Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for (192)Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator. PMID

  19. The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions

    NASA Astrophysics Data System (ADS)

    Paiva Fonseca, Gabriel; Landry, Guillaume; White, Shane; D'Amours, Michel; Yoriyaz, Hélio; Beaulieu, Luc; Reniers, Brigitte; Verhaegen, Frank

    2014-10-01

    Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for 192Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator.

  20. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  1. Effects of repeated treatment with the dopamine D2/D3 receptor partial agonist aripiprazole on striatal D2/D3 receptor availability in monkeys

    PubMed Central

    Czoty, Paul W.; Gage, H. Donald; Garg, Pradeep K.; Garg, Sudha; Nader, Michael A.

    2013-01-01

    Rationale Chronic treatment with dopamine (DA) receptor agonists and antagonists can differentially affect measures of DA D2/D3 receptor number and function, but the effects of chronic treatment with a partial D2/D3 receptor agonist are not clear. Objective We used a within-subjects design in male cynomolgus monkeys to determine the effects of repeated (17-day) treatment with the D2/D3 receptor partial agonist aripiprazole (ARI; 0.03 mg/kg and 0.1 mg/kg i.m.) on food-reinforced behavior (n=5) and on D2/D3 receptor availability as measured with positron emission tomography (PET; n=9). Methods Five monkeys responded under a fixed-ratio 50 schedule of food reinforcement and D2/D3 receptor availability was measured before and four days after ARI treatment using PET and the D2/D3 receptor-selective radioligand [18F]fluoroclebopride (FCP). Four additional monkeys were studied using [11C]raclopride and treated sequentially with each dose of ARI for 17 days. Results ARI decreased food-maintained responding with minimal evidence of tolerance. Repeated ARI administration increased FCP and raclopride distribution volume ratios (DVRs) in the caudate nucleus and putamen in most monkeys, but decreases were observed in monkeys with the highest baseline DVRs. Conclusions The results indicate that repeated treatment with a low efficacy DA receptor partial agonist produces effects on brain D2/D3 receptor availability that are qualitatively different from those of both high-efficacy receptor agonists and antagonists, and suggest that the observed individual differences in response to ARI treatment may reflect its partial agonist activity. PMID:24077804

  2. Breast dose in mammography is about 30% lower when realistic heterogeneous glandular distributions are considered

    SciTech Connect

    Hernandez, Andrew M.; Seibert, J. Anthony; Boone, John M.

    2015-11-15

    Purpose: Current dosimetry methods in mammography assume that the breast is comprised of a homogeneous mixture of glandular and adipose tissues. Three-dimensional (3D) dedicated breast CT (bCT) data sets were used previously to assess the complex anatomical structure within the breast, characterizing the statistical distribution of glandular tissue in the breast. The purpose of this work was to investigate the effect of bCT-derived heterogeneous glandular distributions on dosimetry in mammography. Methods: bCT-derived breast diameters, volumes, and 3D fibroglandular distributions were used to design realistic compressed breast models comprised of heterogeneous distributions of glandular tissue. The bCT-derived glandular distributions were fit to biGaussian functions and used as probability density maps to assign the density distributions within compressed breast models. The MCNPX 2.6.0 Monte Carlo code was used to estimate monoenergetic normalized mean glandular dose “DgN(E)” values in mammography geometry. The DgN(E) values were then weighted by typical mammography x-ray spectra to determine polyenergetic DgN (pDgN) coefficients for heterogeneous (pDgN{sub hetero}) and homogeneous (pDgN{sub homo}) cases. The dependence of estimated pDgN values on phantom size, volumetric glandular fraction (VGF), x-ray technique factors, and location of the heterogeneous glandular distributions was investigated. Results: The pDgN{sub hetero} coefficients were on average 35.3% (SD, 4.1) and 24.2% (SD, 3.0) lower than the pDgN{sub homo} coefficients for the Mo–Mo and W–Rh x-ray spectra, respectively, across all phantom sizes and VGFs when the glandular distributions were centered within the breast phantom in the coronal plane. At constant breast size, increasing VGF from 7.3% to 19.1% lead to a reduction in pDgN{sub hetero} relative to pDgN{sub homo} of 23.6%–27.4% for a W–Rh spectrum. Displacement of the glandular distribution, at a distance equal to 10% of the

  3. Effects of Interfractional Motion and Anatomic Changes on Proton Therapy Dose Distribution in Lung Cancer

    SciTech Connect

    Hui Zhouguang; Zhang Xiaodong; Starkschall, George; Li Yupeng; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Chang, Joe Y.

    2008-12-01

    Purpose: Proton doses are sensitive to intra- and interfractional anatomic changes. We analyzed the effects of interfractional anatomic changes in doses to lung tumors treated with proton therapy. Methods and Materials: Weekly four-dimensional computed tomography (4D-CT) scans were acquired for 8 patients with mobile Stage III non-small cell lung cancer who were actually treated with intensity-modulated photon radiotherapy. A conformal proton therapy passive scattering plan was designed for each patient. Dose distributions were recalculated at end-inspiration and end-expiration breathing phases on each weekly 4D-CT data set using the same plans with alignment based on bone registration. Results: Clinical target volume (CTV) coverage was compromised (from 99% to 90.9%) in 1 patient because of anatomic changes and motion pattern variation. For the rest of the patients, the mean CTV coverage on the repeated weekly 4D-CT data sets was 98.4%, compared with 99% for the original plans. For all 8 patients, however, a mean 4% increase in the volume of the contralateral lung receiving a dose of at least 5 Gy (V5) and a mean 4.4-Gy increase in the spinal cord maximum dose was observed in the repeated 4D-CT data sets. A strong correlation between the CTV density change resulting from tumor shrinkage or anatomic variations and mean contralateral lung dose was observed. Conclusions: Adaptive re-planning during proton therapy may be indicated in selected patients with non-small cell lung cancer. For most patients, however, CTV coverage is adequate if tumor motion is taken into consideration in the original simulation and planning processes.

  4. SU-E-J-62: Estimating Plausible Treatment Course Dose Distributions by Accounting for Registration Uncertainty and Organ Motion

    SciTech Connect

    Thor, M; Saleh, Z; Oh, JH; Apte, A; Deasy, J; Muren, L

    2014-06-01

    Purpose: Dose accumulation following deformable image registration (DIR) is challenging. In this study, we used a statistical sampling approach, which takes into account both DIR uncertainties and patient-specific organ motion, to study the distribution of possible true dose distributions. Methods: The study included ten patients (six CT scans/patient) treated with radiotherapy for prostate cancer. For each patient, the planned dose was re-calculated on the repeated geometries, following rigid registration based on fiducial markers. The dose re-calculated on the first CT served as our snapshot dose distribution (D1) and the average of the first five repeat scans as our treatment course reference dose distribution (Dref). Patient-specific motion and DIR-uncertainties, at each voxel in CT1, were assessed using a previously developed DIR performance measure, the distance discordance metric (DDM). To sample the distribution of possible true, predicted dose distributions (Dpred), we resampled D1 by perturbing the location of each voxel with the corresponding DDM. The three dose distribution approaches are compared for the rectum and the bladder. Results: The bladder generalized equivalent uniform dose (gEUD) from the averaged Dpred was closer to the gEUDref than to the gEUD1 (difference: 0.6 vs. 1.0 Gy). For both structures, the gEUDpred was higher than the gEUDref, and significantly higher (p≤0.05) for the rectum (average: 50.8 Gy vs. 48.0 Gy). Conclusion: We have shown that the bladder gEUD values resulting from our DIR-uncertainty inclusive dose sampling approach, Dpred, were closer to the gEUD from Dref than the gEUD values from D1. For the rectum, gEUDpred overestimated gEUDref. Theoretically however, gEUDpred values, sampled from DDM uncertainties are more representative of dose uncertainties.

  5. Impact of the differential fluence distribution of brachytherapy sources on the spectroscopic dose-rate constant

    SciTech Connect

    Malin, Martha J.; Bartol, Laura J.; DeWerd, Larry A. E-mail: ladewerd@wisc.edu

    2015-05-15

    Purpose: To investigate why dose-rate constants for {sup 125}I and {sup 103}Pd seeds computed using the spectroscopic technique, Λ{sub spec}, differ from those computed with standard Monte Carlo (MC) techniques. A potential cause of these discrepancies is the spectroscopic technique’s use of approximations of the true fluence distribution leaving the source, φ{sub full}. In particular, the fluence distribution used in the spectroscopic technique, φ{sub spec}, approximates the spatial, angular, and energy distributions of φ{sub full}. This work quantified the extent to which each of these approximations affects the accuracy of Λ{sub spec}. Additionally, this study investigated how the simplified water-only model used in the spectroscopic technique impacts the accuracy of Λ{sub spec}. Methods: Dose-rate constants as described in the AAPM TG-43U1 report, Λ{sub full}, were computed with MC simulations using the full source geometry for each of 14 different {sup 125}I and 6 different {sup 103}Pd source models. In addition, the spectrum emitted along the perpendicular bisector of each source was simulated in vacuum using the full source model and used to compute Λ{sub spec}. Λ{sub spec} was compared to Λ{sub full} to verify the discrepancy reported by Rodriguez and Rogers. Using MC simulations, a phase space of the fluence leaving the encapsulation of each full source model was created. The spatial and angular distributions of φ{sub full} were extracted from the phase spaces and were qualitatively compared to those used by φ{sub spec}. Additionally, each phase space was modified to reflect one of the approximated distributions (spatial, angular, or energy) used by φ{sub spec}. The dose-rate constant resulting from using approximated distribution i, Λ{sub approx,i}, was computed using the modified phase space and compared to Λ{sub full}. For each source, this process was repeated for each approximation in order to determine which approximations used in

  6. A robustness analysis method with fast estimation of dose uncertainty distributions for carbon-ion therapy treatment planning.

    PubMed

    Sakama, Makoto; Kanematsu, Nobuyuki; Inaniwa, Taku

    2016-08-01

    A simple and efficient approach is needed for robustness evaluation and optimization of treatment planning in routine clinical particle therapy. Here we propose a robustness analysis method using dose standard deviation (SD) in possible scenarios such as the robustness indicator and a fast dose warping method, i.e. deformation of dose distributions, taking into account the setup and range errors in carbon-ion therapy. The dose warping method is based on the nominal dose distribution and the water-equivalent path length obtained from planning computed tomography data with a clinically commissioned treatment planning system (TPS). We compared, in a limited number of scenarios at the extreme boundaries of the assumed error, the dose SD distributions obtained by the warping method with those obtained using the TPS dose recalculations. The accuracy of the warping method was examined by the standard-deviation-volume histograms (SDVHs) for varying degrees of setup and range errors for three different tumor sites. Furthermore, the influence of dose fractionation on the combined dose uncertainty, taking into consideration the correlation of setup and range errors between fractions, was evaluated with simple equations using the SDVHs and the mean value of SDs in the defined volume of interest. The results of the proposed method agreed well with those obtained with the dose recalculations in these comparisons, and the effectiveness of dose SD evaluations at the extreme boundaries of given errors was confirmed from the responsivity and DVH analysis of relative SD values for each error. The combined dose uncertainties depended heavily on the number of fractions, assumed errors and tumor sites. The typical computation time of the warping method is approximately 60 times less than that of the full dose calculation method using the TPS. The dose SD distributions and SDVHs with the fractionation effect will be useful indicators for robustness analysis in treatment planning, and the

  7. A robustness analysis method with fast estimation of dose uncertainty distributions for carbon-ion therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Sakama, Makoto; Kanematsu, Nobuyuki; Inaniwa, Taku

    2016-08-01

    A simple and efficient approach is needed for robustness evaluation and optimization of treatment planning in routine clinical particle therapy. Here we propose a robustness analysis method using dose standard deviation (SD) in possible scenarios such as the robustness indicator and a fast dose warping method, i.e. deformation of dose distributions, taking into account the setup and range errors in carbon-ion therapy. The dose warping method is based on the nominal dose distribution and the water-equivalent path length obtained from planning computed tomography data with a clinically commissioned treatment planning system (TPS). We compared, in a limited number of scenarios at the extreme boundaries of the assumed error, the dose SD distributions obtained by the warping method with those obtained using the TPS dose recalculations. The accuracy of the warping method was examined by the standard-deviation-volume histograms (SDVHs) for varying degrees of setup and range errors for three different tumor sites. Furthermore, the influence of dose fractionation on the combined dose uncertainty, taking into consideration the correlation of setup and range errors between fractions, was evaluated with simple equations using the SDVHs and the mean value of SDs in the defined volume of interest. The results of the proposed method agreed well with those obtained with the dose recalculations in these comparisons, and the effectiveness of dose SD evaluations at the extreme boundaries of given errors was confirmed from the responsivity and DVH analysis of relative SD values for each error. The combined dose uncertainties depended heavily on the number of fractions, assumed errors and tumor sites. The typical computation time of the warping method is approximately 60 times less than that of the full dose calculation method using the TPS. The dose SD distributions and SDVHs with the fractionation effect will be useful indicators for robustness analysis in treatment planning, and the

  8. SU-E-T-517: Analytic Formalism to Compute in Real Time Dose Distributions Delivered by HDR Units

    SciTech Connect

    Pokhrel, S; Loyalka, S; Palaniswaamy, G; Rangaraj, D; Izaguirre, E

    2014-06-01

    Purpose: Develop an analytical algorithm to compute the dose delivered by Ir-192 dwell positions with high accuracy using the 3-dimensional (3D) dose distribution of an HDR source. Using our analytical function, the dose delivered by an HDR unit as treatment progresses can be determined using the actual delivered temporal and positional data of each individual dwell. Consequently, true delivered dose can be computed when each catheter becomes active. We hypothesize that the knowledge of such analytical formulation will allow developing HDR systems with a real time treatment evaluation tool to avoid mistreatments. Methods: In our analytic formulation, the dose is computed by using the full anisotropic function data of the TG 43 formalism with 3D ellipsoidal function. The discrepancy between the planned dose and the delivered dose is computed using an analytic perturbation method over the initial dose distribution. This methodology speeds up the computation because only changes in dose discrepancies originated by spatial and temporal deviations are computed. A dose difference map at the point of interest is obtained from these functions and this difference can be shown during treatment in real time to examine the treatment accuracy. Results: We determine the analytical solution and a perturbation function for the 3 translational 3 rotational, and 1D temporal errors in source distributions. The analytic formulation is a sequence of simple equations that can be processed in any modern computer in few seconds. Because computations are based in an analytical solution, small deviations of the dose when sub-millimeter positional changes occur can be detected. Conclusions: We formulated an analytical method to compute 4D dose distributions and dose differences based on an analytical solution and perturbations to the original dose. This method is highly accurate and can be.

  9. Comparison of measured and Monte Carlo calculated dose distributions in inhomogeneous phantoms in clinical electron beams

    NASA Astrophysics Data System (ADS)

    Doucet, R.; Olivares, M.; DeBlois, F.; Podgorsak, E. B.; Kawrakow, I.; Seuntjens, J.

    2003-08-01

    Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 × 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid WaterTM (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.

  10. Effect of dose level and pregnancy on the distribution and toxicity of intravenous lead in rats

    SciTech Connect

    Hackett, P.L.; Hess, J.O.; Sikov, M.R.

    1982-01-01

    Female Wistar rats were injected intravenously with tracer levels of /sup 210/Pb, alone or combined with carrier Pb(NO/sub 3/)/sub 2/ at 5 or 25 mg/kg body weight at 9 or 15 days of gestation (dg). Tissue /sup 210/Pb distribution and retention, and lead excretion, were measured several times during the first 30 h and at 20 dg. Toxic effects following the administration of 25 mg/kg (a teratogenic dose) included an early decrease in hematocrit, hematuria, gastrointestinal hemorrhage, and diarrhea, as well as an eventual loss of body weight and an increase in spleen and kidney weights. The stage of pregnancy at injection did not affect the retention and distribution of lead in major organs other than the reproductive system. Following injection of the 25-mg/kg dose, deposition of lead in the liver, kidney, spleen, and lung was elevated. Disproportionately high plasma lead levels were also observed at early times after the injection of the 25-mg/kg dose, and may act as a significant factor in placental lead transfer and subsequent malformations or fetal mortality.

  11. Effect of dose level and pregnancy on the distribution and toxicity of intravenous lead in rats

    SciTech Connect

    Hackett, P.L.; Hess, J.O.; Sikov, M.R.

    1982-05-01

    Female Wistar rats were injected intravenously with tracer levels of /sup 210/Pb, alone or combined with carrier Pb(NO/sub 3/)/sub 2/ at 5 or 25 mg/kg body weight at 9 or 15 days of gestation (dg). Tissue /sup 210/Pb distribution and retention, and lead excretion, were measured several times during the first 30 h and at 20 dg. Toxic effects following the administration of 25 mg/kg (a tertogenic dose) included an early decrease in hematocrit, hematuria, gastrointestinal hemorrhage, and diarrhea, as well as an eventual body weight and an increase in spleen and kidney weights. The stage of pregnancy at injection did not affect the retention and distribution of lead in major organs other than the reproductive system. Following injection of the 25-mg/kg dose, deposition of lead in the liver, kidney, spleen, and lung was elevated. Disproportionately high plasma lead levels were also observed at early times after the injection of the 25-mg/kg dose, and may act as a significant factor in placental lead transfer and subsequent malformations or fetal mortality.

  12. Extended-Duration Dosing and Distribution of Dalbavancin into Bone and Articular Tissue

    PubMed Central

    Puttagunta, Sailaja; Sprenger, Craig R.; Rubino, Chris; Van Wart, Scott; Baldassarre, James

    2015-01-01

    Dalbavancin is an intravenous lipoglycopeptide with activity against Gram-positive pathogens and an MIC90 for Staphylococcus aureus of 0.06 μg/ml. With a terminal half-life of >14 days, dosing regimens with infrequent parenteral administration become available to treat infectious diseases such as osteomyelitis and endocarditis that otherwise require daily dosing for many weeks. In order to support a rationale for these novel regimens, the pharmacokinetics over an extended dosing interval and the distribution of dalbavancin into bone and articular tissue were studied in two phase I trials and pharmacokinetic modeling was performed. Intravenous administration of 1,000 mg of dalbavancin on day 1 followed by 500 mg weekly for seven additional weeks was well tolerated and did not demonstrate evidence of drug accumulation. In a separate study, dalbavancin concentrations in cortical bone 12 h after infusion of a single 1,000-mg intravenous infusion were 6.3 μg/g and 2 weeks later were 4.1 μg/g. A two-dose, once-weekly regimen that would provide tissue exposure over the dalbavancin MIC for Staphylococcus aureus for 8 weeks, maximizing the initial exposure to treatment while minimizing the frequency of intravenous therapy, is proposed. PMID:25561338

  13. Generation and dose distribution measurement of flash x-ray in KALI-5000 system

    SciTech Connect

    Menon, Rakhee; Roy, Amitava; Mitra, S.; Sharma, A.; Mondal, J.; Mittal, K. C.; Nagesh, K. V.; Chakravarthy, D. P.

    2008-10-15

    Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm{sup 2} current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO{sub 4}:Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance {approx}1/x{sup n}, where n varies from 1.8 to 1.85. A maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns.

