Science.gov

Sample records for 2d dose distributions

  1. A novel time dependent gamma evaluation function for dynamic 2D and 3D dose distributions.

    PubMed

    Podesta, Mark; Persoon, Lucas C G G; Verhaegen, Frank

    2014-10-21

    Modern external beam radiotherapy requires detailed verification and quality assurance so that confidence can be placed on both the delivery of a single treatment fraction and on the consistency of delivery throughout the treatment course. To verify dose distributions, a comparison between prediction and measurement must be made. Comparisons between two dose distributions are commonly performed using a Gamma evaluation which is a calculation of two quantities on a pixel by pixel basis; the dose difference, and the distance to agreement. By providing acceptance criteria (e.g. 3%, 3 mm), the function will find the most appropriate match within its two degrees of freedom. For complex dynamic treatments such as IMRT or VMAT it is important to verify the dose delivery in a time dependent manner and so a gamma evaluation that includes a degree of freedom in the time domain via a third parameter, time to agreement, is presented here. A C++ (mex) based gamma function was created that could be run on either CPU and GPU computing platforms that would allow a degree of freedom in the time domain. Simple test cases were created in both 2D and 3D comprising of simple geometrical shapes with well-defined boundaries varying over time. Changes of varying magnitude in either space or time were introduced and repeated gamma analyses were performed varying the criteria. A clinical VMAT case was also included, artificial air bubbles of varying size were introduced to a patient geometry, along with shifts of varying magnitude in treatment time. For all test cases where errors in distance, dose or time were introduced, the time dependent gamma evaluation could accurately highlight the errors.The time dependent gamma function presented here allows time to be included as a degree of freedom in gamma evaluations. The function allows for 2D and 3D data sets which are varying over time to be compared using appropriate criteria without penalising minor offsets of subsequent radiation fields

  2. Quantitative comparison of dose distribution in radiotherapy plans using 2D gamma maps and X-ray computed tomography

    PubMed Central

    Balosso, Jacques

    2016-01-01

    Background The advanced dose calculation algorithms implemented in treatment planning system (TPS) have remarkably improved the accuracy of dose calculation especially the modeling of electrons transport in the low density medium. The purpose of this study is to evaluate the use of 2D gamma (γ) index to quantify and evaluate the impact of the calculation of electrons transport on dose distribution for lung radiotherapy. Methods X-ray computed tomography images were used to calculate the dose for twelve radiotherapy treatment plans. The doses were originally calculated with Modified Batho (MB) 1D density correction method, and recalculated with anisotropic analytical algorithm (AAA), using the same prescribed dose. Dose parameters derived from dose volume histograms (DVH) and target coverage indices were compared. To compare dose distribution, 2D γ-index was applied, ranging from 1%/1 mm to 6%/6 mm. The results were displayed using γ-maps in 2D. Correlation between DVH metrics and γ passing rates was tested using Spearman’s rank test and Wilcoxon paired test to calculate P values. Results the plans generated with AAA predicted more heterogeneous dose distribution inside the target, with P<0.05. However, MB overestimated the dose predicting more coverage of the target by the prescribed dose. The γ analysis showed that the difference between MB and AAA could reach up to ±10%. The 2D γ-maps illustrated that AAA predicted more dose to organs at risks, as well as lower dose to the target compared to MB. Conclusions Taking into account of the electrons transport on radiotherapy plans showed a significant impact on delivered dose and dose distribution. When considering the AAA represent the true cumulative dose, a readjusting of the prescribed dose and an optimization to protect the organs at risks should be taken in consideration in order to obtain the better clinical outcome. PMID:27429908

  3. Curtailing patient-specific IMRT QA procedures from 2D dose error distribution

    PubMed Central

    Kurosu, Keita; Sumida, Iori; Mizuno, Hirokazu; Otani, Yuki; Oda, Michio; Isohashi, Fumiaki; Seo, Yuji; Suzuki, Osamu; Ogawa, Kazuhiko

    2016-01-01

    A patient-specific quality assurance (QA) test is conducted to verify the accuracy of dose delivery. It generally consists of three verification processes: the absolute point dose difference, the planar dose differences at each gantry angle, and the planar dose differences by 3D composite irradiation. However, this imposes a substantial workload on medical physicists. The objective of this study was to determine whether our novel method that predicts the 3D delivered dose allows certain patient-specific IMRT QAs to be curtailed. The object was IMRT QA for the pelvic region with regard to point dose and composite planar dose differences. We compared measured doses, doses calculated in the treatment planning system, and doses predicted by in-house software. The 3D predicted dose was reconstructed from the per-field measurement by incorporating the relative dose error distribution into the original dose grid of each beam. All point dose differences between the measured and the calculated dose were within ±3%, whereas 93.3% of them between the predicted and the calculated dose were within ±3%. As for planar dose differences, the gamma passing rates between the calculated and the predicted dose were higher than those between the calculated and the measured dose. Comparison and statistical analysis revealed a correlation between the predicted and the measured dose with regard to both point dose and planar dose differences. We concluded that the prediction-based approach is an accurate substitute for the conventional measurement-based approach in IMRT QA for the pelvic region. Our novel approach will help medical physicists save time on IMRT QA. PMID:26661854

  4. Curtailing patient-specific IMRT QA procedures from 2D dose error distribution.

    PubMed

    Kurosu, Keita; Sumida, Iori; Mizuno, Hirokazu; Otani, Yuki; Oda, Michio; Isohashi, Fumiaki; Seo, Yuji; Suzuki, Osamu; Ogawa, Kazuhiko

    2016-06-01

    A patient-specific quality assurance (QA) test is conducted to verify the accuracy of dose delivery. It generally consists of three verification processes: the absolute point dose difference, the planar dose differences at each gantry angle, and the planar dose differences by 3D composite irradiation. However, this imposes a substantial workload on medical physicists. The objective of this study was to determine whether our novel method that predicts the 3D delivered dose allows certain patient-specific IMRT QAs to be curtailed. The object was IMRT QA for the pelvic region with regard to point dose and composite planar dose differences. We compared measured doses, doses calculated in the treatment planning system, and doses predicted by in-house software. The 3D predicted dose was reconstructed from the per-field measurement by incorporating the relative dose error distribution into the original dose grid of each beam. All point dose differences between the measured and the calculated dose were within ±3%, whereas 93.3% of them between the predicted and the calculated dose were within ±3%. As for planar dose differences, the gamma passing rates between the calculated and the predicted dose were higher than those between the calculated and the measured dose. Comparison and statistical analysis revealed a correlation between the predicted and the measured dose with regard to both point dose and planar dose differences. We concluded that the prediction-based approach is an accurate substitute for the conventional measurement-based approach in IMRT QA for the pelvic region. Our novel approach will help medical physicists save time on IMRT QA.

  5. 2D dose distribution images of a hybrid low field MRI-γ detector

    NASA Astrophysics Data System (ADS)

    Abril, A.; Agulles-Pedrós, L.

    2016-07-01

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the 99mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  6. Electron dose distributions in experimental phantoms: a comparison with 2D pencil beam calculations.

    PubMed

    Cygler, J; Battista, J J; Scrimger, J W; Mah, E; Antolak, J

    1987-09-01

    Dose distributions were measured and computed within inhomogeneous phantoms irradiated with beams of electrons having initial energies of 10 and 18 MeV. The measurements were made with a small p-type silicon diode and the calculations were performed using the pencil beam algorithm developed originally at the M D Anderson Hospital (MDAH). This algorithm, which is available commercially on many radiotherapy planning computers, is based on the Fermi-Eyges theory of electron transport. The phantoms used in this work were composed of water into which two- and three-dimensional inhomogeneities of aluminum and air (embedded in wax) were introduced. This was done in order to simulate the small bones and the air cavities encountered clinically in radiation therapy of the chest wall or neck. Our intent was to test the adequacy of the two-dimensional implementation of the pencil beam approach. The agreement between measured and computed doses is very good for inhomogeneities which are essentially two-dimensional but discrepancies as large as 40% were observed for more complex three-dimensional inhomogeneities. We can only trace the discrepancies to the complex interplay of numerous approximations in the Fermi-Eyges theory of multiple scattering and its adaptation for practical computer-aided radiotherapy planning.

  7. A computerized framework for monitoring four-dimensional dose distributions during stereotactic body radiation therapy using a portal dose image-based 2D/3D registration approach.

    PubMed

    Nakamoto, Takahiro; Arimura, Hidetaka; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Mizoguchi, Asumi; Hirose, Taka-Aki; Honda, Hiroshi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Hirata, Hideki

    2015-03-01

    A computerized framework for monitoring four-dimensional (4D) dose distributions during stereotactic body radiation therapy based on a portal dose image (PDI)-based 2D/3D registration approach has been proposed in this study. Using the PDI-based registration approach, simulated 4D "treatment" CT images were derived from the deformation of 3D planning CT images so that a 2D planning PDI could be similar to a 2D dynamic clinical PDI at a breathing phase. The planning PDI was calculated by applying a dose calculation algorithm (a pencil beam convolution algorithm) to the geometry of the planning CT image and a virtual water equivalent phantom. The dynamic clinical PDIs were estimated from electronic portal imaging device (EPID) dynamic images including breathing phase data obtained during a treatment. The parameters of the affine transformation matrix were optimized based on an objective function and a gamma pass rate using a Levenberg-Marquardt (LM) algorithm. The proposed framework was applied to the EPID dynamic images of ten lung cancer patients, which included 183 frames (mean: 18.3 per patient). The 4D dose distributions during the treatment time were successfully obtained by applying the dose calculation algorithm to the simulated 4D "treatment" CT images. The mean±standard deviation (SD) of the percentage errors between the prescribed dose and the estimated dose at an isocenter for all cases was 3.25±4.43%. The maximum error for the ten cases was 14.67% (prescribed dose: 1.50Gy, estimated dose: 1.72Gy), and the minimum error was 0.00%. The proposed framework could be feasible for monitoring the 4D dose distribution and dose errors within a patient's body during treatment.

  8. SU-E-T-35: An Investigation of the Accuracy of Cervical IMRT Dose Distribution Using 2D/3D Ionization Chamber Arrays System and Monte Carlo Simulation

    SciTech Connect

    Zhang, Y; Yang, J; Liu, H; Liu, D

    2014-06-01

    Purpose: The purpose of this work is to compare the verification results of three solutions (2D/3D ionization chamber arrays measurement and Monte Carlo simulation), the results will help make a clinical decision as how to do our cervical IMRT verification. Methods: Seven cervical cases were planned with Pinnacle 8.0m to meet the clinical acceptance criteria. The plans were recalculated in the Matrixx and Delta4 phantom with the accurate plans parameters. The plans were also recalculated by Monte Carlo using leaf sequences and MUs for individual plans of every patient, Matrixx and Delta4 phantom. All plans of Matrixx and Delta4 phantom were delivered and measured. The dose distribution of iso slice, dose profiles, gamma maps of every beam were used to evaluate the agreement. Dose-volume histograms were also compared. Results: The dose distribution of iso slice and dose profiles from Pinnacle calculation were in agreement with the Monte Carlo simulation, Matrixx and Delta4 measurement. A 95.2%/91.3% gamma pass ratio was obtained between the Matrixx/Delta4 measurement and Pinnacle distributions within 3mm/3% gamma criteria. A 96.4%/95.6% gamma pass ratio was obtained between the Matrixx/Delta4 measurement and Monte Carlo simulation within 2mm/2% gamma criteria, almost 100% gamma pass ratio within 3mm/3% gamma criteria. The DVH plot have slightly differences between Pinnacle and Delta4 measurement as well as Pinnacle and Monte Carlo simulation, but have excellent agreement between Delta4 measurement and Monte Carlo simulation. Conclusion: It was shown that Matrixx/Delta4 and Monte Carlo simulation can be used very efficiently to verify cervical IMRT delivery. In terms of Gamma value the pass ratio of Matrixx was little higher, however, Delta4 showed more problem fields. The primary advantage of Delta4 is the fact it can measure true 3D dosimetry while Monte Carlo can simulate in patients CT images but not in phantom.

  9. A dosimetric study of a heterogeneous phantom for lung stereotactic body radiation therapy comparing Monte Carlo and pencil beam calculations to dose distributions measured with a 2-D diode array

    NASA Astrophysics Data System (ADS)

    Curley, Casey Michael

    Monte Carlo (MC) and Pencil Beam (PB) calculations are compared to their measured planar dose distributions using a 2-D diode array for lung Stereotactic Body Radiation Therapy (SBRT). The planar dose distributions were studied for two different phantom types: an in-house heterogeneous phantom and a homogeneous phantom. The motivation is to mimic the human anatomy during a lung SBRT treatment and incorporate heterogeneities into the pre-treatment Quality Assurance process, where measured and calculated planar dose distributions are compared before the radiation treatment. Individual and combined field dosimetry has been performed for both fixed gantry angle (anterior to posterior) and planned gantry angle delivery. A gamma analysis has been performed for all beam arrangements. The measurements were obtained using the 2-D diode array MapCHECK 2(TM). MC and PB calculations were performed using the BrainLAB iPlan RTRTM Dose software. The results suggest that with the heterogeneous phantom as a quality assurance device, the MC calculations result in closer agreements to the measured values, when using the planned gantry angle delivery method for composite beams. For the homogeneous phantom, the results suggest that the preferred delivery method is at the fixed anterior to posterior gantry angle. Furthermore, the MC and PB calculations do not show significant differences for dose difference and distance to agreement criteria 3%/3mm. However, PB calculations are in better agreement with the measured values for more stringent gamma criteria when considering individual beam whereas MC agreements are closer for composite beam measurements.

  10. 2D Distributed Sensing Via TDR

    DTIC Science & Technology

    2007-11-02

    plate VEGF CompositeSensor Experimental Setup Air 279 mm 61 78 VARTM profile: slope RTM profile: rectangle 22 1 Jul 2003© 2003 University of Delaware...2003 University of Delaware All rights reserved Vision: Non-contact 2D sensing ü VARTM setup constructed within TL can be sensed by its EM field: 2D...300.0 mm/ns. 1 2 1 Jul 2003© 2003 University of Delaware All rights reserved Model Validation “ RTM Flow” TDR Response to 139 mm VEGC

  11. Recovering 3D particle size distributions from 2D sections

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; Olson, Daniel M.

    2017-03-01

    We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible, and practical method to do this; show which of these techniques gives the most faithful conversions; and provide (online) short computer codes to calculate both 2D-3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100-300 individual measurements of apparent particle diameter.

  12. Toward IMRT 2D dose modeling using artificial neural networks: A feasibility study

    SciTech Connect

    Kalantzis, Georgios; Vasquez-Quino, Luis A.; Zalman, Travis; Pratx, Guillem; Lei, Yu

    2011-10-15

    Purpose: To investigate the feasibility of artificial neural networks (ANN) to reconstruct dose maps for intensity modulated radiation treatment (IMRT) fields compared with those of the treatment planning system (TPS). Methods: An artificial feed forward neural network and the back-propagation learning algorithm have been used to replicate dose calculations of IMRT fields obtained from PINNACLE{sup 3} v9.0. The ANN was trained with fluence and dose maps of IMRT fields for 6 MV x-rays, which were obtained from the amorphous silicon (a-Si) electronic portal imaging device of Novalis TX. Those fluence distributions were imported to the TPS and the dose maps were calculated on the horizontal midpoint plane of a water equivalent homogeneous cylindrical virtual phantom. Each exported 2D dose distribution from the TPS was classified into two clusters of high and low dose regions, respectively, based on the K-means algorithm and the Euclidian metric in the fluence-dose domain. The data of each cluster were divided into two sets for the training and validation phase of the ANN, respectively. After the completion of the ANN training phase, 2D dose maps were reconstructed by the ANN and isodose distributions were created. The dose maps reconstructed by ANN were evaluated and compared with the TPS, where the mean absolute deviation of the dose and the {gamma}-index were used. Results: A good agreement between the doses calculated from the TPS and the trained ANN was achieved. In particular, an average relative dosimetric difference of 4.6% and an average {gamma}-index passing rate of 93% were obtained for low dose regions, and a dosimetric difference of 2.3% and an average {gamma}-index passing rate of 97% for high dose region. Conclusions: An artificial neural network has been developed to convert fluence maps to corresponding dose maps. The feasibility and potential of an artificial neural network to replicate complex convolution kernels in the TPS for IMRT dose calculations

  13. Interfractional trend analysis of dose differences based on 2D transit portal dosimetry

    NASA Astrophysics Data System (ADS)

    Persoon, L. C. G. G.; Nijsten, S. M. J. J. G.; Wilbrink, F. J.; Podesta, M.; Snaith, J. A. D.; Lustberg, T.; van Elmpt, W. J. C.; van Gils, F.; Verhaegen, F.

    2012-10-01

    Dose delivery of a radiotherapy treatment can be influenced by a number of factors. It has been demonstrated that the electronic portal imaging device (EPID) is valuable for transit portal dosimetry verification. Patient related dose differences can emerge at any time during treatment and can be categorized in two types: (1) systematic—appearing repeatedly, (2) random—appearing sporadically during treatment. The aim of this study is to investigate how systematic and random information appears in 2D transit dose distributions measured in the EPID plane over the entire course of a treatment and how this information can be used to examine interfractional trends, building toward a methodology to support adaptive radiotherapy. To create a trend overview of the interfractional changes in transit dose, the predicted portal dose for the different beams is compared to a measured portal dose using a γ evaluation. For each beam of the delivered fraction, information is extracted from the γ images to differentiate systematic from random dose delivery errors. From the systematic differences of a fraction for a projected anatomical structures, several metrics are extracted like percentage pixels with |γ| > 1. We demonstrate for four example cases the trends and dose difference causes which can be detected with this method. Two sample prostate cases show the occurrence of a random and systematic difference and identify the organ that causes the difference. In a lung cancer case a trend is shown of a rapidly diminishing atelectasis (lung fluid) during the course of treatment, which was detected with this trend analysis method. The final example is a breast cancer case where we show the influence of set-up differences on the 2D transit dose. A method is presented based on 2D portal transit dosimetry to record dose changes throughout the course of treatment, and to allow trend analysis of dose discrepancies. We show in example cases that this method can identify the causes of

  14. Tailoring the energy distribution and loss of 2D plasmons

    NASA Astrophysics Data System (ADS)

    Lin, Xiao; Rivera, Nicholas; López, Josué J.; Kaminer, Ido; Chen, Hongsheng; Soljačić, Marin

    2016-10-01

    The ability to tailor the energy distribution of plasmons at the nanoscale has many applications in nanophotonics, such as designing plasmon lasers, spasers, and quantum emitters. To this end, we analytically study the energy distribution and the proper field quantization of 2D plasmons with specific examples for graphene plasmons. We find that the portion of the plasmon energy contained inside graphene (energy confinement factor) can exceed 50%, despite graphene being infinitely thin. In fact, this very high energy confinement can make it challenging to tailor the energy distribution of graphene plasmons just by modifying the surrounding dielectric environment or the geometry, such as changing the separation distance between two coupled graphene layers. However, by adopting concepts of parity-time symmetry breaking, we show that tuning the loss in one of the two coupled graphene layers can simultaneously tailor the energy confinement factor and propagation characteristics, causing the phenomenon of loss-induced plasmonic transparency.

  15. DNN-state identification of 2D distributed parameter systems

    NASA Astrophysics Data System (ADS)

    Chairez, I.; Fuentes, R.; Poznyak, A.; Poznyak, T.; Escudero, M.; Viana, L.

    2012-02-01

    There are many examples in science and engineering which are reduced to a set of partial differential equations (PDEs) through a process of mathematical modelling. Nevertheless there exist many sources of uncertainties around the aforementioned mathematical representation. Moreover, to find exact solutions of those PDEs is not a trivial task especially if the PDE is described in two or more dimensions. It is well known that neural networks can approximate a large set of continuous functions defined on a compact set to an arbitrary accuracy. In this article, a strategy based on the differential neural network (DNN) for the non-parametric identification of a mathematical model described by a class of two-dimensional (2D) PDEs is proposed. The adaptive laws for weights ensure the 'practical stability' of the DNN-trajectories to the parabolic 2D-PDE states. To verify the qualitative behaviour of the suggested methodology, here a non-parametric modelling problem for a distributed parameter plant is analysed.

  16. Evaluation of low-dose limits in 3D-2D rigid registration for surgical guidance

    NASA Astrophysics Data System (ADS)

    Uneri, A.; Wang, A. S.; Otake, Y.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Gallia, G. L.; Gokaslan, Z. L.; Siewerdsen, J. H.

    2014-09-01

    An algorithm for intensity-based 3D-2D registration of CT and C-arm fluoroscopy is evaluated for use in surgical guidance, specifically considering the low-dose limits of the fluoroscopic x-ray projections. The registration method is based on a framework using the covariance matrix adaptation evolution strategy (CMA-ES) to identify the 3D patient pose that maximizes the gradient information similarity metric. Registration performance was evaluated in an anthropomorphic head phantom emulating intracranial neurosurgery, using target registration error (TRE) to characterize accuracy and robustness in terms of 95% confidence upper bound in comparison to that of an infrared surgical tracking system. Three clinical scenarios were considered: (1) single-view image + guidance, wherein a single x-ray projection is used for visualization and 3D-2D guidance; (2) dual-view image + guidance, wherein one projection is acquired for visualization, combined with a second (lower-dose) projection acquired at a different C-arm angle for 3D-2D guidance; and (3) dual-view guidance, wherein both projections are acquired at low dose for the purpose of 3D-2D guidance alone (not visualization). In each case, registration accuracy was evaluated as a function of the entrance surface dose associated with the projection view(s). Results indicate that images acquired at a dose as low as 4 μGy (approximately one-tenth the dose of a typical fluoroscopic frame) were sufficient to provide TRE comparable or superior to that of conventional surgical tracking, allowing 3D-2D guidance at a level of dose that is at most 10% greater than conventional fluoroscopy (scenario #2) and potentially reducing the dose to approximately 20% of the level in a conventional fluoroscopically guided procedure (scenario #3).

  17. Evaluation of low-dose limits in 3D-2D rigid registration for surgical guidance.

    PubMed

    Uneri, A; Wang, A S; Otake, Y; Kleinszig, G; Vogt, S; Khanna, A J; Gallia, G L; Gokaslan, Z L; Siewerdsen, J H

    2014-09-21

    An algorithm for intensity-based 3D-2D registration of CT and C-arm fluoroscopy is evaluated for use in surgical guidance, specifically considering the low-dose limits of the fluoroscopic x-ray projections. The registration method is based on a framework using the covariance matrix adaptation evolution strategy (CMA-ES) to identify the 3D patient pose that maximizes the gradient information similarity metric. Registration performance was evaluated in an anthropomorphic head phantom emulating intracranial neurosurgery, using target registration error (TRE) to characterize accuracy and robustness in terms of 95% confidence upper bound in comparison to that of an infrared surgical tracking system. Three clinical scenarios were considered: (1) single-view image+guidance, wherein a single x-ray projection is used for visualization and 3D-2D guidance; (2) dual-view image+guidance, wherein one projection is acquired for visualization, combined with a second (lower-dose) projection acquired at a different C-arm angle for 3D-2D guidance; and (3) dual-view guidance, wherein both projections are acquired at low dose for the purpose of 3D-2D guidance alone (not visualization). In each case, registration accuracy was evaluated as a function of the entrance surface dose associated with the projection view(s). Results indicate that images acquired at a dose as low as 4 μGy (approximately one-tenth the dose of a typical fluoroscopic frame) were sufficient to provide TRE comparable or superior to that of conventional surgical tracking, allowing 3D-2D guidance at a level of dose that is at most 10% greater than conventional fluoroscopy (scenario #2) and potentially reducing the dose to approximately 20% of the level in a conventional fluoroscopically guided procedure (scenario #3).

  18. Assessing dose rate distributions in VMAT plans

    NASA Astrophysics Data System (ADS)

    Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2016-04-01

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within  ±0.4 s and doses  ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional

  19. A 2D 3D registration with low dose radiographic system for in vivo kinematic studies.

    PubMed

    Jerbi, T; Burdin, V; Stindel, E; Roux, C

    2011-01-01

    The knowledge of the poses and the positions of the knee bones and prostheses is of a great interest in the orthopedic and biomechanical applications. In this context, we use an ultra low dose bi-planar radiographic system called EOS to acquire two radiographs of the studied bones in each position. In this paper, we develop a new method for 2D 3D registration based on the frequency domain to determine the poses and the positions during quasi static motion analysis for healthy and prosthetic knees. Data of two healthy knees and four knees with unicompartimental prosthesis performing three different poses (full extension, 30° and 60° of flexion) were used in this work. The results we obtained are in concordance with the clinical accuracy and with the accuracy reported in other previous studies.

  20. Comparison of dose accuracy between 2D array detectors and Epid for IMRT of nasopharynx cancer

    NASA Astrophysics Data System (ADS)

    Altiparmak, Duygu; Coban, Yasin; Merih, Adil; Avci, Gulhan Guler; Yigitoglu, Ibrahim

    2017-02-01

    The aim of this study is to perform the dosimetric controls of nasopharynx cancer patient's intensity modulated radiation therapy (IMRT) treatment plans that generated by treatment planing system (TPS) with using two different equipments and also to make comparison in terms of their reliability and practicability. This study has been performed at Radiation Oncology Department, Medicine Faculty in Gaziosmanpasa University by using the VARIAN CLINAC DHX linear accelerator which is operated in the range of 6 MV. Selected 10 nasopharynx patients planned in TPS (Eclipce V13.0) and approved for treatment by medical physicists and radiation oncologists. These plans recalculated on EPID and mapcheck which are 2D dosimetric equipments to obtain dose maps. To compare these two dosimetric equipments gamma analysis method has been preferred. Achieved data is presented and discussed.

  1. An algorithm for kilovoltage x-ray dose calculations with applications in kV-CBCT scans and 2D planar projected radiographs

    NASA Astrophysics Data System (ADS)

    Pawlowski, Jason M.; Ding, George X.

    2014-04-01

    A new model-based dose calculation algorithm is presented for kilovoltage x-rays and is tested for the cases of calculating the radiation dose from kilovoltage cone-beam CT (kV-CBCT) and 2D planar projected radiographs. This algorithm calculates the radiation dose to water-like media as the sum of primary and scattered dose components. The scatter dose is calculated by convolution of a newly introduced, empirically parameterized scatter dose kernel with the primary photon fluence. Several approximations are introduced to increase the scatter dose calculation efficiency: (1) the photon energy spectrum is approximated as monoenergetic; (2) density inhomogeneities are accounted for by implementing a global distance scaling factor in the scatter kernel; (3) kernel tilting is ignored. These approximations allow for efficient calculation of the scatter dose convolution with the fast Fourier transform. Monte Carlo simulations were used to obtain the model parameters. The accuracy of using this model-based algorithm was validated by comparing with the Monte Carlo method for calculating dose distributions for real patients resulting from radiotherapy image guidance procedures including volumetric kV-CBCT scans and 2D planar projected radiographs. For all patients studied, mean dose-to-water errors for kV-CBCT are within 0.3% with a maximum standard deviation error of 4.1%. Using a medium-dependent correction method to account for the effects of photoabsorption in bone on the dose distribution, mean dose-to-medium errors for kV-CBCT are within 3.6% for bone and 2.4% for soft tissues. This algorithm offers acceptable accuracy and has the potential to extend the applicability of model-based dose calculation algorithms from megavoltage to kilovoltage photon beams.

  2. Deformable 3D-2D registration for CT and its application to low dose tomographic fluoroscopy

    NASA Astrophysics Data System (ADS)

    Flach, Barbara; Brehm, Marcus; Sawall, Stefan; Kachelrieß, Marc

    2014-12-01

    Many applications in medical imaging include image registration for matching of images from the same or different modalities. In the case of full data sampling, the respective reconstructed images are usually of such a good image quality that standard deformable volume-to-volume (3D-3D) registration approaches can be applied. But research in temporal-correlated image reconstruction and dose reductions increases the number of cases where rawdata are available from only few projection angles. Here, deteriorated image quality leads to non-acceptable deformable volume-to-volume registration results. Therefore a registration approach is required that is robust against a decreasing number of projections defining the target position. We propose a deformable volume-to-rawdata (3D-2D) registration method that aims at finding a displacement vector field maximizing the alignment of a CT volume and the acquired rawdata based on the sum of squared differences in rawdata domain. The registration is constrained by a regularization term in accordance with a fluid-based diffusion. Both cost function components, the rawdata fidelity and the regularization term, are optimized in an alternating manner. The matching criterion is optimized by a conjugate gradient descent for nonlinear functions, while the regularization is realized by convolution of the vector fields with Gaussian kernels. We validate the proposed method and compare it to the demons algorithm, a well-known 3D-3D registration method. The comparison is done for a range of 4-60 target projections using datasets from low dose tomographic fluoroscopy as an application example. The results show a high correlation to the ground truth target position without introducing artifacts even in the case of very few projections. In particular the matching in the rawdata domain is improved compared to the 3D-3D registration for the investigated range. The proposed volume-to-rawdata registration increases the robustness regarding sparse

  3. Deformable 3D-2D registration for CT and its application to low dose tomographic fluoroscopy.

    PubMed

    Flach, Barbara; Brehm, Marcus; Sawall, Stefan; Kachelrieß, Marc

    2014-12-21

    Many applications in medical imaging include image registration for matching of images from the same or different modalities. In the case of full data sampling, the respective reconstructed images are usually of such a good image quality that standard deformable volume-to-volume (3D-3D) registration approaches can be applied. But research in temporal-correlated image reconstruction and dose reductions increases the number of cases where rawdata are available from only few projection angles. Here, deteriorated image quality leads to non-acceptable deformable volume-to-volume registration results. Therefore a registration approach is required that is robust against a decreasing number of projections defining the target position. We propose a deformable volume-to-rawdata (3D-2D) registration method that aims at finding a displacement vector field maximizing the alignment of a CT volume and the acquired rawdata based on the sum of squared differences in rawdata domain. The registration is constrained by a regularization term in accordance with a fluid-based diffusion. Both cost function components, the rawdata fidelity and the regularization term, are optimized in an alternating manner. The matching criterion is optimized by a conjugate gradient descent for nonlinear functions, while the regularization is realized by convolution of the vector fields with Gaussian kernels. We validate the proposed method and compare it to the demons algorithm, a well-known 3D-3D registration method. The comparison is done for a range of 4-60 target projections using datasets from low dose tomographic fluoroscopy as an application example. The results show a high correlation to the ground truth target position without introducing artifacts even in the case of very few projections. In particular the matching in the rawdata domain is improved compared to the 3D-3D registration for the investigated range. The proposed volume-to-rawdata registration increases the robustness regarding sparse

  4. SU-E-P-35: Real-Time Patient Transit Dose Verification of Volumetric Modulated Arc Radiotherapy by a 2D Ionization Chamber Array

    SciTech Connect

    Liu, X

    2015-06-15

    Purpose: To explore the real-time dose verification method in volumetric modulated arc radiotherapy (VMAT) with a 2D array ion chamber array. Methods: The 2D ion chamber array was fixed on the panel of electronic portal imaging device (EPID). Source-detector distance (SDD)was 140cm. 8mm RW3 solid water was added to the detector panel to achieve maximum readings.The patient plans for esophageal, prostate and liver cancers were selected to deliver on the cylindrical Cheese phantom 5 times in order to validate the reproducibility of doses. Real-time patient transit dose measurements were performed at each fraction. Dose distributions wereevaluated using gamma index criteria of 3mm DTA and 3% dose difference referred to the firsttime Result. Results: The gamma index pass rate in the Cheese phantom were about 98%; The gamma index pass rate for esophageal, liver and prostate cancer patient were about 92%,94%, and 92%, respectively; Gamma pass rate for all single fraction were more than 90%. Conclusion: The 2D array is capable of monitoring the real time transit doses during VMAT delivery. It is helpful to improve the treatment accuracy.

  5. Distribution of CYP2D6 alleles and phenotypes in the Brazilian population.

    PubMed

    Friedrich, Deise C; Genro, Júlia P; Sortica, Vinicius A; Suarez-Kurtz, Guilherme; de Moraes, Maria Elizabete; Pena, Sergio D J; dos Santos, Andrea K Ribeiro; Romano-Silva, Marco A; Hutz, Mara H

    2014-01-01

    The CYP2D6 enzyme is one of the most important members of the cytochrome P450 superfamily. This enzyme metabolizes approximately 25% of currently prescribed medications. The CYP2D6 gene presents a high allele heterogeneity that determines great inter-individual variation. The aim of this study was to evaluate the variability of CYP2D6 alleles, genotypes and predicted phenotypes in Brazilians. Eleven single nucleotide polymorphisms and CYP2D6 duplications/multiplications were genotyped by TaqMan assays in 1020 individuals from North, Northeast, South, and Southeast Brazil. Eighteen CYP2D6 alleles were identified in the Brazilian population. The CYP2D6*1 and CYP2D6*2 alleles were the most frequent and widely distributed in different geographical regions of Brazil. The highest number of CYPD6 alleles observed was six and the frequency of individuals with more than two copies ranged from 6.3% (in Southern Brazil) to 10.2% (Northern Brazil). The analysis of molecular variance showed that CYP2D6 is homogeneously distributed across different Brazilian regions and most of the differences can be attributed to inter-individual differences. The most frequent predicted metabolic status was EM (83.5%). Overall 2.5% and 3.7% of Brazilians were PMs and UMs respectively. Genomic ancestry proportions differ only in the prevalence of intermediate metabolizers. The IM predicted phenotype is associated with a higher proportion of African ancestry and a lower proportion of European ancestry in Brazilians. PM and UM classes did not vary among regions and/or ancestry proportions therefore unique CYP2D6 testing guidelines for Brazilians are possible and could potentially avoid ineffective or adverse events outcomes due to drug prescriptions.

  6. Distribution of CYP2D6 Alleles and Phenotypes in the Brazilian Population

    PubMed Central

    Sortica, Vinicius A.; Suarez-Kurtz, Guilherme; de Moraes, Maria Elizabete; Pena, Sergio D. J.; dos Santos, Ândrea K. Ribeiro; Romano-Silva, Marco A.; Hutz, Mara H.

    2014-01-01

    Abstract The CYP2D6 enzyme is one of the most important members of the cytochrome P450 superfamily. This enzyme metabolizes approximately 25% of currently prescribed medications. The CYP2D6 gene presents a high allele heterogeneity that determines great inter-individual variation. The aim of this study was to evaluate the variability of CYP2D6 alleles, genotypes and predicted phenotypes in Brazilians. Eleven single nucleotide polymorphisms and CYP2D6 duplications/multiplications were genotyped by TaqMan assays in 1020 individuals from North, Northeast, South, and Southeast Brazil. Eighteen CYP2D6 alleles were identified in the Brazilian population. The CYP2D6*1 and CYP2D6*2 alleles were the most frequent and widely distributed in different geographical regions of Brazil. The highest number of CYPD6 alleles observed was six and the frequency of individuals with more than two copies ranged from 6.3% (in Southern Brazil) to 10.2% (Northern Brazil). The analysis of molecular variance showed that CYP2D6 is homogeneously distributed across different Brazilian regions and most of the differences can be attributed to inter-individual differences. The most frequent predicted metabolic status was EM (83.5%). Overall 2.5% and 3.7% of Brazilians were PMs and UMs respectively. Genomic ancestry proportions differ only in the prevalence of intermediate metabolizers. The IM predicted phenotype is associated with a higher proportion of African ancestry and a lower proportion of European ancestry in Brazilians. PM and UM classes did not vary among regions and/or ancestry proportions therefore unique CYP2D6 testing guidelines for Brazilians are possible and could potentially avoid ineffective or adverse events outcomes due to drug prescriptions. PMID:25329392

  7. Use of marginal distributions constrained optimization (MADCO) for accelerated 2D MRI relaxometry and diffusometry

    NASA Astrophysics Data System (ADS)

    Benjamini, Dan; Basser, Peter J.

    2016-10-01

    Measuring multidimensional (e.g., 2D) relaxation spectra in NMR and MRI clinical applications is a holy grail of the porous media and biomedical MR communities. The main bottleneck is the inversion of Fredholm integrals of the first kind, an ill-conditioned problem requiring large amounts of data to stabilize a solution. We suggest a novel experimental design and processing framework to accelerate and improve the reconstruction of such 2D spectra that uses a priori information from the 1D projections of spectra, or marginal distributions. These 1D marginal distributions provide powerful constraints when 2D spectra are reconstructed, and their estimation requires an order of magnitude less data than a conventional 2D approach. This marginal distributions constrained optimization (MADCO) methodology is demonstrated here with a polyvinylpyrrolidone-water phantom that has 3 distinct peaks in the 2D D-T1 space. The stability, sensitivity to experimental parameters, and accuracy of this new approach are compared with conventional methods by serially subsampling the full data set. While the conventional, unconstrained approach performed poorly, the new method had proven to be highly accurate and robust, only requiring a fraction of the data. Additionally, synthetic T1 -T2 data are presented to explore the effects of noise on the estimations, and the performance of the proposed method with a smooth and realistic 2D spectrum. The proposed framework is quite general and can also be used with a variety of 2D MRI experiments (D-T2,T1 -T2, D -D, etc.), making these potentially feasible for preclinical and even clinical applications for the first time.

  8. CYP2D6 allele distribution in Macedonians, Albanians and Romanies in the Republic of Macedonia

    PubMed Central

    Kuzmanovska, M; Dimishkovska, M; Maleva Kostovska, I; Noveski, P; Sukarova Stefanovska, E

    2015-01-01

    Abstract Cytochrome P450 2D6 (CYP2D6) is an enzyme of great importance for the metabolism of clinically used drugs. More than 100 variants of the CYP2D6 gene have been identified so far. The aim of this study was to investigate the allele distribution of CYP2D6 gene variants in 100 individuals of each of the Macedonian, Albanian and Romany population, by genotyping using long range polymerase chain reaction (PCR) and a multiplex single base extension method. The most frequent variants and almost equally distributed in the three groups were the fully functional alleles *1 and *2. The most common non functional allele in all groups was *4 that was found in 22.5% of the Albanians. The most common allele with decreased activity was *41 which was found in 23.0% of the Romany ethnic group, in 11.0% of the Macedonians and in 10.5% of the Albanians. Seven percent of the Albanians, 6.0% of the Romani and 4.0% of the Macedonians were poor metabolizers, while 5.0% of the Macedonians, 1.0% of Albanians and 1.0% of the Romanies were ultrarapid metabolizers. We concluded that the CYP2D6 gene locus is highly heterogeneous in these groups and that the prevalence of the CYP2D6 allele variants and genotypes in the Republic of Macedonia is in accordance with that of other European populations. PMID:27785397

  9. CYP2D6 allele distribution in Macedonians, Albanians and Romanies in the Republic of Macedonia.

    PubMed

    Kuzmanovska, M; Dimishkovska, M; Maleva Kostovska, I; Noveski, P; Sukarova Stefanovska, E; Plaseska-Karanfilska, D

    2015-12-01

    Cytochrome P450 2D6 (CYP2D6) is an enzyme of great importance for the metabolism of clinically used drugs. More than 100 variants of the CYP2D6 gene have been identified so far. The aim of this study was to investigate the allele distribution of CYP2D6 gene variants in 100 individuals of each of the Macedonian, Albanian and Romany population, by genotyping using long range polymerase chain reaction (PCR) and a multiplex single base extension method. The most frequent variants and almost equally distributed in the three groups were the fully functional alleles *1 and *2. The most common non functional allele in all groups was *4 that was found in 22.5% of the Albanians. The most common allele with decreased activity was *41 which was found in 23.0% of the Romany ethnic group, in 11.0% of the Macedonians and in 10.5% of the Albanians. Seven percent of the Albanians, 6.0% of the Romani and 4.0% of the Macedonians were poor metabolizers, while 5.0% of the Macedonians, 1.0% of Albanians and 1.0% of the Romanies were ultrarapid metabolizers. We concluded that the CYP2D6 gene locus is highly heterogeneous in these groups and that the prevalence of the CYP2D6 allele variants and genotypes in the Republic of Macedonia is in accordance with that of other European populations.

  10. A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions

    USGS Publications Warehouse

    Kong, M.; Bhattacharya, R.N.; James, C.; Basu, A.

    2005-01-01

    Size distribution of rigidly embedded spheres in a groundmass is usually determined from measurements of the radii of the two-dimensional (2D) circular cross sections of the spheres in random flat planes of a sample, such as in thin sections or polished slabs. Several methods have been devised to find a simple factor to convert the mean of such 2D size distributions to the actual 3D mean size of the spheres without a consensus. We derive an entirely theoretical solution based on well-established probability laws and not constrained by limitations of absolute size, which indicates that the ratio of the means of measured 2D and estimated 3D grain size distribution should be r/4 (=.785). Actual 2D size distribution of the radii of submicron sized, pure Fe0 globules in lunar agglutinitic glass, determined from backscattered electron images, is tested to fit the gamma size distribution model better than the log-normal model. Numerical analysis of 2D size distributions of Fe0 globules in 9 lunar soils shows that the average mean of 2D/3D ratio is 0.84, which is very close to the theoretical value. These results converge with the ratio 0.8 that Hughes (1978) determined for millimeter-sized chondrules from empirical measurements. We recommend that a factor of 1.273 (reciprocal of 0.785) be used to convert the determined 2D mean size (radius or diameter) of a population of spheres to estimate their actual 3D size. ?? 2005 Geological Society of America.

  11. Simulation of 2D Brain's Potential Distribution Based on Two Electrodes ECVT Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Sirait, S. H.; Edison, R. E.; Baidillah, M. R.; Taruno, W. P.; Haryanto, F.

    2016-08-01

    The aim of this study is to simulate the potential distribution of 2D brain geometry based on two electrodes ECVT. ECVT (electrical capacitance tomography) is a tomography modality which produces dielectric distribution image of a subject from several capacitance electrodes measurements. This study begins by producing the geometry of 2D brain based on MRI image and then setting the boundary conditions on the boundaries of the geometry. The values of boundary conditions follow the potential values used in two electrodes brain ECVT, and for this reason the first boundary is set to 20 volt and 2.5 MHz signal and another boundary is set to ground. Poisson equation is implemented as the governing equation in the 2D brain geometry and finite element method is used to solve the equation. Simulated Hodgkin-Huxley action potential is applied as disturbance potential in the geometry. We divide this study into two which comprises simulation without disturbance potential and simulation with disturbance potential. From this study, each of time dependent potential distributions from non-disturbance and disturbance potential of the 2D brain geometry has been generated.

  12. On Barnes Beta Distributions and Applications to the Maximum Distribution of the 2D Gaussian Free Field

    NASA Astrophysics Data System (ADS)

    Ostrovsky, Dmitry

    2016-09-01

    A new family of Barnes beta distributions on (0, ∞) is introduced and its infinite divisibility, moment determinacy, scaling, and factorization properties are established. The Morris integral probability distribution is constructed from Barnes beta distributions of types (1, 0) and (2, 2), and its moment determinacy and involution invariance properties are established. For application, the maximum distributions of the 2D gaussian free field on the unit interval and circle with a non-random logarithmic potential are conjecturally related to the critical Selberg and Morris integral probability distributions, respectively, and expressed in terms of sums of Barnes beta distributions of types (1, 0) and (2, 2).

  13. Infrared imaging of 2-D temperature distribution during cryogen spray cooling.

    PubMed

    Choi, Bernard; Welch, Ashley J

    2002-12-01

    Cryogen spray cooling (CSC) is used in conjunction with pulsed laser irradiation for treatment of dermatologic indications. The main goal of this study was to determine the radial temperature distribution created by CSC and evaluate the importance of radial temperature gradients upon the subsequent analysis of tissue cooling throughout the skin. Since direct measurement of surface temperatures during CSC are hindered by the formation of a liquid cryogen layer, temperature distributions were estimated using a thin, black aluminum sheet. An infrared focal plane array camera was used to determine the 2-D backside temperature distribution during a cryogen spurt, which preliminary measurements have shown is a good indicator of the front-side temperature distribution. The measured temperature distribution was approximately gaussian in shape. Next, the transient temperature distributions in skin were calculated for two cases: 1) the standard 1-D solution which assumes a uniform cooling temperature distribution, and 2) a 2-D solution using a nonuniform surface cooling temperature distribution based upon the back-side infrared temperature measurements. At the end of a 100-ms cryogen spurt, calculations showed that, for the two cases, large discrepancies in temperatures at the surface and at a 60-micron depth were found at radii greater than 2.5 mm. These results suggest that it is necessary to consider radial temperature gradients during cryogen spray cooling of tissue.

  14. SU-E-T-422: Correlation Between 2D Passing Rates and 3D Dose Differences for Pretreatment VMAT QA

    SciTech Connect

    Jin, X; Xie, C

    2014-06-01

    Purpose: Volumetric modulated arc therapy (VMAT) quality assurance (QA) is typically using QA methods and action levels taken from fixedbeam intensity-modulated radiotherapy (IMRT) QA methods. However, recent studies demonstrated that there is no correlation between the percent gamma passing rate (%GP) and the magnitude of dose discrepancy between the planned dose and the actual delivered dose for IMRT. The purpose of this study is to investigate whether %GP is correlated with clinical dosimetric difference for VMAT. Methods: Twenty nasopharyngeal cancer (NPC) patients treated with dual-arc simultaneous integrated boost VMAT and 20 esophageal cancer patients treated with one-arc VMAT were enrolled in this study. Pretreatment VMAT QA was performed by a 3D diode array ArcCheck. Acceptance criteria of 2%/2mm, 3%/3mm, and 4%/4mm were applied for 2D %GP. Dose values below 10% of the per-measured normalization maximum dose were ignored.Mean DVH values obtained from 3DVH software and TPS were calculated and percentage dose differences were calculated. Statistical correlation between %GP and percent dose difference was studied by using Pearson correlation. Results: The %GP for criteria 2%/2mm, 3%/3mm, and 4%/4mm were 82.33±4.45, 93.47±2.31, 97.13±2.41, respectively. Dose differences calculated from 3DVH and TPS for beam isocenter, mean dose of PTV, maximum dose of PTV, D2 of PTV and D98 of PTV were -1.04±3.24, -0.74±1.71, 2.92±3.62, 0.89±3.29, -1.46±1.97, respectively. No correction were found between %GP and dose differences. Conclusion: There are weak correlations between the 2D %GP and dose differences calculated from 3DVH. The %GP acceptance criteria of 3%/3mm usually applied for pretreatment QA of IMRT and VMAT is not indicating strong clinical correlation with 3D dose difference. 3D dose reconstructions on patient anatomy may be necessary for physicist to predict the accuracy of delivered dose for VMAT QA.

  15. Assessment of a 2D electronic portal imaging devices-based dosimetry algorithm for pretreatment and in-vivo midplane dose verification

    PubMed Central

    Jomehzadeh, Ali; Shokrani, Parvaneh; Mohammadi, Mohammad; Amouheidari, Alireza

    2016-01-01

    Background: The use of electronic portal imaging devices (EPIDs) is a method for the dosimetric verification of radiotherapy plans, both pretreatment and in vivo. The aim of this study is to test a 2D EPID-based dosimetry algorithm for dose verification of some plans inside a homogenous and anthropomorphic phantom and in vivo as well. Materials and Methods: Dose distributions were reconstructed from EPID images using a 2D EPID dosimetry algorithm inside a homogenous slab phantom for a simple 10 × 10 cm2 box technique, 3D conformal (prostate, head-and-neck, and lung), and intensity-modulated radiation therapy (IMRT) prostate plans inside an anthropomorphic (Alderson) phantom and in the patients (one fraction in vivo) for 3D conformal plans (prostate, head-and-neck and lung). Results: The planned and EPID dose difference at the isocenter, on an average, was 1.7% for pretreatment verification and less than 3% for all in vivo plans, except for head-and-neck, which was 3.6%. The mean γ values for a seven-field prostate IMRT plan delivered to the Alderson phantom varied from 0.28 to 0.65. For 3D conformal plans applied for the Alderson phantom, all γ1% values were within the tolerance level for all plans and in both anteroposterior and posteroanterior (AP-PA) beams. Conclusion: The 2D EPID-based dosimetry algorithm provides an accurate method to verify the dose of a simple 10 × 10 cm2 field, in two dimensions, inside a homogenous slab phantom and an IMRT prostate plan, as well as in 3D conformal plans (prostate, head-and-neck, and lung plans) applied using an anthropomorphic phantom and in vivo. However, further investigation to improve the 2D EPID dosimetry algorithm for a head-and-neck case, is necessary. PMID:28028511

  16. Low-dose 2D X-ray angiography enhancement using 2-axis PCA for the preservation of blood-vessel region and noise minimization.

    PubMed

    Lee, Yong Geun; Lee, Jeongjin; Shin, Yeong-Gil; Kang, Ho Chul

    2016-01-01

    Enhancing 2D angiography while maintaining a low radiation dose has become an important research topic. However, it is difficult to enhance images while preserving vessel-structure details because X-ray noise and contrast blood vessels in 2D angiography have similar intensity distributions, which can lead to ambiguous images of vessel structures. In this paper, we propose a novel and fast vessel-enhancement method for 2D angiography. We apply filtering in the principal component analysis domain for vessel regions and background regions separately, using assumptions based on energy compaction. First, we identify an approximate vessel region using a Hessian-based method. Vessel and non-vessel regions are then represented sparsely by calculating their optimal bases separately. This is achieved by identifying periodic motion in the vessel region caused by the flow of the contrast medium through the blood vessels when viewed on the time axis. Finally, we obtain noise-free images by removing noise in the new coordinate domain for the optimal bases. Our method was validated for an X-ray system, using 10 low-dose sets for training and 20 low-dose sets for testing. The results were compared with those for a high-dose dataset with respect to noise-free images. The average enhancement rate was 93.11±0.71%. The average processing time for enhancing video comprising 50-70 frames was 0.80±0.35s, which is much faster than the previously proposed technique. Our method is applicable to 2D angiography procedures such as catheterization, which requires rapid and natural vessel enhancement.

  17. Catalog of velocity distributions around a reconnection site in 2D PIC simulations

    NASA Astrophysics Data System (ADS)

    Lechner, Lukas; Bourdin, Philippe-A.; Nakamura, Takuma K. M.; Nakamura, Rumi; Narita, Yasuhito

    2016-04-01

    The velocity distribution of electrons and ions are known to be a marker for regions where magnetic reconnection develops. Past theoretical and computational works demonstrated that non-gyrotropic and anisotropic distributions depending on particle meandering motions and accelerations are seen around the reconnection point. The Magnetospheric Multiscale (MMS) mission is expected to resolve such kinetic scale reconnection regions. We present a catalog of velocity distribution functions that can give hints on the location within the current sheet relative to the reconnection point, which is sometimes unclear from pure spacecraft observations. We use 2D PIC simulations of anti-parallel magnetic reconnection to obtain velocity distributions at different locations, like in the center of the reconnection site, the ion and electron diffusion regions, or the reconnection inflow and outflow regions. With sufficiently large number of particles we resolve the distribution functions also in rather small regions. Such catalog may be compared with future MMS observations of the Earth's magnetotail.

  18. Multicriteria optimization of the spatial dose distribution

    SciTech Connect

    Schlaefer, Alexander; Viulet, Tiberiu; Muacevic, Alexander; Fürweger, Christoph

    2013-12-15

    Purpose: Treatment planning for radiation therapy involves trade-offs with respect to different clinical goals. Typically, the dose distribution is evaluated based on few statistics and dose–volume histograms. Particularly for stereotactic treatments, the spatial dose distribution represents further criteria, e.g., when considering the gradient between subregions of volumes of interest. The authors have studied how to consider the spatial dose distribution using a multicriteria optimization approach.Methods: The authors have extended a stepwise multicriteria optimization approach to include criteria with respect to the local dose distribution. Based on a three-dimensional visualization of the dose the authors use a software tool allowing interaction with the dose distribution to map objectives with respect to its shape to a constrained optimization problem. Similarly, conflicting criteria are highlighted and the planner decides if and where to relax the shape of the dose distribution.Results: To demonstrate the potential of spatial multicriteria optimization, the tool was applied to a prostate and meningioma case. For the prostate case, local sparing of the rectal wall and shaping of a boost volume are achieved through local relaxations and while maintaining the remaining dose distribution. For the meningioma, target coverage is improved by compromising low dose conformality toward noncritical structures. A comparison of dose–volume histograms illustrates the importance of spatial information for achieving the trade-offs.Conclusions: The results show that it is possible to consider the location of conflicting criteria during treatment planning. Particularly, it is possible to conserve already achieved goals with respect to the dose distribution, to visualize potential trade-offs, and to relax constraints locally. Hence, the proposed approach facilitates a systematic exploration of the optimal shape of the dose distribution.

  19. Calibration of an acoustic system for measuring 2-D temperature distribution around hydrothermal vents.

    PubMed

    Fan, Wei; Chen, Chen-Tung Arthur; Chen, Ying

    2013-04-01

    One of the fundamental purposes of quantitative acoustic surveys of seafloor hydrothermal vents is to measure their 2-D temperature distributions. Knowing the system latencies and the acoustic center-to-center distances between the underwater transducers in an acoustic tomography system is fundamental to the overall accuracy of the temperature reconstruction. However, commercial transducer sources typically do not supply the needed data. Here we present a novel calibration algorithm to automatically determine the system latencies and the acoustic center-to-center distances. The possible system latency error and the resulting temperature error are derived and analyzed. We have also developed the experimental setup for calibration. To validate the effectiveness of the proposed calibration method, an experimental study was performed on acoustic imaging of underwater temperature fields in Lake Qiezishan, located at Longling County, Yunnan Province, China. Using the calibrated data, the reconstructed temperature distributions closely resemble the actual distributions measured with thermocouples, thus confirming the effectiveness of our algorithm.

  20. Spatial Solitons in 2D Graded-Index Waveguides with Different Distributed Transverse Diffractions

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Xiang

    2014-02-01

    We discuss the nonlinear Schrödinger equation with variable coefficients in 2D graded-index waveguides with different distributed transverse diffractions and obtain exact bright and dark soliton solutions. Based on these solutions, we mainly investigate the dynamical behaviors of solitons in three different diffraction decreasing waveguides with the hyperbolic, Gaussian and Logarithmic profiles. Results indicate that for the same parameters, the amplitude of bright solitons in the Logarithmic profile and the amplitude of dark solitons in the Gaussian profile are biggest respectively, and the amplitude in the hyperbolic profile is smallest, while the width of solitons has the opposite case.

  1. CYP2D6 status of extensive metabolizers after multiple-dose fluoxetine, fluvoxamine, paroxetine, or sertraline.

    PubMed

    Alfaro, C L; Lam, Y W; Simpson, J; Ereshefsky, L

    1999-04-01

    The aim of this study was to evaluate the CYP2D6 inhibitory effects of four selective rerotonin re-uptake inhibitors (SSRIs). Thirty-one healthy subjects were phenotyped as extensive metabolizers using the dextromethorphan/dextrorphan (DM/DX) urinary ratio as a marker for CYP2D6 activity before and after 8 days of administration of fluoxetine 60 mg (loading dose strategy), fluvoxamine 100 mg, paroxetine 20 mg, or sertraline 100 mg in a parallel-group design. Statistical analysis was performed on log-transformed DM/DX ratios because of variability within and between treatment groups. DM/DX ratios before (DM/DX(BL)) and after (DM/DX(SSRI)) were compared within and between the four SSRI groups. DM/DX(BL) ratios were not significantly different between the four SSRI treatment groups. Comparing within groups, significant differences between DM/DX(BL) and DM/DX(SSRI) were found for the fluoxetine (p < 0.001; ratio values, 0.020 vs. 0.364) and paroxetine (p = 0.0005, ratio values 0.029 vs. 1.085) but not for the fluvoxamine or sertraline groups. Comparing between groups, significant differences in DM/DX(SSRI) ratios were found for fluoxetine versus sertraline (p = 0.0019, DM/DX = 0.364 vs. 0.057), fluoxetine versus fluvoxamine (p < 0.0001, DM/DX = 0.364 vs. 0.019), paroxetine versus sertraline (p = 0.0026, DM/DX = 1.085 vs. 0.057), and paroxetine versus fluvoxamine (p < 0.0001, DM/DX = 1.085 vs. 0.019). No significant differences were noted between the two potent CYP2D6 inhibitors, fluoxetine and paroxetine, or the two weakest inhibitors, fluvoxamine and sertraline. Five subjects in the fluoxetine and four subjects in the paroxetine groups changed to poor metabolizer phenotype (DM/DX > or = 0.3) after treatment. Although CYP2D6 inhibitory effects of fluvoxamine and sertraline did not yield significant differences from baseline, some subjects exhibited DM/DX ratio increases of 150 to 200%. One paroxetine-treated subject did not exhibit any CYP2D6 inhibition. SSRI dose and

  2. 2D AND 3D dose verification at The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital using EPIDs

    NASA Astrophysics Data System (ADS)

    Mijnheer, Ben; Mans, Anton; Olaciregui-Ruiz, Igor; Sonke, Jan-Jakob; Tielenburg, Rene; Van Herk, Marcel; Vijlbrief, Ron; Stroom, Joep

    2010-11-01

    A review is given of the clinical use of EPID dosimetry in the Department of Radiation Oncology of The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital. All curative plans (almost all IMRT or VMAT) are verified with EPID dosimetry, mostly in vivo. The 2D approach for IMRT verification and the 3D method for VMAT verification are elucidated and their clinical implementation described. It has been shown that EPID dosimetry plays an important role in the total chain of verification procedures that are implemented in our department. It provides a safety net for advanced treatments such as IMRT and VMAT, as well as a full account of the dose delivered.

  3. 2D-photochemical modeling of Saturn’s stratosphere: hydrocarbon and water distributions

    NASA Astrophysics Data System (ADS)

    Hue, Vincent; Cavalié, Thibault; Hersant, Franck; Dobrijevic, Michel; Greathouse, Thomas; Lellouch, Emmanuel; Hartogh, Paul; Cassidy, Timothy; Spiga, Aymeric; Guerlet, Sandrine; Sylvestre, Melody

    2014-11-01

    Saturn’s axial tilt of 27° produces seasons in a similar way as on Earth. The seasonal forcing over Saturn’s 30 years period influences the production/loss of the major atmospheric absorbers and coolants through photochemistry, and influences therefore Saturn’s stratospheric temperatures. We have developed a 2D time-dependent photochemical model of Saturn’s atmosphere [Hue et al., in prep.], coupled to a radiative-climate model [Greathouse et al., 2008] to study seasonal effects on its atmospheric composition. Cassini spacecraft has revealed that the distribution of hydrocarbons in Saturn’s stratosphere [Guerlet et al., 2009] differs from pure photochemical predictions, i.e. without meridional transport [Moses et al., 2005]. Differences between the observed distribution of hydrocarbons and 2D-photochemical predictions are likely to be an indicator of dynamical forcing.Disentangling the origin of water in the stratosphere of this planet has been a long-term issue. Due to Saturn’s cold tropopause trap, which acts as a transport barrier, the water vapor observed by the Infrared Space Observatory (ISO) [Feuchtgruber et al., 1997] has an external origin. Three external sources have been identified: (i) permanent flux from interplanetary dust particles, (ii) local sources form planetary environments (rings, satellites), (iii) large cometary impacts, similar to Shoemaker-Levy 9 on Jupiter. Previous observations of Saturn with Herschel’s Hsso program [Hartogh et al., 2009] led to the detection of a water torus around Saturn [Hartogh et al., 2011], fed by Enceladus’ geysers. A substantial fraction of this torus is predicted to be a local source of water for Saturn’s and its satellites, as it will spread in this system [Cassidy et al., 2010]. Using the new 2D-photochemical model, we test here the validity of Enceladus’ torus as the source of Saturn’s stratospheric water.References : Hue et al., in prep. Greathouse et al., 2008. AGU Fall Meeting

  4. 2-D-3-D frequency registration using a low-dose radiographic system for knee motion estimation.

    PubMed

    Jerbi, Taha; Burdin, Valerie; Leboucher, Julien; Stindel, Eric; Roux, Christian

    2013-03-01

    In this paper, a new method is presented to study the feasibility of the pose and the position estimation of bone structures using a low-dose radiographic system, the entrepreneurial operating system (designed by EOS-Imaging Company). This method is based on a 2-D-3-D registration of EOS bi-planar X-ray images with an EOS 3-D reconstruction. This technique is relevant to such an application thanks to the EOS ability to simultaneously make acquisitions of frontal and sagittal radiographs, and also to produce a 3-D surface reconstruction with its attached software. In this paper, the pose and position of a bone in radiographs is estimated through the link between 3-D and 2-D data. This relationship is established in the frequency domain using the Fourier central slice theorem. To estimate the pose and position of the bone, we define a distance between the 3-D data and the radiographs, and use an iterative optimization approach to converge toward the best estimation. In this paper, we give the mathematical details of the method. We also show the experimental protocol and the results, which validate our approach.

  5. Online measurement of dose and dose distribution at bremsstrahlung facilities

    NASA Astrophysics Data System (ADS)

    Auslender, V. L.; Bryazgin, A. A.; Bukin, A. D.; Voronin, L. A.; Lukin, A. N.; Sidorov, A. V.

    2004-09-01

    A real-time measurement system of the spatial dose distribution is developed and realized for monitoring the bremsstrahlung flow generated on X-ray target by 5 MeV 50 kW electron accelerator. The sensors of the system consist of semiconductor diodes. The beam target and electron accelerator (ILU-10) are briefly described. The practice of using the system in the experimental and start-up procedure is included.

  6. Drop size distribution comparisons between Parsivel and 2-D video disdrometers

    NASA Astrophysics Data System (ADS)

    Thurai, M.; Petersen, W. A.; Tokay, A.; Schultz, C.; Gatlin, P.

    2011-05-01

    Measurements from a 2-D video disdrometer (2DVD) have been used for drop size distribution (DSD) comparisons with co-located Parsivel measurements in Huntsville, Alabama. The comparisons were made in terms of the mass-weighted mean diameter, Dm, the standard deviation of the mass-spectrum, σm, and the rainfall rate, R, all based on 1-min DSD from the two instruments. Time series comparisons show close agreement in all three parameters for cases where R was less than 20 mm h-1. In four cases, discrepancies in all three parameters were seen for "heavy" events, with the Parsivel showing higher Dm, σm and R, when R reached high values (particularly above 30 mm h-1). Possible causes for the discrepancies include the presence of a small percentage of non-fully melted hydrometers, with higher than expected fall velocity and with very different axis ratios as compared with rain, indicating small hail or ice pellets or graupel. We also present here Parsivel-to-Parsivel comparisons as well as comparisons between two 2DVD instruments, namely a low-profile unit and the latest generation, "compact unit" which was installed at the same site in November 2009. The comparisons are included to assess the variability between the same types of instrument. Correlation coefficients and the fractional standard errors are compared.

  7. Dose distributions in regions containing beta sources: Irregularly shaped source distributions in homogeneous media

    SciTech Connect

    Werner, B.L. )

    1991-11-01

    Methods are introduced by which dose rate distributions due to nonuniform, irregularly shaped distributions of beta emitters can be calculated using dose rate distributions for uniform, spherical source distributions. The dose rate distributions can be written in the MIRD formalism.

  8. Determination of dose distributions and parameter sensitivity

    SciTech Connect

    Napier, B.A.; Farris, W.T.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow's milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows' milk from Feeding Regime 1 as described in Calculation 001.

  9. Volumetric (3D) bladder dose parameters are more reproducible than point (2D) dose parameters in vaginal vault high-dose-rate brachytherapy

    PubMed Central

    Sapienza, Lucas Gomes; Flosi, Adriana; Aiza, Antonio; de Assis Pellizzon, Antonio Cassio; Chojniak, Rubens; Baiocchi, Glauco

    2016-01-01

    There is no consensus on the use of computed tomography in vaginal cuff brachytherapy (VCB) planning. The purpose of this study was to prospectively determine the reproducibility of point bladder dose parameters (DICRU and maximum dose), compared with volumetric-based parameters. Twenty-two patients who were treated with high-dose-rate (HDR) VCB underwent simulation by computed tomography (CT-scan) with a Foley catheter at standard tension (position A) and extra tension (position B). CT-scan determined the bladder ICRU dose point in both positions and compared the displacement and recorded dose. Volumetric parameters (D0.1cc, D1.0cc, D2.0cc, D4.0cc and D50%) and point dose parameters were compared. The average spatial shift in ICRU dose point in the vertical, longitudinal and lateral directions was 2.91 mm (range: 0.10–9.00), 12.04 mm (range: 4.50–24.50) and 2.65 mm (range: 0.60–8.80), respectively. The DICRU ratio for positions A and B was 1.64 (p < 0.001). Moreover, a decrease in Dmax was observed (p = 0.016). Tension level of the urinary catheter did not affect the volumetric parameters. Our data suggest that point parameters (DICRU and Dmax) are not reproducible and are not the ideal choice for dose reporting. PMID:27296459

  10. Spatial Correlation of Rain Drop Size Distribution from Polarimetric Radar and 2D-Video Disdrometers

    NASA Technical Reports Server (NTRS)

    Thurai, Merhala; Bringi, Viswanathan; Gatlin, Patrick N.; Wingo, Matt; Petersen, Walter Arthur; Carey, Lawrence D.

