Science.gov

Sample records for 2d electron gases

  1. Optical Signatures from Magnetic 2-D Electron Gases in High Magnetic Fields to 60 Tesla

    SciTech Connect

    Crooker, S.A.; Kikkawa, J.M.; Awschalom, D.D.; Smorchikova, I.P.; Samarth, N.

    1998-11-08

    We present experiments in the 60 Tesla Long-Pulse magnet at the Los Alamos National High Magnetic Field Lab (NHMFL) focusing on the high-field, low temperature photoluminescence (PL) from modulation-doped ZnSe/Zn(Cd,Mn)Se single quantum wells. High-speed charge-coupled array detectors and the long (2 second) duration of the magnet pulse permit continuous acquisition of optical spectra throughout a single magnet shot. High-field PL studies of the magnetic 2D electron gases at temperatures down to 350mK reveal clear intensity oscillations corresponding to integer quantum Hall filling factors, from which we determine the density of the electron gas. At very high magnetic fields, steps in the PL energy are observed which correspond to the partial unlocking of antiferromagnetically bound pairs of Mn2+ spins.

  2. Oxide 2D electron gases as a route for high carrier densities on (001) Si

    SciTech Connect

    Kornblum, Lior; Jin, Eric N.; Kumah, Divine P.; Walker, Fred J.; Ernst, Alexis T.; Broadbridge, Christine C.; Ahn, Charles H.

    2015-05-18

    Two dimensional electron gases (2DEGs) formed at the interfaces of oxide heterostructures draw considerable interest owing to their unique physics and potential applications. Growing such heterostructures on conventional semiconductors has the potential to integrate their functionality with semiconductor device technology. We demonstrate 2DEGs on a conventional semiconductor by growing GdTiO{sub 3}-SrTiO{sub 3} on silicon. Structural analysis confirms the epitaxial growth of heterostructures with abrupt interfaces and a high degree of crystallinity. Transport measurements show the conduction to be an interface effect, ∼9 × 10{sup 13} cm{sup −2} electrons per interface. Good agreement is demonstrated between the electronic behavior of structures grown on Si and on an oxide substrate, validating the robustness of this approach to bridge between lab-scale samples to a scalable, technologically relevant materials system.

  3. Final LDRD report : the physics of 1D and 2D electron gases in III-nitride heterostructure NWs.

    SciTech Connect

    Armstrong, Andrew M.; Arslan, Ilke; Upadhya, Prashanth C.; Morales, Eugenia T.; Leonard, Francois Leonard; Li, Qiming; Wang, George T.; Talin, Albert Alec; Prasankumar, Rohit P.; Lin, Yong

    2009-09-01

    The proposed work seeks to demonstrate and understand new phenomena in novel, freestanding III-nitride core-shell nanowires, including 1D and 2D electron gas formation and properties, and to investigate the role of surfaces and heterointerfaces on the transport and optical properties of nanowires, using a combined experimental and theoretical approach. Obtaining an understanding of these phenomena will be a critical step that will allow development of novel, ultrafast and ultraefficient nanowire-based electronic and photonic devices.

  4. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  5. Progress towards ultracold gases in arbitrary 2D potentials

    NASA Astrophysics Data System (ADS)

    Corcovilos, Theodore

    2016-05-01

    We describe our progress in building an apparatus for investigating degenerate quantum gases of potassium in arbitrary two-dimensional optical potentials. The optical potentials are created by holographic projection of an image created using a MEMS mirror array. Systems we would like to study with this experiment are quantum simulations of bosons and fermions at crystal heterojunctions and systems with well defined boundaries, including topological edge states. Funding provided by the Charles E Kaufman Foundation, a part of the Pittsburgh Foundation.

  6. Critical Dynamics in Quenched 2D Atomic Gases

    NASA Astrophysics Data System (ADS)

    Larcher, F.; Dalfovo, F.; Proukakis, N. P.

    2016-05-01

    Non-equilibrium dynamics across phase transitions is a subject of intense investigations in diverse physical systems. One of the key issues concerns the validity of the Kibble-Zurek (KZ) scaling law for spontaneous defect creation. The KZ mechanism has been recently studied in cold atoms experiments. Interesting open questions arise in the case of 2D systems, due to the distinct nature of the Berezinskii-Kosterlitz-Thouless (BKT) transition. Our studies rely on the stochastic Gross-Pitaevskii equation. We perform systematic numerical simulations of the spontaneous emergence and subsequent dynamics of vortices in a uniform 2D Bose gas, which is quenched across the BKT phase transition in a controlled manner, focusing on dynamical scaling and KZ-type effects. By varying the transverse confinement, we also look at the extent to which such features can be seen in current experiments. Financial support from EPSRC and Provincia Autonoma di Trento.