  14. Radiation dose distribution for workers in South Korean nuclear power plants.

    PubMed

    Lee, Byoung-il; Kim, So-i; Suh, Dong-hee; Jin, Young-woo; Kim, Jeong-in; Choi, Hoon; Lim, Young-khi

    2010-07-01

    A total of 33 680 nuclear power plants (NPPs) workers were monitored and recorded from 1990 to 2007. According to the record, the average individual radiation dose has been decreasing continually from 3.20 mSv man(-1) in 1990 to 1.12 mSv man(-1) at the end of 2007. After the International Commission on Radiological Protection 60 recommendation was generalised in South Korea, no NPP workers received >20 mSv radiation, and the numbers of relatively highly exposed workers have been decreasing continuously. The age distribution of radiation workers in NPPs was composed mainly of 20-30 y olds (83 %) for 1990-1994 and 30-40 y olds (75 %) for 2003-2007. The difference in individual average dose by age was not significant. Most (77 %) of the NPP radiation exposures from 1990 to 2007 occurred mostly during the refueling period. With regard to exposure type, the majority of exposures was external exposures, representing 95 % of the total exposures, whereas internal exposures represented only 5 %. External effective dose was affected mainly by gamma radiation exposure, with an insignificant amount of neutron exposure. As for internal effective dose, tritium in the pressurised heavy water reactor was the biggest cause of exposure. PMID:20223854

  15. Generation and dose distribution measurement of flash x-ray in KALI-5000 system.

    PubMed

    Menon, Rakhee; Roy, Amitava; Mitra, S; Sharma, A; Mondal, J; Mittal, K C; Nagesh, K V; Chakravarthy, D P

    2008-10-01

    Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm(2) current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO(4):Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance approximately 1/x(n), where n varies from 1.8 to 1.85. A maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns. PMID:19044706

  16. From active shape model to active optical flow model: a shape-based approach to predicting voxel-level dose distributions in spine SBRT

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Wu, Q. Jackie; Kirkpatrick, John P.; Yin, Fang-Fang; Yuan, Lulin; Ge, Yaorong

    2015-03-01

    Prediction of achievable dose distribution in spine stereotactic body radiation therapy (SBRT) can help in designing high-quality treatment plans to maximally protect spinal cords and to effectively control tumours. Dose distributions at spinal cords are primarily affected by the shapes of adjacent planning target volume (PTV) contours. In this work, we estimate such contour effects and predict dose distributions by exploring active optical flow model (AOFM) and active shape model (ASM). We first collect a sequence of dose sub-images and PTV contours near spinal cords from fifteen SBRT plans in the training dataset. The data collection is then classified into five groups according to the PTV locations in relation to spinal cords. In each group, we randomly choose a dose sub-image as the reference and register all other sub-images to the reference using an optical flow method. AOFM is then constructed by importing optical flow vectors and dose values into the principal component analysis (PCA). Similarly, we build ASM by using PCA on PTV contour points. The correlation between ASM and AOFM is estimated via a stepwise multiple regression model. When predicting dose distribution of a new case, the group is first determined based on the PTV contour. The prediction model of the selected group is used to estimate dose distributions by mapping the PTV contours from the ASM space to the AOFM space. This method was validated on fifteen SBRT plans in the testing dataset. Analysis of dose-volume histograms revealed that the important D2%, D5%, D10% and D0.1cc dosimetric parameters of spinal cords between the prediction and the clinical plans were 11.7  ±  1.7 Gy versus 11.8  ±  1.7 Gy (p = 0.95), 10.9  ±  1.7 Gy versus 11.1  ±  1.9 Gy (p = 0.8295), 10.2  ±  1.6 Gy versus 10.1  ±  1.7 (p = 0.9036) and 11.2  ±  2.0 Gy versus 11.1  ±  2.2 Gy (p = 0.5208), respectively. Here, the ‘cord’ is the spinal cord proper (not the

  17. Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Anderson, Danielle; Siegbahn, E. Albert; Fallone, B. Gino; Serduc, Raphael; Warkentin, Brad

    2012-05-01

    This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm2 microbeam array in each phantom, as well as a 16 × 16 mm2 array in the 8 cm cat head, and a 32 × 32 mm2 array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 µm and center-to-center spacings of 100, 200 and 400 µm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2-49 (mouse) and 2-46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2-87% and 33-96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this study

  18. Dose and sex dependent distribution of mercury in rats exposed to mercuric chloride

    SciTech Connect

    Khan, A.T.; Graham, T.C.; Webster, J.E.; Ferguson, J.A.

    1994-12-31

    A 14-day study was conducted in young male and female rats (Sprague-Dawley SDTM) with mercuric chloride at daily oral doses of 0, 1.25, 5.0, and 10.0 mg/kg mercuric chloride to determine the maximum tolerated dose and the distribution of mercury in the target organs. The brains, hearts, kidneys, livers, lungs and spleens of both male and female rats (survived or died during the experiment) were analyzed for mercury content. At all treatments (1.25, 2.5, 5.0, and 10.0 mg/kg) groups, mercury level was higher in the kidneys of both sexes, and followed by the livers, spleen, lungs, hearts, and brains, respectively. The mercury level in target organs of females was higher than those of males. All mercury treated rats also showed a reduction in cumulative body weight gained beginning on the third day of treatment.

  19. Effects of CT based Voxel Phantoms on Dose Distribution Calculated with Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Chen, Chaobin; Huang, Qunying; Wu, Yican

    2005-04-01

    A few CT-based voxel phantoms were produced to investigate the sensitivity of Monte Carlo simulations of x-ray beam and electron beam to the proportions of elements and the mass densities of the materials used to express the patient's anatomical structure. The human body can be well outlined by air, lung, adipose, muscle, soft bone and hard bone to calculate the dose distribution with Monte Carlo method. The effects of the calibration curves established by using various CT scanners are not clinically significant based on our investigation. The deviation from the values of cumulative dose volume histogram derived from CT-based voxel phantoms is less than 1% for the given target.

  20. Effect of Bladder Distension on Dose Distribution of Intracavitary Brachytherapy for Cervical Cancer: Three-Dimensional Computed Tomography Plan Evaluation

    SciTech Connect

    Cengiz, Mustafa Guerdalli, Salih; Selek, Ugur; Yildiz, Ferah; Saglam, Yuecel; Ozyar, Enis; Atahan, I. Lale

    2008-02-01

    Purpose: To quantify the effect of bladder volume on the dose distribution during intracavitary brachytherapy for cervical cancer. Methods and Patients: The study was performed on 10 women with cervical cancer who underwent brachytherapy treatment. After insertion of the brachytherapy applicator, the patients were transferred to the computed tomography unit. Two sets of computed tomography slices were taken, including the pelvis, one with an empty bladder and one after the bladder was filled with saline. The target and critical organs were delineated by the radiation oncologist and checked by the expert radiologist. The radiotherapy plan was run on the Plato planning system, version 14.1, to determine the dose distributions, dose-volume histograms, and maximal dose points. The doses and organ volumes were compared with the Wilcoxon signed ranks test on a personal computer using the Statistical Package for Social Sciences, version 11.0, statistical program. Results: No significant difference regarding the dose distribution and target volumes between an empty or full bladder was observed. Bladder fullness significantly affected the dose to the small intestine, rectum, and bladder. The median of maximal doses to the small intestine was significantly greater with an empty bladder (493 vs. 284 cGy). Although dosimetry revealed lower doses for larger volumes of bladder, the median maximal dose to the bladder was significantly greater with a full bladder (993 vs. 925 cGy). The rectal doses were also affected by bladder distension. The median maximal dose was significantly lower in the distended bladder (481vs. 628 cGy). Conclusions: Bladder fullness changed the dose distributions to the bladder, rectum, and small intestine. The clinical importance of these changes is not known and an increase in the use of three-dimensional brachytherapy planning will highlight the answer to this question.

  1. Food allergy population thresholds: an evaluation of the number of oral food challenges and dosing schemes on the accuracy of threshold dose distribution modeling.

    PubMed

    Klein Entink, Rinke H; Remington, Benjamin C; Blom, W Marty; Rubingh, Carina M; Kruizinga, Astrid G; Baumert, Joseph L; Taylor, Steve L; Houben, Geert F

    2014-08-01

    For most allergenic foods, limited availability of threshold dose information within the population restricts the advice on action levels of unintended allergenic foods which should trigger advisory labeling on packaged foods. The objective of this paper is to provide guidance for selecting an optimal sample size for threshold dosing studies for major allergenic foods and to identify factors influencing the accuracy of estimation. A simulation study was performed to evaluate the effects of sample size and dosing schemes on the accuracy of the threshold distribution curve. The relationships between sample size, dosing scheme and the employed statistical distribution on the one hand and accuracy of estimation on the other hand were obtained. It showed that the largest relative gains in accuracy are obtained when sample size increases from N=20 to N=60. Moreover, it showed that the EuroPrevall dosing scheme is a useful start, but that it may need revision for a specific allergen as more data become available, because a proper allocation of the dosing steps is important. The results may guide risk assessors in minimum sample sizes for new studies and in the allocation of proper dosing schemes for allergens in provocation studies. PMID:24815821

  2. Impact of Intrafractional Bowel Gas Movement on Carbon Ion Beam Dose Distribution in Pancreatic Radiotherapy

    SciTech Connect

    Kumagai, Motoki; Hara, Ryusuke; Mori, Shinichiro Yanagi, Takeshi; Asakura, Hiroshi; Kishimoto, Riwa; Kato, Hirotoshi; Yamada, Shigeru; Kandatsu, Susumu; Kamada, Tadashi

    2009-03-15

    Purpose: To assess carbon ion beam dose variation due to bowel gas movement in pancreatic radiotherapy. Methods and Materials: Ten pancreatic cancer inpatients were subject to diagnostic contrast-enhanced dynamic helical CT examination under breath-holding conditions, which included multiple-phase dynamic CT with arterial, venous, and delayed phases. The arterial-venous phase and arterial-delayed phase intervals were 35 and 145 s, respectively. A compensating bolus was designed to cover the target obtained at the arterial phase. Carbon ion dose distribution was calculated by applying the bolus to the CT data sets at the other two phases. Results: Dose conformation to the clinical target volume was degraded by beam overshoot/undershoot due to bowel gas movement. The D95 for clinical target volume was degraded from 98.2% (range, 98.0-99.1%) of the prescribed dose to 94.7% (range, 88.0-99.0%) at 145 s. Excessive dosing to normal tissues varied among tissues and was, for example, 12.2 GyE/13.1 GyE (0 s/145 s) for the cord and 38.8 GyE/39.8 GyE (0 s/145 s) for the duodenum. The magnitude of beam overshoot/undershoot was particularly exacerbated from the anterior and left directions. Conclusions: Bowel gas movement causes dosimetric variation to the target during treatment for radiotherapy. The effect of bowel gas movement varies with beam angle, with greatest influence on the anterior-posterior and left-right beams.

  3. Clinical examples of 3D dose distribution reconstruction, based on the actual MLC leaves movement, for dynamic treatment techniques

    PubMed Central

    Osewski, Wojciech; Dolla, Łukasz; Radwan, Michał; Szlag, Marta; Rutkowski, Roman; Smolińska, Barbara; Ślosarek, Krzysztof

    2014-01-01

    Aim To present practical examples of our new algorithm for reconstruction of 3D dose distribution, based on the actual MLC leaf movement. Background DynaLog and RTplan files were used by DDcon software to prepare a new RTplan file for dose distribution reconstruction. Materials and methods Four different clinically relevant scenarios were used to assess the feasibility of the proposed new approach: (1) Reconstruction of whole treatment sessions for prostate cancer; (2) Reconstruction of IMRT verification treatment plan; (3) Dose reconstruction in breast cancer; (4) Reconstruction of interrupted arc and complementary plan for an interrupted VMAT treatment session of prostate cancer. The applied reconstruction method was validated by comparing reconstructed and measured fluence maps. For all statistical analysis, the U Mann–Whitney test was used. Results In the first two and the fourth cases, there were no statistically significant differences between the planned and reconstructed dose distribution (p = 0.910, p = 0.975, p = 0.893, respectively). In the third case the differences were statistically significant (p = 0.015). Treatment plan had to be reconstructed. Conclusion Developed dose distribution reconstruction algorithm presents a very useful QA tool. It provides means for 3D dose distribution verification in patient volume and allows to evaluate the influence of actual MLC leaf motion on the dose distribution. PMID:25337416

  4. Differential CYP 2D6 Metabolism Alters Primaquine Pharmacokinetics

    PubMed Central

    Potter, Brittney M. J.; Xie, Lisa H.; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T.; Bandara Herath, H. M. T.; Dhammika Nanayakkara, N. P.; Tekwani, Babu L.; Walker, Larry A.; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.

    2015-01-01

    Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity. PMID:25645856

  5. Fine-Resolution Voxel S Values for Constructing Absorbed Dose Distributions at Variable Voxel Size

    PubMed Central

    Dieudonné, Arnaud; Hobbs, Robert F.; Bolch, Wesley E.; Sgouros, George; Gardin, Isabelle

    2010-01-01

    This article presents a revised voxel S values (VSVs) approach for dosimetry in targeted radiotherapy, allowing dose calculation for any voxel size and shape of a given SPECT or PET dataset. This approach represents an update to the methodology presented in MIRD pamphlet no. 17. Methods VSVs were generated in soft tissue with a fine spatial sampling using the Monte Carlo (MC) code MCNPX for particle emissions of 9 radionuclides: 18F, 90Y, 99mTc, 111In, 123I, 131I, 177Lu, 186Re, and 201Tl. A specific resampling algorithm was developed to compute VSVs for desired voxel dimensions. The dose calculation was performed by convolution via a fast Hartley transform. The fine VSVs were calculated for cubic voxels of 0.5 mm for electrons and 1.0 mm for photons. Validation studies were done for 90Y and 131I VSV sets by comparing the revised VSV approach to direct MC simulations. The first comparison included 20 spheres with different voxel sizes (3.8–7.7 mm) and radii (4–64 voxels) and the second comparison a hepatic tumor with cubic voxels of 3.8 mm. MC simulations were done with MCNPX for both. The third comparison was performed on 2 clinical patients with the 3D-RD (3-Dimensional Radiobiologic Dosimetry) software using the EGSnrc (Electron Gamma Shower National Research Council Canada)-based MC implementation, assuming a homogeneous tissue-density distribution. Results For the sphere model study, the mean relative difference in the average absorbed dose was 0.20% ± 0.41% for 90Y and −0.36% ± 0.51% for 131I (n = 20). For the hepatic tumor, the difference in the average absorbed dose to tumor was 0.33% for 90Y and −0.61% for 131I and the difference in average absorbed dose to the liver was 0.25% for 90Y and −1.35% for 131I. The comparison with the 3D-RD software showed an average voxel-to-voxel dose ratio between 0.991 and 0.996. The calculation time was below 10 s with the VSV approach and 50 and 15 h with 3D-RD for the 2 clinical patients. Conclusion This new

  6. Integral T-Shaped Phantom-Dosimeter System to Measure Transverse and Longitudinal Dose Distributions Simultaneously for Stereotactic Radiosurgery Dosimetry

    PubMed Central

    Yoo, Wook Jae; Moon, Jinsoo; Jang, Kyoung Won; Han, Ki-Tek; Shin, Sang Hun; Jeon, Dayeong; Park, Jang-Yeon; Park, Byung Gi; Lee, Bongsoo

    2012-01-01

    A T-shaped fiber-optic phantom-dosimeter system was developed using square scintillating optical fibers, a lens system, and a CMOS image camera. Images of scintillating light were used to simultaneously measure the transverse and longitudinal distributions of absorbed dose of a 6 MV photon beam with field sizes of 1 × 1 and 3 × 3 cm2. Each optical fiber has a very small sensitive volume and the sensitive material is water equivalent. This allows the measurements of cross-beam profile as well as the percentage depth dose of small field sizes. In the case of transverse dose distribution, the measured beam profiles were gradually become uneven and the beam edge had a gentle slope with increasing depth of the PMMA phantom. In addition, the maximum dose values of longitudinal dose distribution for 6 MV photon beam with field sizes of 1 × 1 and 3 × 3 cm2 were found to be at a depth of approximately 15 mm and the percentage depth dose of both field sizes were nearly in agreement at the skin dose level. Based on the results of this study, it is anticipated that an all-in-one phantom-dosimeter can be developed to accurately measure beam profiles and dose distribution in a small irradiation fields prior to carrying out stereotactic radiosurgery. PMID:22778649

  7. IDTT therapy in cadaveric lumbar spine: temperature and thermal dose distributions

    NASA Astrophysics Data System (ADS)

    Diederich, Chris J.; Nau, William H.; Kleinstueck, Frank; Lotz, Jeff; Bradford, David

    2001-06-01

    The purpose of this study was to perform extensive temperature mapping throughout human cadaveric disc (n=12) specimens during Intradiscal Thermal Therapy IDTT using the SpineCathTM applicator. Temperature distributions and accumulated thermal dose or thermal damage calculated from the temperature-time history are used to define probable regions of thermal necrosis (destruction of nerves) or thermal coagulation (induced structural changes). The IDTT procedure using SpineCath (5 cm resistive heating segment) and the current standard heating protocol (~17 min) produces intra-discal temperatures which are too low to generate appreciable regions of thermal coagulation and resultant changes in biomechanical properties. This finding was supported by temperature measurements which were mostly below the critical temperature of 60-65°C, except for regions within 1-2 mm of the SpineCath applicator. Furthermore, the analysis of the thermal dose profiles indicate that sufficient thermal doses (240-640 EM43°C) capable of generating complete thermal damage to the nociceptive nerves fibers infiltrating the disc are limited to within ~6 mm of the nucleus and IDTT probe heating segment.

  8. Modeling Focused Ultrasound Exposure for the Optimal Control of Thermal Dose Distribution

    PubMed Central

    Sassaroli, E.; Li, K. C. P.; O'Neill, B. E.

    2012-01-01

    Preclinical studies indicate that focused ultrasound at exposure conditions close to the threshold for thermal damage can increase drug delivery at the focal region. Although these results are promising, the optimal control of temperature still remains a challenge. To address this issue, computer-simulated ultrasound treatments have been performed. When the treatments are delivered without taking into account the cooling effect exerted by the blood flow, the resulting thermal dose is highly variable with regions of thermal damage, regions of underdosage close to the vessels, and areas in between these two extremes. When the power deposition is adjusted so that the peak thermal dose remains close to the threshold for thermal damage, the thermal dose is more uniformly distributed but under-dosage is still visible around the thermally significant vessels. The results of these simulations suggest that, for focused ultrasound, as for other delivery methods, the only way to control temperature is to adjust the average energy deposition to compensate for the presence of thermally significant vessels in the target area. By doing this, we have shown that it is possible to reduce the temperature heterogeneity observed in focused ultrasound thermal treatments. PMID:22593669

  9. Stacking up 2D materials

    NASA Astrophysics Data System (ADS)

    Mayor, Louise

    2016-05-01

    Graphene might be the most famous example, but there are other 2D materials and compounds too. Louise Mayor explains how these atomically thin sheets can be layered together to create flexible “van der Waals heterostructures”, which could lead to a range of novel applications.

  10. Calculation and Prediction of the Effect of Respiratory Motion on Whole Breast Radiation Therapy Dose Distributions

    SciTech Connect

    Cao Junsheng; Roeske, John C.; Chmura, Steve J.; Salama, Joseph K.; Shoushtari, Asal N.; Boyer, Arthur L.; Martel, Mary K.