    2011-01-01

    Spatial correlations of two of the main rain drop-size distribution (DSD) parameters - namely the median-volume diameter (Do) and the normalized intercept parameter (Nw) - as well as rainfall rate (R) are determined from polarimetric radar measurements, with added information from 2D video disdrometer (2DVD) data. Two cases have been considered, (i) a widespread, long-duration rain event in Huntsville, Alabama, and (ii) an event with localized intense rain-cells within a convection line which occurred during the MC3E campaign. For the first case, data from a C-band polarimetric radar (ARMOR) were utilized, with two 2DVDs acting as ground-truth , both being located at the same site 15 km from the radar. The radar was operated in a special near-dwelling mode over the 2DVDs. In the second case, data from an S-band polarimetric radar (NPOL) data were utilized, with at least five 2DVDs located between 20 and 30 km from the radar. In both rain event cases, comparisons of Do, log10(Nw) and R were made between radar derived estimates and 2DVD-based measurements, and were found to be in good agreement, and in both cases, the radar data were subsequently used to determine the spatial correlations For the first case, the spatial decorrelation distance was found to be smallest for R (4.5 km), and largest fo Do (8.2 km). For log10(Nw) it was 7.2 km (Fig. 1). For the second case, the corresponding decorrelation distances were somewhat smaller but had a directional dependence. In Fig. 2, we show an example of Do comparisons between NPOL based estimates and 1-minute DSD based estimates from one of the five 2DVDs.

  11. Simplified estimation method for dose distributions around field junctions in proton craniospinal irradiation.

    PubMed

    Yamashita, Haruo; Kase, Yuki; Murayama, Shigeyuki

    2017-03-01

    In radiotherapy involving craniospinal irradiation (CSI), field junctions of therapeutic beams are necessary, because a CSI target is generally several times larger than the maximum field size of the beams. The purpose of this study was to develop a simplified method for estimating dose uniformity around the field junctions in proton CSI. We estimated the dose profiles around the field junctions of proton beams using a simplified field-junction model, in which partial lateral dose distributions around the field edge were assumed to be approximated using the error function. We measured the lateral dose distributions of the proton beams planned for the CSI treatment using a two-dimensional (2D) ionization chamber array. Although dose hot spots and cold spots tend to be underestimated by a chamber array because of the partial volume effect of the sensitive volume and discrete chamber positions, the model estimation results were fairly consistent with the measurements obtained using a 2D chamber array subjected to CSI-simulated serial irradiation. The simplified junction model enabled us to estimate the dose distributions and dependence of the setup position gap on the dose uniformity around the field junctions on the basis of the field-by-field dose profiles measured using the 2D chamber array.

  12. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    NASA Astrophysics Data System (ADS)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.

  13. The effect of system geometry and dose on the threshold detectable calcification diameter in 2D-mammography and digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Hadjipanteli, Andria; Elangovan, Premkumar; Mackenzie, Alistair; Looney, Padraig T.; Wells, Kevin; Dance, David R.; Young, Kenneth C.

    2017-02-01

    Digital breast tomosynthesis (DBT) is under consideration to replace or to be used in combination with 2D-mammography in breast screening. The aim of this study was the comparison of the detection of microcalcification clusters by human observers in simulated breast images using 2D-mammography, narrow angle (15°/15 projections) and wide angle (50°/25 projections) DBT. The effects of the cluster height in the breast and the dose to the breast on calcification detection were also tested. Simulated images of 6 cm thick compressed breasts were produced with and without microcalcification clusters inserted, using a set of image modelling tools for 2D-mammography and DBT. Image processing and reconstruction were performed using commercial software. A series of 4-alternative forced choice (4AFC) experiments was conducted for signal detection with the microcalcification clusters as targets. Threshold detectable calcification diameter was found for each imaging modality with standard dose: 2D-mammography: 2D-mammography (165  ±  9 µm), narrow angle DBT (211  ±  11 µm) and wide angle DBT (257  ±  14 µm). Statistically significant differences were found when using different doses, but different geometries had a greater effect. No differences were found between the threshold detectable calcification diameters at different heights in the breast. Calcification clusters may have a lower detectability using DBT than 2D imaging.

  14. The evaluation of a 2D diode array in “magic phantom” for use in high dose rate brachytherapy pretreatment quality assurance

    SciTech Connect

    Espinoza, A.; Petasecca, M.; Fuduli, I.; Lerch, M. L. F.; Rosenfeld, A. B.; Howie, A.; Bucci, J.; Corde, S.; Jackson, M.

    2015-02-15

    Purpose: High dose rate (HDR) brachytherapy is a treatment method that is used increasingly worldwide. The development of a sound quality assurance program for the verification of treatment deliveries can be challenging due to the high source activity utilized and the need for precise measurements of dwell positions and times. This paper describes the application of a novel phantom, based on a 2D 11 × 11 diode array detection system, named “magic phantom” (MPh), to accurately measure plan dwell positions and times, compare them directly to the treatment plan, determine errors in treatment delivery, and calculate absorbed dose. Methods: The magic phantom system was CT scanned and a 20 catheter plan was generated to simulate a nonspecific treatment scenario. This plan was delivered to the MPh and, using a custom developed software suite, the dwell positions and times were measured and compared to the plan. The original plan was also modified, with changes not disclosed to the primary authors, and measured again using the device and software to determine the modifications. A new metric, the “position–time gamma index,” was developed to quantify the quality of a treatment delivery when compared to the treatment plan. The MPh was evaluated to determine the minimum measurable dwell time and step size. The incorporation of the TG-43U1 formalism directly into the software allows for dose calculations to be made based on the measured plan. The estimated dose distributions calculated by the software were compared to the treatment plan and to calibrated EBT3 film, using the 2D gamma analysis method. Results: For the original plan, the magic phantom system was capable of measuring all dwell points and dwell times and the majority were found to be within 0.93 mm and 0.25 s, respectively, from the plan. By measuring the altered plan and comparing it to the unmodified treatment plan, the use of the position–time gamma index showed that all modifications made could be

  15. Does vertebroplasty affect radiation dose distribution?: comparison of spatial dose distributions in a cement-injected vertebra as calculated by treatment planning system and actual spatial dose distribution.

    PubMed

    Komemushi, Atsushi; Tanigawa, Noboru; Kariya, Shuji; Yagi, Rie; Nakatani, Miyuki; Suzuki, Satoshi; Sano, Akira; Ikeda, Koshi; Utsunomiya, Keita; Harima, Yoko; Sawada, Satoshi

    2012-01-01

    Purpose. To assess differences in dose distribution of a vertebral body injected with bone cement as calculated by radiation treatment planning system (RTPS) and actual dose distribution. Methods. We prepared two water-equivalent phantoms with cement, and the other two phantoms without cement. The bulk density of the bone cement was imported into RTPS to reduce error from high CT values. A dose distribution map for the phantoms with and without cement was calculated using RTPS with clinical setting and with the bulk density importing. Actual dose distribution was measured by the film density. Dose distribution as calculated by RTPS was compared to the dose distribution measured by the film dosimetry. Results. For the phantom with cement, dose distribution was distorted for the areas corresponding to inside the cement and on the ventral side of the cement. However, dose distribution based on film dosimetry was undistorted behind the cement and dose increases were seen inside cement and around the cement. With the equivalent phantom with bone cement, differences were seen between dose distribution calculated by RTPS and that measured by the film dosimetry. Conclusion. The dose distribution of an area containing bone cement calculated using RTPS differs from actual dose distribution.

  16. 3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images.

    PubMed

    Chen, Xueli; Gao, Xinbo; Chen, Duofang; Ma, Xiaopeng; Zhao, Xiaohui; Shen, Man; Li, Xiangsi; Qu, Xiaochao; Liang, Jimin; Ripoll, Jorge; Tian, Jie

    2010-09-13

    Optical tomography can demonstrate accurate three-dimensional (3D) imaging that recovers the 3D spatial distribution and concentration of the luminescent probes in biological tissues, compared with planar imaging. However, the tomographic approach is extremely difficult to implement due to the complexity in the reconstruction of 3D surface flux distribution from multi-view two dimensional (2D) measurements on the subject surface. To handle this problem, a novel and effective method is proposed in this paper to determine the surface flux distribution from multi-view 2D photographic images acquired by a set of non-contact detectors. The method is validated with comparison experiments involving both regular and irregular surfaces. Reconstruction of the inside probes based on the reconstructed surface flux distribution further demonstrates the potential of the proposed method in its application in optical tomography.

  17. 2D mapping of the MV photon fluence and 3D dose reconstruction in real time for quality assurance during radiotherapy treatment

    NASA Astrophysics Data System (ADS)

    Alrowaili, Z. A.; Lerch, M. L. F.; Carolan, M.; Fuduli, I.; Porumb, C.; Petasecca, M.; Metcalfe, P.; Rosenfeld, A. B.

    2015-09-01

    Summary: the photon irradiation response of a 2D solid state transmission detector array mounted in a linac block tray is used to reconstruct the projected 2D dose map in a homogenous phantom along rays that diverge from the X-ray source and pass through each of the 121 detector elements. A unique diode response-to-dose scaling factor, applied to all detectors, is utilised in the reconstruction to demonstrate that real time QA during radiotherapy treatment is feasible. Purpose: to quantitatively demonstrate reconstruction of the real time radiation dose from the irradiation response of the 11×11 silicon Magic Plate (MP) detector array operated in Transmission Mode (MPTM). Methods and Materials: in transmission mode the MP is positioned in the block tray of a linac so that the central detector of the array lies on the central axis of the radiation beam. This central detector is used to determine the conversion factor from measured irradiation response to reconstructed dose at any point on the central axis within a homogenous solid water phantom. The same unique conversion factor is used for all MP detector elements lying within the irradiation field. Using the two sets of data, the 2D or 3D dose map is able to be reconstructed in the homogenous phantom. The technique we have developed is illustrated here for different depths and irradiation field sizes, (5 × 5 cm2 to 40 × 40 cm2) as well as a highly non uniform irradiation field. Results: we find that the MPTM response is proportional to the projected 2D dose map measured at a specific phantom depth, the "sweet depth". A single factor, for several irradiation field sizes and depths, is derived to reconstruct the dose in the phantom along rays projected from the photon source through each MPTM detector element. We demonstrate that for all field sizes using the above method, the 2D reconstructed and measured doses agree to within ± 2.48% (2 standard deviation) for all in-field MP detector elements. Conclusions: a

  18. Calculation of external dose from distributed source

    SciTech Connect

    Kocher, D.C.

    1986-01-01

    This paper discusses a relatively simple calculational method, called the point kernel method (Fo68), for estimating external dose from distributed sources that emit photon or electron radiations. The principles of the point kernel method are emphasized, rather than the presentation of extensive sets of calculations or tables of numerical results. A few calculations are presented for simple source geometries as illustrations of the method, and references and descriptions are provided for other caluclations in the literature. This paper also describes exposure situations for which the point kernel method is not appropriate and other, more complex, methods must be used, but these methods are not discussed in any detail.

  19. Engagement of TLR3, TLR7, and NKG2D regulate IFN-gamma secretion but not NKG2D-mediated cytotoxicity by human NK cells stimulated with suboptimal doses of IL-12.

    PubMed

    Girart, María V; Fuertes, Mercedes B; Domaica, Carolina I; Rossi, Lucas E; Zwirner, Norberto W

    2007-09-15

    NK cells express different TLRs, such as TLR3, TLR7, and TLR9, but little is known about their role in NK cell stimulation. In this study, we used specific agonists (poly(I:C), loxoribine, and synthetic oligonucleotides containing unmethylated CpG sequences to stimulate human NK cells without or with suboptimal doses of IL-12, IL-15, or IFN-alpha, and investigated the secretion of IFN-gamma, cytotoxicity, and expression of the activating receptor NKG2D. Poly(I:C) and loxoribine, in conjunction with IL-12, but not IL-15, triggered secretion of IFN-gamma. Inhibition of IFN-gamma secretion by chloroquine suggested that internalization of the TLR agonists was necessary. Also, secretion of IFN-gamma was dependent on MEK1/ERK, p38 MAPK, p70(S6) kinase, and NF-kappaB, but not on calcineurin. IFN-alpha induced a similar effect, but promoted lesser IFN-gamma secretion. However, cytotoxicity (51Cr release assays) against MHC class I-chain related A (MICA)- and MICA+ tumor targets remained unchanged, as well as the expression of the NKG2D receptor. Excitingly, IFN-gamma secretion was significantly increased when NK cells were stimulated with poly(I:C) or loxoribine and IL-12, and NKG2D engagement was induced by coculture with MICA+ tumor cells in a PI3K-dependent manner. We conclude that resting NK cells secrete high levels of IFN-gamma in response to agonists of TLR3 or TLR7 and IL-12, and this effect can be further enhanced by costimulation through NKG2D. Hence, integration of the signaling cascades that involve TLR3, TLR7, IL-12, and NKG2D emerges as a critical step to promote IFN-gamma-dependent NK cell-mediated effector functions, which could be a strategy to promote Th1-biased immune responses in pathological situations such as cancer.

  20. An investigation of CYP2D6 genotype and response to metoprolol CR/XL during dose titration in patients with heart failure: a MERIT-HF substudy.

    PubMed

    Batty, J A; Hall, A S; White, H L; Wikstrand, J; de Boer, R A; van Veldhuisen, D J; van der Harst, P; Waagstein, F; Hjalmarson, Å; Kjekshus, J; Balmforth, A J

    2014-03-01

    To explore the pharmacogenetic effects of the cytochrome P450 (CYP)2D6 genotype in patients with systolic heart failure treated using controlled/extended-release (CR/XL) metoprolol, this study assessed the CYP2D6 locus for the nonfunctional *4 allele (1846G>A; rs3892097) in the Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF; n = 605). Participants were characterized as extensive, intermediate, or poor metabolizers (EMs, IMs, or PMs, respectively), based on the presence of the CYP2D6*4 allele (EM: *1*1, 60.4%; IM: *1*4, 35.8%; and PM: *4*4, 3.8%). Plasma metoprolol concentrations were 2.1-/4.6-fold greater in the IM/PM groups as compared with the EM group (P < 0.0001). Metoprolol induced significantly lower heart rates and diastolic blood pressures during early titration, indicating a CYP2D6*4 allele dose-response effect (P < 0.05). These effects were not observed at maximal dose, suggesting a saturable effect. Genotype did not adversely affect surrogate treatment efficacy. CYP2D6 genotype modulates metoprolol pharmacokinetics/pharmacodynamics during early titration; however, the MERIT-HF-defined titration schedule remains recommended for all patients, regardless of genotype.

  1. Evaluation of Hydrus-2D model for solute distribution in subsurface drip

    NASA Astrophysics Data System (ADS)

    Souza, Claudinei; Bizari, Douglas; Grecco, Katarina

    2015-04-01

    The competition for water use between agriculture, industry and population has become intense over the years, requiring a rational use of this resource for food production. The subsurface drip irrigation can help producers with the optimization of operating parameters such as frequency and duration of irrigation, flow, spacing and depth of the dripper installation. This information can be obtained by numerical simulations using mathematical models, thus the aim of this study was to evaluate the HYDRUS-2D model from experimental data to predict the size of the wet bulbs generated by emitters of different application rates (1.0 and 1.6 L h-1). The results showed that horizontal displacement (bulb diameter) remained the largest in all the bulbs, observed both in experimental trials and estimated by the model and the correlation between them was high, above 0.90 to below 16% error. We conclude that the HYDRUS-2D model can be used to estimate the dimensions of the wet bulb getting new information on the sizing of the irrigation system.

  2. 2D to 3D Evaluation of Organs at Risk Doses in Intracavitary Brachytherapy for Cervical Cancer

    PubMed Central

    Choo, Bok Ai; Lee, Khai Mun

    2010-01-01

    Purpose To compare International Commission on Radiation Units and Measurements (ICRU) bladder and rectum reference points doses with volumetric doses in 3D intracavitary brachytherapy (ICBT) for cervical cancer. Also to compare bladder, rectum and sigmoid (organs at risk, OARs) volume doses with dose constraints recommended by the (GYN) GEC-ESTRO Working Group. Material and methods A retrospective study was carried out on 10 patients with a total of 55 fractions CT-based high dose rate (HDR) ICBT. ICRU bladder (bICRU) and rectum (rICRU) points were defined according to ICRU Report 38 on the CT images and prospectively kept to less than 80% of prescription dose to Point A during real treatment planning. Post-treatment, outer wall of OARs were contoured and minimum dose to 2cc (D2cc) of the most irradiated part of the OARs was obtained from the dose-volume histogram (DVH). Total dose (external beam radiotherapy plus ICBT) were computed with ICRU point dose and D2cc and compared. Results The mean ICRU point dose and D2cc volume dose were found to be significantly different for bladder (per fraction: p = 0.000; total dose: p = 0.004) but no differences were found for rectum (per fraction: p = 0.055; total dose: p = 0.090). bICRU point dose underestimated D2cc dose with an average ratio of 1.34 ± 0.34. 3 out of 10 patients, 7 out of 10 patients, and 5 out of 10 patients exceeded the recommended dose constraint for bladder, rectum, and sigmoid, respectively. Conclusions bICRU was not representative of bladder D2cc and resulted in different total dose. rICRU was found to be similar to D2cc dose and was reliable in total dose computation. Our current institutional practice of point-based planning in ICBT resulted in significant number of patients’ OARs doses exceeded the volume constraint, because the total dose concept was not used propectively in planning. PMID:28031742

  3. Be2D: A model to understand the distribution of meteoric 10Be in soilscapes

    NASA Astrophysics Data System (ADS)

    Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Govers, Gerard

    2016-04-01

    Cosmogenic nuclides have revolutionised our understanding of earth surface process rates. They have become one of the standard tools to quantify soil production by weathering, soil redistribution and erosion. Especially Beryllium-10 has gained much attention due to its long half-live and propensity to be relatively conservative in the landscape. The latter makes 10Be an excellent tool to assess denudation rates over the last 1000 to 100 × 103 years, bridging the anthropogenic and geological time scale. Nevertheless, the mobility of meteoric 10Be in soil systems makes translation of meteoric 10Be inventories into erosion and deposition rates difficult. Here we present a coupled soil hillslope model, Be2D, that is applied to synthetic and real topography to address the following three research questions. (i) What is the influence of vertical meteoric Be10 mobility, caused by chemical mobility, clay translocation and bioturbation, on its lateral redistribution over the soilscape, (ii) How does vertical mobility influence erosion rates and soil residence times inferred from meteoric 10Be inventories and (iii) To what extent can a tracer with a half-life of 1.36 Myr be used to distinguish between natural and human-disturbed soil redistribution rates? The model architecture of Be2D is designed to answer these research questions. Be2D is a dynamic model including physical processes such as soil formation, physical weathering, clay migration, bioturbation, creep, overland flow and tillage erosion. Pathways of meteoric 10Be mobility are simulated using a two step approach which is updated each timestep. First, advective and diffusive mobility of meteoric 10Be is simulated within the soil profile and second, lateral redistribution because of lateral soil fluxes is calculated. The performance and functionality of the model is demonstrated through a number of synthetic and real model runs using existing datasets of meteoric 10Be from case-studies in southeastern US. Brute

  4. An ESPRIT-Based Approach for 2-D Localization of Incoherently Distributed Sources in Massive MIMO Systems

    NASA Astrophysics Data System (ADS)

    Hu, Anzhong; Lv, Tiejun; Gao, Hui; Zhang, Zhang; Yang, Shaoshi

    2014-10-01

    In this paper, an approach of estimating signal parameters via rotational invariance technique (ESPRIT) is proposed for two-dimensional (2-D) localization of incoherently distributed (ID) sources in large-scale/massive multiple-input multiple-output (MIMO) systems. The traditional ESPRIT-based methods are valid only for one-dimensional (1-D) localization of the ID sources. By contrast, in the proposed approach the signal subspace is constructed for estimating the nominal azimuth and elevation direction-of-arrivals and the angular spreads. The proposed estimator enjoys closed-form expressions and hence it bypasses the searching over the entire feasible field. Therefore, it imposes significantly lower computational complexity than the conventional 2-D estimation approaches. Our analysis shows that the estimation performance of the proposed approach improves when the large-scale/massive MIMO systems are employed. The approximate Cram\\'{e}r-Rao bound of the proposed estimator for the 2-D localization is also derived. Numerical results demonstrate that albeit the proposed estimation method is comparable with the traditional 2-D estimators in terms of performance, it benefits from a remarkably lower computational complexity.

  5. An application of the distributed hydrologic model CASC2D to a tropical montane watershed

    NASA Astrophysics Data System (ADS)

    Marsik, Matt; Waylen, Peter

    2006-11-01

    SummaryIncreased stormflow in the Quebrada Estero watershed (2.5 km 2), in the northwestern Central Valley tectonic depression of Costa Rica, reportedly has caused flooding of the city of San Ramón in recent decades. Although scientifically untested, urban expansion was deemed the cause and remedial measures were recommended by the Programa de Investigación en Desarrollo Humano Sostenible (ProDUS). CASC2D, a physically-based, spatially explicit hydrologic model, was constructed and calibrated to a June 10th 2002 storm that delivered 110.5 mm of precipitation in 4.5 h visibly exceeded the bankfull stage (0.9 m) of the Quebrada flooding portions of San Ramón. The calibrated hydrograph showed a peak discharge 16.68% (2.5 m 3 s -1) higher, an above flood stage duration 20% shorter, and time to peak discharge 11 min later than the same observed discharge hydrograph characteristics. Simulations of changing land cover conditions from 1979 to 1999 showed an increase also in the peak discharge, above flood stage duration, and time to peak discharge. Analysis using a modified location quotient identified increased urbanization in lower portions of the watershed over the time period studied. These results suggest that increased urbanization in the Quebrada Estero watershed have increased flooding peaks, and durations above threshold, confirming the ProDUS report. These results and the CASC2D model offer an easy-to-use, pragmatic planning tool for policymakers in San Ramón to assess future development scenarios and their potential flooding impacts to San Ramón.

  6. Influence of CYP2D6 activity on the pharmacokinetics and pharmacodynamics of a single 20 mg dose of ibogaine in healthy volunteers.

    PubMed

    Glue, Paul; Winter, Helen; Garbe, Kira; Jakobi, Hannah; Lyudin, Alexander; Lenagh-Glue, Zoe; Hung, C Tak

    2015-06-01

    Conversion of ibogaine to its active metabolite noribogaine appears to be mediated primarily by CYP2D6. We compared 168 hours pharmacokinetic profiles of both analytes after a single oral 20 mg dose of ibogaine in 21 healthy subjects who had been pretreated for 6 days with placebo or the CYP2D6 inhibitor paroxetine. In placebo-pretreated subjects, ibogaine was rapidly converted to noribogaine. Median peak noribogaine concentrations occurred at 4 hours. Compared with placebo-pretreated subjects, paroxetine-pretreated subjects had rapid (Tmax  = 1.5 hours) and substantial absorption of ibogaine, with detectable levels out to 72 hours, and an elimination half-life of 10.2 hours. In this group, ibogaine was also rapidly converted to noribogaine with a median Tmax of 3 hours. Extent of noribogaine exposure was similar in both groups. CYP2D6 phenotype was robustly correlated with ibogaine AUC0-t (r = 0.82) and Cmax (r = 0.77). Active moiety (ibogaine plus noribogaine) exposure was ∼2-fold higher in paroxetine-pretreated subjects. Single 20 mg ibogaine doses were safe and well tolerated in all subjects. The doubling of exposure to active moiety in subjects with reduced CYP2D6 activity suggests it may be prudent to genotype patients awaiting ibogaine treatment, and to at least halve the intended dose of ibogaine in CYP2D6 poor metabolizers.

  7. Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation

    PubMed Central

    Carney, Randy P.; Kim, Jin Young; Qian, Huifeng; Jin, Rongchao; Mehenni, Hakim; Stellacci, Francesco; Bakr, Osman M.

    2011-01-01

    Nanoparticles are finding many research and industrial applications, yet their characterization remains a challenge. Their cores are often polydisperse and coated by a stabilizing shell that varies in size and composition. No single technique can characterize both the size distribution and the nature of the shell. Advances in analytical ultracentrifugation allow for the extraction of the sedimentation (s) and diffusion coefficients (D). Here we report an approach to transform the s and D distributions of nanoparticles in solution into precise molecular weight (M), density (ρP) and particle diameter (dp) distributions. M for mixtures of discrete nanocrystals is found within 4% of the known quantities. The accuracy and the density information we achieve on nanoparticles are unparalleled. A single experimental run is sufficient for full nanoparticle characterization, without the need for standards or other auxiliary measurements. We believe that our method is of general applicability and we discuss its limitations. PMID:21654635

  8. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration

    PubMed Central

    Soto, Marcelo A.; Ramírez, Jaime A.; Thévenaz, Luc

    2016-01-01

    Distributed optical fibre sensors possess the unique capability of measuring the spatial and temporal map of environmental quantities that can be of great interest for several field applications. Although existing methods for performance enhancement have enabled important progresses in the field, they do not take full advantage of all information present in the measured data, still giving room for substantial improvement over the state-of-the-art. Here we propose and experimentally demonstrate an approach for performance enhancement that exploits the high level of similitude and redundancy contained on the multidimensional information measured by distributed fibre sensors. Exploiting conventional image and video processing, an unprecedented boost in signal-to-noise ratio and measurement contrast is experimentally demonstrated. The method can be applied to any white-noise-limited distributed fibre sensor and can remarkably provide a 100-fold improvement in the sensor performance with no hardware modification. PMID:26927698

  9. Energy distribution among reaction products. VI - F + H2, D2.

    NASA Technical Reports Server (NTRS)

    Polanyi, J. C.; Woodall, K. B.

    1972-01-01

    Study of the F + H2 reaction, which is of special theoretical interest since it is one of the simplest examples of an exothermic chemical reaction. The FH2 system involves only 11 electrons, and the computation of a potential-energy hypersurface to chemical accuracy may now be within the reach of ab initio calculations. The 'arrested relaxation' variant of the infrared chemiluminescence method is used to obtain the initial vibrational, rotational and translational energy distributions in the products of exothermic reactions.

  10. New methods to estimate 2D water level distributions of dynamic rivers.

    PubMed

    Diem, Samuel; Renard, Philippe; Schirmer, Mario

    2013-01-01

    River restoration measures are becoming increasingly popular and are leading to dynamic river bed morphologies that in turn result in complex water level distributions in a river. Disconnected river branches, nonlinear longitudinal water level profiles and morphologically induced lateral water level gradients can evolve rapidly. The modeling of such river-groundwater systems is of high practical relevance in order to assess the impact of restoration measures on the exchange flux between a river and groundwater or on the residence times between a river and a pumping well. However, the model input includes a proper definition of the river boundary condition, which requires a detailed spatial and temporal river water level distribution. In this study, we present two new methods to estimate river water level distributions that are based directly on measured data. Comparing generated time series of water levels with those obtained by a hydraulic model as a reference, the new methods proved to offer an accurate and faster alternative with a simpler implementation.

  11. Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI–LINAC systems

    SciTech Connect

    Gargett, Maegan Rosenfeld, Anatoly; Oborn, Brad; Metcalfe, Peter

    2015-02-15

    Purpose: MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named “magic plate,” for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. Methods: GEANT4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-line and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm{sup 3}) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm{sup 2} area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm{sup 2} photon field size. Results: The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. Conclusions: A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI

  12. Distributed computing architecture for image-based wavefront sensing and 2D FFTs

    NASA Astrophysics Data System (ADS)

    Smith, Jeffrey S.; Dean, Bruce H.; Haghani, Shadan

    2006-06-01

    Image-based wavefront sensing provides significant advantages over interferometric-based wavefront sensors such as optical design simplicity and stability. However, the image-based approach is computationally intensive, and therefore, applications utilizing the image-based approach gain substantial benefits using specialized high-performance computing architectures. The development and testing of these computing architectures are essential to missions such as James Webb Space Telescope (JWST), Terrestrial Planet Finder-Coronagraph (TPF-C and CorSpec), and the Spherical Primary Optical Telescope (SPOT). The algorithms implemented on these specialized computing architectures make use of numerous two-dimensional Fast Fourier Transforms (FFTs) which necessitate an all-to-all communication when applied on a distributed computational architecture. Several solutions for distributed computing are presented with an emphasis on a 64 Node cluster of digital signal processors (DSPs) and multiple DSP field programmable gate arrays (FPGAs), offering a novel application of low-diameter graph theory. Timing results and performance analysis are presented. The solutions offered could be applied to other computationally complex all-to-all communication problems.

  13. Distributed Computing Architecture for Image-Based Wavefront Sensing and 2 D FFTs

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey S.; Dean, Bruce H.; Haghani, Shadan

    2006-01-01

    Image-based wavefront sensing (WFS) provides significant advantages over interferometric-based wavefi-ont sensors such as optical design simplicity and stability. However, the image-based approach is computational intensive, and therefore, specialized high-performance computing architectures are required in applications utilizing the image-based approach. The development and testing of these high-performance computing architectures are essential to such missions as James Webb Space Telescope (JWST), Terrestial Planet Finder-Coronagraph (TPF-C and CorSpec), and Spherical Primary Optical Telescope (SPOT). The development of these specialized computing architectures require numerous two-dimensional Fourier Transforms, which necessitate an all-to-all communication when applied on a distributed computational architecture. Several solutions for distributed computing are presented with an emphasis on a 64 Node cluster of DSPs, multiple DSP FPGAs, and an application of low-diameter graph theory. Timing results and performance analysis will be presented. The solutions offered could be applied to other all-to-all communication and scientifically computationally complex problems.

  14. Assessing HYDRUS-2D model to estimate soil water contents and olive tree transpiration fluxes under different water distribution systems

    NASA Astrophysics Data System (ADS)

    Autovino, Dario; Negm, Amro; Rallo, Giovanni; Provenzano, Giuseppe

    2016-04-01

    In Mediterranean countries characterized by limited water resources for agricultural and societal sectors, irrigation management plays a major role to improve water use efficiency at farm scale, mainly where irrigation systems are correctly designed to guarantee a suitable application efficiency and the uniform water distribution throughout the field. In the last two decades, physically-based agro-hydrological models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere (SPA) system. Mechanistic models like HYDRUS 2D/3D (Šimunek et al., 2011) have been proposed to simulate all the components of water balance, including actual crop transpiration fluxes estimated according to a soil potential-dependent sink term. Even though the suitability of these models to simulate the temporal dynamics of soil and crop water status has been reported in the literature for different horticultural crops, a few researches have been considering arboreal crops where the higher gradients of root water uptake are the combination between the localized irrigation supply and the three dimensional root system distribution. The main objective of the paper was to assess the performance of HYDRUS-2D model to evaluate soil water contents and transpiration fluxes of an olive orchard irrigated with two different water distribution systems. Experiments were carried out in Castelvetrano (Sicily) during irrigation seasons 2011 and 2012, in a commercial farm specialized in the production of table olives (Olea europaea L., var. Nocellara del Belice), representing the typical variety of the surrounding area. During the first season, irrigation water was provided by a single lateral placed along the plant row with four emitters per plant (ordinary irrigation), whereas during the second season a grid of emitters laid on the soil was installed in order to irrigate the whole soil surface around the selected trees. The model performance was assessed based on the

  15. The cone penetration test and 2D imaging resistivity as tools to simulate the distribution of hydrocarbons in soil

    NASA Astrophysics Data System (ADS)

    Pérez-Corona, M.; García, J. A.; Taller, G.; Polgár, D.; Bustos, E.; Plank, Z.

    2016-02-01

    The purpose of geophysical electrical surveys is to determine the subsurface resistivity distribution by making measurements on the ground surface. From these measurements, the true resistivity of the subsurface can be estimated. The ground resistivity is related to various geological parameters, such as the mineral and fluid content, porosity and degree of water saturation in the rock. Electrical resistivity surveys have been used for many decades in hydrogeological, mining and geotechnical investigations. More recently, they have been used for environmental surveys. To obtain a more accurate subsurface model than is possible with a simple 1-D model, a more complex model must be used. In a 2-D model, the resistivity values are allowed to vary in one horizontal direction (usually referred to as the x direction) but are assumed to be constant in the other horizontal (the y) direction. A more realistic model would be a fully 3-D model where the resistivity values are allowed to change in all three directions. In this research, a simulation of the cone penetration test and 2D imaging resistivity are used as tools to simulate the distribution of hydrocarbons in soil.

  16. Characterizing 3D grain size distributions from 2D sections in mylonites using a modified version of the Saltykov method

    NASA Astrophysics Data System (ADS)

    Lopez-Sanchez, Marco; Llana-Fúnez, Sergio

    2016-04-01

    The understanding of creep behaviour in rocks requires knowledge of 3D grain size distributions (GSD) that result from dynamic recrystallization processes during deformation. The methods to estimate directly the 3D grain size distribution -serial sectioning, synchrotron or X-ray-based tomography- are expensive, time-consuming and, in most cases and at best, challenging. This means that in practice grain size distributions are mostly derived from 2D sections. Although there are a number of methods in the literature to derive the actual 3D grain size distributions from 2D sections, the most popular in highly deformed rocks is the so-called Saltykov method. It has though two major drawbacks: the method assumes no interaction between grains, which is not true in the case of recrystallised mylonites; and uses histograms to describe distributions, which limits the quantification of the GSD. The first aim of this contribution is to test whether the interaction between grains in mylonites, i.e. random grain packing, affects significantly the GSDs estimated by the Saltykov method. We test this using the random resampling technique in a large data set (n = 12298). The full data set is built from several parallel thin sections that cut a completely dynamically recrystallized quartz aggregate in a rock sample from a Variscan shear zone in NW Spain. The results proved that the Saltykov method is reliable as long as the number of grains is large (n > 1000). Assuming that a lognormal distribution is an optimal approximation for the GSD in a completely dynamically recrystallized rock, we introduce an additional step to the Saltykov method, which allows estimating a continuous probability distribution function of the 3D grain size population. The additional step takes the midpoints of the classes obtained by the Saltykov method and fits a lognormal distribution with a trust region using a non-linear least squares algorithm. The new protocol is named the two-step method. The

  17. Detailed dose distribution prediction of Cf-252 brachytherapy source with boron loading dose enhancement.

    PubMed

    Ghassoun, J; Mostacci, D; Molinari, V; Jehouani, A

    2010-02-01

    The purpose of this work is to evaluate the dose rate distribution and to determine the boron effect on dose rate distribution for (252)Cf brachytherapy source. This study was carried out using a Monte Carlo simulation. To validate the Monte Carlo computer code, the dosimetric parameters were determined following the updated TG-43 formalism and compared with current literature data. The validated computer code was then applied to evaluate the neutron and photon dose distribution and to illustrate the boron loading effect.

  18. First dose-map measured with a polycrystalline diamond 2D dosimeter under an intensity modulated radiotherapy beam

    NASA Astrophysics Data System (ADS)

    Scaringella, M.; Zani, M.; Baldi, A.; Bucciolini, M.; Pace, E.; de Sio, A.; Talamonti, C.; Bruzzi, M.

    2015-10-01

    A prototype of bidimensional dosimeter made on a 2.5×2.5 cm2 active area polycrystalline Chemical Vapour Deposited (pCVD) diamond film, equipped with a matrix of 12×12 contacts connected to the read-out electronics, has been used to evaluate a map of dose under Intensity Modulated Radiation Therapy (IMRT) fields for a possible application in pre-treatment verifications of cancer treatments. Tests have been performed under a 6-10 MVRX beams with IMRT fields for prostate and breast cancer. Measurements have been taken by measuring the 144 pixels in different positions, obtained by shifting the device along the x/y axes to span a total map of 14.4×10 cm2. Results show that absorbed doses measured by our pCVD diamond device are consistent with those calculated by the Treatment Planning System (TPS).

  19. Influence of Cyp2D6 genetic polymorphism on ratios of steady-state serum concentration to dose of the neuroleptic zuclopenthixol.

    PubMed

    Linnet, K; Wiborg, O

    1996-12-01

    One hundred and nineteen psychiatric patients undergoing therapeutic drug monitoring (TDM) of the neuroleptic zuclopenthixol were genotyped with regard to Cyp2D6. Twelve patients (10.1%) were of the poor metabolizer genotype. The extensive metabolizers comprised 58 patients receiving no potentially interacting drugs and 38 patients concomitantly treated with other drugs competing for metabolism by Cyp2D6. Information on the rest (11 patients) was missing. The median steady-state serum concentration-to-dose ratio (C/D) of the PM group (2.00 nmol/L/mg) was close to that of the EM group receiving potentially interacting drugs (1.80) and approximately 60% higher than that of the remaining EM group (1.25) (p < 0.01). When judging the clinical importance of this difference, the total group variability in C/D of nearly 10-fold should be kept in mind (0.5-4.2 nmol/L/mg). In terms of serum concentrations not corrected for dose, the three groups had about similar levels, with median values from 16 to 21 nmol/L. We consider that TDM adequately takes into account dose adjustments for both EM and PM subjects in the context of this neuroleptic.

  20. 2D pair distribution function analysis of anisotropic small-angle scattering patterns from elongated nano-composite hydrogels.

    PubMed

    Nishi, Kengo; Shibayama, Mitsuhiro

    2017-03-01

    Small angle scattering (SAS) on polymer nanocomposites under elongation or shear flow is an important experimental method to investigate the reinforcement effects of the mechanical properties by fillers. However, the anisotropic scattering patterns that appear in SAS are very complicated and difficult to interpret. A representative example is a four-spot scattering pattern observed in the case of polymer materials containing silica nanoparticles, the origin of which is still in debate because of the lack of quantitative analysis. The difficulties in the interpretation of anisotropic scattering patterns mainly arise from the abstract nature of the reciprocal space. Here, we focus on the 2D pair distribution function (PDF) directly evaluated from anisotropic scattering patterns. We applied this method to elongated poly(N,N-dimethylacrylamide) gels containing silica nanoparticles (PDAM-NP gel), which show a four-spot scattering pattern under elongation. From 2D PDFs, we obtained detailed and concrete structural information about the elongated PDAM-NP gel, such as affine and non-affine displacements of directly attached and homogeneously dispersed silica nanoparticles, respectively. We proposed that nanoparticles homogeneously dispersed in the perpendicular direction are not displaced due to the collision of the adsorbed polymer layer during elongation, while those in the parallel direction are displaced in an affine way. We assumed that this suppression of the lateral compression is the origin of the four-spot pattern in this study. These results strongly indicate that our 2D PDF analysis will provide deep insight into the internal structure of polymer nanocomposites hidden in the anisotropic scattering patterns.

  1. Improvement of vertical profiles of raindrop size distribution from micro rain radar using 2D video disdrometer measurements

    NASA Astrophysics Data System (ADS)

    Adirosi, E.; Baldini, L.; Roberto, N.; Gatlin, P.; Tokay, A.

    2016-03-01

    A measurement scheme aimed at investigating precipitation properties based on collocated disdrometer and profiling instruments is used in many experimental campaigns. Raindrop size distribution (RSD) estimated by disdrometer is referred to the ground level; the collocated profiling instrument is supposed to provide complementary estimation at different heights of the precipitation column above the instruments. As part of the Special Observation Period 1 of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, conducted between 5 September and 6 November 2012, a K-band vertically pointing micro rain radar (MRR) and a 2D video disdrometer (2DVD) were installed close to each other at a site in the historic center of Rome (Italy). The raindrop size distributions collected by 2D video disdrometer are considered to be fairly accurate within the typical sizes of drops. Vertical profiles of raindrop sizes up to 1085 m are estimated from the Doppler spectra measured by the micro rain radar with a height resolution of 35 m. Several issues related to vertical winds, attenuation correction, Doppler spectra aliasing, and range-Doppler ambiguity limit the performance of MRR in heavy precipitation or in convection, conditions that frequently occur in late summer or in autumn in Mediterranean regions. In this paper, MRR Doppler spectra are reprocessed, exploiting the 2DVD measurements at ground to estimate the effects of vertical winds at 105 m (the most reliable MRR lower height), in order to provide a better estimation of vertical profiles of raindrop size distribution from MRR spectra. Results show that the reprocessing procedure leads to a better agreement between the reflectivity computed at 105 m from the reprocessed MRR spectra and that obtained from the 2DVD data. Finally, vertical profiles of MRR-estimated RSDs and their relevant moments (namely median volume diameter and reflectivity) are presented and discussed in order to investigate the

  2. SU-E-T-375: Evaluation of a MapCHECK2(tm) Planar 2-D Diode Array for High-Dose-Rate Brachytherapy Treatment Delivery Verifications

    SciTech Connect

    Macey, N; Siebert, M; Shvydka, D; Parsai, E

    2015-06-15

    Purpose: Despite improvements of HDR brachytherapy delivery systems, verification of source position is still typically based on the length of the wire reeled out relative to the parked position. Yet, the majority of errors leading to medical events in HDR treatments continue to be classified as missed targets or wrong treatment sites. We investigate the feasibility of using dose maps acquired with a two-dimensional diode array to independently verify the source locations, dwell times, and dose during an HDR treatment. Methods: Custom correction factors were integrated into frame-by-frame raw counts recorded for a Varian VariSource™ HDR afterloader Ir-192 source located at various distances in air and in solid water from a MapCHECK2™ diode array. The resultant corrected counts were analyzed to determine the dwell position locations and doses delivered. The local maxima of polynomial equations fitted to the extracted dwell dose profiles provided the X and Y coordinates while the distance to the source was determined from evaluation of the full width at half maximum (FWHM). To verify the approach, the experiment was repeated as the source was moved through dwell positions at various distances along an inclined plane, mimicking a vaginal cylinder treatment. Results: Dose map analysis was utilized to provide the coordinates of the source and dose delivered over each dwell position. The accuracy in determining source dwell positions was found to be +/−1.0 mm of the preset values, and doses within +/−3% of those calculated by the BrachyVision™ treatment planning system for all measured distances. Conclusion: Frame-by-frame data furnished by a 2 -D diode array can be used to verify the dwell positions and doses delivered by the HDR source over the course of treatment. Our studies have verified that measurements provided by the MapCHECK2™ can be used as a routine QA tool for HDR treatment delivery verification.

  3. Particle Size Distributions Obtained Through Unfolding 2D Sections: Towards Accurate Distributions of Nebular Solids in the Allende Meteorite

    NASA Technical Reports Server (NTRS)

    Christoffersen, P. A.; Simon, Justin I.; Ross, D. K.; Friedrich, J. M.; Cuzzi, J. N.

    2012-01-01

    Size distributions of nebular solids in chondrites suggest an efficient sorting of these early forming objects within the protoplanetary disk. The effect of this sorting has been documented by investigations of modal abundances of CAIs (e.g., [1-4]) and chondrules (e.g., [5-8]). Evidence for aerodynamic sorting in the disk is largely qualitative, and needs to be carefully assessed. It may be a way of concentrating these materials into planetesimal-mass clumps, perhaps 100 fs of ka after they formed. A key parameter is size/density distributions of particles (i.e., chondrules, CAIs, and metal grains), and in particular, whether the radius-density product (rxp) is a better metric for defining the distribution than r alone [9]. There is no consensus between r versus rxp based models. Here we report our initial tests and preliminary results, which when expanded will be used to test the accuracy of current dynamical disk models.

  4. Verification of patient-specific dose distributions in proton therapy using a commercial two-dimensional ion chamber array

    SciTech Connect

    Arjomandy, Bijan; Sahoo, Narayan; Ciangaru, George; Zhu, Ronald; Song Xiaofei; Gillin, Michael

    2010-11-15

    Purpose: The purpose of this study was to determine whether a two-dimensional (2D) ion chamber array detector quickly and accurately measures patient-specific dose distributions in treatment with passively scattered and spot scanning proton beams. Methods: The 2D ion chamber array detector MatriXX was used to measure the dose distributions in plastic water phantom from passively scattered and spot scanning proton beam fields planned for patient treatment. Planar dose distributions were measured using MatriXX, and the distributions were compared to those calculated using a treatment-planning system. The dose distributions generated by the treatment-planning system and a film dosimetry system were similarly compared. Results: For passively scattered proton beams, the gamma index for the dose-distribution comparison for treatment fields for three patients with prostate cancer and for one patient with lung cancer was less than 1.0 for 99% and 100% of pixels for a 3% dose tolerance and 3 mm distance-to-dose agreement, respectively. For spot scanning beams, the mean ({+-} standard deviation) percentages of pixels with gamma indices meeting the passing criteria were 97.1%{+-}1.4% and 98.8%{+-}1.4% for MatriXX and film dosimetry, respectively, for 20 fields used to treat patients with prostate cancer. Conclusions: Unlike film dosimetry, MatriXX provides not only 2D dose-distribution information but also absolute dosimetry in fractions of minutes with acceptable accuracy. The results of this study indicate that MatriXX can be used to verify patient-field specific dose distributions in proton therapy.

  5. A 2D simulation study of Langmuir, whistler, and cyclotron maser instabilities induced by an electron ring-beam distribution

    SciTech Connect

    Lee, K. H.; Lee, L. C.; Omura, Y.

    2011-09-15

    We carried out a series of 2D simulations to study the beam instability and cyclotron maser instability (CMI) with the initial condition that a population of tenuous energetic electrons with a ring-beam distribution is present in a magnetized background plasma. In this paper, weakly relativistic cases are discussed with the ring-beam kinetic energy ranging from 25 to 100 keV. The beam component leads to the two-stream or beam instability at an earlier stage, and the beam mode is coupled with Langmuir or whistler mode, leading to excitation of beam-Langmuir or beam-whistler waves. When the beam velocity is large with a strong beam instability, the initial ring-beam distribution is diffused in the parallel direction rapidly. The diffused distribution may still support CMI to amplify the X1 mode (the fundamental X mode). On the contrary, when the beam velocity is small and the beam instability is weak, CMI can amplify the Z1 (the fundamental Z mode) effectively while the O1 (the fundamental O mode) and X2 (the second harmonic X mode) modes are very weak and the X1 mode is not excited. In this report, different cases with various parameters are presented and discussed for a comprehensive understanding of ring-beam instabilities.

  6. A comparison of needle tip localization accuracy using 2D and 3D trans-rectal ultrasound for high-dose-rate prostate cancer brachytherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Hrinivich, W. Thomas; Hoover, Douglas A.; Surry, Kathleen; Edirisinghe, Chandima; Montreuil, Jacques; D'Souza, David; Fenster, Aaron; Wong, Eugene

    2016-03-01

    Background: High-dose-rate brachytherapy (HDR-BT) is a prostate cancer treatment option involving the insertion of hollow needles into the gland through the perineum to deliver a radioactive source. Conventional needle imaging involves indexing a trans-rectal ultrasound (TRUS) probe in the superior/inferior (S/I) direction, using the axial transducer to produce an image set for organ segmentation. These images have limited resolution in the needle insertion direction (S/I), so the sagittal transducer is used to identify needle tips, requiring a manual registration with the axial view. This registration introduces a source of uncertainty in the final segmentations and subsequent treatment plan. Our lab has developed a device enabling 3D-TRUS guided insertions with high S/I spatial resolution, eliminating the need to align axial and sagittal views. Purpose: To compare HDR-BT needle tip localization accuracy between 2D and 3D-TRUS. Methods: 5 prostate cancer patients underwent conventional 2D TRUS guided HDR-BT, during which 3D images were also acquired for post-operative registration and segmentation. Needle end-length measurements were taken, providing a gold standard for insertion depths. Results: 73 needles were analyzed from all 5 patients. Needle tip position differences between imaging techniques was found to be largest in the S/I direction with mean+/-SD of -2.5+/-4.0 mm. End-length measurements indicated that 3D TRUS provided statistically significantly lower mean+/-SD insertion depth error of -0.2+/-3.4 mm versus 2.3+/-3.7 mm with 2D guidance (p < .001). Conclusions: 3D TRUS may provide more accurate HDR-BT needle localization than conventional 2D TRUS guidance for the majority of HDR-BT needles.

  7. Multiple doses of saw palmetto (Serenoa repens) did not alter cytochrome P450 2D6 and 3A4 activity in normal volunteers.

    PubMed

    Markowitz, John S; Donovan, Jennifer L; Devane, C Lindsay; Taylor, Robin M; Ruan, Ying; Wang, Jun-Sheng; Chavin, Kenneth D

    2003-12-01

    Saw palmetto (Serenoa repens) is the most commonly used herbal preparation in the treatment of benign prostatic hyperplasia. The objective of this study was to determine whether a characterized saw palmetto product affects the activity of cytochrome P450 (CYP) 2D6 or 3A4 in healthy volunteers (6 men and 6 women). The probe substrates dextromethorphan (CYP2D6 activity) and alprazolam (CYP3A4 activity) were administered orally at baseline and again after exposure to saw palmetto (320-mg capsule once daily) for 14 days. Dextromethorphan metabolic ratios and alprazolam pharmacokinetics were determined at baseline and after saw palmetto treatment. The mean ratio of dextromethorphan to its metabolite was 0.038 +/- 0.044 at baseline and 0.048 +/- 0.080 after 14 days of saw palmetto administration (P =.704, not significant [NS]), indicating a lack of effect on CYP2D6 activity. The area under the plasma alprazolam concentration versus time curve was 476 +/- 178 h. ng. mL(-1) at baseline and 479 +/- 125 h. ng. mL(-1) after saw palmetto treatment (P =.923, NS), indicating a lack of effect on CYP3A4 activity. The elimination half-life of alprazolam was 11.4 +/- 3.1 hours at baseline and 11.6 +/- 2.7 hours after saw palmetto treatment (P =.770, NS), also indicating a lack of effect on CYP3A4 activity. Our results indicate that extracts of saw palmetto at generally recommended doses are unlikely to alter the disposition of coadministered medications primarily dependent on the CYP2D6 or CYP3A4 pathways for elimination. These conclusions must be weighed in the context of the study's limited assessments and regarded as only the initial investigation into the drug interaction potential of saw palmetto.

  8. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model

    PubMed Central

    Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit

    2017-01-01

    Purpose To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. Material and methods The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Results Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. Conclusions The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT. PMID:28344603

  9. Thyroid dose distribution in dental radiography

    SciTech Connect

    Bristow, R.G.; Wood, R.E.; Clark, G.M. )

    1989-10-01

    The anatomic position and proven radiosensitivity of the thyroid gland make it an organ of concern in dental radiography. A calibrated thermoluminescent dosimetry system was used to investigate the absorbed dose (microGy) to the thyroid gland resultant from a minimum irradiated volume, intraoral full-mouth radiography technique with the use of rectangular collimation with a lead-backed image receptor, and conventional panoramic radiography performed with front and rear lead aprons. Use of the minimum irradiated volume technique resulted in a significantly decreased absorbed dose over the entire thyroid region ranging from 100% to 350% (p less than 0.05). Because this intraoral technique results in radiographs with greater image quality and also exposes the thyroid gland to less radiation than the panoramic, this technique may be an alternative to the panoramic procedure.

  10. THE 2D DISTRIBUTION OF IRON-RICH EJECTA IN THE REMNANT OF SN 1885 IN M31

    SciTech Connect

    Fesen, Robert A.; Höflich, Peter A.; Hamilton, Andrew J. S.

    2015-05-10

    We present Hubble Space Telescope (HST) ultraviolet Fe i and Fe ii images of the remnant of Supernova 1885 (S And) which is observed in absorption against the bulge of the Andromeda galaxy, M31. We compare these Fe i and Fe ii absorption line images to previous HST absorption images of S And, of which the highest quality and theoretically cleanest is Ca ii H and K. Because the remnant is still in free expansion, these images provide a 2D look at the distribution of iron synthesized in this probable Type Ia explosion, thus providing insights and constraints for theoretical SN Ia models. The Fe i images show extended absorption offset to the east from the remnant’s center as defined by Ca ii images and is likely an ionization effect due to self-shielding. More significant is the remnant’s apparent Fe ii distribution which consists of four streams or plumes of Fe-rich material seen in absorption that extend from remnant center out to about 10,000 km s{sup −1}. This is in contrast to the remnant’s Ca ii absorption, which is concentrated in a clumpy, broken shell spanning velocities of 1000–5000 km s{sup −1} but which extends out to 12,500 km s{sup −1}. The observed distributions of Ca- and Fe-rich ejecta in the SN 1885 remnant are consistent with delayed detonation white dwarf models. The largely spherical symmetry of the Ca-rich layer argues against a highly anisotropic explosion as might result from a violent merger of two white dwarfs.

  11. The 2D Distribution of Iron-rich Ejecta in the Remnant of SN 1885 in M31

    NASA Astrophysics Data System (ADS)

    Fesen, Robert A.; Höflich, Peter A.; Hamilton, Andrew J. S.

    2015-05-01

    We present Hubble Space Telescope (HST) ultraviolet Fe i and Fe ii images of the remnant of Supernova 1885 (S And) which is observed in absorption against the bulge of the Andromeda galaxy, M31. We compare these Fe i and Fe ii absorption line images to previous HST absorption images of S And, of which the highest quality and theoretically cleanest is Ca ii H and K. Because the remnant is still in free expansion, these images provide a 2D look at the distribution of iron synthesized in this probable Type Ia explosion, thus providing insights and constraints for theoretical SN Ia models. The Fe i images show extended absorption offset to the east from the remnant’s center as defined by Ca ii images and is likely an ionization effect due to self-shielding. More significant is the remnant’s apparent Fe ii distribution which consists of four streams or plumes of Fe-rich material seen in absorption that extend from remnant center out to about 10,000 km s-1. This is in contrast to the remnant’s Ca ii absorption, which is concentrated in a clumpy, broken shell spanning velocities of 1000-5000 km s-1 but which extends out to 12,500 km s-1. The observed distributions of Ca- and Fe-rich ejecta in the SN 1885 remnant are consistent with delayed detonation white dwarf models. The largely spherical symmetry of the Ca-rich layer argues against a highly anisotropic explosion as might result from a violent merger of two white dwarfs. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract No. NAS5-26555.

  12. Differential dose contributions on total dose distribution of 125I brachytherapy source

    PubMed Central

    Camgöz, B.; Yeğin, G.; Kumru, M.N.

    2010-01-01

    This work provides an improvement of the approach using Monte Carlo simulation for the Amersham Model 6711 125I brachytherapy seed source, which is well known by many theoretical and experimental studies. The source which has simple geometry was researched with respect to criteria of AAPM Tg-43 Report. The approach offered by this study involves determination of differential dose contributions that come from virtual partitions of a massive radioactive element of the studied source to a total dose at analytical calculation point. Some brachytherapy seeds contain multi-radioactive elements so the dose at any point is a total of separate doses from each element. It is momentous to know well the angular and radial dose distributions around the source that is located in cancerous tissue for clinical treatments. Interior geometry of a source is effective on dose characteristics of a distribution. Dose information of inner geometrical structure of a brachytherapy source cannot be acquired by experimental methods because of limits of physical material and geometry in the healthy tissue, so Monte Carlo simulation is a required approach of the study. EGSnrc Monte Carlo simulation software was used. In the design of a simulation, the radioactive source was divided into 10 rings, partitioned but not separate from each other. All differential sources were simulated for dose calculation, and the shape of dose distribution was determined comparatively distribution of a single-complete source. In this work anisotropy function was examined also mathematically. PMID:24376927

  13. SU-E-T-798: Verification of 3DVH Dose Distribution Before Clinical Implementation for Patient-Specific IMRT QA

    SciTech Connect

    McFadden, D

    2015-06-15

    Purpose: In recent years patient-specific IMRT QA has transitioned from film and chamber measurements to beam-by-beam 2D array measurements. 3DVH takes this transition a step further by estimating the 3D dose distribution delivered using 2D per beam diode array measurements. In this study, the 3D dose distribution generated by 3DVH is compared to film and chamber measurements. In addition, the accuracy ROI volume and error detection is investigated. Methods: Composite film and ion chamber measurements in a solid water phantom were performed for 9 IMRT PINNACLE patient plans for 4 treatment sites. The film and chamber measurements were compared to the dose distribution predicted by 3DVH using MAPCHECK2 per beam measurements. The absolute point dose measurement (CAX) was extracted from the predicted 3DVH and PINNACLE dose distribution and was compared by taking the ratio of measured to predicted doses. The dose distribution measured with film was compared to the distribution in the corresponding plane (AX, SAG, COR) extracted from predicted dose distribution by 3DVH and PINNACLE using a 2D gamma analysis. Gamma analysis was performed with 2% dose, 2 mm DTA, 20% threshold, and global normalization. In addition, the percent difference between 3DVH and PINNACLE ROI volumes was calculated. Results: The average ratio of the measured point dose vs the 3DVH predicted dose was 1.017 (σ=0.011). The average gamma passing rate for measured vs 3DVH dose distributions was 95.1% (σ=2.53%). The average percent difference of 3DVH vs PINNACLE ROI volume was 2.29% (σ=2.5%). Conclusion: The dose distributions predicted by 3DVH using MAPCHECK2 measurements are the same as the distributions that would have been obtained using film and chamber. The ROI volumes used in 3DVH are not an exact match to those in PINNACLE; the effect requires more investigation. The accuracy of error detection by 3DVH is currently being investigated.

  14. Simple methods for the estimation of dose distributions, organ doses and energy imparted in paediatric radiology.

    PubMed

    Almén, A; Nilsson, M

    1996-07-01

    The energy imparted and the effective dose can both be used to describe the risk to the patient in diagnostic radiology. Simple methods must be employed to determine these quantities in clinical situations. Methods using measured relative depth-dose distributions are presented and evaluated here. Measurements of depth-dose distributions for x-ray beams were performed with an ionization chamber, a diode and a number of TL dosimeters. The energy imparted was calculated from measurements with both phantoms and patients. The method of calculating the mean absorbed dose to organs was applied to pelvis and lumbar spine examinations. TL dosimeters were found to be an appropriate detector for measuring depth-dose distributions. When calculating the energy imparted the entrance beam area must be accurately known. The mean absorbed dose to organs can be derived from measured relative depth-dose curves if accurate information on entrance beam position and area is available for the particular examination technique used. The advantage of these methods is that the dose distribution is measured for the photon beam used for the examination of the patients.

  15. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT.

    PubMed

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-05-21

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  16. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT

    NASA Astrophysics Data System (ADS)

    Visser, R.; Godart, J.; Wauben, D. J. L.; Langendijk, J. A.; van't Veld, A. A.; Korevaar, E. W.

    2016-05-01

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU’s for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  17. A method to determine the planar dose distributions in patient undergone radiotherapy

    NASA Astrophysics Data System (ADS)

    Cilla, S.; Viola, P.; Augelli, B. G.; D'Onofrio, G.; Grimaldi, L.; Craus, M.; Digesù, C.; Deodato, F.; Macchia, G.; Morganti, A. G.; Fidanzio, A.; Azario, L.; Piermattei, A.

    2008-06-01

    A 2D-array equipped with 729 vented plane parallel ion-chambers has been calibrated as a portal dose detector for radiotherapy in vivo measurements. The array has been positioned by a radiographic film stand at 120 cm from the source orthogonal to the radiotherapy beam delivered with the gantry angle at 180°. The collision between the 2D-array and the patient's couch have been avoided. In this work, using the measurements of the portal detector, we present a method to reconstruct the dose variations in the patient treated with step and shoot intensity-modulated beams (IMRT) for head-neck tumours. For this treatment morphological changes often occur during the fractionated therapy. In a first step an in-house software supplied the comparison between the measured portal dose and the one computed by a commercial treatment planning system within the field of view of the computed tomography (CT) scanner. For each patient, the percentage Pγ of chambers, where the comparison is in agreement within a selected acceptance criteria, was determined 8 times. At the first radiotherapy fraction the γ-index analysis supplied Pγ values of about 95%, within acceptance criteria in terms of dose-difference, ΔD, and distance-agreement, Δd, that was equal to 5% and 4 mm, respectively. These acceptance criteria were taken into account for small errors in the patient's set-up reproducibility and for the accuracy of the portal dose calculated by the treatment planning system (TPS) in particular when the beam was attenuated by inhomogeneous tissues and the shape of the head-neck body contours were irregular. During the treatment, some patients showed a reduction of the Pγ below 90% because due to radiotherapy treatment there was a change of the patient's morphology. In a second step a method, based on dosimetric measurements that used standard phantoms, supplied the percentage dose variations in a coronal plane of the patient using the percentage dose variations measured by the 2D

  18. Dose-time-response modeling using negative binomial distribution.

    PubMed

    Roy, Munmun; Choudhury, Kanak; Islam, M M; Matin, M A

    2013-01-01

    People exposed to certain diseases are required to be treated with a safe and effective dose level of a drug. In epidemiological studies to find out an effective dose level, different dose levels are applied to the exposed and a certain number of cures is observed. Negative binomial distribution is considered to fit overdispersed Poisson count data. This study investigates the time effect on the response at different time points as well as at different dose levels. The point estimation and confidence bands for ED(100p)(t) and LT(100p)(d) are formulated in closed form for the proposed dose-time-response model with the negative binomial distribution. Numerical illustrations are carried out in order to check the performance level of the proposed model.

  19. [A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system].

    PubMed

    Dubousset, Jean; Charpak, Georges; Dorion, Irène; Skalli, Wafa; Lavaste, François; Deguise, Jacques; Kalifa, Gabriel; Ferey, Solène

    2005-02-01

    Close collaboration between multidisciplinary specialists (physicists, biomecanical engineers, medical radiologists and pediatric orthopedic surgeons) has led to the development of a new low-dose radiation device named EOS. EOS has three main advantages: The use of a gaseous X-ray detector, invented by Georges Charpak (Nobel Prizewinner 1992), the dose necessary to obtain a 2D image of the skeletal system has been reduced by 8 to 10 times, while that required to obtain a 3D reconstruction from CT slices has fallen by a factor of 800 to 1000. The accuracy of the 3D reconstruction obtained with EOS is as good as that obtained with CT. The patient is examined in the standing (or seated) position, and is scanned simultaneously from head to feet, both frontally and laterally. This is a major advantage over conventional CT which requires the patient to be placed horizontally. -The 3D reconstructions of each element of the osteo-articular system are as precise as those obtained by conventional CT. EOS is also rapid, taking only 15 to 30 minutes to image the entire spine.

  20. Separating stratiform and convective rain types based on the drop size distribution characteristics using 2D video disdrometer data

    NASA Astrophysics Data System (ADS)

    Thurai, M.; Gatlin, P. N.; Bringi, V. N.

    2016-03-01

    A technique for separating stratiform and convective rain types using the characteristics of two of the main drop size distribution (DSD) parameters is presented. The method was originally developed based on observations from dual-frequency profiler and dual-polarization radar observations in Darwin, Australia. In this paper, we will present the testing of the method using data from 2D video disdrometers (2DVD) from two very different locations, namely, Ontario, Canada, and Huntsville, Alabama, USA. One-minute DSDs from 2DVD are used as input to a gamma-fitting procedure and our separation technique uses the fitted values of log10(NW) and D0 (where NW is the scaling parameter and D0 is the median volume diameter) and an "index" to quantify where the points lie in the log10(NW) versus D0 domain. For the Ontario location, the output of the classification is compared with simultaneous observations from a collocated, vertically pointing, X-band Doppler radar. A "bright-band" detection algorithm is used to classify each height profile as either stratiform or convective, depending on whether or not a clearly defined melting layer is present at an expected height. If present, the maximum reflectivity within the melting layer and the corresponding height are determined. Similar testing is carried out for two events in Huntsville and compared with observations from a collocated UHF profiler (with Doppler capability). Additional case studies are required, but these results indicate our separation technique seems to be applicable to many different locations and climatologies based on previously published data.

  1. Space Radiation Absorbed Dose Distribution in a Human Phantom Torso

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Yang, T.; Atwell, W.

    2000-01-01

    The flight of a human phantom torso with head that containing active dosimeters at 5 organ sites and 1400 TLDs distributed in 34 1" thick sections is described. Experimental dose rates and quality factors are compared with calculations for shielding distributions at the sites using the Computerized Anatomical Male (CAM) model. The measurements were complemented with those obtained from other instruments. These results have provided the most comprehensive data set to map the dose distribution inside a human and to assess the accuracy of radiation transport models and astronaut radiation risk.

  2. Space radiation absorbed dose distribution in a human phantom

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  3. Space radiation absorbed dose distribution in a human phantom.

    PubMed

    Badhwar, G D; Atwell, W; Badavi, F F; Yang, T C; Cleghorn, T F

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  4. Subclinical hypothyroidism and the risk of chronic kidney disease in T2D subjects: A case-control and dose-response analysis.

    PubMed

    Zhou, Jian-Bo; Li, Hong-Bing; Zhu, Xiao-Rong; Song, Hai-Lin; Zhao, Ying-Ying; Yang, Jin-Kui

    2017-04-01

    Evidence indicated a positive association between subclinical hypothyroidism (SCH) and cardiovascular diseases. But the relationship between SCH and chronic kidney diseases (CKD) remains unclear. A case-control study was performed to ascertain this relationship followed by a meta-analysis. In this hospital-based, case-control study, we recruited 3270 type 2 diabetic patients with euthyroidism and 545 type 2 diabetic patients with SCH. All English studies were searched upon the relationship between SCH and CKD up to October 2016. Meta-analysis was performed using STATA 13.0 software. Our case-control study indicated an association between SCH and CKD in patients with type 2 diabetes [OR (95% CI): 1.22 (1.09-1.36)]. Five observational studies reporting risk of CKD in SCH individuals were enrolled. A significant relationship between SCH and CKD was shown [pooled OR 1.80, (95% CI) 1.38-2.35]. Among normal TSH range, individuals with TSH ≥3.0 μIU/ml had a significantly higher rate of CKD (Fisher exact test, P = 0.027). Dose-response linear increase of CKD events was explored [pooled OR 1.09 (95% CI): 1.03-1.16 per1 mIU/L increase of TSH]. The present evidence suggests that SCH is probably a significant risk factor of CKD in T2D. Linear trend is shown between TSH elevation and CKD in T2D. This relationship between serum TSH and renal impairment in type 2 diabetic patients needs further studies to investigate.