  7. Velocity distributions for 2D inelastic granular gases

    NASA Astrophysics Data System (ADS)

    Miracle, Dylan J.; Goldman, Daniel I.; Moon, Sung Joon; Rericha, Erin; Swift, J. B.; Swinney, Harry L.

    2002-11-01

    A previous study of a vertically vibrated 2D granular gas found a time-averaged horizontal velocity distribution function of the form P(v) exp(-C|v|^3/2) for the entire velocity range(F. Rouyer and N. Menon, Phys. Rev. Lett. 85), 3676 (2000).. We examine the dependence of the velocity distribution function on phase in the cycle, height above the plate and air pressure in the container. We use 1.6 mm stainless steel balls confined to a vertical plane by a container 32σ tall, 48σ wide, and 1.15σ thick, where σ is the particle diameter. The container oscillates with peak acceleration 20g and frequency 50 Hz. We observe that a shock forms at collision of the plate with the layer and propagates through the layer, heating the grains. The shock rapidly decays over a distance of approximately 8σ above the plate; above this height the granular temperature and density are essentially independent of phase in the cycle. In this steady-state region, we compare the observed functional form of the velocity distribution to molecular dynamics simulations.

  8. Correlated Electron Phenomena in 2D Materials

    NASA Astrophysics Data System (ADS)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  9. Arrayed van der Waals Vertical Heterostructures Based on 2D GaSe Grown by Molecular Beam Epitaxy.

    PubMed

    Yuan, Xiang; Tang, Lei; Liu, Shanshan; Wang, Peng; Chen, Zhigang; Zhang, Cheng; Liu, Yanwen; Wang, Weiyi; Zou, Yichao; Liu, Cong; Guo, Nan; Zou, Jin; Zhou, Peng; Hu, Weida; Xiu, Faxian

    2015-05-13

    Vertically stacking two-dimensional (2D) materials can enable the design of novel electronic and optoelectronic devices and realize complex functionality. However, the fabrication of such artificial heterostructures on a wafer scale with an atomically sharp interface poses an unprecedented challenge. Here, we demonstrate a convenient and controllable approach for the production of wafer-scale 2D GaSe thin films by molecular beam epitaxy. In situ reflection high-energy electron diffraction oscillations and Raman spectroscopy reveal a layer-by-layer van der Waals epitaxial growth mode. Highly efficient photodetector arrays were fabricated, based on few-layer GaSe on Si. These photodiodes show steady rectifying characteristics and a high external quantum efficiency of 23.6%. The resultant photoresponse is super-fast and robust, with a response time of 60 μs. Importantly, the device shows no sign of degradation after 1 million cycles of operation. We also carried out numerical simulations to understand the underlying device working principles. Our study establishes a new approach to produce controllable, robust, and large-area 2D heterostructures and presents a crucial step for further practical applications.

  10. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)

    SciTech Connect

    Classen, I. G. J.; Boom, J. E.; Vries, P. C. de; Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A.; Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr.; Donne, A. J. H.; Jaspers, R. J. E.; Park, H. K.; Munsat, T.

    2010-10-15

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  11. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  12. Quantum spin dynamics at terahertz frequencies in 2D hole gases and improper ferroelectrics

    NASA Astrophysics Data System (ADS)

    Lloyd-Hughes, J.

    2015-08-01

    Terahertz time-domain spectroscopy permits the excitations of novel materials to be examined with exquisite precision. Improper ferroelectric materials such as cupric oxide (CuO) exhibit complex magnetic ground states. CuO is antiferromagnetic below 213K, but has an incommensurate cycloidal magnetic phase between 213K and 230K. Remarkably, the cycloidal magnetic phase drives ferroelectricity, where the material becomes polar. Such improper multiferroics are of great contemporary interest, as a better understanding of the science of magnetoelectric materials may lead to their application in actuators, sensors and solid state memories. Improper multiferroics also have novel quasiparticle excitations: electromagnons form when spin-waves become electric-dipole active. By examining the dynamic response of spins as they interact with THz radiation we gain insights into the underlying physics of multi-ferroics. In contrast to improper ferroelectrics, where magnetism drives structural inversion asymmetry (SIA), two-dimensional electronic systems can exhibit non-degenerate spin states as a consequence of SIA created by strain and/or electric fields. We identify and explore the influence of the Rashba spin-orbit interaction upon cyclotron resonance at terahertz frequencies in high-mobility 2D hole gases in germanium quantum wells. An enhanced Rashba spin-orbit interaction can be linked to the strain of the quantum well, while a time-frequency decomposition method permitted the dynamical formation and decay of spin-split cyclotron resonances to be tracked on picosecond timescales. Long spin-decoherence times concurrent with high hole mobilities highlight the potential of Ge quantum wells in spintronics.