    2009-07-01

    The standard treatment technique used for whole-breast irradiation can result in undesirable dose distributions in the treatment site, leading to skin reaction/fibrosis and pulmonary and cardiac toxicities. Hence, the technique has evolved from conventional wedged technique (CWT) to segment intensity-modulated radiation therapy (SIMRT) and beamlet IMRT (IMRT). However, these newer techniques feature more highly modulated dose distributions that may be affected by respiration. The purpose of this work was to conduct a simple study of the clinical impact of respiratory motion on breast radiotherapy dose distributions for the three treatment planning techniques. The ultimate goal was to determine which patients would benefit most from the use of motion management. Eight patients with early-stage breast cancer underwent a free-breathing (FB) computed tomography (CT) simulation, with medial and lateral markers placed on the skin. Two additional CT scans were obtained at the end of inspiration (EI) and the end of expiration (EE). The FB-CT scan was used to develop treatment plans using each technique. Each plan was then applied to EI and EE-CT scans. Compared with the FB CT scan, the medial markers moved up to 1.8 cm in the anterior-superior direction at the end of inspiration (EI-scan), and on average 8 mm. The CWT and SIMRT techniques were not 'sensitive' to respiratory motion, because the % clinical target volume (CTV) receiving 95% of the prescription dose (V{sub 95%}) remained constant for both techniques. For patients that had large respiratory motion indicated by marker movement >0.6 cm, differences in coverage of the CTV at the V100% between FB and EI for beamlet IMRT plans were on the order of >10% and up to 18%. A linear model was developed to relate the dosimetric coverage difference introduced by respiration with the motion information. With this model, the dosimetric coverage difference introduced by respiratory motion could be evaluated during patient CT

  11. Calculated depth-dose distributions for H + and He + beams in liquid water

    NASA Astrophysics Data System (ADS)

    Garcia-Molina, Rafael; Abril, Isabel; Denton, Cristian D.; Heredia-Avalos, Santiago; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2009-08-01

    We have calculated the dose distribution delivered by proton and helium beams in liquid water as a function of the target-depth, for incident energies in the range 0.5-10 MeV/u. The motion of the projectiles through the stopping medium is simulated by a code that combines Monte Carlo and a finite differences algorithm to consider the electronic stopping power, evaluated in the dielectric framework, and the multiple nuclear scattering with the target nuclei. Changes in projectile charge-state are taken into account dynamically as it moves through the target. We use the MELF-GOS model to describe the energy loss function of liquid water, obtaining a value of 79.4 eV for its mean excitation energy. Our calculated stopping powers and depth-dose distributions are compared with those obtained using other methods to describe the energy loss function of liquid water, such as the extended Drude and the Penn models, as well as with the prediction of the SRIM code and the tables of ICRU.

  12. Distribution of terrestrial gamma radiation dose rate in the eastern coastal area of Odisha, India.

    PubMed

    Gusain, G S; Rautela, B S; Sahoo, S K; Ishikawa, T; Prasad, G; Omori, Y; Sorimachi, A; Tokonami, S; Ramola, R C

    2012-11-01

    Terrestrial gamma radiation is one of the important radiation exposures on the earth's surface that results from the three primordial radionuclides (226)Ra, (232)Th and (40)K. The elemental concentration of these elements in the earth's crust could result in the anomalous variation of the terrestrial gamma radiation in the environment. The geology of the local area plays an important role in distribution of these radioactive elements. Environmental terrestrial gamma radiation dose rates were measured around the eastern coastal area of Odisha with the objective of establishing baseline data on the background radiation level. The values of the terrestrial gamma radiation dose rate vary significantly at different locations in the study area. The values of the terrestrial gamma dose rate ranged from 77 to 1651 nGy h(-1), with an average of 230 nGy h(-1). During the measurement of the terrestrial gamma dose rate, sand and soil samples were also collected for the assessment of natural radionuclides. The activities of (226)Ra, (232)Th and (40)K from these samples were measured using a gamma-ray spectrometry with a NaI(Tl) detector. Activity concentrations of (226)Ra, (232)Th and (40)K ranged from 15.6 to 69 Bq kg(-1) with an average of 46.7 Bq kg(-1), from 28.9 to 973 Bq kg(-1) with an average of 250 Bq kg(-1) and from 139 to 952 Bq kg(-1) with an average of 429, respectively. The detailed significance of these studies has been discussed from the radiation protection point of view. PMID:22874894

  13. Stochastic Inversion of 2D Magnetotelluric Data

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  14. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  15. Differential Cytochrome P450 2D Metabolism Alters Tafenoquine Pharmacokinetics

    PubMed Central

    Vuong, Chau; Xie, Lisa H.; Potter, Brittney M. J.; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Nanayakkara, N. P. Dhammika; Tekwani, Babu L.; Walker, Larry A.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.; Smith, Bryan

    2015-01-01

    Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. PMID:25870069

  16. Commercial production and distribution of fresh fruits and vegetables: A scoping study on the importance of produce pathways to dose. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Marsh, T.L.; Anderson, D.M.; Farris, W.T.; Ikenberry, T.A.; Napier, B.A.; Wilfert, G.L.

    1992-09-01

    This letter report summarizes a scoping study that examined the potential importance of fresh fruit and vegetable pathways to dose. A simple production index was constructed with data collected from the Washington State Department of Agriculture (WSDA), the United States Bureau of the Census, and the United States Department of Agriculture (USDA). Hanford Environmental Dose Reconstruction (HEDR) Project staff from Battelle, Pacific Northwest Laboratories, in cooperation with members of the Technical Steering Panel (TSP), selected lettuce and spinach as the produce pathways most likely to impact dose. County agricultural reports published in 1956 provided historical descriptions of the predominant distribution patterns of fresh lettuce and spinach from production regions to local population centers. Pathway rankings and screening dose estimates were calculated for specific populations living in selected locations within the HEDR study area.

  17. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  18. Stereotactic, Single-Dose Irradiation of Lung Tumors: A Comparison of Absolute Dose and Dose Distribution Between Pencil Beam and Monte Carlo Algorithms Based on Actual Patient CT Scans

    SciTech Connect

    Chen Huixiao; Lohr, Frank; Fritz, Peter; Wenz, Frederik; Dobler, Barbara; Lorenz, Friedlieb; Muehlnickel, Werner

    2010-11-01

    Purpose: Dose calculation based on pencil beam (PB) algorithms has its shortcomings predicting dose in tissue heterogeneities. The aim of this study was to compare dose distributions of clinically applied non-intensity-modulated radiotherapy 15-MV plans for stereotactic body radiotherapy between voxel Monte Carlo (XVMC) calculation and PB calculation for lung lesions. Methods and Materials: To validate XVMC, one treatment plan was verified in an inhomogeneous thorax phantom with EDR2 film (Eastman Kodak, Rochester, NY). Both measured and calculated (PB and XVMC) dose distributions were compared regarding profiles and isodoses. Then, 35 lung plans originally created for clinical treatment by PB calculation with the Eclipse planning system (Varian Medical Systems, Palo Alto, CA) were recalculated by XVMC (investigational implementation in PrecisePLAN [Elekta AB, Stockholm, Sweden]). Clinically relevant dose-volume parameters for target and lung tissue were compared and analyzed statistically. Results: The XVMC calculation agreed well with film measurements (<1% difference in lateral profile), whereas the deviation between PB calculation and film measurements was up to +15%. On analysis of 35 clinical cases, the mean dose, minimal dose and coverage dose value for 95% volume of gross tumor volume were 1.14 {+-} 1.72 Gy, 1.68 {+-} 1.47 Gy, and 1.24 {+-} 1.04 Gy lower by XVMC compared with PB, respectively (prescription dose, 30 Gy). The volume covered by the 9 Gy isodose of lung was 2.73% {+-} 3.12% higher when calculated by XVMC compared with PB. The largest differences were observed for small lesions circumferentially encompassed by lung tissue. Conclusions: Pencil beam dose calculation overestimates dose to the tumor and underestimates lung volumes exposed to a given dose consistently for 15-MV photons. The degree of difference between XVMC and PB is tumor size and location dependent. Therefore XVMC calculation is helpful to further optimize treatment planning.

  19. Optical CT and MR imaging of radiation dose distributions using the FBX-gel dosimeter

    NASA Astrophysics Data System (ADS)

    Kelly, Robin G.

    In recent years, magnetic resonance imaging of gelatin doped with the Fricke solution has been applied to the direct measurement of three-dimensional (3D) dose distributions. However, the 3D-dose distribution can also be imaged more economically and efficiently using the method of optical absorption computed tomography. This is accomplished by first preparing a gelatin matrix containing a radiochromic dye and mapping the radiation-induced local change in the optical absorption coefficient. Ferrous Sulphate-Benzoic Acid-Xylenol Orange (FBX) was the dye of choice for this investigation. The complex formed by Fe 3+ and xylenol orange exhibits a linear change in optical attenuation (cm-1) with radiation dose in the range between 0 and 1000 cGy, and the local concentration of this complex can be probed using a green laser light (lambda = 543.5 nm). An optical computed tomography (CT) scanner was constructed analogous to a first-generation x-ray CT scanner, using a He-Ne laser, photodiodes, and rotation-translation stages controlled by a personal computer. The optical CT scanner itself can reconstruct attenuation coefficients to a baseline accuracy of <2% while yielding dose images accurate to within 5% when other uncertainties are taken into account. The radiation-induced conversion of ferrous ion (Fe2+) to ferric ion (Fe3+) in the FBX Gelatin dosimeter can also be measured using magnetic resonance imaging, similar to the standard Fricke-gelatin system. The oxidation process causes a shortening of the spin-spin (T 2), and spin-lattice (T1) relaxation times, each of which can be measured, with varying accuracy and precision, using different MR pulse sequences. In this investigation, the spin-lattice relaxation times of FBX gelatin were determined using both a fast inversion recovery pulse-sequence, and a three-dimensional Look-Locker (3D-LL) pulse-sequence. The inverse spin-lattice relaxation time (R1 = 1/T1) is shown to vary linearly with absorbed dose in the range 500

  20. Analysis of the Body Distribution of Absorbed Dose in the Organs of Three Species of Fish from Sepetiba Bay

    SciTech Connect

    Pereira, Wagner de S; Kelecom, Alphonse; Santos Gouvea, Rita de Cassia dos; Azevedo Py Junior, Delcy de

    2008-08-07

    The body distribution of Polonium-210 in three fishes from the Sepetiba Bay (Macrodon ancylodon, Micropogonias furnieri and Mugil curema) has been studied under the approach of the Department of Energy of the United States of America (DOE) that set the limit of absorbed dose rate in biota equal to 3.5x10{sup 3} {mu}Gy/y, and that also established the relation between dose rate (D) and radionuclide concentration (c) on a fish muscle fresh weight basis, as follows: D = 5.05 ExNxC, assuming that the radionuclide distribution is homogenous among organs. Two hypotheses were tested here, using statistical tools: 1) is the body distribution of absorbed dose homogenous among organs? and 2) is the body distribution of absorbed dose identical among studied fishes? It was concluded, as expected, that the distribution among organs is heterogeneous; but, unexpectedly, that the three fishes display identical body distribution pattern, although they belong to different trophic levels. Hence, concerning absorbed dose calculation, the statement that data distribution is homogenous must be understood merely as an approximation, at least in the case of Polonium-210.

  1. CYP2D6 polymorphism in patients with eating disorders.

    PubMed

    Peñas-Lledó, E M; Dorado, P; Agüera, Z; Gratacós, M; Estivill, X; Fernández-Aranda, F; Llerena, A

    2012-04-01

    CYP2D6 polymorphism is associated with variability in drug response, endogenous metabolism (that is, serotonin), personality, neurocognition and psychopathology. The relationship between CYP2D6 genetic polymorphism and the risk of eating disorders (ED) was analyzed in 267 patients with ED and in 285 controls. A difference in the CYP2D6 active allele distribution was found between these groups. Women carrying more than two active genes (ultrarapid metabolizers) (7.5 vs 4.6%) or two (67 vs 58.9%) active genes were more frequent among patients with ED, whereas those with one (20.6 vs 30.2%) or zero active genes (4.9 vs 6.3%) were more frequent among controls (P<0.05). Although further research is needed, present findings suggest an association between CYP2D6 and ED. CYP2D6 allele distribution in patients with ED seems related to increased enzyme activity. PMID:20877302

  2. Developmental effects of +/-3,4-methylenedioxymethamphetamine on spatial versus path integration learning: effects of dose distribution.

    PubMed

    Vorhees, Charles V; Schaefer, Tori L; Williams, Michael T

    2007-07-01

    We previously demonstrated that postnatal day 11-20 +/-3,4-methylenedioxymethamphetamine (MDMA) exposure reduces locomotor activity and impairs path integration and spatial learning independent of the effects on activity. The effects were seen when the drug was administered twice per day, but the optimal dosing regimen is unknown. We tested whether the same total daily dose of MDMA administered in different patterns would equally affect later behavior. A split-litter design (15 litters) was used with one male/female pair per litter receiving one of four treatment regimens. All offspring received four injections per day on P11-20 as follows: 40 x 1 (40 mg/kg MDMA x 1 + saline x 3), 20 x 2 (20 mg/kg MDMA x 2 + saline x 2), 10 x 4 (10 mg/kg MDMA x 4), or Saline (saline x 4). Doses were spaced 2 h apart. Group 40 x 1 received MDMA as the first daily dose followed by three saline doses; group 20 x 2 received MDMA as the first and last dose and saline for the middle two doses; group 10 x 4 received MDMA for all four doses; and the saline group received saline for all four doses. Regardless of dose schedule, all groups treated with MDMA exhibited reduced locomotor activity. No MDMA effects were found on swimming ability in a straight channel. Modest MDMA effects were found on Barnes maze performance. The major findings were that the 40 x 1 and 20 x 2 MDMA groups showed impaired Cincinnati multiple T-water-maze learning and the 10 x 4 and 20 x 2 MDMA groups showed impaired Morris water maze learning. The results suggest that MDMA dose distribution has a long-term differential effect on different types of learning. Dose distribution warrants greater attention in the design of developmental drug studies along with the standard considerations of dose and age. PMID:17415794

  3. Measurement of dose distribution in the spherical phantom onboard the ISS-KIBO module -MATROSHKA-R in KIBO-

    NASA Astrophysics Data System (ADS)

    Kodaira, Satoshi; Kawashima, Hajime; Kurano, Mieko; Uchihori, Yukio; Nikolaev, Igor; Ambrozova, Iva; Kitamura, Hisashi; Kartsev, Ivan; Tolochek, Raisa; Shurshakov, Vyacheslav

    The measurement of dose equivalent and effective dose during manned space missions on the International Space Station (ISS) is important for evaluating the risk to astronaut health and safety when exposed to space radiation. The dosimetric quantities are constantly changing and strongly depend on the level of solar activity and the various spacecraft- and orbit-dependent parameters such as the shielding distribution in the ISS module, location of the spacecraft within its orbit relative to the Earth, the attitude (orientation) and altitude. Consequently, the continuous monitoring of dosimetric quantities is required to record and evaluate the personal radiation dose for crew members during spaceflight. The dose distributions in the phantom body and on its surface give crucial information to estimate the dose equivalent in the human body and effective dose in manned space mission. We have measured the absorbed dose and dose equivalent rates using passive dosimeters installed in the spherical phantom in Japanese Experiment Module (“KIBO”) of the ISS in the framework of Matroshka-R space experiment. The exposure duration was 114 days from May 21 to September 12, 2012. The phantom consists of tissue-equivalent material covered with a poncho jacket with 32 pockets on its surface and 20 container rods inside of the phantom. The phantom diameter is 35 cm and the mass is 32 kg. The passive dosimeters consisted of a combination of luminescent detectors of Al _{2}O _{3};C OSL and CaSO _{4}:Dy TLD and CR-39 plastic nuclear track detectors. As one of preliminary results, the dose distribution on the phantom surface measured with OSL detectors installed in the jacket pockets is found to be ranging from 340 muGy/day to 260 muGy/day. In this talk, we will present the detail dose distributions, and variations of LET spectra and quality factor obtained outside and inside of the spherical phantom installed in the ISS-KIBO.

  4. Development of a high precision dosimetry system for the measurement of surface dose rate distribution for eye applicators

    SciTech Connect

    Eichmann, Marion; Fluehs, Dirk; Spaan, Bernhard

    2009-10-15

    Purpose: The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. Methods: In order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. Results: The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. Conclusions: The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate

  5. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  6. The dose distribution of low dose rate Cs-137 in intracavitary brachytherapy: comparison of Monte Carlo simulation, treatment planning calculation and polymer gel measurement

    NASA Astrophysics Data System (ADS)

    Fragoso, M.; Love, P. A.; Verhaegen, F.; Nalder, C.; Bidmead, A. M.; Leach, M.; Webb, S.

    2004-12-01

    In this study, the dose distribution delivered by low dose rate Cs-137 brachytherapy sources was investigated using Monte Carlo (MC) techniques and polymer gel dosimetry. The results obtained were compared with a commercial treatment planning system (TPS). The 20 mm and the 30 mm diameter Selectron vaginal applicator set (Nucletron) were used for this study. A homogeneous and a heterogeneous—with an air cavity—polymer gel phantom was used to measure the dose distribution from these sources. The same geometrical set-up was used for the MC calculations. Beyond the applicator tip, differences in dose as large as 20% were found between the MC and TPS. This is attributed to the presence of stainless steel in the applicator and source set, which are not considered by the TPS calculations. Beyond the air cavity, differences in dose of around 5% were noted, due to the TPS assuming a homogeneous water medium. The polymer gel results were in good agreement with the MC calculations for all the cases investigated.

  7. Design and implementation of a film dosimetry audit tool for comparison of planned and delivered dose distributions in high dose rate (HDR) brachytherapy

    NASA Astrophysics Data System (ADS)

    Palmer, Antony L.; Lee, Chris; Ratcliffe, Ailsa J.; Bradley, David; Nisbet, Andrew

    2013-10-01

    A novel phantom is presented for ‘full system’ dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit.

  8. Optimization of deterministic transport parameters for the calculation of the dose distribution around a high dose-rate 192Ir brachytherapy source.

    PubMed

    Gifford, Kent A; Price, Michael J; Horton, John L; Wareing, Todd A; Mourtada, Firas

    2008-06-01

    The goal of this work was to calculate the dose distribution around a high dose-rate 192Ir brachytherapy source using a multi-group discrete ordinates code and then to compare the results with a Monte Carlo calculated dose distribution. The unstructured tetrahedral mesh discrete ordinates code Attila version 6.1.1 was used to calculate the photon kerma rate distribution in water around the Nucletron microSelectron mHDRv2 source. MCNPX 2.5.c was used to compute the Monte Carlo water photon kerma rate distribution. Two hundred million histories were simulated, resulting in standard errors of the mean of less than 3% overall. The number of energy groups, S(n) (angular order), P(n) (scattering order), and mesh elements were varied in addition to the method of analytic ray tracing to assess their effects on the deterministic solution. Water photon kerma rate matrices were exported from both codes into an in-house data analysis software. This software quantified the percent dose difference distribution, the number of points within +/- 3% and +/- 5%, and the mean percent difference between the two codes. The data demonstrated that a 5 energy-group cross-section set calculated results to within 0.5% of a 15 group cross-section set. S12 was sufficient to resolve the solution in angle. P2 expansion of the scattering cross-section was necessary to compute accurate distributions. A computational mesh with 55 064 tetrahedral elements in a 30 cm diameter phantom resolved the solution spatially. An efficiency factor of 110 with the above parameters was realized in comparison to MC methods. The Attila code provided an accurate and efficient solution of the Boltzmann transport equation for the mHDRv2 source. PMID:18649459

  9. Optimization of deterministic transport parameters for the calculation of the dose distribution around a high dose-rate {sup 192}Ir brachytherapy source

    SciTech Connect

    Gifford, Kent A.; Price, Michael J.; Horton, John L. Jr.; Wareing, Todd A.; Mourtada, Firas

    2008-06-15

    The goal of this work was to calculate the dose distribution around a high dose-rate {sup 192}Ir brachytherapy source using a multi-group discrete ordinates code and then to compare the results with a Monte Carlo calculated dose distribution. The unstructured tetrahedral mesh discrete ordinates code Attila version 6.1.1 was used to calculate the photon kerma rate distribution in water around the Nucletron microSelectron mHDRv2 source. MCNPX 2.5.c was used to compute the Monte Carlo water photon kerma rate distribution. Two hundred million histories were simulated, resulting in standard errors of the mean of less than 3% overall. The number of energy groups, S{sub n} (angular order), P{sub n} (scattering order), and mesh elements were varied in addition to the method of analytic ray tracing to assess their effects on the deterministic solution. Water photon kerma rate matrices were exported from both codes into an in-house data analysis software. This software quantified the percent dose difference distribution, the number of points within {+-}3% and {+-}5%, and the mean percent difference between the two codes. The data demonstrated that a 5 energy-group cross-section set calculated results to within 0.5% of a 15 group cross-section set. S{sub 12} was sufficient to resolve the solution in angle. P{sub 2} expansion of the scattering cross-section was necessary to compute accurate distributions. A computational mesh with 55 064 tetrahedral elements in a 30 cm diameter phantom resolved the solution spatially. An efficiency factor of 110 with the above parameters was realized in comparison to MC methods. The Attila code provided an accurate and efficient solution of the Boltzmann transport equation for the mHDRv2 source.