  5. Noninvasive real-time 2D imaging of temperature distribution during the plastic pellet cooling process by using electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Hirose, Yusuke; Sapkota, Achyut; Sugawara, Michiko; Takei, Masahiro

    2016-01-01

    This study has launched a concept to image a real-time 2D temperature distribution noninvasively by a combination of the electrical capacitance tomography (ECT) technique and a permittivity-temperature calibration equation for the plastic pellet cooling process. The concept has two steps, which are the relative permittivity calculation from the measured capacitance among the many electrodes by the ECT technique, and the temperature distribution imaging from the relative permittivity by the permittivity-temperature calibration equation. An ECT sensor with 12 electrodes was designed to image the cross-sectional temperature distribution during the polymethyl methacrylate pellets cooling process. The images of temperature distribution were successfully reconstructed from the relative permittivity distribution at every time step during the process. The images reasonably indicate the temperature diffusion in a 2D space and time within a 0.0065 and 0.0175 time-dependent temperature deviation, as compared to an analytical thermal conductance simulation and thermocouple measurement.

  6. Estimation of raindrop drop size distribution vertical profile from simultaneous micro rain radar and 2D video disdrometer measurements

    NASA Astrophysics Data System (ADS)

    Adirosi, Elisa; Baldini, Luca; Roberto, Nicoletta; Montopoli, Mario; Gorgucci, Eugenio; Gatlin, Patrick; Tokay, Ali

    2016-04-01

    Experimental field campaigns of rain precipitation usually require the coexistence of several ground and satellite based observations in order to guarantee a more complete analysis of the collected case studies at the various spatial and temporal scales of interest. In the framework of the Ground Validation programme of the NASAA/JAXA Global Precipitation Measurement (GPM) mission, several climate regions of the Earth have been interested by various field campaigns involving experimental setup which include one or more ground based disdrometers and profilers. In such situation a typical implementation of the measurement scheme consists of a pair of K-band vertically pointing micro rain radar (MRR) and a 2D video disdrometer (2DVD) installed close each other. Since 2DVD estimates are referred to the ground level, the co-located MRR is supposed to provide complementary vertical profiles of drop size distribution (DSD) measurements. However, if not properly processed MRR and 2DVD raw data can lead to erroneous interpretations of the underlying microphysics. In this work, we investigate some typical issues occurring when dealing with MRR and 2DVD observations proposing techniques to ensure the adequate data quality required in typical field validation campaigns. More in detail, MRR is an affordable continuous wave frequency-modulated radar (CWFM) typically used at vertical incidence. In the MMR configuration used, DSD profiles are estimated from Doppler spectra determined by drops falling at different velocities and at different heights from 1000 meters almost up to the ground level with a vertical resolution of 35 meters and time resolution up to 10 seconds. The importance of the microphysical measurements from MRR are related to the effects of the vertical gradients of rain precipitation at the sub-resolution scale of the measurements based remote sensing instruments such as those provided by the dual frequency radar of GPM as well as by ground based weather radars

  7. 2D Size Distribution of Chondrules and Chondritic Fragments of an Ordinary Chondrite from Lut Desert (Iran)

    NASA Astrophysics Data System (ADS)

    Pourkhorsandi, H.; Mirnejad, H.

    2014-09-01

    2D size measurement of chondrules and chondiritic fragments of a meteorite from Lut desert of Iran is conducted. Chondrules exhibit a size range of 55-1800 µm (average 437 µm). Chondiritic fragments show a size range of 46-1220 µm (average 261 µm).

  8. An influence of solar activity on latitudinal distribution of atmospheric ozone and temperature in 2-D radiative-photochemical model

    NASA Technical Reports Server (NTRS)

    Dyominov, I. G.

    1989-01-01

    On the basis of the 2-D radiative-photochemical model of the ozone layer at heights 0 to 60 km in the Northern Hemisphere there are revealed and analyzed in detail the characteristic features of the season-altitude-latitude variations of ozone and temperature due to changes of the solar flux during the 11 year cycle, electron and proton precipitations.

  9. ULTRAVIOLET RADIATION DOSE AND AMPHIBIAN DISTRIBUTIONS IN NATIONAL PARKS

    EPA Science Inventory

    Ultraviolet Radiation Dose and Amphibian Distributions in National Parks. Diamond, S. A., Detenbeck, N. E., USEPA, Duluth, MN, USA, Bradford, D. F., USEPA, Las Vegas, NV, USA, Trenham, P. C., University of California, Davis, CA., USA, Adams, M. J., Corn, P. S., Hossack, B., USGS,...

  10. Automation and validation of micronucleus detection in the 3D EpiDerm™ human reconstructed skin assay and correlation with 2D dose responses

    PubMed Central

    Chapman, K. E.; Thomas, A. D.; Jenkins, G. J. S.

    2014-01-01

    Recent restrictions on the testing of cosmetic ingredients in animals have resulted in the need to test the genotoxic potential of chemicals exclusively in vitro prior to licensing. However, as current in vitro tests produce some misleading positive results, sole reliance on such tests could prevent some chemicals with safe or beneficial exposure levels from being marketed. The 3D human reconstructed skin micronucleus (RSMN) assay is a promising new in vitro approach designed to assess genotoxicity of dermally applied compounds. The assay utilises a highly differentiated in vitro model of the human epidermis. For the first time, we have applied automated micronucleus detection to this assay using MetaSystems Metafer Slide Scanning Platform (Metafer), demonstrating concordance with manual scoring. The RSMN assay’s fixation protocol was found to be compatible with the Metafer, providing a considerably shorter alternative to the recommended Metafer protocol. Lowest observed genotoxic effect levels (LOGELs) were observed for mitomycin-C at 4.8 µg/ml and methyl methanesulfonate (MMS) at 1750 µg/ml when applied topically to the skin surface. In-medium dosing with MMS produced a LOGEL of 20 µg/ml, which was very similar to the topical LOGEL when considering the total mass of MMS added. Comparisons between 3D medium and 2D LOGELs resulted in a 7-fold difference in total mass of MMS applied to each system, suggesting a protective function of the 3D microarchitecture. Interestingly, hydrogen peroxide (H2O2), a positive clastogen in 2D systems, tested negative in this assay. A non-genotoxic carcinogen, methyl carbamate, produced negative results, as expected. We also demonstrated expression of the DNA repair protein N-methylpurine-DNA glycosylase in EpiDerm™. Our preliminary validation here demonstrates that the RSMN assay may be a valuable follow-up to the current in vitro test battery, and together with its automation, could contribute to minimising unnecessary in

  11. 2-D Magnetotellurics at the geothermal site at Soultz-sous-Forêts: Resistivity distribution to about 3000 m depth

    NASA Astrophysics Data System (ADS)

    Geiermann, Johannes; Schill, Eva

    2010-07-01

    With the aim of investigating the possibilities of magnetotelluric methods for the exploration of potential Enhanced Geothermal System (EGS) sites in the Upper Rhine valley, a 2-D magnetotelluric (MT) survey has been carried out on a 13 km long profile across the thermal anomaly in the area of the geothermal power plant of Soultz-sous-Forêts in the winter 2007/08. Despite strong artificial noise, processing using remote referencing and Sutarno phase consistent smoothing revealed significant results from 10 out of 16 sites. Indication for 1-D structures was found in the shortest periods, 2-D effects in the periods up to 40 s, and 3-D effects in the long period range. Since 3-D effects were found in the longer periods, 2-D inversion was carried out for periods smaller than 40 s. The results of the inversion are consistent with the geology of the geothermal site and distinguish well the sediments from the granitic basement including the structures given by the faults. A conductive anomaly with a resistivity of about 3 Ωm has been found at a depth down to 2000 m in the area of the Soultz and Kutzenhausen faults, which is attributed to geothermal processes.

  12. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    SciTech Connect

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei

    2013-05-15

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  13. Principles of protection: a formal approach for evaluating dose distributions.

    PubMed

    Wikman-Svahn, Per; Peterson, Martin; Hansson, Sven Ove

    2006-03-01

    One of the central issues in radiation protection consists in determining what weight should be given to individual doses in relation to collective or aggregated doses. A mathematical framework is introduced in which such assessments can be made precisely in terms of comparisons between alternative distributions of individual doses. In addition to evaluation principles that are well known from radiation protection, a series of principles that are derived from parallel discussions in moral philosophy and welfare economics is investigated. A battery of formal properties is then used to investigate the evaluative principles. The results indicate that one of the new principles, bilinear prioritarianism, may be preferable to current practices, since it satisfies efficiency-related properties better without sacrificing other desirable properties.

  14. 2dFLenS and KiDS: determining source redshift distributions with cross-correlations

    NASA Astrophysics Data System (ADS)

    Johnson, Andrew; Blake, Chris; Amon, Alexandra; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; McFarland, John; Morrison, Christopher B.; Parkinson, David; Poole, Gregory B.; Radovich, Mario; Wolf, Christian

    2017-03-01

    We develop a statistical estimator to infer the redshift probability distribution of a photometric sample of galaxies from its angular cross-correlation in redshift bins with an overlapping spectroscopic sample. This estimator is a minimum-variance weighted quadratic function of the data: a quadratic estimator. This extends and modifies the methodology presented by McQuinn & White. The derived source redshift distribution is degenerate with the source galaxy bias, which must be constrained via additional assumptions. We apply this estimator to constrain source galaxy redshift distributions in the Kilo-Degree imaging survey through cross-correlation with the spectroscopic 2-degree Field Lensing Survey, presenting results first as a binned step-wise distribution in the range z < 0.8, and then building a continuous distribution using a Gaussian process model. We demonstrate the robustness of our methodology using mock catalogues constructed from N-body simulations, and comparisons with other techniques for inferring the redshift distribution.

  15. Longevity of duct tape in residential air distribution systems: 1-D, 2-D, and 3-D joints

    SciTech Connect

    Abushakra, Bass

    2002-05-30

    The aging tests conducted so far showed that duct tape tends to degrade in its performance as the joint it is applied to requires a geometrical description of a higher number of space dimensions (1-D, 2-D, 3-D). One-dimensional joints are the easiest to seal with duct tape, and thus the least to experience failure. Two-dimensional joints, such as the flexible duct core-to-collar joints tested in this study, are less likely to fail than three-dimensional collar-to-plenum joints, as the shrinkage could have a positive effect in tightening the joint. Three-dimensional joints are the toughest to seal and the most likely to experience failure. The 2-D flexible duct core-to-collar joints passed the six-month period of the aging test in terms of leakage, but with the exception of the foil-butyl tape, showed degradation in terms hardening, brittleness, partial peeling, shrinkage, wrinkling, delamination of the tape layers, flaking, cracking, bubbling, oozing and discoloration. The baking test results showed that the failure in the duct tape joints could be attributed to the type of combination of the duct tape and the material it is applied to, as the duct tape behaves differently with different substrates. Overall, the foil-butyl tape (Tape 4) had the best results, while the film tape (Tape 3) showed the most deterioration. The conventional duct tapes tested (Tape 1 and Tape 2) were between these two extremes, with Tape 2 performing better than Tape 1. Lastly, we found that plastic straps became discolored and brittle during the tests, and a couple of straps broke completely. Therefore, we recommend that clamping the duct-taped flexible core-to-collar joints should be done with metallic adjustable straps.

  16. Selecting radiotherapy dose distributions by means of constrained optimization problems.

    PubMed

    Alfonso, J C L; Buttazzo, G; García-Archilla, B; Herrero, M A; Núñez, L

    2014-05-01

    The main steps in planning radiotherapy consist in selecting for any patient diagnosed with a solid tumor (i) a prescribed radiation dose on the tumor, (ii) bounds on the radiation side effects on nearby organs at risk and (iii) a fractionation scheme specifying the number and frequency of therapeutic sessions during treatment. The goal of any radiotherapy treatment is to deliver on the tumor a radiation dose as close as possible to that selected in (i), while at the same time conforming to the constraints prescribed in (ii). To this day, considerable uncertainties remain concerning the best manner in which such issues should be addressed. In particular, the choice of a prescription radiation dose is mostly based on clinical experience accumulated on the particular type of tumor considered, without any direct reference to quantitative radiobiological assessment. Interestingly, mathematical models for the effect of radiation on biological matter have existed for quite some time, and are widely acknowledged by clinicians. However, the difficulty to obtain accurate in vivo measurements of the radiobiological parameters involved has severely restricted their direct application in current clinical practice.In this work, we first propose a mathematical model to select radiation dose distributions as solutions (minimizers) of suitable variational problems, under the assumption that key radiobiological parameters for tumors and organs at risk involved are known. Second, by analyzing the dependence of such solutions on the parameters involved, we then discuss the manner in which the use of those minimizers can improve current decision-making processes to select clinical dosimetries when (as is generally the case) only partial information on model radiosensitivity parameters is available. A comparison of the proposed radiation dose distributions with those actually delivered in a number of clinical cases strongly suggests that solutions of our mathematical model can be

  17. Understanding outliers on the usual dose-response curve: venlafaxine as a way to phenotype patients in terms of their CYP 2D6 status and why it matters.

    PubMed

    Preskorn, Sheldon H

    2010-01-01

    Venlafaxine is a model substrate for the drug metabolizing cytochrome P450 (CYP) enzyme 2D6. The desvenlafaxine/venlafaxine ratio, either after a single dose or at steady state, can be used to determine whether a patient is functionally (i.e., phenotypically) a CYP 2D6 extensive or poor metabolizer (EM or PM). In turn, CYP 2D6 EM and PM status is important in determining the efficacy of venlafaxine as an antidepressant. Based on a secondary analysis of four of the venlafaxine registration trials, venlafaxine was effective in patients who were CYP 2D6 EMs versus a parallel placebo-treated control group, whereas it was not effective in patients who were CYP 2D6 PMs. Thus, venlafaxine is a useful example of how drugs can be used to quantify differences in drug metabolizing capacity among patients and how such differences can in turn affect the efficacy of a drug (i.e., make a patient an outlier on the usual dose-response curve).

  18. Comparison of the bubble size distribution in silicate foams using 2D images and 3D x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Robert, Genevieve; Baker, Don R.; Rivers, Mark L.; Allard, Emilie; Larocque, Jeffery

    2004-10-01

    Three silicate glasses were hydrated at high pressure and then heated at atmospheric pressure to exsolve the water into bubbles and create foams. The bubble size distribution in these foams was measured by x-ray microtomography on the GSECARS BM-13 beamline at the Advanced Photon Source. The bubble area distributions were measured in two dimensions using the image slices produced from the microtomography and the software ImageJ. The bubble volume distributions were measured from the three-dimensional tomographic images with the BLOB3D software. We found that careful analysis of the microtomography data in both two and three dimensions was necessary to avoid the physically unrealistic, experimental artifact of identifying and counting many small bubbles whose surfaces were not defined by a septum of glass. When this artifact was avoided the foams demonstrated power-law distributions of bubble sizes in both two and three dimensions. Conversion of the power-law exponents for bubble areas measured in two dimensions to exponents for bubble volumes usually agreed with the measured three dimensional volume exponents. Furthermore, the power-law distributions for bubble volumes typically agree with multiple theories of bubble growth, all of which yield an exponent of 1 for the cumulative bubble volume distribution. The measured bubble volume distributions with exponents near 0.3 can be explained by diffusive growth as proposed by other authors, but distributions with exponents near 1.4 remain to be explained and are the subject of continuing research on the effects of water concentration and melt viscosity on foaming behavior.

  19. 2D ion velocity distribution function measurements by laser-induced fluorescence above a radio-frequency biased silicon wafer

    NASA Astrophysics Data System (ADS)

    Moore, Nathaniel; Gekelman, Walter; Pribyl, Patrick; Zhang, Yiting; Kushner, Mark

    2012-10-01

    Ion dynamics have been measured in the sheath above a 30 cm diameter, 2.2 MHz-biased silicon wafer in a plasma processing etch tool using laser-induced fluorescence (LIF). The velocity distribution function of argon ions was measured at thousands of positions above and radially along the edge of the wafer by sending a planar laser sheet from a pulsed, tunable dye laser into the tool. The RF sheath is clearly resolved. The laser sheet entered the machine both parallel and perpendicular to the wafer in order to measure the distribution function for both parallel and perpendicular velocities/energies (0.4 eV < Emax<600 eV). The resulting fluorescence was recorded using a fast CCD camera, which provided spatial (0.4 mm) and temporal (30 ns) resolution. Data was taken at eight different phases of the 2.2 MHz cycle. The distribution functions were found to be spatially non-uniform near the edge of the wafer and the distribution of energies extremely phase-dependent. Several cm above the wafer the distribution is Maxwellian and independent of phase. Results are compared with simulations; for example, the experimental time-averaged ion energy distribution function compares favorably with a computer model carefully constructed to emulate the device.

  20. 2D ion velocity distribution function measurements by laser-induced fluorescence above a radio-frequency biased silicon wafer

    NASA Astrophysics Data System (ADS)

    Moore, Nathaniel; Gekelman, Walter; Pribyl, Patrick; Zhang, Yiting; Kushner, Mark

    2012-10-01

    Ion dynamics have been measured in the sheath above a 30 cm diameter, 2.2 MHz-biased silicon wafer in a plasma processing etch tool using laser-induced fluorescence (LIF). The velocity distribution function of argon ions was measured at thousands of positions above and radially along the edge of the wafer by sending a planar laser sheet from a pulsed, tunable dye laser into the tool. The RF sheath is clearly resolved. The laser sheet entered the machine both parallel and perpendicular to the wafer in order to measure the distribution function for both parallel and perpendicular velocities/energies (0.4 eV < Emax< 600 eV). The resulting fluorescence was recorded using a fast CCD camera, which provided spatial (0.4 mm) and temporal (30 ns) resolution. Data was taken at eight different phases of the 2.2 MHz cycle. The distribution functions were found to be spatially non-uniform near the edge of the wafer and the distribution of energies extremely phase-dependent. Several cm above the wafer the distribution is Maxwellian and independent of phase. Results are compared with simulations; for example, the experimental time-averaged ion energy distribution function compares favorably with a computer model carefully constructed to emulate the device.

  1. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  2. Distribution of CYP2D6 and CYP2C19 Polymorphisms Associated with Poor Metabolizer Phenotype in Five Amerindian Groups and Western Mestizos from Mexico

    PubMed Central

    Salazar-Flores, Joel; Torres-Reyes, Luis A.; Martínez-Cortés, Gabriela; Rubi-Castellanos, Rodrigo; Sosa-Macías, Martha; Muñoz-Valle, José F.; González-González, César; Ramírez, Angélica; Román, Raquel; Méndez, José L.; Barrera, Andrés; Torres, Alfredo; Medina, Rafael

    2012-01-01

    Background: The distribution of polymorphisms in the CYP2D6 and CYP2C19 genes allows inferring the potential risk for specific adverse drug reactions and lack of therapeutic effects in humans. This variability shows differences among human populations. The aim of this study was to analyze single-nucleotide polymorphisms related to a poor metabolizer (PM) phenotype in nonpreviously studied Amerindian groups and Mestizos (general admixed population) from Mexico. Methods: We detected by SNaPshot® different polymorphisms located in CYP2D6 (*3, *4, *6, *7, and *8) and CYP2C19 (*2, *3, *4 and *5) in western Mestizos (n=145) and five Amerindian groups from Mexico: Tarahumaras from the North (n=88); Purépechas from the Center (n=101); and Tojolabales (n=68), Tzotziles (n=88), and Tzeltales (n=20) from the Southeast. Genotypes were observed by capillary electrophoresis. The genetic relationships among these populations were estimated based on these genes. Results and Discussion: The wild-type allele (*1) of both genes was predominant in the Mexican populations studied. The most widely observed alleles were CYP2C19*2 (range, 0%–31%) and CYP2D6*4 (range, 1.2%–7.3%), whereas CYP2D6*3 was exclusively detected in Mestizos. Conversely, CYP2C19*4 and *5, as well as CYP2D6*3, *6, *7, and *8, were not observed in the majority of the Mexican populations. The Tarahumaras presented a high frequency of the allele CYP2C19*2 (31%) and of homozygotes *2/*2 (10.7%), which represent a high frequency of potentially PM phenotypes in this Amerindian group. The genetic distances showed high differentiation of Tarahumaras (principally for CYP2C19 gene). In general, a relative proximity was observed between most of the Amerindian, Mexican-Mestizo, and Latin-American populations. Conclusion: In general, the wild-type allele (*1) predominates in Mexican populations, outlining a relatively homogeneous distribution for CYP2C19 and CYP2D6. The exception is the Tarahumara group that displays a

  3. The CU 2-D-MAX-DOAS instrument - Part 1: Retrieval of 3-D distributions of NO2 and azimuth-dependent OVOC ratios

    NASA Astrophysics Data System (ADS)

    Ortega, I.; Koenig, T.; Sinreich, R.; Thomson, D.; Volkamer, R.

    2015-06-01

    We present an innovative instrument telescope and describe a retrieval method to probe three-dimensional (3-D) distributions of atmospheric trace gases that are relevant to air pollution and tropospheric chemistry. The University of Colorado (CU) two-dimensional (2-D) multi-axis differential optical absorption spectroscopy (CU 2-D-MAX-DOAS) instrument measures nitrogen dioxide (NO2), formaldehyde (HCHO), glyoxal (CHOCHO), oxygen dimer (O2-O2, or O4), and water vapor (H2O); nitrous acid (HONO), bromine monoxide (BrO), and iodine monoxide (IO) are among other gases that can in principle be measured. Information about aerosols is derived through coupling with a radiative transfer model (RTM). The 2-D telescope has three modes of operation: mode 1 measures solar scattered photons from any pair of elevation angle (-20° < EA < +90° or zenith; zero is to the horizon) and azimuth angle (-180° < AA < +180°; zero being north); mode 2 measures any set of azimuth angles (AAs) at constant elevation angle (EA) (almucantar scans); and mode 3 tracks the direct solar beam via a separate view port. Vertical profiles of trace gases are measured and used to estimate mixing layer height (MLH). Horizontal distributions are then derived using MLH and parameterization of RTM (Sinreich et al., 2013). NO2 is evaluated at different wavelengths (350, 450, and 560 nm), exploiting the fact that the effective path length varies systematically with wavelength. The area probed is constrained by O4 observations at nearby wavelengths and has a diurnal mean effective radius of 7.0 to 25 km around the instrument location; i.e., up to 1960 km2 can be sampled with high time resolution. The instrument was deployed as part of the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) in Mainz, Germany, from 7 June to 6 July 2013. We present first measurements (modes 1 and 2 only) and describe a four-step retrieval to derive (a) boundary layer vertical profiles and MLH of NO2; (b

  4. Product state distributions for the C + (4P)+H2(D2) reaction from chemiluminescence spectra

    NASA Astrophysics Data System (ADS)

    Kusunoki, I.; Ottinger, Ch.

    1982-02-01

    Optical emission resulting from low-energy (1-3 eVc.m.) impact of metastable C+(4P) ions on H2 and D2 molecules has been studied spectroscopically in the 2700-3900 Å range. The b 3Σ--a 3Π transition of CH+ (CD+) was resolved into numerous bands. From a spectrum simulation by computer, rotational-vibrational population distributions of the excited triplet state were obtained. In contrast to previous related studies, the vibrational excitation decreases with increasing collision energy. One-parameter surprisal fits of the vibrational (and, to a lesser extent, the rotational) population distributions are found to be unsatisfactory. The reaction is discussed in terms of changes of molecular orbital occupancy, which suggest a direct interaction mechanism. This is consistent with the observed population distributions.

  5. Radiation Therapy Photon Beams Dose Conformation According to Dose Distribution Around Intracavitary-Applied Brachytherapy Sources

    SciTech Connect

    Jurkovic, Slaven Zauhar, Gordana; Faj, Dario; Radojcic, Deni Smilovic; Svabic, Manda

    2010-04-01

    Intracavitary application of brachytherapy sources followed by external beam radiation is essential for the local treatment of carcinoma of the cervix. Due to very high doses to the central portion of the target volume delivered by brachytherapy sources, this part of the target volume must be shielded while being irradiated by photon beams. Several shielding techniques are available, from rectangular block and standard cervix wedge to more precise, customized step wedge filters. Because the calculation of a step wedge filter's shape was usually based on effective attenuation coefficient, an approach that accounts, in a more precise way, for the scattered radiation, is suggested. The method was verified under simulated clinical conditions using film dosimetry. Measured data for various compensators were compared to the numerically determined sum of the dose distribution around brachytherapy sources and one of compensated beam. Improvements in total dose distribution are demonstrated, using our method. Agreement between calculation and measurements were within 3%. Sensitivity of the method on sources displacement during treatment has also been investigated.

  6. An Investigation of Cross-Borehole Ground Penetrating Radar Measurements for Characterizing the 2D Moisture Content Distribution in the Vadose Zone

    SciTech Connect

    Alumbaugh, D.; Paprocki, L.

    1999-01-25

    The use of cross-borehole ground penetrating radar (GPR) imaging for determining g the two dimensional (2D) in situ moisture content distribution within the vadose zone is being investigated. The ultimate goal is to use the GPR images as input to a 2D hydrologic inversion scheme for recovering the van Genuchten parameters governing unsaturated ,hydraulic flow. Initial experiments conducted on synthetic data have shown that at least in theory, cross-borehole GPR measurements can provide realistic estimates of the spatial variation in moisture content that are needed for this type of hydrologic inversion scheme. However, the method can not recover exact values of moisture content due to the break down of the empirical expression often employed to convert GPR velocity images to moisture content, and to the smearing nature of the imaging algorithm. To test the applicability of this method in a real world environment cross- borehole GPR measurements were made at a hydrologic/geophysical vadose zone test site in Socorro, New Mexico. Results show that the GPR images compare well with the uncalibrated borehole neutron log data. GPR data acquisition will continue once an infiltration test has started, and the results from these measurements will be employed in a 2D hydrologic inverse scheme.

  7. 3 dimensional distributions of NO2, CHOCHO, and HCHO measured by the University of Colorado 2D-MAX-DOAS during MAD-CAT

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Sinreich, Roman; Volkamer, Rainer

    2014-05-01

    We present results of 2 dimensional Multi Axis-DOAS (2D-MAX-DOAS) measurements to infer 3-dimensional measurements of trace gases by characterizing boundary layer vertical profiles and near surface azimuth horizontal distribution of NO2 (14 angles covering 360°). We combine the established optimal estimation inversion with a new parameterization approach; the first method to derive NO2 tropospheric vertical profiles and boundary layer height and the second one to retrieve the azimuth horizontal distribution of near surface NO2 mixing ratios, both at multiple wavelengths (350 nm, 450 nm, and 560 nm). This was conducted for three cloud-free days in the framework of the intensive Multi Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) in Mainz, Germany 2013. By retrieving NO2 at multiple wavelengths range-resolved distributions of NO2 are derived using an 'Onion-peeling' approach, i.e., exploiting the fact that the optical path lengths at different wavelengths probe different horizontal air masses. We also measure glyoxal (CHOCHO) and formaldehyde (HCHO) distributions, and present to our knowledge the first 3-dimesional trace-gas distribution measurements of CHOCHO by a ground-based instrument. We expand the 2D-MAX-DOAS capabilities to calculate azimuth ratios of HCHO-to-NO2 (RFN) and CHOCHO-to-NO2 (RGN) to pinpoint volatile organic compound (VOC) oxidation chemistry and CHOCHO-to-HCHO (RGF) ratios as an indicator of biogenic and/or anthropogenic VOC emissions. The results of RFN correlate well with RGN and we identify azimuth variations that indicate gradients in the VOC/NOx chemistry that leads to O3 and secondary aerosol production. While there is a clear diurnal pattern in the RFN and RGN, no such variations are observed in the RGF, which shows rather constant values below 0.04 throughout the day, consistent with previous measurements, and indicative of urban air masses.

  8. Spatio-temporal groundwater recharge assessment using a lumped-parameter distributed model of the unsaturated zone (pyEARTH-2D)

    NASA Astrophysics Data System (ADS)

    Francés, Alain Pascal; Berhe, Ermias; Lubczynski, Maciek

    2010-05-01

    Numerical flow models are nowadays a powerful and widely used tool for groundwater management. Their reliability requires both an accurate physical representation of an aquifer system and appropriate boundary conditions. While the hydraulic parameters like hydraulic conductivity (K) and storativity (S) are spatially dependent and time invariant, groundwater fluxes such as recharge (R), evapotranspiration from groundwater (ETg) and groundwater inflow/outflow (Qgw) can vary in both space and time. Multiplicity of combinations between parameters and fluxes leads to a non-uniqueness of model solutions which limits their reliability and forecasting capability. We propose to constrain groundwater models at the catchment scale by the spatio-temporal assessment of fluxes in the unsaturated zone. Although the physically based models that involve the Darcy's law and the conservation of mass through the Richard's equation constitute the most appropriate tools for fluxes assessment in the unsaturated zone, they are computationally demanding and require a complex parameterization and boundary condition definition, which restricts their application to large and regional scales. We have thus chosen to develop and apply a lumped-parameter unsaturated zone model because it uses simplified representations of the physical processes and limits the number of parameters. We present in this study the development and application of a spatio-temporal recharge model (pyEARTH-2D) coupled with the numerical flow model MODFLOW at the catchment scale. pyEARTH-2D is a lumped-parameter distributed (grid-based) model that shares the same spatial discretization of the MODFLOW model for coupling purpose. pyEARTH-2D solves the water balance in the topsoil layer using linear relations between fluxes and soil moisture on a daily basis. The partitioning of rainfall is done by taking into consideration interception, evapotranspiration, percolation, soil moisture storage and surface storage and runoff

  9. Practical dose point-based methods to characterize dose distribution in a stationary elliptical body phantom for a cone-beam C-arm CT system

    PubMed Central

    Choi, Jang-Hwan; Constantin, Dragos; Ganguly, Arundhuti; Girard, Erin; Morin, Richard L.; Dixon, Robert L.; Fahrig, Rebecca

    2015-01-01

    Purpose: To propose new dose point measurement-based metrics to characterize the dose distributions and the mean dose from a single partial rotation of an automatic exposure control-enabled, C-arm-based, wide cone angle computed tomography system over a stationary, large, body-shaped phantom. Methods: A small 0.6 cm3 ion chamber (IC) was used to measure the radiation dose in an elliptical body-shaped phantom made of tissue-equivalent material. The IC was placed at 23 well-distributed holes in the central and peripheral regions of the phantom and dose was recorded for six acquisition protocols with different combinations of minimum kVp (109 and 125 kVp) and z-collimator aperture (full: 22.2 cm; medium: 14.0 cm; small: 8.4 cm). Monte Carlo (MC) simulations were carried out to generate complete 2D dose distributions in the central plane (z = 0). The MC model was validated at the 23 dose points against IC experimental data. The planar dose distributions were then estimated using subsets of the point dose measurements using two proposed methods: (1) the proximity-based weighting method (method 1) and (2) the dose point surface fitting method (method 2). Twenty-eight different dose point distributions with six different point number cases (4, 5, 6, 7, 14, and 23 dose points) were evaluated to determine the optimal number of dose points and their placement in the phantom. The performances of the methods were determined by comparing their results with those of the validated MC simulations. The performances of the methods in the presence of measurement uncertainties were evaluated. Results: The 5-, 6-, and 7-point cases had differences below 2%, ranging from 1.0% to 1.7% for both methods, which is a performance comparable to that of the methods with a relatively large number of points, i.e., the 14- and 23-point cases. However, with the 4-point case, the performances of the two methods decreased sharply. Among the 4-, 5-, 6-, and 7-point cases, the 7-point case (1.0% [±0

  10. Vibrational population distributions of the product of the chemiluminescent charge transfer reaction: O + (2D)+HCl --> O+HCl + (A 2Sigma + )

    NASA Astrophysics Data System (ADS)

    Shiraishi, Yasushi; Kusunoki, Isao

    1987-12-01

    The chemiluminescent charge transfer reaction of O+ (2 D)ions with HCl has been studied in the energy range of 7 to 100 eVc.m. . The vibrational population distributions of the HCl+(A 2 Σ+,v') product have been analyzed from the emission spectra of the A→X transition. At low collision energy the distribution has a peak at v'=3. The partial reaction cross section σ(3) for this level increases with decreasing collision energy. The features of the reaction are very similar to the F+ +CO→ F+CO+ (A) reaction reported previously. The mechanism has been discussed on the basis of curve crossing between the initial and final states along the HCl vibrational coordinate in the asymptotic region of the [O-HCl]+ system. The projectile ions C+ and N+ have also been tested for the charge transfer reaction of HCl(X)→HCl+(A).

  11. Non-uniform dose distributions in cranial radiation therapy

    NASA Astrophysics Data System (ADS)

    Bender, Edward T.

    Radiation treatments are often delivered to patients with brain metastases. For those patients who receive radiation to the entire brain, there is a risk of long-term neuro-cognitive side effects, which may be due to damage to the hippocampus. In clinical MRI and CT scans it can be difficult to identify the hippocampus, but once identified it can be partially spared from radiation dose. Using deformable image registration we demonstrate a semi-automatic technique for obtaining an estimated location of this structure in a clinical MRI or CT scan. Deformable image registration is a useful tool in other areas such as adaptive radiotherapy, where the radiation oncology team monitors patients during the course of treatment and adjusts the radiation treatments if necessary when the patient anatomy changes. Deformable image registration is used in this setting, but there is a considerable level of uncertainty. This work represents one of many possible approaches at investigating the nature of these uncertainties utilizing consistency metrics. We will show that metrics such as the inverse consistency error correlate with actual registration uncertainties. Specifically relating to brain metastases, this work investigates where in the brain metastases are likely to form, and how the primary cancer site is related. We will show that the cerebellum is at high risk for metastases and that non-uniform dose distributions may be advantageous when delivering prophylactic cranial irradiation for patients with small cell lung cancer in complete remission.

  12. SU-E-T-165: Characterization of Dose Distributions in High-Dose-Rate Surface Brachytherapy

    SciTech Connect

    Buzurovic, I; Hansen, J; Bhagwat, M; O’Farrell, D; Damato, A; Friesen, S; Devlin, P; Cormack, R

    2015-06-15

    Purpose: To characterize dose distributions in high-dose-rate(HDR) surface brachytherapy using an Ir-125 source for different geometries, field sizes and topology of the clinical targets(CT). To investigate the depth doses at the central axis(CAX), edges of the treatment fields(E), and lateral dose distributions(L) present when using flap applicators in skin cancer treatments. Methods: When malignancies diagnosed on the skin are treated, various geometries of the CT require proper adaptation of the flap or custom-made applicators to the treatment site. Consequently, the dose at the depth on CAX and field edges changes with variation of the curvatures and size of the applicators. To assess the dose distributions, we created a total of 10 treatment plans(TP) for 10×10 and 20×20 field sizes(FS) with a step size of 1cm. The geometry of the applicators was: planar(PA), curved to 30(CA30) and 60(CA60) degrees with respect to the CAX, half-cylinder(HC), and cylindrical shape(CS). One additional TP was created in which the applicators were positioned to form a dome shape(DS) with a diameter of 16cm. This TP was used to emulate treatment of the average sized scalp. All TPs were optimized to deliver a prescription dose at 8mm equidistantly from the planes containing the dwell positions. This optimization is equivalent to the clinical arrangement since the SSD for the flap applicators is 5mm and the prescription depth is 3mm in the majority of clinical cases. Results: The depths (in mm) of the isodose lines were: FS(10×10):PA[90%(9.1CAX,8.0E,7.6L),50%(28.3CAX,20E,17.3L), 25%(51.1CAX,40E,27L)],CA30[90%(10.3CAX,8.2E,7.9L),50%(32.1CAX, 16.2E,15.8L),25%(61.3CAX,36.7E,31.8L)],CA60[90%(12.2CAX,6.1E,6.3L ),50%(47CAX,14E,16.6L),25%(70.8CAX,31.9E,35.4L)],HC[90%(11.1CA X,6.3E,7.3L),50%(38.3CAX,14.6E,16.1L),25%(66.2CAX,33.8E,34.2L)];FS (20×20):PA[90%(11.1CAX,9.0E,7.0L),50%(34.4CAX,21.9E,15.3L),25%(7 0.4CAX,50.9E,34.8L)],CA30[90%(10.9CAX,7.5E,7.1L),50%(38.8CAX,16. 7E,15.4L),25

  13. SU-E-T-223: Investigation of the Accuracy of Two-Dimensional Dose Distributions Measurement From High-Dose-Rate Brachytherapy Ir-192 Source Using Multiple-Diode-Array Detector (MapCheck2)

    SciTech Connect

    Taguenang, J; De La Fuente, T Herman; Ahmad, S; Ali, I

    2014-06-01

    Purpose: To investigate the dosimetric accuracy of multiple-diode-array detector (Mapcheck2) for high-dose-rate brachytherapy Ir-192 source. The two-dimensional (2D) dose distributions measured with MapCheck2 were validated with EBT2 Gafchromic film measurement and AAPM task-group- 43 (TG-43) modeling. Methods: 2D-dose distributions from Ir-192 source were measured with MapCheck2 and EBT2-films. MapCheck2 response was corrected for effects: directional dependence, diode and phantom heterogeneity. Optical density growth of the film was controlled by synchronized scanning of the film exposed to Ir-192 and calibration films exposed to 6 MV linac beams. Similarly, MapCheck2 response was calibrated to dose using 6 MV beams. An empirical model was developed for the dose distributions measured with Mapcheck2 that considered directional, diode and phantom heterogeneity corrections. The dose deposited in solid-state-detectors was modeled using a cavity theory model for the diode. This model was then validated with measurements using EBT2-films and calculations with TG-43. Results: The response of MapCheck2 has been corrected for different effects including: (a) directional dependence of 0–20% over angular range 0o–90o, (b) phantom heterogeneity (3%) and (c) diode heterogeneity (9%). The corrected dose distributions measured with MapCheck2 agreed well with the measured dose distributions from EBT2-film and with calculations using TG-43 within 5% over a wide range of dose levels and rates. The advantages of MapCheck2 include less noisy, linear and stable response compared with film. The response of MapCheck2 exposed to 192Ir-source showed no energy dependence similar to its response to MV energy beam. Detection spatial-resolution of individual diodes was 0.8×0.8 mm2, however, 2DMapCheck2 resolution is limited by distance between diodes (7.07 mm). Conclusion: The dose distribution measured with MapCheck2 agreed well within 5% with that measured using EBT2-films; and

  14. A method for measuring the dose distribution of the radiotherapy domain using the computed radiography system.

    PubMed

    Homma, Mitsuhiko; Tabushi, Katsuyoshi; Obata, Yasunori; Tamiya, Tadashi; Koyama, Shuji; Ishigaki, Takeo

    2002-01-01

    Knowing the dose distribution in a tissue is as important as being able to measure exposure or absorbed dose in radiotherapy. Therefore, we have developed a measurement method for the dose distribution (CR dosimetry) in the phantom based on the imaging plate (IP) of the computed radiography (CR). The IP was applied for the dose measurement as a dosimeter instead of the film used for film dosimetry. The data from the irradiated IP were processed by a personal computer with 10 bits and were depicted as absorbed dose distributions in the phantom. The image of the dose distribution was obtained from the CR system using the DICOM form. The CR dosimetry is an application of CR system currently employed in medical examinations to dosimetry in radiotherapy. A dose distribution can be easily shown by the Dose Distribution Depiction System we developed this time. Moreover, the measurement method is simpler and a result is obtained more quickly compared with film dosimetry.

  15. Quantitative evaluation by measurement and modeling of the variations in dose distributions deposited in mobile targets.

    PubMed

    Ali, Imad; Alsbou, Nesreen; Taguenang, Jean-Michel; Ahmad, Salahuddin

    2017-03-03

    The objective of this study is to quantitatively evaluate variations of dose distributions deposited in mobile target by measurement and modeling. The effects of variation in dose distribution induced by motion on tumor dose coverage and sparing of normal tissues were investigated quantitatively. The dose distributions with motion artifacts were modeled considering different motion patterns that include (a) motion with constant speed and (b) sinusoidal motion. The model predictions of the dose distributions with motion artifacts were verified with measurement where the dose distributions from various plans that included three-dimensional conformal and intensity-modulated fields were measured with a multiple-diode-array detector (MapCheck2), which was mounted on a mobile platform that moves with adjustable motion parameters. For each plan, the dose distributions were then measured with MapCHECK2 using different motion amplitudes from 0-25 mm. In addition, mathematical modeling was developed to predict the variations in the dose distributions and their dependence on the motion parameters that included amplitude, frequency and phase for sinusoidal motions. The dose distributions varied with motion and depended on the motion pattern particularly the sinusoidal motion, which spread out along the direction of motion. Study results showed that in the dose region between isocenter and the 50% isodose line, the dose profile decreased with increase of the motion amplitude. As the range of motion became larger than the field length along the direction of motion, the dose profiles changes overall including the central axis dose and 50% isodose line. If the total dose was delivered over a time much longer than the periodic time of motion, variations in motion frequency and phase do not affect the dose profiles. As a result, the motion dose modeling developed in this study provided quantitative characterization of variation in the dose distributions induced by motion, which

  16. Electron momentum distribution and singlet-singlet annihilation in the organic anthracene molecular crystals using positron 2D-ACAR and fluorescence spectroscopy.

    PubMed

    Selvakumar, Sellaiyan; Sivaji, Krishnan; Arulchakkaravarthi, Arjunan; Sankar, Sambasivam

    2014-08-14

    We present the mapping of electron momentum distribution (EMD) in a single crystal of anthracene by two-dimensional angular correlation of positron annihilation radiation (2D-ACAR). The projected EMD is explained on the basis of the crystallographic features of the material. The EMD spectra provide information about the positron states and their behavior and also about the hindrance of the positronium (Ps) formation in this material. The EMD has exhibited evidence for the absence of free volume defects. The characteristic EMD features regarding the delocalized electronic states are explained. Further, scintillation characteristics such as fluorescence and time-correlated single photon counting have also been studied. The emission peaks are attributed to vibrational bands of fluorescence emission from the singlet excitons and lifetime components are observed to be due to singlet fission and the singlet-singlet excitons annihilation.

  17. Dose distributions in regions containing beta sources: Uniform spherical source regions in homogeneous media

    SciTech Connect

    Werner, B.L.; Rahman, M.; Salk, W.N. ); Kwok, C.S. )

    1991-11-01

    The energy-averaged transport model for the calculation of dose rate distributions is applied to uniform, spherical source distributions in homogeneous media for radii smaller than the electron range. The model agrees well with Monte Carlo based calculations for source distributions with radii greater than half the continuous slowing down approximation range. The dose rate distributions can be written in the medical internal radiation dose (MIRD) formalism.

  18. Changes in photon dose distributions due to breast prostheses

    SciTech Connect

    Klein, E.E. ); Kuske, R.R. )

    1993-02-15

    Subcutaneous prosthetic implants have been routinely used for cosmetic augmentation and for tissue replacement following mastectomy over the last 15 years. The implants come in many forms as the gel filler material and surrounding shell material(s) vary significantly. This study uses a thin window parallel-plate chamber and thermoluminescent dosimeters to quantify any dosimetric changes to surrounding breast tissue due to the presence of the prosthesis. A mammographic phantom was compared to four commercial prostheses, namely two silicon gel fillers within two different shells (silicon or silicon/polyurethane), a tri-glyceride within silicon and a bio-oncotic gel within silicon and a bio-oncotic gel within silicon/polyurethane. The latter two implants were designed with a low-Z fill for diagnostic imaging benefits. Ion chamber results indicate no significant alteration of depth doses away from the implant with only minor canceling (parallel opposed) interface perturbations for all implants. In addition the physical changes to the irradiated prostheses were quantified by tonometry testing and qualified by color change. Each implant exhibited color change following 50 Gy, and the bio-oncotic gel became significantly less formable following irradiation, and even less formable 6 weeks postirradiation. The data indicates that prostheses do not affect the photon beam distribution, but radiation does affect the prosthesis. 9 refs., 10 figs., 5 tabs.

  19. A linear programming model for optimizing HDR brachytherapy dose distributions with respect to mean dose in the DVH-tail

    SciTech Connect

    Holm, Åsa; Larsson, Torbjörn; Tedgren, Åsa Carlsson

    2013-08-15

    Purpose: Recent research has shown that the optimization model hitherto used in high-dose-rate (HDR) brachytherapy corresponds weakly to the dosimetric indices used to evaluate the quality of a dose distribution. Although alternative models that explicitly include such dosimetric indices have been presented, the inclusion of the dosimetric indices explicitly yields intractable models. The purpose of this paper is to develop a model for optimizing dosimetric indices that is easier to solve than those proposed earlier.Methods: In this paper, the authors present an alternative approach for optimizing dose distributions for HDR brachytherapy where dosimetric indices are taken into account through surrogates based on the conditional value-at-risk concept. This yields a linear optimization model that is easy to solve, and has the advantage that the constraints are easy to interpret and modify to obtain satisfactory dose distributions.Results: The authors show by experimental comparisons, carried out retrospectively for a set of prostate cancer patients, that their proposed model corresponds well with constraining dosimetric indices. All modifications of the parameters in the authors' model yield the expected result. The dose distributions generated are also comparable to those generated by the standard model with respect to the dosimetric indices that are used for evaluating quality.Conclusions: The authors' new model is a viable surrogate to optimizing dosimetric indices and quickly and easily yields high quality dose distributions.

  20. Proton dose distribution measurements using a MOSFET detector with a simple dose-weighted correction method for LET effects.

    PubMed

    Kohno, Ryosuke; Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-04-04

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L-shaped bolus. The dose reproducibility, angular dependence and depth-dose response were evaluated using a 190 MeV proton beam. Depth-output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose-weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L-shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors.

  1. Dosimetry of dose distributions in radiotherapy of patients with surgical implants

    NASA Astrophysics Data System (ADS)

    Brożyna, Bogusław; Chełmiński, Krzysztof; Bulski, Wojciech; Giżyńska, Marta; Grochowska, Paulina; Walewska, Agnieszka; Zalewska, Marta; Kawecki, Andrzej; Krajewski, Romuald

    2014-11-01

    The investigation was performed in order to evaluate the use of Gafchromic EBT films for measurements of dose distributions created during radiotherapy in tissues surrounding titanium or resorbable implants used for joining and consolidating facial bones. Inhomogeneous dose distributions at implant-tissue interfaces can be the reason of normal tissue complications observed in radiotherapy patients after surgery with implants. The dose measured at a depth of 2.5 cm on contact surfaces, proximal and distal to the beam source, between the titanium implant and the phantom material was 109% and 92% respectively of the reference dose measured in a homogeneous phantom. For the resorbable implants the doses measured on the proximal and the distal contact surfaces were 102% and 101% respectively of the reference dose. The resorbable implants affect the homogeneity of dose distribution at a significantly lesser degree than the titanium implants. Gafchromic EBT films allowed for precise dose distribution measurements at the contact surfaces between tissue equivalent materials and implants. We measured doses at contact surfaces between titanium implants and RW3 phantom. We measured doses at contact surfaces between resorbable implants and RW3 phantom. We compared doses measured on contact surfaces and doses in homogeneous phantom. Doses at contact surfaces between RW3 phantom and titanium were distorted about 8-9%. Doses at RW3 phantom and resorbable implant contact surfaces were distorted about 2%.

  2. Effect of tissue inhomogeneities on dose distributions from Cf-252 brachytherapy source.

    PubMed

    Ghassoun, J

    2013-01-01

    The Monte Carlo method was used to determine the effect of tissue inhomogeneities on dose distribution from a Cf-252 brachytherapy source. Neutron and gamma-ray fluences, energy spectra and dose rate distributions were determined in both homogenous and inhomogeneous phantoms. Simulations were performed using the MCNP5 code. Obtained results were compared with experimentally measured values published in literature. Results showed a significant change in neutron dose rate distributions in presence of heterogeneities. However, their effect on gamma rays dose distribution is minimal.

  3. Effect of radiative transfer of heat released from combustion reaction on temperature distribution: A numerical study for a 2-D system

    NASA Astrophysics Data System (ADS)

    Zhou, Huai-Chun; Ai, Yu-Hua

    2006-09-01

    Both light and heat are produced during a chemical reaction in a combustion process, but traditionally all the energy released is taken as to be transformed into the internal energy of the combustion medium. So the temperature of the medium increases, and then the thermal radiation emitted from it increases too. Chemiluminescence is generated during a chemical reaction and independent of the temperature, and has been used widely for combustion diagnostics. It was assumed in this paper that the total energy released in a combustion reaction is divided into two parts, one part is a self-absorbed heat, and the other is a directly emitted heat. The former is absorbed immediately by the products, becomes the internal energy and then increases the temperature of the products as treated in the traditional way. The latter is emitted directly as radiation into the combustion domain and should be included in the radiation transfer equation (RTE) as a part of radiation source. For a simple, 2-D, gray, emitting absorbing, rectangular system, the numerical study showed that the temperatures in reaction zones depended on the fraction of the directly emitted energy, and the smaller the gas absorption coefficient was, the more strong the dependence appeared. Because the effect of the fraction of the directly emitted heat on the temperature distribution in the reacting zones for gas combustion is significant, it is required to conduct experimental measurements to determine the fraction of self-absorbed heat for different combustion processes.

  4. WE-A-17A-12: The Influence of Eye Plaque Design On Dose Distributions and Dose- Volume Histograms

    SciTech Connect

    Aryal, P; Molloy, JA; Rivard, MJ

    2014-06-15

    Purpose: To investigate the effect of slot design of the model EP917 plaque on dose distributions and dose-volume histograms (DVHs). Methods: The dimensions and orientation of the slots in EP917 plaques were measured. In the MCNP5 radiation simulation geometry, dose distributions on orthogonal planes and DVHs for a tumor and sclera were generated for comparisons. 27 slot designs and 13 plaques were evaluated and compared with the published literature and the Plaque Simulator clinical treatment planning system. Results: The dosimetric effect of the gold backing composition and mass density was < 3%. Slot depth, width, and length changed the central axis (CAX) dose distributions by < 1% per 0.1 mm in design variation. Seed shifts in the slot towards the eye and shifts of the {sup 125} I-coated Ag rod within the capsule had the greatest impact on CAX dose distribution, increasing by 14%, 9%, 4%, and 2.5% at 1, 2, 5, and 10 mm, respectively, from the inner sclera. Along the CAX, dose from the full plaque geometry using the measured slot design was 3.4% ± 2.3% higher than the manufacturer-provided geometry. D{sub 10} for the simulated tumor, inner sclera, and outer sclera for the measured plaque was also higher, but 9%, 10%, and 20%, respectively. In comparison to the measured plaque design, a theoretical plaque having narrow and deep slots delivered 30%, 37%, and 62% lower D{sub 10} doses to the tumor, inner sclera, and outer sclera, respectively. CAX doses at −1, 0, 1, and 2 mm were also lower by a factor of 2.6, 1.4, 1.23, and 1.13, respectively. Conclusion: The study identified substantial sensitivity of the EP917 plaque dose distributions to slot design. However, it did not identify substantial dosimetric variations based on radionuclide choice ({sup 125}I, {sup 103}Pd, or {sup 131}Cs). COMS plaques provided lower scleral doses with similar tumor dose coverage.

  5. Comparison of methods for the measurement of radiation dose distributions in high dose rate (HDR) brachytherapy: Ge-doped optical fiber, EBT3 Gafchromic film, and PRESAGE{sup Registered-Sign} radiochromic plastic

    SciTech Connect

    Palmer, A. L.; Di Pietro, P.; Alobaidli, S.; Issa, F.; Doran, S.; Bradley, D.; Nisbet, A.

    2013-06-15

    conditions used in this study, the useful range from an isolated HDR source was 5-40 mm for fibers, 3-50 mm for EBT3, and 4-21 mm for PRESAGE{sup Registered-Sign }. Fibers demonstrated some over-response at very low dose levels, suffered from volume averaging effects in the dose distribution measurement, and exhibited up to 9% repeatability variation over three repeated measurements. EBT3 demonstrated excellent agreement with Monte Carlo and TPS dose distributions, with up to 3% repeatability over three measurements. PRESAGE{sup Registered-Sign} gave promising results, being the only true 3D dosimeter, but artifacts and noise were apparent. Conclusions: The comparative response of three emerging dosimetry systems for clinical brachytherapy dose distribution measurement has been investigated. Ge-doped optical fibers have excellent spatial resolution for single-direction measurement but are currently too large for complex dose distribution assessment. The use of PRESAGE{sup Registered-Sign} with optical-CT readout gave promising results in the measurement of true 3D dose distributions but further development work is required to reduce noise and improve dynamic range for brachytherapy dose distribution measurements. EBT3 Gafchromic film with multichannel analysis demonstrated accurate and reproducible measurement of dose distributions in HDR brachytherapy. Calibrated dose measurements were possible with agreement within 1.5% of TPS dose calculations. The suitability of EBT3 as a dosimeter for 2D quality control or commissioning work has been demonstrated.

  6. SADDE (Scaled Absorbed Dose Distribution Evaluator): A code to generate input for VARSKIN

    SciTech Connect

    Reece, W.D.; Miller, S.D.; Durham, J.S.

    1989-01-01

    The VARSKIN computer code has been limited to the isotopes for which the scaled absorbed dose distributions were provided by the Medical Internal Radiation Dose (MIRD) Committee or to data that could be interpolated from isotopes that had similar spectra. This document describes the methodology to calculate the scaled absorbed dose distribution data for any isotope (including emissions by the daughter isotopes) and its implementation by a computer code called SADDE (Scaled Absorbed Dose Distribution Evaluator). The SADDE source code is provided along with input examples and verification calculations. 10 refs., 4 figs.

  7. Influence of metal of the applicator on the dose distribution during brachytherapy.

    PubMed

    Wu, Chin-Hui; Shiau, An-Cheng; Liao, Yi-Jen; Lin, Hsin-Yu; Liu, Yen-Wan Hsueh; Hsu, Shih-Ming

    2014-01-01

    This study explores how the metal materials of the applicator influence the dose distribution when performing brachytherapy for cervical cancer. A pinpoint ionization chamber, Monte Carlo code MCNPX, and treatment planning system are used to evaluate the dose distribution for a single Ir-192 source positioned in the tandem and ovoid. For dose distribution in water with the presence of the tandem, differences among measurement, MCNPX calculation and treatment planning system results are <5%. For dose distribution in water with the presence of the ovoid, the MCNPX result agrees with the measurement. But the doses calculated from treatment planning system are overestimated by up to a factor of 4. This is due to the shielding effect of the metal materials in the applicator not being considered in the treatment planning system. This result suggests that the treatment planning system should take into account corrections for the metal materials of the applicator in order to improve the accuracy of the radiation dose delivered.

  8. Low-dose bortezomib increases the expression of NKG2D and DNAM-1 ligands and enhances induced NK and γδ T cell-mediated lysis in multiple myeloma

    PubMed Central

    Zhu, Shan; Zhou, Lei; Jin, Feng; Zhou, Yulai; Xu, Dongsheng; Xu, Jianting; Zhao, Lianjing; Hao, Shanshan; Li, Wei; Cui, Jiuwei

    2017-01-01

    Multiple myeloma (MM) is an incurable hematological malignancy, although bortezomib has markedly improved its outcomes. Growing clinical evidence indicates that enhancing induced natural killer (NK) or γδ T cells for infusion is useful in the treatment of MM. However, whether combination treatment with bortezomib and induced NK and γδ T cells further improves outcomes in MM, and how the treatments should be combined, remain unclear. Herein, we found that low-dose bortezomib did not suppress the viability of induced NK and γδ T cells, but did induce MM cell apoptosis. Importantly, low-dose bortezomib increased the expression of NKG2D and DNAM-1 ligands on MM cells, which sensitized the multiple myeloma cells to lysis by induced NK and γδ T cells. Our results suggested that combination treatment with low-dose bortezomib and induced NK or γδ T cells had a synergistic cytotoxic effect on MM cells. This study provided a proof of principle for the design of future trials and investigation of this combination therapeutic strategy for MM treatment. PMID:27992381

  9. A method to enhance 2D ion chamber array patient specific quality assurance for IMRT.

    PubMed

    Diaz Moreno, Rogelio Manuel; Venencia, Daniel; Garrigo, Edgardo; Pipman, Yakov

    2016-11-21

    Gamma index comparison has been established as a method for patient specific quality assurance in IMRT. Detector arrays can replace radiographic film systems to record 2D dose distributions and fulfill quality assurance requirements. These electronic devices present spatial resolution disadvantages with respect to films. This handicap can be partially overcome with a multiple acquisition sequence of adjacent 2D dose distributions. The detector spatial response influence can also be taken into account through the convolution of the calculated dose with the detector spatial response. A methodology that employs both approaches could allow for enhancements of the quality assurance procedure. 35 beams from different step and shoot IMRT plans were delivered on a phantom. 2D dose distributions were recorded with a PTW-729 ion chamber array for individual beams, following the multiple acquisition methodology. 2D dose distributions were also recorded on radiographic films. Measured dose distributions with films and with the PTW-729 array were processed with the software RITv5.2 for Gamma index comparison with calculated doses. Calculated dose was also convolved with the ion chamber 2D response and the Gamma index comparisons with the 2D dose distribution measured with the PTW-729 array was repeated. 3.7 ± 2.7% of points surpassed the accepted Gamma index when using radiographic films compared with calculated dose, with a minimum of 0.67 and a maximum of 13.27. With the PTW-729 multiple acquisition methodology compared with calculated dose, 4.1 ± 1.3% of points surpassed the accepted Gamma index, with a minimum of 1.44 and a maximum of 11.26. With the PTW- multiple acquisition methodology compared with convolved calculated dose, 2.7 ± 1.3% of points surpassed the accepted Gamma index, with a minimum of 0.42 and a maximum of 5.75. The results obtained in this work suggest that the comparison of merged adjacent dose distributions with convolved calculated dose

  10. Spatial distributions of dose enhancement around a gold nanoparticle at several depths of proton Bragg peak

    NASA Astrophysics Data System (ADS)

    Kwon, Jihun; Sutherland, Kenneth; Hashimoto, Takayuki; Shirato, Hiroki; Date, Hiroyuki

    2016-10-01

    Gold nanoparticles (GNPs) have been recognized as a promising candidate for a radiation sensitizer. A proton beam incident on a GNP can produce secondary electrons, resulting in an enhancement of the dose around the GNP. However, little is known about the spatial distribution of dose enhancement around the GNP, especially in the direction along the incident proton. The purpose of this study is to determine the spatial distribution of dose enhancement by taking the incident direction into account. Two steps of calculation were conducted using the Geant4 Monte Carlo simulation toolkit. First, the energy spectra of 100 and 195 MeV protons colliding with a GNP were calculated at the Bragg peak and three other depths around the peak in liquid water. Second, the GNP was bombarded by protons with the obtained energy spectra. Radial dose distributions were computed along the incident beam direction. The spatial distributions of the dose enhancement factor (DEF) and subtracted dose (Dsub) were then evaluated. The spatial DEF distributions showed hot spots in the distal radial region from the proton beam axis. The spatial Dsub distribution isotropically spread out around the GNP. Low energy protons caused higher and wider dose enhancement. The macroscopic dose enhancement in clinical applications was also evaluated. The results suggest that the consideration of the spatial distribution of GNPs in treatment planning will maximize the potential of GNPs.

  11. Tomotherapy dose distribution verification using MAGIC-f polymer gel dosimetry

    SciTech Connect

    Pavoni, J. F.; Pike, T. L.; Snow, J.; DeWerd, L.; Baffa, O.

    2012-05-15

    Purpose: This paper presents the application of MAGIC-f gel in a three-dimensional dose distribution measurement and its ability to accurately measure the dose distribution from a tomotherapy unit. Methods: A prostate intensity-modulated radiation therapy (IMRT) irradiation was simulated in the gel phantom and the treatment was delivered by a TomoTherapy equipment. Dose distribution was evaluated by the R2 distribution measured in magnetic resonance imaging. Results: A high similarity was found by overlapping of isodoses of the dose distribution measured with the gel and expected by the treatment planning system (TPS). Another analysis was done by comparing the relative absorbed dose profiles in the measured and in the expected dose distributions extracted along indicated lines of the volume and the results were also in agreement. The gamma index analysis was also applied to the data and a high pass rate was achieved (88.4% for analysis using 3%/3 mm and of 96.5% using 4%/4 mm). The real three-dimensional analysis compared the dose-volume histograms measured for the planning volumes and expected by the treatment planning, being the results also in good agreement by the overlapping of the curves. Conclusions: These results show that MAGIC-f gel is a promise for tridimensional dose distribution measurements.

  12. Analysis of high-dose rate brachytherapy dose distribution resemblance in CyberKnife hypofractionated treatment plans of localized prostate cancer.

    PubMed

    Sudahar, H; Kurup, P G G; Murali, V; Mahadev, P; Velmurugan, J

    2013-01-01

    The present study is to analyze the CyberKnife hypofractionated dose distribution of localized prostate cancer in terms of high-dose rate (HDR) brachytherapy equivalent doses to assess the degree of HDR brachytherapy resemblance of CyberKnife dose distribution. Thirteen randomly selected localized prostate cancer cases treated using CyberKnife with a dose regimen of 36.25Gy in 5 fractions were considered. HDR equivalent doses were calculated for 30Gy in 3 fractions of HDR brachytherapy regimen. The D5% of the target in the CyberKnife hypofractionation was 41.57 ± 2.41Gy. The corresponding HDR fractionation (3 fractions) equivalent dose was 32.81 ± 1.86Gy. The mean HDR fractionation equivalent dose, D98%, was 27.93 ± 0.84Gy. The V100% of the prostate target was 95.57% ± 3.47%. The V100% of the bladder and the rectum were 717.16 and 79.6mm(3), respectively. Analysis of the HDR equivalent dose of CyberKnife dose distribution indicates a comparable resemblance to HDR dose distribution in the peripheral target doses (D98% to D80%) reported in the literature. However, there is a substantial difference observed in the core high-dose regions especially in D10% and D5%. The dose fall-off within the OAR is also superior in reported HDR dose distribution than the HDR equivalent doses of CyberKnife.

  13. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    SciTech Connect

    Purwaningsih, Anik

    2014-09-30

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  14. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    NASA Astrophysics Data System (ADS)

    Purwaningsih, Anik

    2014-09-01

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  15. Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo-based dose distributions.

    PubMed

    Ojala, Jarkko J; Kapanen, Mika K; Hyödynmaa, Simo J; Wigren, Tuija K; Pitkänen, Maunu A

    2014-03-06

    The accuracy of dose calculation is a key challenge in stereotactic body radiotherapy (SBRT) of the lung. We have benchmarked three photon beam dose calculation algorithms--pencil beam convolution (PBC), anisotropic analytical algorithm (AAA), and Acuros XB (AXB)--implemented in a commercial treatment planning system (TPS), Varian Eclipse. Dose distributions from full Monte Carlo (MC) simulations were regarded as a reference. In the first stage, for four patients with central lung tumors, treatment plans using 3D conformal radiotherapy (CRT) technique applying 6 MV photon beams were made using the AXB algorithm, with planning criteria according to the Nordic SBRT study group. The plans were recalculated (with same number of monitor units (MUs) and identical field settings) using BEAMnrc and DOSXYZnrc MC codes. The MC-calculated dose distributions were compared to corresponding AXB-calculated dose distributions to assess the accuracy of the AXB algorithm, to which then other TPS algorithms were compared. In the second stage, treatment plans were made for ten patients with 3D CRT technique using both the PBC algorithm and the AAA. The plans were recalculated (with same number of MUs and identical field settings) with the AXB algorithm, then compared to original plans. Throughout the study, the comparisons were made as a function of the size of the planning target volume (PTV), using various dose-volume histogram (DVH) and other parameters to quantitatively assess the plan quality. In the first stage also, 3D gamma analyses with threshold criteria 3%/3mm and 2%/2 mm were applied. The AXB-calculated dose distributions showed relatively high level of agreement in the light of 3D gamma analysis and DVH comparison against the full MC simulation, especially with large PTVs, but, with smaller PTVs, larger discrepancies were found. Gamma agreement index (GAI) values between 95.5% and 99.6% for all the plans with the threshold criteria 3%/3 mm were achieved, but 2%/2 mm

  16. The MLC tongue-and-groove effect on IMRT dose distributions

    NASA Astrophysics Data System (ADS)

    Deng, Jun; Pawlicki, Todd; Chen, Yan; Li, Jinsheng; Jiang, Steve B.; Ma, C.-M.