  13. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    SciTech Connect

    T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-07-08

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.

  14. THz devices based on 2D electron systems

    NASA Astrophysics Data System (ADS)

    Xing, Huili Grace; Yan, Rusen; Song, Bo; Encomendero, Jimy; Jena, Debdeep

    2015-05-01

    In two-dimensional electron systems with mobility on the order of 1,000 - 10,000 cm2/Vs, the electron scattering time is about 1 ps. For the THz window of 0.3 - 3 THz, the THz photon energy is in the neighborhood of 1 meV, substantially smaller than the optical phonon energy of solids where these 2D electron systems resides. These properties make the 2D electron systems interesting as a platform to realize THz devices. In this paper, I will review 3 approaches investigated in the past few years in my group toward THz devices. The first approach is the conventional high electron mobility transistor based on GaN toward THz amplifiers. The second approach is to employ the tunable intraband absorption in 2D electron systems to realize THz modulators, where I will use graphene as a model material system. The third approach is to exploit plasma wave in these 2D electron systems that can be coupled with a negative differential conductance element for THz amplifiers/sources/detectors.

  15. Development of 2-D-MAX-DOAS and retrievals of trace gases and aerosols optical properties

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan

    Air pollution is a major problem worldwide that adversely a_ects human health, impacts ecosystems and climate. In the atmosphere, there are hundreds of important compounds participating in complex atmospheric reactions linked to air quality and climate. Aerosols are relevant because they modify the radiation balance, a_ect clouds, and thus Earth albedo. The amount of aerosol is often characterized by the vertical integral through the entire height of the atmosphere of the logarithm fraction of incident light that is extinguished called Aerosol Optical Depth (AOD). The AOD at 550 nm (AOD550) over land is 0.19 (multi annual global mean), and that over oceans is 0.13. About 43 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions, sample spatial scales that resemble satellite ground-pixels and atmospheric models, and help integrate remote sensing and in-situ observations to obtain optical closure on the effects of aerosols and trace gases in our changing environment. In this work, I present the recent development of the University of Colorado two dimensional (2-D) Multi-AXis Differential Optical Absorption Spectroscopy (2-D-MAX-DOAS) instrument to measure the azimuth and altitude distribution of trace gases and aerosol optical properties simultaneously with a single instrument. The instrument measures solar scattered light from any direction in the sky, including direct sun light in the hyperspectral domain. In Chapter 2, I describe the capabilities of 2-D measurements in the context of retrievals of azimuth distributions of nitrogen dioxide (NO2), formaldehyde (HCHO), and glyoxal (CHOCHO), which are precursors for tropospheric O3 and aerosols. The measurements were carried out during the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) campaign in Mainz, Germany and show the ability to bridge spatial scales to

  16. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    SciTech Connect

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  17. Quantum Oscillations in an Interfacial 2D Electron Gas.

    SciTech Connect

    Zhang, Bingop; Lu, Ping; Liu, Henan; Lin, Jiao; Ye, Zhenyu; Jaime, Marcelo; Balakirev, Fedor F.; Yuan, Huiqiu; Wu, Huizhen; Pan, Wei; Zhang, Yong

    2016-01-01

    Recently, it has been predicted that topological crystalline insulators (TCIs) may exist in SnTe and Pb1-xSnxTe thin films [1]. To date, most studies on TCIs were carried out either in bulk crystals or thin films, and no research activity has been explored in heterostructures. We present here the results on electronic transport properties of the 2D electron gas (2DEG) realized at the interfaces of PbTe/ CdTe (111) heterostructures. Evidence of topological state in this interfacial 2DEG was observed.

  18. Electron-Atom Collisions in Gases

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2013-01-01

    Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.