  10. Tuning Aerosol Particle Size Distribution of Metered Dose Inhalers Using Cosolvents and Surfactants

    PubMed Central

    Saleem, Imran Y.; Smyth, Hugh D. C.

    2013-01-01

    Objectives. The purpose of these studies was to understand the influence of cosolvent and surfactant contributions to particle size distributions emitted from solution metered dose inhalers (pMDIs) based on the propellant HFA 227. Methods. Two sets of formulations were prepared: (a) pMDIs-HFA 227 containing cosolvent (5–15% w/w ethanol) with constant surfactant (pluronic) concentration and (b) pMDIs-HFA 227 containing surfactant (0–5.45% w/w pluronic) with constant cosolvent concentration. Particle size distributions emitted from these pMDIs were analyzed using aerodynamic characterization (inertial impaction) and laser diffraction methods. Results. Both cosolvent and surfactant concentrations were positively correlated with median particle sizes; that is, drug particle size increased with increasing ethanol and pluronic concentrations. However, evaluation of particle size distributions showed that cosolvent caused reduction in the fine particle mode magnitude while the surfactant caused a shift in the mode position. These findings highlight the different mechanisms by which these components influence droplet formation and demonstrate the ability to utilize the different effects in formulations of pMDI-HFA 227 for independently modulating particle sizes in the respirable region. Conclusion. Potentially, the formulation design window generated using these excipients in combination could be used to match the particle size output of reformulated products to preexisting pMDI products. PMID:23984381

  11. Measurement and model prediction of proton-recoil track length distributions in NTA film dosimeters for neutron energy spectroscopy and retrospective dose assessment

    NASA Astrophysics Data System (ADS)

    Taulbee, Timothy D.

    The goal of this research was to determine whether neutron dose reconstruction could be improved through re-analysis of historic NTA films worn by workers in the 1950 through the 1970s. To improve neutron dose reconstruction, the underlying neutron energy spectra is critical in determining the organ dose due to energy dependence of the dose conversion factor as well as the application of radiation weighting factors used in epidemiology and probability of causation calculations. Monte Carlo models of proton-recoil track length distributions were developed and benchmarked against measurement data for both NTA and Ilford films. These models, when applied to several NTA film dosimeter configurations, demonstrated that proton-recoil track length distributions change based upon incident neutron energy. The neutron energy spectra changes that result from the general work environment such as source term and shielding can subsequently be modeled to predict the response of the NTA film dosimeter. An Automatic NTA Film Analyzer has been designed and developed to determine if the difference in proton-recoil track length distributions predicted by the Monte Carlo models could be measured and whether these differences could be correlated to the incident neutron energy spectra. The design required the development of a 2D-3D hybrid track recognition algorithm for a three dimensional analysis of the NTA film in order to accurately determine the proton-recoil track length for subsequent neutron energy determination. NTA films exposed to a plutonium fluoride (PuF4) and polonium boron (PoB) calibration sources were measured and compared. The proton-recoil track lengths were used to reconstruct the incident neutron energy spectra demonstrating the functionality of the analyzer and that reconstruction of the neutron energy spectra from NTA films is feasible. These measurements were compared to the Monte Carlo models and confirmed the applicability of using models to determine the NTA

  12. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  13. Distributed optical fibre temperature measurements in a low dose rate radiation environment based on Rayleigh backscattering

    NASA Astrophysics Data System (ADS)

    Faustov, A.; Gussarov, A.; Wuilpart, M.; Fotiadi, A. A.; Liokumovich, L. B.; Kotov, O. I.; Zolotovskiy, I. O.; Tomashuk, A. L.; Deschoutheete, T.; Mégret, P.

    2012-04-01

    On-line monitoring of environmental conditions in nuclear facilities is becoming a more and more important problem. Standard electronic sensors are not the ideal solution due to radiation sensitivity and difficulties in installation of multiple sensors. In contrast, radiation-hard optical fibres can sustain very high radiation doses and also naturally offer multi-point or distributed monitoring of external perturbations. Multiple local electro-mechanical sensors can be replaced by just one measuring fibre. At present, there are over four hundred operational nuclear power plants (NPPs) in the world 1. Operating experience has shown that ineffective control of the ageing degradation of major NPP components can threaten plant safety and also plant life. Among those elements, cables are vital components of I&C systems in NPPs. To ensure their safe operation and predict remaining life, environmental monitoring is necessary. In particular, temperature and radiation dose are considered to be the two most important parameters. The aim of this paper is to assess experimentally the feasibility of optical fibre temperature measurements in a low doserate radiation environment, using a commercially available reflectometer based on Rayleigh backscattering. Four different fibres were installed in the Sub-Pile Room of the BR2 Material testing nuclear reactor in Mol, Belgium. This place is man-accessible during the reactor shut-down, allowing easy fibre installation. When the reactor operates, the dose-rates in the room are in a range 0.005-5 Gy/h with temperatures of 40-60 °C, depending on the location. Such a surrounding is not much different to some "hot" environments in NPPs, where I&C cables are located.

  14. Dosimetric study of 2D ion chamber array matrix for the modern radiotherapy treatment verification.

    PubMed

    Saminathan, Sathiyan; Manickam, Ravikumar; Chandraraj, Varatharaj; Supe, Sanjay S

    2010-01-01

    Intensity-modulated radiotherapy treatment demands stringent quality assurance and accurate dose determination for delivery of highly conformal dose to the patients. Generally 3D dose distributions obtained from a treatment planning system have to be verified by dosimetric methods. Mainly, a comparison of two-dimensional calculated and measured data in several coplanar planes is performed. In principle, there are many possibilities to measure two-dimensional dose distributions such as films, flat-panel electronic portal imaging devices (EPID), ion chambers and ionization chamber arrays, and radiographic and radiochromic films. The flat-panel EPIDs show a good resolution and offer a possibility for real-time measurements: however to convert the signal into dose, a separate commercial algorithm is required. The 2D ion chamber array system offers the real-time measurements. In this study, dosimetric characteristics of 2D ion chamber array matrix were analyzed for verification of radiotherapy treatments. The dose linearity and dose rate effect of the I'matriXX device was studied using 6 MV, 18 MV photons and 12 MeV electrons. The output factor was estimated using I'matriXX device and compared with ion chamber measurements. The ion chamber array system was found to be linear in the dose range of 2-500 cGy and the response of the detector was found to be independent of dose rate between 100 MU/min to 600 MU/min. The estimated relative output factor with I'matriXX was found to match very well with the ion chamber measurements. To check the final dose delivered during IMRT planning, dose distribution patterns such as field-in-field, pyramidal, and chair tests were generated with the treatment planning system (TPS) and the same was executed in the accelerator and measured with the I'matriXX device. The dose distribution pattern measured by the matrix device for field-in-field, pyramidal, and chair test were found to be in good agreement with the calculated dose distribution

  15. The distribution of absorbed dose from x-rays as a function of depth

    NASA Astrophysics Data System (ADS)

    Cummings, Frederick

    2000-08-01

    Organizations responsible for monitoring the occupational exposure to radiation workers in the U.S. are directed to measure the dose to specific depths in tissue. The knowledge of the depth distribution of energy deposited by radiation in materials is essential to the interpretation of devices used to measure occupational exposure In this work, the quantities used to convert the reference transfer quantity for x-ray fields, air kerma, to the regulatory quantity, dose equivalent, for mono- energetic x-ray fields and poly-energetic x-ray fields specified by the National Institute of Standards and Technology are cogenerated for European x-ray fields are indicated and consistent conversion factors for use in the U.S. are recommended. For the mono-energetic x-ray beams conversion factors ranged from 0.9 to 1.7 at the 7 mg/cm2 depth and from 0.03 to 1.9 at the 1000 mg/cm2 depth in tissue specified by the International Commission of Radiation Units and Measurements. The conversion factors for the NIST x-ray fields were reasonably consistent with values in an unpublished draft standard by the American National Standards Institute, but exhibited sufficient disagreement to warrant a re-evaluation of the factors in that document prior to publication.

  16. Nuclear medicine annual external occupational dose distribution: Rio de Janeiro, Brazil, year 2005.

    PubMed

    Mauricio, Claudia L P; Lima, Ana L S; da Silva, Herica L R; Souza-Santos, Denison; Silva, Claudio R

    2011-03-01

    Brazil has about 300 nuclear medicine services (NMS), 44 of them located in the state of Rio de Janeiro (RJ). Most nuclear medicine staff are routinely monitored for external dose. This paper makes a statistical analysis of all the RJ NMS annual external occupational doses in year 2005. Around 100 professionals of RJ NMS received annual doses >4.0 mSv, considering only external doses, but no one receives doses higher than the mean annual dose limit of 20 mSv. Extremities dosemeters are used by about 10 % of the staff. In some cases, these doses are more than 10 times higher than the dose in thorax. The maximum ratio of extremity dose/thorax dose, in 2005, was 72. This study shows the importance to improve radiation protection procedures in nuclear medicine, mainly because the number of occupational individuals in nuclear medicine and their external doses are increasing. PMID:21051433

  17. A scalable 2-D parallel sparse solver

    SciTech Connect

    Kothari, S.C.; Mitra, S.

    1995-12-01

    Scalability beyond a small number of processors, typically 32 or less, is known to be a problem for existing parallel general sparse (PGS) direct solvers. This paper presents a parallel general sparse PGS direct solver for general sparse linear systems on distributed memory machines. The algorithm is based on the well-known sequential sparse algorithm Y12M. To achieve efficient parallelization, a 2-D scattered decomposition of the sparse matrix is used. The proposed algorithm is more scalable than existing parallel sparse direct solvers. Its scalability is evaluated on a 256 processor nCUBE2s machine using Boeing/Harwell benchmark matrices.

  18. Quantitative analysis of dose distribution to determine optimal width of respiratory gating window using Gafchromic EBT2 film

    NASA Astrophysics Data System (ADS)

    Lee, Sung Hyun; Kim, Kum Bae; Kim, Mi-Sook; Yoo, Hyung-Jun; Park, Seungwoo; Jung, Haijo; Ji, Young Hoon; Yi, Chul-Young

    2013-02-01

    The purpose of this study was to determine the dependence of the dose distribution on the width of the respiratory gating window by using radiochromic Gafchromic EBT2 film. An in-house three-dimensional breathing simulator was used with a 4-s cycle and a 3-cm movement. The gamma index and the 50, 95, and 20-80% dose distributions were individually analyzed with regard to static, 100 (full motion), 60, 40, 30, 20, and 15% respiratory gating windows. In addition, dose differences based on the different extents of exposure were compared and analyzed along with total beam delivery time. Dose distributions became increasingly similar to the static value with decreasing respiratory gating window width. The extent differences from the static case for the low-dose region were not significant; neither were the extent differences for the high-dose region and 30, 20, and 15% gating windows (P = 0.388, 0.275, respectively). However, the 40% gating window showed a significant difference (P = 0.001). Moreover, the treatment time for the 30% gating window was reduced by more than half compared to that for the 15% gating window. Thus, the 30% window would be a reasonable choice for maximizing the range of the gating window while markedly decreasing the dose difference and the treatment time.

  19. Nanoimprint lithography: 2D or not 2D? A review

    NASA Astrophysics Data System (ADS)

    Schift, Helmut

    2015-11-01

    Nanoimprint lithography (NIL) is more than a planar high-end technology for the patterning of wafer-like substrates. It is essentially a 3D process, because it replicates various stamp topographies by 3D displacement of material and takes advantage of the bending of stamps while the mold cavities are filled. But at the same time, it keeps all assets of a 2D technique being able to pattern thin masking layers like in photon- and electron-based traditional lithography. This review reports about 20 years of development of replication techniques at Paul Scherrer Institut, with a focus on 3D aspects of molding, which enable NIL to stay 2D, but at the same time enable 3D applications which are "more than Moore." As an example, the manufacturing of a demonstrator for backlighting applications based on thermally activated selective topography equilibration will be presented. This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale.

  20. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture.

    PubMed

    Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2016-01-01

    The air dose rate in an environment contaminated with (134)Cs and (137)Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. This finding is insensitive to the choice for modeling the activity depth distribution in the ground using activity measurements of collected soil layers, or by using exponential and hyperbolic secant fits to the measurement data. Better predictions are obtained by modeling the horizontal distribution of radioactive cesium across an area if multiple soil samples are available, as opposed to assuming a spatially homogeneous contamination distribution. Reductions seen in air dose rates above flat, undisturbed fields in Fukushima Prefecture are consistent with decrement by radioactive decay and downward migration of cesium into soil. Analysis of remediation strategies for farmland soils confirmed that topsoil removal and interchanging a topsoil layer with a subsoil layer result in similar reductions in the air dose rate. These two strategies are more effective than reverse tillage to invert and mix the topsoil. PMID:26408835

  1. Using NPOL (the NASA S-band polarimetric radar), and a network of 2D video disdrometers for external radar calibration and rain rate estimation, and to determine spatial correlation of rain drop size distribution parameters

    NASA Astrophysics Data System (ADS)

    Thurai, M.; Bringi, V. N.; Tolstoy, L.; Petersen, W. A.

    2012-12-01

    On two days during the MC3E campaign in northern Oklahoma, NASA's S-band polarimetric radar (NPOL) performed repeated PPI scans over a network of six 2D video disdrometer (2DVD) sites, located 20 to 30 km from the radar. The scans were repeated approximately every 40 seconds. We consider here the two cases, one a rapidly evolving multi-cell rain event (with large drops) on 24 April 2011 and the second a somewhat more uniform rain event on 11 May 2011. For both events, the external calibration offsets for radar reflectivity and differential reflectivity were determined by comparing the radar data extracted over the disdrometer sites with those determined from scattering simulations using the 2DVD data. Time series comparisons show excellent agreement for all six sites, and a technique was developed to determine the offsets for the NPOL data quantitatively from the comparisons. The radar data were then used to determine the rain rates over the six sites and compared with those derived from the 2DVD measurements. Once again, excellent agreement was obtained for all six sites, both in terms of rain fall rates and rain accumulations (see Fig. 1). Comparisons have also been made over many rain gauges located within ground validation network area. The repeated PPI scans were also used to determine the spatial correlations of two of the main rain drop-size distribution (DSD) parameters (Do and log Nw) as well as rainfall rate (R). The correlations were determined along the radial over the whole azimuthal range of the PPI scans. The spatial correlation of R shows azimuthal dependence particularly for the first event. However, the 50 percentile levels are similar between the two events, at least up to 4 km. For the DSD parameters, reasonable agreement with 2DVD-based spatial correlations were obtained As part of the abovementioned scan sequence, the NPOL had also made repeated RHI scans along one azimuth. These scans were used to determine the vertical correlations of the

  2. Dose distribution from x-ray microbeam arrays applied to radiation therapy: an EGS4 Monte Carlo study.

    PubMed

    De Felici, M; Felici, R; Sanchez del Rio, M; Ferrero, C; Bacarian, T; Dilmanian, F A

    2005-08-01

    We present EGS4 Monte Carlo calculations of the spatial distribution of the dose deposited by a single x-ray pencil beam, a planar microbeam, and an array of parallel planar microbeams as used in radiation therapy research. The profiles of the absorbed dose distribution in a phantom, including the peak-to-valley ratio of the dose distribution from microbeam arrays, were calculated at micrometer resolution. We determined the dependence of the findings on the main parameters of photon and electron transport. The results illustrate the dependence of the electron range and the deposited in-beam dose on the cut-off energy, of the electron transport, as well as the effects on the dose profiles of the beam energy, the array size, and the beam spacing. The effect of beam polarization also was studied for a single pencil beam and for an array of parallel planar microbeams. The results show that although the polarization effect on the dose distribution from a 3 cm x 3 cm microbeam array inside a water phantom is large enough to be measured at the outer side of the array (16% difference of the deposited dose for x-ray beams of 200 keV), it is not detectable at the array's center, thus being irrelevant for the radiation therapy purposes. Finally we show that to properly compare the dose profiles determined with a metal oxide semiconductor field emission transistor detector with the computational method predictions, it is important to simulate adequately the size and the material of the device's Si active element. PMID:16193774

  3. Comparison between beta radiation dose distribution due to LDR and HDR ocular brachytherapy applicators using GATE Monte Carlo platform.

    PubMed

    Mostafa, Laoues; Rachid, Khelifi; Ahmed, Sidi Moussa

    2016-08-01

    Eye applicators with 90Sr/90Y and 106Ru/106Rh beta-ray sources are generally used in brachytherapy for the treatment of eye diseases as uveal melanoma. Whenever, radiation is used in treatment, dosimetry is essential. However, knowledge of the exact dose distribution is a critical decision-making to the outcome of the treatment. The Monte Carlo technique provides a powerful tool for calculation of the dose and dose distributions which helps to predict and determine the doses from different shapes of various types of eye applicators more accurately. The aim of this work consisted in using the Monte Carlo GATE platform to calculate the 3D dose distribution on a mathematical model of the human eye according to international recommendations. Mathematical models were developed for four ophthalmic applicators, two HDR 90Sr applicators SIA.20 and SIA.6, and two LDR 106Ru applicators, a concave CCB model and a flat CCB model. In present work, considering a heterogeneous eye phantom and the chosen tumor, obtained results with the use of GATE for mean doses distributions in a phantom and according to international recommendations show a discrepancy with respect to those specified by the manufacturers. The QC of dosimetric parameters shows that contrarily to the other applicators, the SIA.20 applicator is consistent with recommendations. The GATE platform show that the SIA.20 applicator present better results, namely the dose delivered to critical structures were lower compared to those obtained for the other applicators, and the SIA.6 applicator, simulated with MCNPX generates higher lens doses than those generated by GATE. PMID:27499370

  4. Electron dose distributions caused by the contact-type metallic eye shield: Studies using Monte Carlo and pencil beam algorithms.

    PubMed

    Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin; Park, Soah; Cheong, Kwang-Ho; Han, Tae Jin; Kim, Haeyoung; Lee, Me-Yeon; Kim, Kyoung Ju; Bae, Hoonsik

    2015-01-01

    A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shield was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation. PMID:25724475

  5. Electron dose distributions caused by the contact-type metallic eye shield: Studies using Monte Carlo and pencil beam algorithms

    SciTech Connect

    Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin; Park, Soah; Cheong, Kwang-Ho; Jin Han, Tae; Kim, Haeyoung; Lee, Me-Yeon; Ju Kim, Kyoung Bae, Hoonsik

    2015-10-01

    A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shield was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation.

  6. A comparison of the dose distributions from three proton treatment planning systems in the planning of meningioma patients with single-field uniform dose pencil beam scanning.