    2001-04-01

    We have investigated the tongue-and-groove effect on the IMRT dose distributions for a Varian MLC. We have compared the dose distributions calculated using the intensity maps with and without the tongue-and-groove effect. Our results showed that, for one intensity-modulated treatment field, the maximum tongue-and-groove effect could be up to 10% of the maximum dose in the dose distributions. For an IMRT treatment with multiple gantry angles (≥5), the difference between the dose distributions with and without the tongue-and-groove effect was hardly visible, less than 1.6% for the two typical clinical cases studied. After considering the patient setup errors, the dose distributions were smoothed with reduced and insignificant differences between plans with and without the tongue-and-groove effect. Therefore, for a multiple-field IMRT plan (≥5), the tongue-and-groove effect on the IMRT dose distributions will be generally clinically insignificant due to the smearing effect of individual fields. The tongue-and-groove effect on an IMRT plan with small number of fields (<5) will vary depending on the number of fields in a plan (coplanar or non-coplanar), the MLC leaf sequences and the patient setup uncertainty, and may be significant (>5% of maximum dose) in some cases, especially when the patient setup uncertainty is small (≤2 mm).

  17. An improved technique for comparing Gamma Knife dose-volume distributions in stereotactic radiosurgery

    NASA Astrophysics Data System (ADS)

    Tozer-Loft, Stephen M.; Walton, Lee; Forster, David M. C.; Kemeny, Andras A.

    1999-08-01

    A function derived from the geometry of brachytherapy dose distributions is applied to stereotactic radiosurgery and an algorithm for the production of a novel dose-volume histogram, the Anderson inverse-square shifted dose-volume histogram (DVH), is proposed. The expected form of the function to be plotted is checked by calculating its value for single focus exposures, and its application to clinical examples of Gamma Knife treatments described. The technique is shown to provide a valuable tool for assessing the adequacy of radiosurgical plans and comparing and reporting dose distributions.

  18. Extrapolation of the dna fragment-size distribution after high-dose irradiation to predict effects at low doses

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Cucinotta, F. A.; Sachs, R. K.; Brenner, D. J.; Peterson, L. E.

    2001-01-01

    The patterns of DSBs induced in the genome are different for sparsely and densely ionizing radiations: In the former case, the patterns are well described by a random-breakage model; in the latter, a more sophisticated tool is needed. We used a Monte Carlo algorithm with a random-walk geometry of chromatin, and a track structure defined by the radial distribution of energy deposition from an incident ion, to fit the PFGE data for fragment-size distribution after high-dose irradiation. These fits determined the unknown parameters of the model, enabling the extrapolation of data for high-dose irradiation to the low doses that are relevant for NASA space radiation research. The randomly-located-clusters formalism was used to speed the simulations. It was shown that only one adjustable parameter, Q, the track efficiency parameter, was necessary to predict DNA fragment sizes for wide ranges of doses. This parameter was determined for a variety of radiations and LETs and was used to predict the DSB patterns at the HPRT locus of the human X chromosome after low-dose irradiation. It was found that high-LET radiation would be more likely than low-LET radiation to induce additional DSBs within the HPRT gene if this gene already contained one DSB.

  19. Delta opioid peptide [D-Ala2, D-Leu5]enkephalin causes a near complete blockade of the neuronal damage caused by a single high dose of methamphetamine: examining the role of p53.

    PubMed

    Hayashi, T; Hirata, H; Asanuma, M; Ladenheim, B; Tsao, L I; Cadet, J L; Su, T P

    2001-03-15

    The delta opioid peptide [D-Ala2, D-Leu5]enkephalin (DADLE) has been reported to block the neurotoxicity induced by multiple administrations of a moderate dose of methamphetamine (METH). We examined in this study if DADLE might block the neurotoxicity caused by a single high dose of METH in CD-1 mice. The levels of dopamine transporter (DAT), tyrosine hydroxylase (TH), major biogenic amines including DA, 5-hydroxytryptamine (5-HT), and their metabolites were examined. In addition, since the tumor suppressor p53 has been implicated in the neurotoxicity of METH, this study also examined the levels of p53 mRNA and protein affected by METH and DADLE. METH (25 mg/kg, i.p.) caused significant losses of DAT, TH, DA, 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-HT in the striatum within 72 h. The administration of a single dose of DADLE (20 mg/kg, i.p., 30 min before METH) caused a complete blockade of all losses induced by METH except for that of the DA content (a approximately 50% blockade). DADLE did not affect the changes of rectal temperature induced by the administration of the high dose of METH. METH increased p53 mRNA in the striatum and the hippocampus of CD-1 mouse. DADLE abolished the p53 mRNA increase caused by METH. METH tended to increase the p53 protein level at earlier time points. However, METH significantly decreased the p53 protein level by about 30% at the 72-h time point. DADLE blocked both the increase of p53 mRNA and the decrease of p53 protein caused by METH. These results demonstrate a neuroprotective effect of DADLE against the neuronal damage and the alteration of p53 gene expression caused by a single high dose of METH. The results also indicate an apparent discordance between the protein level of p53 and the neurotoxicity caused by a high dose of METH. Synapse 39:305-312, 2001. Published 2001 Wiley-Liss, Inc.

  20. SU-E-CAMPUS-T-03: Four-Dimensional Dose Distribution Measurement Using Plastic Scintillator

    SciTech Connect

    Hashimoto, M; Kozuka, T; Oguchi, M; Nishio, T; Haga, A; Hanada, T; Kabuki, S

    2014-06-15

    Purpose: To develop the detector for the four-dimensional dose distribution measurement. Methods: We made the prototype detector for four-dimensional dose distribution measurement using a cylindrical plastic scintillator (5 cm diameter) and a conical reflection grass. The plastic scintillator is used as a phantom. When the plastic scintillator is irradiated, the scintillation light was emitted according to absorbed dose distribution. The conical reflection grass was arranged to surround the plastic scintillator, which project to downstream the projection images of the scintillation light. Then, the projection image was reflected to 45 degree direction by flat reflection grass, and was recorded by camcorder. By reconstructing the three-dimensional dose distribution from the projection image recorded in each frame, we could obtain the four-dimensional dose distribution. First, we tested the characteristic according to the amount of emitted light. Then we compared of the light profile and the dose profile calculated with the radiotherapy treatment planning system. Results: The dose dependency of the amount of light showed linearity. The pixel detecting smaller amount of light had high sensitivity than the pixel detecting larger amount of light. However the difference of the sensitivity could be corrected from the amount of light detected in each pixel. Both of the depth light profile through the conical reflection grass and the depth dose profile showed the same attenuation in the region deeper than peak depth. In lateral direction, the difference of the both profiles was shown at outside field and penumbra region. We consider that the difference is occurred due to the scatter of the scintillation light in the plastic scintillator block. Conclusion: It was possible to obtain the amount of light corresponding to the absorbed dose distribution from the prototype detector. Four-dimensional dose distributions can be reconstructed with high accuracy by the correction of

  1. SU-D-BRB-07: Lipiodol Impact On Dose Distribution in Liver SBRT After TACE

    SciTech Connect

    Kawahara, D; Ozawa, S; Hioki, K; Suzuki, T; Lin, Y; Okumura, T; Ochi, Y; Nakashima, T; Ohno, Y; Kimura, T; Murakami, Y; Nagata, Y

    2015-06-15

    Purpose: Stereotactic body radiotherapy (SBRT) combining transarterial chemoembolization (TACE) with Lipiodol is expected to improve local control. This study aims to evaluate the impact of Lipiodol on dose distribution by comparing the dosimetric performance of the Acuros XB (AXB) algorithm, anisotropic analytical algorithm (AAA), and Monte Carlo (MC) method using a virtual heterogeneous phantom and a treatment plan for liver SBRT after TACE. Methods: The dose distributions calculated using AAA and AXB algorithm, both in Eclipse (ver. 11; Varian Medical Systems, Palo Alto, CA), and EGSnrc-MC were compared. First, the inhomogeneity correction accuracy of the AXB algorithm and AAA was evaluated by comparing the percent depth dose (PDD) obtained from the algorithms with that from the MC calculations using a virtual inhomogeneity phantom, which included water and Lipiodol. Second, the dose distribution of a liver SBRT patient treatment plan was compared between the calculation algorithms. Results In the virtual phantom, compared with the MC calculations, AAA underestimated the doses just before and in the Lipiodol region by 5.1% and 9.5%, respectively, and overestimated the doses behind the region by 6.0%. Furthermore, compared with the MC calculations, the AXB algorithm underestimated the doses just before and in the Lipiodol region by 4.5% and 10.5%, respectively, and overestimated the doses behind the region by 4.2%. In the SBRT plan, the AAA and AXB algorithm underestimated the maximum doses in the Lipiodol region by 9.0% in comparison with the MC calculations. In clinical cases, the dose enhancement in the Lipiodol region can approximately 10% increases in tumor dose without increase of dose to normal tissue. Conclusion: The MC method demonstrated a larger increase in the dose in the Lipiodol region than the AAA and AXB algorithm. Notably, dose enhancement were observed in the tumor area; this may lead to a clinical benefit.

  2. Seasonal influenza vaccine dose distribution in 157 countries (2004-2011).

    PubMed

    Palache, Abraham; Oriol-Mathieu, Valerie; Abelin, Atika; Music, Tamara

    2014-11-12

    Globally there are an estimated 3-5 million cases of severe influenza illness every year, resulting in 250,000-500,000 deaths. At the World Health Assembly in 2003, World Health Organization (WHO) resolved to increase influenza vaccine coverage rates (VCR) for high-risk groups, particularly focusing on at least 75% of the elderly by 2010. But systematic worldwide data have not been available to assist public health authorities to monitor vaccine uptake and review progress toward vaccination coverage targets. In 2008, the International Federation of Pharmaceutical Manufacturers and Associations Influenza Vaccine Supply task force (IFPMA IVS) developed a survey methodology to assess global influenza vaccine dose distribution. The current survey results represent 2011 data and demonstrate the evolution of the absolute number distributed between 2004 and 2011 inclusive, and the evolution in the per capita doses distributed in 2008-2011. Global distribution of IFPMA IVS member doses increased approximately 86.9% between 2004 and 2011, but only approximately 12.1% between 2008 and 2011. The WHO's regions in Eastern Mediterranean (EMRO), Southeast Asian (SEARO) and Africa (AFRO) together account for about 47% of the global population, but only 3.7% of all IFPMA IVS doses distributed. While distributed doses have globally increased, they have decreased in EURO and EMRO since 2009. Dose distribution can provide a reasonable proxy of vaccine utilization. Based on the dose distribution, we conclude that seasonal influenza VCR in many countries remains well below the WHA's VCR targets and below the recommendations of the Council of the European Union in EURO. Inter- and intra-regional disparities in dose distribution trends call into question the impact of current vaccine recommendations at achieving coverage targets. Additional policy measures, particularly those that influence patients adherence to vaccination programs, such as reimbursement, healthcare provider knowledge

  3. Incorporation of functional imaging data in the evaluation of dose distributions using the generalized concept of equivalent uniform dose

    NASA Astrophysics Data System (ADS)

    Miften, Moyed M.; Das, Shiva K.; Su, Min; Marks, Lawrence B.

    2004-05-01

    Advances in the fields of IMRT and functional imaging have greatly increased the prospect of escalating the dose to highly active or hypoxic tumour sub-volumes and steering the dose away from highly functional critical structure regions. However, current clinical treatment planning and evaluation tools assume homogeneous activity/function status in the tumour/critical structures. A method was developed to incorporate tumour/critical structure heterogeneous functionality in the generalized concept of equivalent uniform dose (EUD). The tumour and critical structures functional EUD (FEUD) values were calculated from the dose-function histogram (DFH), which relates dose to the fraction of total function value at that dose. The DFH incorporates flouro-deoxyglucose positron emission tomography (FDG-PET) functional data for tumour, which describes the distribution of metabolically active tumour clonogens, and single photon emission computed tomography (SPECT) perfusion data for critical structures. To demonstrate the utility of the method, the lung dose distributions of two non-small cell lung caner patients, who received 3D conformal external beam radiotherapy treatment with curative intent, were evaluated. Differences between the calculated lungs EUD and FEUD values of up to 50% were observed in the 3D conformal plans. In addition, a non-small cell lung cancer patient was inversely planned with a target dose prescription of 76 Gy. Two IMRT plans (plan-A and plan-B) were generated for the patient based on the CT, FDG-PET and SPECT treatment planning images using dose-volume objective functions. The IMRT plans were generated with the goal of achieving more critical structures sparing in plan-B than plan-A. Results show the target volume EUD in plan-B is lower than plan-A by 5% with a value of 73.31 Gy, and the FEUD in plan-B is lower than plan-A by 2.6% with a value of 75.77 Gy. The FEUD plan-B values for heart and lungs were lower than plan-A by 22% and 18%, respectively

  4. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    SciTech Connect

    Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji; Suzuki, Osamu; Seo, Yuji; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  5. Tracking the dose distribution in radiation therapy by accounting for variable anatomy.

    PubMed

    Schaly, B; Kempe, J A; Bauman, G S; Battista, J J; Van Dyk, J

    2004-03-07

    The goal of this research is to calculate the daily and cumulative dose distribution received by the radiotherapy patient while accounting for variable anatomy, by tracking the dose distribution delivered to tissue elements (voxels) that move within the patient. Non-linear image registration techniques (i.e., thin-plate splines) are used along with a conventional treatment planning system to combine the dose distributions computed for each 3D computed tomography (CT) study taken during treatment. For a clinical prostate case, we demonstrate that there are significant localized dose differences due to systematic voxel motion in a single fraction as well as in 15 cumulative fractions. The largest positive dose differences in rectum, bladder and seminal vesicles were 29%, 2% and 24%, respectively, after the first fraction of radiation treatment compared to the planned dose. After 15 cumulative fractions, the largest positive dose differences in rectum, bladder and seminal vesicles were 23%, 32% and 18%, respectively, compared to the planned dose. A sensitivity analysis of control point placement is also presented. This method provides an important understanding of actual delivered doses and has the potential to provide quantitative information to use as a guide for adaptive radiation treatments.

  6. SU-E-I-15: Quantitative Evaluation of Dose Distributions From Axial, Helical and Cone-Beam CT Imaging by Measurement Using a Two-Dimensional Diode-Array Detector

    SciTech Connect

    Chacko, M; Aldoohan, S; Sonnad, J; Ahmad, S; Ali, I

    2015-06-15

    Purpose: To evaluate quantitatively dose distributions from helical, axial and cone-beam CT clinical imaging techniques by measurement using a two-dimensional (2D) diode-array detector. Methods: 2D-dose distributions from selected clinical protocols used for axial, helical and cone-beam CT imaging were measured using a diode-array detector (MapCheck2). The MapCheck2 is composed from solid state diode detectors that are arranged in horizontal and vertical lines with a spacing of 10 mm. A GE-Light-Speed CT-simulator was used to acquire axial and helical CT images and a kV on-board-imager integrated with a Varian TrueBeam-STx machine was used to acquire cone-beam CT (CBCT) images. Results: The dose distributions from axial, helical and cone-beam CT were non-uniform over the region-of-interest with strong spatial and angular dependence. In axial CT, a large dose gradient was measured that decreased from lateral sides to the middle of the phantom due to large superficial dose at the side of the phantom in comparison with larger beam attenuation at the center. The dose decreased at the superior and inferior regions in comparison to the center of the phantom in axial CT. An asymmetry was found between the right-left or superior-inferior sides of the phantom which possibly to angular dependence in the dose distributions. The dose level and distribution varied from one imaging technique into another. For the pelvis technique, axial CT deposited a mean dose of 3.67 cGy, helical CT deposited a mean dose of 1.59 cGy, and CBCT deposited a mean dose of 1.62 cGy. Conclusions: MapCheck2 provides a robust tool to measure directly 2D-dose distributions for CT imaging with high spatial resolution detectors in comparison with ionization chamber that provides a single point measurement or an average dose to the phantom. The dose distributions measured with MapCheck2 consider medium heterogeneity and can represent specific patient dose.

  7. Quantifying the Combined Effect of Radiation Therapy and Hyperthermia in Terms of Equivalent Dose Distributions

    SciTech Connect

    Kok, H. Petra; Crezee, Johannes; Franken, Nicolaas A.P.; Barendsen, Gerrit W.

    2014-03-01

    Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy{sup −1}) and β (Gy{sup −2}) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normal tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from different

  8. Dose distribution response in HDRB measured with EBT2 and compared with PLATO SYSTEM.

    PubMed

    Hernández-Ruiz, L; Hernández-Oviedo, J O; Ruesga-Vazquez, D; Rivera-Montalvo, T

    2014-01-01

    Dose distribution of a High Dose Rate Brachytherapy (BHDR) oncological treatment with (192)Ir was measured using a Gafchromic EBT2 film. The film calibration was performed with a (60)Co unit and a LINAC of 6 mV and 18 mV. Gafchromic behavior of a dosimeter varies in respect of energy. Experimental results of dose distribution match with those planned in the PLATO commercial system, they also show that there is a difference of 2.11% between the planning system and isodoses measured.

  9. Improvement of dose distribution with irregular surface compensator in whole breast radiotherapy

    PubMed Central

    Hideki, Fujita; Nao, Kuwahata; Hiroyuki, Hattori; Hiroshi, Kinoshita; Haruyuki, Fukuda

    2013-01-01

    Aim of this study was to compare the dosimetric aspects of whole breast radiotherapy (WBRT) between an irregular surface compensator (ISC) and a conventional tangential field technique using physical wedges. Treatment plans were produced for 20 patients. The Eclipse treatment planning system (Varian Medical Systems) was used for the dose calculation: For the physical wedge technique, the wedge angle was selected to provide the best dose homogeneity; for the ISC technique, the fluence editor application was used to extend the optimal fluence. These two treatment plans were compared in terms of doses in the planning target volume, the dose homogeneity index, the maximum dose, ipsilateral lung and heart doses for left breast irradiation, and the monitor unit counts required for treatment. Compared with the physical wedge technique, the ISC technique significantly reduced the dose homogeneity index, the maximum dose, the volumes received at 105% of the prescription dose, as well as reducing both the ipsilateral lung and heart doses (P < 0.01 for all comparisons). However, the monitor unit counts were not significantly different between the techniques (P > 0.05). Thus, the ISC technique for WBRT enables significantly better dose distribution in the planning target volume. PMID:24049317

  10. Clinical usefulness of the management and delivery of radiation dose-distribution images using the Internet.

    PubMed

    Nakagawa, K; Onogi, Y; Aoki, Y; Kozuka, T; Ohtomo, K

    1998-01-01

    Dose distribution images in radiation therapy play important roles in the management of cancer patients. To date, hard copies of these images have been stored for referral by radiation oncologists as needed. In most cases, these images are not available to medical personnel outside the radiation oncology department. We have developed a means to access these dose distribution images from the hospital via the World-Wide Web (WWW). A screen snapshot of a dose distribution image on the CRT of a treatment planning unit is copied to the WWW server and converted to a GIF (graphic interchange format) image. Similarly, we can register dose volume histograms and digitally reconstructed radiographs (DRR) on the WWW. Medical personnel can view these images through the WWW browser from anywhere in the hospital. As a result, radiation oncologists are given detailed information on target definition in treatment planning by expert physicians. The system also helps co-medical personnel in understanding dose distribution and predicting radiation injury. At the same time, it actualizes an electronic archive of dose distribution images, which is a database for quick and reliable review, evaluation, and comparison of treatment plans. This technique also fosters closer relationships among radiation oncologists, physicians, and co-medical personnel.

  11. [Management and delivery of radiation dose distribution images using the Internet].

    PubMed

    Onogi, Y; Nakagawa, K; Aoki, Y; Kozuka, T; Toyoda, T; Sasaki, Y

    1998-01-01

    Dose distribution images play important roles in the management of cancer patients. To date hard copies of these images have been stored and referred to by radiation oncologists as needed. In most cases, these images were not available to medical personnel outside the radiation oncology department. We have developed a mechanism in the hospital to access these dose distribution images via WWW (World Wide Web). A screen snapshot of a dose distribution image on the CRT of a treatment planning machine is copied to the WWW server and converted to a GIF image. Similarly, we can register dose volume histograms and digitally reconstructed radiographs on the WWW. Medical personnel throughout the hospital can access the images through the WWW browser. As a result, radiation oncologists are given detailed information on target definition in treatment planning by expert physicians. The system also helps co-medical staff in understanding dose distributions and predicting radiation injuries. At the same time, it actualizes an electronic archive of dose distribution images, which is a database for quick and reliable review, evaluation and comparison of treatment plans. This technique also furthers a close relationship among radiation oncologists, physicians, and co-medical personnel.

  12. Detection of lung nodules in chest digital tomosynthesis (CDT): effects of the different angular dose distribution

    NASA Astrophysics Data System (ADS)

    Jo, Byungdu; Lee, Youngjin; Kim, Dohyeon; Lee, Dong-Hoon; Jin, Seong-Soo; Mu, Shou-Chih; Kim, Hye-Mi; Kim, Hee-Joung

    2015-03-01

    Chest digital tomosynthesis (CDT) is a recently introduced new imaging modality for better detection of high- and smallcontrast lung nodules compared to conventional X-ray radiography. In CDT system, several projection views need to be acquired with limited angular range. The acquisition of insufficient number of projection data can degrade the reconstructed image quality. This image degradation easily affected by acquisition parameters such as angular dose distribution, number of projection views and reconstruction algorithm. To investigate the imaging characteristics, we evaluated the impact of the angular dose distribution on image quality by simulation studies with Geant4 Application for Tomographic Emission (GATE). We designed the different angular dose distribution conditions. The results showed that the contrast-to-noise ratio (CNR) improves when exposed the higher dose at central projection views than peripheral views. While it was found that increasing angular dose distribution at central views improved lung nodule detectability, although both peripheral regions slightly suffer from image noise due to low dose distribution. The improvements of CNR by using proposed image acquisition technique suggest possible directions for further improvement of CDT system for lung nodule detection with high quality imaging capabilities.

  13. SU-E-T-113: Dose Distribution Using Respiratory Signals and Machine Parameters During Treatment

    SciTech Connect

    Imae, T; Haga, A; Saotome, N; Kida, S; Nakano, M; Takeuchi, Y; Shiraki, T; Yano, K; Yamashita, H; Nakagawa, K; Ohtomo, K

    2014-06-01

    Purpose: Volumetric modulated arc therapy (VMAT) is a rotational intensity-modulated radiotherapy (IMRT) technique capable of acquiring projection images during treatment. Treatment plans for lung tumors using stereotactic body radiotherapy (SBRT) are calculated with planning computed tomography (CT) images only exhale phase. Purpose of this study is to evaluate dose distribution by reconstructing from only the data such as respiratory signals and machine parameters acquired during treatment. Methods: Phantom and three patients with lung tumor underwent CT scans for treatment planning. They were treated by VMAT while acquiring projection images to derive their respiratory signals and machine parameters including positions of multi leaf collimators, dose rates and integrated monitor units. The respiratory signals were divided into 4 and 10 phases and machine parameters were correlated with the divided respiratory signals based on the gantry angle. Dose distributions of each respiratory phase were calculated from plans which were reconstructed from the respiratory signals and the machine parameters during treatment. The doses at isocenter, maximum point and the centroid of target were evaluated. Results and Discussion: Dose distributions during treatment were calculated using the machine parameters and the respiratory signals detected from projection images. Maximum dose difference between plan and in treatment distribution was −1.8±0.4% at centroid of target and dose differences of evaluated points between 4 and 10 phases were no significant. Conclusion: The present method successfully evaluated dose distribution using respiratory signals and machine parameters during treatment. This method is feasible to verify the actual dose for moving target.

  14. SU-E-T-388: Evaluation of Electronic Brachytherapy Dose Distributions in Tissue Equivalent Materials

    SciTech Connect

    Johnson, M; Ahmad, S; Johnson, D

    2015-06-15

    Purpose: To study the measured and calculated dose distributions for electronic brachytherapy (EBT) in various tissue equivalent homogenous materials. Methods: Calculated dose distributions in water were generated using published TG-43 parameters in Varian BrachyVision software for a 50 kVp, 50 cm Xoft source. Dose distributions were measured within a 3D-scanning tank using dosimeters including: PTW 0.125 cc, pin-point, and parallel-plate ion chambers, Sun Nuclear “Edge” diode and Gafchromic EBT3 film. Multi-channel film dosimetry was used in film analysis. EBT3 film curves were calibrated via radial dose comparison to both independently measured and published data. The resulting film calibration was utilized to measure dose distributions created by titanium filtered source utilized in clinical brachytherapy applications. Data was collected within homogenous PMMA, vinyl, polystyrene, paraffin, and water-equivalent plastic phantoms. Results: Ion-chamber data was corrected to effective points of measurement and normalized prior to comparison between calculated and measured dose distributions. Measurements made in water and water equivalent materials compared well with results from treatment planning software. The maximum percent differences (relative to water) observed between 1 cm and 3.5 cm depth from source for each of the phantom materials are as follows: PMMA 35%, polystyrene 41%, plastic-water 23%, vinyl 115%, and paraffin 46%. Conclusion: The increased probability of photoelectric interactions occurring within the patient during electronic brachytherapy will emphasize the radiological differences between varying human tissues in dose deposition. These differences can Result in clinically significant dose perturbations and it is therefore recommended to move to a model based dose calculation, as outlined in TG-186, to improve the dosimetric accuracy of low energy EBT.

  15. Systematic measurements of whole-body imaging dose distributions in image-guided radiation therapy

    SciTech Connect

    Haelg, Roger A.; Besserer, Juergen; Schneider, Uwe

    2012-12-15

    Purpose: The full benefit of the increased precision of contemporary treatment techniques can only be exploited if the accuracy of the patient positioning is guaranteed. Therefore, more and more imaging modalities are used in the process of the patient setup in clinical routine of radiation therapy. The improved accuracy in patient positioning, however, results in additional dose contributions to the integral patient dose. To quantify this, absorbed dose measurements from typical imaging procedures involved in an image-guided radiation therapy treatment were measured in an anthropomorphic phantom for a complete course of treatment. The experimental setup, including the measurement positions in the phantom, was exactly the same as in a preceding study of radiotherapy stray dose measurements. This allows a direct combination of imaging dose distributions with the therapy dose distribution. Methods: Individually calibrated thermoluminescent dosimeters were used to measure absorbed dose in an anthropomorphic phantom at 184 locations. The dose distributions from imaging devices used with treatment machines from the manufacturers Accuray, Elekta, Siemens, and Varian and from computed tomography scanners from GE Healthcare were determined and the resulting effective dose was calculated. The list of investigated imaging techniques consisted of cone beam computed tomography (kilo- and megavoltage), megavoltage fan beam computed tomography, kilo- and megavoltage planar imaging, planning computed tomography with and without gating methods and planar scout views. Results: A conventional 3D planning CT resulted in an effective dose additional to the treatment stray dose of less than 1 mSv outside of the treated volume, whereas a 4D planning CT resulted in a 10 times larger dose. For a daily setup of the patient with two planar kilovoltage images or with a fan beam CT at the TomoTherapy unit, an additional effective dose outside of the treated volume of less than 0.4 mSv and 1

  16. Tissue composition effect on dose distribution in neutron brachytherapy/neutron capture therapy

    PubMed Central

    Khosroabadi, Mohsen; Farhood, Bagher; Ghorbani, Mahdi; Hamzian, Nima; Moghaddam, Homa Rezaei; Davenport, David

    2016-01-01

    Aim The aim of this study is to assess the effect of the compositions of various soft tissues and tissue-equivalent materials on dose distribution in neutron brachytherapy/neutron capture therapy. Background Neutron brachytherapy and neutron capture therapy are two common radiotherapy modalities. Materials and methods Dose distributions were calculated around a low dose rate 252Cf source located in a spherical phantom with radius of 20.0 cm using the MCNPX code for seven soft tissues and three tissue-equivalent materials. Relative total dose rate, relative neutron dose rate, total dose rate, and neutron dose rate were calculated for each material. These values were determined at various radial distances ranging from 0.3 to 15.0 cm from the source. Results Among the soft tissues and tissue-equivalent materials studied, adipose tissue and plexiglass demonstrated the greatest differences for total dose rate compared to 9-component soft tissue. The difference in dose rate with respect to 9-component soft tissue varied with compositions of the materials and the radial distance from the source. Furthermore, the total dose rate in water was different from that in 9-component soft tissue. Conclusion Taking the same composition for various soft tissues and tissue-equivalent media can lead to error in treatment planning in neutron brachytherapy/neutron capture therapy. Since the International Commission on Radiation Units and Measurements (ICRU) recommends that the total dosimetric uncertainty in dose delivery in radiotherapy should be within ±5%, the compositions of various soft tissues and tissue-equivalent materials should be considered in dose calculation and treatment planning in neutron brachytherapy/neutron capture therapy. PMID:26900352

  17. Analysis of high–dose rate brachytherapy dose distribution resemblance in CyberKnife hypofractionated treatment plans of localized prostate cancer

    SciTech Connect

    Sudahar, H.; Kurup, P.G.G.; Murali, V.; Mahadev, P.; Velmurugan, J.

    2013-01-01

    The present study is to analyze the CyberKnife hypofractionated dose distribution of localized prostate cancer in terms of high–dose rate (HDR) brachytherapy equivalent doses to assess the degree of HDR brachytherapy resemblance of CyberKnife dose distribution. Thirteen randomly selected localized prostate cancer cases treated using CyberKnife with a dose regimen of 36.25 Gy in 5 fractions were considered. HDR equivalent doses were calculated for 30 Gy in 3 fractions of HDR brachytherapy regimen. The D{sub 5%} of the target in the CyberKnife hypofractionation was 41.57 ± 2.41 Gy. The corresponding HDR fractionation (3 fractions) equivalent dose was 32.81 ± 1.86 Gy. The mean HDR fractionation equivalent dose, D{sub 98%}, was 27.93 ± 0.84 Gy. The V{sub 100%} of the prostate target was 95.57% ± 3.47%. The V{sub 100%} of the bladder and the rectum were 717.16 and 79.6 mm{sup 3}, respectively. Analysis of the HDR equivalent dose of CyberKnife dose distribution indicates a comparable resemblance to HDR dose distribution in the peripheral target doses (D{sub 98%} to D{sub 80%}) reported in the literature. However, there is a substantial difference observed in the core high-dose regions especially in D{sub 10%} and D{sub 5%}. The dose fall-off within the OAR is also superior in reported HDR dose distribution than the HDR equivalent doses of CyberKnife.

  18. Effect of Tissue Composition on Dose Distribution in Electron Beam Radiotherapy

    PubMed Central

    Ghorbani, M.; Tabatabaei, Z. S.; Vejdani Noghreiyan, A.; Vosoughi, H.; Knaup, C.

    2015-01-01

    Objective The aim of this study is to evaluate the effect of tissue composition on dose distribution in electron beam radiotherapy. Methods A Siemens Primus linear accelerator and a phantom were simulated using MCNPX Monte Carlo code. In a homogeneous cylindrical phantom, six types of soft tissue and three types of tissue-equivalent materials were investigated. The tissues included muscle (skeletal), adipose tissue, blood (whole), breast tissue, soft tissue (9-components) and soft tissue (4-component). The tissue-equivalent materials were water, A-150 tissue-equivalent plastic and perspex. Electron dose relative to dose in 9-component soft tissue at various depths on the beam’s central axis was determined for 8, 12, and 14 MeV electron energies. Results The results of relative electron dose in various materials relative to dose in 9-component soft tissue were reported for 8, 12 and 14 MeV electron beams as tabulated data. While differences were observed between dose distributions in various soft tissues and tissue-equivalent materials, which vary with the composition of material, electron energy and depth in phantom, they can be ignored due to the incorporated uncertainties in Monte Carlo calculations. Conclusion Based on the calculations performed, differences in dose distributions in various soft tissues and tissue-equivalent materials are not significant. However, due to the difference in composition of various materials, further research in this field with lower uncertainties is recommended. PMID:25973407

  19. Implications of dose distribution on monitoring requirements in U mines and mills.

    PubMed

    Duport, P; Stocker, H; Dalkowski, E

    1988-08-01

    In U mines and mills, mean doses from gamma radiation and 222Rn daughters, respectively, range from 10-30% of the individual limits recommended by the International Commission on Radiological Protection (ICRP), while the mean exposure to long-lived dust can be as low as a few percent or as high as 30% of the ICRP recommended limit. In certain mines, 220Rn daughters are present and should also be measured and accounted for. When the doses (or dose equivalents) from all the components of the radiation sources are taken into account, according to the ICRP notions of effective dose equivalent and committed effective dose equivalent, the mean of the combined doses can reach 30-50% of the combined permissible limit of dose. It is generally observed that individual doses and exposure to radiation are log-normally distributed. Since individual exposures to each specific hazard are generally not correlated, there is a probability that a number of individuals belong to the upper part of each exposure distribution. Therefore, it can happen that non-negligible fractions of the populations are liable to be close to the combined dose limit or to be overexposed. Consequently, in view of the observed nature of the distributions and the need to account for all sources of radiation, it is essential that appropriate radiation monitoring techniques be used to measure and record all significant doses and exposures. The analysis of the results of appropriate monitoring practices will lead to improved engineering controls of radiation hazards and optimum use of preventive resources.

  20. A study on the dose distributions in various materials from an Ir-192 HDR brachytherapy source.

    PubMed

    Hsu, Shih-Ming; Wu, Chin-Hui; Lee, Jeng-Hung; Hsieh, Ya-Ju; Yu, Chun-Yen; Liao, Yi-Jen; Kuo, Li-Cheng; Liang, Ji-An; Huang, David Y C

    2012-01-01

    Dose distributions of (192)Ir HDR brachytherapy in phantoms simulating water, bone, lung tissue, water-lung and bone-lung interfaces using the Monte Carlo codes EGS4, FLUKA and MCNP4C are reported. Experiments were designed to gather point dose measurements to verify the Monte Carlo results using Gafchromic film, radiophotoluminescent glass dosimeter, solid water, bone, and lung phantom. The results for radial dose functions and anisotropy functions in solid water phantom were consistent with previously reported data (Williamson and Li). The radial dose functions in bone were affected more by depth than those in water. Dose differences between homogeneous solid water phantoms and solid water-lung interfaces ranged from 0.6% to 14.4%. The range between homogeneous bone phantoms and bone-lung interfaces was 4.1% to 15.7%. These results support the understanding in dose distribution differences in water, bone, lung, and their interfaces. Our conclusion is that clinical parameters did not provide dose calculation accuracy for different materials, thus suggesting that dose calculation of HDR treatment planning systems should take into account material density to improve overall treatment quality.

  1. Influence of Metal of the Applicator on the Dose Distribution during Brachytherapy

    PubMed Central

    Wu, Chin-Hui; Shiau, An-Cheng; Liao, Yi-Jen; Lin, Hsin-Yu

    2014-01-01

    This study explores how the metal materials of the applicator influence the dose distribution when performing brachytherapy for cervical cancer. A pinpoint ionization chamber, Monte Carlo code MCNPX, and treatment planning system are used to evaluate the dose distribution for a single Ir-192 source positioned in the tandem and ovoid. For dose distribution in water with the presence of the tandem, differences among measurement, MCNPX calculation and treatment planning system results are <5%. For dose distribution in water with the presence of the ovoid, the MCNPX result agrees with the measurement. But the doses calculated from treatment planning system are overestimated by up to a factor of 4. This is due to the shielding effect of the metal materials in the applicator not being considered in the treatment planning system. This result suggests that the treatment planning system should take into account corrections for the metal materials of the applicator in order to improve the accuracy of the radiation dose delivered. PMID:25133789

  2. Effects of energy spectrum on dose distribution calculations for high energy electron beams.

    PubMed

    Toutaoui, Abdelkader; Khelassi-Toutaoui, Nadia; Brahimi, Zakia; Chami, Ahmed Chafik

    2009-01-01

    In an early work we have demonstrated the possibility of using Monte Carlo generated pencil beams for 3D electron beam dose calculations. However, in this model the electron beam was considered as monoenergetic and the effects of the energy spectrum were taken into account by correction factors, derived from measuring central-axis depth dose curves. In the present model, the electron beam is considered as polyenergetic and the pencil beam distribution of a clinical electron beam, of a given nominal energy, is represented as a linear combination of Monte Carlo monoenergetic pencil beams. The coefficients of the linear combination describe the energy spectrum of the clinical electron beam, and are chosen to provide the best-fit between the calculated and measured central axis depth dose, in water. The energy spectrum is determined by the constrained least square method. The angular distribution of the clinical electron beam is determined by in-air penumbra measurements. The predictions of this algorithm agree very well with the measurements in the region near the surface, and the discrepancies between the measured and calculated dose distributions, behind 3D heterogeneities, are reduced to less than 10%. We have demonstrated a new algorithm for 3D electron beam dose calculations, which takes into account the energy spectra. Results indicate that the use of this algorithm leads to a better modeling of dose distributions downstream, from complex heterogeneities.

  3. Effects of energy spectrum on dose distribution calculations for high energy electron beams

    PubMed Central

    Toutaoui, Abdelkader; Khelassi-Toutaoui, Nadia; Brahimi, Zakia; Chami, Ahmed Chafik

    2009-01-01

    In an early work we have demonstrated the possibility of using Monte Carlo generated pencil beams for 3D electron beam dose calculations. However, in this model the electron beam was considered as monoenergetic and the effects of the energy spectrum were taken into account by correction factors, derived from measuring central-axis depth dose curves. In the present model, the electron beam is considered as polyenergetic and the pencil beam distribution of a clinical electron beam, of a given nominal energy, is represented as a linear combination of Monte Carlo monoenergetic pencil beams. The coefficients of the linear combination describe the energy spectrum of the clinical electron beam, and are chosen to provide the best-fit between the calculated and measured central axis depth dose, in water. The energy spectrum is determined by the constrained least square method. The angular distribution of the clinical electron beam is determined by in-air penumbra measurements. The predictions of this algorithm agree very well with the measurements in the region near the surface, and the discrepancies between the measured and calculated dose distributions, behind 3D heterogeneities, are reduced to less than 10%. We have demonstrated a new algorithm for 3D electron beam dose calculations, which takes into account the energy spectra. Results indicate that the use of this algorithm leads to a better modeling of dose distributions downstream, from complex heterogeneities. PMID:20126560

  4. Effect of collimator and couch angle change on breast IMRT dose distributions.

    PubMed

    Yang, Jie; Ma, Charlie; Wang, Lu; Chen, Lili; Li, Jinsheng

    2009-09-30

    Intensity modulated tangential photon beams for breast cancer treatment can improve the dose uniformity significantly throughout the whole breast and reduce the dose to the lung and the heart comparing with the conventional technique. Before the first treatment, patient setup may require a change on the collimator angle and/or the couch angle based on the chest wall coverage according to the port films. The objective of this work is to investigate the effects of the collimator and the couch angle change on the dose distribution for breast cancer treatment using intensity modulated tangential photon beams, and thus to determine the clinical acceptable range of the angle change for routine treatment. Ten breast cases treated with intensity modulated tangential photon beams were analyzed in this study. Patient-specific CT data and the RTP files obtained from our home-grown Monte Carlo based breast IMRT treatment planning system were used for IMRT dose re-calculation with collimator or couch angle changes. The isodose distributions and DVHs were compared with the original plans and the effects of the collimator and couch angle change to breast IMRT dose distributions were evaluated. Our results show that a 4-degree change in the collimator angle or the couch angle did not affect the dose distribution significantly and it is acceptable in the clinic for patient treatment.

  5. Target point correction optimized based on the dose distribution of each fraction in daily IGRT

    NASA Astrophysics Data System (ADS)

    Stoll, Markus; Giske, Kristina; Stoiber, Eva M.; Schwarz, Michael; Bendl, Rolf

    2014-03-01

    Purpose: To use daily re-calculated dose distributions for optimization of target point corrections (TPCs) in image guided radiation therapy (IGRT). This aims to adapt fractioned intensity modulated radiation therapy (IMRT) to changes in the dose distribution induced by anatomical changes. Methods: Daily control images from an in-room on-rail spiral CT-Scanner of three head-and-neck cancer patients were analyzed. The dose distribution was re-calculated on each control CT after an initial TPC, found by a rigid image registration method. The clinical target volumes (CTVs) were transformed from the planning CT to the rigidly aligned control CTs using a deformable image registration method. If at least 95% of each transformed CTV was covered by the initially planned D95 value, the TPC was considered acceptable. Otherwise the TPC was iteratively altered to maximize the dose coverage of the CTVs. Results: In 14 (out of 59) fractions the criterion was already fulfilled after the initial TPC. In 10 fractions the TPC can be optimized to fulfill the coverage criterion. In 31 fractions the coverage can be increased but the criterion is not fulfilled. In another 4 fractions the coverage cannot be increased by the TPC optimization. Conclusions: The dose coverage criterion allows selection of patients who would benefit from replanning. Using the criterion to include daily re-calculated dose distributions in the TPC reduces the replanning rate in the analysed three patients from 76% to 59% compared to the rigid image registration TPC.

  6. Verification of 3D Dose Distributions of a Beta-Emitting Radionuclide Using PRESAGE^ Dosimeters

    NASA Astrophysics Data System (ADS)

    Crowder, Mandi; Grant, Ryan; Ibbott, Geoff; Wendt, Richard

    2010-11-01

    Liquid Brachytherapy involves the direct administration of a beta-emitting radioactive solution into the selected tissue. The solution does not migrate from the injection point and uses the limited range of beta particles to produce a three-dimensional dose distribution. We simulated distributions by beta-dose kernels and validated those estimates by irradiating PRESAGE^ polyurethane dosimeters that measure the three-dimensional dose distributions by a change in optical density that is proportional to dose. The dosimeters were injected with internal beta-emitting radionuclide yttrium-90, exposed for 5.75 days, imaged with optical tomography, and analyzed with radiotherapy software. Dosimeters irradiated with an electron beam to 2 or 3 Gy were used for calibration. The shapes and dose distributions in the PRESAGE^ dosimeters were consistent with the predicted dose kernels. Our experiments have laid the groundwork for future application to individualized patient therapy by ultimately designing a treatment plan that conforms to the shape of any appropriate tumor.

  7. Improvement of dose distribution by central beam shielding in boron neutron capture therapy.

    PubMed

    Sakurai, Yoshinori; Ono, Koji

    2007-12-21

    Since boron neutron capture therapy (BNCT) with epithermal neutron beams started at the Kyoto University Reactor (KUR) in June 2002, nearly 200 BNCT treatments have been carried out. The epithermal neutron irradiation significantly improves the dose distribution, compared with the previous irradiation mainly using thermal neutrons. However, the treatable depth limit still remains. One effective technique to improve the limit is the central shield method. Simulations were performed for the incident neutron energies and the annular components of the neutron source. It was clear that thermal neutron flux distribution could be improved by decreasing the lower energy neutron component and the inner annular component of the incident beam. It was found that a central shield of 4-6 cm diameter and 10 mm thickness is effective for the 12 cm diameter irradiation field. In BNCT at KUR, the depth dose distribution can be much improved by the central shield method, resulting in a relative increase of the dose at 8 cm depth by about 30%. In addition to the depth dose distribution, the depth dose profile is also improved. As the dose rate in the central area is reduced by the additional shielding, the necessary irradiation time, however, increases by about 30% compared to normal treatment.

  8. SU-E-T-609: Perturbation Effects of Pedicle Screws On Radiotherapy Dose Distributions

    SciTech Connect

    Bar-Deroma, R; Borzov, E; Nevelsky, A

    2015-06-15

    Purpose: Radiation therapy in conjunction with surgical implant fixation is a common combined treatment in case of bone metastases. However, metal implants generally used in orthopedic implants perturb radiation dose distributions. Carbon-Fiber Reinforced (CFR) PEEK material has been recently introduced for production of intramedullary screws and plates. Gold powder can be added to the CFR-PEEK material in order to enhance visibility of the screws during intraoperative imaging procedures. In this work, we investigated the perturbation effects of the pedicle screws made of CFR-PEEK, CFR-PEEK with added gold powder (CFR-PEEK-AU) and Titanium (Ti) on radiotherapy dose distributions. Methods: Monte Carlo (MC) simulations were performed using the EGSnrc code package for 6MV beams with 10×10 fields at SSD=100cm. By means of MC simulations, dose distributions around titanium, CFR- PEEK and CFR-PEEK-AU screws (manufactured by Carbo-Fix Orthopedics LTD, Israel) placed in a water phantom were calculated. The screw axis was either parallel or perpendicular to the beam axis. Dose perturbation (relative to dose in homogeneous water phantom) was assessed. Results: Maximum overdose due to backscatter was 10% for the Ti screws, 5% for the CFR-PEEK-AU screws and effectively zero for the CFR-PEEK screws. Maximum underdose due to attenuation was 25% for the Ti screws, 15% for the CFR-PEEK-AU screws and 5% for the CFR-PEEK screws. Conclusion: Titanium screws introduce the largest distortion on the radiation dose distribution. The gold powder added to the CFR-PEEK material improves visibility at the cost of increased dose perturbation. CFR-PEEK screws caused minimal alteration on the dose distribution. This can decrease possible over and underdose of adjacent tissue and thus favorably influence treatment efficiency. The use of such implants has potential clinical advantage in the treatment of neoplastic bone disease.

  9. Approximate distribution of dose among foetal organs for radioiodine uptake via placenta transfer

    NASA Astrophysics Data System (ADS)

    Millard, R. K.; Saunders, M.; Palmer, A. M.; Preece, A. W.

    2001-11-01

    Absorbed radiation doses to internal foetal organs were calculated according to the medical internal radiation dose (MIRD) technique in this study. Anthropomorphic phantoms of the pregnant female as in MIRDOSE3 enabled estimation of absorbed dose to the whole foetus at two stages of gestation. Some foetal organ self-doses could have been estimated by invoking simple spherical models for thyroid, liver, etc, but we investigated the use of the MIRDOSE3 new-born phantom as a surrogate for the stage 3 foetus, scaled to be compatible with total foetal body mean absorbed dose/cumulated activity. We illustrate the method for obtaining approximate dose distribution in the foetus near term following intake of 1 MBq of 123I, 124I, 125I or 131I as sodium iodide by the mother using in vivo biodistribution data examples from a good model of placenta transfer. Doses to the foetal thyroid of up to 1.85 Gy MBq-1 were predicted from the 131I uptake data. Activity in the foetal thyroid was the largest contributor to absorbed dose in the foetal body, brain, heart and thymus. Average total doses to the whole foetus ranged from 0.16 to 1.2 mGy MBq-1 for stages 1 and 3 of pregnancy using the MIRDOSE3 program, and were considerably higher than those predicted from the maternal contributions alone. Doses to the foetal thymus and stomach were similar, around 2-3 mGy MBq-1. Some foetal organ doses from the radioiodides were ten times higher than to the corresponding organs of the mother, and up to 100 times higher to the thyroid. The fraction of activity uptakes in foetal organs were distributed similarly to the maternal ones.

  10. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  11. SU-E-T-520: Four-Dimensional Dose Calculation Algorithm Considering Variations in Dose Distribution Induced by Sinusoidal One-Dimensional Motion Patterns

    SciTech Connect

    Taguenang, J; Algan, O; Ahmad, S; Ali, I

    2014-06-01

    Purpose: To investigate quantitatively the variations in dose-distributions induced by motion by measurements and modeling. A four-dimensional (4D) motion model of dose distributions that accounts for different motion parameters was developed. Methods: Variations in dose distributions induced by sinusoidal phantom motion were measured using a multiple-diode-array-detector (MapCheck2). MapCheck2 was mounted on a mobile platform that moves with adjustable calibrated motion patterns in the superior-inferior direction. Various plans including open and intensity-modulated fields were used to irradiate MapCheck2. A motion model was developed to predict spatial and temporal variations in the dose-distributions and dependence on the motion parameters using pencil-beam spread-out superposition function. This model used the superposition of pencil-beams weighted with a probability function extracted from the motion trajectory. The model was verified with measured dose-distributions obtained from MapCheck2. Results: Dose-distribution varied considerably with motion where in the regions between isocenter and 50% isodose-line, dose decreased with increase of the motion amplitude. Dose levels increased with increase in the motion amplitude in the region beyond 50% isodose-line. When the range of motion (ROM=twice amplitude) was smaller than the field length both central axis dose and the 50% isodose-line did not change with variation of motion amplitude and remained equal to the dose of stationary phantom. As ROM became larger than the field length, the dose level decreased at central axis dose and 50% isodose-line. Motion frequency and phase did not affect the dose distributions which were delivered over an extended time longer than few motion cycles, however, they played an important role for doses delivered with high-dose-rates within one motion cycle . Conclusion: A 4D-dose motion model was developed to predict and correct variations in dose distributions induced by one

  12. Longitudinal dose distribution and energy absorption in PMMA and water cylinders undergoing CT scans

    SciTech Connect

    Li, Xinhua; Zhang, Da; Liu, Bob

    2014-10-15

    Purpose: The knowledge of longitudinal dose distribution provides the most direct view of the accumulated dose in computed tomography (CT) scanning. The purpose of this work was to perform a comprehensive study of dose distribution width and energy absorption with a wide range of subject sizes and beam irradiated lengths. Methods: Cumulative dose distribution along the z-axis was calculated based on the previously published CT dose equilibration data by Li, Zhang, and Liu [Med. Phys. 40, 031903 (10pp.) (2013)] and a mechanism for computing dose on axial lines by Li, Zhang, and Liu [Med. Phys. 39, 5347–5352 (2012)]. Full width at half maximum (FWHM), full width at tenth maximum (FWTM), the total energy (E) absorbed in a small cylinder of unit mass per centimeter square about the central or peripheral axis, and the energy (E{sub in}) absorbed inside irradiated length (L) were subsequently extracted from the dose distribution. Results: Extensive results of FWHM, FWTM, and E{sub in}/E were presented on the central and peripheral axes of infinitely long PMMA (diameters 6–50 cm) and water (diameters 6–55 cm) cylinders with L < 100 cm. FWHM was greater than the primary beam width only on the central axes of large phantoms and also with L ranging from a few centimeter to about 33 cm. FWTM generally increased with phantom diameter, and could be up to 32 cm longer than irradiated length, depending on L, phantom diameter and axis, but was insensitive to phantom material (PMMA or water). E{sub in}/E increased with L and asymptotically approached unity for large L. As phantom diameter increased, E{sub in}/E generally decreased, but asymptotically approached constant levels on the peripheral axes of large phantoms. A heuristic explanation of dose distribution width results was presented. Conclusions: This study enables the reader to gain a comprehensive view of dose distribution width and energy absorption and provides useful data for estimating doses to organs inside or

  13. SU-E-T-540: MCNPX Simulation of Proton Dose Distributions in a Water Phantom

    SciTech Connect

    Lee, C; Chen, S; Chiang, B; Tung, C; Chao, T

    2015-06-15

    Purpose: In this study, fluence and energy deposition of proton and proton by-products and dose distributions were simulated. Lateral dose distributions were also been discussed to understand the difference between Monte Carlo simulations and pencil beam algorithm. Methods: MCNPX codes were used to build a water phantom by using “repeated structures” technique and the doses and fluences in each cell was recorded by mesh tally. This study includes, proton equilibrium and proton disequilibrium case. For the proton equilibrium case, the doses difference between proton and proton by-products were studied. A 160 MeV proton pencil beam was perpendicularly incident into a 40 × 40 × 50 cm{sup 3} water phantom and the scoring volume was 20 × 20 × 0.2 cm{sup 3}. Energy deposition and fluence were calculated from MCNPX with (1) proton only; and (2) proton and secondary particles. For the proton disequilibrium case, the dose distribution variation using different multiple Coulomb scattering were studied. A 70 MeV proton pencil beam was perpendicularly incident into a 40 × 40 × 10 cm{sup 3} water phantom and two scoring voxel sizes of 0.1 × 0.1 × 0.05 cm{sup 3} and 0.01 × 0.01 × 0.05 cm{sup 3} were used for the depth dose distribution, and 0.01 × 0.01 × 0.05 cm{sup 3} for the lateral profile distribution simulations. Results: In the water phantom, proton fluence and dose in depths beyond the Bragg peak were slightly perturbed by the choice of the simulated particle types. The dose from secondary particles was about three orders smaller, but its simulation consumed significant computing time. The depth dose distributions and lateral dose distributions of 70 MeV proton pencil beam obtained from MCNPX, GEANT4, and the pencil beam algorithm showed the significant deviations, probably caused by multiple Coulomb scattering. Conclusion: Multiple Coulomb scattering is critical when there is in proton disequilibrium.

  14. Dose Distributions of an 192Ir Brachytherapy Source in Different Media

    PubMed Central

    Wu, C. H.; Liao, Y. J.; Liu, Y. W. Hsueh; Hung, S. K.; Lee, M. S.; Hsu, S. M.

    2014-01-01

    This study used MCNPX code to investigate the brachytherapy 192Ir dose distributions in water, bone, and lung tissue and performed radiophotoluminescent glass dosimeter measurements to verify the obtained MCNPX results. The results showed that the dose-rate constant, radial dose function, and anisotropy function in water were highly consistent with data in the literature. However, the lung dose near the source would be overestimated by up to 12%, if the lung tissue is assumed to be water, and, hence, if a tumor is located in the lung, the tumor dose will be overestimated, if the material density is not taken into consideration. In contrast, the lung dose far from the source would be underestimated by up to 30%. Radial dose functions were found to depend not only on the phantom size but also on the material density. The phantom size affects the radial dose function in bone more than those in the other tissues. On the other hand, the anisotropy function in lung tissue was not dependent on the radial distance. Our simulation results could represent valid clinical reference data and be used to improve the accuracy of the doses delivered during brachytherapy applied to patients with lung cancer. PMID:24804263

  15. Effect of silicone gel breast prosthesis on electron and photon dose distributions

    SciTech Connect

    Krishnan, L.; St. George, F.J.; Mansfield, C.M.; Krishnan, E.C.

    1983-01-01

    The effect of a silicone gel breast prosthesis on the absorbed dose distribution of 9--20 MeV electron beams and 1.25--15 MV photon beams was studied. Compared to water measurements, at depths smaller than the practical range of the electron beams, the central axis depth dose values below the prothesis were lower for all energies by as much as 3.5%. However, at depths near the practical range, the central axis depth dose values for the prosthesis were greater than that of water by as much as 33%. Since this occurs near the end of the electron range, the resultant difference may not be clinically significant. Results of the effect of breast prosthesis on photon depth dose distributions reveal that no clinically significant perturbation is produced by the breast prosthesis using Co-60, 6- and 15-MV radiations.

  16. Influence of Geant4 parameters on dose distribution and computation time for carbon ion therapy simulation.

    PubMed

    Zahra, Nabil; Frisson, Thibault; Grevillot, Loic; Lautesse, Philippe; Sarrut, David

    2010-10-01

    The aim of this work was to study the influence of Geant4 parameters on dose distribution and computational time for simulations of carbon ion therapy. The study was done using Geant4 version 9.0. The dose distribution in water for incident monoenergetic carbon ion beams of 300 MeV/u were compared for different values of secondary particle production threshold and different step limits. Variations of depth dose of about 2 mm were observed in some cases, which induced a 30% variation of dose deposit in the Bragg peak region. Other tests were done using Geant4 version 9.2 to verify the results from this study. The two versions provided converging results and led to the same conclusions.

  17. The dependence of optimal fractionation schemes on the spatial dose distribution

    NASA Astrophysics Data System (ADS)

    Unkelbach, Jan; Craft, David; Salari, Ehsan; Ramakrishnan, Jagdish; Bortfeld, Thomas

    2013-01-01

    We consider the fractionation problem in radiation therapy. Tumor sites in which the dose-limiting organ at risk (OAR) receives a substantially lower dose than the tumor, bear potential for hypofractionation even if the α/β-ratio of the tumor is larger than the α/β-ratio of the OAR. In this work, we analyze the interdependence of the optimal fractionation scheme and the spatial dose distribution in the OAR. In particular, we derive a criterion under which a hypofractionation regimen is indicated for both a parallel and a serial OAR. The approach is based on the concept of the biologically effective dose (BED). For a hypothetical homogeneously irradiated OAR, it has been shown that hypofractionation is suggested by the BED model if the α/β-ratio of the OAR is larger than α/β-ratio of the tumor times the sparing factor, i.e. the ratio of the dose received by the tumor and the OAR. In this work, we generalize this result to inhomogeneous dose distributions in the OAR. For a parallel OAR, we determine the optimal fractionation scheme by minimizing the integral BED in the OAR for a fixed BED in the tumor. For a serial structure, we minimize the maximum BED in the OAR. This leads to analytical expressions for an effective sparing factor for the OAR, which provides a criterion for hypofractionation. The implications of the model are discussed for lung tumor treatments. It is shown that the model supports hypofractionation for small tumors treated with rotation therapy, i.e. highly conformal techniques where a large volume of lung tissue is exposed to low but nonzero dose. For larger tumors, the model suggests hyperfractionation. We further discuss several non-intuitive interdependencies between optimal fractionation and the spatial dose distribution. For instance, lowering the dose in the lung via proton therapy does not necessarily provide a biological rationale for hypofractionation.

  18. SU-E-T-313: The Accuracy of the Acuros XB Advanced Dose Calculation Algorithm for IMRT Dose Distributions in Head and Neck

    SciTech Connect

    Araki, F; Onizuka, R; Ohno, T; Tomiyama, Y; Hioki, K

    2014-06-01

    Purpose: To investigate the accuracy of the Acuros XB version 11 (AXB11) advanced dose calculation algorithm by comparing with Monte Caro (MC) calculations. The comparisons were performed with dose distributions for a virtual inhomogeneity phantom and intensity-modulated radiotherapy (IMRT) in head and neck. Methods: Recently, AXB based on Linear Boltzmann Transport Equation has been installed in the Eclipse treatment planning system (Varian Medical Oncology System, USA). The dose calculation accuracy of AXB11 was tested by the EGSnrc-MC calculations. In additions, AXB version 10 (AXB10) and Analytical Anisotropic Algorithm (AAA) were also used. First the accuracy of an inhomogeneity correction for AXB and AAA algorithms was evaluated by comparing with MC-calculated dose distributions for a virtual inhomogeneity phantom that includes water, bone, air, adipose, muscle, and aluminum. Next the IMRT dose distributions for head and neck were compared with the AXB and AAA algorithms and MC by means of dose volume histograms and three dimensional gamma analysis for each structure (CTV, OAR, etc.). Results: For dose distributions with the virtual inhomogeneity phantom, AXB was in good agreement with those of MC, except the dose in air region. The dose in air region decreased in order of MCdose kernel of water, the doses in regions for air, bone, and aluminum considerably became higher than those of AXB and MC. The pass rates of the gamma analysis for IMRT dose distributions in head and neck were similar to those of MC in order of AXB11dose calculation accuracy of AXB11 was almost equivalent to the MC dose calculation.

  19. Stereotactic radiosurgery of prostate cancer - dose distribution for VMAT and CyberKnife techniques

    NASA Astrophysics Data System (ADS)

    Ślosarek, Krzysztof; Osewski, Wojciech; Grządziel, Aleksandra; Stąpór-Fudzińska, Małgorzata; Szlag, Marta

    2016-06-01

    New capabilities of biomedical accelerators allow for very precise depositing of the radiation dose and imaging verification during the therapy. In addition, computer algorithms calculating dose distributions are taking into account the increasing number of physical effects. Therefore, administration of high dose fractionation, which is consistent with radiobiology used in oncology, becomes safer and safer. Stereotactic radiosurgery (SRS), which is very precise irradiation with high dose fractionation is increasingly widespread use in radiotherapy of prostate cancer. For this purpose different biomedical accelerators are used. The aim of this study is to compare dose distributions for two techniques: VMAT and CyberKnife. Statistical analysis was performed for the two groups of patients treated by VMAT technique (25 patients), and CyberKnife technique (15 patients). The analysis shows that the dose distributions are comparable, both in the treated area (prostate) and in the critical organs (rectum, urinary bladder, femoral heads). The results show that stereotactic radiosurgery of prostate cancer can be carried out on CyberKnife accelerator as well as on the classical accelerator with the use of VMAT technique.

  20. Evaluation of the breast absorbed dose distribution using the Fricke Xylenol Gel

    NASA Astrophysics Data System (ADS)

    Czelusniak, C.; Del Lama, L. S.; Moreira, M. V.; De Almeida, A.

    2010-11-01

    During a breast cancer radiotherapy treatment, several issues have to be taken into account, among them, hot spots, gradient of doses delivered over the breast, as well as in the lungs and the heart. The present work aims to apply the Fricke Xylenol Gel (FXG) dosimeter in the study of these issues, using a CCD camera to analyse the dose deposited distribution. Thus, the CCD was used to capture the images of different cuvettes that were filled with FXG and irradiated considering analogous setups employed in breast cancer radiotherapy treatments. Thereafter, these pictures where processed in a MatLab routine and the spatial dose distributions could be evaluated. These distributions were compared with the ones that were obtained from dedicated treatment planning's softwares. According to the results obtained, the FXG, allied with the CCD system, has shown to be a complementary tool in dosimetry, helping to prevent possible complications during breast cancer treatments.

  1. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    SciTech Connect

    Carlsson Tedgren, A; Persson, M; Nilsson, J

    2014-06-15

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.

  2. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    SciTech Connect

    Verbeke, Jerome M.

    1999-12-14

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only.

  3. The effects of motion on the dose distribution of proton radiotherapy for prostate cancer.

    PubMed

    Qamhiyeh, Sima; Geismar, Dirk; Pöttgen, Christoph; Stuschke, Martin; Farr, Jonathan

    2012-05-10

    Proton radiotherapy of the prostate basal or whole seminal vesicles using scattering delivery systems is an effective treatment of prostate cancer that has been evaluated in prospective trials. Meanwhile, the use of pencil beam scanning (PBS) can further reduce the dose in the beam entrance channels and reduce the dose to the normal tissues. However, PBS dose distributions can be affected by intra- and interfractional motion. In this treatment planning study, the effects of intra- and interfractional organ motion on PBS dose distributions are investigated using repeated CT scans at close and distant time intervals. The minimum dose (Dmin) and the dose to 2% and 98% of the volumes (D2% and D98%), as well as EUD in the clinical target volumes (CTV), is used as measure of robustness. In all patients, D98% was larger than 96% and D2% was less than 106% of the prescribed dose. The combined information from Dmin, D98% and EUD led to the conclusion that there are no relevant cold spots observed in any of the verification plans. Moreover, it was found that results of single field optimization are more robust than results from multiple field optimizations.

  4. Collimator angle influence on dose distribution optimization for vertebral metastases using volumetric modulated arc therapy

    SciTech Connect

    Mancosu, Pietro; Cozzi, Luca; Fogliata, Antonella; Lattuada, Paola; Reggiori, Giacomo; Cantone, Marie Claire; Navarria, Pierina; Scorsetti, Marta

    2010-08-15

    Purpose: The cylindrical symmetry of vertebrae favors the use of volumetric modulated arc therapy in generating a dose ''hole'' on the center of the vertebrae limiting the dose to the spinal cord. The authors have evaluated if collimator angle is a significant parameter for dose distribution optimization in vertebral metastases. Methods: Three patients with one-three vertebrae involved were considered. Twenty-one differently optimized plans (nine single-arc and 12 double-arc plans) were performed, testing various collimator angle positions. Clinical target volume was defined as the whole vertebrae, excluding the spinal cord canal. The planning target volume (PTV) was defined as CTV+5 mm. Dose prescription was 5x4 Gy{sup 2} with normalization to PTV mean dose. The dose at 1 cm{sup 3} of spinal cord was limited to 11.5Gy. Results: The best plans in terms of target coverage and spinal cord sparing were achieved by two arcs and Arc1-80 deg. and Arc2-280 deg. collimator angles for all the cases considered (i.e., leaf travel parallel to the spinal cord primary orientation). If one arc is used, only 80 deg. reached the objectives. Conclusions: This study demonstrated the role of collimation rotation for the vertebrae metastasis irradiation, with the leaf travel parallel to the spinal cord primary orientation to be better than other solutions. Thus, optimal choice of collimator angle increases the optimization freedom to shape a desired dose distribution.

  5. Treatment planning and delivery of shell dose distribution for precision irradiation

    NASA Astrophysics Data System (ADS)

    Matinfar, Mohammad; Iyer, Santosh; Ford, Eric; Wong, John; Kazanzides, Peter

    2010-02-01

    The motivation for shell dose irradiation is to deliver a high therapeutic dose to the surrounding supplying blood-vessels of a lesion. Our approach's main utility is in enabling laboratory experiments to test the much disputed hypothesis about tumor vascular damage. That is, at high doses, tumor control is driven by damage to the tumor vascular supply and not the damage to the tumor cells themselves. There is new evidence that bone marrow derived cells can reconstitute tumor blood vessels in mice after irradiation. Shell dosimetry is also of interest to study the effect of radiation on neurogenic stem cells that reside in small niche surface of the mouse ventricles, a generalized form of shell. The type of surface that we are considering as a shell is a sphere which is created by intersection of cylinders. The results are then extended to create the contours of different organ shapes. Specifically, we present a routine to identify the 3-D structure of a mouse brain, project it into 2-D contours and convert the contours into trajectories that can be executed by our platform. We use the Small Animal Radiation Research Platform (SARRP) to demonstrate the dose delivery procedure. The SARRP is a portable system for precision irradiation with beam sizes down to 0.5 mm and optimally planned radiation with on-board cone-beam CT guidance.