  19. Electron dynamics and valley relaxation in 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Gundogdu, Kenan

    2015-03-01

    Single layer transition metal dichalcogenides are 2D semiconducting systems with unique electronic band structure. Two-valley energy bands along with strong spin-orbital coupling lead to valley dependent career spin polarization, which is the basis for recently proposed valleytronic applications. Since the durations of valley population provide the time window in which valley specific processes take place, it is an essential parameter for developing valleytronic devices. These systems also exhibit unusually strong many body affects, such as strong exciton and trion binding, due to reduced dielectric screening of Coulomb interactions. But there is not much known about the impact of strong many particle correlations on spin and valley polarization dynamics. Here we report direct measurements of ultrafast valley specific relaxation dynamics in single layer MoS2 and WS2. We found that excitonic many body interactions significantly contribute to the relaxation process. Biexciton formation reveals hole valley spin relaxation time. Our results also suggest initial fast intervalley electron scattering and electron spin relaxation leads to loss of electron valley polarization, which then facilitates hole valley relaxation via excitonic spin exchange interaction.

  20. Study of electron transport in hydrocarbon gases

    NASA Astrophysics Data System (ADS)

    Hasegawa, H.; Date, H.

    2015-04-01

    The drift velocity and the effective ionization coefficient of electrons in the organic gases, C2H2, C2H4, C2H6, CH3OH, C2H5OH, C6H6, and C6H5CH3, have been measured over relatively wide ranges of density-reduced electric fields (E/N) at room temperature (around 300 K). The drift velocity was measured, based on the arrival-time spectra of electrons by using a double-shutter drift tube over the E/N range from 300 to 2800 Td, and the effective ionization coefficient (α - η) was determined by the steady-state Townsend method from 150 to 3000 Td. Whenever possible, these parameters were compared with those available in the literature. It has been shown that the swarm parameters for these gases have specific tendencies, depending on their molecular configurations.

  1. Electron beam treatment of stack gases

    NASA Astrophysics Data System (ADS)

    Frank, N.; Kawamura, K.; Miller, G.

    A method of simultaneously removing sulfur dioxide and nitrogen oxides from high sulfur, coal-fired utility boiler combustion gases is discussed. Process development history is briefly presented and salient details of a commercial demonstration unit currently under construction at an electric utility power plant in Indiana are given. Detailed discussion on the design details and performance requirements of a cable connected set of 80 kW electron beam sources precedes a discussion of the projected economics of the process. Requirements for future electron beam machine configurations and capacities as well as impact on the radiation machine manufacturing industry, assuming acceptance of the process by the electric utilities, are presented.

  2. Experimental studies of spin-imbalanced Fermi gases in 2D geometries

    NASA Astrophysics Data System (ADS)

    Thomas, John

    We study the thermodynamics of a quasi-two-dimensional Fermi gas, which is not quite two-dimensional (2D), but far from three dimensional (3D). This system offers opportunities to test predictions that cross interdisciplinary boundaries, such as enhanced superfluid transition temperatures in spin-imbalanced quasi-2D superconductors, and provides important benchmarks for calculations of the phase diagrams. In the experiments, an ultra-cold Fermi gas is confined in an infrared CO2 laser standing-wave, which produces periodic pancake-shaped potential wells, separated by 5.3 μm. To study the thermodynamics, we load an ultra-cold mixture of N1 = 800 spin 1/2 -up and N2 2D-BCS theory, but can be fit by a 2D-polaron gas model, where each atom is surrounded by a cloud of particle-hole pairs of the opposite spin. However, this model fails to predict a transition to a spin-balanced central region as N2/N1is increased. Supported by the physics divisions of ARO, AFOSR, and NSF and by the Division of Materials Science and Engineering, the Office of Basic Energy Sciences, DOE.

  3. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics

    PubMed Central

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-01-01

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics. PMID:27796343

  4. Observation of the Leggett-Rice effect in an ensemble of 2D Fermi gases

    NASA Astrophysics Data System (ADS)

    Luciuk, Christopher; Smale, Scott; Trotzky, Stefan; Sharum, Haille; Enss, Tilman; Thywissen, Joseph

    2016-05-01

    Transport properties of unitary Fermi gases have been studied extensively in the past few years. Because of strong interparticle scattering at unitarity, many transport phenomenon, in particular the spin diffusivity, are observed to be bounded. However, anomalously slow spin diffusion has been observed in two dimensions and remains to be understood. Here we study the spin currents that arise as a result of a non-equilibrium magnetization in an ensemble of two dimensional Fermi gases. Spin currents possess both a dissipative and reactive component. The dissipative component - parameterized by the spin diffusivity - is a measure of the scattering rate. The reactive component describes a part of the spin current that precesses around the local magnetization known as the Leggett-Rice effect. Using a spin-echo sequence we measure both the amplitude and phase of magnetization dynamics to extract these two transport parameters at a range of interaction strengths near a Feshbach resonance.