    PubMed

    Doolan, Paul J; Alshaikhi, Jailan; Rosenberg, Ivan; Ainsley, Chris G; Gibson, Adam; D'Souza, Derek; Bentefour, El Hassane; Royle, Gary

    2015-01-01

    With the number of new proton centers increasing rapidly, there is a need for an assessment of the available proton treatment planning systems (TPSs). This study compares the dose distributions of complex meningioma plans produced by three proton TPSs: Eclipse, Pinnacle3, and XiO. All three systems were commissioned with the same beam data and, as best as possible, matched configuration settings. Proton treatment plans for ten patients were produced on each system with a pencil beam scanning, single-field uniform dose approach, using a fixed horizontal beamline. All 30 plans were subjected to identical dose constraints, both for the target coverage and organ at risk (OAR) sparing, with a consistent order of priority. Beam geometry, lateral field margins, and lateral spot resolutions were made consistent across all systems. Few statistically significant differences were found between the target coverage and OAR sparing of each system, with all optimizers managing to produce plans within clinical tolerances (D2 < 107% of prescribed dose, D5 < 105%, D95 > 95%, D99 > 90%, and OAR maximum doses) despite strict constraints and overlapping structures. PMID:25679158

  7. SU-E-T-05: A 2D EPID Transit Dosimetry Model Based On An Empirical Quadratic Formalism

    SciTech Connect

    Tan, Y; Metwaly, M; Glegg, M; Baggarley, S; Elliott, A

    2014-06-01

    Purpose: To describe a 2D electronic portal imaging device (EPID) transit dosimetry model, based on an empirical quadratic formalism, that can predict either EPID or in-phantom dose distribution for comparisons with EPID captured image or treatment planning system (TPS) dose respectively. Methods: A quadratic equation can be used to relate the reduction in intensity of an exit beam to the equivalent path length of the attenuator. The calibration involved deriving coefficients from a set of dose planes measured for homogeneous phantoms with known thicknesses under reference conditions. In this study, calibration dose planes were measured with EPID and ionisation chamber (IC) in water for the same reference beam (6MV, 100mu, 20×20cm{sup 2}) and set of thicknesses (0–30cm). Since the same calibration conditions were used, the EPID and IC measurements can be related through the quadratic equation. Consequently, EPID transit dose can be predicted from TPS exported dose planes and in-phantom dose can be predicted using EPID distribution captured during treatment as an input. The model was tested with 4 open fields, 6 wedge fields, and 7 IMRT fields on homogeneous and heterogeneous phantoms. Comparisons were done using 2D absolute gamma (3%/3mm) and results were validated against measurements with a commercial 2D array device. Results: The gamma pass rates for comparisons between EPID measured and predicted ranged from 93.6% to 100.0% for all fields and phantoms tested. Results from this study agreed with 2D array measurements to within 3.1%. Meanwhile, comparisons in-phantom between TPS computed and predicted ranged from 91.6% to 100.0%. Validation with 2D array device was not possible for inphantom comparisons. Conclusion: A 2D EPID transit dosimetry model for treatment verification was described and proven to be accurate. The model has the advantage of being generic and allows comparisons at the EPID plane as well as multiple planes in-phantom.

  8. Liquid scintillator for 2D dosimetry for high-energy photon beams

    SciTech Connect

    Poenisch, Falk; Archambault, Louis; Briere, Tina Marie; Sahoo, Narayan; Mohan, Radhe; Beddar, Sam; Gillin, Michael T.

    2009-05-15

    Complex radiation therapy techniques require dosimetric verification of treatment planning and delivery. The authors investigated a liquid scintillator (LS) system for application for real-time high-energy photon beam dosimetry. The system was comprised of a transparent acrylic tank filled with liquid scintillating material, an opaque outer tank, and a CCD camera. A series of images was acquired when the tank with liquid scintillator was irradiated with a 6 MV photon beam, and the light data measured with the CCD camera were filtered to correct for scattering of the optical light inside the liquid scintillator. Depth-dose and lateral profiles as well as two-dimensional (2D) dose distributions were found to agree with results from the treatment planning system. Further, the corrected light output was found to be linear with dose, dose rate independent, and is robust for single or multiple acquisitions. The short time needed for image acquisition and processing could make this system ideal for fast verification of the beam characteristics of the treatment machine. This new detector system shows a potential usefulness of the LS for 2D QA.

  9. Characterization of the dose distribution in the halo region of a clinical proton pencil beam using emulsion film detectors

    NASA Astrophysics Data System (ADS)

    Ariga, A.; Ariga, T.; Braccini, S.; Ereditato, A.; Giacoppo, F.; Nesteruk, K. P.; Pistillo, C.; Scampoli, P.

    2015-01-01

    Proton therapy is a high precision technique in cancer radiation therapy which allows irradiating the tumor with minimal damage to the surrounding healthy tissues. Pencil beam scanning is the most advanced dose distribution technique and it is based on a variable energy beam of a few millimeters FWHM which is moved to cover the target volume. Due to spurious effects of the accelerator, of dose distribution system and to the unavoidable scattering inside the patient's body, the pencil beam is surrounded by a halo that produces a peripheral dose. To assess this issue, nuclear emulsion films interleaved with tissue equivalent material were used for the first time to characterize the beam in the halo region and to experimentally evaluate the corresponding dose. The high-precision tracking performance of the emulsion films allowed studying the angular distribution of the protons in the halo. Measurements with this technique were performed on the clinical beam of the Gantry1 at the Paul Scherrer Institute. Proton tracks were identified in the emulsion films and the track density was studied at several depths. The corresponding dose was assessed by Monte Carlo simulations and the dose profile was obtained as a function of the distance from the center of the beam spot.

  10. Prediction of In-Phantom Dose Distribution Using In-Air Neutron Beam Characteristics for Boron Neutron Capture Synovectomy

    SciTech Connect

    Verbeke, Jerome M.; Chen, Allen S.; Vujic, Jasmina L.; Leung, Ka-Ngo

    2000-08-15

    A monoenergetic neutron beam simulation study was carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints such as knees and fingers. This study focuses on human knee joints. Two figures of merit are used to measure the neutron beam quality, the ratio of the synovium-absorbed dose to the skin-absorbed dose, and the ratio of the synovium-absorbed dose to the bone-absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment and that (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce the particle transport simulation time by a factor of 10 by modeling the moderator only.

  11. Comparison of distribution and toxicity following repeated oral dosing of different vanadium oxide nanoparticles in mice.

    PubMed

    Park, Eun-Jung; Lee, Gwang-Hee; Yoon, Cheolho; Kim, Dong-Wan

    2016-10-01

    Vanadium is an important ultra-trace element derived from fuel product combustion. With the development of nanotechnology, vanadium oxide nanoparticles (VO NPs) have been considered for application in various fields, thus the possibility of release into the environment and human exposure is also increasing. Considering that verification of bioaccumulation and relevant biological responses are essential for safe application of products, in this study, we aimed to identify the physicochemical properties that determine their health effects by comparing the biological effects and tissue distribution of different types of VO NPs in mice. For this, we prepared five types of VO NPs, commercial (C)-VO2 and -V2O5 NPs and synthetic (S)-VO2, -V2O3, and -V2O5 NPs. While the hydrodynamic diameter of the two types of C-VO NPs was irregular and impossible to measure, those of the three types of S-VO NPs was in the range of 125-170nm. The S- and C-V2O5 NPs showed higher dissolution rates compared to other VO NPs. We orally dosed the five types of VO NPs (70 and 210μg/mouse, approximately 2 and 6mg/kg) to mice for 28 days and compared their biodistribution and toxic effects. We found that S-V2O5 and S-V2O3 NPs more accumulated in tissues compared to other three types of VO NPs, and the accumulated level was in order of heart>liver>kidney>spleen. Additionally, tissue levels of redox reaction-related elements and electrolytes (Na(+), K(+), and Ca(2+)) were most clearly altered in the heart of treated mice. Notably, all S- and C-VO NPs decreased the number of WBCs at the higher dose, while total protein and albumin levels were reduced at the higher dose of S-V2O5 and S-V2O3 NPs. Taken together, we conclude that the biodistribution and toxic effects of VO NPs depend on their dissolution rates and size (surface area). Additionally, we suggest that further studies are needed to clarify effects of VO NPs on functions of the heart and the immune system. PMID:27288913

  12. Design and implementation of a water phantom for IMRT, arc therapy, and tomotherapy dose distribution measurements

    SciTech Connect

    Pallotta, Stefania; Marrazzo, Livia; Bucciolini, Marta

    2007-10-15

    The aim of this paper is to present a new phantom for arc therapy, intensity-modulated radiation therapy (IMRT), and tomotherapy dose distribution measurement in pretreatment verification. The presented phantom is innovative for its use of water as the tissue equivalent material, together with a technical solution specifically designed to support radiographic or radiochromic film and ionization chambers in any desired position. The phantom comprise a Plexiglas container, whose present shape and dimensions offer the possibility to simulate a human torso or abdomen; the container can be filled with water by opening the upper cover. On the internal side of the cover, a set of carbon pipes can support film in the desired coronal, axial, or sagittal planes. At one of the two ends of the phantom, an ionization chamber can be positioned parallel to the rotation axis of the accelerator gantry in all possible positions within a 20 cm diameter cylinder, for film calibration purposes. Inhomogeneities can be inserted into the phantom using the same carbon pipes and plastic sheets used to support film. An example of vertebra-shaped inserts made of bone equivalent material is reported. Radiochromic film can be dipped in water, while radiographic film must be protected to prevent damage. To accomplish this, radiographic film is laminated using a cold laminating film. In order to assess the effects of both the lamination itself and the effects of water on laminated Kodak EDR2 film, the optical density (OD) of conventional, laminated, and laminated film immersed in water and exposed to a range of doses from 0 to 300 cGy were compared. The OD of the three samples receiving the same radiation dose did not present any significant difference, thus proving that laminated EDR2 film can also be used in water. A prerequisite for any dosimetric comparison between planned and measured data is a proper film to plan registration. The solution proposed here is an extrinsic in-plane registration

  13. Quasi 3D dosimetry (EPID, conventional 2D/3D detector matrices)

    NASA Astrophysics Data System (ADS)

    Bäck, A.

    2015-01-01

    Patient specific pretreatment measurement for IMRT and VMAT QA should preferably give information with a high resolution in 3D. The ability to distinguish complex treatment plans, i.e. treatment plans with a difference between measured and calculated dose distributions that exceeds a specified tolerance, puts high demands on the dosimetry system used for the pretreatment measurements and the results of the measurement evaluation needs a clinical interpretation. There are a number of commercial dosimetry systems designed for pretreatment IMRT QA measurements. 2D arrays such as MapCHECK® (Sun Nuclear), MatriXXEvolution (IBA Dosimetry) and OCTAVIOUS® 1500 (PTW), 3D phantoms such as OCTAVIUS® 4D (PTW), ArcCHECK® (Sun Nuclear) and Delta4 (ScandiDos) and software for EPID dosimetry and 3D reconstruction of the dose in the patient geometry such as EPIDoseTM (Sun Nuclear) and Dosimetry CheckTM (Math Resolutions) are available. None of those dosimetry systems can measure the 3D dose distribution with a high resolution (full 3D dose distribution). Those systems can be called quasi 3D dosimetry systems. To be able to estimate the delivered dose in full 3D the user is dependent on a calculation algorithm in the software of the dosimetry system. All the vendors of the dosimetry systems mentioned above provide calculation algorithms to reconstruct a full 3D dose in the patient geometry. This enables analyzes of the difference between measured and calculated dose distributions in DVHs of the structures of clinical interest which facilitates the clinical interpretation and is a promising tool to be used for pretreatment IMRT QA measurements. However, independent validation studies on the accuracy of those algorithms are scarce. Pretreatment IMRT QA using the quasi 3D dosimetry systems mentioned above rely on both measurement uncertainty and accuracy of calculation algorithms. In this article, these quasi 3D dosimetry systems and their use in patient specific pretreatment IMRT

  14. Dose-related distribution of codeine, cocaine, and metabolites into human hair following controlled oral codeine and subcutaneous cocaine administration.

    PubMed

    Scheidweiler, Karl B; Cone, Edward J; Moolchan, Eric T; Huestis, Marilyn A

    2005-05-01

    Hair testing for the determination of drug exposure has many useful applications. Drug incorporated into hair can be found for extended periods following drug exposure. There are few controlled drug administration studies investigating drug distribution into human hair. Ten volunteers participated in a 10-week controlled cocaine and codeine administration study while residing in the secure research ward. Weekly hair samples were collected by electric razor. During the low-dose week (week 4), volunteers received 75 mg/70 kg cocaine subcutaneously and 60 mg/70 kg codeine orally on alternating days, a total of three doses for each drug. Similarly, during week 7, volunteers received three doses 150 mg/70 kg cocaine and 120 mg/70 kg codeine. Maximum hair concentrations (C(max)) were found 1 to 3 weeks after low and high doses. Dose-related C(max) values of cocaine, benzoylecgonine, ecgonine methyl ester, norcocaine, cocaethylene, and codeine were found following low and high doses. Hair analysis was performed using liquid chromatography tandem mass spectrometry. A positive linear relationship was found between total melanin content of hair and C(max) of codeine, cocaine, and metabolites following high dosing. This study demonstrated dose-related concentrations of cocaine and metabolites in human hair following controlled cocaine administration. These data are the first demonstrating melanin-related incorporation of cocaine and metabolites into human hair following controlled cocaine administration. PMID:15743923

  15. SU-F-18C-11: Diameter Dependency of the Radial Dose Distribution in a Long Polyethylene Cylinder

    SciTech Connect

    Bakalyar, D; McKenney, S; Feng, W

    2014-06-15

    Purpose: The radial dose distribution in the central plane of a long cylinder following a long CT scan depends upon the diameter and composition of the cylinder. An understanding of this behavior is required for determining the spatial average of the dose in the central plane. Polyethylene, the material for construction of the TG200/ICRU phantom (30 cm in diameter) was used for this study. Size effects are germane to the principles incorporated in size specific dose estimates (SSDE); thus diameter dependency was explored as well. Method: ssuming a uniform cylinder and cylindrically symmetric conditions of irradiation, the dose distribution can be described using a radial function. This function must be an even function of the radial distance due to the conditions of symmetry. Two effects are accounted for: The direct beam makes its weakest contribution at the center while the contribution due to scatter is strongest at the center and drops off abruptly at the outer radius. An analytic function incorporating these features was fit to Monte Carlo results determined for infinite polyethylene cylinders of various diameters. A further feature of this function is that it is integrable. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the larger sizes. The competing effects described above can Resultin an absolute maximum occurring between the center and outer edge of the cylinders. For the smallest cylinders, the maximum dose may occur at the center. Conclusion: An integrable, analytic function can be used to characterize the radial dependency of dose for cylindrical CT phantoms of various sizes. One use for this is to help determine average dose distribution over the central cylinder plane when equilibrium dose has been reached.

  16. Generating a 2D Representation of a Complex Data Structure

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  17. Factors influencing aerodynamic particle size distribution of suspension pressurized metered dose inhalers.

    PubMed

    Sheth, Poonam; Stein, Stephen W; Myrdal, Paul B

    2015-02-01

    Pressurized metered dose inhalers (pMDIs) are frequently used for the treatment of asthma and chronic obstructive pulmonary disease. The aerodynamic particle size distribution (APSD) of the residual particles delivered from a pMDI plays a key role in determining the amount and region of drug deposition in the lung and thereby the efficacy of the inhaler. In this study, a simulation model that predicts the APSD of residual particles from suspension pMDIs was utilized to identify the primary determinants for APSD. These findings were then applied to better understand the effect of changing drug concentration and micronized drug size on experimentally observed APSDs determined through Andersen Cascade Impactor testing. The experimental formulations evaluated had micronized drug mass median aerodynamic diameters (MMAD) between 1.2 and 2.6 μm and drug concentrations ranging from 0.01 to 1% (w/w) with 8.5% (w/w) ethanol in 1,1,1,2-tetrafluoroethane (HFA-134a). It was determined that the drug concentration, micronized drug size, and initially atomized droplet distribution have a significant impact in modulating the proportion of atomized droplets that contain multiple suspended drug particles, which in turn increases the residual APSD. These factors were found to be predictive of the residual particle MMAD for experimental suspension HFA-134a formulations containing ethanol. The empirical algebraic model allows predicting the residual particle size for a variety of suspension formulations with an average error of 0.096 μm (standard deviation of 0.1 μm). PMID:25273026

  18. Macroscopic geometric heterogeneity effects in radiation dose distribution analysis for boron neutron capture therapy

    SciTech Connect

    Moran, J.M.; Nigg, D.W.; Wheeler, F.J.; Bauer, W.F. )

    1992-05-01

    Calculations of radiation flux and dose distributions for boron neutron capture therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This paper describes such a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for the tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for this model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous-tissue model. Comparison of the results showed that peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10%--20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  19. Gastrointestinal toxicity and its relation to dose distributions in the anorectal region of prostate cancer patients treated with radiotherapy

    SciTech Connect

    Heemsbergen, Wilma D. . E-mail: wheems@nki.nl; Hoogeman, Mischa S.; Hart, Guus A.M.; Lebesque, Joos V.; Koper, Peter C.M.

    2005-03-15

    Purpose: To study the correlations between the dose distributions in the anorectal region and late GI symptoms in patients treated for localized prostate carcinoma. Methods and materials: Data from a randomized study were analyzed. In this trial, patients were treated with either rectangular or conformal fields with a dose of 66 Gy. Data concerning GI symptoms were collected from questionnaires of 197 patients. The distributions of the anorectal region were projected on maps, and the dose parameters were calculated. The incidences of complaints were studied as a function of the dose-area parameters and clinical parameters, using a proportional hazard regression model. Finally, we tested a series of dose parameters originating from different parts of the anorectal region. Results: Analyzing the total region, only a statistically significant dose-area effect relation for bleeding was found (p < 0.01). Defining subareas, we found effect relations for bleeding, soiling, fecal incontinence, and mucus loss. For bleeding and mucus loss, the strongest correlation was found for the dose received by the upper 70-80% of the anorectal region (p < 0.01). For soiling and fecal incontinence, we found the strongest association with the dose to the lower 40-50% (p < 0.05). Conclusion: We found evidence that complaints originate from specific regions of the irradiated lower GI tract. Bleeding and mucus loss are probably related to irradiation of the upper part of the rectum. Soiling and fecal incontinence are more likely related to the dose to the anal canal and the lower part of the rectum.

  20. Feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma from a viewpoint of dose distribution analysis

    SciTech Connect

    Suzuki, Minoru . E-mail: msuzuki@rri.kyoto-u.ac.jp; Sakurai, Yoshinori; Masunaga, Shinichiro; Kinashi, Yuko; Nagata, Kenji; Maruhashi, Akira; Ono, Koji

    2006-12-01

    Purpose: To investigate the feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma (MPM) from a viewpoint of dose distribution analysis using Simulation Environment for Radiotherapy Applications (SERA), a currently available BNCT treatment planning system. Methods and Materials: The BNCT treatment plans were constructed for 3 patients with MPM using the SERA system, with 2 opposed anterior-posterior beams. The {sup 1}B concentrations in the tumor and normal lung in this study were assumed to be 84 and 24 ppm, respectively, and were derived from data observed in clinical trials. The maximum, mean, and minimum doses to the tumors and the normal lung were assessed for each plan. The doses delivered to 5% and 95% of the tumor volume, D{sub 05} and D{sub 95}, were adopted as the representative dose for the maximum and minimum dose, respectively. Results: When the D{sub 05} to the normal ipsilateral lung was 5 Gy-Eq, the D{sub 95} and mean doses delivered to the normal lung were 2.2-3.6 and 3.5-4.2 Gy-Eq, respectively. The mean doses delivered to the tumors were 22.4-27.2 Gy-Eq. The D{sub 05} and D{sub 95} doses to the tumors were 9.6-15.0 and 31.5-39.5 Gy-Eq, respectively. Conclusions: From a viewpoint of the dose-distribution analysis, BNCT has the possibility to be a promising treatment for MPM patients who are inoperable because of age and other medical illnesses.