  6. 2D semiconductor optoelectronics

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  7. Mapping of dose distribution from IMRT onto MRI-guided high dose rate brachytherapy using deformable image registration for cervical cancer treatments: preliminary study with commercially available software

    PubMed Central

    Huq, M. Saiful; Houser, Chris; Beriwal, Sushil; Michalski, Dariusz

    2014-01-01

    Purpose For patients undergoing external beam radiation therapy (EBRT) and brachytherapy, recommendations for target doses and constraints are based on calculation of the equivalent dose in 2 Gy fractions (EQD2) from each phase. At present, the EBRT dose distribution is assumed to be uniform throughout the pelvis. We performed a preliminary study to determine whether deformable dose distribution mapping from the EBRT onto magnetic resonance (MR) images for the brachytherapy would yield differences in doses for organs at risk (OARs) and high-risk clinical target volume (HR-CTV). Material and methods Nine cervical cancer patients were treated to a total dose of 45 Gy in 25 fractions using intensity-modulated radiation therapy (IMRT), followed by MRI-based 3D high dose rate (HDR) brachytherapy. Retrospectively, the IMRT planning CT images were fused with the MR image for each fraction of brachytherapy using deformable image registration. The deformed IMRT dose onto MR images were converted to EQD2 and compared to the uniform dose assumption. Results For all patients, the EQD2 from the EBRT phase was significantly higher with deformable registration than with the conventional uniform dose distribution assumption. The mean EQD2 ± SD for HR-CTV D90 was 45.7 ± 0.7 Gy vs. 44.3 Gy for deformable vs. uniform dose distribution, respectively (p < 0.001). The dose to 2 cc of the bladder, rectum, and sigmoid was 46.4 ± 1.2 Gy, 46.2 ± 1.0 Gy, and 48.0 ± 2.5 Gy, respectively with deformable dose distribution, and was significantly higher than with uniform dose distribution (43.2 Gy for all OAR, p < 0.001). Conclusions This study reveals that deformed EBRT dose distribution to HR-CTV and OARs in MR images for brachytherapy is technically feasible, and achieves differences compared to a uniform dose distribution. Therefore, the assumption that EBRT contributes the same dose value may need to be carefully investigated further based on deformable image registration. PMID:25097559

  8. A graphical user interface for calculation of 3D dose distribution using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Chow, J. C. L.; Leung, M. K. K.

    2008-02-01

    A software graphical user interface (GUI) for calculation of 3D dose distribution using Monte Carlo (MC) simulation is developed using MATLAB. This GUI (DOSCTP) provides a user-friendly platform for DICOM CT-based dose calculation using EGSnrcMP-based DOSXYZnrc code. It offers numerous features not found in DOSXYZnrc, such as the ability to use multiple beams from different phase-space files, and has built-in dose analysis and visualization tools. DOSCTP is written completely in MATLAB, with integrated access to DOSXYZnrc and CTCREATE. The program function may be divided into four subgroups, namely, beam placement, MC simulation with DOSXYZnrc, dose visualization, and export. Each is controlled by separate routines. The verification of DOSCTP was carried out by comparing plans with different beam arrangements (multi-beam/photon arc) on an inhomogeneous phantom as well as patient CT between the GUI and Pinnacle3. DOSCTP was developed and verified with the following features: (1) a built-in voxel editor to modify CT-based DOSXYZnrc phantoms for research purposes; (2) multi-beam placement is possible, which cannot be achieved using the current DOSXYZnrc code; (3) the treatment plan, including the dose distributions, contours and image set can be exported to a commercial treatment planning system such as Pinnacle3 or to CERR using RTOG format for plan evaluation and comparison; (4) a built-in RTOG-compatible dose reviewer for dose visualization and analysis such as finding the volume of hot/cold spots in the 3D dose distributions based on a user threshold. DOSCTP greatly simplifies the use of DOSXYZnrc and CTCREATE, and offers numerous features that not found in the original user-code. Moreover, since phase-space beams can be defined and generated by the user, it is a particularly useful tool to carry out plans using specifically designed irradiators/accelerators that cannot be found in the Linac library of commercial treatment planning systems.

  9. Poster — Thur Eve — 33: The Influence of a Modeled Treatment Couch on Dose Distributions During IMRT and RapidArc Treatment Delivery

    SciTech Connect

    Aldosary, Ghada; Nobah, Ahmad; Al-Zorkani, Faisal; Moftah, Belal; Devic, Slobodan

    2014-08-15

    Treatment couches have been known to perturb dose delivery in patients. This effect is most pronounced in techniques such as IMRT and RapidArc. Although modern treatment planning systems (TPS) include data for a “default” treatment couch, actual couches are not manufactured identically. Thus, variations in their Hounsfield Unit (HU) values may exist. This study demonstrates a practical and simple method of acquiring reliable HU data for any treatment couch. We also investigate the effects of both the default and modeled treatment couches on absorbed dose. Experimental verifications show that by neglecting to incorporate the treatment couch in the TPS, dose differences of up to 9.5% and 7.3% were present for 4 MV and 10 MV photon beams, respectively. Furthermore, a clinical study based on a cohort of 20 RapidArc and IMRT (brain, pelvis and abdominal) cases is performed. 2D dose distributions show that without the couch in the planning phase, differences ≤ 4.6% and 5.9% for RapidArc and IMRT cases are present for the same cases that the default couch was added to. Additionally, in comparison to the default couch, employing the modeled couch in the calculation process influences dose distributions by ≤ 2.7% and 8% for RapidArc and IMRT cases, respectively. This result was found to be site specific; where an accurate couch proves to be preferable for IMRT brain plans. As such, adding the couch during dose calculation decreases dose calculation errors, and a precisely modeled treatment couch offers higher dose delivery accuracy for brain treatment using IMRT.

  10. Monte Carlo calculation of dose distributions in oligometastatic patients planned for spine stereotactic ablative radiotherapy.

    PubMed

    Moiseenko, V; Liu, M; Loewen, S; Kosztyla, R; Vollans, E; Lucido, J; Fong, M; Vellani, R; Popescu, I A

    2013-10-21

    Dosimetric consequences of plans optimized using the analytical anisotropic algorithm (AAA) implemented in the Varian Eclipse treatment planning system for spine stereotactic body radiotherapy were evaluated by re-calculating with BEAMnrc/DOSXYZnrc Monte Carlo. Six patients with spinal vertebral metastases were planned using volumetric modulated arc therapy. The planning goal was to cover at least 80% of the planning target volume with a prescribed dose of 35 Gy in five fractions. Tissue heterogeneity-corrected AAA dose distributions for the planning target volume and spinal canal planning organ-at-risk volume were compared against those obtained from Monte Carlo. The results showed that the AAA overestimated planning target volume coverage with the prescribed dose by up to 13.5% (mean 8.3% +/- 3.2%) when compared to Monte Carlo simulations. Maximum dose to spinal canal planning organ-at-risk volume calculated with Monte Carlo was consistently smaller than calculated with the treatment planning system and remained under spinal cord dose tolerance. Differences in dose distribution appear to be related to the dosimetric effects of accounting for body composition in Monte Carlo simulations. In contrast, the treatment planning system assumes that all tissues are water-equivalent in their composition and only differ in their electron density.

  11. 3D dose and TCP distribution for radionuclide therapy in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Valente, M.; Malano, F.; Pérez, P.

    2010-08-01

    A common feature to any radiant therapy is that lesion and health tissue dosimetry provides relevant information for treatment optimization along with dose-efficacy and dose-complication correlation studies. Nowadays, different radionuclide therapies are commonly available, assessing both systemic and loco-regional approach and using different alfa-, beta-and gamma-emitting isotopes and binding molecules. It is well established, that specific dosimetric approaches become necessary according to each therapy modality. Sometimes, observed activity distribution can be satisfactory represented by simple geometrical models. However, Monte Carlo techniques are capable of better approaches, therefore becoming sometimes the only way to get dosimetric data since the patient-specific situation can not be adequately represented by conventional dosimetry techniques. Therefore, due to strong limitations of traditional and standard methods, this work concentrates on the development of a dedicated and novel calculation system in order to assess the dose distribution within the irradiated patient. However, physical dose may not be enough information in order to establish real deterministic biological/metabolic effects; therefore complementary radiobiological models have been suitably introduced with the aim of performing realistic 3D dose as well as corresponding Tumor Control Probability distribution calculation.

  12. A Monte Carlo study on dose distribution evaluation of Flexisource 192Ir brachytherapy source

    PubMed Central

    Alizadeh, Majid; Ghorbani, Mahdi; Haghparast, Abbas; Zare, Naser; Ahmadi Moghaddas, Toktam

    2015-01-01

    Aim The aim of this study is to evaluate the dose distribution of the Flexisource 192Ir source. Background Dosimetric evaluation of brachytherapy sources is recommended by task group number 43 (TG. 43) of American Association of Physicists in Medicine (AAPM). Materials and methods MCNPX code was used to simulate Flexisource 192Ir source. Dose rate constant and radial dose function were obtained for water and soft tissue phantoms and compared with previous data on this source. Furthermore, dose rate along the transverse axis was obtained by simulation of the Flexisource and a point source and the obtained data were compared with those from Flexiplan treatment planning system (TPS). Results The values of dose rate constant obtained for water and soft tissue phantoms were equal to 1.108 and 1.106, respectively. The values of the radial dose function are listed in the form of tabulated data. The values of dose rate (cGy/s) obtained are shown in the form of tabulated data and figures. The maximum difference between TPS and Monte Carlo (MC) dose rate values was 11% in a water phantom at 6.0 cm from the source. Conclusion Based on dosimetric parameter comparisons with values previously published, the accuracy of our simulation of Flexisource 192Ir was verified. The results of dose rate constant and radial dose function in water and soft tissue phantoms were the same for Flexisource and point sources. For Flexisource 192Ir source, the results of TPS calculations in a water phantom were in agreement with the simulations within the calculation uncertainties. Furthermore, the results from the TPS calculation for Flexisource and MC calculation for a point source were practically equal within the calculation uncertainties. PMID:25949224

  13. Superficial dose distribution in breast for tangential radiation treatment of breast cancer

    NASA Astrophysics Data System (ADS)

    Chakarova, Roumiana; Gustafsson, Magnus; Baeck, Anna; Drugge, Ninni; Palm, Asa; Lindberg, Andreas; Berglund, Mattias

    2011-03-01

    The superficial (0-2 cm) dose distribution in a cylindrical phantom is examined theoretically and experimentally when irradiated by tangential photon beams. The lateral superficial part of the phantom is shown to receive full dose beyond 2 mm whereas the build-up region is up to 7 mm where the beams enter. Eclipse AAA calculations agree well with the experimental and Monte Carlo data while Eclipse PBC underestimates the entrance dose the first 3-4 mm and fails to give a correct lateral dose close to the surface up to 10 mm depth. The performance of the Eclipse algorithms is evaluated in a number of clinical cases with Monte Carlo results. Examples are given to illustrate how differences in geometrical presentation of the body structure in the treatment planning system and the Monte Carlo simulation as well as the patient voxelization may affect the evaluation results.

  14. A method for depth-dose distribution measurements in tissue irradiated by a proton beam

    SciTech Connect

    Gambarini, G.; Birattari, C.; Bartolo, D. de

    1994-12-31

    The use of protons and heavy ions for the treatment of malignant and non-malignant disease has aroused a growing interest in the last decade. The notable advantage of heavy charged particles over photons in external beam radiotherapy lies in the possibility of irradiating a small localized region within the body, keeping a low value for the entrance dose. Owing to this high disuniformity of energy deposition, an essential requirement for treatment planning is a precise evaluation of the spatial distribution of absorbed dose. The proposed method for depth-dose distribution measurements utilizes a chemical dosimeter (ferrous sulphate solution plus sulfuric acid and eventually xylenol orange) incorporated in a gelatine, whose role is the maintenance of spatial information. Ionizing radiation causes a variation in some parameters of the system such as the proton relaxation rates in the solution (measurable by NMR analysis) or the optical absorption of the gel in the visible spectrum (measurable by spectrophotometry).

  15. HDR Brachytherapy Dose Distribution is Influenced by the Metal Material of the Applicator.

    PubMed

    Wu, Chin-Hui; Liao, Yi-Jen; Shiau, An-Cheng; Lin, Hsin-Yu; Hsueh Liu, Yen-Wan; Hsu, Shih-Ming

    2015-12-11

    Applicators containing metal have been widely used in recent years when applying brachytherapy to patients with cervical cancer. However, the high dose rate (HDR) treatment-planning system (TPS) that is currently used in brachytherapy still assumes that the treatment environment constitutes a homogeneous water medium and does not include a dose correction for the metal material of the applicator. The primary purpose of this study was to evaluate the HDR (192)Ir dose distribution in cervical cancer patients when performing brachytherapy using a metal-containing applicator. Thermoluminescent dosimeter (TLD) measurements and Monte Carlo N-Particle eXtended (MCNPX) code were used to explore the doses to the rectum and bladder when using a Henschke applicator containing metal during brachytherapy. When the applicator was assumed to be present, the absolute dose difference between the TLD measurement and MCNPX simulation values was within approximately 5%. A comparison of the MCNPX simulation and TPS calculation values revealed that the TPS overestimated the International Commission of Radiation Units and Measurement (ICRU) rectum and bladder reference doses by 57.78% and 49.59%, respectively. We therefore suggest that the TPS should be modified to account for the shielding effects of the applicator to ensure the accuracy of the delivered doses.

  16. HDR Brachytherapy Dose Distribution is Influenced by the Metal Material of the Applicator

    PubMed Central

    Wu, Chin-Hui; Liao, Yi-Jen; Shiau, An-Cheng; Lin, Hsin-Yu; Hsueh Liu, Yen-Wan; Hsu, Shih-Ming

    2015-01-01

    Applicators containing metal have been widely used in recent years when applying brachytherapy to patients with cervical cancer. However, the high dose rate (HDR) treatment-planning system (TPS) that is currently used in brachytherapy still assumes that the treatment environment constitutes a homogeneous water medium and does not include a dose correction for the metal material of the applicator. The primary purpose of this study was to evaluate the HDR 192Ir dose distribution in cervical cancer patients when performing brachytherapy using a metal-containing applicator. Thermoluminescent dosimeter (TLD) measurements and Monte Carlo N-Particle eXtended (MCNPX) code were used to explore the doses to the rectum and bladder when using a Henschke applicator containing metal during brachytherapy. When the applicator was assumed to be present, the absolute dose difference between the TLD measurement and MCNPX simulation values was within approximately 5%. A comparison of the MCNPX simulation and TPS calculation values revealed that the TPS overestimated the International Commission of Radiation Units and Measurement (ICRU) rectum and bladder reference doses by 57.78% and 49.59%, respectively. We therefore suggest that the TPS should be modified to account for the shielding effects of the applicator to ensure the accuracy of the delivered doses. PMID:26658746

  17. Dosimetric verification of stereotactic radiosurgery/stereotactic radiotherapy dose distributions using Gafchromic EBT3

    SciTech Connect

    Cusumano, Davide; Fumagalli, Maria L.; Marchetti, Marcello; Fariselli, Laura; De Martin, Elena

    2015-10-01

    Aim of this study is to examine the feasibility of using the new Gafchromic EBT3 film in a high-dose stereotactic radiosurgery and radiotherapy quality assurance procedure. Owing to the reduced dimensions of the involved lesions, the feasibility of scanning plan verification films on the scanner plate area with the best uniformity rather than using a correction mask was evaluated. For this purpose, signal values dispersion and reproducibility of film scans were investigated. Uniformity was then quantified in the selected area and was found to be within 1.5% for doses up to 8 Gy. A high-dose threshold level for analyses using this procedure was established evaluating the sensitivity of the irradiated films. Sensitivity was found to be of the order of centiGray for doses up to 6.2 Gy and decreasing for higher doses. The obtained results were used to implement a procedure comparing dose distributions delivered with a CyberKnife system to planned ones. The procedure was validated through single beam irradiation on a Gafchromic film. The agreement between dose distributions was then evaluated for 13 patients (brain lesions, 5 Gy/die prescription isodose ~80%) using gamma analysis. Results obtained using Gamma test criteria of 5%/1 mm show a pass rate of 94.3%. Gamma frequency parameters calculation for EBT3 films showed to strongly depend on subtraction of unexposed film pixel values from irradiated ones. In the framework of the described dosimetric procedure, EBT3 films proved to be effective in the verification of high doses delivered to lesions with complex shapes and adjacent to organs at risk.

  18. Dosimetric and Clinical Analysis of Spatial Distribution of the Radiation Dose in Gamma Knife Radiosurgery for Vestibular Schwannoma

    SciTech Connect

    Massager, Nicolas; Lonneville, Sarah; Delbrouck, Carine; Benmebarek, Nadir; Desmedt, Francoise; Devriendt, Daniel

    2011-11-15

    Objectives: We investigated variations in the distribution of radiation dose inside (dose inhomogeneity) and outside (dose falloff) the target volume during Gamma Knife (GK) irradiation of vestibular schwannoma (VS). We analyzed the relationship between some parameters of dose distribution and the clinical and radiological outcome of patients. Methods and Materials: Data from dose plans of 203 patients treated for a vestibular schwannoma by GK C using same prescription dose (12 Gy at the 50% isodose) were collected. Four different dosimetric indexes were defined and calculated retrospectively in all plannings on the basis of dose-volume histograms: Paddick conformity index (PI), gradient index (GI), homogeneity index (HI), and unit isocenter (UI). The different measures related to distribution of the radiation dose were compared with hearing and tumor outcome of 203 patients with clinical and radiological follow-up of minimum 2 years. Results: Mean, median, SD, and ranges of the four indexes of dose distribution analyzed were calculated; large variations were found between dose plans. We found a high correlation between the target volume and PI, GI, and UI. No significant association was found between the indexes of dose distribution calculated in this study and tumor control, tumor volume shrinkage, hearing worsening, loss of functional hearing, or complete hearing loss at last follow-up. Conclusions: Parameters of distribution of the radiation dose during GK radiosurgery for VS can be highly variable between dose plans. The tumor and hearing outcome of patients treated is not significantly related to these global indexes of dose distribution inside and around target volume. In GK radiosurgery for VS, the outcome seems more to be influenced by local radiation dose delivered to specific structures or volumes than by global dose gradients.

  19. Intra-tumor distribution of PEGylated liposome upon repeated injection: No possession by prior dose.

    PubMed

    Nakamura, Hiroyuki; Abu Lila, Amr S; Nishio, Miho; Tanaka, Masao; Ando, Hidenori; Kiwada, Hiroshi; Ishida, Tatsuhiro

    2015-12-28

    Liposomes have proven to be a viable means for the delivery of chemotherapeutic agents to solid tumors. However, significant variability has been detected in their intra-tumor accumulation and distribution, resulting in compromised therapeutic outcomes. We recently examined the intra-tumor accumulation and distribution of weekly sequentially administered oxaliplatin (l-OHP)-containing PEGylated liposomes. In that study, the first and second doses of l-OHP-containing PEGylated liposomes were distributed diversely and broadly within tumor tissues, resulting in a potent anti-tumor efficacy. However, little is known about the mechanism underlying such a diverse and broad liposome distribution. Therefore, in the present study, we investigated the influence of dosage interval on the intra-tumor accumulation and distribution of "empty" PEGylated liposomes. Intra-tumor distribution of sequentially administered "empty" PEGylated liposomes was altered in a dosing interval-dependent manner. In addition, the intra-tumor distribution pattern was closely related to the chronological alteration of tumor blood flow as well as vascular permeability in the growing tumor tissue. These results suggest that the sequential administrations of PEGylated liposomes in well-spaced intervals might allow the distribution to different areas and enhance the total bulk accumulation within tumor tissue, resulting in better therapeutic efficacy of the encapsulated payload. This study may provide useful information for a better design of therapeutic regimens involving multiple administrations of nanocarrier drug delivery systems.

  20. Characterisation of mega-voltage electron pencil beam dose distributions: viability of a measurement-based approach.

    PubMed

    Barnes, M P; Ebert, M A

    2008-03-01

    The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions.

  1. Gamma Knife 3-D dose distribution near the area of tissue inhomogeneities by normoxic gel dosimetry

    SciTech Connect

    Isbakan, Fatih; Uelgen, Yekta; Bilge, Hatice; Ozen, Zeynep; Agus, Onur; Buyuksarac, Bora

    2007-05-15

    The accuracy of the Leksell GammaPlan registered , the dose planning system of the Gamma Knife Model-B, was evaluated near tissue inhomogeneities, using the gel dosimetry method. The lack of electronic equilibrium around the small-diameter gamma beams can cause dose calculation errors in the neighborhood of an air-tissue interface. An experiment was designed to investigate the effects of inhomogeneity near the paranosal sinuses cavities. The homogeneous phantom was a spherical glass balloon of 16 cm diameter, filled with MAGIC gel; i.e., the normoxic polymer gel. Two hollow PVC balls of 2 cm radius, filled with N{sub 2} gas, represented the air cavities inside the inhomogeneous phantom. For dose calibration purposes, 100 ml gel-containing vials were irradiated at predefined doses, and then scanned in a MR unit. Linearity was observed between the delivered dose and the reciprocal of the T2 relaxation time constant of the gel. Dose distributions are the results of a single shot of irradiation, obtained by collimating all 201 cobalt sources to a known target in the phantom. Both phantoms were irradiated at the same dose level at the same coordinates. Stereotactic frames and fiducial markers were attached to the phantoms prior to MR scanning. The dose distribution predicted by the Gamma Knife planning system was compared with that of the gel dosimetry. As expected, for the homogeneous phantom the isodose diameters measured by the gel dosimetry and the GammaPlan registered differed by 5% at most. However, with the inhomogeneous phantom, the dose maps in the axial, coronal and sagittal planes were spatially different. The diameters of the 50% isodose curves differed 43% in the X axis and 32% in the Y axis for the Z=90 mm axial plane; by 44% in the X axis and 24% in the Z axis for the Y=90 mm coronal plane; and by 32% in the Z axis and 42% in the Y axis for the X=92 mm sagittal plane. The lack of ability of the GammaPlan registered to predict the rapid dose fall off, due

  2. Monte Carlo calculations of the impact of a hip prosthesis on the dose distribution

    NASA Astrophysics Data System (ADS)

    Buffard, Edwige; Gschwind, Régine; Makovicka, Libor; David, Céline

    2006-09-01

    Because of the ageing of the population, an increasing number of patients with hip prostheses are undergoing pelvic irradiation. Treatment planning systems (TPS) currently available are not always able to accurately predict the dose distribution around such implants. In fact, only Monte Carlo simulation has the ability to precisely calculate the impact of a hip prosthesis during radiotherapeutic treatment. Monte Carlo phantoms were developed to evaluate the dose perturbations during pelvic irradiation. A first model, constructed with the DOSXYZnrc usercode, was elaborated to determine the dose increase at the tissue-metal interface as well as the impact of the material coating the prosthesis. Next, CT-based phantoms were prepared, using the usercode CTCreate, to estimate the influence of the geometry and the composition of such implants on the beam attenuation. Thanks to a program that we developed, the study was carried out with CT-based phantoms containing a hip prosthesis without metal artefacts. Therefore, anthropomorphic phantoms allowed better definition of both patient anatomy and the hip prosthesis in order to better reproduce the clinical conditions of pelvic irradiation. The Monte Carlo results revealed the impact of certain coatings such as PMMA on dose enhancement at the tissue-metal interface. Monte Carlo calculations in CT-based phantoms highlighted the marked influence of the implant's composition, its geometry as well as its position within the beam on dose distribution.

  3. Impact of Internal Metallic Ports in Temporary Tissue Expanders on Postmastectomy Radiation Dose Distribution

    SciTech Connect

    Chen, Susie A.; Ogunleye, Tomiwa; Dhabbaan, Anees; Huang, Eugene H.; Losken, Albert; Gabram, Sheryl; Davis, Lawrence; Torres, Mylin A.

    2013-03-01

    Purpose: Temporary tissue expanders (TTE) with an internal magnetic metal port (IMP) have been increasingly used for breast reconstruction in post-mastectomy patients who receive radiation therapy (XRT). We evaluated XRT plans of patients with IMP to determine its effect on XRT dose distribution. Methods and Materials: Original treatment plans with CT simulation scans of 24 consecutive patients who received XRT (ORI), planned without heterogeneity corrections, to a reconstructed breast containing an IMP were used. Two additional treatment plans were then generated: one treatment plan with the IMP assigned the electron density of the rare earth magnet, nickel plated neodymium-iron-boron (HET), and a second treatment plan with the IMP assigned a CT value of 1 to simulate a homogeneous breast without an IMP (BRS). All plans were prescribed 50 Gy to the reconstructed breast (CTV). Results: CTV coverage by 50 Gy was significantly lower in the HET (mean 87.7% CTV) than in either the ORI (mean 99.7% CTV, P<.001) or BRS plans (mean 95.0% CTV, P<.001). The effect of the port was more pronounced on CT slices containing the IMP with prescription dose coverage of the CTV being less in the HET than in either ORI (mean difference 33.6%, P<.01) or BRS plans (mean difference 30.1%, P<.001). HET had a less homogeneous and conformal dose distribution than BRS or ORI. Conclusion: IMPs increase dose heterogeneity and reduce dose to the breast CTV through attenuation of the beam. For optimal XRT treatment, heterogeneity corrections should be used in XRT planning for patients with TTE with IMP, as the IMP impacts dose distribution.

  4. Radial dose distributions from protons of therapeutic energies calculated with Geant4-DNA.

    PubMed

    Wang, He; Vassiliev, Oleg N

    2014-07-21

    Models based on the amorphous track structure approximation have been successful in predicting the biological effects of heavy charged particles. Development of such models remains an active area of research that includes applications to hadrontherapy. In such models, the radial distribution of the dose deposited by delta electrons and directly by the particle is the main characteristic of track structure. We calculated these distributions with Geant4-DNA Monte Carlo code for protons in the energy range from 10 to 100 MeV. These results were approximated by a simple formula that combines the well-known inverse square distance dependence with two factors that eliminate the divergence of the radial dose integral at both small and large distances. A clear physical interpretation is given to the asymptotic behaviour of the radial dose distribution resulting from these two factors. The proposed formula agrees with the Monte Carlo data within 10% for radial distances of up to 10 μm, which corresponds to a dose range covering over eight orders of magnitude. Differences between our results and those of previously published analytical models are discussed.

  5. Radial dose distributions from protons of therapeutic energies calculated with Geant4-DNA

    NASA Astrophysics Data System (ADS)

    Wang, He; Vassiliev, Oleg N.

    2014-07-01

    Models based on the amorphous track structure approximation have been successful in predicting the biological effects of heavy charged particles. Development of such models remains an active area of research that includes applications to hadrontherapy. In such models, the radial distribution of the dose deposited by delta electrons and directly by the particle is the main characteristic of track structure. We calculated these distributions with Geant4-DNA Monte Carlo code for protons in the energy range from 10 to 100 MeV. These results were approximated by a simple formula that combines the well-known inverse square distance dependence with two factors that eliminate the divergence of the radial dose integral at both small and large distances. A clear physical interpretation is given to the asymptotic behaviour of the radial dose distribution resulting from these two factors. The proposed formula agrees with the Monte Carlo data within 10% for radial distances of up to 10 μm, which corresponds to a dose range covering over eight orders of magnitude. Differences between our results and those of previously published analytical models are discussed.

  6. Pretreatment verification of IMRT absolute dose distributions using a commercial a-Si EPID

    SciTech Connect

    Talamonti, C.; Casati, M.; Bucciolini, M.

    2006-11-15

    A commercial amorphous silicon electronic portal imaging device (EPID) has been studied to investigate its potential in the field of pretreatment verifications of step and shoot, intensity modulated radiation therapy (IMRT), 6 MV photon beams. The EPID was calibrated to measure absolute exit dose in a water-equivalent phantom at patient level, following an experimental approach, which does not require sophisticated calculation algorithms. The procedure presented was specifically intended to replace the time-consuming in-phantom film dosimetry. The dosimetric response was characterized on the central axis in terms of stability, linearity, and pulse repetition frequency dependence. The a-Si EPID demonstrated a good linearity with dose (within 2% from 1 monitor unit), which represent a prerequisite for the application in IMRT. A series of measurements, in which phantom thickness, air gap between the phantom and the EPID, field size and position of measurement of dose in the phantom (entrance or exit) varied, was performed to find the optimal calibration conditions, for which the field size dependence is minimized. In these conditions (20 cm phantom thickness, 56 cm air gap, exit dose measured at the isocenter), the introduction of a filter for the low-energy scattered radiation allowed us to define a universal calibration factor, independent of field size. The off-axis extension of the dose calibration was performed by applying a radial correction for the beam profile, distorted due to the standard flood field calibration of the device. For the acquisition of IMRT fields, it was necessary to employ home-made software and a specific procedure. This method was applied for the measurement of the dose distributions for 15 clinical IMRT fields. The agreement between the dose distributions, quantified by the gamma index, was found, on average, in 97.6% and 98.3% of the analyzed points for EPID versus TPS and for EPID versus FILM, respectively, thus suggesting a great

  7. Accurate Characterization of Rain Drop Size Distribution Using Meteorological Particle Spectrometer and 2D Video Disdrometer for Propagation and Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Thurai, Merhala; Bringi, Viswanathan; Kennedy, Patrick; Notaros, Branislav; Gatlin, Patrick

    2017-01-01

    Accurate measurements of rain drop size distributions (DSD), with particular emphasis on small and tiny drops, are presented. Measurements were conducted in two very different climate regions, namely Northern Colorado and Northern Alabama. Both datasets reveal a combination of (i) a drizzle mode for drop diameters less than 0.7 mm and (ii) a precipitation mode for larger diameters. Scattering calculations using the DSDs are performed at S and X bands and compared with radar observations for the first location. Our accurate DSDs will improve radar-based rain rate estimates as well as propagation predictions.

  8. Benchmark Experiment of Dose Rate Distributions Around the Gamma Knife Medical Apparatus

    NASA Astrophysics Data System (ADS)

    Oishi, K.; Kosako, K.; Kobayashi, Y.; Sonoki, I.

    2014-06-01

    Dose rate measurements around a gamma knife apparatus were performed by using an ionization chamber. Analyses have been performed by using the Monte Carlo code MCNP-5. The nuclear library used for the dose rate distribution of 60Co was MCPLIB04. The calculation model was prepared with a high degree of fidelity, such as the position of each Cobalt source and shielding materials. Comparisons between measured results and calculated ones were performed, and a very good agreement was observed. It is concluded that the Monte Carlo calculation method with its related nuclear data library is very effective for such a complicated radiation oncology apparatus.

  9. Benchmark Experiment of Dose Rate Distributions Around the Gamma Knife Medical Apparatus

    SciTech Connect

    Oishi, K.; Kosako, K.; Kobayashi, Y.; Sonoki, I.

    2014-06-15

    Dose rate measurements around a gamma knife apparatus were performed by using an ionization chamber. Analyses have been performed by using the Monte Carlo code MCNP-5. The nuclear library used for the dose rate distribution of {sup 60}Co was MCPLIB04. The calculation model was prepared with a high degree of fidelity, such as the position of each Cobalt source and shielding materials. Comparisons between measured results and calculated ones were performed, and a very good agreement was observed. It is concluded that the Monte Carlo calculation method with its related nuclear data library is very effective for such a complicated radiation oncology apparatus.

  10. MCNP simulation of radiation doses distributions in a water phantoms simulating interventional radiology patients

    NASA Astrophysics Data System (ADS)

    He, Wenjun; Mah, Eugene; Huda, Walter; Selby, Bayne; Yao, Hai

    2011-03-01

    Purpose: To investigate the dose distributions in water cylinders simulating patients undergoing Interventional Radiological examinations. Method: The irradiation geometry consisted of an x-ray source, dose-area-product chamber, and image intensifier as currently used in Interventional Radiology. Water cylinders of diameters ranging between 17 and 30 cm were used to simulate patients weighing between 20 and 90 kg. X-ray spectra data with peak x-ray tube voltages ranging from 60 to 120 kV were generated using XCOMP3R. Radiation dose distributions inside the water cylinder (Dw) were obtained using MCNP5. The depth dose distribution along the x-ray beam central axis was normalized to free-in-air air kerma (AK) that is incident on the phantom. Scattered radiation within the water cylinders but outside the directly irradiated region was normalized to the dose at the edge of the radiation field. The total absorbed energy to the directly irradiated volume (Ep) and indirectly irradiated volume (Es) were also determined and investigated as a function of x-ray tube voltage and phantom size. Results: At 80 kV, the average Dw/AK near the x-ray entrance point was 1.3. The ratio of Dw near the entrance point to Dw near the exit point increased from ~ 26 for the 17 cm water cylinder to ~ 290 for the 30 cm water cylinder. At 80 kV, the relative dose for a 17 cm water cylinder fell to 0.1% at 49 cm away from the central ray of the x-ray beam. For a 30 cm water cylinder, the relative dose fell to 0.1% at 53 cm away from the central ray of the x-ray beam. At a fixed x-ray tube voltage of 80 kV, increasing the water cylinder diameter from 17 to 30 cm increased the Es/(Ep+Es) ratio by about 50%. At a fixed water cylinder diameter of 24 cm, increasing the tube voltage from 60 kV to 120 kV increased the Es/(Ep+Es) ratio by about 12%. The absorbed energy from scattered radiation was between 20-30% of the total energy absorbed by the water cylinder, and was affected more by patient size

  11. Infrared image processing devoted to thermal non-contact characterization-Applications to Non-Destructive Evaluation, Microfluidics and 2D source term distribution for multispectral tomography

    NASA Astrophysics Data System (ADS)

    Batsale, Jean-Christophe; Pradere, Christophe

    2015-11-01

    The cost of IR cameras is more and more decreasing. Beyond the preliminary calibration step and the global instrumentation, the infrared image processing is then one of the key step for achieving in very broad domains. Generally the IR images are coming from the transient temperature field related to the emission of a black surface in response to an external or internal heating (active IR thermography). The first applications were devoted to the so called thermal Non-Destructive Evaluation methods by considering a thin sample and 1D transient heat diffusion through the sample (transverse diffusion). With simplified assumptions related to the transverse diffusion, the in-plane diffusion and transport phenomena can be also considered. A general equation can be applied in order to balance the heat transfer at the pixel scale or between groups of pixels in order to estimate several fields of thermophysical properties (heterogeneous field of in-plane diffusivity, flow distributions, source terms). There is a lot of possible strategies to process the space and time distributed big amount of data (previous integral transformation of the images, compression, elimination of the non useful areas...), generally based on the necessity to analyse the derivative versus space and time of the temperature field. Several illustrative examples related to the Non-Destructive Evaluation of heterogeneous solids, the thermal characterization of chemical reactions in microfluidic channels and the design of systems for multispectral tomography, will be presented.

  12. Dosimetric effects of Onyx embolization on Gamma Knife arteriovenous malformation dose distributions.

    PubMed

    Schlesinger, David J; Nordström, Håkan; Lundin, Anders; Xu, Zhiyuan; Sheehan, Jason P

    2016-12-01

    OBJECTIVE Patients with arteriovenous malformations (AVMs) treated with Gamma Knife radiosurgery (GKRS) subsequent to embolization suffer from elevated local failure rates and differences in adverse radiation effects. Onyx is a common embolic material for AVMs. Onyx is formulated with tantalum, a high atomic number (Z = 73) element that has been investigated as a source of dosimetric uncertainty contributing to the less favorable clinical results. However, prior studies have not modeled the complicated anatomical and beam geometries characteristic of GKRS. This study investigated the magnitude of dose perturbation that can occur due to Onyx embolization using clinically realistic anatomical and Gamma Knife beam models. METHODS Leksell GammaPlan (LGP) was used to segment the AVM nidus and areas of Onyx from postcontrast stereotactic MRI for 7 patients treated with GKRS postembolization. The resulting contours, skull surface, and clinically selected dose distributions were exported from LGP in DICOM-RT (Digital Imaging and Communications in Medicine-radiotherapy) format. Isocenter locations and dwell times were recorded from the LGP database. Contours were converted into 3D mesh representations using commercial and in-house mesh-editing software. The resulting data were imported into a Monte Carlo (MC) dose calculation engine (Pegasos, Elekta Instruments AB) with a beam geometry for the Gamma Knife Perfexion. The MC-predicted dose distributions were calculated with Onyx assigned manufacturer-reported physical constants (MC-Onyx), and then compared with corresponding distributions in which Onyx was reassigned constants for water (MC-water). Differences in dose metrics were determined, including minimum, maximum, and mean dose to the AVM nidus; selectivity index; and target coverage. Combined differences in dose magnitude and distance to agreement were calculated as 3D Gamma analysis passing rates using tolerance criteria of 0.5%/0.5 mm, 1.0%/1.0 mm, and 3.0%/3.0 mm

  13. SPECT Imaging of 2-D and 3-D Distributed Sources with Near-Field Coded Aperture Collimation: Computer Simulation and Real Data Validation.

    PubMed

    Mu, Zhiping; Dobrucki, Lawrence W; Liu, Yi-Hwa

    The imaging of distributed sources with near-field coded aperture (CA) remains extremely challenging and is broadly considered unsuitable for single-photon emission computerized tomography (SPECT). This study proposes a novel CA SPECT reconstruction approach and evaluates the feasibilities of imaging and reconstructing distributed hot sources and cold lesions using near-field CA collimation and iterative image reconstruction. Computer simulations were designed to compare CA and pinhole collimations in two-dimensional radionuclide imaging. Digital phantoms were created and CA images of the phantoms were reconstructed using maximum likelihood expectation maximization (MLEM). Errors and the contrast-to-noise ratio (CNR) were calculated and image resolution was evaluated. An ex vivo rat heart with myocardial infarction was imaged using a micro-SPECT system equipped with a custom-made CA module and a commercial 5-pinhole collimator. Rat CA images were reconstructed via the three-dimensional (3-D) MLEM algorithm developed for CA SPECT with and without correction for a large projection angle, and 5-pinhole images were reconstructed using the commercial software provided by the SPECT system. Phantom images of CA were markedly improved in terms of image quality, quantitative root-mean-squared error, and CNR, as compared to pinhole images. CA and pinhole images yielded similar image resolution, while CA collimation resulted in fewer noise artifacts. CA and pinhole images of the rat heart were well reconstructed and the myocardial perfusion defects could be clearly discerned from 3-D CA and 5-pinhole SPECT images, whereas 5-pinhole SPECT images suffered from severe noise artifacts. Image contrast of CA SPECT was further improved after correction for the large projection angle used in the rat heart imaging. The computer simulations and small-animal imaging study presented herein indicate that the proposed 3-D CA SPECT imaging and reconstruction approaches worked reasonably

  14. Photon beam dose distributions for patients with implanted temporary tissue expanders

    NASA Astrophysics Data System (ADS)

    Asena, A.; Kairn, T.; Crowe, S. B.; Trapp, J. V.

    2015-01-01

    This study examines the effects of temporary tissue expanders (TTEs) on the dose distributions of photon beams in breast cancer radiotherapy treatments. EBT2 radiochromic film and ion chamber measurements were taken to quantify the attenuation and backscatter effects of the inhomogeneity. Results illustrate that the internal magnetic port present in a tissue expander causes a dose reduction of approximately 25% in photon tangent fields immediately downstream of the implant. It was also shown that the silicone elastomer shell of the tissue expander reduced the dose to the target volume by as much as 8%. This work demonstrates the importance for an accurately modelled high-density implant in the treatment planning system for post-mastectomy breast cancer patients.

  15. MCNP simulation of the dose distribution in liver cancer treatment for BNC therapy

    NASA Astrophysics Data System (ADS)

    Krstic, Dragana; Jovanovic, Zoran; Markovic, Vladimir; Nikezic, Dragoslav; Urosevic, Vlade

    2014-10-01

    The Boron Neutron Capture Therapy ( BNCT) is based on selective uptake of boron in tumour tissue compared to the surrounding normal tissue. Infusion of compounds with boron is followed by irradiation with neutrons. Neutron capture on 10B, which gives rise to an alpha particle and recoiled 7Li ion, enables the therapeutic dose to be delivered to tumour tissue while healthy tissue can be spared. Here, therapeutic abilities of BNCT were studied for possible treatment of liver cancer using thermal and epithermal neutron beam. For neutron transport MCNP software was used and doses in organs of interest in ORNL phantom were evaluated. Phantom organs were filled with voxels in order to obtain depth-dose distributions in them. The result suggests that BNCT using an epithermal neutron beam could be applied for liver cancer treatment.

  16. MCNP simulation of the dose distribution in liver cancer treatment for BNC therapy

    NASA Astrophysics Data System (ADS)

    Krstic, Dragana; Jovanovic, Zoran; Markovic, Vladimir; Nikezic, Dragoslav; Urosevic, Vlade

    2014-10-01

    The Boron Neutron Capture Therapy (BNCT) is based on selective uptake of boron in tumour tissue compared to the surrounding normal tissue. Infusion of compounds with boron is followed by irradiation with neutrons. Neutron capture on 10B, which gives rise to an alpha particle and recoiled 7Li ion, enables the therapeutic dose to be delivered to tumour tissue while healthy tissue can be spared. Here, therapeutic abilities of BNCT were studied for possible treatment of liver cancer using thermal and epithermal neutron beam. For neutron transport MCNP software was used and doses in organs of interest in ORNL phantom were evaluated. Phantom organs were filled with voxels in order to obtain depth-dose distributions in them. The result suggests that BNCT using an epithermal neutron beam could be applied for liver cancer treatment.

  17. Dose distributions in phantoms irradiated in thermal columns of two different nuclear reactors.

    PubMed

    Gambarini, G; Agosteo, S; Altieri, S; Bortolussi, S; Carrara, M; Gay, S; Nava, E; Petrovich, C; Rosi, G; Valente, M

    2007-01-01

    In-phantom dosimetry studies have been carried out at the thermal columns of a thermal- and a fast-nuclear reactor for investigating: (a) the spatial distribution of the gamma dose and the thermal neutron fluence and (b) the accuracy at which the boron concentration should be estimated in an explanted organ of a boron neutron capture therapy patient. The phantom was a cylinder (11 cm in diameter and 12 cm in height) of tissue-equivalent gel. Dose images were acquired with gel dosemeters across the axial section of the phantom. The thermal neutron fluence rate was measured with activation foils in a few positions of this phantom. Dose and fluence rate profiles were also calculated with Monte Carlo simulations. The trend of these profiles do not show significant differences for the thermal columns considered in this work.

  18. Uneven surface absorbed dose distribution in electron-accelerator irradiation of rubber items

    SciTech Connect

    Gorbunov, I.F.; Pashinin, V.I.; Vanyushkin, B.M.

    1988-02-01

    Electron accelerators for industrial use are equipped with scanning devices, where the scan frequency or linear velocity along the window may vary. In a flow technology, where the items are transported to the irradiation zone at a set rate, the speed of an item may be comparable with the scan speed, so there is substantial nonuniformity in the absorbed dose, which adversely affects the quality. We have examined the dose nonuniformity for long rubber items during vulcanization by means of LUE-8-5RV and ELV-2 accelerators. The absorbed dose is calculated for an elementary part along which the irradiation is uniform on the assumption that current density distribution in the unswept beam is uniform as a result of scattering in the foil.

  19. The influence of patient positioning uncertainties in proton radiotherapy on proton range and dose distributions

    SciTech Connect

    Liebl, Jakob; Paganetti, Harald; Zhu, Mingyao; Winey, Brian A.

    2014-09-15

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: Thirty-eight clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50%- and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs), and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: The authors identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 and 5.8 mm for the 90%-dose falloff position, respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. For target volumes TCP decreases by more than 10% (absolute) occurred in less than 2.2% of the considered treatment scenarios for anatomy-based patient positioning and were nonexistent for fiducial-based patient positioning. EUD changes for target volumes were up to 35% (anatomy-based positioning) and 16% (fiducial-based positioning). Conclusions: The influence of patient positioning uncertainties on proton range in therapy of small lesions

  20. SU-E-T-425: Spherical Dose Distributions for Radiosurgery Using a Standardized MLC Plan

    SciTech Connect

    Popple, R; Brezovich, I; Wu, X; Fiveash, J

    2014-06-01

    Purpose: To investigate a standardized MLC treatment plan to generate small spherical dose distributions. Methods: The static virtual cone plan comprised six table positions with clockwise and counterclockwise arcs having collimator angles 45 and 135 degrees, respectively, at each position. The central two leaves of a 2.5 mm leaf width MLC were set to a constant gap. Control points were weighted proportional to the sine of the gantry angle. Plans were created for the 10 MV flattening-filter-free beam of a TrueBeam STx (Varian Medical Systems) with gaps of 1, 1.5, 2, and 3 mm and were delivered to a phantom containing radiochromic film. Dose was calculated using the Eclipse AAA (Varian Medical Systems). A dynamic plan in which the table and gantry moved simultaneously with 1.5 mm gap was also created and delivered using the TrueBeam developer mode. Results: The full-width-half-max (FWHM) varied with leaf gap, ranging from 5.2 to 6.2 mm. Calculated FWHM was smaller than measured by 0.7 mm for the 1 mm gap and ≤ 0.4 mm for the larger gaps. The measured-to-calculated dose ratio was 0.93, 0.96, 1.01, and 0.99 for 1 mm, 1.5 mm, 2 mm, and 3 mm gaps, respectively. The dynamic results were the same as the static. The position deviations between the phantom target position and the center of the dose distribution were < 0.4 mm. Conclusion: The virtual cone can deliver spherical dose distributions suitable for radio surgery of small targets such as the trigeminal nerve. The Eclipse AAA accurately calculates the expected dose, particularly for leaf gap ≥ 1.5 mm. The measured dose distribution is slightly larger than the calculation, which is likely due to systematic leaf position error, isocenter variation due to gantry sag and table eccentricity, and inaccuracy in MLC leaf end modeling.

  1. Absorption, distribution, and elimination of graded oral doses of methylmercury in juvenile white sturgeon.

    PubMed

    Huang, Susie Shih-Yin; Strathe, Anders Bjerring; Fadel, James G; Lin, Pinpin; Liu, Tsung-Yun; Hung, Silas S O

    2012-10-15

    Mercury (Hg) is toxic and is released into the environment from a wide variety of anthropogenic sources. Methylmercury (MeHg), a product of microbial methylation, enables rapid Hg bioaccumulation and biomagnification in the biota. Methylmercury is sequestered and made available to the rest of the biota through the benthic-detrital component leading to the high risk of exposure to benthic fish species, such as white sturgeon (Acipenser transmontanus). In the present study, a combined technique of stomach intubation, dorsal aorta cannulation, and urinary catheterization was utilized to characterize the absorption, distribution, and elimination of Hg in white sturgeon over a 48h exposure. Mercury, as methylmercury chloride, at either 0, 250, 500, or 1000 μg Hg/kg body weight, was orally intubated into white sturgeon, in groups of five. The blood was repeatedly sampled and urine collected from the fish over the 48h post intubation period, and at 48h, the fish were sacrificed for Hg tissue concentration and distribution determinations. The fractional rate of absorption (K), blood Hg concentration (μg/ml), tissue concentration (μg/g dry weight) and distribution (%), and urinary Hg elimination flux (μg/kg/h) are significantly different (p<0.05) among the MeHg doses. Complete blood uptake of Hg was observed in all MeHg treated fish by 12h. The maximal observed blood Hg concentration peaks are 0.56±0.02, 0.70±0.02, and 2.19±0.07 μg/ml (mean±SEM) for the 250, 500, and 1000 μgHg/kg body weight dose groups, respectively. Changes in blood Hg profiles can be described by a monomolecular function in all of the MeHg treated fish. The Hg concentration asymptote (A) and K are dose dependent. The relationship between A and the intubation dose, however, is nonlinear. Mercury levels in certain tissues are comparable to field data and longer-term study, indicating that the lower doses used in the current study are ecologically relevant for the species. Tissue Hg concentrations

  2. Dual-energy computed tomography of the head: a phantom study assessing axial dose distribution, eye lens dose, and image noise level

    NASA Astrophysics Data System (ADS)

    Matsubara, Kosuke; Kawashima, Hiroki; Hamaguchi, Takashi; Takata, Tadanori; Kobayashi, Masanao; Ichikawa, Katsuhiro; Koshida, Kichiro

    2016-03-01

    The aim of this study was to propose a calibration method for small dosimeters to measure absorbed doses during dual- source dual-energy computed tomography (DECT) and to compare the axial dose distribution, eye lens dose, and image noise level between DE and standard, single-energy (SE) head CT angiography. Three DE (100/Sn140 kVp 80/Sn140 kVp, and 140/80 kVp) and one SE (120 kVp) acquisitions were performed using a second-generation dual-source CT device and a female head phantom, with an equivalent volumetric CT dose index. The axial absorbed dose distribution at the orbital level and the absorbed doses for the eye lens were measured using radiophotoluminescent glass dosimeters. CT attenuation numbers were obtained in the DE composite images and the SE images of the phantom at the orbital level. The doses absorbed at the orbital level and in the eye lens were lower and standard deviations for the CT attenuation numbers were slightly higher in the DE acquisitions than those in the SE acquisition. The anterior surface dose was especially higher in the SE acquisition than that in the DE acquisitions. Thus, DE head CT angiography can be performed with a radiation dose lower than that required for a standard SE head CT angiography, with a slight increase in the image noise level. The 100/Sn140 kVp acquisition revealed the most balanced axial dose distribution. In addition, our proposed method was effective for calibrating small dosimeters to measure absorbed doses in DECT.

  3. Simulation of depth-dose distributions for various ions in polyethylene medium

    NASA Astrophysics Data System (ADS)

    Kumar, Ashavani; Jalota, Summit; Gupta, Renu

    2012-06-01

    Study of depth-dose distributions for intermediate energy ion beams in tissue-like media such as polyethylene (CH2)n provides a good platform for further improvements in the fields of hadrontherapy and space radiation shielding. The depth-dose distributions for 12C ions at various energies and for light and intermediate ion beams (3He, 16O, 20Ne and 28Si) as well as for heavy ions 56Fe in polyethylene were estimated by using simulation toolkit: Geant4. Calculations were performed mainly by considering two different combinations of standard electromagnetic (EM), binary cascade (BIC), statistical multifragmentation (SMF) and Fermi breakup (FB) models. The energies of the ion beams were selected to achieve the Bragg peaks at predefined position (˜60 mm) and as per their availability. Variations of peak-to-entrance ratio (from 7.44 ± 0.05 to 8.87 ± 0.05), entrance dose (from 2.89 ± 0.01 to 203.71 ± 0.63 MeV/mm) and entrance stopping power (from 3.608 to 208.858 MeV/mm, calculated by SRIM) with atomic number (Z) were presented in a systematic manner. The better peak-to-entrance ratio and less entrance dose in the region Z = 2 to 8 (i.e. 3He to 16O) may provide the suitability of the ion beams for hadrontherapy.

  4. A matheuristic for the selection of beam directions and dose distribution in Radiotherapy Planning

    NASA Astrophysics Data System (ADS)

    Obal, T. M.; Florentino, H. O.; Gevert, V. G.; Jones, D. F.; Ouelhadj, D.; Volpi, N. M. P.; Wilhelm, V. E.

    2015-05-01

    In this paper a matheuristic using a combined Genetic Algorithm (GA) and exact method approach is proposed for selecting the position of the beams and dose distribution in Intensity Modulated Radiotherapy Planning (IMRT). GA selects a set of beams, for which the dose distribution is determined in the process of the GA's evaluation, using an optimisation model that is solved by an Interior Point method. Two instances are used to evaluate the performance of the matheuristic, comparing to the optimum solution, in terms of solution and computation time, found using the exact methodology of Branch and Bound. The results show that the matheuristic is appropriate to this problem in the case study proposed, as it is extremely faster than the exact method and also have reached the optimum solution in several experiments done.

  5. The use of Monte Carlo technique to optimize the dose distribution in total skin irradiation

    NASA Astrophysics Data System (ADS)

    Poli, M. E. R.; Pereira, S. A.; Yoriyaz, H.

    2001-06-01

    Cutaneous T-cell lymphoma (mycosis fungoides) is an indolent disease with a low percentage of cure. Total skin irradiation using an electron beam has become an efficient treatment of mycosis fungoides with curative intention, with success in almost 40% of the patients. In this work, we propose the use of a Monte Carlo technique to simulate the dose distribution in the patients during total skin irradiation treatments. Use was made of MCNP-4B, a well known and established code used to simulate transport of electrons, photons and neutrons through matter, especially in the area of reactor physics, and also finding increasing utility in medical physics. The goal of our work is to simulate different angles between each beam with a fixed treatment distance in order to obtain a uniform dose distribution in the patient.

  6. Characterizing 2-D slip distributions along plate-suture mega-thrust during earthquake cycle: a case of the Chihshang fault in eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, W.; Lee, J.; Lin, T.; Liu, C.

    2013-12-01

    The Chihshang fault forms the south-central segment of the Longitudinal Valley fault, located at the suture between the Philippine Sea plate and the Eurasian plate in eastern Taiwan. In the past century, the fault ruptured twice accompanied by two moderate to large earthquakes during the 1951 Yuli earthquake with a magnitude of 7.1 and the 2003 Chengkung earthquake with a magnitude of 6.8, respectively. Leveling surveys were conducted several times across the fault from July 2003 to October 2011. In addition, five continuous GPS stations were installed earlier than 2003 in this region. Combining the data from leveling and GPS stations, we derive a 25-km-long cross-fault profile with the co-seismic vertical displacements for the Chengkung earthquake as well as post-seismic vertical displacements one year following the earthquake. We invert these vertical displacements to attain the distributions of slip on the Chihshang fault during co-, post- and inter- seismic periods through an elastic dislocation model. Our main findings for slip on the fault are as follows: (a) the maximum co-seismic fault slip of about 70 cm was located at the depth of 11.0 km and decreased gradually downwards and upward to 10 cm at depth of 20.0 km and 10 cm at depth of 7.5 km, respectively; there showed a secondary peak of co-seismic slip at the shallow part of 40 cm located at depth of about 6.0 km and decreased upwards to zero near ground surface; (b) for the one-year-long post-seismic period there showed two peaks of fault slip with an approximately same accumulative amount of 20 cm; the lower peak appeared at depth of 10.0 km and decreased upwards to nearly zero at depth of 7.5 km and downwards with variations; the upper peak appeared at depth of 3.5 km and decreased upwards to 13 cm near ground surface; (c) for the four-year-long inter-seismic period of 2007 to 2011 the maximum fault slip rate of about 5.0 cm/yr was located at the depth of 4.5 km and decreased gradually downwards and

  7. Commercial milk distribution profiles and production locations. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Deonigi, D.E.; Anderson, D.M.; Wilfert, G.L.

    1993-12-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate radiation doses that people could have received from nuclear operations at the Hanford Site since 1944. For this period iodine-131 is the most important offsite contributor to radiation doses from Hanford operations. Consumption of milk from cows that ate vegetation contaminated by iodine-131 is the dominant radiation pathway for individuals who drank milk. Information has been developed on commercial milk cow locations and commercial milk distribution during 1945 and 1951. The year 1945 was selected because during 1945 the largest amount of iodine-131 was released from Hanford facilities in a calendar year; therefore, 1945 was the year in which an individual was likely to have received the highest dose. The year 1951 was selected to provide data for comparing the changes that occurred in commercial milk flows (i.e., sources, processing locations, and market areas) between World War II and the post-war period. To estimate the doses people could have received from this milk flow, it is necessary to estimate the amount of milk people consumed, the source of the milk, the specific feeding regime used for milk cows, and the amount of iodine-131 contamination deposited on feed.

  8. Commercial milk distribution profiles and production locations. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Deonigi, D.E.; Anderson, D.M.; Wilfert, G.L.

    1994-04-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate radiation doses that people could have received from nuclear operations at the Hanford Site since 1944. For this period iodine-131 is the most important offsite contributor to radiation doses from Hanford operations. Consumption of milk from cows that ate vegetation contaminated by iodine-131 is the dominant radiation pathway for individuals who drank milk (Napier 1992). Information has been developed on commercial milk cow locations and commercial milk distribution during 1945 and 1951. The year 1945 was selected because during 1945 the largest amount of iodine-131 was released from Hanford facilities in a calendar year (Heeb 1993); therefore, 1945 was the year in which an individual was likely to have received the highest dose. The year 1951 was selected to provide data for comparing the changes that occurred in commercial milk flows (i.e., sources, processing locations, and market areas) between World War II and the post-war period. To estimate the doses people could have received from this milk flow, it is necessary to estimate the amount of milk people consumed, the source of the milk, the specific feeding regime used for milk cows, and the amount of iodine-131 contamination deposited on feed.

  9. Evaluation of Dose Distribution in Intensity Modulated Radiosurgery for Lung Cancer under Condition of Respiratory Motion

    PubMed Central

    Yoon, Mee Sun; Jeong, Jae-Uk; Nam, Taek-Keun; Ahn, Sung-Ja; Chung, Woong-Ki; Song, Ju-Young

    2016-01-01

    The dose of a real tumor target volume and surrounding organs at risk (OARs) under the effect of respiratory motion was calculated for a lung tumor plan, based on the target volume covering the whole tumor motion range for intensity modulated radiosurgery (IMRS). Two types of IMRS plans based on simulated respiratory motion were designed using humanoid and dynamic phantoms. Delivery quality assurance (DQA) was performed using ArcCHECK and MapCHECK2 for several moving conditions of the tumor and the real dose inside the humanoid phantom was evaluated using the 3DVH program. This evaluated dose in the tumor target and OAR using the 3DVH program was higher than the calculated dose in the plan, and a greater difference was seen for the RapidArc treatment than for the standard intensity modulated radiation therapy (IMRT) with fixed gantry angle beams. The results of this study show that for IMRS plans based on target volume, including the whole tumor motion range, tighter constraints of the OAR should be considered in the optimization process. The method devised in this study can be applied effectively to analyze the dose distribution in the real volume of tumor target and OARs in IMRT plans targeting the whole tumor motion range. PMID:27648949

  10. Dose distribution and mapping with 3D imaging presentation in intraoral and panoramic examinations

    NASA Astrophysics Data System (ADS)

    Chen, Hsiu-Ling; Huang, Yung-Hui; Wu, Tung-Hsin; Wang, Shih-Yuan; Lee, Jason J. S.

    2011-10-01

    In current medical imaging applications, high quality images not only provide more diagnostic value for anatomic delineation but also offer functional information for treatment direction. However, this approach would potentially subscribe higher radiation dose in dental radiographies, which has been putatively associated with low-birth-weight during pregnancy, which affects the hypothalamus-pituitary-thyroid axis or thereby directly affects the reproductive organs. The aim of this study was to apply the high resolution 3-D image mapping technique to evaluate radiation doses from the following aspects: (1) verifying operating parameters of dental X-ray units, (2) measuring the leakage radiations and (3) mapping dose with 3-D radiographic imaging to evaluate dose distribution in head and neck regions. From the study results, we found that (1) leakage radiation from X-ray units was about 21.31±15.24 mR/h (<100 mR/h), (2) error of actual tube voltage for 60 kVp setting was from 0.2% to 6.5%, with an average of 2.5% (<7%) and (3) the error of exposure time for a 0.5-1.5 s setting was within 0.7-8.5%, with an average of 7.3% (<10%) error as well. Our 3-D dose mapping demonstrated that dose values were relatively lower in soft tissues and higher in bone surfaces compared with other investigations. Multiple causes could contribute to these variations, including irradiation geometry, image equipment and type of technique applied, etc. From the results, we also observed that larger accumulated doses were presented in certain critical organs, such as salivary gland, thyroid gland and bone marrow. Potential biological affects associated with these findings warrant further investigation.

  11. Maximum likelihood estimation of proton irradiated field and deposited dose distribution

    SciTech Connect

    Inaniwa, Taku; Kohno, Toshiyuki; Yamagata, Fumiko; Tomitani, Takehiro; Sato, Shinji; Kanazawa, Mitsutaka; Kanai, Tatsuaki; Urakabe, Eriko

    2007-05-15

    In proton therapy, it is important to evaluate the field irradiated with protons and the deposited dose distribution in a patient's body. Positron emitters generated through fragmentation reactions of target nuclei can be used for this purpose. By detecting the annihilation gamma rays from the positron emitters, the annihilation gamma ray distribution can be obtained which has information about the quantities essential to proton therapy. In this study, we performed irradiation experiments with mono-energetic proton beams of 160 MeV and the spread-out Bragg peak beams to three kinds of targets. The annihilation events were detected with a positron camera for 500 s after the irradiation and the annihilation gamma ray distributions were obtained. In order to evaluate the range and the position of distal and proximal edges of the SOBP, the maximum likelihood estimation (MLE) method was applied to the detected distributions. The evaluated values with the MLE method were compared with those estimated from the measured dose distributions. As a result, the ranges were determined with the difference between the MLE range and the experimental range less than 1.0 mm for all targets. For the SOBP beams, the positions of distal edges were determined with the difference less than 1.0 mm. On the other hand, the difference amounted to 7.9 mm for proximal edges.

  12. Maximum likelihood estimation of proton irradiated field and deposited dose distribution.

    PubMed

    Inaniwa, Taku; Kohno, Toshiyuki; Yamagata, Fumiko; Tomitani, Takehiro; Sato, Shinji; Kanazawa, Mitsutaka; Kanai, Tatsuaki; Urakabe, Eriko

    2007-05-01

    In proton therapy, it is important to evaluate the field irradiated with protons and the deposited dose distribution in a patient's body. Positron emitters generated through fragmentation reactions of target nuclei can be used for this purpose. By detecting the annihilation gamma rays from the positron emitters, the annihilation gamma ray distribution can be obtained which has information about the quantities essential to proton therapy. In this study, we performed irradiation experiments with mono-energetic proton beams of 160 MeV and the spread-out Bragg peak beams to three kinds of targets. The annihilation events were detected with a positron camera for 500 s after the irradiation and the annihilation gamma ray distributions were obtained. In order to evaluate the range and the position of distal and proximal edges of the SOBP, the maximum likelihood estimation (MLE) method was applied to the detected distributions. The evaluated values with the MLE method were compared with those estimated from the measured dose distributions. As a result, the ranges were determined with the difference between the MLE range and the experimental range less than 1.0 mm for all targets. For the SOBP beams, the positions of distal edges were determined with the difference less than 1.0 mm. On the other hand, the difference amounted to 7.9 mm for proximal edges.

  13. FEASIBILITY OF POSITRON EMISSION TOMOGRAPHY OF DOSE DISTRIBUTION IN PROTON BEAM CANCER THERAPY.

    SciTech Connect

    BEEBE - WANG,J.J.; DILMANIAN,F.A.; PEGGS,S.G.; SCHLYEER,D.J.; VASKA,P.

    2002-06-03

    Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than x-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as {sup 12}C, {sup 14}N, and {sup 16}O. These radioisotopes, mainly {sup 11}C, {sup 13}N and {sup 15}O, allow imaging the therapy dose distribution using positron emission tomography (PET). The resulting PET images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This paper uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner.

  14. Dose distribution transfer from CyberKnife to Varian treatment planning system

    NASA Astrophysics Data System (ADS)

    Osewski, W.; Ślosarek, K.; Karaszewska, B.

    2014-03-01

    The aim of this paper was to introduce one of the options of the locally developed DDcon.exe which gives the possibility to transfer the dose distribution from CyberKnife (Accuray) treatment planning system (CK TPS) to Varian treatment planning system (Eclipse TPS, Varian). DICOM format is known as a universal format for medical data. The dose distribution is stored as RTdose file in DICOM format, so there should be a possibility to transfer it between different treatment planning systems. Trying to transfer RTdose file from CK TPS to Eclipse TPS the error message occurs. That's because the RTdose file in CK TPS is connected with Structure_Set_Sequence against Eclipse TPS where it's connected with RT_Plan_Sequence. To make it transferable RTdose file from CK TPS have to be 'disconnected' from Structure_Set_Sequence and 'connected' with RT_Plan_Sequence. This is possible thanks DDcon software which creates new RTdose file by changing proper DICOM tags in original RTdose file. New homemade software gives us an opportunity to transfer dose distribution from CyberKnife TPS to TPS Eclipse. This method opens new possibilities to combine or compare different treatment techniques in Varian TPS.

  15. Semi-empirical model for the generation of dose distributions produced by a scanning electron beam

    SciTech Connect

    Nath, R.; Gignac, C.E.; Agostinelli, A.G.; Rothberg, S.; Schulz, R.J.

    1980-01-01

    There are linear accelerators (Sagittaire and Saturne accelerators produced by Compagnie Generale de Radiologie (CGR/MeV) Corporation) which produce broad, flat electron fields by magnetically scanning the relatively narrow electron beam as it emerges from the accelerator vacuum system. A semi-empirical model, which mimics the scanning action of this type of accelerator, was developed for the generation of dose distributions in homogeneous media. The model employs the dose distributions of the scanning electron beams. These were measured with photographic film in a polystyrene phantom by turning off the magnetic scanning system. The mean deviation calculated from measured dose distributions is about 0.2%; a few points have deviations as large as 2 to 4% inside of the 50% isodose curve, but less than 8% outside of the 50% isodose curve. The model has been used to generate the electron beam library required by a modified version of a commercially-available computerized treatment-planning system. (The RAD-8 treatment planning system was purchased from the Digital Equipment Corporation. It is currently available from Electronic Music Industries (EMI), Ltd.)

  16. Dose-rate distribution of {sup 32}P-glass microspheres for intra-arterial brachytherapy

    SciTech Connect

    Guimaraes, Carla C.; Moralles, Mauricio; Sene, Frank F.; Martinelli, Jose R.