  1. Distribution of radionuclides in surface soils, Singhbhum Shear Zone, India and associated dose.

    PubMed

    Patra, A C; Sahoo, S K; Tripathi, R M; Puranik, V D

    2013-09-01

    Gamma emitters were estimated in surface soils from a mineralized zone in Eastern India using high purity Germanium detector-based high resolution gamma spectrometry system. Activities of (238)U, (226)Ra, (232)Th, (235)U, (227)Th, (234 m)Pa, (210)Pb, (40)K, and (137)Cs were 79 ± 50, 81 ± 53, 65 ± 23, 4 ± 2, 5 ± 4, 92 ± 50, 97 ± 45, 517 ± 201, and 4 ± 2 Bq/kg, respectively. Most radionuclides were observed to follow log-normal distribution. The correlation between physicochemical properties of the samples, like pH, organic matter content, particle size, and moisture content were also studied. Activity ratios of (226)Ra/(238)U, (210)Pb/(226)Ra, and (227)Th/(235)U indicated deviation from secular equilibrium in some samples. The associated annual effective dose ranged from 0.07 to 0.24 mSv and the mean was calculated to be 0.12 ± 0.04 mSv for this region, indicating it to be one of normal natural background radiation. PMID:23456273

  2. Tissue distribution of residual antimony in rats treated with multiple doses of meglumine antimoniate

    PubMed Central

    Coelho, Deise Riba; Miranda, Elaine Silva; Saint’Pierre, Tatiana Dillenburg; Paumgartten, Francisco José Roma

    2014-01-01

    Meglumine antimoniate (MA) and sodium stibogluconate are pentavalent antimony (SbV) drugs used since the mid-1940s. Notwithstanding the fact that they are first-choice drugs for the treatment of leishmaniases, there are gaps in our knowledge of their toxicological profile, mode of action and kinetics. Little is known about the distribution of antimony in tissues after SbV administration. In this study, we evaluated the Sb content of tissues from male rats 24 h and three weeks after a 21-day course of treatment with MA (300 mg SbV/kg body wt/d, subcutaneous). Sb concentrations in the blood and organs were determined by inductively coupled plasma-mass spectrometry. In rats, as with in humans, the Sb blood levels after MA dosing can be described by a two-compartment model with a fast (t1/2 = 0.6 h) and a slow (t1/2 >> 24 h) elimination phase. The spleen was the organ that accumulated the highest amount of Sb, while bone and thyroid ranked second in descending order of tissues according to Sb levels (spleen >> bone, thyroid, kidneys > liver, epididymis, lungs, adrenals > prostate > thymus, pancreas, heart, small intestines > skeletal muscle, testes, stomach > brain). The pathophysiological consequences of Sb accumulation in the thyroid and Sb speciation in the liver, thyroid, spleen and bone warrant further studies. PMID:25075781

  3. Antibodies labeled with metallic radionuclides: influence of nuclide chemistry on dose distribution.

    PubMed

    Vaughan, A T; Yankuba, S C; Anderson, P

    1987-01-01

    An antibody with human CEA specificity has been labeled with either yttrium-90, scandium-47, or indium-111, via a diethylenetriamine pentaacetic acid (DTPA) link covalently bound to the protein. The clearance of these proteins from the blood of mice can be described by a single exponential; the half-life decreases in the order indium-111 greater than yttrium-90 greater than scandium-47. Associated with the blood clearance is an uptake of radioactivity into the liver; scandium-47 has the highest concentration, indium-111 has the least, and yttrium-90 is intermediate. There is no correlation between these results and the equilibrium stability constants of the metals with DTPA-like ligands. The results obtained show that, in vivo, scandium-47 and yttrium-90 are more easily displaced from DTPA by other ions than is indium-111. They also show that free DTPA is able to extract yttrium-90 and scandium-47, but not indium-111, from the liver of treated animals, indicating that indium-111 is resistant to ligand exchange reactions in vivo. These data indicate that 1) the equilibrium stability constant is not a good indicator of the in vivo stability of metal-labeled proteins and 2) it is possible to manipulate the ion distribution and therefore the dose from scandium-47 and yttrium-90 after injection of the labeled proteins. PMID:3029601

  4. Inhibitory effects of phytochemicals on metabolic capabilities of CYP2D6*1 and CYP2D6*10 using cell-based models in vitro

    PubMed Central

    Qu, Qiang; Qu, Jian; Han, Lu; Zhan, Min; Wu, Lan-xiang; Zhang, Yi-wen; Zhang, Wei; Zhou, Hong-hao

    2014-01-01

    Aim: Herbal products have been widely used, and the safety of herb-drug interactions has aroused intensive concerns. This study aimed to investigate the effects of phytochemicals on the catalytic activities of human CYP2D6*1 and CYP2D6*10 in vitro. Methods: HepG2 cells were stably transfected with CYP2D6*1 and CYP2D6*10 expression vectors. The metabolic kinetics of the enzymes was studied using HPLC and fluorimetry. Results: HepG2-CYP2D6*1 and HepG2-CYP2D6*10 cell lines were successfully constructed. Among the 63 phytochemicals screened, 6 compounds, including coptisine sulfate, bilobalide, schizandrin B, luteolin, schizandrin A and puerarin, at 100 μmol/L inhibited CYP2D6*1- and CYP2D6*10-mediated O-demethylation of a coumarin compound AMMC by more than 50%. Furthermore, the inhibition by these compounds was dose-dependent. Eadie-Hofstee plots demonstrated that these compounds competitively inhibited CYP2D6*1 and CYP2D6*10. However, their Ki values for CYP2D6*1 and CYP2D6*10 were very close, suggesting that genotype-dependent herb-drug inhibition was similar between the two variants. Conclusion: Six phytochemicals inhibit CYP2D6*1 and CYP2D6*10-mediated catalytic activities in a dose-dependent manner in vitro. Thus herbal products containing these phytochemicals may inhibit the in vivo metabolism of co-administered drugs whose primary route of elimination is CYP2D6. PMID:24786236

  5. Development and verification of an analytical algorithm to predict absorbed dose distributions in ocular proton therapy using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Koch, Nicholas C.; Newhauser, Wayne D.

    2010-02-01

    Proton beam radiotherapy is an effective and non-invasive treatment for uveal melanoma. Recent research efforts have focused on improving the dosimetric accuracy of treatment planning and overcoming the present limitation of relative analytical dose calculations. Monte Carlo algorithms have been shown to accurately predict dose per monitor unit (D/MU) values, but this has yet to be shown for analytical algorithms dedicated to ocular proton therapy, which are typically less computationally expensive than Monte Carlo algorithms. The objective of this study was to determine if an analytical method could predict absolute dose distributions and D/MU values for a variety of treatment fields like those used in ocular proton therapy. To accomplish this objective, we used a previously validated Monte Carlo model of an ocular nozzle to develop an analytical algorithm to predict three-dimensional distributions of D/MU values from pristine Bragg peaks and therapeutically useful spread-out Bragg peaks (SOBPs). Results demonstrated generally good agreement between the analytical and Monte Carlo absolute dose calculations. While agreement in the proximal region decreased for beams with less penetrating Bragg peaks compared with the open-beam condition, the difference was shown to be largely attributable to edge-scattered protons. A method for including this effect in any future analytical algorithm was proposed. Comparisons of D/MU values showed typical agreement to within 0.5%. We conclude that analytical algorithms can be employed to accurately predict absolute proton dose distributions delivered by an ocular nozzle.

  6. Comparative study of depth dose distributions for beams of light and heavy nuclei in tissue-like media

    NASA Astrophysics Data System (ADS)

    Pshenichnov, Igor; Mishustin, Igor; Greiner, Walter

    2008-04-01

    We study the energy deposition by beams of light and heavy nuclei in tissue-like media for their possible application in charged-particle cancer therapy. The depth-dose distributions for protons, 3He, 12C, 20Ne and 58Ni nuclei are calculated within a Monte Carlo model based on the GEANT4 toolkit. These distributions are compared with each other and with available experimental data. It is demonstrated that nuclear fragmentation reactions essentially reduce the peak-to-plateau ratio of the dose profiles for deeply penetrating energetic ions heavier than 3He. On the other hand, the shapes of depth-dose profiles for all projectiles up to 58Ni were found similar at low penetration depths.

  7. Experimental determination of particle range and dose distribution in thick targets through fragmentation reactions of stable heavy ions

    NASA Astrophysics Data System (ADS)

    Inaniwa, Taku; Kohno, Toshiyuki; Tomitani, Takehiro; Urakabe, Eriko; Sato, Shinji; Kanazawa, Mitsutaka; Kanai, Tatsuaki

    2006-09-01

    In radiation therapy with highly energetic heavy ions, the conformal irradiation of a tumour can be achieved by using their advantageous features such as the good dose localization and the high relative biological effectiveness around their mean range. For effective utilization of such properties, it is necessary to evaluate the range of incident ions and the deposited dose distribution in a patient's body. Several methods have been proposed to derive such physical quantities; one of them uses positron emitters generated through projectile fragmentation reactions of incident ions with target nuclei. We have proposed the application of the maximum likelihood estimation (MLE) method to a detected annihilation gamma-ray distribution for determination of the range of incident ions in a target and we have demonstrated the effectiveness of the method with computer simulations. In this paper, a water, a polyethylene and a polymethyl methacrylate target were each irradiated with stable 12C, 14N, 16O and 20Ne beams. Except for a few combinations of incident beams and targets, the MLE method could determine the range of incident ions RMLE with a difference between RMLE and the experimental range of less than 2.0 mm under the circumstance that the measurement of annihilation gamma rays was started just after the irradiation of 61.4 s and lasted for 500 s. In the process of evaluating the range of incident ions with the MLE method, we must calculate many physical quantities such as the fluence and the energy of both primary ions and fragments as a function of depth in a target. Consequently, by using them we can obtain the dose distribution. Thus, when the mean range of incident ions is determined with the MLE method, the annihilation gamma-ray distribution and the deposited dose distribution can be derived simultaneously. The derived dose distributions in water for the mono-energetic heavy-ion beams of four species were compared with those measured with an ionization chamber

  8. Commercial production and distribution of fresh fruits and vegetables: A scoping study on the importance of produce pathways to dose

    SciTech Connect

    Marsh, T.L.; Anderson, D.M.; Farris, W.T.; Ikenberry, T.A.; Napier, B.A.; Wilfert, G.L.

    1992-09-01

    This letter report summarizes a scoping study that examined the potential importance of fresh fruit and vegetable pathways to dose. A simple production index was constructed with data collected from the Washington State Department of Agriculture (WSDA), the United States Bureau of the Census, and the United States Department of Agriculture (USDA). Hanford Environmental Dose Reconstruction (HEDR) Project staff from Battelle, Pacific Northwest Laboratories, in cooperation with members of the Technical Steering Panel (TSP), selected lettuce and spinach as the produce pathways most likely to impact dose. County agricultural reports published in 1956 provided historical descriptions of the predominant distribution patterns of fresh lettuce and spinach from production regions to local population centers. Pathway rankings and screening dose estimates were calculated for specific populations living in selected locations within the HEDR study area.

  9. Optimized computational method for determining the beta dose distribution using a multiple-element thermoluminescent dosimeter system

    SciTech Connect

    Shen, L.; Levine, S.H.; Catchen, G.L.

    1987-07-01

    This paper describes an optimization method for determining the beta dose distribution in tissue, and it describes the associated testing and verification. The method uses electron transport theory and optimization techniques to analyze the responses of a three-element thermoluminescent dosimeter (TLD) system. Specifically, the method determines the effective beta energy distribution incident on the dosimeter system, and thus the system performs as a beta spectrometer. Electron transport theory provides the mathematical model for performing the optimization calculation. In this calculation, parameters are determined that produce calculated doses for each of the chip/absorber components in the three-element TLD system. The resulting optimized parameters describe an effective incident beta distribution. This method can be used to determine the beta dose specifically at 7 mg X cm-2 or at any depth of interest. The doses at 7 mg X cm-2 in tissue determined by this method are compared to those experimentally determined using an extrapolation chamber. For a great variety of pure beta sources having different incident beta energy distributions, good agreement is found. The results are also compared to those produced by a commonly used empirical algorithm. Although the optimization method produces somewhat better results, the advantage of the optimization method is that its performance is not sensitive to the specific method of calibration.

  10. Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters.

    PubMed

    Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Hematiyan, Mohammad Rahim; Koontz, Craig; Meigooni, Ali S

    2015-12-01

    Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost(®) brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5%  ±  5.9%. PMID:26572554

  11. Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters

    NASA Astrophysics Data System (ADS)

    Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Rahim Hematiyan, Mohammad; Koontz, Craig; Meigooni, Ali S.

    2015-12-01

    Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost® brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5%  ±  5.9%.

  12. SU-E-I-16: Scan Length Dependency of the Radial Dose Distribution in a Long Polyethylene Cylinder

    SciTech Connect

    Bakalyar, D; McKenney, S; Feng, W

    2015-06-15

    Purpose: The area-averaged dose in the central plane of a long cylinder following a CT scan depends upon the radial dose distribution and the length of the scan. The ICRU/TG200 phantom, a polyethylene cylinder 30 cm in diameter and 60 cm long, was the subject of this study. The purpose was to develop an analytic function that could determine the dose for a scan length L at any point in the central plane of this phantom. Methods: Monte Carlo calculations were performed on a simulated ICRU/TG200 phantom under conditions of cylindrically symmetric conditions of irradiation. Thus, the radial dose distribution function must be an even function that accounts for two competing effects: The direct beam makes its weakest contribution at the center while the scatter begins abruptly at the outer radius and grows as the center is approached. The scatter contribution also increases with scan length with the increase approaching its limiting value at the periphery faster than along the central axis. An analytic function was developed that fit the data and possessed these features. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the ICRU/TG200 phantom. The relative depth of the minimum decreases as the scan length grows and an absolute maximum can occur between the center and outer edge of the cylinders. As the scan length grows, the relative dip in the center decreases so that for very long scan lengths, the dose profile is relatively flat. Conclusion: An analytic function characterizes the radial and scan length dependency of dose for long cylindrical phantoms. The function can be integrated with the results expressed in closed form. One use for this is to help determine average dose distribution over the central cylinder plane for any scan length.

  13. SU-E-T-77: Comparison of 2D and 3D Gamma Analysis in Patient-Specific QA for Prostate VMAT Plans

    SciTech Connect

    Clemente, F; Perez, C

    2014-06-01

    Purpose: Patient-specific QA procedures for IMRT and VMAT are traditionally performed by comparing TPS calculations with measured single point values and plane dose distributions by means of gamma analysis. New QA devices permit us to calculate 3D dose distributions on patient anatomy as redundant secondary check and reconstruct it from measurements taken with 2D and 3D detector arrays. 3D dose calculations allow us to perform DVH-based comparisons with clinical relevance, as well as 3D gamma analysis. One of these systems (Compass, IBA Dosimetry) combines traditional 2D with new anatomical-based 3D gamma analysis. This work shows the ability of this system by comparing 2D and 3D gamma analysis in pre-treatment QA for several VMAT prostate plans. Methods: Compass is capable of calculating dose as secondary check from DICOM TPS data and reconstructing it from measurements taken by a 2D ion chamber array (MatriXX Evolution, IBA Dosimetry). Both 2D and 3D gamma tests are available to compare calculated and reconstructed dose in Compass with TPS RT Dose. Results: 15 VMAT prostate plans have been measured with Compass. Dose is reconstructed with Compass for these plans. 2D gamma comparisons can be done for any plane from dose matrix. Mean gamma passing rates for isocenter planes (axial, coronal, sagittal) are (99.7±0.2)%, (99.9±0.1)%, (99.9±0.1)% for reconstructed dose planes. 3D mean gamma passing rates are (98.5±1.7)% for PTVs, (99.1±1.5)% for rectum, (100.0±0.0)% for bladder, (99.6±0.7)% for femoral heads and (98.1±4.1)% for penile bulb. Conclusion: Compass is a powerful tool to perform a complete pre-treatment QA analysis, from 2D techniques to 3D DVH-based techniques with clinical relevance. All reported values for VMAT prostate plans are in good agreement with TPS values. This system permits us to ensure the accuracy in the delivery of VMAT treatments completing a full patient-specific QA program.

  14. The use of normoxic polymer gel for measuring dose distributions of 1, 4 and 30 mm cones

    NASA Astrophysics Data System (ADS)

    Lee, C. C.; Wu, J. F.; Chang, K. P.; Chu, C. H.; Wey, S. P.; Liu, H. L.; Tung, C. J.; Wu, S. W.; Chao, T. C.

    2014-11-01

    This study demonstrates the use of normoxic polymer gel for measuring dose distributions of small fields that lack lateral electronic equilibrium. Two different types of normoxic polymer gel, MAGAT and PAGAT, are studied in a larger field (10 cm×10 cm) and 1, 4 and 30 mm cones to obtain cone factors, dose profiles and percentage depth doses. These results were then compared to KODAK XV film measurements and BEAMnrc Monte Carlo simulations. The results show that the sensitivity of PAGAT gel is 0.090±0.074 s-1 Gy-1, which may not be suitable for small-field dosimetry with a 0.3 mm resolution scanned using a 3 T MR imager in a dose range lower than 2.5 Gy. There are good agreements between cone factors estimated using KODAK XV film and MAGAT gel. In a dose profile comparison, good dose agreement among MAGAT gel, XV film and MC simulation can be seen in the central area for a 30 mm cone. In penumbra, the distance to agreement is at most 1.2 mm (4 pixel), and less than 0.3 mm (1 pixel) for 4 and 1 mm cones. In a percentage depth dose comparison, there were good agreements between MAGAT and MC up to a depth of 8 cm. Possible factors for gel uncertainty such as MRI magnetic field inhomogeneity and temperature were also investigated.

  15. Remote distributed optical fibre dose measuring of high gamma-irradiation with highly sensitive Al- and P-doped fibres

    NASA Astrophysics Data System (ADS)

    Faustov, A. V.; Gusarov, A.; Wuilpart, M.; Fotiadi, A.; Liokumivich, L. B.; Zolotovskiy, I. O.; Tomashuk, A. L.; de Schoutheete, T.; Mégret, P.

    2013-05-01

    We present our results on measuring distributed Radiation-Induced Absorption (RIA) by means of a commercially available Optical Frequency Domain Reflectometry (OFDR) system. We also compare distributed OFDR RIA measurements with spatially integrated spectral transmission detection using an Optical Spectra Analyser (OSA). We have chosen four different highly gamma-radiation sensitive fibres, two of which were doped with Al and two with P. The dose rate during irradiations was about 590 Gy/h. The irradiations were conducted at temperatures of 30°C and 80°C. Different temperatures were needed for studying the temperature dependence of the annealing speed of RIA. All four fibres demonstrated a strong saturation-like increase of RIA with the dose accumulation up to several tens of dB/m as detected by the OSA. In case of the OFDR measurements the change of the absorption in an optical fibre resulted in a clear change of the slope of the corresponding Rayleigh backscattering trace. The RIA dependences measured with the OFDR were in a reasonable agreement with the measurements obtained with the OSA. This allows us to use the RIA dependences on absorption dose obtained by means of OSA for the distributed dose reconstruction based on the OFDR technique. We also irradiated different lengths of one of the P-doped fibers to see if it influences accuracy of the distributed dose detection and to find out the minimal possible length of the probe. The results of the presented experiments provide a basis for a dose estimation model based on RIA in which temperature oscillations are taken into account.