    2010-02-15

    Purpose: The intra-arterial administration of radioactive glass microspheres is an alternative therapy option for treating primary hepatocellular carcinoma, the main cause of liver cancer death, and metastatic liver cancer, another important kind of cancer induced in the liver. The technique involves the administration of radioactive microspheres in the hepatic artery, which are trapped preferentially in the tumor. Methods: In this work the GEANT4 toolkit was used to calculate the radial dose-rate distributions in water from {sup 32}P-loaded glass microspheres and also from {sup 90}Y-loaded glass microspheres. To validate the toolkit for this application, the authors compared the dose-rate distribution of {sup 32}P and {sup 90}Y point sources in water with data from the International Commission on Radiation Units and Measurements report 72. Results: Tables of radial dose-rate distributions are provided for practical use in brachytherapy planning with these microspheres. Conclusions: The simulations with the microspheres show that the shape of the beta ray energy spectra with respect to the {sup 32}P and {sup 90}Y sources is significantly modified by the glass matrix.

  17. Study of the impact of artificial articulations on the dose distribution under medical irradiation

    NASA Astrophysics Data System (ADS)

    Buffard, E.; Gschwind, R.; Makovicka, L.; Martin, E.; Meunier, C.; David, C.

    2005-02-01

    Perturbations due to the presence of high density heterogeneities in the body are not correctly taken into account in the Treatment Planning Systems currently available for external radiotherapy. For this reason, the accuracy of the dose distribution calculations has to be improved by using Monte Carlo simulations. In a previous study, we established a theoretical model by using the Monte Carlo code EGSnrc [I. Kawrakow, D.W.O. Rogers, The EGSnrc code system: MC simulation of electron and photon transport. Technical Report PIRS-701, NRCC, Ottawa, Canada, 2000] in order to obtain the dose distributions around simple heterogeneities. These simulations were then validated by experimental results obtained with thermoluminescent dosemeters and an ionisation chamber. The influence of samples composed of hip prostheses materials (titanium alloy and steel) and a substitute of bone were notably studied. A more complex model was then developed with the Monte Carlo code BEAMnrc [D.W.O. Rogers, C.M. MA, G.X. Ding, B. Walters, D. Sheikh-Bagheri, G.G. Zhang, BEAMnrc Users Manual. NRC Report PPIRS 509(a) rev F, 2001] in order to take into account the hip prosthesis geometry. The simulation results were compared to experimental measurements performed in a water phantom, in the case of a standard treatment of a pelvic cancer for one of the beams passing through the implant. These results have shown the great influence of the prostheses on the dose distribution.

  18. Intrarenal distribution of mercury in the rat: effect of administered dose of mercuric chloride

    SciTech Connect

    Zalups, R.K.; Diamond, G.L.

    1987-01-01

    The authors recently observed that the distribution of mercury in the hypertrophied remnant kidneys of uninephrectomized rats was different from that in the kidneys of sham-operated rats when given the same non-toxic dose of mercuric chloride (HgCl/sub 2/; 0.5 ..mu..mol/kg). These observations are quite significant, since the altered intrarenal distribution of mercury in uninephrectomized rats may cause uninephrectomized rats to develop more severe tubular necrosis in the outer medulla than sham-operated rats. In the experiments described above, the mercury burden of the hypertrophied remnant kidneys from the uninephrectomized rats was approximately twice that of each of the kidneys from the sham-operated rats. Thus, the altered intrarenal distribution of mercury in the uninephrectomized rats may be, in part, the result of the remnant kidney being exposed to more mercury. Implicit in this hypothesis is the idea that the manner in which the kidney accumulates mercury is dependent on the amount of mercury it is exposed to. If this is the case, then one would predict that the intrarenal accumulation of mercury in rats with two kidneys would change as the administered dose of HgCl/sub 2/ is increased from the dose of 0.5 ..mu..mol/kg. The principal aim of this study was to test this hypothesis.

  19. Evaluation of brachytherapy lung implant dose distributions from photon-emitting sources due to tissue heterogeneities

    SciTech Connect

    Yang Yun; Rivard, Mark J.

    2011-11-15

    Purpose: Photon-emitting brachytherapy sources are used for permanent implantation to treat lung cancer. However, the current brachytherapy dose calculation formalism assumes a homogeneous water medium without considering the influence of radiation scatter or tissue heterogeneities. The purpose of this study was to determine the dosimetric effects of tissue heterogeneities for permanent lung brachytherapy. Methods: The MCNP5 v1.40 radiation transport code was used for Monte Carlo (MC) simulations. Point sources with energies of 0.02, 0.03, 0.05, 0.1, 0.2, and 0.4 MeV were simulated to cover the range of pertinent brachytherapy energies and to glean dosimetric trends independent of specific radionuclide emissions. Source positions from postimplant CT scans of five patient implants were used for source coordinates, with dose normalized to 200 Gy at the center of each implant. With the presence of fibrosis (around the implant), cortical bone, lung, and healthy tissues, dose distributions and {sub PTV}DVH were calculated using the MCNP *FMESH4 tally and the NIST mass-energy absorption coefficients. This process was repeated upon replacing all tissues with water. For all photon energies, 10{sup 9} histories were simulated to achieve statistical errors (k = 1) typically of 1%. Results: The mean PTV doses calculated using tissue heterogeneities for all five patients changed (compared to dose to water) by only a few percent over the examined photon energy range, as did PTV dose at the implant center. The {sub PTV}V{sub 100} values were 81.2%, 90.0% (as normalized), 94.3%, 93.9%, 92.7%, and 92.2% for 0.02, 0.03, 0.05, 0.1, 0.2, and 0.4 MeV source photons, respectively. Relative to water, the maximum bone doses were higher by factors of 3.7, 5.1, 5.2, 2.4, 1.2, and 1.0 The maximum lung doses were about 0.98, 0.94, 0.91, 0.94, 0.97, and 0.99. Relative to water, the maximum healthy tissue doses at the mediastinal position were higher by factors of 9.8, 2.2, 1.3, 1.1, 1.1, and

  20. The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions

    NASA Astrophysics Data System (ADS)

    Paiva Fonseca, Gabriel; Landry, Guillaume; White, Shane; D'Amours, Michel; Yoriyaz, Hélio; Beaulieu, Luc; Reniers, Brigitte; Verhaegen, Frank

    2014-10-01

    Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for 192Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator.

  1. Breast dose in mammography is about 30% lower when realistic heterogeneous glandular distributions are considered

    PubMed Central

    Hernandez, Andrew M.; Seibert, J. Anthony; Boone, John M.

    2015-01-01

    Purpose: Current dosimetry methods in mammography assume that the breast is comprised of a homogeneous mixture of glandular and adipose tissues. Three-dimensional (3D) dedicated breast CT (bCT) data sets were used previously to assess the complex anatomical structure within the breast, characterizing the statistical distribution of glandular tissue in the breast. The purpose of this work was to investigate the effect of bCT-derived heterogeneous glandular distributions on dosimetry in mammography. Methods: bCT-derived breast diameters, volumes, and 3D fibroglandular distributions were used to design realistic compressed breast models comprised of heterogeneous distributions of glandular tissue. The bCT-derived glandular distributions were fit to biGaussian functions and used as probability density maps to assign the density distributions within compressed breast models. The MCNPX 2.6.0 Monte Carlo code was used to estimate monoenergetic normalized mean glandular dose “DgN(E)” values in mammography geometry. The DgN(E) values were then weighted by typical mammography x-ray spectra to determine polyenergetic DgN (pDgN) coefficients for heterogeneous (pDgNhetero) and homogeneous (pDgNhomo) cases. The dependence of estimated pDgN values on phantom size, volumetric glandular fraction (VGF), x-ray technique factors, and location of the heterogeneous glandular distributions was investigated. Results: The pDgNhetero coefficients were on average 35.3% (SD, 4.1) and 24.2% (SD, 3.0) lower than the pDgNhomo coefficients for the Mo–Mo and W–Rh x-ray spectra, respectively, across all phantom sizes and VGFs when the glandular distributions were centered within the breast phantom in the coronal plane. At constant breast size, increasing VGF from 7.3% to 19.1% lead to a reduction in pDgNhetero relative to pDgNhomo of 23.6%–27.4% for a W–Rh spectrum. Displacement of the glandular distribution, at a distance equal to 10% of the compressed breast width in the superior and

  2. Breast dose in mammography is about 30% lower when realistic heterogeneous glandular distributions are considered

    SciTech Connect

    Hernandez, Andrew M.; Seibert, J. Anthony; Boone, John M.

    2015-11-15

    Purpose: Current dosimetry methods in mammography assume that the breast is comprised of a homogeneous mixture of glandular and adipose tissues. Three-dimensional (3D) dedicated breast CT (bCT) data sets were used previously to assess the complex anatomical structure within the breast, characterizing the statistical distribution of glandular tissue in the breast. The purpose of this work was to investigate the effect of bCT-derived heterogeneous glandular distributions on dosimetry in mammography. Methods: bCT-derived breast diameters, volumes, and 3D fibroglandular distributions were used to design realistic compressed breast models comprised of heterogeneous distributions of glandular tissue. The bCT-derived glandular distributions were fit to biGaussian functions and used as probability density maps to assign the density distributions within compressed breast models. The MCNPX 2.6.0 Monte Carlo code was used to estimate monoenergetic normalized mean glandular dose “DgN(E)” values in mammography geometry. The DgN(E) values were then weighted by typical mammography x-ray spectra to determine polyenergetic DgN (pDgN) coefficients for heterogeneous (pDgN{sub hetero}) and homogeneous (pDgN{sub homo}) cases. The dependence of estimated pDgN values on phantom size, volumetric glandular fraction (VGF), x-ray technique factors, and location of the heterogeneous glandular distributions was investigated. Results: The pDgN{sub hetero} coefficients were on average 35.3% (SD, 4.1) and 24.2% (SD, 3.0) lower than the pDgN{sub homo} coefficients for the Mo–Mo and W–Rh x-ray spectra, respectively, across all phantom sizes and VGFs when the glandular distributions were centered within the breast phantom in the coronal plane. At constant breast size, increasing VGF from 7.3% to 19.1% lead to a reduction in pDgN{sub hetero} relative to pDgN{sub homo} of 23.6%–27.4% for a W–Rh spectrum. Displacement of the glandular distribution, at a distance equal to 10% of the

  3. Comparison of dose distributions calculated by the cyberknife Monte Carlo and ray tracing algorithms for lung tumors: a phantom study

    NASA Astrophysics Data System (ADS)

    Koksal, Canan; Akbas, Ugur; Okutan, Murat; Demir, Bayram; Hakki Sarpun, Ismail

    2015-07-01

    Commercial treatment planning systems with have different dose calculation algorithms have been developed for radiotherapy plans. The Ray Tracing and the Monte Carlo dose calculation algorithms are available for MultiPlan treatment planning system. Many studies indicated that the Monte Carlo algorithm enables the more accurate dose distributions in heterogeneous regions such a lung than the Ray Tracing algorithm. The purpose of this study was to compare the Ray Tracing algorithm with the Monte Carlo algorithm for lung tumors in CyberKnife System. An Alderson Rando anthropomorphic phantom was used for creating CyberKnife treatment plans. The treatment plan was developed using the Ray Tracing algorithm. Then, this plan was recalculated with the Monte Carlo algorithm. EBT3 radiochromic films were put in the phantom to obtain measured dose distributions. The calculated doses were compared with the measured doses. The Monte Carlo algorithm is the more accurate dose calculation method than the Ray Tracing algorithm in nonhomogeneous structures.

  4. Differential absorbed dose distributions in lineal energy for neutrons and gamma rays at the mono-energetic neutron calibration facility.

    PubMed

    Takada, M; Baba, M; Yamaguchi, H; Fujitaka, K

    2005-01-01

    Absorbed dose distributions in lineal energy for neutrons and gamma rays of mono-energetic neutron sources from 140 keV to 15 MeV were measured in the Fast Neutron Laboratory at Tohoku University. By using both a tissue-equivalent plastic walled counter and a graphite-walled low-pressure proportional counter, absorbed dose distributions in lineal energy for neutrons were obtained separately from those for gamma rays. This method needs no knowledge of energy spectra and dose distributions for gamma rays. The gamma-ray contribution in this neutron calibration field >1 MeV neutron was <3%, while for <550 keV it was >40%. The measured neutron absolute absorbed doses per unit neutron fluence agreed with the LA150 evaluated kerma factors. By using this method, absorbed dose distributions in lineal energy for neutrons and gamma rays in an unknown neutron field can be obtained separately.

  5. Influence of electron density spatial distribution and X-ray beam quality during CT simulation on dose calculation accuracy.

    PubMed

    Nobah, Ahmad; Moftah, Belal; Tomic, Nada; Devic, Slobodan

    2011-04-06

    Impact of the various kVp settings used during computed tomography (CT) simulation that provides data for heterogeneity corrected dose distribution calculations in patients undergoing external beam radiotherapy with either high-energy photon or electron beams have been investigated. The change of the Hounsfield Unit (HU) values due to the influence of kVp settings and geometrical distribution of various tissue substitute materials has also been studied. The impact of various kVp settings and electron density (ED) distribution on the accuracy of dose calculation in high-energy photon beams was found to be well within 2%. In the case of dose distributions obtained with a commercially available Monte Carlo dose calculation algorithm for electron beams, differences of more than 10% were observed for different geometrical setups and kVp settings. Dose differences for the electron beams are relatively small at shallow depths but increase with depth around lower isodose values.

  6. SU-E-T-517: Analytic Formalism to Compute in Real Time Dose Distributions Delivered by HDR Units

    SciTech Connect

    Pokhrel, S; Loyalka, S; Palaniswaamy, G; Rangaraj, D; Izaguirre, E

    2014-06-01

    Purpose: Develop an analytical algorithm to compute the dose delivered by Ir-192 dwell positions with high accuracy using the 3-dimensional (3D) dose distribution of an HDR source. Using our analytical function, the dose delivered by an HDR unit as treatment progresses can be determined using the actual delivered temporal and positional data of each individual dwell. Consequently, true delivered dose can be computed when each catheter becomes active. We hypothesize that the knowledge of such analytical formulation will allow developing HDR systems with a real time treatment evaluation tool to avoid mistreatments. Methods: In our analytic formulation, the dose is computed by using the full anisotropic function data of the TG 43 formalism with 3D ellipsoidal function. The discrepancy between the planned dose and the delivered dose is computed using an analytic perturbation method over the initial dose distribution. This methodology speeds up the computation because only changes in dose discrepancies originated by spatial and temporal deviations are computed. A dose difference map at the point of interest is obtained from these functions and this difference can be shown during treatment in real time to examine the treatment accuracy. Results: We determine the analytical solution and a perturbation function for the 3 translational 3 rotational, and 1D temporal errors in source distributions. The analytic formulation is a sequence of simple equations that can be processed in any modern computer in few seconds. Because computations are based in an analytical solution, small deviations of the dose when sub-millimeter positional changes occur can be detected. Conclusions: We formulated an analytical method to compute 4D dose distributions and dose differences based on an analytical solution and perturbations to the original dose. This method is highly accurate and can be.

  7. Impact of the differential fluence distribution of brachytherapy sources on the spectroscopic dose-rate constant

    SciTech Connect

    Malin, Martha J.; Bartol, Laura J.; DeWerd, Larry A. E-mail: ladewerd@wisc.edu

    2015-05-15

    Purpose: To investigate why dose-rate constants for {sup 125}I and {sup 103}Pd seeds computed using the spectroscopic technique, Λ{sub spec}, differ from those computed with standard Monte Carlo (MC) techniques. A potential cause of these discrepancies is the spectroscopic technique’s use of approximations of the true fluence distribution leaving the source, φ{sub full}. In particular, the fluence distribution used in the spectroscopic technique, φ{sub spec}, approximates the spatial, angular, and energy distributions of φ{sub full}. This work quantified the extent to which each of these approximations affects the accuracy of Λ{sub spec}. Additionally, this study investigated how the simplified water-only model used in the spectroscopic technique impacts the accuracy of Λ{sub spec}. Methods: Dose-rate constants as described in the AAPM TG-43U1 report, Λ{sub full}, were computed with MC simulations using the full source geometry for each of 14 different {sup 125}I and 6 different {sup 103}Pd source models. In addition, the spectrum emitted along the perpendicular bisector of each source was simulated in vacuum using the full source model and used to compute Λ{sub spec}. Λ{sub spec} was compared to Λ{sub full} to verify the discrepancy reported by Rodriguez and Rogers. Using MC simulations, a phase space of the fluence leaving the encapsulation of each full source model was created. The spatial and angular distributions of φ{sub full} were extracted from the phase spaces and were qualitatively compared to those used by φ{sub spec}. Additionally, each phase space was modified to reflect one of the approximated distributions (spatial, angular, or energy) used by φ{sub spec}. The dose-rate constant resulting from using approximated distribution i, Λ{sub approx,i}, was computed using the modified phase space and compared to Λ{sub full}. For each source, this process was repeated for each approximation in order to determine which approximations used in

  8. Generation and dose distribution measurement of flash x-ray in KALI-5000 system

    NASA Astrophysics Data System (ADS)

    Menon, Rakhee; Roy, Amitava; Mitra, S.; Sharma, A.; Mondal, J.; Mittal, K. C.; Nagesh, K. V.; Chakravarthy, D. P.

    2008-10-01

    Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm2 current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO4:Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance ˜1/xn, where n varies from 1.8 to 1.85. A maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns.

  9. Generation and dose distribution measurement of flash x-ray in KALI-5000 system.

    PubMed

    Menon, Rakhee; Roy, Amitava; Mitra, S; Sharma, A; Mondal, J; Mittal, K C; Nagesh, K V; Chakravarthy, D P

    2008-10-01

    Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm(2) current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO(4):Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance approximately 1/x(n), where n varies from 1.8 to 1.85. A maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns.

  10. Generation and dose distribution measurement of flash x-ray in KALI-5000 system

    SciTech Connect

    Menon, Rakhee; Roy, Amitava; Mitra, S.; Sharma, A.; Mondal, J.; Mittal, K. C.; Nagesh, K. V.; Chakravarthy, D. P.

    2008-10-15

    Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm{sup 2} current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO{sub 4}:Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance {approx}1/x{sup n}, where n varies from 1.8 to 1.85. A maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns.

  11. Radiation dose distribution for workers in South Korean nuclear power plants.

    PubMed

    Lee, Byoung-il; Kim, So-i; Suh, Dong-hee; Jin, Young-woo; Kim, Jeong-in; Choi, Hoon; Lim, Young-khi

    2010-07-01

    A total of 33 680 nuclear power plants (NPPs) workers were monitored and recorded from 1990 to 2007. According to the record, the average individual radiation dose has been decreasing continually from 3.20 mSv man(-1) in 1990 to 1.12 mSv man(-1) at the end of 2007. After the International Commission on Radiological Protection 60 recommendation was generalised in South Korea, no NPP workers received >20 mSv radiation, and the numbers of relatively highly exposed workers have been decreasing continuously. The age distribution of radiation workers in NPPs was composed mainly of 20-30 y olds (83 %) for 1990-1994 and 30-40 y olds (75 %) for 2003-2007. The difference in individual average dose by age was not significant. Most (77 %) of the NPP radiation exposures from 1990 to 2007 occurred mostly during the refueling period. With regard to exposure type, the majority of exposures was external exposures, representing 95 % of the total exposures, whereas internal exposures represented only 5 %. External effective dose was affected mainly by gamma radiation exposure, with an insignificant amount of neutron exposure. As for internal effective dose, tritium in the pressurised heavy water reactor was the biggest cause of exposure.

  12. Mycosis Fungoides electron beam absorbed dose distribution using Fricke xylenol gel dosimetry

    NASA Astrophysics Data System (ADS)

    da Silveira, Michely C.; Sampaio, Francisco G. A.; Petchevist, Paulo C. D.; de Oliveira, André L.; Almeida, Adelaide de

    2011-12-01

    Radiotherapy uses ionizing radiation to destroy tumor cells. The absorbed dose control in the target volume is realized through radiation sensors, such as Fricke dosimeters and radiochromic film, which permit to realize bi-dimensional evaluations at once and because of that, they will be used in this study as well. Among the several types of cancer suitable for ionizing radiation treatment, the Mycosis Fungoides, a lymphoma that spreads on the skin surface and depth, requires for its treatment total body irradiation by high-energy electrons. In this work the Fricke xylenol gel (FXG) was used in order to obtain information about the absorbed dose distribution induced by the electron interactions with the irradiated tissues and to control this type of treatment. FXG can be considered as an alternative dosimeter, since up to now only films have been used. FXG sample cuvettes, simulating two selected tomos (cranium and abdomen) of the Rando anthropomorphic phantom, were positioned along with radiochromic films for comparison. The phantom was subjected to Stanford total body irradiation using 6 MeV electrons. Tomographic images were acquired for both dosimeters and evaluated through horizontal and vertical profiles along the tomographic centers. These profiles were obtained through a Matlab routine developed for this purpose. From the obtained results, one could infer that, for a superficial and internal patient irradiation, the FXG dosimeter showed an absorbed dose distribution similar to the one of the film. These results can validate the FXG dosimeter as an alternative dosimeter for the Mycosis Fungoides treatment planning.

  13. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined

  14. The prediction of transmitted dose distributions using a 3D treatment planning system.

    PubMed

    Reich, P; Bezak, E; Mohammadi, M; Fog, L

    2006-03-01

    Patient dose verification is becoming increasingly important with the advent of new complex radiotherapy techniques such as conformal radiotherapy (CRT) and intensity-modulated radiotherapy (IMRT). An electronic portal imaging device (EPID) has potential application for in vivo dosimetry. In the current work, an EPID has been modelled using a treatment planning system (TPS) to predict transmitted dose maps. A thin slab of RW3 material used to initially represent the EPID. A homogeneous RW3 phantom and the thin RW3 slab placed at a clinical distance away from the phantom were scanned using a CT simulator. The resulting CT images were transferred via DICOM to the TPS and the density of the CT data corresponding to the thin RW3 slab was changed to 1 g/cm3. Transmitted dose maps (TDMs) in the modelled EPID were calculated by the TPS using the collapsed-cone (C-C) convolution superposition (C/S) algorithm. A 6 MV beam was used in the simulation to deliver 300 MU to the homogenous phantom using an isocentric and SSD (source-to-surface) technique. The phantom thickness was varied and the calculated TDMs in the modelled EPID were compared with corresponding measurements obtained from a calibrated scanning liquid-filled ionisation chamber (SLIC) EPID. The two TDMs were compared using the gamma evaluation technique of Low et al. The predicted and measured TDMs agree to within 2 % (averaged over all phantom thicknesses) on the central beam axis. More than 90 % of points in the dose maps (excluding field edges) produce a gamma index less than or equal to 1, for dose difference (averaged over all phantom thicknesses), and distance-to-agreement criteria of 4 %, 3.8 mm, respectively. In addition, the noise level on the central axis in the predicted dose maps is less than 0.1 %. We found that phantom thickness changes of approximately 1 mm, which correspond to dose changes on the central beam axis of less than 0.6 %, can be detected in the predicted transmitted dose distributions.

  15. Temporal variation of dose rate distribution around the Fukushima Daiichi nuclear power station using unmanned helicopter.

    PubMed

    Sanada, Yukihisa; Orita, Tadashi; Torii, Tatsuo

    2016-12-01

    Aerial radiological survey using an unmanned aerial vehicle (UAV) was applied to measurement surface contamination around the Fukushima Daiichi nuclear power station (FDNPS). An unmanned helicopter monitoring system (UHMS) was developed to survey the environmental effect of radioactive cesium scattered as a result of the FDNPS accident. The UHMS was used to monitor the area surrounding the FDNPS six times from 2012 to 2015. Quantitative changes in the radioactivity distribution trend were revealed from the results of these monitoring runs. With this information, we found that the actual reduction of dose rate was faster than the one calculated with radiocesium physical half-life. It is indicated that the attenuation effect of radiation by radiocesium penetration in soil is dominant as for reason of reduction of dose rate.

  16. Dose and sex dependent distribution of mercury in rats exposed to mercuric chloride

    SciTech Connect

    Khan, A.T.; Graham, T.C.; Webster, J.E.; Ferguson, J.A.

    1994-12-31

    A 14-day study was conducted in young male and female rats (Sprague-Dawley SDTM) with mercuric chloride at daily oral doses of 0, 1.25, 5.0, and 10.0 mg/kg mercuric chloride to determine the maximum tolerated dose and the distribution of mercury in the target organs. The brains, hearts, kidneys, livers, lungs and spleens of both male and female rats (survived or died during the experiment) were analyzed for mercury content. At all treatments (1.25, 2.5, 5.0, and 10.0 mg/kg) groups, mercury level was higher in the kidneys of both sexes, and followed by the livers, spleen, lungs, hearts, and brains, respectively. The mercury level in target organs of females was higher than those of males. All mercury treated rats also showed a reduction in cumulative body weight gained beginning on the third day of treatment.

  17. From active shape model to active optical flow model: a shape-based approach to predicting voxel-level dose distributions in spine SBRT.

    PubMed

    Liu, Jianfei; Wu, Q Jackie; Kirkpatrick, John P; Yin, Fang-Fang; Yuan, Lulin; Ge, Yaorong

    2015-03-07

    Prediction of achievable dose distribution in spine stereotactic body radiation therapy (SBRT) can help in designing high-quality treatment plans to maximally protect spinal cords and to effectively control tumours. Dose distributions at spinal cords are primarily affected by the shapes of adjacent planning target volume (PTV) contours. In this work, we estimate such contour effects and predict dose distributions by exploring active optical flow model (AOFM) and active shape model (ASM). We first collect a sequence of dose sub-images and PTV contours near spinal cords from fifteen SBRT plans in the training dataset. The data collection is then classified into five groups according to the PTV locations in relation to spinal cords. In each group, we randomly choose a dose sub-image as the reference and register all other sub-images to the reference using an optical flow method. AOFM is then constructed by importing optical flow vectors and dose values into the principal component analysis (PCA). Similarly, we build ASM by using PCA on PTV contour points. The correlation between ASM and AOFM is estimated via a stepwise multiple regression model. When predicting dose distribution of a new case, the group is first determined based on the PTV contour. The prediction model of the selected group is used to estimate dose distributions by mapping the PTV contours from the ASM space to the AOFM space. This method was validated on fifteen SBRT plans in the testing dataset. Analysis of dose-volume histograms revealed that the important D2%, D5%, D10% and D0.1cc dosimetric parameters of spinal cords between the prediction and the clinical plans were 11.7 ± 1.7 Gy versus 11.8 ± 1.7 Gy (p = 0.95), 10.9 ± 1.7 Gy versus 11.1 ± 1.9 Gy (p = 0.8295), 10.2 ± 1.6 Gy versus 10.1 ± 1.7 (p = 0.9036) and 11.2 ± 2.0 Gy versus 11.1 ± 2.2 Gy (p = 0.5208), respectively. Here, the ‘cord’ is the spinal cord proper (not the thecal sac) extended 5 mm inferior and superior to the involved

  18. From active shape model to active optical flow model: a shape-based approach to predicting voxel-level dose distributions in spine SBRT

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Wu, Q. Jackie; Kirkpatrick, John P.; Yin, Fang-Fang; Yuan, Lulin; Ge, Yaorong

    2015-03-01

    Prediction of achievable dose distribution in spine stereotactic body radiation therapy (SBRT) can help in designing high-quality treatment plans to maximally protect spinal cords and to effectively control tumours. Dose distributions at spinal cords are primarily affected by the shapes of adjacent planning target volume (PTV) contours. In this work, we estimate such contour effects and predict dose distributions by exploring active optical flow model (AOFM) and active shape model (ASM). We first collect a sequence of dose sub-images and PTV contours near spinal cords from fifteen SBRT plans in the training dataset. The data collection is then classified into five groups according to the PTV locations in relation to spinal cords. In each group, we randomly choose a dose sub-image as the reference and register all other sub-images to the reference using an optical flow method. AOFM is then constructed by importing optical flow vectors and dose values into the principal component analysis (PCA). Similarly, we build ASM by using PCA on PTV contour points. The correlation between ASM and AOFM is estimated via a stepwise multiple regression model. When predicting dose distribution of a new case, the group is first determined based on the PTV contour. The prediction model of the selected group is used to estimate dose distributions by mapping the PTV contours from the ASM space to the AOFM space. This method was validated on fifteen SBRT plans in the testing dataset. Analysis of dose-volume histograms revealed that the important D2%, D5%, D10% and D0.1cc dosimetric parameters of spinal cords between the prediction and the clinical plans were 11.7  ±  1.7 Gy versus 11.8  ±  1.7 Gy (p = 0.95), 10.9  ±  1.7 Gy versus 11.1  ±  1.9 Gy (p = 0.8295), 10.2  ±  1.6 Gy versus 10.1  ±  1.7 (p = 0.9036) and 11.2  ±  2.0 Gy versus 11.1  ±  2.2 Gy (p = 0.5208), respectively. Here, the ‘cord’ is the spinal cord proper (not the

  19. Effect of Bladder Distension on Dose Distribution of Intracavitary Brachytherapy for Cervical Cancer: Three-Dimensional Computed Tomography Plan Evaluation

    SciTech Connect

    Cengiz, Mustafa Guerdalli, Salih; Selek, Ugur; Yildiz, Ferah; Saglam, Yuecel; Ozyar, Enis; Atahan, I. Lale

    2008-02-01

    Purpose: To quantify the effect of bladder volume on the dose distribution during intracavitary brachytherapy for cervical cancer. Methods and Patients: The study was performed on 10 women with cervical cancer who underwent brachytherapy treatment. After insertion of the brachytherapy applicator, the patients were transferred to the computed tomography unit. Two sets of computed tomography slices were taken, including the pelvis, one with an empty bladder and one after the bladder was filled with saline. The target and critical organs were delineated by the radiation oncologist and checked by the expert radiologist. The radiotherapy plan was run on the Plato planning system, version 14.1, to determine the dose distributions, dose-volume histograms, and maximal dose points. The doses and organ volumes were compared with the Wilcoxon signed ranks test on a personal computer using the Statistical Package for Social Sciences, version 11.0, statistical program. Results: No significant difference regarding the dose distribution and target volumes between an empty or full bladder was observed. Bladder fullness significantly affected the dose to the small intestine, rectum, and bladder. The median of maximal doses to the small intestine was significantly greater with an empty bladder (493 vs. 284 cGy). Although dosimetry revealed lower doses for larger volumes of bladder, the median maximal dose to the bladder was significantly greater with a full bladder (993 vs. 925 cGy). The rectal doses were also affected by bladder distension. The median maximal dose was significantly lower in the distended bladder (481vs. 628 cGy). Conclusions: Bladder fullness changed the dose distributions to the bladder, rectum, and small intestine. The clinical importance of these changes is not known and an increase in the use of three-dimensional brachytherapy planning will highlight the answer to this question.

  20. Impact of Intrafractional Bowel Gas Movement on Carbon Ion Beam Dose Distribution in Pancreatic Radiotherapy

    SciTech Connect

    Kumagai, Motoki; Hara, Ryusuke; Mori, Shinichiro Yanagi, Takeshi; Asakura, Hiroshi; Kishimoto, Riwa; Kato, Hirotoshi; Yamada, Shigeru; Kandatsu, Susumu; Kamada, Tadashi

    2009-03-15

    Purpose: To assess carbon ion beam dose variation due to bowel gas movement in pancreatic radiotherapy. Methods and Materials: Ten pancreatic cancer inpatients were subject to diagnostic contrast-enhanced dynamic helical CT examination under breath-holding conditions, which included multiple-phase dynamic CT with arterial, venous, and delayed phases. The arterial-venous phase and arterial-delayed phase intervals were 35 and 145 s, respectively. A compensating bolus was designed to cover the target obtained at the arterial phase. Carbon ion dose distribution was calculated by applying the bolus to the CT data sets at the other two phases. Results: Dose conformation to the clinical target volume was degraded by beam overshoot/undershoot due to bowel gas movement. The D95 for clinical target volume was degraded from 98.2% (range, 98.0-99.1%) of the prescribed dose to 94.7% (range, 88.0-99.0%) at 145 s. Excessive dosing to normal tissues varied among tissues and was, for example, 12.2 GyE/13.1 GyE (0 s/145 s) for the cord and 38.8 GyE/39.8 GyE (0 s/145 s) for the duodenum. The magnitude of beam overshoot/undershoot was particularly exacerbated from the anterior and left directions. Conclusions: Bowel gas movement causes dosimetric variation to the target during treatment for radiotherapy. The effect of bowel gas movement varies with beam angle, with greatest influence on the anterior-posterior and left-right beams.

  1. Fabrication of 2D sheet-like BiOCl/carbon quantum dot hybrids via a template-free coprecipitation method and their tunable visible-light photocatalytic activities derived from different size distributions of carbon quantum dots

    NASA Astrophysics Data System (ADS)

    Deng, Fang; Lu, Xiaoying; Zhong, Fei; Pei, Xule; Luo, Xubiao; Luo, Shenglian; Dionysiou, Dionysios D.; Au, Chaktong

    2016-02-01

    A series of two-dimensional (2D) interlaced BiOCl/carbon quantum dot composites (denoted as BiOCl/CQD composites) were synthesized by a template-free coprecipitation method at room temperature, and the influence of different particle size distributions of the CQDs on the physiochemical properties and photocatalytic activities of the BiOCl/CQD composites was studied. CQDs can change the morphology and increase the specific surface area of the BiOCl/CQD composites. Moreover, the particle size distribution of the CQDs (CQD loading amount) has some effect on the light absorption, separation of photogenerated charge carriers, and photocatalytic performance of the BiOCl/CQD composites. The optimized size distribution of the CQDs is 50-150 nm. BiOCl/CQD (50-150 nm) composites showed the best improvement of light absorption and the highest photocurrent density of 0.44 μA cm-2, and exhibited the highest photocatalytic activity with almost 100% 2-nitrophenol removal under visible-light irradiation. The high efficacy of BiOCl/CQD (50-150 nm) composites could be attributed to their excellent light absorption and highly effective separation of photogenerated charge carriers.

  2. Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy

    SciTech Connect

    Shiraishi, Satomi; Moore, Kevin L.

    2016-01-15

    Purpose: To demonstrate knowledge-based 3D dose prediction for external beam radiotherapy. Methods: Using previously treated plans as training data, an artificial neural network (ANN) was trained to predict a dose matrix based on patient-specific geometric and planning parameters, such as the closest distance (r) to planning target volume (PTV) and organ-at-risks (OARs). Twenty-three prostate and 43 stereotactic radiosurgery/radiotherapy (SRS/SRT) cases with at least one nearby OAR were studied. All were planned with volumetric-modulated arc therapy to prescription doses of 81 Gy for prostate and 12–30 Gy for SRS. Using these clinically approved plans, ANNs were trained to predict dose matrix and the predictive accuracy was evaluated using the dose difference between the clinical plan and prediction, δD = D{sub clin} − D{sub pred}. The mean (〈δD{sub r}〉), standard deviation (σ{sub δD{sub r}}), and their interquartile range (IQR) for the training plans were evaluated at a 2–3 mm interval from the PTV boundary (r{sub PTV}) to assess prediction bias and precision. Initially, unfiltered models which were trained using all plans in the cohorts were created for each treatment site. The models predict approximately the average quality of OAR sparing. Emphasizing a subset of plans that exhibited superior to the average OAR sparing during training, refined models were created to predict high-quality rectum sparing for prostate and brainstem sparing for SRS. Using the refined model, potentially suboptimal plans were identified where the model predicted further sparing of the OARs was achievable. Replans were performed to test if the OAR sparing could be improved as predicted by the model. Results: The refined models demonstrated highly accurate dose distribution prediction. For prostate cases, the average prediction bias for all voxels irrespective of organ delineation ranged from −1% to 0% with maximum IQR of 3% over r{sub PTV} ∈ [ − 6, 30] mm. The

  3. Monte Carlo calculations of dose distribution for intramural delivery of radioisotopes using a direct injection balloon catheter

    SciTech Connect

    Kassing, William M.; McGoron, Anthony J.; Thomas, Stephen R.; Elson, Howard R.; Pipes, David W

    2002-03-01

    Purpose: A unique method of delivering radiation dose to the coronary vessel wall to prevent restenosis is by direct injection of radioactive compounds into the vessel wall using a specially designed angioplasty balloon catheter. The radiation dose distribution resulting from such intramural delivery was investigated using Monte Carlo simulations. Materials and methods: The radioisotope source distribution was modeled for two configurations within the vessel wall: (1) uniform to a depth of 0.5 mm and (2) confined to discrete pools surrounding the delivery injection ports. Monte Carlo MCNP4B computer simulations were utilized to estimate the associated radiation dose distribution for the following radioisotopes: {sup 188}Re, {sup 186}Re, {sup 32}P, {sup 153}Sm, {sup 111}In, {sup 123}I, and {sup 99m}Tc. Results: For the uniform case where the radioisotopes are distributed uniformly to the depth of 0.5 mm into the vessel wall, an essentially constant radiation dose is delivered within the source distribution. Outside of the source volume, the dose falls off at a rate depending on the emission properties of the particular radioisotope. The nonuniform case involving discrete pools of activity showed the dose distribution being confined largely to the regions surrounding the delivery ports with significant regions between these ports receiving very little dose. Conclusions: Direct injection of selected radioisotopes into the arterial wall appears to represent a potentially effective method for delivering radiation dose for the prevention of restenosis. Sufficiently high doses may be obtained from relatively low activity and the dose falls off rapidly outside of the target area for certain radioisotopes.

  4. Distribution, elimination, and renal effects of single oral doses of europium in rats.

    PubMed

    Ohnishi, Keiko; Usuda, Kan; Nakayama, Shin; Sugiura, Yumiko; Kitamura, Yasuhiro; Kurita, Akihiro; Tsuda, Yuko; Kimura, Motoshi; Kono, Koichi

    2011-11-01

    Single doses of europium (III) chloride hexahydrate were orally administered to several groups of rats. Cumulative urine samples were taken at 0-24 h, and blood samples were drawn after 24-h administration. The europium concentration was determined in these samples by inductively coupled plasma atomic emission spectroscopy. The volume, creatinine, ß-2-microglobulin, and N-acetyl-ß-D-glucosaminidase were measured in the urine samples to evaluate possible europium-induced renal effects. The blood samples showed low europium distribution, with an average of 77.5 μg/L for all groups. Although the urinary concentration and excretion showed dose-dependent increases, the percentage of europium excreted showed a dose-dependent decrease, with an average of 0.31% in all groups. The administration of europium resulted in a significant decrease of creatinine and a significant increase of urinary volume, N-acetyl-ß-D-glucosaminidase, and ß-2-microglobulin. Rare earth elements, including europium, are believed to form colloidal conjugates that deposit in the reticuloendothelial system and glomeruli. This specific reaction may contribute to low europium bioavailability and renal function disturbances. Despite low bioavailability, the high performance of the analytical method for determination of europium makes the blood and urine sampling suitable tools for monitoring of exposure to this element. The results presented in this study will be of great importance in future studies on the health impacts of rare earth elements.

  5. Optimization of HDR brachytherapy dose distributions using linear programming with penalty costs

    SciTech Connect

    Alterovitz, Ron; Lessard, Etienne; Pouliot, Jean; Hsu, I-Chow Joe; O'Brien, James F.; Goldberg, Ken

    2006-11-15

    Prostate cancer is increasingly treated with high-dose-rate (HDR) brachytherapy, a type of radiotherapy in which a radioactive source is guided through catheters temporarily implanted in the prostate. Clinicians must set dwell times for the source inside the catheters so the resulting dose distribution minimizes deviation from dose prescriptions that conform to patient-specific anatomy. The primary contribution of this paper is to take the well-established dwell times optimization problem defined by Inverse Planning by Simulated Annealing (IPSA) developed at UCSF and exactly formulate it as a linear programming (LP) problem. Because LP problems can be solved exactly and deterministically, this formulation provides strong performance guarantees: one can rapidly find the dwell times solution that globally minimizes IPSA's objective function for any patient case and clinical criteria parameters. For a sample of 20 prostates with volume ranging from 23 to 103 cc, the new LP method optimized dwell times in less than 15 s per case on a standard PC. The dwell times solutions currently being obtained clinically using simulated annealing (SA), a probabilistic method, were quantitatively compared to the mathematically optimal solutions obtained using the LP method. The LP method resulted in significantly improved objective function values compared to SA (P=1.54x10{sup -7}), but none of the dosimetric indices indicated a statistically significant difference (P<0.01). The results indicate that solutions generated by the current version of IPSA are clinically equivalent to the mathematically optimal solutions.

  6. Re-irradiation of spinal column metastases by IMRT: impact of setup errors on the dose distribution

    PubMed Central

    2013-01-01

    Background This study investigates the impact of an automated image guided patient setup correction on the dose distribution for ten patients with in-field IMRT re-irradiation of vertebral metastases. Methods 10 patients with spinal column metastases who had previously been treated with 3D-conformal radiotherapy (3D-CRT) were simulated to have an in-field recurrence. IMRT plans were generated for treatment of the vertebrae sparing the spinal cord. The dose distributions were compared for a patient setup based on skin marks only and a Cone Beam CT (CBCT) based setup with translational and rotational couch corrections using an automatic robotic image guided couch top (Elekta - HexaPOD™ IGuide® - system). The biological equivalent dose (BED) was calculated to evaluate and rank the effects of the automatic setup correction for the dose distribution of CTV and spinal cord. Results The mean absolute value (± standard deviation) over all patients and fractions of the translational error is 6.1 mm (±4 mm) and 2.7° (±1.1 mm) for the rotational error. The dose coverage of the 95% isodose for the CTV is considerable decreased for the uncorrected table setup. This is associated with an increasing of the spinal cord dose above the tolerance dose. Conclusions An automatic image guided table correction ensures the delivery of accurate dose distribution and reduces the risk of radiation induced myelopathy. PMID:24238332

  7. Commercial production and distribution of fresh fruits and vegetables: A scoping study on the importance of produce pathways to dose. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Marsh, T.L.; Anderson, D.M.; Farris, W.T.; Ikenberry, T.A.; Napier, B.A.; Wilfert, G.L.

    1992-09-01

    This letter report summarizes a scoping study that examined the potential importance of fresh fruit and vegetable pathways to dose. A simple production index was constructed with data collected from the Washington State Department of Agriculture (WSDA), the United States Bureau of the Census, and the United States Department of Agriculture (USDA). Hanford Environmental Dose Reconstruction (HEDR) Project staff from Battelle, Pacific Northwest Laboratories, in cooperation with members of the Technical Steering Panel (TSP), selected lettuce and spinach as the produce pathways most likely to impact dose. County agricultural reports published in 1956 provided historical descriptions of the predominant distribution patterns of fresh lettuce and spinach from production regions to local population centers. Pathway rankings and screening dose estimates were calculated for specific populations living in selected locations within the HEDR study area.

  8. Calculation and Prediction of the Effect of Respiratory Motion on Whole Breast Radiation Therapy Dose Distributions

    SciTech Connect

    Cao Junsheng; Roeske, John C.; Chmura, Steve J.; Salama, Joseph K.; Shoushtari, Asal N.; Boyer, Arthur L.; Martel, Mary K.

    2009-07-01

    The standard treatment technique used for whole-breast irradiation can result in undesirable dose distributions in the treatment site, leading to skin reaction/fibrosis and pulmonary and cardiac toxicities. Hence, the technique has evolved from conventional wedged technique (CWT) to segment intensity-modulated radiation therapy (SIMRT) and beamlet IMRT (IMRT). However, these newer techniques feature more highly modulated dose distributions that may be affected by respiration. The purpose of this work was to conduct a simple study of the clinical impact of respiratory motion on breast radiotherapy dose distributions for the three treatment planning techniques. The ultimate goal was to determine which patients would benefit most from the use of motion management. Eight patients with early-stage breast cancer underwent a free-breathing (FB) computed tomography (CT) simulation, with medial and lateral markers placed on the skin. Two additional CT scans were obtained at the end of inspiration (EI) and the end of expiration (EE). The FB-CT scan was used to develop treatment plans using each technique. Each plan was then applied to EI and EE-CT scans. Compared with the FB CT scan, the medial markers moved up to 1.8 cm in the anterior-superior direction at the end of inspiration (EI-scan), and on average 8 mm. The CWT and SIMRT techniques were not 'sensitive' to respiratory motion, because the % clinical target volume (CTV) receiving 95% of the prescription dose (V{sub 95%}) remained constant for both techniques. For patients that had large respiratory motion indicated by marker movement >0.6 cm, differences in coverage of the CTV at the V100% between FB and EI for beamlet IMRT plans were on the order of >10% and up to 18%. A linear model was developed to relate the dosimetric coverage difference introduced by respiration with the motion information. With this model, the dosimetric coverage difference introduced by respiratory motion could be evaluated during patient CT

  9. Distribution of terrestrial gamma radiation dose rate in the eastern coastal area of Odisha, India.

    PubMed

    Gusain, G S; Rautela, B S; Sahoo, S K; Ishikawa, T; Prasad, G; Omori, Y; Sorimachi, A; Tokonami, S; Ramola, R C

    2012-11-01

    Terrestrial gamma radiation is one of the important radiation exposures on the earth's surface that results from the three primordial radionuclides (226)Ra, (232)Th and (40)K. The elemental concentration of these elements in the earth's crust could result in the anomalous variation of the terrestrial gamma radiation in the environment. The geology of the local area plays an important role in distribution of these radioactive elements. Environmental terrestrial gamma radiation dose rates were measured around the eastern coastal area of Odisha with the objective of establishing baseline data on the background radiation level. The values of the terrestrial gamma radiation dose rate vary significantly at different locations in the study area. The values of the terrestrial gamma dose rate ranged from 77 to 1651 nGy h(-1), with an average of 230 nGy h(-1). During the measurement of the terrestrial gamma dose rate, sand and soil samples were also collected for the assessment of natural radionuclides. The activities of (226)Ra, (232)Th and (40)K from these samples were measured using a gamma-ray spectrometry with a NaI(Tl) detector. Activity concentrations of (226)Ra, (232)Th and (40)K ranged from 15.6 to 69 Bq kg(-1) with an average of 46.7 Bq kg(-1), from 28.9 to 973 Bq kg(-1) with an average of 250 Bq kg(-1) and from 139 to 952 Bq kg(-1) with an average of 429, respectively. The detailed significance of these studies has been discussed from the radiation protection point of view.

  10. Monte Carlo dose calculations and radiobiological modelling: analysis of the effect of the statistical noise of the dose distribution on the probability of tumour control.

    PubMed

    Buffa, F M; Nahum, A E

    2000-10-01

    The aim of this work is to investigate the influence of the statistical fluctuations of Monte Carlo (MC) dose distributions on the dose volume histograms (DVHs) and radiobiological models, in particular the Poisson model for tumour control probability (tcp). The MC matrix is characterized by a mean dose in each scoring voxel, d, and a statistical error on the mean dose, sigma(d); whilst the quantities d and sigma(d) depend on many statistical and physical parameters, here we consider only their dependence on the phantom voxel size and the number of histories from the radiation source. Dose distributions from high-energy photon beams have been analysed. It has been found that the DVH broadens when increasing the statistical noise of the dose distribution, and the tcp calculation systematically underestimates the real tumour control value, defined here as the value of tumour control when the statistical error of the dose distribution tends to zero. When increasing the number of energy deposition events, either by increasing the voxel dimensions or increasing the number of histories from the source, the DVH broadening decreases and tcp converges to the 'correct' value. It is shown that the underestimation of the tcp due to the noise in the dose distribution depends on the degree of heterogeneity of the radiobiological parameters over the population; in particular this error decreases with increasing the biological heterogeneity, whereas it becomes significant in the hypothesis of a radiosensitivity assay for single patients, or for subgroups of patients. It has been found, for example, that when the voxel dimension is changed from a cube with sides of 0.5 cm to a cube with sides of 0.25 cm (with a fixed number of histories of 10(8) from the source), the systematic error in the tcp calculation is about 75% in the homogeneous hypothesis, and it decreases to a minimum value of about 15% in a case of high radiobiological heterogeneity. The possibility of using the error

  11. SU-E-T-89: Accuracy of Absolute Three-Dimensional Dose Distribution Measurement Using the Delta4

    SciTech Connect

    Uehara, R; Tachibana, H; Ohyoshi, H; Matsumoto, S; Baba, H; Tanaka, F; Ariji, T

    2015-06-15

    Purpose: In this study, we investigated the accuracy of the absolute dose distribution measurement using the Delta4 phantom compared to the measurements using a ionization chamber and EDR2 film Methods: Several conventional and intensity-modulated radiation therapy plans were used to compare the dose distribution measured using the Delta4 phantom to the absolute point dose using the chamber and the relative two-dimensional dose distribution using the EDR2 film. For the absolute dose distribution evaluation, the measurements using the Delta4, the chamber and the film were performed in similar measurement geometry. For point dose measurement using the chamber, an acrylic slab phantom with the PTW Semiflex chamber was inserted into the Delta4 phantom, alternative to the Delta4 main unit. Similarly, for dose distribution measurement using the film, the EDR2 film sandwiched with two acrylic slab phantoms were inserted to the phantom. Dose difference and gamma analysis were done for point dose and relative dose distribution comparisons, respectively. Results: The point dose measurements show slight negative systematic dose difference of −0.5 ± 0.1% and −1.0 ± 0.4% in the conventional and the IMRT plans, respectively. The additional measurement for direction dependency for Delta4 shows similar negative systematic dose difference even the phantom analysis software consider the directional dependency. The pass rate of the gamma evaluation was 77.7 ± 5.8% and 88.8±3.3% in the conventional and the IMRT plans, respectively. Conclusions: The Delta4 phantom shows a 1%-systematic dose difference derived from directional dependency and lower resolution compared to the film. Thus it is necessary to comprehensively evaluate the phantom to verify the IMRT/VMAT plans. Especially, the dosimetry tool is needed to have high resolution and high measurement accuracy in IMRT/VMAT-SBRT plan with small fields using intensity modulation in which the analysis area is limited and the

  12. A new gel using super absorbent polymer for mapping the spatial dose distributions of electron beams by MR imager.

    PubMed

    Hiraoka, T; Hoshino, K; Kawashima, K; Kato, H; Tateno, Y

    1993-01-01

    A technique for mapping the spatial dose distribution with a magnetic resonance imager is presented. A ferrous sulphate solution with sulfuric acid was used as the detecting medium for radiation dose. To make a gel of the solution for filling up a cubic phantom, we developed a new gel component that is combined with a super absorbent polymer (Sumikagel N-100) and a cross-linked dextran gel (Sephadex G-200). In order to make the application for radiation treatment planning, mapping of the dose distribution was carried out using a Unix computer.

  13. Effects of repeated treatment with the dopamine D2/D3 receptor partial agonist aripiprazole on striatal D2/D3 receptor availability in monkeys

    PubMed Central

    Czoty, Paul W.; Gage, H. Donald; Garg, Pradeep K.; Garg, Sudha; Nader, Michael A.

    2013-01-01

    Rationale Chronic treatment with dopamine (DA) receptor agonists and antagonists can differentially affect measures of DA D2/D3 receptor number and function, but the effects of chronic treatment with a partial D2/D3 receptor agonist are not clear. Objective We used a within-subjects design in male cynomolgus monkeys to determine the effects of repeated (17-day) treatment with the D2/D3 receptor partial agonist aripiprazole (ARI; 0.03 mg/kg and 0.1 mg/kg i.m.) on food-reinforced behavior (n=5) and on D2/D3 receptor availability as measured with positron emission tomography (PET; n=9). Methods Five monkeys responded under a fixed-ratio 50 schedule of food reinforcement and D2/D3 receptor availability was measured before and four days after ARI treatment using PET and the D2/D3 receptor-selective radioligand [18F]fluoroclebopride (FCP). Four additional monkeys were studied using [11C]raclopride and treated sequentially with each dose of ARI for 17 days. Results ARI decreased food-maintained responding with minimal evidence of tolerance. Repeated ARI administration increased FCP and raclopride distribution volume ratios (DVRs) in the caudate nucleus and putamen in most monkeys, but decreases were observed in monkeys with the highest baseline DVRs. Conclusions The results indicate that repeated treatment with a low efficacy DA receptor partial agonist produces effects on brain D2/D3 receptor availability that are qualitatively different from those of both high-efficacy receptor agonists and antagonists, and suggest that the observed individual differences in response to ARI treatment may reflect its partial agonist activity. PMID:24077804

  14. The dose distribution of low dose rate Cs-137 in intracavitary brachytherapy: comparison of Monte Carlo simulation, treatment planning calculation and polymer gel measurement

    NASA Astrophysics Data System (ADS)

    Fragoso, M.; Love, P. A.; Verhaegen, F.; Nalder, C.; Bidmead, A. M.; Leach, M.; Webb, S.

    2004-12-01

    In this study, the dose distribution delivered by low dose rate Cs-137 brachytherapy sources was investigated using Monte Carlo (MC) techniques and polymer gel dosimetry. The results obtained were compared with a commercial treatment planning system (TPS). The 20 mm and the 30 mm diameter Selectron vaginal applicator set (Nucletron) were used for this study. A homogeneous and a heterogeneous—with an air cavity—polymer gel phantom was used to measure the dose distribution from these sources. The same geometrical set-up was used for the MC calculations. Beyond the applicator tip, differences in dose as large as 20% were found between the MC and TPS. This is attributed to the presence of stainless steel in the applicator and source set, which are not considered by the TPS calculations. Beyond the air cavity, differences in dose of around 5% were noted, due to the TPS assuming a homogeneous water medium. The polymer gel results were in good agreement with the MC calculations for all the cases investigated.

  15. Design and implementation of a film dosimetry audit tool for comparison of planned and delivered dose distributions in high dose rate (HDR) brachytherapy

    NASA Astrophysics Data System (ADS)

    Palmer, Antony L.; Lee, Chris; Ratcliffe, Ailsa J.; Bradley, David; Nisbet, Andrew

    2013-10-01

    A novel phantom is presented for ‘full system’ dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit.

  16. Analysis of the Body Distribution of Absorbed Dose in the Organs of Three Species of Fish from Sepetiba Bay

    NASA Astrophysics Data System (ADS)

    Pereira, Wagner de S.; Kelecom, Alphonse; dos Santos Gouvea, Rita de Cássia; Py Júnior, Delcy de Azevedo

    2008-08-01

    The body distribution of Polonium-210 in three fishes from the Sepetiba Bay (Macrodon ancylodon, Micropogonias furnieri and Mugil curema) has been studied under the approach of the Department of Energy of the United States of America (DOE) that set the limit of absorbed dose rate in biota equal to 3.5×103 μGy/y, and that also established the relation between dose rate (D) and radionuclide concentration (c) on a fish muscle fresh weight basis, as follows: D = 5.05 E×N×C, assuming that the radionuclide distribution is homogenous among organs. Two hypotheses were tested here, using statistical tools: 1) is the body distribution of absorbed dose homogenous among organs? and 2) is the body distribution of absorbed dose identical among studied fishes? It was concluded, as expected, that the distribution among organs is heterogeneous; but, unexpectedly, that the three fishes display identical body distribution pattern, although they belong to different trophic levels. Hence, concerning absorbed dose calculation, the statement that data distribution is homogenous must be understood merely as an approximation, at least in the case of Polonium-210.

  17. Analysis of the Body Distribution of Absorbed Dose in the Organs of Three Species of Fish from Sepetiba Bay

    SciTech Connect

    Pereira, Wagner de S; Kelecom, Alphonse; Santos Gouvea, Rita de Cassia dos; Azevedo Py Junior, Delcy de

    2008-08-07

    The body distribution of Polonium-210 in three fishes from the Sepetiba Bay (Macrodon ancylodon, Micropogonias furnieri and Mugil curema) has been studied under the approach of the Department of Energy of the United States of America (DOE) that set the limit of absorbed dose rate in biota equal to 3.5x10{sup 3} {mu}Gy/y, and that also established the relation between dose rate (D) and radionuclide concentration (c) on a fish muscle fresh weight basis, as follows: D = 5.05 ExNxC, assuming that the radionuclide distribution is homogenous among organs. Two hypotheses were tested here, using statistical tools: 1) is the body distribution of absorbed dose homogenous among organs? and 2) is the body distribution of absorbed dose identical among studied fishes? It was concluded, as expected, that the distribution among organs is heterogeneous; but, unexpectedly, that the three fishes display identical body distribution pattern, although they belong to different trophic levels. Hence, concerning absorbed dose calculation, the statement that data distribution is homogenous must be understood merely as an approximation, at least in the case of Polonium-210.

  18. Dose distribution analysis of physical and dynamic wedges by using an intensity-modulated radiotherapy MatriXX

    NASA Astrophysics Data System (ADS)

    Lee, Hae-Kag; Cho, Jae-Hwan; Cho, Dae-chul

    2013-05-01

    This study investigated differences between the physical wedge and the dynamic wedge distributions of radiation by using an intensity-modulated radiotherapy (ImRT) MatriXX. The linear accelerator used X-rays with energy levels of 6 MV and 10 MV to adjust the collimator by motoring the independent jaws (X1, X2, Y1, Y2) for setting wedge angles of 15, 30, 45, and 60 degrees. The collimator field size was set as 10 × 10 cm2 or 20 × 20 cm2 at the maximum dose point. The dose distribution for each wedge had ±5% and ±11% errors for field sizes of 10 × 10 cm2 and 20 × 20 cm2, respectively. The error was greatest at a wedge angle of 45 degrees and was pronounced at the end of the dynamic wedge where Y1 and Y2 met. Consequently, concluded that the dose distributions were similar for both wedges for the field size of a small beam profile. The beam dose was greatly increased at the end of the dynamic wedge. A more precise estimate of the therapeutic dose of radiation for a dynamic wedge that nearly matches that of the physical wedge can be achieved by correcting of the increasing part of the beam dose. The findings imply that a heavy wedge filter should not be used when calculating the isodose distribution and the therapeutic dose.

  19. Optimization of deterministic transport parameters for the calculation of the dose distribution around a high dose-rate 192Ir brachytherapy source.

    PubMed

    Gifford, Kent A; Price, Michael J; Horton, John L; Wareing, Todd A; Mourtada, Firas

    2008-06-01

    The goal of this work was to calculate the dose distribution around a high dose-rate 192Ir brachytherapy source using a multi-group discrete ordinates code and then to compare the results with a Monte Carlo calculated dose distribution. The unstructured tetrahedral mesh discrete ordinates code Attila version 6.1.1 was used to calculate the photon kerma rate distribution in water around the Nucletron microSelectron mHDRv2 source. MCNPX 2.5.c was used to compute the Monte Carlo water photon kerma rate distribution. Two hundred million histories were simulated, resulting in standard errors of the mean of less than 3% overall. The number of energy groups, S(n) (angular order), P(n) (scattering order), and mesh elements were varied in addition to the method of analytic ray tracing to assess their effects on the deterministic solution. Water photon kerma rate matrices were exported from both codes into an in-house data analysis software. This software quantified the percent dose difference distribution, the number of points within +/- 3% and +/- 5%, and the mean percent difference between the two codes. The data demonstrated that a 5 energy-group cross-section set calculated results to within 0.5% of a 15 group cross-section set. S12 was sufficient to resolve the solution in angle. P2 expansion of the scattering cross-section was necessary to compute accurate distributions. A computational mesh with 55 064 tetrahedral elements in a 30 cm diameter phantom resolved the solution spatially. An efficiency factor of 110 with the above parameters was realized in comparison to MC methods. The Attila code provided an accurate and efficient solution of the Boltzmann transport equation for the mHDRv2 source.

  20. Quantitative autoradiographic evaluation of the influence of protein dose on monoclonal antibody distribution in human ovarian adenocarcinoma xenografts.

    PubMed

    Yang, F E; Brown, R S; Koral, K F; Clavo, A C; Jackson, G A; Wahl, R L

    1992-01-01

    We studied the effect of monoclonal antibody protein dose on the uniformity of radioiodinated antibody distribution within tumor masses using quantitative autoradiography. Groups (n = 11-13/group) of athymic nude mice with subcutaneous HTB77 human ovarian carcinoma xenografts were injected intraperitoneally with an 125I-labeled anticarcinoma-associated antigen murine monoclonal antibody, 5G6.4 using a high or a low protein dose (500 micrograms or 5 micrograms). At 6 days post-injection the macroscopic and microscopic intratumoral biodistribution of radiolabeled antibody was determined. The degree of heterogeneity of the labeled antibody distribution within each tumor was quantified and expressed as the coefficient of variation (CV) of the activity levels in serial histological sections. Tumors from mice given the 500-micrograms protein doses had substantially lower CV values, 0.327 +/- 0.027, than did tumors from animals given 5-micrograms protein doses, 0.458 +/- 0.041, (P = 0.0078), indicating that the higher protein dose resulted in more homogeneous distribution of radioactivity in tumors than did the lower dose. While the percentage of the injected dose reaching the tumor was comparable between groups, injecting the higher dose of protein resulted in significantly lower tumor to non-tumor uptake ratios than those obtained for the lower protein dose. These data indicate, in this system, that to achieve more uniform intratumoral antibody (and radiation for radioimmunotherapy) delivery, a relatively high protein dose must be administered. However, to obtain this increased uniformity, a substantial drop in tumor/background uptake ratios was seen. Quantitative autoradiographic evaluation of human tumor xenografts is a useful method to assess the intratumoral distribution of antibodies.

  1. Measurement of dose distribution in the spherical phantom onboard the ISS-KIBO module -MATROSHKA-R in KIBO-

    NASA Astrophysics Data System (ADS)

    Kodaira, Satoshi; Kawashima, Hajime; Kurano, Mieko; Uchihori, Yukio; Nikolaev, Igor; Ambrozova, Iva; Kitamura, Hisashi; Kartsev, Ivan; Tolochek, Raisa; Shurshakov, Vyacheslav

    The measurement of dose equivalent and effective dose during manned space missions on the International Space Station (ISS) is important for evaluating the risk to astronaut health and safety when exposed to space radiation. The dosimetric quantities are constantly changing and strongly depend on the level of solar activity and the various spacecraft- and orbit-dependent parameters such as the shielding distribution in the ISS module, location of the spacecraft within its orbit relative to the Earth, the attitude (orientation) and altitude. Consequently, the continuous monitoring of dosimetric quantities is required to record and evaluate the personal radiation dose for crew members during spaceflight. The dose distributions in the phantom body and on its surface give crucial information to estimate the dose equivalent in the human body and effective dose in manned space mission. We have measured the absorbed dose and dose equivalent rates using passive dosimeters installed in the spherical phantom in Japanese Experiment Module (“KIBO”) of the ISS in the framework of Matroshka-R space experiment. The exposure duration was 114 days from May 21 to September 12, 2012. The phantom consists of tissue-equivalent material covered with a poncho jacket with 32 pockets on its surface and 20 container rods inside of the phantom. The phantom diameter is 35 cm and the mass is 32 kg. The passive dosimeters consisted of a combination of luminescent detectors of Al _{2}O _{3};C OSL and CaSO _{4}:Dy TLD and CR-39 plastic nuclear track detectors. As one of preliminary results, the dose distribution on the phantom surface measured with OSL detectors installed in the jacket pockets is found to be ranging from 340 muGy/day to 260 muGy/day. In this talk, we will present the detail dose distributions, and variations of LET spectra and quality factor obtained outside and inside of the spherical phantom installed in the ISS-KIBO.

  2. Development of a high precision dosimetry system for the measurement of surface dose rate distribution for eye applicators

    SciTech Connect

    Eichmann, Marion; Fluehs, Dirk; Spaan, Bernhard

    2009-10-15

    Purpose: The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. Methods: In order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. Results: The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. Conclusions: The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate

  3. SU-E-T-463: Impact to Total Scatter Factors On the Calculated Dose Distribution in Radiosurgery

    SciTech Connect

    Garcia, O; Larraga-Gutierrez, J

    2015-06-15

    Purpose: To assess the impact of relative measurements: off axis ratios (OAR), tissue phantom ratios (TPR) and especially total scatter factor (TSF) on the calculated dose distribution in stereotactic radiosurgery with circular cones. Methods: Six detectors were employed to characterize circular collimated photon beams of 6 MV: three diodes (SFD, E, SRS), one ionization chamber (CC01) and two radiochromic films (EBT, EBT2). The relative measurements were incorporated in the treatment planning system (TPS) in order to compare and analyze the calculated dose distributions (DD). Each dose distribution was re-scaled by the TSF to observe its effect in the final dose distribution. The comparison was performed by using the gamma index. A Monte Carlo generated dosimetry was used as reference. Results: The results showed that in terms of relative dosimetry all the detectors have a good agreement within 2%, with the exception of the CC01 and EBT2 film. However, the analysis performed with the dose distributions re-scaled relative to the TSF for each detector showed that the impact it was not only to the isocenter dose. The dose to the PTV and normal tissue showed differences up to 13% depending of the dosimeter used for TSF measurements. Conclusion: With the exception of the CC01 ionization chamber and EBT2 radiochromic film, all the studied dosimeters were adequate for the measurement of OAR and TPR. However, attention must be put in the measurement of TSF. The use of the wrong detector does not only affect the isocenter dose, it may have an impact in the PTV and normal tissue dose.

  4. Systematic measurements of whole-body dose distributions for various treatment machines and delivery techniques in radiation therapy

    SciTech Connect

    Haelg, Roger A.; Besserer, Juergen; Schneider, Uwe

    2012-12-15

    Purpose: Contemporary radiotherapy treatment techniques, such as intensity-modulated radiation therapy and volumetric modulated arc therapy, could increase the radiation-induced malignancies because of the increased beam-on time, i.e., number of monitor units needed to deliver the same dose to the target and the larger volume irradiated with low doses. In this study, whole-body dose distributions from typical radiotherapy patient plans using different treatment techniques and therapy machines were measured using the same measurement setup and irradiation intention. Methods: Individually calibrated thermoluminescent dosimeters were used to measure absorbed dose in an anthropomorphic phantom at 184 locations. The dose distributions from 6 MV beams were compared in terms of treatment technique (3D-conformal, intensity-modulated radiation therapy, volumetric modulated arc therapy, helical TomoTherapy, stereotactic radiotherapy, hard wedges, and flattening filter-free radiotherapy) and therapy machine (Elekta, Siemens and Varian linear accelerators, Accuray CyberKnife and TomoTherapy). Results: Close to the target, the doses from intensity-modulated treatments (including flattening filter-free) were below the dose from a static treatment plan, whereas the CyberKnife showed a larger dose by a factor of two. Far away from the treatment field, the dose from intensity-modulated treatments showed an increase in dose from stray radiation of about 50% compared to the 3D-conformal treatment. For the flattening filter-free photon beams, the dose from stray radiation far away from the target was slightly lower than the dose from a static treatment. The CyberKnife irradiation and the treatment using hard wedges increased the dose from stray radiation by nearly a factor of three compared to the 3D-conformal treatment. Conclusions: This study showed that the dose outside of the treated volume is influenced by several sources. Therefore, when comparing different treatment techniques

  5. Detection of IMRT delivery errors using a quantitative 2D dosimetric verification system

    SciTech Connect

    Childress, Nathan L.; Bloch, Charles; White, R. Allen; Salehpour, Mohammad; Rosen, Isaac I.

    2005-01-01

    We investigated the feasibility of detecting intensity modulated radiotherapy delivery errors automatically using a scalar evaluation of two-dimensional (2D) transverse dose measurement of the complete treatment delivery. Techniques using the gamma index and the normalized agreement test (NAT) index were used to parametrize the agreement between measured and computed dose distributions to seven different scalar metrics. Simulated verifications with delivery errors calculated using a commercially available treatment planning system for 9 prostate and 7 paranasal sinus cases were compared to 433 clinical verifications. The NAT index with 5% and 3 mm criteria that included cold areas outside the planning target volume detected the largest percent of delivery errors. Assuming a false positive rate of 5%, it was able to detect 88% of beam energy changes, 94% of a different patient's plan being delivered, 25% of plans with one beam's collimator rotated by 90 deg., 81% of rotating one beam's gantry angle by 10 deg., and 100% of omitting the delivery of one beam. However, no instances of changing one beam's monitor unit setting by 10% or shifting the isocenter by 5 mm were detected. Although the phantom shift could not be detected by the small change it made in the dose distribution, our autopositioning algorithm clearly identified the spatial anomaly. Using tighter 3%/2 mm criteria or combining dose and distance disagreements in an either/or fashion resulted in poorer delivery error detection. The mean value of the 2D gamma index distribution was less sensitive to delivery errors than the other scalar metrics studied. Although we found that scalar metrics do not have sufficient delivery error detection rates to be used as the sole clinical analysis technique, manually examining 2D dose comparison images would result in a near 100% detection rate while performing an ion chamber measurement alone would only detect 54% of these errors.

  6. Effect of anatomic motion on proton therapy dose distributions in prostate cancer treatment

    SciTech Connect

    Zhang Xiaodong . E-mail: xizhang@mdanderson.org; Dong, Lei; Lee, Andrew K.; Cox, James D.; Kuban, Deborah A.; Zhu, Ron X.; Wang Xiaochun; Li Yupeng; Newhauser, Wayne D.; Gillin, Michael; Mohan, Radhe

    2007-02-01

    Purpose: To determine the dosimetric impact of interfraction anatomic movements in prostate cancer patients receiving proton therapy. Methods and Materials: For each of the 10 patients studied, 8 computed tomography (CT) scans were selected from sets of daily setup CT images that were acquired from a cohort of prostate cancer patients. The images were acquired in the treatment room using the CT-on-rails system. First, standard proton therapy and intensity-modulated radiation therapy (IMRT) plans were designed for each patient using standard modality-specific methods. The images, the proton plan, and the IMRT plan were then aligned to the eight CT images based on skin marks. The doses were recalculated on these eight CT images using beam from the standard plans. Second, the plans were redesigned and evaluated assuming a smaller clinical target volume to planning target volume margin (3 mm). The images and the corresponding plans were then realigned based on the center of volume of the prostate. Dose distributions were evaluated using isodose displays, dose-volume histograms, and target coverage. Results: For the skin-marker alignment method, 4 of the 10 IMRT plans were deficient, whereas 3 of 10 proton plans were compromised. For the alignment method based on the center of volume of the prostate, only the proton plan for 1 patient was deficient, whereas 3 of the 10 IMRT plans were suboptimal. Conclusion: A comparison of passively scattered proton therapy and highly conformal IMRT plans for prostate cancer revealed that the dosimetric impact of interfractional anatomic motions was similar for both modalities.

  7. Distributed optical fibre temperature measurements in a low dose rate radiation environment based on Rayleigh backscattering

    NASA Astrophysics Data System (ADS)

    Faustov, A.; Gussarov, A.; Wuilpart, M.; Fotiadi, A. A.; Liokumovich, L. B.; Kotov, O. I.; Zolotovskiy, I. O.; Tomashuk, A. L.; Deschoutheete, T.; Mégret, P.

    2012-04-01

    On-line monitoring of environmental conditions in nuclear facilities is becoming a more and more important problem. Standard electronic sensors are not the ideal solution due to radiation sensitivity and difficulties in installation of multiple sensors. In contrast, radiation-hard optical fibres can sustain very high radiation doses and also naturally offer multi-point or distributed monitoring of external perturbations. Multiple local electro-mechanical sensors can be replaced by just one measuring fibre. At present, there are over four hundred operational nuclear power plants (NPPs) in the world 1. Operating experience has shown that ineffective control of the ageing degradation of major NPP components can threaten plant safety and also plant life. Among those elements, cables are vital components of I&C systems in NPPs. To ensure their safe operation and predict remaining life, environmental monitoring is necessary. In particular, temperature and radiation dose are considered to be the two most important parameters. The aim of this paper is to assess experimentally the feasibility of optical fibre temperature measurements in a low doserate radiation environment, using a commercially available reflectometer based on Rayleigh backscattering. Four different fibres were installed in the Sub-Pile Room of the BR2 Material testing nuclear reactor in Mol, Belgium. This place is man-accessible during the reactor shut-down, allowing easy fibre installation. When the reactor operates, the dose-rates in the room are in a range 0.005-5 Gy/h with temperatures of 40-60 °C, depending on the location. Such a surrounding is not much different to some "hot" environments in NPPs, where I&C cables are located.

  8. Developmental Effects of ±3,4-Methylenedioxymethamphetamine on Spatial Versus Path Integration Learning: Effects of Dose Distribution

    PubMed Central

    VORHEES, CHARLES V.; SCHAEFER, TORI L.; WILLIAMS, MICHAEL T.

    2010-01-01

    We previously demonstrated that postnatal day 11–20 ±3,4-methylenedioxymethamphetamine (MDMA) exposure reduces locomotor activity and impairs path integration and spatial learning independent of the effects on activity. The effects were seen when the drug was administered twice per day, but the optimal dosing regimen is unknown. We tested whether the same total daily dose of MDMA administered in different patterns would equally affect later behavior. A split-litter design (15 litters) was used with one male/female pair per litter receiving one of four treatment regimens. All offspring received four injections per day on P11–20 as follows: 40 × 1 (40 mg/kg MDMA × 1 + saline × 3), 20 × 2 (20 mg/kg MDMA × 2 + saline × 2), 10 × 4 (10 mg/kg MDMA × 4), or Saline (saline × 4). Does were spaced 2 h apart. Group 40 × 1 received MDMA as the first daily dose followed by three saline doses; group 20 × 2 received MDMA as the first and last dose and saline for the middle two doses; group 10 × 4 received MDMA for all four doses; and the saline group received saline for all four doses. Regardless of dose schedule, all groups treated with MDMA exhibited reduced locomotor activity. No MDMA effects were found on swimming ability in a straight channel. Modest MDMA effects were found on Barnes maze performance. The major findings were that the 40 × 1 and 20 × 2 MDMA groups showed impaired Cincinnati multiple T-water-maze learning and the 10 × 4 and 20 × 2 MDMA groups showed impaired Morris water maze learning. The results suggest that MDMA dose distribution has a long-term differential effect on different types of learning. Dose distribution warrants greater attention in the design of developmental drug studies along with the standard considerations of dose and age. PMID:17415794

  9. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  10. Measurement and model prediction of proton-recoil track length distributions in NTA film dosimeters for neutron energy spectroscopy and retrospective dose assessment

    NASA Astrophysics Data System (ADS)

    Taulbee, Timothy D.

    The goal of this research was to determine whether neutron dose reconstruction could be improved through re-analysis of historic NTA films worn by workers in the 1950 through the 1970s. To improve neutron dose reconstruction, the underlying neutron energy spectra is critical in determining the organ dose due to energy dependence of the dose conversion factor as well as the application of radiation weighting factors used in epidemiology and probability of causation calculations. Monte Carlo models of proton-recoil track length distributions were developed and benchmarked against measurement data for both NTA and Ilford films. These models, when applied to several NTA film dosimeter configurations, demonstrated that proton-recoil track length distributions change based upon incident neutron energy. The neutron energy spectra changes that result from the general work environment such as source term and shielding can subsequently be modeled to predict the response of the NTA film dosimeter. An Automatic NTA Film Analyzer has been designed and developed to determine if the difference in proton-recoil track length distributions predicted by the Monte Carlo models could be measured and whether these differences could be correlated to the incident neutron energy spectra. The design required the development of a 2D-3D hybrid track recognition algorithm for a three dimensional analysis of the NTA film in order to accurately determine the proton-recoil track length for subsequent neutron energy determination. NTA films exposed to a plutonium fluoride (PuF4) and polonium boron (PoB) calibration sources were measured and compared. The proton-recoil track lengths were used to reconstruct the incident neutron energy spectra demonstrating the functionality of the analyzer and that reconstruction of the neutron energy spectra from NTA films is feasible. These measurements were compared to the Monte Carlo models and confirmed the applicability of using models to determine the NTA

  11. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture.

    PubMed

    Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2016-01-01

    The air dose rate in an environment contaminated with (134)Cs and (137)Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. This finding is insensitive to the choice for modeling the activity depth distribution in the ground using activity measurements of collected soil layers, or by using exponential and hyperbolic secant fits to the measurement data. Better predictions are obtained by modeling the horizontal distribution of radioactive cesium across an area if multiple soil samples are available, as opposed to assuming a spatially homogeneous contamination distribution. Reductions seen in air dose rates above flat, undisturbed fields in Fukushima Prefecture are consistent with decrement by radioactive decay and downward migration of cesium into soil. Analysis of remediation strategies for farmland soils confirmed that topsoil removal and interchanging a topsoil layer with a subsoil layer result in similar reductions in the air dose rate. These two strategies are more effective than reverse tillage to invert and mix the topsoil.

  12. Using electron beam radiation to simulate the dose distribution for whole body solar particle event proton exposure

    PubMed Central

    Diffenderfer, Eric S.; Avery, Stephen; Kennedy, Ann R.; McDonough, James

    2013-01-01

    As a part of the near solar system exploration program, astronauts may receive significant total body proton radiation exposures during a solar particle event (SPE). In the Center for Acute Radiation Research (CARR), symptoms of the acute radiation sickness syndrome induced by conventional radiation are being compared to those induced by SPE-like proton radiation, to determine the relative biological effectiveness (RBE) of SPE protons. In an SPE, the astronaut’s whole body will be exposed to radiation consisting mainly of protons with energies below 50 MeV. In addition to providing for a potentially higher RBE than conventional radiation, the energy distribution for an SPE will produce a relatively inhomogeneous total body dose distribution, with a significantly higher dose delivered to the skin and subcutaneous tissues than to the internal organs. These factors make it difficult to use a 60Co standard for RBE comparisons in our experiments. Here, the novel concept of using megavoltage electron beam radiation to more accurately reproduce both the total dose and the dose distribution of SPE protons and make meaningful RBE comparisons between protons and conventional radiation is described. In these studies, Monte Carlo simulation was used to determine the dose distribution of electron beam radiation in small mammals such as mice and ferrets as well as large mammals such as pigs. These studies will help to better define the topography of the time-dose-fractionation versus biological response landscape for astronaut exposure to an SPE. PMID:20725839

  13. Using electron beam radiation to simulate the dose distribution for whole body solar particle event proton exposure.

    PubMed

    Cengel, Keith A; Diffenderfer, Eric S; Avery, Stephen; Kennedy, Ann R; McDonough, James

    2010-11-01

    As a part of the near solar system exploration program, astronauts may receive significant total body proton radiation exposures during a solar particle event (SPE). In the Center for Acute Radiation Research (CARR), symptoms of the acute radiation sickness syndrome induced by conventional radiation are being compared to those induced by SPE-like proton radiation, to determine the relative biological effectiveness (RBE) of SPE protons. In an SPE, the astronaut's whole body will be exposed to radiation consisting mainly of protons with energies below 50 MeV. In addition to providing for a potentially higher RBE than conventional radiation, the energy distribution for an SPE will produce a relatively inhomogeneous total body dose distribution, with a significantly higher dose delivered to the skin and subcutaneous tissues than to the internal organs. These factors make it difficult to use a (60)Co standard for RBE comparisons in our experiments. Here, the novel concept of using megavoltage electron beam radiation to more accurately reproduce both the total dose and the dose distribution of SPE protons and make meaningful RBE comparisons between protons and conventional radiation is described. In these studies, Monte Carlo simulation was used to determine the dose distribution of electron beam radiation in small mammals such as mice and ferrets as well as large mammals such as pigs. These studies will help to better define the topography of the time-dose-fractionation versus biological response landscape for astronaut exposure to an SPE.

  14. Differential CYP 2D6 metabolism alters primaquine pharmacokinetics.

    PubMed

    Potter, Brittney M J; Xie, Lisa H; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T; Bandara Herath, H M T; Dhammika Nanayakkara, N P; Tekwani, Babu L; Walker, Larry A; Nolan, Christina K; Sciotti, Richard J; Zottig, Victor E; Smith, Philip L; Paris, Robert M; Read, Lisa T; Li, Qigui; Pybus, Brandon S; Sousa, Jason C; Reichard, Gregory A; Marcsisin, Sean R

    2015-04-01

    Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity.

  15. Seasonal influenza vaccine dose distribution in 195 countries (2004-2013): Little progress in estimated global vaccination coverage.

    PubMed

    Palache, Abraham; Oriol-Mathieu, Valerie; Fino, Mireli; Xydia-Charmanta, Margarita

    2015-10-13

    Seasonal influenza is an important disease which results in 250,000-500,000 annual deaths worldwide. Global targets for vaccination coverage rates (VCRs) in high-risk groups are at least 75% in adults ≥65 years and increased coverage in other risk groups. The International Federation of Pharmaceutical Manufacturers and Associations Influenza Vaccine Supply (IFPMA IVS) International Task Force developed a survey methodology in 2008, to assess the global distribution of influenza vaccine doses as a proxy for VCRs. This paper updates the previous survey results on absolute numbers of influenza vaccine doses distributed between 2004 and 2013 inclusive, and dose distribution rates per 1000 population, and provides a qualitative assessment of the principal enablers and barriers to seasonal influenza vaccination. The two main findings from the quantitative portion of the survey are the continued negative trend for dose distribution in the EURO region and the perpetuation of appreciable differences in scale of dose distribution between WHO regions, with no observed convergence in the rates of doses distributed per 1000 population over time. The main findings from the qualitative portion of the survey were that actively managing the vaccination program in real-time and ensuring political commitment to vaccination are important enablers of vaccination, whereas insufficient access to vaccination and lack of political commitment to seasonal influenza vaccination programs are likely contributing to vaccination target failures. In all regions of the world, seasonal influenza vaccination is underutilized as a public health tool. The survey provides evidence of lost opportunity to protect populations against potentially serious influenza-associated disease. We call on the national and international public health communities to re-evaluate their political commitment to the prevention of the annual influenza disease burden and to develop a systematic approach to improve vaccine

  16. Comparison between beta radiation dose distribution due to LDR and HDR ocular brachytherapy applicators using GATE Monte Carlo platform.

    PubMed

    Mostafa, Laoues; Rachid, Khelifi; Ahmed, Sidi Moussa

    2016-08-01

    Eye applicators with 90Sr/90Y and 106Ru/106Rh beta-ray sources are generally used in brachytherapy for the treatment of eye diseases as uveal melanoma. Whenever, radiation is used in treatment, dosimetry is essential. However, knowledge of the exact dose distribution is a critical decision-making to the outcome of the treatment. The Monte Carlo technique provides a powerful tool for calculation of the dose and dose distributions which helps to predict and determine the doses from different shapes of various types of eye applicators more accurately. The aim of this work consisted in using the Monte Carlo GATE platform to calculate the 3D dose distribution on a mathematical model of the human eye according to international recommendations. Mathematical models were developed for four ophthalmic applicators, two HDR 90Sr applicators SIA.20 and SIA.6, and two LDR 106Ru applicators, a concave CCB model and a flat CCB model. In present work, considering a heterogeneous eye phantom and the chosen tumor, obtained results with the use of GATE for mean doses distributions in a phantom and according to international recommendations show a discrepancy with respect to those specified by the manufacturers. The QC of dosimetric parameters shows that contrarily to the other applicators, the SIA.20 applicator is consistent with recommendations. The GATE platform show that the SIA.20 applicator present better results, namely the dose delivered to critical structures were lower compared to those obtained for the other applicators, and the SIA.6 applicator, simulated with MCNPX generates higher lens doses than those generated by GATE.

  17. Electron dose distributions caused by the contact-type metallic eye shield: Studies using Monte Carlo and pencil beam algorithms

    SciTech Connect

    Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin; Park, Soah; Cheong, Kwang-Ho; Jin Han, Tae; Kim, Haeyoung; Lee, Me-Yeon; Ju Kim, Kyoung Bae, Hoonsik

    2015-10-01

    A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shield was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation.

  18. Highly crystalline 2D superconductors

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-12-01

    Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.

  19. Extensions of 2D gravity

    SciTech Connect

    Sevrin, A.

    1993-06-01

    After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.

  20. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice.

    PubMed

    Pan, Xian; Jeong, Hyunyoung

    2015-07-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼ 50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter.

  1. Depth dose distributions measured with thermoluminescence detectors inside the anthropomorphic torso of the MATROSHKA experiment inside and outside the ISS

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Reitz, Guenther; Hajek, Michael; Bergmann, Robert; Bilski, Pawel; Puchalska, Msc. Monika

    The ESA MATROSHKA (MTR) facility was realized through the German Aerospace Center, DLR, Cologne, as main contractor, aiming for the determination of skin and organ doses within a simulated human upper torso. MTR simulates, by applying an anthropomorphic upper torso, as exact as possible an astronaut performing either an extravehicular activity (EVA) (MTR Phase 1) or an astronaut working inside the International Space Station (MTR Phase 2A). It consists of a human phantom, a Base Structure and a Carbon fibre container - simulating the astronaut‘s space suit. The phantom itself is made up of 33 slices composed of natural bones, embedded in tissue equivalent plastic of different density for tissue and lung. The Phantom slices are equipped with channels and cut-outs to allow the accommodation of active and passive dosemeters, temperature and pressure sensors. Over 4800 passive detectors (thermoluminescence detectors (TLDs) and plastic nuclear track detectors) constitute the radiation experiments which are beside inside the phantom also located on top the head of the phantom, in front of the belly and around the body as part of a Poncho and a Hood. In its 1st exposure phase (MTR 1: 2004 - 2005) MTR measured the depth dose distribution of an astronaut performing an EVA - mounted outside the Zvezda Module. In its 2nd exposure phase the phantom was positioned inside the ISS to monitor the radiation environment and measure the depth dose distribution in dependence on the inside shielding configurations. The majority of the TLDs provided for the determination of the depth dose distribution was provided by IFJ-PAN, ATI and DLR. Data of "combined" depth dose distribution of the three different groups will be shown for the MTR-1 exposure (outside the ISS) and the MTR-2A (inside the ISS). The discussion will focus on the difference in depth dose as well as skin dose distribution based on the different shielding thickness provided by the two experimental phases.

  2. Characterization of the dose distribution in the halo region of a clinical proton pencil beam using emulsion film detectors

    NASA Astrophysics Data System (ADS)

    Ariga, A.; Ariga, T.; Braccini, S.; Ereditato, A.; Giacoppo, F.; Nesteruk, K. P.; Pistillo, C.; Scampoli, P.

    2015-01-01

    Proton therapy is a high precision technique in cancer radiation therapy which allows irradiating the tumor with minimal damage to the surrounding healthy tissues. Pencil beam scanning is the most advanced dose distribution technique and it is based on a variable energy beam of a few millimeters FWHM which is moved to cover the target volume. Due to spurious effects of the accelerator, of dose distribution system and to the unavoidable scattering inside the patient's body, the pencil beam is surrounded by a halo that produces a peripheral dose. To assess this issue, nuclear emulsion films interleaved with tissue equivalent material were used for the first time to characterize the beam in the halo region and to experimentally evaluate the corresponding dose. The high-precision tracking performance of the emulsion films allowed studying the angular distribution of the protons in the halo. Measurements with this technique were performed on the clinical beam of the Gantry1 at the Paul Scherrer Institute. Proton tracks were identified in the emulsion films and the track density was studied at several depths. The corresponding dose was assessed by Monte Carlo simulations and the dose profile was obtained as a function of the distance from the center of the beam spot.

  3. Absorbed dose distributions for X-ray beams and beams of electrons from the Therac 20 Saturne linear accelerator.

    PubMed

    Tronc, D; Noël, A

    1978-11-01

    After a brief description of the Therac 20 Saturne linear accelerator a complete set of absorbed-dose distribution values is given. These values define the depths on the axis as a function of the depth dose and define the penumbra (as characterized by the positions of the intersections of the isodose curves with planes parallel to the phantom surface) for beams of X-rays and for beams of electrons. Tissue-maximum ratios are given for beams of X-rays. Analytical values for the electron depth dose curve are compared with the values obtained on the Sagittaire linear accelerator.

  4. Prediction of In-Phantom Dose Distribution Using In-Air Neutron Beam Characteristics for Boron Neutron Capture Synovectomy

    SciTech Connect

    Verbeke, Jerome M.; Chen, Allen S.; Vujic, Jasmina L.; Leung, Ka-Ngo

    2000-08-15

    A monoenergetic neutron beam simulation study was carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints such as knees and fingers. This study focuses on human knee joints. Two figures of merit are used to measure the neutron beam quality, the ratio of the synovium-absorbed dose to the skin-absorbed dose, and the ratio of the synovium-absorbed dose to the bone-absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment and that (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce the particle transport simulation time by a factor of 10 by modeling the moderator only.

  5. Impact of tissue inhomogeneity on dose distribution in the canine carpal and tarsal regions for cobalt and 6 MV photons.

    PubMed

    Mayer, Monique N; Yoshikawa, Hiroto; Sidhu, Narinder

    2009-01-01

    We quantified the effect of tissue inhomogeneity on dose distribution in a canine distal extremity resulting from treatment with cobalt photons and photons from a 6MV accelerator. Monitor units for a typical distal extremity treatment were calculated by two methods, using equally weighted, parallel-opposed fields. The first method was a computed tomography (CT)-based, computerized treatment plan, calculated without inhomogeneity correction. The second method was a manual point dose calculation to the isocenter. A computerized planning system was then used to assess the dose distribution achieved by these two methods when tissue inhomogeneity was taken into account. For cobalt photons, the median percentage of the planning target volume (PTV) that received < 95% of the prescribed dose was 4.5% for the CT-based treatment plan, and 26.2% for the manually calculated plan. For 6 MV photons, the median percentage of the PTV that received < 95% of the prescribed dose was < 1% for both planning methods. The PTV dose achieved without using inhomogeneity correction for cobalt photons results in potentially significant under dosing of portions of the PTV.

  6. Comparison of dose distribution in IMRT and RapidArc technique in prostate radiotherapy

    PubMed Central

    Leszczyński, Wojciech; Ślosarek, Krzysztof; Szlag, Marta

    2012-01-01

    Aim The aim was to provide a dosimetric comparison between IMRT and RapidArc treatment plans with RPI index with simultaneous comparison of the treatment delivery time. Background IMRT and RapidArc provide highly conformal dose distribution with good sparing of normal tissues. However, a complex spatial dosimetry of IMRT and RapidArc plans hampers the evaluation and comparison between plans calculated for the two modalities. RPI was used in this paper for treatment plan comparisons. The duration of the therapeutic session in RapidArc is reported to be shorter in comparison to therapeutic time of the other dynamic techniques. For this reasons, total treatment delivery time in both techniques was compared and discussed. Materials and methods 15 patients with prostate carcinoma were randomly selected for the analysis. Two competitive treatment plans using respectively the IMRT and RapidArc techniques were computed for each patient in Eclipse planning system v. 8.6.15. RPIwin® application was used for RPI calculations for each treatment plan. Additionally, total treatment time was compared between IMRT and RapidArc plans. Total treatment time was a sum of monitor units (MU) for each treated field. Results The mean values of the RPI indices were insignificantly higher for IMRT plans in comparison to rotational therapy. Comparison of the mean numbers of monitor units confirmed that the use of rotational technique instead of conventional static field IMRT can significantly reduce the treatment time. Conclusion Analysis presented in this paper, demonstrated that RapidArc can compete with the IMRT technique in the field of treatment plan dosimetry reducing the time required for dose delivery. PMID:24377036

  7. Design and implementation of a water phantom for IMRT, arc therapy, and tomotherapy dose distribution measurements

    SciTech Connect

    Pallotta, Stefania; Marrazzo, Livia; Bucciolini, Marta

    2007-10-15

    The aim of this paper is to present a new phantom for arc therapy, intensity-modulated radiation therapy (IMRT), and tomotherapy dose distribution measurement in pretreatment verification. The presented phantom is innovative for its use of water as the tissue equivalent material, together with a technical solution specifically designed to support radiographic or radiochromic film and ionization chambers in any desired position. The phantom comprise a Plexiglas container, whose present shape and dimensions offer the possibility to simulate a human torso or abdomen; the container can be filled with water by opening the upper cover. On the internal side of the cover, a set of carbon pipes can support film in the desired coronal, axial, or sagittal planes. At one of the two ends of the phantom, an ionization chamber can be positioned parallel to the rotation axis of the accelerator gantry in all possible positions within a 20 cm diameter cylinder, for film calibration purposes. Inhomogeneities can be inserted into the phantom using the same carbon pipes and plastic sheets used to support film. An example of vertebra-shaped inserts made of bone equivalent material is reported. Radiochromic film can be dipped in water, while radiographic film must be protected to prevent damage. To accomplish this, radiographic film is laminated using a cold laminating film. In order to assess the effects of both the lamination itself and the effects of water on laminated Kodak EDR2 film, the optical density (OD) of conventional, laminated, and laminated film immersed in water and exposed to a range of doses from 0 to 300 cGy were compared. The OD of the three samples receiving the same radiation dose did not present any significant difference, thus proving that laminated EDR2 film can also be used in water. A prerequisite for any dosimetric comparison between planned and measured data is a proper film to plan registration. The solution proposed here is an extrinsic in-plane registration

  8. Direct and indirect tasks on assessment of dose and time distributions and thresholds of acute radiation exposure.

    PubMed

    Osovets, S V; Azizova, T V; Day, R D; Wald, N; Moseeva, M B

    2012-02-01

    Mathematical methods were developed to construct dose and time distributions and their associated risks and threshold values for lethal and non-lethal effects of acute radiation exposure to include mortality and incidence, prodromal vomiting, and agranulocytosis. A new distribution (T-model) was obtained to describe time parameters of acute radiation syndrome such as the latency period, time to onset of vomiting, and time to initiation of agranulocytosis. Based on the dose and time distributions, the parameter translation method was defined using an orthogonal regression, which allows one to solve for these distributions in the case of acute radiation exposure. The assessment of threshold doses was performed for some effects of acute radiation syndrome: for the latency period, ∼6-8 Gy absorbed dose and ∼0.7-0.9 h time to onset of vomiting; and for incidence (agranulocytosis), ∼2-3 Gy absorbed dose and ∼2-3 h time to onset of vomiting. The obtained new formula for assessment of radiation risk is applicable to the time parameters of acute radiation syndrome.

  9. Probing the conformation and 2D-distribution of pyrene-terminated redox-labeled poly(ethylene glycol) chains end-adsorbed on HOPG using cyclic voltammetry and atomic force electrochemical microscopy.

    PubMed

    Anne, Agnès; Bahri, Mohamed Ali; Chovin, Arnaud; Demaille, Christophe; Taofifenua, Cécilia

    2014-03-14

    The present paper aims at illustrating how end-attachment of water-soluble flexible chains bearing a terminal functional group onto graphene-like surfaces has to be carefully tuned to ensure the proper positioning of the functional moiety with respect to the anchoring surface. The model experimental system considered here consists of a layer of poly(ethylene glycol) (PEG) chains, bearing an adsorbing pyrene foot and a ferrocene (Fc) redox functional head, self-assembled onto highly oriented pyrolytic graphite (HOPG). Cyclic voltammetry is used to accurately measure the chain coverage and gain insights into the microenvironment experienced by the Fc heads. Molecule-touching atomic force electrochemical microscopy (Mt/AFM-SECM) is used to simultaneously probe the chain conformation and the position of the Fc heads within the layer, and also to map the 2D-distribution of the chains over the surface. This multiscale electrochemical approach allows us to show that whereas Fc-PEG-pyrene readily self-assembles to form extremely homogeneous layers, the strongly hydrophobic nature of graphite planes results in a complex coverage-dependent structure of the PEG layer due to the interaction of the ferrocene label with the HOPG surface. It is shown that, even though pyrene is known to adsorb particularly strongly onto HOPG, the more weakly adsorbing terminal ferrocene can also act as the chain anchoring moiety especially at low coverage. However we show that beyond a critical coverage value the Fc-PEG-pyrene chains adopt an ideal "foot-on" end-attached conformation allowing the Fc head to explore a volume away from the surface solely limited by the PEG chain elasticity.

  10. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  11. SU-F-BRA-06: Dose Distributions for the CivaSheet Pd-103 Directional Brachytherapy Device

    SciTech Connect

    Rivard, MJ

    2015-06-15

    Purpose: A flexible polymer membrane (CivaSheet) has been developed by CivaTech Oncology, Inc. (Research Triangle Park, NC) for permanent brachytherapy. Distributed throughout the array are small plastic disks containing Pd-103 and gold foil shielding on one side to provide a directional dose distribution and facilitate imaging. This study evaluated dosimetry for the CivaSheet. Methods: Manufacturer-provided dimensional and compositional information for the device were compared to physical samples for validation of design information, then entered into the MCNP6 radiation transport code for dosimetry simulations. Three device sizes (6×6, 6×12, or 6×18 disk-arrays) were simulated as the membrane can be custom-sized preceding surgical placement. Dose to water was estimated with 0.01 cm resolution from the surface to 10 cm on both sides of the device. Because this is a novel device with calibration methods under development, results were normalized using DVHs to provide 90% prescription coverage to a plane positioned 0.5 cm from the front surfaces. This same normalization was used for creating isodose distributions. Results: Planar dose distributions of flat CivaSheets were relatively homogeneous with acceptable dose uniformity variations. Differences in the results between the differently sized CivaSheets were not significant. At 0.5 mm, 87% of the target volume was within the therapeutic dose range. Dose hotspots on the CivaSheet forward surfaces were directly above the disks. However, dose hotspots on the rear-facing surfaces were positioned between the disks. Doses in contact with the front surface were similar to those observed for currently available brachytherapy sources. Maximum doses that occurred on the rear surface were approximately 55 times lower than the dose on the front surface. Conclusion: Monte Carlo calculations validated the directional capabilities and advantageous dosimetry of the new Pd-103 brachytherapy device. It appears feasible to re

  12. SU-F-18C-11: Diameter Dependency of the Radial Dose Distribution in a Long Polyethylene Cylinder

    SciTech Connect

    Bakalyar, D; McKenney, S; Feng, W

    2014-06-15

    Purpose: The radial dose distribution in the central plane of a long cylinder following a long CT scan depends upon the diameter and composition of the cylinder. An understanding of this behavior is required for determining the spatial average of the dose in the central plane. Polyethylene, the material for construction of the TG200/ICRU phantom (30 cm in diameter) was used for this study. Size effects are germane to the principles incorporated in size specific dose estimates (SSDE); thus diameter dependency was explored as well. Method: ssuming a uniform cylinder and cylindrically symmetric conditions of irradiation, the dose distribution can be described using a radial function. This function must be an even function of the radial distance due to the conditions of symmetry. Two effects are accounted for: The direct beam makes its weakest contribution at the center while the contribution due to scatter is strongest at the center and drops off abruptly at the outer radius. An analytic function incorporating these features was fit to Monte Carlo results determined for infinite polyethylene cylinders of various diameters. A further feature of this function is that it is integrable. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the larger sizes. The competing effects described above can Resultin an absolute maximum occurring between the center and outer edge of the cylinders. For the smallest cylinders, the maximum dose may occur at the center. Conclusion: An integrable, analytic function can be used to characterize the radial dependency of dose for cylindrical CT phantoms of various sizes. One use for this is to help determine average dose distribution over the central cylinder plane when equilibrium dose has been reached.

  13. Macroscopic geometric heterogeneity effects in radiation dose distribution analysis for boron neutron capture therapy.

    PubMed

    Moran, J M; Nigg, D W; Wheeler, F J; Bauer, W F

    1992-01-01

    Calculations of radiation flux and dose distributions for boron neutron capture therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This paper describes such a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for the tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for this model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous-tissue model. Comparison of the results showed that peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10%-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  14. Feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma from a viewpoint of dose distribution analysis

    SciTech Connect

    Suzuki, Minoru . E-mail: msuzuki@rri.kyoto-u.ac.jp; Sakurai, Yoshinori; Masunaga, Shinichiro; Kinashi, Yuko; Nagata, Kenji; Maruhashi, Akira; Ono, Koji

    2006-12-01

    Purpose: To investigate the feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma (MPM) from a viewpoint of dose distribution analysis using Simulation Environment for Radiotherapy Applications (SERA), a currently available BNCT treatment planning system. Methods and Materials: The BNCT treatment plans were constructed for 3 patients with MPM using the SERA system, with 2 opposed anterior-posterior beams. The {sup 1}B concentrations in the tumor and normal lung in this study were assumed to be 84 and 24 ppm, respectively, and were derived from data observed in clinical trials. The maximum, mean, and minimum doses to the tumors and the normal lung were assessed for each plan. The doses delivered to 5% and 95% of the tumor volume, D{sub 05} and D{sub 95}, were adopted as the representative dose for the maximum and minimum dose, respectively. Results: When the D{sub 05} to the normal ipsilateral lung was 5 Gy-Eq, the D{sub 95} and mean doses delivered to the normal lung were 2.2-3.6 and 3.5-4.2 Gy-Eq, respectively. The mean doses delivered to the tumors were 22.4-27.2 Gy-Eq. The D{sub 05} and D{sub 95} doses to the tumors were 9.6-15.0 and 31.5-39.5 Gy-Eq, respectively. Conclusions: From a viewpoint of the dose-distribution analysis, BNCT has the possibility to be a promising treatment for MPM patients who are inoperable because of age and other medical illnesses.

  15. Tissue distribution of residual antimony in rats treated with multiple doses of meglumine antimoniate

    PubMed Central

    Coelho, Deise Riba; Miranda, Elaine Silva; Saint’Pierre, Tatiana Dillenburg; Paumgartten, Francisco José Roma

    2014-01-01

    Meglumine antimoniate (MA) and sodium stibogluconate are pentavalent antimony (SbV) drugs used since the mid-1940s. Notwithstanding the fact that they are first-choice drugs for the treatment of leishmaniases, there are gaps in our knowledge of their toxicological profile, mode of action and kinetics. Little is known about the distribution of antimony in tissues after SbV administration. In this study, we evaluated the Sb content of tissues from male rats 24 h and three weeks after a 21-day course of treatment with MA (300 mg SbV/kg body wt/d, subcutaneous). Sb concentrations in the blood and organs were determined by inductively coupled plasma-mass spectrometry. In rats, as with in humans, the Sb blood levels after MA dosing can be described by a two-compartment model with a fast (t1/2 = 0.6 h) and a slow (t1/2 >> 24 h) elimination phase. The spleen was the organ that accumulated the highest amount of Sb, while bone and thyroid ranked second in descending order of tissues according to Sb levels (spleen >> bone, thyroid, kidneys > liver, epididymis, lungs, adrenals > prostate > thymus, pancreas, heart, small intestines > skeletal muscle, testes, stomach > brain). The pathophysiological consequences of Sb accumulation in the thyroid and Sb speciation in the liver, thyroid, spleen and bone warrant further studies. PMID:25075781

  16. Retention, organ distribution, and excretory pattern of cadmium orally administered in a single dose to two monkeys

    SciTech Connect

    Suzuki, S.; Taguchi, T.

    1980-07-01

    Retention, excretion, and organ distribution of radioactive Cd were observed after a single oral dose of two monkeys. The retention rate of Cd 19 d after the administration of radiocadmium (/sup 109/CdCl/sub 2/, carrier-free) to one monkey was 5.2% of the administered dose; 73.4% of the dose was excreted in the feces and 0.7% in the urine. The largest fractions of the administered dose were found in the small intestine, liver, and kidney. The absorption rate of Cd 25 d after the administration of radiocadmium with 1.0 mg cold Cd as CdCl/sub 2/ solution to the other monkey was 6.3% of the administered dose; 75.5% of the dose was excreted in the feces and 0.9% in the urine. Setting the whole body retention equal to 100% on d 19 or 25, the largest fractions were found in the small intestines (51.5 and 36.3%), livers (21.8 and 29.6%), and kidneys (13.4 and 21.0%) of the respective monkeys). The effect of carrier Cd on absorption, excretion, and organ distribution was not pronounced. The highest concentration and greatest retention of Cd was observed in the upper small intestinal wall and the content of the small intestine, indicating the importance of enteroenteric circulation of the element; this finding was different from the results for Cd metabolism in rodents.

  17. Renal accumulation and intrarenal distribution of inorganic mercury in the rabbit: Effect of unilateral nephrectomy and dose of mercuric chloride

    SciTech Connect

    Zalups, R.K. )

    1991-06-01

    The effects of unilateral nephrectomy and dose of mercuric chloride on the short-term renal accumulation and intrarenal distribution of inorganic mercury were studied in the rabbit. The renal accumulation of inorganic mercury, on a per gram basis, was increased in uninephrectomized (NPX) rabbits compared with that in sham-operated (SO) rabbits 24 h after the animals received either a nontoxic 2.0 mumol/kg or nephrotoxic 4.0 mumol/kg dose of mercuric chloride. In the NPX rabbits given the 2.0 mumol/kg dose of mercuric chloride, the increased accumulation of inorganic mercury was due to increased accumulation of mercury in the outer stripe of the outer medulla. In the NPX rabbits given the 4.0 mumol/kg dose of mercuric chloride, the increased renal accumulation of mercury appeared to be due to increased accumulation of mercury in both the renal cortex and outer stripe of the outer medulla. Interestingly, no differences in the renal accumulation of inorganic mercury were found between NPX and SO rabbits given a low nontoxic 0.5 mumol/kg dose of mercuric chloride. As the dose of mercuric chloride was increased from 0.5 to 4.0 mumol/kg, the percent of the administered dose of mercury that accumulated in each gram of renal tissue decreased substantially. The findings in the present study indicate that the renal accumulation of inorganic mercury increases after unilateral nephrectomy when certain nontoxic and nephrotoxic doses of mercuric chloride are administered. In addition, they indicate that the percent of the administered dose of mercury that accumulates in the renal tissue of both NPX and SO rabbits decreases as the dose of mercuric chloride is increased.

  18. Commercial production and distribution of fresh fruits and vegetables: A scoping study on the importance of produce pathways to dose

    SciTech Connect

    Marsh, T.L.; Anderson, D.M.; Farris, W.T.; Ikenberry, T.A.; Napier, B.A.; Wilfert, G.L.

    1992-09-01

    This letter report summarizes a scoping study that examined the potential importance of fresh fruit and vegetable pathways to dose. A simple production index was constructed with data collected from the Washington State Department of Agriculture (WSDA), the United States Bureau of the Census, and the United States Department of Agriculture (USDA). Hanford Environmental Dose Reconstruction (HEDR) Project staff from Battelle, Pacific Northwest Laboratories, in cooperation with members of the Technical Steering Panel (TSP), selected lettuce and spinach as the produce pathways most likely to impact dose. County agricultural reports published in 1956 provided historical descriptions of the predominant distribution patterns of fresh lettuce and spinach from production regions to local population centers. Pathway rankings and screening dose estimates were calculated for specific populations living in selected locations within the HEDR study area.

  19. Interim storage of spent and disused sealed sources: optimisation of external dose distribution in waste grids using the MCNPX code.

    PubMed

    Paiva, I; Oliveira, C; Trindade, R; Portugal, L

    2005-01-01

    Radioactive sealed sources are in use worldwide in different fields of application. When no further use is foreseen for these sources, they become spent or disused sealed sources and are subject to a specific waste management scheme. Portugal does have a Radioactive Waste Interim Storage Facility where spent or disused sealed sources are conditioned in a cement matrix inside concrete drums and following the geometrical disposition of a grid. The gamma dose values around each grid depend on the drum's enclosed activity and radionuclides considered, as well as on the drums distribution in the various layers of the grid. This work proposes a method based on the Monte Carlo simulation using the MCNPX code to estimate the best drum arrangement through the optimisation of dose distribution in a grid. Measured dose rate values at 1 m distance from the surface of the chosen optimised grid were used to validate the corresponding computational grid model.

  20. SU-E-I-16: Scan Length Dependency of the Radial Dose Distribution in a Long Polyethylene Cylinder

    SciTech Connect

    Bakalyar, D; McKenney, S; Feng, W

    2015-06-15

    Purpose: The area-averaged dose in the central plane of a long cylinder following a CT scan depends upon the radial dose distribution and the length of the scan. The ICRU/TG200 phantom, a polyethylene cylinder 30 cm in diameter and 60 cm long, was the subject of this study. The purpose was to develop an analytic function that could determine the dose for a scan length L at any point in the central plane of this phantom. Methods: Monte Carlo calculations were performed on a simulated ICRU/TG200 phantom under conditions of cylindrically symmetric conditions of irradiation. Thus, the radial dose distribution function must be an even function that accounts for two competing effects: The direct beam makes its weakest contribution at the center while the scatter begins abruptly at the outer radius and grows as the center is approached. The scatter contribution also increases with scan length with the increase approaching its limiting value at the periphery faster than along the central axis. An analytic function was developed that fit the data and possessed these features. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the ICRU/TG200 phantom. The relative depth of the minimum decreases as the scan length grows and an absolute maximum can occur between the center and outer edge of the cylinders. As the scan length grows, the relative dip in the center decreases so that for very long scan lengths, the dose profile is relatively flat. Conclusion: An analytic function characterizes the radial and scan length dependency of dose for long cylindrical phantoms. The function can be integrated with the results expressed in closed form. One use for this is to help determine average dose distribution over the central cylinder plane for any scan length.

  1. Experimental verification of improved depth-dose distribution using hyper-thermal neutron incidence in neutron capture therapy.

    PubMed

    Sakurai, Y; Kobayashi, T

    2001-01-01

    We have proposed the utilization of 'hyper-thermal neutrons' for neutron capture therapy (NCT) from the viewpoint of the improvement in the dose distribution in a human body. In order to verify the improved depth-dose distribution due to hyper-thermal neutron incidence, two experiments were carried out using a test-type hyper-thermal neutron generator at a thermal neutron irradiation field in Kyoto University Reactor (KUR), which is actually utilized for NCT clinical irradiation. From the free-in-air experiment for the spectrum-shift characteristics, it was confirmed that the hyper-thermal neutrons of approximately 860 K at maximum could be obtained by the generator. From the phantom experiment, the improvement effect and the controllability for the depth-dose distribution were confirmed. For example, it was found that the relative neutron depth-dose distribution was about 1 cm improved with the 860 K hyper-thermal neutron incidence, compared to the normal thermal neutron incidence.

  2. Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters.

    PubMed

    Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Hematiyan, Mohammad Rahim; Koontz, Craig; Meigooni, Ali S

    2015-12-07

    Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost(®) brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5%  ±  5.9%.

  3. Dose distribution homogeneity in two TBI techniques—Analysis of 208 irradiated patients conducted in Stanislaw Leszczynski Memorial Hospital, Katowice

    PubMed Central

    Kawa-Iwanicka, Aneta; Łobodziec, Włodzimierz; Dybek, Marcin; Nenko, Dorota; Iwanicki, Tomasz

    2012-01-01

    Background To analyze and compare dose distribution homogeneity in selected points (especially in the chest wall region) for patients irradiated with two different TBI techniques to achieve a uniform total dose (excluding lungs area) specified in the range of 11.4–14.0 Gy. Material and methods From August 2000 to December 2009, a group of 158 patients was treated by the use of 15 MV photon irradiation consisting of six fractions: four opposed lateral and two anterior–posterior/posterior–anterior (AP/PA). Patients were irradiated with the fraction dose of 2 Gy twice a day for 3 consecutive days. The prescribed dose to PC point (specified at intersection of the beam axis with the mid-plane of the patient irradiated laterally) was 12 Gy. Since January 2010 until closing the study, another group of 50 patients was treated according to a modified protocol. The treatment was carried out in six lateral fractions only, twice a day, for three following days and a lateral lung shield was used for a part of total irradiation time. The measurements of doses in 20 selected points of patient's body were carried out by means of MOSFET detectors. Results The modified TBI technique allows to achieve an expected homogenous dose in the points of interest similar to that obtained by using the initial protocol. The calculated and measured in vivo doses met the specified range of 11.4–14 Gy for both applied TBI protocols. Conclusions Our results indicate that for all patients the homogenous dose distribution in the specified range was achieved. PMID:24377040

  4. A Novel Method to Incorporate the Spatial Location of the Lung Dose Distribution into Predictive Radiation Pneumonitis Modeling

    SciTech Connect

    Vinogradskiy, Yevgeniy; Tucker, Susan L.; Liao, Zhongxing; Martel, Mary K.

    2012-03-15

    Purpose: Studies have proposed that patients who receive radiation therapy to the base of the lung are more susceptible to radiation pneumonitis than patients who receive therapy to the apex of the lung. The primary purpose of the present study was to develop a novel method to incorporate the lung dose spatial information into a predictive radiation pneumonitis model. A secondary goal was to apply the method to a 547 lung cancer patient database to determine whether including the spatial information could improve the fit of our model. Methods and Materials: The three-dimensional dose distribution of each patient was mapped onto one common coordinate system. The boundaries of the coordinate system were defined by the extreme points of each individual patient lung. Once all dose distributions were mapped onto the common coordinate system, the spatial information was incorporated into a Lyman-Kutcher-Burman predictive radiation pneumonitis model. Specifically, the lung dose voxels were weighted using a user-defined spatial weighting matrix. We investigated spatial weighting matrices that linearly scaled each dose voxel according to the following orientations: superior-inferior, anterior-posterior, medial-lateral, left-right, and radial. The model parameters were fit to our patient cohort with the endpoint of severe radiation pneumonitis. The spatial dose model was compared against a conventional dose-volume model to determine whether adding a spatial component improved the fit of the model. Results: Of the 547 patients analyzed, 111 (20.3%) experienced severe radiation pneumonitis. Adding in a spatial parameter did not significantly increase the accuracy of the model for any of the weighting schemes. Conclusions: A novel method was developed to investigate the relationship between the location of the deposited lung dose and pneumonitis rate. The method was applied to a patient database, and we found that for our patient cohort, the spatial location does not influence

  5. Electron Irradiation of Conjunctival Lymphoma-Monte Carlo Simulation of the Minute Dose Distribution and Technique Optimization

    SciTech Connect

    Brualla, Lorenzo; Zaragoza, Francisco J.; Sempau, Josep; Wittig, Andrea; Sauerwein, Wolfgang

    2012-07-15

    Purpose: External beam radiotherapy is the only conservative curative approach for Stage I non-Hodgkin lymphomas of the conjunctiva. The target volume is geometrically complex because it includes the eyeball and lid conjunctiva. Furthermore, the target volume is adjacent to radiosensitive structures, including the lens, lacrimal glands, cornea, retina, and papilla. The radiotherapy planning and optimization requires accurate calculation of the dose in these anatomical structures that are much smaller than the structures traditionally considered in radiotherapy. Neither conventional treatment planning systems nor dosimetric measurements can reliably determine the dose distribution in these small irradiated volumes. Methods and Materials: The Monte Carlo simulations of a Varian Clinac 2100 C/D and human eye were performed using the PENELOPE and PENEASYLINAC codes. Dose distributions and dose volume histograms were calculated for the bulbar conjunctiva, cornea, lens, retina, papilla, lacrimal gland, and anterior and posterior hemispheres. Results: The simulated results allow choosing the most adequate treatment setup configuration, which is an electron beam energy of 6 MeV with additional bolus and collimation by a cerrobend block with a central cylindrical hole of 3.0 cm diameter and central cylindrical rod of 1.0 cm diameter. Conclusions: Monte Carlo simulation is a useful method to calculate the minute dose distribution in ocular tissue and to optimize the electron irradiation technique in highly critical structures. Using a voxelized eye phantom based on patient computed tomography images, the dose distribution can be estimated with a standard statistical uncertainty of less than 2.4% in 3 min using a computing cluster with 30 cores, which makes this planning technique clinically relevant.

  6. Effect of tissue composition on dose distribution in brachytherapy with various photon emitting sources

    PubMed Central

    Ghorbani, Mahdi; Salahshour, Fateme; Haghparast, Abbas; Knaup, Courtney

    2014-01-01

    Purpose The aim of this study is to compare the dose in various soft tissues in brachytherapy with photon emitting sources. Material and methods 103Pd, 125I, 169Yb, 192Ir brachytherapy sources were simulated with MCNPX Monte Carlo code, and their dose rate constant and radial dose function were compared with the published data. A spherical phantom with 50 cm radius was simulated and the dose at various radial distances in adipose tissue, breast tissue, 4-component soft tissue, brain (grey/white matter), muscle (skeletal), lung tissue, blood (whole), 9-component soft tissue, and water were calculated. The absolute dose and relative dose difference with respect to 9-component soft tissue was obtained for various materials, sources, and distances. Results There was good agreement between the dosimetric parameters of the sources and the published data. Adipose tissue, breast tissue, 4-component soft tissue, and water showed the greatest difference in dose relative to the dose to the 9-component soft tissue. The other soft tissues showed lower dose differences. The dose difference was also higher for 103Pd source than for 125I, 169Yb, and 192Ir sources. Furthermore, greater distances from the source had higher relative dose differences and the effect can be justified due to the change in photon spectrum (softening or hardening) as photons traverse the phantom material. Conclusions The ignorance of soft tissue characteristics (density, composition, etc.) by treatment planning systems incorporates a significant error in dose delivery to the patient in brachytherapy with photon sources. The error depends on the type of soft tissue, brachytherapy source, as well as the distance from the source. PMID:24790623

  7. Effects of Respiration-Induced Density Variations on Dose Distributions in Radiotherapy of Lung Cancer

    SciTech Connect

    Mexner, Vanessa; Wolthaus, Jochem W.H.; Herk, Marcel van; Damen, Eugene M.F.; Sonke, Jan-Jakob

    2009-07-15

    Purpose: To determine the effect of respiration-induced density variations on the estimated dose delivered to moving structures and, consequently, to evaluate the necessity of using full four-dimensional (4D) treatment plan optimization. Methods and Materials: In 10 patients with large tumor motion (median, 1.9 cm; range, 1.1-3.6 cm), the clinical treatment plan, designed using the mid-ventilation ([MidV]; i.e., the 4D-CT frame closest to the time-averaged mean position) CT scan, was recalculated on all 4D-CT frames. The cumulative dose was determined by transforming the doses in all breathing phases to the MidV geometry using deformable registration and then averaging the results. To determine the effect of density variations, this cumulative dose was compared with the accumulated dose after similarly deforming the planned (3D) MidV-dose in each respiratory phase using the same transformation (i.e., 'blurring the dose'). Results: The accumulated tumor doses, including and excluding density variations, were almost identical. Relative differences in the minimum gross tumor volume (GTV) dose were less than 2% for all patients. The relative differences were even smaller in the mean lung dose and the V20 (<0.5% and 1%, respectively). Conclusions: The effect of respiration-induced density variations on the dose accumulated over the respiratory cycle was very small, even in the presence of considerable respiratory motion. A full 4D-dose calculation for treatment planning that takes into account such density variations is therefore not required. Planning using the MidV-CT derived from 4D-CT with an appropriate margin for geometric uncertainties is an accurate and safe method to account for respiration-induced anatomy variations.

  8. Comparison of linear and nonlinear programming approaches for "worst case dose" and "minmax" robust optimization of intensity-modulated proton therapy dose distributions.

    PubMed

    Zaghian, Maryam; Cao, Wenhua; Liu, Wei; Kardar, Laleh; Randeniya, Sharmalee; Mohan, Radhe; Lim, Gino

    2017-03-01

    Robust optimization of intensity-modulated proton therapy (IMPT) takes uncertainties into account during spot weight optimization and leads to dose distributions that are resilient to uncertainties. Previous studies demonstrated benefits of linear programming (LP) for IMPT in terms of delivery efficiency by considerably reducing the number of spots required for the same quality of plans. However, a reduction in the number of spots may lead to loss of robustness. The purpose of this study was to evaluate and compare the performance in terms of plan quality and robustness of two robust optimization approaches using LP and nonlinear programming (NLP) models. The so-called "worst case dose" and "minmax" robust optimization approaches and conventional planning target volume (PTV)-based optimization approach were applied to designing IMPT plans for five patients: two with prostate cancer, one with skull-based cancer, and two with head and neck cancer. For each approach, both LP and NLP models were used. Thus, for each case, six sets of IMPT plans were generated and assessed: LP-PTV-based, NLP-PTV-based, LP-worst case dose, NLP-worst case dose, LP-minmax, and NLP-minmax. The four robust optimization methods behaved differently from patient to patient, and no method emerged as superior to the others in terms of nominal plan quality and robustness against uncertainties. The plans generated using LP-based robust optimization were more robust regarding patient setup and range uncertainties than were those generated using NLP-based robust optimization for the prostate cancer patients. However, the robustness of plans generated using NLP-based methods was superior for the skull-based and head and neck cancer patients. Overall, LP-based methods were suitable for the less challenging cancer cases in which all uncertainty scenarios were able to satisfy tight dose constraints, while NLP performed better in more difficult cases in which most uncertainty scenarios were hard to meet

  9. Depth Dose Distribution Study within a Phantom Torso after Irradiation with a Simulated Solar Particle Event at NSRL

    NASA Technical Reports Server (NTRS)

    Berger, Thomas; Matthiae, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis; Reitz, Guenther

    2010-01-01

    The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are compounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrapolation of skin dose to organ dose, which can lead to over- or underestimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be predicted to within about a +10% accuracy using space radiation transport models for galactic cosmic rays (GCR) and trapped radiation behind shielding. However for solar particle event (SPE) with steep energy spectra and for extra-vehicular activities on the surface of the moon where only tissue shielding is present, transport models predict that there are large differences in model assumptions in projecting organ doses. Therefore experimental verification of SPE induced organ doses may be crucial for the design of lunar missions. In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field

  10. Direct intratumoral infusion of liposome encapsulated rhenium radionuclides for cancer therapy: Effects of nonuniform intratumoral dose distribution

    SciTech Connect

    Hrycushko, Brian A.; Li Shihong; Goins, Beth; Otto, Randal A.; Bao, Ande

    2011-03-15

    Purpose: Focused radiation therapy by direct intratumoral infusion of lipid nanoparticle (liposome)-carried beta-emitting radionuclides has shown promising results in animal model studies; however, little is known about the impact the intratumoral liposomal radionuclide distribution may have on tumor control. The primary objective of this work was to investigate the effects the intratumoral absorbed dose distributions from this cancer therapy modality have on tumor control and treatment planning by combining dosimetric and radiobiological modeling with in vivo imaging data. Methods: {sup 99m}Tc-encapsulated liposomes were intratumorally infused with a single injection location to human head and neck squamous cell carcinoma xenografts in nude rats. High resolution in vivo planar imaging was performed at various time points for quantifying intratumoral retention following infusion. The intratumoral liposomal radioactivity distribution was obtained from 1 mm resolution pinhole collimator SPECT imaging coregistered with CT imaging of excised tumors at 20 h postinfusion. Coregistered images were used for intratumoral dosimetric and radiobiological modeling at a voxel level following extrapolation to the therapeutic analogs, {sup 186}Re/{sup 188}Re liposomes. Effective uniform dose (EUD) and tumor control probability (TCP) were used to assess therapy effectiveness and possible methods of improving upon tumor control with this radiation therapy modality. Results: Dosimetric analysis showed that average tumor absorbed doses of 8.6 Gy/MBq (318.2 Gy/mCi) and 5.7 Gy/MBq (209.1 Gy/mCi) could be delivered with this protocol of radiation delivery for {sup 186}Re/{sup 188}Re liposomes, respectively, and 37-92 MBq (1-2.5 mCi)/g tumor administered activity; however, large intratumoral absorbed dose heterogeneity, as seen in dose-volume histograms, resulted in insignificant values of EUD and TCP for achieving tumor control. It is indicated that the use of liposomes encapsulating

  11. Four-dimensional dose distributions of step-and-shoot IMRT delivered with real-time tumor tracking for patients with irregular breathing: Constant dose rate vs dose rate regulation

    SciTech Connect

    Yang Xiaocheng; Han-Oh, Sarah; Gui Minzhi; Niu Ying; Yu, Cedric X.; Yi Byongyong

    2012-09-15

    Purpose: Dose-rate-regulated tracking (DRRT) is a tumor tracking strategy that programs the MLC to track the tumor under regular breathing and adapts to breathing irregularities during delivery using dose rate regulation. Constant-dose-rate tracking (CDRT) is a strategy that dynamically repositions the beam to account for intrafractional 3D target motion according to real-time information of target location obtained from an independent position monitoring system. The purpose of this study is to illustrate the differences in the effectiveness and delivery accuracy between these two tracking methods in the presence of breathing irregularities. Methods: Step-and-shoot IMRT plans optimized at a reference phase were extended to remaining phases to generate 10-phased 4D-IMRT plans using segment aperture morphing (SAM) algorithm, where both tumor displacement and deformation were considered. A SAM-based 4D plan has been demonstrated to provide better plan quality than plans not considering target deformation. However, delivering such a plan requires preprogramming of the MLC aperture sequence. Deliveries of the 4D plans using DRRT and CDRT tracking approaches were simulated assuming the breathing period is either shorter or longer than the planning day, for 4 IMRT cases: two lung and two pancreatic cases with maximum GTV centroid motion greater than 1 cm were selected. In DRRT, dose rate was regulated to speed up or slow down delivery as needed such that each planned segment is delivered at the planned breathing phase. In CDRT, MLC is separately controlled to follow the tumor motion, but dose rate was kept constant. In addition to breathing period change, effect of breathing amplitude variation on target and critical tissue dose distribution is also evaluated. Results: Delivery of preprogrammed 4D plans by the CDRT method resulted in an average of 5% increase in target dose and noticeable increase in organs at risk (OAR) dose when patient breathing is either 10% faster or

  12. SU-E-T-20: A Correlation Study of 2D and 3D Gamma Passing Rates for Prostate IMRT Plans

    SciTech Connect

    Zhang, D; Wang, B; Ma, C; Deng, X

    2015-06-15

    Purpose: To investigate the correlation between the two-dimensional gamma passing rate (2D %GP) and three-dimensional gamma passing rate (3D %GP) in prostate IMRT quality assurance. Methods: Eleven prostate IMRT plans were randomly selected from the clinical database and were used to obtain dose distributions in the phantom and patient. Three types of delivery errors (MLC bank sag errors, central MLC errors and monitor unit errors) were intentionally introduced to modify the clinical plans through an in-house Matlab program. This resulted in 187 modified plans. The 2D %GP and 3D %GP were analyzed using different dose-difference and distance-toagreement (1%-1mm, 2%-2mm and 3%-3mm) and 20% dose threshold. The 2D %GP and 3D %GP were then compared not only for the whole region, but also for the PTVs and critical structures using the statistical Pearson’s correlation coefficient (γ). Results: For different delivery errors, the average comparison of 2D %GP and 3D %GP showed different conclusions. The statistical correlation coefficients between 2D %GP and 3D %GP for the whole dose distribution showed that except for 3%/3mm criterion, 2D %GP and 3D %GP of 1%/1mm criterion and 2%/2mm criterion had strong correlations (Pearson’s γ value >0.8). Compared with the whole region, the correlations of 2D %GP and 3D %GP for PTV were better (the γ value for 1%/1mm, 2%/2mm and 3%/3mm criterion was 0.959, 0.931 and 0.855, respectively). However for the rectum, there was no correlation between 2D %GP and 3D %GP. Conclusion: For prostate IMRT, the correlation between 2D %GP and 3D %GP for the PTV is better than that for normal structures. The lower dose-difference and DTA criterion shows less difference between 2D %GP and 3D %GP. Other factors such as the dosimeter characteristics and TPS algorithm bias may also influence the correlation between 2D %GP and 3D %GP.

  13. Disposition and tissue distribution of imatinib in a liposome formulation after intravenous bolus dose to mice.

    PubMed

    Moo, Kai Shing; Radhakrishnan, Shantini; Teoh, Magdalene; Narayanan, Prasad; Bukhari, Nadeem Irfan; Segarra, Ignacio

    2010-07-01

    Imatinib is an efficacious anticancer drug with a spectrum of potential antitumour applications limited by poor biodistribution at therapeutic concentrations to the tissues of interest. We assess the pharmacokinetic and tissue distribution profile of imatinib in a liposome formulation. Its single dose (6.25 mg x kg(-1)) in a liposome formulation was administered iv to male mice. Imatinib concentration was measured in plasma, spleen, liver, kidney and brain using a HPLC assay. Non-compartmental pharmacokinetic approach was used to assess the disposition parameters. The plasma disposition profile was biphasic with a plateau-like second phase. The AUC(0-->infinity) was 11.24 microg x h x mL(-1), the elimination rate constant (k(el)) was 0.348 h(-1) and the elimination half life (t(1/2)) was 2.0 h. The mean residence time (MRT) was 2.59 h, V(SS) was 1.44 L x kg(-1) and clearance was 0.56 L x h x kg(-1). Liver achieved the highest tissue exposure: CMAX = 18.72 microg x mL(-1); AUC(0-->infinity)= 58.18 microg x h x mL(-1) and longest t(1/2) (4.29 h) and MRT (5.31 h). Kidney and spleen AUC(0-->infinity) were 47.98 microg x h x mL(-1) and 23.46 microg x h x mL(-1), respectively. Half-life was 1.83 h for the kidney and 3.37 h for the spleen. Imatinib penetrated into the brain reaching approximately 1 microg x g(-1). Upon correction by organ blood flow the spleen showed the largest uptake efficiency. Liposomal imatinib presented extensive biodistribution. The drug uptake kinetics showed mechanism differences amongst the tissues. These findings encourage the development of novel imatinib formulations to treat other cancers.

  14. Individual-dose distribution for the population in different regions with radioactive contamination

    SciTech Connect

    Keirim-Markus, I.B.; Kleshchenko, E.D.; Kushnereva, K.K.

    1995-09-01

    The reconstruction of individual doses as a result of the Chernobyl accident often relied on the method of EPR measurement from the enamel from extracted teeth. This method was used reliably, with individual confirmations of its indications being obtained. In determining the relatively small irradiation dose to the population, doubts arise because of the fact that the measured dose is often greater than the dose calculated by an indirect method---from external radiation fields at the location and the contents of radionuclides in foods. It is necessary, therefore, to perform an independent check of the results. In this paper, we describe one method for checking the reliability---comparing the measurements of the dose from several teeth in the same individual---in determining the dose from tooth enamel for the population of the Kamensk-Ural region of Sverdlovsk province. This group lived in the zone of passage for the eastern Ural radioactive wake in 1957. The error of the dose determination for different samples was different, since it depends on the mass and quality of the enamel obtained. The results presented show that the method of EPR dosimetry using the enamel of extracted teeth makes it possible to determine quite reliably the individual dose of external radiation from the background up to several Gy of the measurements. Our method compares measurements.