  16. Analysis of Dose Distribution in the Heart for Radiosurgical Ablation of Atrial Fibrillation.

    PubMed

    Gardner, Edward A; Weidlich, Georg A

    2016-01-01

    In a treatment planning study, radiosurgical treatment plans designed to produce lesions on the left atrium were created using two different methodologies. In one, structures in the heart (mitral valve and coronary arteries) were designated as critical structures while this was not done in the second plan. The treatment plans that were created were compared with standards for heart dose used when treating spine tumors. Although the dosage for the whole heart greatly exceeded the dose standards, when only the dose to the ventricles was considered, the plan where the mitral valve was spared was very close to the dose standards. The ventricles received a substantially higher dose in the plan where the mitral valve was not a critical structure. Although neither treatment plan was delivered, this study demonstrated the feasibility of treating the heart while minimizing dose to the ventricles. PMID:27610282

  17. Analysis of Dose Distribution in the Heart for Radiosurgical Ablation of Atrial Fibrillation

    PubMed Central

    Weidlich, Georg A.

    2016-01-01

    In a treatment planning study, radiosurgical treatment plans designed to produce lesions on the left atrium were created using two different methodologies. In one, structures in the heart (mitral valve and coronary arteries) were designated as critical structures while this was not done in the second plan. The treatment plans that were created were compared with standards for heart dose used when treating spine tumors. Although the dosage for the whole heart greatly exceeded the dose standards, when only the dose to the ventricles was considered, the plan where the mitral valve was spared was very close to the dose standards. The ventricles received a substantially higher dose in the plan where the mitral valve was not a critical structure. Although neither treatment plan was delivered, this study demonstrated the feasibility of treating the heart while minimizing dose to the ventricles. PMID:27610282

  18. 2D dosimetry in a proton beam with a scintillating GEM detector

    NASA Astrophysics Data System (ADS)

    Seravalli, E.; de Boer, M. R.; Geurink, F.; Huizenga, J.; Kreuger, R.; Schippers, J. M.; van Eijk, C. W. E.

    2009-06-01

    A two-dimensional position-sensitive dosimetry system based on a scintillating gas detector is being developed for pre-treatment verification of dose distributions in particle therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two gas electron multiplier (GEM) structures are mounted (Seravalli et al 2008b Med. Phys. Biol. 53 4651-65). Photons emitted by the excited Ar/CF4 gas molecules during the gas multiplication in the GEM holes are detected by a mirror-lens-CCD camera system. The intensity distribution of the measured light spot is proportional to the 2D dose distribution. In this work, we report on the characterization of the scintillating GEM detector in terms of those properties that are of particular importance in relative dose measurements, e.g. response reproducibility, dose dependence, dose rate dependence, spatial and time response, field size dependence, response uniformity. The experiments were performed in a 150 MeV proton beam. We found that the detector response is very stable for measurements performed in succession (σ = 0.6%) and its response reproducibility over 2 days is about 5%. The detector response was found to be linear with the dose in the range 0.05-19 Gy. No dose rate effects were observed between 1 and 16 Gy min-1 at the shallow depth of a water phantom and 2 and 38 Gy min-1 at the Bragg peak depth. No field size effects were observed in the range 120-3850 mm2. A signal rise and fall time of 2 µs was recorded and a spatial response of <=1 mm was measured.

  19. Comparison of the dose distribution obtained from dosimetric systems with intensity modulated radiotherapy planning system in the treatment of prostate cancer

    NASA Astrophysics Data System (ADS)

    Gökçe, M.; Uslu, D. Koçyiǧit; Ertunç, C.; Karalı, T.

    2016-03-01

    The aim of this study is to compare Intensity Modulated Radiation Therapy (IMRT) plan of prostate cancer patients with different dose verification systems in dosimetric aspects and to compare these systems with each other in terms of reliability, applicability and application time. Dosimetric control processes of IMRT plan of three prostate cancer patients were carried out using thermoluminescent dosimeter (TLD), ion chamber (IC) and 2D Array detector systems. The difference between the dose values obtained from the dosimetric systems and treatment planning system (TPS) were found to be about % 5. For the measured (TLD) and calculated (TPS) doses %3 percentage differences were obtained for the points close to center while percentage differences increased at the field edges. It was found that TLD and IC measurements will increase the precision and reliability of the results of 2D Array.

  20. Effect of tissue composition on dose distribution in brachytherapy with various photon emitting sources

    PubMed Central

    Ghorbani, Mahdi; Salahshour, Fateme; Haghparast, Abbas; Knaup, Courtney

    2014-01-01

    Purpose The aim of this study is to compare the dose in various soft tissues in brachytherapy with photon emitting sources. Material and methods 103Pd, 125I, 169Yb, 192Ir brachytherapy sources were simulated with MCNPX Monte Carlo code, and their dose rate constant and radial dose function were compared with the published data. A spherical phantom with 50 cm radius was simulated and the dose at various radial distances in adipose tissue, breast tissue, 4-component soft tissue, brain (grey/white matter), muscle (skeletal), lung tissue, blood (whole), 9-component soft tissue, and water were calculated. The absolute dose and relative dose difference with respect to 9-component soft tissue was obtained for various materials, sources, and distances. Results There was good agreement between the dosimetric parameters of the sources and the published data. Adipose tissue, breast tissue, 4-component soft tissue, and water showed the greatest difference in dose relative to the dose to the 9-component soft tissue. The other soft tissues showed lower dose differences. The dose difference was also higher for 103Pd source than for 125I, 169Yb, and 192Ir sources. Furthermore, greater distances from the source had higher relative dose differences and the effect can be justified due to the change in photon spectrum (softening or hardening) as photons traverse the phantom material. Conclusions The ignorance of soft tissue characteristics (density, composition, etc.) by treatment planning systems incorporates a significant error in dose delivery to the patient in brachytherapy with photon sources. The error depends on the type of soft tissue, brachytherapy source, as well as the distance from the source. PMID:24790623

  1. Optimal Dose of Vitamin D3 400 I.U. for Average Adults has A Significant Anti-Cancer Effect, While Widely Used 2000 I.U. or Higher Promotes Cancer: Marked Reduction of Taurine & 1α, 25(OH)2D3 Was Found In Various Cancer Tissues and Oral Intake of Optimal Dose of Taurine 175mg for Average Adults, Rather Than 500mg, Was Found to Be A New Potentially Safe and More Effective Method of Cancer Treatment.

    PubMed

    Omura, Yoshiaki; Lu, Dominic; Jones, Marilyn K; Nihrane, Abdallah; Duvvi, Harsha; Yapor, Dario; Shimotsuura, Yasuhiro; Ohki, Motomu

    2016-01-01

    During the past 10 years, the author had found that the optimal dose of Vitamin D3 400 I.U. has safe & effective anticancer effects, while commonly used 2000-5000 I.U. of Vit. D3 often creates a 2-3 time increase in cancer markers. We examined the concentration of Taurine in normal internal organs and in cancer using Bi-Digital O-Ring Test. We found that Taurine levels in normal tissue are 4-6ng. But, the amount of Taurine of average normal value of 5.0-5.25ng was strikingly reduced to 0.0025-0.0028ng in this study of several examples in adenocarcinomas of the esophagus, stomach, pancreas, colon, prostate, and lung, as well as breast cancer. The lowest Taurine levels of 0.0002-0.0005ng were found in so called Zika virus infected babies from Brazil with microcephaly. While Vitamin D3 receptor stimulant 1α, 25 (OH)2D3 in normal tissues was 0.45-0.53ng, they were reduced to 0.025-0.006ng in cancers (1/100th-1/200th of normal value), particularly in various adenocarcinomas. All of these adenocarcinomas had about 1500ng HPV-16 viral infection. In 500 breast cancers, about 97% had HPV-16. The optimal dose of Taurine for average adult has been found to be about 175mg, rather than the widely used 500mg. In addition, since Taurine is markedly reduced to close to 1/1000th-1/2000th of its normal value in these cancer tissues, we examined the effect of the optimal dose of Taurine on cancer patients. Optimal dose of Taurine produced a very significant decrease in cancer-associated parameters, such as Oncogene C-fosAb2 & Integrin α5β1 being reduced to less than 1/1,000th, and 8-OH-dG (which increases in the presence of DNA mutation) reduced to less than 1/10th. The optimal dose of Taurine 175mg for average adult various cancer patient 3 times a day alone provide beneficial effects with very significant anti-cancer effects with strikingly increased urinary excretion of bacteria, viruses, & funguses, asbestos, toxic metals & other toxic substances. However, optimal doses of

  2. Depth Dose Distribution Study within a Phantom Torso after Irradiation with a Simulated Solar Particle Event at NSRL

    NASA Technical Reports Server (NTRS)

    Berger, Thomas; Matthiae, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis; Reitz, Guenther

    2010-01-01

    The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are compounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrapolation of skin dose to organ dose, which can lead to over- or underestimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be predicted to within about a +10% accuracy using space radiation transport models for galactic cosmic rays (GCR) and trapped radiation behind shielding. However for solar particle event (SPE) with steep energy spectra and for extra-vehicular activities on the surface of the moon where only tissue shielding is present, transport models predict that there are large differences in model assumptions in projecting organ doses. Therefore experimental verification of SPE induced organ doses may be crucial for the design of lunar missions. In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field

  3. Direct intratumoral infusion of liposome encapsulated rhenium radionuclides for cancer therapy: Effects of nonuniform intratumoral dose distribution

    SciTech Connect

    Hrycushko, Brian A.; Li Shihong; Goins, Beth; Otto, Randal A.; Bao, Ande

    2011-03-15

    Purpose: Focused radiation therapy by direct intratumoral infusion of lipid nanoparticle (liposome)-carried beta-emitting radionuclides has shown promising results in animal model studies; however, little is known about the impact the intratumoral liposomal radionuclide distribution may have on tumor control. The primary objective of this work was to investigate the effects the intratumoral absorbed dose distributions from this cancer therapy modality have on tumor control and treatment planning by combining dosimetric and radiobiological modeling with in vivo imaging data. Methods: {sup 99m}Tc-encapsulated liposomes were intratumorally infused with a single injection location to human head and neck squamous cell carcinoma xenografts in nude rats. High resolution in vivo planar imaging was performed at various time points for quantifying intratumoral retention following infusion. The intratumoral liposomal radioactivity distribution was obtained from 1 mm resolution pinhole collimator SPECT imaging coregistered with CT imaging of excised tumors at 20 h postinfusion. Coregistered images were used for intratumoral dosimetric and radiobiological modeling at a voxel level following extrapolation to the therapeutic analogs, {sup 186}Re/{sup 188}Re liposomes. Effective uniform dose (EUD) and tumor control probability (TCP) were used to assess therapy effectiveness and possible methods of improving upon tumor control with this radiation therapy modality. Results: Dosimetric analysis showed that average tumor absorbed doses of 8.6 Gy/MBq (318.2 Gy/mCi) and 5.7 Gy/MBq (209.1 Gy/mCi) could be delivered with this protocol of radiation delivery for {sup 186}Re/{sup 188}Re liposomes, respectively, and 37-92 MBq (1-2.5 mCi)/g tumor administered activity; however, large intratumoral absorbed dose heterogeneity, as seen in dose-volume histograms, resulted in insignificant values of EUD and TCP for achieving tumor control. It is indicated that the use of liposomes encapsulating

  4. New investigation of distribution imaging and content uniformity of very low dose drugs using hot-melt extrusion method.

    PubMed

    Park, Jun-Bom; Kang, Chin-Yang; Kang, Wie-Soo; Choi, Han-Gon; Han, Hyo-Kyung; Lee, Beom-Jin

    2013-12-31

    The content uniformity of low dose drugs in dosage forms is very important for quality assurance. The aim of this study was to prepare uniformly and homogeneously distributed dosage forms of very low-dose drugs using twin screw hot-melt extrusion (HME) and to investigate the distribution of drugs using instrumental analyses. For the feasibility of HME method, a very low amount of coumarin-6, a fluorescent dye, was used to visualize distribution images using confocal laser scanning microscope (CLSM). Limaprost, tamsulosin and glimepiride were then used as low-dose model drugs to study the applicability of HME for content uniformity and distribution behaviors. Hydrophilic thermosensitive polymers with low melting point, such as Poloxamer188 and polyethylene glycol (PEG) 6000, were chosen as carriers. The melt extrusion was carried out around 50°C, at which both carriers were easily dissolved but model drugs remained in solid form. The physicochemical properties of the hot-melt extrudates, including differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FT-IR), were measured. Content uniformity of the drugs was also checked by HPLC. CLSM imaging showed that model drugs were well distributed throughout the hot-melt extrudate, giving better content uniformity with low batch-to-batch variations compared with simple physical mixtures. DSC, PXRD and FT-IR data showed that there was no interaction or interference between model drugs and thermosensitive polymers. The current HME methods could be used to prepare uniformly distributed and reproducible solid dosage forms containing very low dose drugs for further pharmaceutical applications. PMID:24157343

  5. Magnitude of Residual Internal Anatomy Motion on Heavy Charged Particle Dose Distribution in Respiratory Gated Lung Therapy

    SciTech Connect

    Mori, Shinichiro Asakura, Hiroshi; Kandatsu, Susumu; Kumagai, Motoki; Baba, Masayuki; Endo, Masahiro

    2008-06-01

    Purpose: To assess the variation in carbon beam dose distribution due to residual motion in lung cancer patients undergoing respiratory-gated radiotherapy. Methods and Materials: A total of 11 lung cancer patients underwent four-dimensional computed tomography with a 256-multislice computed tomography scanner under free-breathing conditions. A compensating bolus was designed to cover the treatment beam for all planning target volumes during a 30% duty cycle centered on exhalation (gating window). This bolus was applied to the four-dimensional computed tomography data for one respiratory cycle, and then the carbon beam dose distribution was calculated. Results: A water equivalent pathlength variation of <5 mm was observed in the gating window, but this increased to {<=}20 mm on inhalation. As a result, beam overshoot/undershoot occurred around inhalation, which increased the excessive dosing to normal tissues and the organs at risk. The dose for >95% volume irradiation is dependent on the respiratory phase but not the gating window. However, the dose for >95% volume irradiation correlated well with the tumor displacement distance. More than 90% of the dose for >95% volume irradiation could be delivered in the gating window with <4-mm tumor displacement resulting from exhalation. Conclusion: The results of our study have shown that even when the treatment beam delivery occurs outside the gating window, the prescribed dose to the target is not affected in patients with a tumor displacement of <4 mm. Thus, respiratory gating is not required in radiotherapy for patients with <4-mm tumor displacement in a respiratory cycle.

  6. Four-dimensional dose distributions of step-and-shoot IMRT delivered with real-time tumor tracking for patients with irregular breathing: Constant dose rate vs dose rate regulation

    SciTech Connect

    Yang Xiaocheng; Han-Oh, Sarah; Gui Minzhi; Niu Ying; Yu, Cedric X.; Yi Byongyong

    2012-09-15

    Purpose: Dose-rate-regulated tracking (DRRT) is a tumor tracking strategy that programs the MLC to track the tumor under regular breathing and adapts to breathing irregularities during delivery using dose rate regulation. Constant-dose-rate tracking (CDRT) is a strategy that dynamically repositions the beam to account for intrafractional 3D target motion according to real-time information of target location obtained from an independent position monitoring system. The purpose of this study is to illustrate the differences in the effectiveness and delivery accuracy between these two tracking methods in the presence of breathing irregularities. Methods: Step-and-shoot IMRT plans optimized at a reference phase were extended to remaining phases to generate 10-phased 4D-IMRT plans using segment aperture morphing (SAM) algorithm, where both tumor displacement and deformation were considered. A SAM-based 4D plan has been demonstrated to provide better plan quality than plans not considering target deformation. However, delivering such a plan requires preprogramming of the MLC aperture sequence. Deliveries of the 4D plans using DRRT and CDRT tracking approaches were simulated assuming the breathing period is either shorter or longer than the planning day, for 4 IMRT cases: two lung and two pancreatic cases with maximum GTV centroid motion greater than 1 cm were selected. In DRRT, dose rate was regulated to speed up or slow down delivery as needed such that each planned segment is delivered at the planned breathing phase. In CDRT, MLC is separately controlled to follow the tumor motion, but dose rate was kept constant. In addition to breathing period change, effect of breathing amplitude variation on target and critical tissue dose distribution is also evaluated. Results: Delivery of preprogrammed 4D plans by the CDRT method resulted in an average of 5% increase in target dose and noticeable increase in organs at risk (OAR) dose when patient breathing is either 10% faster or

  7. A Mathematical Study to Select Fractionation Regimen Based on Physical Dose Distribution and the Linear-Quadratic Model

    SciTech Connect

    Mizuta, Masahiro; Takao, Seishin; Date, Hiroyuki; Kishimoto, Naoki; Sutherland, Kenneth L.; Onimaru, Rikiya; Shirato, Hiroki

    2012-11-01

    Purpose: Hypofractionated irradiation is often used in precise radiotherapy instead of conventional multifractionated irradiation. We propose a novel mathematical method for selecting a hypofractionated or multifractionated irradiation regimen based on physical dose distribution adding to biologic consideration. Methods and Materials: The linear-quadratic model was used for the radiation effects on tumor and normal tissues, especially organs at risk (OARs). On the basis of the assumption that the OAR receives a fraction of the dose intended for the tumor, the minimization problem for the damage effect on the OAR was treated under the constraint that the radiation effect on the tumor is fixed. Results: For an N-time fractionated irradiation regimen, the constraint of tumor lethality was described by an N-dimensional hypersphere. The total dose of the fractionated irradiations was considered for minimizing the damage effect on the OAR under the hypersphere condition. It was found that the advantage of hypofractionated or multifractionated irradiation therapies depends on the magnitude of the ratio of {alpha}/{beta} parameters for the OAR and tumor in the linear-quadratic model and the ratio of the dose for the OAR and tumor. Conclusions: Our mathematical method shows that multifractionated irradiation with a constant dose is better if the ratio of {alpha}/{beta} for the OAR and tumor is less than the ratio of the dose for the OAR and tumor, whereas hypofractionated irradiation is better otherwise.

  8. Time-resolved dose distributions to moving targets during volumetric modulated arc therapy with and without dynamic MLC tracking

    PubMed Central

    Ravkilde, Thomas; Keall, Paul J.; Grau, Cai; Høyer, Morten; Poulsen, Per R.

    2013-01-01

    Purpose: The highly conformal doses delivered by volumetric modulated arc therapy (VMAT) may be compromised by intrafraction target motion. Although dynamic multileaf collimator (DMLC) tracking can mitigate the dosimetric impact of motion on the accumulated dose, residual errors still exist. The purpose of this study was to investigate the temporal evolution of dose errors throughout VMAT treatments delivered with and without DMLC tracking. Methods: Tracking experiments were performed on a linear accelerator connected to prototype DMLC tracking software. A three-axis motion stage reproduced representative clinical trajectories of four lung tumors and four prostates. For each trajectory, two VMAT treatment plans (low and high modulation) were delivered with and without DMLC tracking as well as to a static phantom for reference. Dose distributions were measured continuously at 72 Hz using a dosimeter with biplanar diode arrays. During tracking, the MLC leaves were continuously refitted to the 3D target position measured by an electromagnetic transponder at 30 Hz. The dosimetric errors caused in the 32 motion experiments were quantified by a time-resolved 3%/3 mmγ-test. The erroneously exposed areas in treatment beam's eye view (BEV) caused by inadequate real-time MLC adaptation were calculated and compared with the time-resolved γ failure rates. Results: The transientγ failure rate was on average 16.8% without tracking and 5.3% with tracking. The γ failure rate correlated well with the erroneously exposed areas in BEV (mean of Pearson r = 0.83, p < 0.001). For the final accumulated doses, the mean γ failure rate was 17.9% without tracking and 1.0% with tracking. With tracking the transient dose errors tended to cancel out resulting in the low mean γ failure rate for the accumulated doses. Conclusions: Time-resolved measurements allow pinpointing of transient errors in dose during VMAT delivery as well as monitoring of erroneous dose evolution in key target

  9. Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography

    SciTech Connect

    Kroll, Florian; Karsch, Leonhard; Pawelke, Jörg

    2013-08-15

    Purpose: Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-term stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time.Methods: A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators.Results: Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined

  10. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  11. Dose distribution outside the target volume for 170-MeV proton beam.