  15. Pharmacopeial methodologies for determining aerodynamic mass distributions of ultra-high dose inhaler medicines.

    PubMed

    Wong, William; Crapper, John; Chan, Hak-Kim; Traini, Daniela; Young, Paul M

    2010-03-11

    Three different impactor methodologies, the Andersen cascade impactor (ACI), next-generation impactor (NGI) and multistage-liquid impinger (MSLI) were studied to determine their performance when testing ultra-high dose dry powder formulations. Cumulative doses of spray-dried mannitol (Aridol) were delivered to each impactor at a flow rate of 60Lmin(-1) (up to a max dose of 800mg delivering 20 sequential 40mg capsules). In general, total drug collected in both the ACI and NGI falls below the range 85-115% of label claim criteria recommended by the United States of America Food and Drug Administration (FDA) at nominal mannitol doses exceeding 20mg and 200mg, respectively. In comparison analysis of the MSLI data, over a 5-800mg cumulative dosing range, indicated that the percentage of nominal dose recovered from the MSLI was within the +/-15% limits set in this study. Furthermore all samples, apart from the 5mg and 10mg analysis were within 5% of the nominal cumulative dose. While the MSLI is not routinely used for regulatory submission, the use of this impinger when studying ultra-high dose formulations should be considered as a complementary and comparative source of aerosol deposition data.

  16. SU-E-T-05: A 2D EPID Transit Dosimetry Model Based On An Empirical Quadratic Formalism

    SciTech Connect

    Tan, Y; Metwaly, M; Glegg, M; Baggarley, S; Elliott, A

    2014-06-01

    Purpose: To describe a 2D electronic portal imaging device (EPID) transit dosimetry model, based on an empirical quadratic formalism, that can predict either EPID or in-phantom dose distribution for comparisons with EPID captured image or treatment planning system (TPS) dose respectively. Methods: A quadratic equation can be used to relate the reduction in intensity of an exit beam to the equivalent path length of the attenuator. The calibration involved deriving coefficients from a set of dose planes measured for homogeneous phantoms with known thicknesses under reference conditions. In this study, calibration dose planes were measured with EPID and ionisation chamber (IC) in water for the same reference beam (6MV, 100mu, 20×20cm{sup 2}) and set of thicknesses (0–30cm). Since the same calibration conditions were used, the EPID and IC measurements can be related through the quadratic equation. Consequently, EPID transit dose can be predicted from TPS exported dose planes and in-phantom dose can be predicted using EPID distribution captured during treatment as an input. The model was tested with 4 open fields, 6 wedge fields, and 7 IMRT fields on homogeneous and heterogeneous phantoms. Comparisons were done using 2D absolute gamma (3%/3mm) and results were validated against measurements with a commercial 2D array device. Results: The gamma pass rates for comparisons between EPID measured and predicted ranged from 93.6% to 100.0% for all fields and phantoms tested. Results from this study agreed with 2D array measurements to within 3.1%. Meanwhile, comparisons in-phantom between TPS computed and predicted ranged from 91.6% to 100.0%. Validation with 2D array device was not possible for inphantom comparisons. Conclusion: A 2D EPID transit dosimetry model for treatment verification was described and proven to be accurate. The model has the advantage of being generic and allows comparisons at the EPID plane as well as multiple planes in-phantom.

  17. Comparison of the dose distribution obtained from dosimetric systems with intensity modulated radiotherapy planning system in the treatment of prostate cancer

    NASA Astrophysics Data System (ADS)

    Gökçe, M.; Uslu, D. Koçyiǧit; Ertunç, C.; Karalı, T.

    2016-03-01

    The aim of this study is to compare Intensity Modulated Radiation Therapy (IMRT) plan of prostate cancer patients with different dose verification systems in dosimetric aspects and to compare these systems with each other in terms of reliability, applicability and application time. Dosimetric control processes of IMRT plan of three prostate cancer patients were carried out using thermoluminescent dosimeter (TLD), ion chamber (IC) and 2D Array detector systems. The difference between the dose values obtained from the dosimetric systems and treatment planning system (TPS) were found to be about % 5. For the measured (TLD) and calculated (TPS) doses %3 percentage differences were obtained for the points close to center while percentage differences increased at the field edges. It was found that TLD and IC measurements will increase the precision and reliability of the results of 2D Array.

  18. Measurements and calculations of the absorbed dose distribution around a 60Co source.

    PubMed

    Tiourina, T B; Dries, W J; van der Linden, P M

    1995-05-01

    The data from Meisberger et al. [Radiology 90, 953-957 (1968)] are often used as a basis for dose calculations in brachytherapy. In order to describe the absorbed dose in water around a brachytherapy point source, Meisberger provided a polynomial fit for different isotopes taking into account the effect of attenuation and scattering. The validity of the Meisberger coefficients is restricted to distances up to 10 cm from the source, which is regarded to be satisfactory for most brachytherapy applications. However, for more distant organs it may lead to errors in calculated absorbed dose. For this reason dose measurements have been performed in air and in water around a high activity 60Co source used in high dose rate brachytherapy. Measurements were carried out to distances of 20 cm, using ionization chambers. These data show that at a distance of about 15 cm the amount of scattered radiation virtually equals the amount of primary radiation. This emphasizes the contribution of scattered radiation to the dose in healthy tissue far from the target volume, even with relatively high energy photon radiation of 60Co. It is also shown that the Meisberger data as well as the approach of Van Kleffens and Star [Int. J. Radiat. Oncol. Phys. 5, 557-563 (1979)] lead to significant errors in absorbed dose between distances of 10 and 20 cm from the source. In addition to these measurements, the Monte Carlo code has been used to calculate separately primary dose and scattered dose from a cobalt point source. The calculated results agree with the experimental data within 1% for a most distant dose scoring region.

  19. New investigation of distribution imaging and content uniformity of very low dose drugs using hot-melt extrusion method.

    PubMed

    Park, Jun-Bom; Kang, Chin-Yang; Kang, Wie-Soo; Choi, Han-Gon; Han, Hyo-Kyung; Lee, Beom-Jin

    2013-12-31

    The content uniformity of low dose drugs in dosage forms is very important for quality assurance. The aim of this study was to prepare uniformly and homogeneously distributed dosage forms of very low-dose drugs using twin screw hot-melt extrusion (HME) and to investigate the distribution of drugs using instrumental analyses. For the feasibility of HME method, a very low amount of coumarin-6, a fluorescent dye, was used to visualize distribution images using confocal laser scanning microscope (CLSM). Limaprost, tamsulosin and glimepiride were then used as low-dose model drugs to study the applicability of HME for content uniformity and distribution behaviors. Hydrophilic thermosensitive polymers with low melting point, such as Poloxamer188 and polyethylene glycol (PEG) 6000, were chosen as carriers. The melt extrusion was carried out around 50°C, at which both carriers were easily dissolved but model drugs remained in solid form. The physicochemical properties of the hot-melt extrudates, including differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FT-IR), were measured. Content uniformity of the drugs was also checked by HPLC. CLSM imaging showed that model drugs were well distributed throughout the hot-melt extrudate, giving better content uniformity with low batch-to-batch variations compared with simple physical mixtures. DSC, PXRD and FT-IR data showed that there was no interaction or interference between model drugs and thermosensitive polymers. The current HME methods could be used to prepare uniformly distributed and reproducible solid dosage forms containing very low dose drugs for further pharmaceutical applications.

  20. Magnitude of Residual Internal Anatomy Motion on Heavy Charged Particle Dose Distribution in Respiratory Gated Lung Therapy

    SciTech Connect

    Mori, Shinichiro Asakura, Hiroshi; Kandatsu, Susumu; Kumagai, Motoki; Baba, Masayuki; Endo, Masahiro

    2008-06-01

    Purpose: To assess the variation in carbon beam dose distribution due to residual motion in lung cancer patients undergoing respiratory-gated radiotherapy. Methods and Materials: A total of 11 lung cancer patients underwent four-dimensional computed tomography with a 256-multislice computed tomography scanner under free-breathing conditions. A compensating bolus was designed to cover the treatment beam for all planning target volumes during a 30% duty cycle centered on exhalation (gating window). This bolus was applied to the four-dimensional computed tomography data for one respiratory cycle, and then the carbon beam dose distribution was calculated. Results: A water equivalent pathlength variation of <5 mm was observed in the gating window, but this increased to {<=}20 mm on inhalation. As a result, beam overshoot/undershoot occurred around inhalation, which increased the excessive dosing to normal tissues and the organs at risk. The dose for >95% volume irradiation is dependent on the respiratory phase but not the gating window. However, the dose for >95% volume irradiation correlated well with the tumor displacement distance. More than 90% of the dose for >95% volume irradiation could be delivered in the gating window with <4-mm tumor displacement resulting from exhalation. Conclusion: The results of our study have shown that even when the treatment beam delivery occurs outside the gating window, the prescribed dose to the target is not affected in patients with a tumor displacement of <4 mm. Thus, respiratory gating is not required in radiotherapy for patients with <4-mm tumor displacement in a respiratory cycle.

  1. Quasi 3D dosimetry (EPID, conventional 2D/3D detector matrices)

    NASA Astrophysics Data System (ADS)

    Bäck, A.

    2015-01-01

    Patient specific pretreatment measurement for IMRT and VMAT QA should preferably give information with a high resolution in 3D. The ability to distinguish complex treatment plans, i.e. treatment plans with a difference between measured and calculated dose distributions that exceeds a specified tolerance, puts high demands on the dosimetry system used for the pretreatment measurements and the results of the measurement evaluation needs a clinical interpretation. There are a number of commercial dosimetry systems designed for pretreatment IMRT QA measurements. 2D arrays such as MapCHECK® (Sun Nuclear), MatriXXEvolution (IBA Dosimetry) and OCTAVIOUS® 1500 (PTW), 3D phantoms such as OCTAVIUS® 4D (PTW), ArcCHECK® (Sun Nuclear) and Delta4 (ScandiDos) and software for EPID dosimetry and 3D reconstruction of the dose in the patient geometry such as EPIDoseTM (Sun Nuclear) and Dosimetry CheckTM (Math Resolutions) are available. None of those dosimetry systems can measure the 3D dose distribution with a high resolution (full 3D dose distribution). Those systems can be called quasi 3D dosimetry systems. To be able to estimate the delivered dose in full 3D the user is dependent on a calculation algorithm in the software of the dosimetry system. All the vendors of the dosimetry systems mentioned above provide calculation algorithms to reconstruct a full 3D dose in the patient geometry. This enables analyzes of the difference between measured and calculated dose distributions in DVHs of the structures of clinical interest which facilitates the clinical interpretation and is a promising tool to be used for pretreatment IMRT QA measurements. However, independent validation studies on the accuracy of those algorithms are scarce. Pretreatment IMRT QA using the quasi 3D dosimetry systems mentioned above rely on both measurement uncertainty and accuracy of calculation algorithms. In this article, these quasi 3D dosimetry systems and their use in patient specific pretreatment IMRT

  2. SU-E-T-758: To Determine the Source Dwell Positions of HDR Brachytherapy Using 2D 729 Ion Chamber Array

    SciTech Connect

    Kumar, Syam; Sitha

    2015-06-15

    Purpose: Determination of source dwell positions of HDR brachytherapy using 2D 729 ion chamber array Methods: Nucletron microselectron HDR and PTW 2D array were used for the study. Different dwell positions were assigned in the HDR machine. Rigid interstitial needles and vaginal applicator were positioned on the 2D array. The 2D array was exposed for this programmed dwell positions. The positional accuracy of the source was analyzed after the irradiation of the 2D array. This was repeated for different dwell positions. Different test plans were transferred from the Oncentra planning system and irradiated with the same applicator position on the 2D array. The results were analyzed using the in house developed excel program. Results: Assigned dwell positions versus corresponding detector response were analyzed. The results show very good agreement with the film measurements. No significant variation found between the planned and measured dwell positions. Average dose response with 2D array between the planned and nearby dwell positions was found to be 0.0804 Gy for vaginal cylinder applicator and 0.1234 Gy for interstitial rigid needles. Standard deviation between the doses for all the measured dwell positions for interstitial rigid needle for 1 cm spaced positions were found to be 0.33 and 0.37 for 2cm spaced dwell positions. For intracavitory vaginal applicator this was found to be 0.21 for 1 cm spaced dwell positions and 0.06 for 2cm spaced dwell positions. Intracavitory test plans reproduced on the 2D array with the same applicator positions shows the ideal dose distribution with the TPS planned. Conclusion: 2D array is a good tool for determining the dwell position of HDR brachytherapy. With the in-house developed program in excel it is easy and accurate. The traditional way with film analysis can be replaced by this method, as the films will be more costly.

  3. Absorbed dose distribution for X-ray beams and beams of electrons from the Therac 10 Neptune linear accelerator.

    PubMed

    Tronc, D; Gayet, P

    1980-02-01

    After a brief presentation of the Therac 10 Neptune linear accelerator a complete set of dose distribution numerical values is given. These values define the depths on the axis as a function of the depth dose and define the penumbra (as characterized by the positions of the isodose curve intersections with parallel planes to the phantom surface) for beams of X-rays and for beams of electrons. Measurements of residual X-rays are given for a 10 MeV beam of electrons.

  4. Response to CYP2D6 substrate antidepressants is predicted by a CYP2D6 composite phenotype based on genotype and comedications with CYP2D6 inhibitors.

    PubMed

    Gressier, F; Verstuyft, C; Hardy, P; Becquemont, L; Corruble, E

    2015-01-01

    The cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of most antidepressants. Comedication with a potent CYP2D6 inhibitor can convert patients with extensive metabolizer (EM) or ultra-rapid metabolizer (UM) genotypes into poor metabolizer (PM) phenotypes. Since comedication is frequent in depressed patients treated with antidepressants, we investigated the effect of the CYP2D6 composite phenotype on antidepressant efficacy, taking into account both the CYP2D6 genotype and comedication with CYP2D6 inhibitors. 87 Caucasian in patients with a major depressive episode were prospectively treated with flexible doses of antidepressant monotherapy as well as comedications and genotyped for the major CYP2D6 alleles (CYP2D6*3 rs35742686, *4 rs3892097, *5 del, *6 rs5030655, and *2xN). They were classified for CYP2D6 composite phenotype and assessed for antidepressant response after 4 weeks. In terms of genotypes (g), 6 subjects were UMg, 6 PMg, and 75 EMg. Ten patients were coprescribed a CYP2D6 inhibitor, resulting in the following composite phenotypes (cp): 5 UMcp, 16 PMcp, and 66 EMcp. Whereas none of the CYP2D6 genotypes were significantly associated with antidepressant response, UMcp had a lower antidepressant response than PMcp or EMcp (respectively: 39.0 ± 17.9, 50.0 ± 26.0, and 61.6 ± 23.4, p = 0.02). Despite small sample size, this study suggests that a CYP2D6 composite phenotype, taking into account both genotype and comedications with CYP2D6 inhibitors, could predict CYP2D6 substrate antidepressants response. Thus, to optimize antidepressant response, CYP2D6 genotype could be performed and comedications with CYP2D6 inhibitors should be avoided, when prescribing CYP2D6 substrate antidepressants.

  5. Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography

    SciTech Connect

    Kroll, Florian; Karsch, Leonhard; Pawelke, Jörg

    2013-08-15

    Purpose: Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-term stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time.Methods: A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators.Results: Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined

  6. 2D quasiperiodic plasmonic crystals

    PubMed Central

    Bauer, Christina; Kobiela, Georg; Giessen, Harald

    2012-01-01

    Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871

  7. Valleytronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Schaibley, John R.; Yu, Hongyi; Clark, Genevieve; Rivera, Pasqual; Ross, Jason S.; Seyler, Kyle L.; Yao, Wang; Xu, Xiaodong

    2016-11-01

    Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.

  8. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  9. Solar particle dose rate buildup and distribution in critical body organs

    NASA Technical Reports Server (NTRS)

    Atwell, William; Weyland, Mark D.; Simonsen, Lisa C.

    1993-01-01

    Human body organs have varying degrees of radiosensitivity as evidenced by radioepidemiologic tables. The major critical organs for both the male and female that have been identified include the lung, thyroid, stomach, and breast (female). Using computerized anatomical models of the 50th percentile United States Air Force male and female, we present the self-shielding effects of these various body organs and how the shielding effects change as the location (dose point) in the body varies. Several major solar proton events from previous solar cycles and several events from the current 22nd solar cycle have been analyzed. The solar particle event rise time, peak intensity, and decay time vary considerably from event to event. Absorbed dose and dose equivalent rate calculations and organ risk assessment data are presented for each critical body organ. These data are compared with the current NASA astronaut dose limits as recommended by the National Council on Radiation Protection and Measurements.

  10. Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite

    SciTech Connect

    Watts, J.W. Jr.; Parnell, T.A.; Akatov, Yu.A.; Dudkin, V.E.; Kovalev, E.E.; Benton, E.V.; Frank, A.L. |

    1995-03-01

    Significant absorbed dose levels exceeding 1.0 Gy day(exp {minus}1) have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLD`s) made in U.S.S.R. and U.S.A. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.

  11. Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Parnell, T. A.; Akatov, Yu. A.; Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.

    1995-01-01

    Significant absorbed dose levels exceeding 1.0 Gy day(exp -1) have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLD's) made in U.S.S.R. and U.S.A. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.

  12. VKORC1 Asp36Tyr geographic distribution and its impact on warfarin dose requirements in Egyptians.

    PubMed

    Shahin, Mohamed Hossam A; Cavallari, Larisa H; Perera, Minoli A; Khalifa, Sherief I; Misher, Anne; Langaee, Taimour; Patel, Shitalben; Perry, Kimberly; Meltzer, David O; McLeod, Howard L; Johnson, Julie A

    2013-06-01

    The VKORC1 Asp36Tyr single nucleotide polymorphism (SNP) is one of the most promising predictors of high warfarin dose, but data on its population prevalence is incomplete. We determined the frequency of this SNP in participants from seven countries on four continents and investigated its effect on warfarin dose requirement. One thousand samples were analysed to define the population prevalence of this SNP. Those samples included individuals from Egypt, Ghana, Sudan, Kenya, Saudi Arabia, Peru and African Americans from the United States. A total of 206 Egyptian samples were then used to investigate the effect of this SNP on warfarin dose requirements. This SNP was most frequent among Kenyans and Sudanese, with a minor allele frequency (MAF) of 6% followed by Saudi Arabians and Egyptians with a MAF of 3% and 2.5%, respectively. It was not detected in West Africans, based on our data from Ghana, and a large cohort of African Americans. Egyptian carriers of the VKORC1 Tyr36 showed higher warfarin dose requirement (57.1 ± 29.4 mg/week) than those with the Asp36Asp genotype (35.8 ± 16.6 mg/week; p=0.03). In linear regression analysis, this SNP had the greatest effect size among the genetic factors (16.6 mg/week increase in dose per allele), and improved the warfarin dose variability explained in Egyptians (model R2 from 31% to 36.5%). The warfarin resistant VKORC1 Asp36Tyr appears to be confined to north-eastern Africa and nearby Middle-Eastern populations, but in those populations where it is present, it has a significant influence on warfarin dose requirement and the percent of warfarin dose variability that can be explained.

  13. Wide field array calibration dependence on the stability of measured dose distributions

    SciTech Connect

    Simon, Thomas A.; Simon, William E.; Kahler, Darren; Li, Jonathan; Liu, Chihray

    2010-07-15

    Purpose: The aim of this work was to simulate the effect of dose distribution changes on detector array calibrations and to explore compensatory methods that are used during calibration measurements. Methods: The array calibration technique that was investigated is known as wide field (WF) calibration. Using this method, a linear array [y-axis (65 detectors) of the IC PROFILER (Sun Nuclear Corporation, Melbourne, FL)] is calibrated with three measurements ({alpha}, {theta}, and {lambda}); each measurement uses the same radiation field, which is larger than the array. For measurement configuration {theta}, the array is rotated by 180 deg. from its position in {alpha}; for {lambda}, the array is shifted by one detector from its position in {theta}. The relative detector sensitivities are then determined through ratios of detector readings at the same field locations (using {theta} and {lambda}). This method results in error propagation that is proportional to the number of detectors in the array. During the procedure, the calibration protocol operates under three postulates, which state that (a) the beam shape does not change between measurements; (b) the relative sensitivities of the detectors do not change; and (c) the scatter to the array does not change as the array is moved. The WF calibration's sensitivity to a postulate (a) violation was quantified by applying a sine shaped perturbation (of up to 0.1%) to {alpha}, {theta}, or {lambda}, and then determining the change relative to a baseline calibration. Postulate (a) violations were minimized by using a continuous beam and mechanized array movement during {theta} and {lambda}. A continuously on beam demonstrated more stable beam symmetry as compared to cycling the beam on and off between measurements. Additional side-scatter was also used to satisfy postulate (c). Results: Simulated symmetry perturbations of 0.1% to {theta} or {lambda} resulted in calibration errors of up to 2%; {alpha} was relatively immune to

  14. NOTE: A Monte Carlo study of dose rate distribution around the specially asymmetric CSM3-a 137Cs source

    NASA Astrophysics Data System (ADS)

    Pérez-Calatayud, J.; Lliso, F.; Ballester, F.; Serrano, M. A.; Lluch, J. L.; Limami, Y.; Puchades, V.; Casal, E.

    2001-07-01

    The CSM3 137Cs type stainless-steel encapsulated source is widely used in manually afterloaded low dose rate brachytherapy. A specially asymmetric source, CSM3-a, has been designed by CIS Bio International (France) substituting the eyelet side seed with an inactive material in the CSM3 source. This modification has been done in order to allow a uniform dose level over the upper vaginal surface when this `linear' source is inserted at the top of the dome vaginal applicators. In this study the Monte Carlo GEANT3 simulation code, incorporating the source geometry in detail, was used to investigate the dosimetric characteristics of this special CSM3-a 137Cs brachytherapy source. The absolute dose rate distribution in water around this source was calculated and is presented in the form of an along-away table. Comparison of Sievert integral type calculations with Monte Carlo results are discussed.

  15. Sensitivities in the production of spread-out Bragg peak dose distributions by passive scattering with beam current modulation

    SciTech Connect

    Lu, H.-M.; Brett, Robert; Engelsman, Martijn; Slopsema, Roelf; Kooy, Hanne; Flanz, Jay

    2007-10-15

    A spread-out Bragg peak (SOBP) is used in proton beam therapy to create a longitudinal conformality of the required dose to the target. In order to create this effect in a passive beam scattering system, a variety of components must operate in conjunction to produce the desired beam parameters. We will describe how the SOBP is generated and will explore the tolerances of the various components and their subsequent effect on the dose distribution. A specific aspect of this investigation includes a case study involving the use of a beam current modulated system. In such a system, the intensity of the beam current can be varied in synchronization with the revolution of the range-modulator wheel. As a result, the weights of the pulled-back Bragg peaks can be individually controlled to produce uniform dose plateaus for a large range of treatment depths using only a small number of modulator wheels.

  16. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  17. Quantum coherence selective 2D Raman-2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-03-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  18. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    PubMed

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  19. SU-E-T-324: The Influence of Patient Positioning Uncertainties in Proton Radiotherapy On Proton Range and Dose Distributions

    SciTech Connect

    Liebl, J; Paganetti, H; Winey, B

    2014-06-01

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: 38 clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50% and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs) and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: We identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 mm and 5.8 mm for the 90%-dose falloff position respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. TCP decreases larger than 10% (absolute) were seen for less than 2.2% of the target volumes or non-existent. EUD changes were up to 178% for OARs and 35% for target volumes. Conclusion: The influence of patient positioning uncertainties on proton range in therapy of small lesions in the human brain and target and OAR dosimetry were studied. Observed range uncertainties were correlated with HIs. The clinical practice of using multiple compensator

  20. Depth dose distribution study within a phantom torso after irradiation with a simulated Solar Particle Event at NSRL

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Matthiä, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis A.; Reitz, Guenther

    The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are com-pounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself. Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrap-olation of skin dose to organ dose, which can lead to over-or under-estimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be pre-dicted to within about a +10In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field with the phantom torso. Lymphocyte cells are strategically embedded at selected locations at the skin and internal organs and are processed after irradiation to assess the effects of shielding on the yield of chromosome damage. The first focus of the pre-sented experiment is to correlate biological results with physical dosimetry measurements in the phantom torso. Further on the results of the passive dosimetry using the anthropomorphic phantoms represent the best tool to generate reliable to

  1. SU-E-T-520: Investigation of the Impact of Respiratory Motion On Spine SAbR Dose Distributions

    SciTech Connect

    Foster, R; Ding, C; Jiang, S

    2015-06-15

    Purpose Spine SRS/SAbR treatment plans typically require very steep dose gradients to meet spinal cord constraints and it is crucial that the dose distribution be accurate. However, these plans are typically calculated on helical free-breathing CT scans, which often contain motion artifacts. While the spine itself doesn’t exhibit very much intra-fraction motion, tissues around the spine, particularly the liver, do move with respiration. We investigated the dosimetric effect of liver motion on dose distributions calculated on helical free-breathing CT scans for spine SAbR delivered to the T and L spine. Methods We took 5 spine SAbR plans and used density overrides to simulate an average reconstruction CT image set, which would more closely represent the patient anatomy during treatment. The value used for the density override was 0.66 g/cc. All patients were planned using our standard beam arrangement, which consists of 13 coplanar step and shoot IMRT beams. The original plan was recalculated with the same MU on the “average” scan and target coverage and spinal cord dose were compared to the original plan. Results The average changes in minimum PTV dose, PTV coverage, max cord dose and volume of cord receiving 10 Gy were 0.6%, 0.8%, 0.3% and 4.4% (0.012 cc), respectively. Conclusion SAbR spine plans are surprisingly robust relative to surrounding organ motion due to respiration. Motion artifacts in helical planning CT scans do not cause clinically significant differences when these plans are re-calculated on pseudo-average CT reconstructions. This is likely due to the beam arrangement used because only three beams pass through the liver and only one beam passes completely through the density override. The effect of the respiratory motion on VMAT plans for spine SAbR is being evaluated.

  2. Assessment of the dose distribution inside a cardiac cath lab using TLD measurements and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Baptista, M.; Teles, P.; Cardoso, G.; Vaz, P.

    2014-11-01

    Over the last decade, there was a substantial increase in the number of interventional cardiology procedures worldwide, and the corresponding ionizing radiation doses for both the medical staff and patients became a subject of concern. Interventional procedures in cardiology are normally very complex, resulting in long exposure times. Also, these interventions require the operator to work near the patient and, consequently, close to the primary X-ray beam. Moreover, due to the scattered radiation from the patient and the equipment, the medical staff is also exposed to a non-uniform radiation field that can lead to a significant exposure of sensitive body organs and tissues, such as the eye lens, the thyroid and the extremities. In order to better understand the spatial variation of the dose and dose rate distributions during an interventional cardiology procedure, the dose distribution around a C-arm fluoroscopic system, in operation in a cardiac cath lab at Portuguese Hospital, was estimated using both Monte Carlo (MC) simulations and dosimetric measurements. To model and simulate the cardiac cath lab, including the fluoroscopic equipment used to execute interventional procedures, the state-of-the-art MC radiation transport code MCNPX 2.7.0 was used. Subsequently, Thermo-Luminescent Detector (TLD) measurements were performed, in order to validate and support the simulation results obtained for the cath lab model. The preliminary results presented in this study reveal that the cardiac cath lab model was successfully validated, taking into account the good agreement between MC calculations and TLD measurements. The simulated results for the isodose curves related to the C-arm fluoroscopic system are also consistent with the dosimetric information provided by the equipment manufacturer (Siemens). The adequacy of the implemented computational model used to simulate complex procedures and map dose distributions around the operator and the medical staff is discussed, in

  3. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors

    NASA Astrophysics Data System (ADS)

    Garnica-Garza, H. M.

    2009-09-01

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360° arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution.

  4. Effect of organ size and position on out-of-field dose distributions during radiation therapy

    NASA Astrophysics Data System (ADS)

    Scarboro, Sarah B.; Stovall, Marilyn; White, Allen; Smith, Susan A.; Yaldo, Derek; Kry, Stephen F.; Howell, Rebecca M.

    2010-12-01

    Mantle field irradiation has historically been the standard radiation treatment for Hodgkin lymphoma. It involves treating large regions of the chest and neck with high doses of radiation (up to 30 Gy). Previous epidemiological studies on the incidence of second malignancies following radiation therapy for Hodgkin lymphoma have revealed an increased incidence of second tumors in various organs, including lung, breast, thyroid and digestive tract. Multiple other studies, including the Surveillance, Epidemiology and End Results, indicated an increased incidence in digestive tract including stomach cancers following mantle field radiotherapy. Assessment of stomach dose is challenging because the stomach is outside the treatment field but very near the treatment border where there are steep dose gradients. In addition, the stomach can vary greatly in size and position. We sought to evaluate the dosimetric impact of the size and variable position of the stomach relative to the field border for a typical Hodgkin lymphoma mantle field irradiation. The mean stomach dose was measured using thermoluminescent dosimetry for nine variations in stomach size and position. The mean doses to the nine stomach variations ranged from 0.43 to 0.83 Gy when 30 Gy was delivered to the treatment isocenter. Statistical analyses indicated that there were no significant differences in the mean stomach dose when the stomach was symmetrically expanded up to 3 cm or shifted laterally (medial, anterior or posterior shifts) by up to 3 cm. There was, however, a significant (P > 0.01) difference in the mean dose when the stomach was shifted superiorly or inferiorly by >=2.5 cm.

  5. Determine the Dose Distribution Using Ultrasound Parameters in MAGIC-f Polymer Gels.

    PubMed

    Masoumi, Hossein; Mokhtari-Dizaji, Manijhe; Arbabi, Azim; Bakhshandeh, Mohsen

    2016-01-01

    In this study, using methacrylic and ascorbic acid in gelatin initiated by copper (MAGIC-f) polymer gel after megavoltage energy exposure, the sensitivity of the ultrasound velocity and attenuation coefficient dose-dependent parameters was evaluated. The MAGIC-f polymer gel was irradiated under 1.25 MeV cobalt-60, ranging from 0 to 60 Gy in 2-Gy steps, and received dose uniformity and accuracy of ±2%. After calibration of the ultrasonic systems with a frequency of 500 kHz, the parameters of ultrasound velocity and attenuation coefficient of the irradiated gel samples were measured. According to the dose-response curve, the ability of ultrasonic parameters was evaluated in dose rate readings. Based on a 4-order polynomial curve, fitted on the dose-response parameters of ultrasound velocity and attenuation coefficient and observed at 24 hours after irradiation, ultrasonic parameters had more sensitivity. The sensitivity of the dose-velocity and dose-attenuation coefficient curves was observed as 50 m/s/Gy and 0.06 dB/MHz/Gy over the linear range of 4 to 44 Gy, respectively. The ultrasonic parameters at 5°C, 15°C, and 25°C on the gel dosimeter after 0 to 60 Gy irradiation showed that readings at 25°C have higher sensitivity compared to 15°C and 5°C. Maximum sensitivity time and temperature readings of the MAGIC-f ultrasonic parameters were concluded 24 hours after irradiation and at a temperature of 25°C.

  6. A 2-D diode array and analysis software for verification of intensity modulated radiation therapy delivery.

    PubMed

    Jursinic, Paul A; Nelms, Ben E

    2003-05-01

    An analysis is made of a two-dimensional array of diodes that can be used for measuring dose generated in a plane by a radiation beam. This measuring device is the MapCHECK Model 1175 (Sun Nuclear, Melbourne, FL). This device has 445 N-type diodes in a 22 x 22 cm2 2-D array with variable spacing. The entire array of diodes is easily calibrated to allow for measurements in absolute dose. For IMRT quality assurance, each beam is measured individually with the beam central axis oriented perpendicular to the plane of diodes. Software is available to do the analytical comparison of measurements versus dose distributions calculated by a treatment planning system. Comparison criteria of percent difference and distance-to-agreement are defined by the operator. Data are presented that show the diode array has linear response when beam fluence changes by over 300-fold, which is typical of the level of modulation in intensity modulated radiation therapy, IMRT, beams. A linear dependence is also shown for a 100-fold change in monitors units delivered. Methods for how this device can be used in the clinic for quality assurance of IMRT fields are described. Measurements of typical IMRT beams that are modulated by compensators and MLCs are presented with comparisons to treatment planning system dose calculations. A time analysis is done for typical IMRT quality assurance measurements. The setup, calibration, and analysis time for the 2-D diode array are on the order of 20 min, depending on numbers of fields. This is significantly less time than required to do similar analysis with radiographic film. The 2-D diode array is ideal for per-plan quality assurance after an IMRT system is fully commissioned.

  7. SU-E-T-77: Comparison of 2D and 3D Gamma Analysis in Patient-Specific QA for Prostate VMAT Plans

    SciTech Connect

    Clemente, F; Perez, C

    2014-06-01

    Purpose: Patient-specific QA procedures for IMRT and VMAT are traditionally performed by comparing TPS calculations with measured single point values and plane dose distributions by means of gamma analysis. New QA devices permit us to calculate 3D dose distributions on patient anatomy as redundant secondary check and reconstruct it from measurements taken with 2D and 3D detector arrays. 3D dose calculations allow us to perform DVH-based comparisons with clinical relevance, as well as 3D gamma analysis. One of these systems (Compass, IBA Dosimetry) combines traditional 2D with new anatomical-based 3D gamma analysis. This work shows the ability of this system by comparing 2D and 3D gamma analysis in pre-treatment QA for several VMAT prostate plans. Methods: Compass is capable of calculating dose as secondary check from DICOM TPS data and reconstructing it from measurements taken by a 2D ion chamber array (MatriXX Evolution, IBA Dosimetry). Both 2D and 3D gamma tests are available to compare calculated and reconstructed dose in Compass with TPS RT Dose. Results: 15 VMAT prostate plans have been measured with Compass. Dose is reconstructed with Compass for these plans. 2D gamma comparisons can be done for any plane from dose matrix. Mean gamma passing rates for isocenter planes (axial, coronal, sagittal) are (99.7±0.2)%, (99.9±0.1)%, (99.9±0.1)% for reconstructed dose planes. 3D mean gamma passing rates are (98.5±1.7)% for PTVs, (99.1±1.5)% for rectum, (100.0±0.0)% for bladder, (99.6±0.7)% for femoral heads and (98.1±4.1)% for penile bulb. Conclusion: Compass is a powerful tool to perform a complete pre-treatment QA analysis, from 2D techniques to 3D DVH-based techniques with clinical relevance. All reported values for VMAT prostate plans are in good agreement with TPS values. This system permits us to ensure the accuracy in the delivery of VMAT treatments completing a full patient-specific QA program.

  8. Experimental and Monte Carlo evaluation of Eclipse treatment planning system for effects on dose distribution of the hip prostheses

    SciTech Connect

    Çatlı, Serap; Tanır, Güneş

    2013-10-01

    The present study aimed to investigate the effects of titanium, titanium alloy, and stainless steel hip prostheses on dose distribution based on the Monte Carlo simulation method, as well as the accuracy of the Eclipse treatment planning system (TPS) at 6 and 18 MV photon energies. In the present study the pencil beam convolution (PBC) method implemented in the Eclipse TPS was compared to the Monte Carlo method and ionization chamber measurements. The present findings show that if high-Z material is used in prosthesis, large dose changes can occur due to scattering. The variance in dose observed in the present study was dependent on material type, density, and atomic number, as well as photon energy; as photon energy increased back scattering decreased. The dose perturbation effect of hip prostheses was significant and could not be predicted accurately by the PBC method for hip prostheses. The findings show that for accurate dose calculation the Monte Carlo-based TPS should be used in patients with hip prostheses.

  9. Validation of nuclear models in Geant4 using the dose distribution of a 177 MeV proton pencil beam.

    PubMed

    Hall, David C; Makarova, Anastasia; Paganetti, Harald; Gottschalk, Bernard

    2016-01-07

    A proton pencil beam is associated with a surrounding low-dose envelope, originating from nuclear interactions. It is important for treatment planning systems to accurately model this envelope when performing dose calculations for pencil beam scanning treatments, and Monte Carlo (MC) codes are commonly used for this purpose. This work aims to validate the nuclear models employed by the Geant4 MC code, by comparing the simulated absolute dose distribution to a recent experiment of a 177 MeV proton pencil beam stopping in water. Striking agreement is observed over five orders of magnitude, with both the shape and normalisation well modelled. The normalisations of two depth dose curves are lower than experiment, though this could be explained by an experimental positioning error. The Geant4 neutron production model is also verified in the distal region. The entrance dose is poorly modelled, suggesting an unaccounted upstream source of low-energy protons. Recommendations are given for a follow-up experiment which could resolve these issues.

  10. Experimental and Monte Carlo evaluation of Eclipse treatment planning system for effects on dose distribution of the hip prostheses.

    PubMed

    Catlı, Serap; Tanır, Güneş

    2013-01-01

    The present study aimed to investigate the effects of titanium, titanium alloy, and stainless steel hip prostheses on dose distribution based on the Monte Carlo simulation method, as well as the accuracy of the Eclipse treatment planning system (TPS) at 6 and 18MV photon energies. In the present study the pencil beam convolution (PBC) method implemented in the Eclipse TPS was compared to the Monte Carlo method and ionization chamber measurements. The present findings show that if high-Z material is used in prosthesis, large dose changes can occur due to scattering. The variance in dose observed in the present study was dependent on material type, density, and atomic number, as well as photon energy; as photon energy increased back scattering decreased. The dose perturbation effect of hip prostheses was significant and could not be predicted accurately by the PBC method for hip prostheses. The findings show that for accurate dose calculation the Monte Carlo-based TPS should be used in patients with hip prostheses.

  11. PAGAT gel dosimeters for dose distribution measurements in the vicinity of high-density implants: A preliminary study

    NASA Astrophysics Data System (ADS)

    Asena, A.; Kairn, T.; Crowe, S. B.; Smith, S. T.; Trapp, J. V.

    2015-01-01

    This work examined the suitability of the PAGAT gel dosimeter for use in dose distribution measurements around high-density implants. An assessment of the gels reactivity with various metals was performed and no corrosive effects were observed. An artefact reduction technique was also investigated in order to minimise scattering of the laser light in the optical CT scans. The potential for attenuation and backscatter measurements using this gel dosimeter were examined for a temporary tissue expander's internal magnetic port.

  12. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill--Part I: Distribution and doses.

    PubMed

    Thomas, P A

    2000-06-01

    Soils, vegetation, small mammals, and birds were measured for uranium series radionuclides at three sites near the operating Key Lake uranium mill in northern Saskatchewan. Sites, impacted by windblown tailings and mill dust, had significantly higher concentrations of uranium, 226Ra, 210Pb, and 210Po in soils, litter, vegetation, tree needles and twigs, small mammals, and birds, compared to a control site. Samples were collected from both upland jackpine and black spruce bog habitats in triplicate at each site. Both habitats were similar in radionuclide accumulation. Absorbed doses averaged 0.92, 8.4, and 4.9 mGy y(-1) to small mammals and 2.0, 5.8, and 2.8 mGy y(-1) to Lincoln's sparrows at the control, tailings, and mill sites, respectively. These doses do not include doses from short-lived radon progeny. The majority of the dose increment at the tailings and mill sites was due to 226Ra, whereas it was 210Po at the control site. Thus, use of a radiation weighting factor of 20 for alpha radiation raised equivalent doses (in mSv y(-1)) by nearly a factor of 20.

  13. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 1: Distribution and doses

    SciTech Connect

    Thomas, P.A.

    2000-06-01

    Soils, vegetation, small mammals, and birds were measured for uranium series radionuclides at three sites near the operating Key Lake uranium mill in northern Saskatchewan. Sites, impacted by windblown tailings and mill dust, had significantly higher concentrations of uranium, {sup 226}Ra, {sup 210}Pb, and {sup 210}Po in soils, litter, vegetation, tree needles and twigs, small mammals, and birds, compared to a control site. Samples were collected from both upland jackpine and black spruce bog habitats in triplicate at each site. Both habitats were similar in radionuclide accumulation. Absorbed doses averaged 0.92, 8.4, and 4.9 mGy y{sup {minus}1} to small mammals and 2.0, 5.8, and 2.8 mGy y{sup {minus}1} to Lincoln's sparrows at the control, tailings, and mill sites, respectively. These doses do not include doses from short-lived radon progeny. The majority of the dose increment at the tailings and mill sites was due to {sup 226}Ra, whereas it was {sup 210}Po at the control site. Thus, use of a radiation weighting factor of 20 for alpha radiation raised equivalent doses (in mSv y{sup {minus}1}) by nearly a factor of 20.

  14. Acute Biological Effects of Simulating the Whole-Body Radiation Dose Distribution from a Solar Particle Event Using a Porcine Model

    PubMed Central

    Wilson, Jolaine M.; Sanzari, Jenine K.; Diffenderfer, Eric S.; Yee, Stephanie S.; Seykora, John T.; Maks, Casey; Ware, Jeffrey H.; Litt, Harold I.; Reetz, Jennifer A.; McDonough, James; Weissman, Drew; Kennedy, Ann R.; Cengel, Keith A.

    2011-01-01

    In a solar particle event (SPE), an unshielded astronaut would receive proton radiation with an energy profile that produces a highly inhomogeneous dose distribution (skin receiving a greater dose than internal organs). The novel concept of using megavoltage electron-beam radiation to more accurately reproduce both the total dose and the dose distribution of SPE protons and make meaningful RBE comparisons between protons and conventional radiation has been described previously. Here, Yucatan minipigs were used to determine the effects of a superficial, SPE-like proton dose distribution using megavoltage electrons. In these experiments, dose-dependent increases in skin pigmentation, ulceration, keratinocyte necrosis and pigment incontinence were observed. Five of 18 animals (one each exposed to 7.5 Gy and 12.5 Gy radiation and three exposed to 25 Gy radiation) developed symptomatic, radiation-associated pneumonopathy approximately 90 days postirradiation. The three animals from the highest dose group showed evidence of mycoplasmal pneumonia along with radiation pneumonitis. Moreover, delayed-type hypersensitivity was found to be altered, suggesting that superficial irradiation of the skin with ionizing radiation might cause immune dysfunction or dysregulation. In conclusion, using total doses, patterns of dose distribution, and dose rates that are compatible with potential astronaut exposure to SPE radiation, animals experienced significant toxicities that were qualitatively different from toxicities previously reported in pigs for homogeneously delivered radiation at similar doses. PMID:21859326

  15. Acute biological effects of simulating the whole-body radiation dose distribution from a solar particle event using a porcine model.

    PubMed

    Wilson, Jolaine M; Sanzari, Jenine K; Diffenderfer, Eric S; Yee, Stephanie S; Seykora, John T; Maks, Casey; Ware, Jeffrey H; Litt, Harold I; Reetz, Jennifer A; McDonough, James; Weissman, Drew; Kennedy, Ann R; Cengel, Keith A

    2011-11-01

    In a solar particle event (SPE), an unshielded astronaut would receive proton radiation with an energy profile that produces a highly inhomogeneous dose distribution (skin receiving a greater dose than internal organs). The novel concept of using megavoltage electron-beam radiation to more accurately reproduce both the total dose and the dose distribution of SPE protons and make meaningful RBE comparisons between protons and conventional radiation has been described previously. Here, Yucatan minipigs were used to determine the effects of a superficial, SPE-like proton dose distribution using megavoltage electrons. In these experiments, dose-dependent increases in skin pigmentation, ulceration, keratinocyte necrosis and pigment incontinence were observed. Five of 18 animals (one each exposed to 7.5 Gy and 12.5 Gy radiation and three exposed to 25 Gy radiation) developed symptomatic, radiation-associated pneumonopathy approximately 90 days postirradiation. The three animals from the highest dose group showed evidence of mycoplasmal pneumonia along with radiation pneumonitis. Moreover, delayed-type hypersensitivity was found to be altered, suggesting that superficial irradiation of the skin with ionizing radiation might cause immune dysfunction or dysregulation. In conclusion, using total doses, patterns of dose distribution, and dose rates that are compatible with potential astronaut exposure to SPE radiation, animals experienced significant toxicities that were qualitatively different from toxicities previously reported in pigs for homogeneously delivered radiation at similar doses.

  16. [Dose distributions of fast electrons with an energy of 7-24 Mev in electromagnetic beam formation].

    PubMed

    Shambulov, R S; Khvan, G V; Saĭbekov, T S; Azhigaliev, N A; Shuinbekov, A D

    1983-03-01

    The formation of a wide beam is found necessary for a clinical application of a fast electron beam. A method of formation using thin dispersion foils is the most common one. An electromagnetic method of formation has been worked out, and dose distributions of fast electrons formed by this method have been compared in the tissue equivalent medium with those formed with the help of dispersion foils. The effect of some of the individual units of the forming device in these two methods of formation has been assessed. The experiment was conducted on medical beta-trons B-15 and B-5M-25 manufactured in the USSR. The depth dose distributions of fast electrons along the beam central axis in the electromagnetic formation for electrons with an energy of 7-24 MEV, field 8 X 10 cm and DSS = 90 cm are presented. It has been established that the beam intensity in the electromagnetic formation is higher than in the utilization of dispersion foils. Depth dose distribution is better in the electromagnetic formation than in the utilization of dispersion foils.

  17. Distribution of uranium in drinking water and associated age-dependent radiation dose in India.

    PubMed

    Sahoo, S K; Mohapatra, S; Chakrabarty, A; Sumesh, C G; Jha, V N; Tripathi, R M; Puranik, V D

    2009-09-01

    Exposure due to natural radiation is of particular importance because it accounts for the largest contribution (nearly 85 %) to the total collective dose of the world population. An attempt has been made to present the feasibility of uranium occurrence in drinking water samples from different states of India, by laser-induced fluorimetry. The associated age-dependent radiation dose was estimated by taking the prescribed water intake values of different age groups. The concentration of uranium obtained, i.e. 0.1 +/- 0.01 to 19.6 +/- 1.8 microg l(-1), is well below the drinking water guideline value of 30 microg l(-1). The annual ingestion dose due to uranium in drinking water for various age groups is found to vary from 0.14 to 48 microSv y(-1).

  18. Application of TL dosemeters for dose distribution measurements at high temperatures in nuclear reactors.

    PubMed

    Osvay, M; Deme, S

    2006-01-01

    Al2O3:Mg,Y ceramic thermoluminescence dosemeters were developed at the Institute of Isotopes for high dose applications at room temperatures. The glow curve of Al2O3:Mg,Y exhibits two peaks--one at 250 degrees C (I) and another peak at approximately 400 degrees C (II). In order to extend the application of these dosemeters to high temperatures, the effect of irradiation temperature was investigated using temperature controlled heating system during high dose irradiation at various temperatures (20-100 degrees C). The new calibration and measuring method has been successfully applied for dose mapping within the hermetic zone of the Paks Nuclear Power Plant even at high temperature parts of blocks.

  19. WE-AB-BRB-08: Progress Towards a 2D OSL Dosimetry System Using Al2O3:C Films

    SciTech Connect

    Ahmed, M F; Yukihara, E; Schnell, E; Ahmad, S; Akselrod, M; Brons, S; Greilich, S; Jakel, O; Osinga, J

    2015-06-15

    Purpose: To develop a 2D dosimetry system based on the optically stimulated luminescence (OSL) of Al{sub 2}O{sub 3}:C films for medical applications. Methods: A 2D laser scanning OSL reader was built for readout of newly developed Al2O3:C films (Landauer Inc.). An image reconstruction algorithm was developed to correct for inherent effects introduced by reader design and detector properties. The system was tested using irradiations with photon and carbon ion beams. A calibration was obtained using a 6 MV photon beam from clinical accelerator and the dose measurement precision was tested using a range of doses and different dose distributions (flat field and wedge field). The dynamic range and performance of the system in the presence of large dose gradients was also tested using 430 MeV/u {sup 12}C single and multiple pencil beams. All irradiations were performed with Gafchromic EBT3 film for comparison. Results: Preliminary results demonstrate a near-linear OSL dose response to photon fields and the ability to measure dose in dose distributions such as flat field and wedge field. Tests using {sup 12}C pencil beam demonstrate ability to measure doses over four orders of magnitude. The dose profiles measured by the OSL film generally agreed well with that measured by the EBT3 film. The OSL image signal-to-noise ratio obtained in the current conditions require further improvement. On the other hand, EBT3 films had large uncertainties in the low dose region due to film-to-film or intra-film variation in the background. Conclusion: A 2D OSL dosimetry system was developed and initial tests have demonstrated a wide dynamic range as well as good agreement between the delivered and measured doses. The low background, wide dynamic range and wide range of linearity in dose response observed for the Al{sub 2}O{sub 3}:C OSL film can be beneficial for dosimetry in radiation therapy applications, especially for small field dosimetry. This work has been funded by Landauer Inc. Dr

  20. Clinical CT-based calculations of dose and positron emitter distributions in proton therapy using the FLUKA Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Parodi, K.; Ferrari, A.; Sommerer, F.; Paganetti, H.

    2007-07-01

    Clinical investigations on post-irradiation PET/CT (positron emission tomography/computed tomography) imaging for in vivo verification of treatment delivery and, in particular, beam range in proton therapy are underway at Massachusetts General Hospital (MGH). Within this project, we have developed a Monte Carlo framework for CT-based calculation of dose and irradiation-induced positron emitter distributions. Initial proton beam information is provided by a separate Geant4 Monte Carlo simulation modelling the treatment head. Particle transport in the patient is performed in the CT voxel geometry using the FLUKA Monte Carlo code. The implementation uses a discrete number of different tissue types with composition and mean density deduced from the CT scan. Scaling factors are introduced to account for the continuous Hounsfield unit dependence of the mass density and of the relative stopping power ratio to water used by the treatment planning system (XiO (Computerized Medical Systems Inc.)). Resulting Monte Carlo dose distributions are generally found in good correspondence with calculations of the treatment planning program, except a few cases (e.g. in the presence of air/tissue interfaces). Whereas dose is computed using standard FLUKA utilities, positron emitter distributions are calculated by internally combining proton fluence with experimental and evaluated cross-sections yielding 11C, 15O, 14O, 13N, 38K and 30P. Simulated positron emitter distributions yield PET images in good agreement with measurements. In this paper, we describe in detail the specific implementation of the FLUKA calculation framework, which may be easily adapted to handle arbitrary phase spaces of proton beams delivered by other facilities or include more reaction channels based on additional cross-section data. Further, we demonstrate the effects of different acquisition time regimes (e.g., PET imaging during or after irradiation) on the intensity and spatial distribution of the irradiation

  1. Degradation of proton depth dose distributions attributable to microstructures in lung-equivalent material

    SciTech Connect

    Titt, Uwe Mirkovic, Dragan; Mohan, Radhe; Sell, Martin; Unkelbach, Jan; Bangert, Mark; Oelfke, Uwe

    2015-11-15

    Purpose: The purpose of the work reported here was to investigate the influence of sub-millimeter size heterogeneities on the degradation of the distal edges of proton beams and to validate Monte Carlo (MC) methods’ ability to correctly predict such degradation. Methods: A custom-designed high-resolution plastic phantom approximating highly heterogeneous, lung-like structures was employed in measurements and in Monte Carlo simulations to evaluate the degradation of proton Bragg curves penetrating heterogeneous media. Results: Significant differences in distal falloff widths and in peak dose values were observed in the measured and the Monte Carlo simulated curves compared to pristine proton Bragg curves. Furthermore, differences between simulations of beams penetrating CT images of the phantom did not agree well with the corresponding experimental differences. The distal falloff widths in CT image-based geometries were underestimated by up to 0.2 cm in water (corresponding to 0.8–1.4 cm in lung tissue), and the peak dose values of pristine proton beams were overestimated by as much as ~35% compared to measured curves or depth-dose curves simulated on the basis of true geometry. The authors demonstrate that these discrepancies were caused by the limited spatial resolution of CT images that served as a basis for dose calculations and lead to underestimation of the impact of the fine structure of tissue heterogeneities. A convolution model was successfully applied to mitigate the underestimation. Conclusions: The results of this study justify further development of models to better represent heterogeneity effects in soft-tissue geometries, such as lung, and to correct systematic underestimation of the degradation of the distal edge of proton doses.

  2. Degradation of proton depth dose distributions attributable to microstructures in lung-equivalent material

    PubMed Central

    Titt, Uwe; Sell, Martin; Unkelbach, Jan; Bangert, Mark; Mirkovic, Dragan; Oelfke, Uwe; Mohan, Radhe

    2015-01-01

    Purpose: The purpose of the work reported here was to investigate the influence of sub-millimeter size heterogeneities on the degradation of the distal edges of proton beams and to validate Monte Carlo (MC) methods’ ability to correctly predict such degradation. Methods: A custom-designed high-resolution plastic phantom approximating highly heterogeneous, lung-like structures was employed in measurements and in Monte Carlo simulations to evaluate the degradation of proton Bragg curves penetrating heterogeneous media. Results: Significant differences in distal falloff widths and in peak dose values were observed in the measured and the Monte Carlo simulated curves compared to pristine proton Bragg curves. Furthermore, differences between simulations of beams penetrating CT images of the phantom did not agree well with the corresponding experimental differences. The distal falloff widths in CT image-based geometries were underestimated by up to 0.2 cm in water (corresponding to 0.8–1.4 cm in lung tissue), and the peak dose values of pristine proton beams were overestimated by as much as ˜35% compared to measured curves or depth-dose curves simulated on the basis of true geometry. The authors demonstrate that these discrepancies were caused by the limited spatial resolution of CT images that served as a basis for dose calculations and lead to underestimation of the impact of the fine structure of tissue heterogeneities. A convolution model was successfully applied to mitigate the underestimation. Conclusions: The results of this study justify further development of models to better represent heterogeneity effects in soft-tissue geometries, such as lung, and to correct systematic underestimation of the degradation of the distal edge of proton doses. PMID:26520732

  3. SU-E-T-427: Feasibility Study for Evaluation of IMRT Dose Distribution Using Geant4-Based Automated Algorithms

    SciTech Connect

    Choi, H; Shin, W; Testa, M; Min, C; Kim, J

    2015-06-15

    Purpose: For intensity-modulated radiation therapy (IMRT) treatment planning validation using Monte Carlo (MC) simulations, a precise and automated procedure is necessary to evaluate the patient dose distribution. The aim of this study is to develop an automated algorithm for IMRT simulations using DICOM files and to evaluate the patient dose based on 4D simulation using the Geant4 MC toolkit. Methods: The head of a clinical linac (Varian Clinac 2300 IX) was modeled in Geant4 along with particular components such as the flattening filter and the multi-leaf collimator (MLC). Patient information and the position of the MLC were imported from the DICOM-RT interface. For each position of the MLC, a step- and-shoot technique was adopted. PDDs and lateral profiles were simulated in a water phantom (50×50×40 cm{sup 3}) and compared to measurement data. We used a lung phantom and MC-dose calculations were compared to the clinical treatment planning used at the Seoul National University Hospital. Results: In order to reproduce the measurement data, we tuned three free parameters: mean and standard deviation of the primary electron beam energy and the beam spot size. These parameters for 6 MV were found to be 5.6 MeV, 0.2378 MeV and 1 mm FWHM respectively. The average dose difference between measurements and simulations was less than 2% for PDDs and radial profiles. The lung phantom study showed fairly good agreement between MC and planning dose despite some unavoidable statistical fluctuation. Conclusion: The current feasibility study using the lung phantom shows the potential for IMRT dose validation using 4D MC simulations using Geant4 tool kits. This research was supported by Korea Institute of Nuclear safety and Development of Measurement Standards for Medical Radiation funded by Korea research Institute of Standards and Science. (KRISS-2015-15011032)

  4. Study of the spatial distribution of the absorbed dose in blood volumes irradiated using a teletherapy unit

    NASA Astrophysics Data System (ADS)

    Góes, E. G.; Nicolucci, P.; Nali, I. C.; Pelá, C. A.; Bruço, J. L.; Borges, J. C.; Covas, D. T.

    2010-06-01

    Blood irradiation can be performed using a dedicated blood irradiator or a teletherapy unit. A thermal device providing appropriate storage conditions during blood components irradiation with a teletherapy unit has been recently proposed. However, the most appropriated volume of the thermal device was not indicated. The goal of this study was to indicate the most appropriated blood volume for irradiation using a teletherapy unit in order to minimize both the dose heterogeneity in the volume and the blood irradiation time using these equipments. Theoretical and experimental methods were used to study the dose distribution in the blood volume irradiated using a linear accelerator and a cobalt-60 therapy machine. The calculation of absorbed doses in the middle plane of cylindrical acrylic volumes was accomplished by a treatment planning system. Experimentally, we also used cylindrical acrylic phantoms and thermoluminescent dosimeters to confirm the calculated doses. The data obtained were represented by isodose curves. We observed that an irradiation volume should have a height of 28 cm and a diameter of 28 cm and a height of 35 cm and a diameter of 35 cm, when the irradiation is to be performed by a linear accelerator and a cobalt-60 teletherapy unit, respectively. Calculated values of relative doses varied from 93% to 100% in the smaller volume, and from 66% to 100% in the largest one. A difference of 5.0%, approximately, was observed between calculated and experimental data. The size of these volumes permits the irradiation of blood bags in only one bath without compromising the homogeneity of the absorbed dose over the irradiated volume. Thus, these irradiation volumes can be recommend to minimize the irradiation time when a teletherapy unit is used to irradiate blood.

  5. Distribution of boreal toad populations in relation to estimated UV-B dose in Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Hossack, B.R.; Diamond, S.A.; Corn, P.S.

    2006-01-01

    A recent increase in ultraviolet B radiation is one hypothesis advanced to explain suspected or documented declines of the boreal toad (Bufo boreas Baird and Girard, 1852) across much of the western USA, where some experiments have shown ambient UV-B can reduce embryo survival. We examined B. boreas occupancy relative to daily UV-B dose at 172 potential breeding sites in Glacier National Park, Montana, to assess whether UV-B limits the distribution of toads. Dose estimates were based on ground-level UV-B data and the effects of elevation, local topographic and vegetative features, and attenuation in the water column. We also examined temporal trends in surface UV-B and spring snowpack to determine whether populations are likely to have experienced increased UV-B exposure in recent decades. We found no support for the hypothesis that UV-B limits the distribution of populations in the park, even when we analyzed high-elevation ponds separately. Instead, toads were more likely to breed in water bodies with higher estimated UV-B doses. The lack of a detectable trend in surface UV-B since 1979, combined with earlier snow melt in the region and increasing forest density at high elevations, suggests B. boreas embryos and larvae likely have not experienced increased UV-B.

  6. Measurement of dose equivalent distribution on-board commercial jet aircraft.

    PubMed

    Kubančák, J; Ambrožová, I; Ploc, O; Pachnerová Brabcová, K; Štěpán, V; Uchihori, Y

    2014-12-01

    The annual effective doses of aircrew members often exceed the limit of 1 mSv for the public due to the increased level of cosmic radiation at the flight altitudes, and thus, it is recommended to monitor them [International Commission on Radiation Protection. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21: (1-3), (1991)]. According to the Monte Carlo simulations [Battistoni, G., Ferrari, A., Pelliccioni, M. and Villari, R. Evaluation of the doses to aircrew members taking into consideration the aircraft structures. Adv. Space Res. 36: , 1645-1652 (2005) and Ferrari, A., Pelliccioni, M. and Villari, R. Evaluation of the influence of aircraft shielding on the aircrew exposure through an aircraft mathematical model. Radiat. Prot. Dosim. 108: (2), 91-105 (2004)], the ambient dose equivalent rate Ḣ*(10) depends on the location in the aircraft. The aim of this article is to experimentally evaluate Ḣ*(10) on-board selected types of aircraft. The authors found that Ḣ*(10) values are higher in the front and the back of the cabin and lesser in the middle of the cabin. Moreover, total dosimetry characteristics obtained in this way are in a reasonable agreement with other data, in particular with the above-mentioned simulations.

  7. Impact of MLC leaf width on the quality of the dose distribution in partial breast irradiation.

    PubMed

    Height, Felicity J; Kron, Tomas; Willis, David; Chua, Boon H

    2012-01-01

    Partial-breast irradiation (PBI) aims to limit the target volume for radiotherapy in women with early breast cancer after partial mastectomy to the region at highest risk of local recurrence, the tumor bed. Multileaf collimators are used to achieve conformal radiation beam portals required for PBI. Narrower leaf widths are generally assumed to allow more conformal shaping of beam portals around irregularly shaped target volumes. The aim was to compare 5-mm and 10-mm leaf widths for patients previously treated using PBI and assess subsequent planning target volume (PTV) coverage and organ at risk (OAR) doses for 16 patients. Several plans (5-mm leaf width or 10-mm leaf width) were generated for each patient using the original treated plan as the basis for attempts at further optimization. Alternating between different leaf widths found no significant difference in terms of overall PTV coverage and OAR doses between treatment plans. Optimization of the original treated plan allowed a small decrease in ipsilateral breast dose, which was offset by a lower PTV minimum. No significant dosimetric difference was found to support an advantage of 5-mm over 10-mm leaf width in this setting.

  8. 2-D Versus 3-D Magnetotelluric Data Interpretation

    NASA Astrophysics Data System (ADS)

    Ledo, Juanjo

    2005-09-01

    In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.

  9. Evaluation of the dose distribution for prostate implants using various {sup 125}I and {sup 103}Pd sources

    SciTech Connect

    Meigooni, Ali S.; Luerman, Christine M.; Sowards, Keith T.

    2009-04-15

    Recently, several different models of {sup 125}I and {sup 103}Pd brachytherapy sources have been introduced in order to meet the increasing demand for prostate seed implants. These sources have different internal structures; hence, their TG-43 dosimetric parameters are not the same. In this study, the effects of the dosimetric differences among the sources on their clinical applications were evaluated. The quantitative and qualitative evaluations were performed by comparisons of dose distributions and dose volume histograms of prostate implants calculated for various designs of {sup 125}I and {sup 103}Pd sources. These comparisons were made for an identical implant scheme with the same number of seeds for each source. The results were compared with the Amersham model 6711 seed for {sup 125}I and the Theragenics model 200 seed for {sup 103}Pd using the same implant scheme.

  10. A 1.5 T transverse magnetic field in radiotherapy of rectal cancer: Impact on the dose distribution

    SciTech Connect

    Uilkema, Sander Heide, Uulke van der; Sonke, Jan-Jakob; Triest, Baukelien van; Nijkamp, Jasper; Moreau, Michel

    2015-12-15

    Purpose: MRI guidance during radiotherapy has the potential to enable more accurate dose delivery, optimizing the balance between local control and treatment related toxicity. However, the presence of a permanent magnetic field influences the dose delivery, especially around air cavities. Here, electrons are able to return to the surface through which they entered the air cavity (electron return effect, ERE) locally resulting in dose hot- and cold-spots. Where RT of rectal cancer patients might benefit from MRI guidance for margin reduction, air cavities in and around the target volume are frequently present. The purpose of this research is to evaluate the impact of the presence of a 1.5 T transverse magnetic field on dose delivery in patients with rectal cancer. Methods: Ten patients treated with 5 × 5 Gy RT having large changes in pelvic air content were selected out of a cohort of 33 patients. On the planning CT, a 1.5 T, 6 MV, 7-field intensity modulated radiotherapy (IMRT) plan was created. This plan was subsequently recalculated on daily CT scans. For each daily CT, the CTV V{sub 95%} and V{sub 107%} and bowel area V{sub 5Gy}, V{sub 10Gy}, V{sub 15Gy}, V{sub 20Gy}, and V{sub 25Gy} were calculated to evaluate the changes in dose distribution from fraction to fraction. For comparison, the authors repeated this procedure for the 0 T situation. To study the effect of changing air cavities separate from other anatomical changes, the authors also generated artificial air cavities in the CTV of one patient (2 and 5 cm diameter), in the high dose gradient region (2 cm), and in the low dose area (2 cm). Treatment plans were optimized without and with each simulated air cavity. For appearing and disappearing air cavities, the CTV V{sub 95%} and V{sub 107%} were evaluated. The authors also evaluated the ERE separate from attenuation changes locally around appearing gas pockets. Results: For the ten patients, at 1.5 T, the V{sub 95%} was influenced by both appearing and

  11. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  12. SEM signal emulation for 2D patterns

    NASA Astrophysics Data System (ADS)

    Sukhov, Evgenii; Muelders, Thomas; Klostermann, Ulrich; Gao, Weimin; Braylovska, Mariya

    2016-03-01

    The application of accurate and predictive physical resist simulation is seen as one important use model for fast and efficient exploration of new patterning technology options, especially if fully qualified OPC models are not yet available at an early pre-production stage. The methodology of using a top-down CD-SEM metrology to extract the 3D resist profile information, such as the critical dimension (CD) at various resist heights, has to be associated with a series of presumptions which may introduce such small, but systematic CD errors. Ideally, the metrology effects should be carefully minimized during measurement process, or if possible be taken into account through proper metrology modeling. In this paper we discuss the application of a fast SEM signal emulation describing the SEM image formation. The algorithm is applied to simulated resist 3D profiles and produces emulated SEM image results for 1D and 2D patterns. It allows estimating resist simulation quality by comparing CDs which were extracted from the emulated and from the measured SEM images. Moreover, SEM emulation is applied for resist model calibration to capture subtle error signatures through dose and defocus. Finally, it should be noted that our SEM emulation methodology is based on the approximation of physical phenomena which are taking place in real SEM image formation. This approximation allows achieving better speed performance compared to a fully physical model.

  13. Demonstration of three-dimensional deterministic radiation transport theory dose distribution analysis for boron neutron capture therapy.

    PubMed

    Nigg, D