    PubMed

    Pachnerová Brabcová, K; Ambrožová, I; Kubančák, J; Puchalska, M; Vondráček, V; Molokanov, A G; Sihver, L; Davídková, M

    2014-10-01

    Dose delivered outside the proton field during radiotherapy can potentially lead to secondary cancer development. Measurements with a 170-MeV proton beam were performed with passive detectors (track etched detectors and thermoluminescence dosemeters) in three different depths along the Bragg curve. The measurement showed an uneven decrease of the dose outside of the beam field with local enhancements. The major contribution to the delivered dose is due to high-energy protons with linear energy transfer (LET) up to 10 keV µm(-1). However, both measurement and preliminary Monte Carlo calculation also confirmed the presence of particles with higher LET. PMID:24759915

  12. Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.; Watts, J. W. Jr; Parnell, T. A.

    1990-01-01

    Significant absorbed dose levels exceeding 1.0 Gy day-1 have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLDs) of U.S.S.R. and U.S.A. manufacture. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.

  13. Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Parnell, T. A.; Akatov, Yu. A.; Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.

    1995-01-01

    Significant absorbed dose levels exceeding 1.0 Gy day(exp -1) have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLD's) made in U.S.S.R. and U.S.A. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.

  14. Solar particle dose rate buildup and distribution in critical body organs

    SciTech Connect

    Atwell, W.; Weyland, M.D.; Simonsen, L.C. ||

    1993-12-31

    Human body organs have varying degrees of radiosensitivity as evidenced by radioepidemiologic tables. The major critical organs for both the male and female that have been identified include the lung, thyroid, stomach, and breast (female). Using computerized anatomical models of the 50th percentile United States Air Force male and female, we present the self-shielding effects of these various body organs and how the shielding effects change as the location (dose point) in the body varies. Several major solar proton events from previous solar cycles and several events from the current 22nd solar cycle have been analyzed. The solar particle event rise time, peak intensity, and decay time vary considerably from event to event. Absorbed dose and dose equivalent rate calculations and organ risk assessment data are presented for each critical body organ. These data are compared with the current NASA astronaut dose limits as recommended by the National Council on Radiation Protection and Measurements.

  15. Solar particle dose rate buildup and distribution in critical body organs

    NASA Technical Reports Server (NTRS)

    Atwell, William; Weyland, Mark D.; Simonsen, Lisa C.

    1993-01-01

    Human body organs have varying degrees of radiosensitivity as evidenced by radioepidemiologic tables. The major critical organs for both the male and female that have been identified include the lung, thyroid, stomach, and breast (female). Using computerized anatomical models of the 50th percentile United States Air Force male and female, we present the self-shielding effects of these various body organs and how the shielding effects change as the location (dose point) in the body varies. Several major solar proton events from previous solar cycles and several events from the current 22nd solar cycle have been analyzed. The solar particle event rise time, peak intensity, and decay time vary considerably from event to event. Absorbed dose and dose equivalent rate calculations and organ risk assessment data are presented for each critical body organ. These data are compared with the current NASA astronaut dose limits as recommended by the National Council on Radiation Protection and Measurements.

  16. NOTE: A Monte Carlo study of dose rate distribution around the specially asymmetric CSM3-a 137Cs source

    NASA Astrophysics Data System (ADS)

    Pérez-Calatayud, J.; Lliso, F.; Ballester, F.; Serrano, M. A.; Lluch, J. L.; Limami, Y.; Puchades, V.; Casal, E.

    2001-07-01

    The CSM3 137Cs type stainless-steel encapsulated source is widely used in manually afterloaded low dose rate brachytherapy. A specially asymmetric source, CSM3-a, has been designed by CIS Bio International (France) substituting the eyelet side seed with an inactive material in the CSM3 source. This modification has been done in order to allow a uniform dose level over the upper vaginal surface when this `linear' source is inserted at the top of the dome vaginal applicators. In this study the Monte Carlo GEANT3 simulation code, incorporating the source geometry in detail, was used to investigate the dosimetric characteristics of this special CSM3-a 137Cs brachytherapy source. The absolute dose rate distribution in water around this source was calculated and is presented in the form of an along-away table. Comparison of Sievert integral type calculations with Monte Carlo results are discussed.

  17. Sensitivities in the production of spread-out Bragg peak dose distributions by passive scattering with beam current modulation

    SciTech Connect

    Lu, H.-M.; Brett, Robert; Engelsman, Martijn; Slopsema, Roelf; Kooy, Hanne; Flanz, Jay

    2007-10-15

    A spread-out Bragg peak (SOBP) is used in proton beam therapy to create a longitudinal conformality of the required dose to the target. In order to create this effect in a passive beam scattering system, a variety of components must operate in conjunction to produce the desired beam parameters. We will describe how the SOBP is generated and will explore the tolerances of the various components and their subsequent effect on the dose distribution. A specific aspect of this investigation includes a case study involving the use of a beam current modulated system. In such a system, the intensity of the beam current can be varied in synchronization with the revolution of the range-modulator wheel. As a result, the weights of the pulled-back Bragg peaks can be individually controlled to produce uniform dose plateaus for a large range of treatment depths using only a small number of modulator wheels.

  18. SU-E-T-324: The Influence of Patient Positioning Uncertainties in Proton Radiotherapy On Proton Range and Dose Distributions

    SciTech Connect

    Liebl, J; Paganetti, H; Winey, B

    2014-06-01

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: 38 clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50% and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs) and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: We identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 mm and 5.8 mm for the 90%-dose falloff position respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. TCP decreases larger than 10% (absolute) were seen for less than 2.2% of the target volumes or non-existent. EUD changes were up to 178% for OARs and 35% for target volumes. Conclusion: The influence of patient positioning uncertainties on proton range in therapy of small lesions in the human brain and target and OAR dosimetry were studied. Observed range uncertainties were correlated with HIs. The clinical practice of using multiple compensator

  19. Depth dose distribution study within a phantom torso after irradiation with a simulated Solar Particle Event at NSRL

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Matthiä, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis A.; Reitz, Guenther

    The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are com-pounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself. Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrap-olation of skin dose to organ dose, which can lead to over-or under-estimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be pre-dicted to within about a +10In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field with the phantom torso. Lymphocyte cells are strategically embedded at selected locations at the skin and internal organs and are processed after irradiation to assess the effects of shielding on the yield of chromosome damage. The first focus of the pre-sented experiment is to correlate biological results with physical dosimetry measurements in the phantom torso. Further on the results of the passive dosimetry using the anthropomorphic phantoms represent the best tool to generate reliable to

  20. Frameless fractionated stereotactic radiation therapy of intracranial lesions: impact of cone beam CT based setup correction on dose distribution

    PubMed Central

    2013-01-01

    Background The purpose of this study was to evaluate the impact of Cone Beam CT (CBCT) based setup correction on total dose distributions in fractionated frameless stereotactic radiation therapy of intracranial lesions. Methods Ten patients with intracranial lesions treated with 30 Gy in 6 fractions were included in this study. Treatment planning was performed with Oncentra® for a SynergyS® (Elekta Ltd, Crawley, UK) linear accelerator with XVI® Cone Beam CT, and HexaPOD™ couch top. Patients were immobilized by thermoplastic masks (BrainLab, Reuther). After initial patient setup with respect to lasers, a CBCT study was acquired and registered to the planning CT (PL-CT) study. Patient positioning was corrected according to the correction values (translational, rotational) calculated by the XVI® system. Afterwards a second CBCT study was acquired and registered to the PL-CT to confirm the accuracy of the corrections. An in-house developed software was used for rigid transformation of the PL-CT to the CBCT geometry, and dose calculations for each fraction were performed on the transformed CT. The total dose distribution was achieved by back-transformation and summation of the dose distributions of each fraction. Dose distributions based on PL-CT, CBCT (laser set-up), and final CBCT were compared to assess the influence of setup inaccuracies. Results The mean displacement vector, calculated over all treatments, was reduced from (4.3 ± 1.3) mm for laser based setup to (0.5 ± 0.2) mm if CBCT corrections were applied. The mean rotational errors around the medial-lateral, superior-inferior, anterior-posterior axis were reduced from (−0.1 ± 1.4)°, (0.1 ± 1.2)° and (−0.2 ± 1.0)°, to (0.04 ± 0.4)°, (0.01 ± 0.4)° and (0.02 ± 0.3)°. As a consequence the mean deviation between planned and delivered dose in the planning target volume (PTV) could be reduced from 12.3% to 0.4% for D95 and from 5.9% to 0.1% for Dav. Maximum

  1. Estimation of angular distribution of neutron dose using time-of-flight for 19F+Al system at 110 MeV

    NASA Astrophysics Data System (ADS)

    Nandy, Maitreyee; Sunil, C.; Maiti, Moumita; Palit, R.; Sarkar, P. K.

    2007-06-01

    We have reported measured angular and energy distributions of neutron dose from 110 MeV 19F projectiles bombarding a thick aluminum target. The measurements are carried out with BC501 liquid scintillator detector using the time-of-flight technique. We have measured neutron energy distributions at 0∘, 30∘, 60∘, 90∘, and 120∘ and converted them to dose distributions using the ICRP recommended fluence to ambient dose equivalent and absorbed dose conversion coefficients. Similar conversions to ambient dose equivalent are done for theoretically estimated distributions from the nuclear reaction model code EMPIRE-2.18. The experimental results are compared with calculated ambient dose equivalent from different empirical formulations proposed by earlier workers. Based on the comparison, we have attempted modifications of the parameters in these empirical expressions.

  2. Assessment of the dose distribution inside a cardiac cath lab using TLD measurements and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Baptista, M.; Teles, P.; Cardoso, G.; Vaz, P.

    2014-11-01

    Over the last decade, there was a substantial increase in the number of interventional cardiology procedures worldwide, and the corresponding ionizing radiation doses for both the medical staff and patients became a subject of concern. Interventional procedures in cardiology are normally very complex, resulting in long exposure times. Also, these interventions require the operator to work near the patient and, consequently, close to the primary X-ray beam. Moreover, due to the scattered radiation from the patient and the equipment, the medical staff is also exposed to a non-uniform radiation field that can lead to a significant exposure of sensitive body organs and tissues, such as the eye lens, the thyroid and the extremities. In order to better understand the spatial variation of the dose and dose rate distributions during an interventional cardiology procedure, the dose distribution around a C-arm fluoroscopic system, in operation in a cardiac cath lab at Portuguese Hospital, was estimated using both Monte Carlo (MC) simulations and dosimetric measurements. To model and simulate the cardiac cath lab, including the fluoroscopic equipment used to execute interventional procedures, the state-of-the-art MC radiation transport code MCNPX 2.7.0 was used. Subsequently, Thermo-Luminescent Detector (TLD) measurements were performed, in order to validate and support the simulation results obtained for the cath lab model. The preliminary results presented in this study reveal that the cardiac cath lab model was successfully validated, taking into account the good agreement between MC calculations and TLD measurements. The simulated results for the isodose curves related to the C-arm fluoroscopic system are also consistent with the dosimetric information provided by the equipment manufacturer (Siemens). The adequacy of the implemented computational model used to simulate complex procedures and map dose distributions around the operator and the medical staff is discussed, in

  3. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors.

    PubMed

    Garnica-Garza, H M

    2009-09-21

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360 degrees arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution. PMID:19700816

  4. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors

    NASA Astrophysics Data System (ADS)

    Garnica-Garza, H. M.

    2009-09-01

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360° arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution.

  5. Study of dose distribution in a human body in international space station compartments with the tissue-equivalent spherical phantom

    PubMed Central

    Shurshakov, Vyacheslav A.; Tolochek, Raisa V.; Kartsev, Ivan S.; Petrov, Vladislav M.; Nikolaev, Igor V.; Moskalyova, Svetlana I.; Lyagushin, Vladimir I.

    2014-01-01

    Space radiation is known to be key hazard of manned space mission. To estimate accurately radiation health risk detailed study of dose distribution inside human body by means of human phantom is conducted. In the space experiment MATROSHKA-R, the tissue-equivalent spherical phantom (32 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been used on board the ISS for more than 8 years. Owing to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a real human body. If compared with the anthropomorphic phantom Rando used inside and outside the ISS, the spherical phantom has lower mass, smaller size and requires less crew time for the detector installation/retrieval; its tissue-equivalent properties are closer to the standard human body tissue than the Rando-phantom material. Originally the spherical phantom was installed in the star board crew cabin of the ISS Service Module, then in the Piers-1, MIM-2 and MIM-1 modules of the ISS Russian segment, and finally in JAXA Kibo module. Total duration of the detector exposure is more than 1700 days in 8 sessions. In the first phase of the experiment with the spherical phantom, the dose measurements were realized with only passive detectors (thermoluminescent and solid-state track detectors). The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. After each session the passive detectors are returned to the ground. The results obtained show the dose difference on the phantom surface as much as a factor of 2, the highest dose being observed close to the outer wall of the compartment, and the lowest dose being in the opposite location along the phantom diameter. Maximum dose rate measured in the phantom is obviously due to the galactic cosmic ray (GCR) and Earth' radiation belt contribution on

  6. PAGAT gel dosimeters for dose distribution measurements in the vicinity of high-density implants: A preliminary study

    NASA Astrophysics Data System (ADS)

    Asena, A.; Kairn, T.; Crowe, S. B.; Smith, S. T.; Trapp, J. V.

    2015-01-01

    This work examined the suitability of the PAGAT gel dosimeter for use in dose distribution measurements around high-density implants. An assessment of the gels reactivity with various metals was performed and no corrosive effects were observed. An artefact reduction technique was also investigated in order to minimise scattering of the laser light in the optical CT scans. The potential for attenuation and backscatter measurements using this gel dosimeter were examined for a temporary tissue expander's internal magnetic port.

  7. Effect of organ size and position on out-of-field dose distributions during radiation therapy

    NASA Astrophysics Data System (ADS)

    Scarboro, Sarah B.; Stovall, Marilyn; White, Allen; Smith, Susan A.; Yaldo, Derek; Kry, Stephen F.; Howell, Rebecca M.

    2010-12-01

    Mantle field irradiation has historically been the standard radiation treatment for Hodgkin lymphoma. It involves treating large regions of the chest and neck with high doses of radiation (up to 30 Gy). Previous epidemiological studies on the incidence of second malignancies following radiation therapy for Hodgkin lymphoma have revealed an increased incidence of second tumors in various organs, including lung, breast, thyroid and digestive tract. Multiple other studies, including the Surveillance, Epidemiology and End Results, indicated an increased incidence in digestive tract including stomach cancers following mantle field radiotherapy. Assessment of stomach dose is challenging because the stomach is outside the treatment field but very near the treatment border where there are steep dose gradients. In addition, the stomach can vary greatly in size and position. We sought to evaluate the dosimetric impact of the size and variable position of the stomach relative to the field border for a typical Hodgkin lymphoma mantle field irradiation. The mean stomach dose was measured using thermoluminescent dosimetry for nine variations in stomach size and position. The mean doses to the nine stomach variations ranged from 0.43 to 0.83 Gy when 30 Gy was delivered to the treatment isocenter. Statistical analyses indicated that there were no significant differences in the mean stomach dose when the stomach was symmetrically expanded up to 3 cm or shifted laterally (medial, anterior or posterior shifts) by up to 3 cm. There was, however, a significant (P > 0.01) difference in the mean dose when the stomach was shifted superiorly or inferiorly by >=2.5 cm.

  8. Effect of organ size and position on out-of-field dose distributions during radiation therapy

    PubMed Central

    Scarboro, Sarah B; Stovall, Marilyn; White, Allen; Smith, Susan A; Yaldo, Derek; Kry, Stephen F; Howell, Rebecca M

    2011-01-01

    Mantle field irradiation has historically been the standard radiation treatment for Hodgkin lymphoma. It involves treating large regions of the chest and neck with high doses of radiation (up to 30 Gy). Previous epidemiological studies on the incidence of second malignancies following radiation therapy for Hodgkin lymphoma have revealed an increased incidence of second tumors in various organs, including lung, breast, thyroid and digestive tract. Multiple other studies, including the Surveillance, Epidemiology and End Results, indicated an increased incidence in digestive tract including stomach cancers following mantle field radiotherapy. Assessment of stomach dose is challenging because the stomach is outside the treatment field but very near the treatment border where there are steep dose gradients. In addition, the stomach can vary greatly in size and position. We sought to evaluate the dosimetric impact of the size and variable position of the stomach relative to the field border for a typical Hodgkin lymphoma mantle field irradiation. The mean stomach dose was measured using thermoluminescent dosimetry for nine variations in stomach size and position. The mean doses to the nine stomach variations ranged from 0.43 to 0.83 Gy when 30 Gy was delivered to the treatment isocenter. Statistical analyses indicated that there were no significant differences in the mean stomach dose when the stomach was symmetrically expanded up to 3 cm or shifted laterally (medial, anterior or posterior shifts) by up to 3 cm. There was, however, a significant (P > 0.01) difference in the mean dose when the stomach was shifted superiorly or inferiorly by ≥ 2.5 cm. PMID:21076195

  9. Comparison of measured and calculated spatial dose distributions for a bench-mark 106Ru/106Rh hot particle source.

    PubMed

    Aydarous, A Sh; Charles, M W; Darley, P J

    2008-01-01

    This study is a part of a programme of research to provide validated dose measurement and calculation techniques for beta emitting hot particles by the construction of well-defined model hot particle sources. This enables parallel measurements and calculations to be critically compared. This particular study concentrates on the high-energy beta emitter, (106)Ru/(106)Rh (Emax = 3.54 MeV). This source is a common constituent of failed nuclear fuel, particularly in accident situations. The depth dose distributions were measured using radiochromic dye film (RDF); an imaging photon detector coupled to an LiF thermoluminescent dosemeter (LiF-IPD) and an extrapolation ionisation chamber (ECH). Dose calculations were performed using the Monte Carlo radiation transport code MCNP4C. Doses were measured and calculated as average values over various areas and depths. Of particular interest are the doses at depths of 7 and 30-50 mg cm(-2), and averaged over an area of 1 cm2, as recommended by the International Commission on Radiological Protection for use in routine and accidental over-exposures of the skin. In this case, the average ratios (MCNP/measurement) for RDF, ECH and LiF-IPD were 1.07 +/- 0.02, 1.02 +/- 0.01 and 0.83 +/- 0.16, respectively. There are significantly greater discrepancies between the ECH and LiF-IPD measurement techniques and calculations-particularly for shallow depths and small averaging areas. PMID:18083995

  10. Validation of nuclear models in Geant4 using the dose distribution of a 177 MeV proton pencil beam

    NASA Astrophysics Data System (ADS)

    Hall, David C.; Makarova, Anastasia; Paganetti, Harald; Gottschalk, Bernard

    2016-01-01

    A proton pencil beam is associated with a surrounding low-dose envelope, originating from nuclear interactions. It is important for treatment planning sy