  5. Rare Gas - Alkali Metal Coadsorption on Ag(111): Using Rare Gases as 2D Manometers

    NASA Astrophysics Data System (ADS)

    Diehl, Renee D.; Leatherman, Gerald S.; Vidali, G.

    1996-03-01

    The adsorption of Ar, Kr or Xe onto Ag(111) results in incommensurate overlayers which are aligned with the substrate. However, by preadsorbing a small amount of alkali metal first, it is possible to form rotated islands of rare gases. The rotation angles of these islands do not agree with the predictions of the first-order Novaco-McTague theory for rotational epitaxy, nor do they exactly follow the predictions of geometrical theories. However, the other thermodynamic properties of these layers are essentially identical to those on the clean surface. With higher precoverages of potassium, the potassium-rare gas interaction remains repulsive and rare gases form island structures within the dispersed alkali layers. Since the rare gas overlayers are in equilibrium with the potassium and the thermodynamics of rare gases on clean Ag(111) have already been very well characterized( J. Unguris, L. W. Bruch, E. R. Moog and M. B. Webb, Surf. Sci. 87 (1979) 415; 109 (1981) 522.) it is possible to measure the spreading pressure of the alkali as a function of coverage and therefore to deduce information about the coverage- dependent alkali-alkali and alkali-substrate interactions.

  6. Study of electron transport in hydrocarbon gases

    SciTech Connect

    Hasegawa, H.; Date, H.

    2015-04-07

    The drift velocity and the effective ionization coefficient of electrons in the organic gases, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, CH{sub 3}OH, C{sub 2}H{sub 5}OH, C{sub 6}H{sub 6}, and C{sub 6}H{sub 5}CH{sub 3}, have been measured over relatively wide ranges of density-reduced electric fields (E/N) at room temperature (around 300 K). The drift velocity was measured, based on the arrival-time spectra of electrons by using a double-shutter drift tube over the E/N range from 300 to 2800 Td, and the effective ionization coefficient (α − η) was determined by the steady-state Townsend method from 150 to 3000 Td. Whenever possible, these parameters were compared with those available in the literature. It has been shown that the swarm parameters for these gases have specific tendencies, depending on their molecular configurations.

  7. Creation of quantum-degenerate gases of ytterbium in a compact 2D-/3D-magneto-optical trap setup

    SciTech Connect

    Doerscher, Soeren; Thobe, Alexander; Hundt, Bastian; Kochanke, Andre; Le Targat, Rodolphe; Windpassinger, Patrick; Becker, Christoph; Sengstock, Klaus

    2013-04-15

    We report on the first experimental setup based on a 2D-/3D-magneto-optical trap (MOT) scheme to create both Bose-Einstein condensates and degenerate Fermi gases of several ytterbium isotopes. Our setup does not require a Zeeman slower and offers the flexibility to simultaneously produce ultracold samples of other atomic species. Furthermore, the extraordinary optical access favors future experiments in optical lattices. A 2D-MOT on the strong {sup 1}S{sub 0}{yields}{sup 1}P{sub 1} transition captures ytterbium directly from a dispenser of atoms and loads a 3D-MOT on the narrow {sup 1}S{sub 0}{yields}{sup 3}P{sub 1} intercombination transition. Subsequently, atoms are transferred to a crossed optical dipole trap and cooled evaporatively to quantum degeneracy.

  8. FFLO Superfluids in 2D Spin-Orbit Coupled Fermi Gases

    PubMed Central

    Zheng, Zhen; Gong, Ming; Zhang, Yichao; Zou, Xubo; Zhang, Chuanwei; Guo, Guangcan

    2014-01-01

    We show that the combination of spin-orbit coupling and in-plane Zeeman field in a two-dimensional degenerate Fermi gas can lead to a larger parameter region for Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases than that using spin-imbalanced Fermi gases. The resulting FFLO superfluids are also more stable due to the enhanced energy difference between FFLO and conventional Bardeen-Cooper-Schrieffer (BCS) excited states. We clarify the crucial role of the symmetry of Fermi surface on the formation of finite momentum pairing. The phase diagram for FFLO superfluids is obtained in the BCS-BEC crossover region and possible experimental observations of FFLO phases are discussed. PMID:25288379

  9. Electronic structure study on 2D hydrogenated Icosagens nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Marutheeswaran, S.; Ramaclus, Jerald V.; Paul, Dolon Chapa

    2014-12-01

    Metal nitride nanosheets has attracted remarkable importance in surface catalysis due to its characteristic ionic nature. In this paper, using density functional theory, we investigate geometric stability and electronic properties of hydrogenated Icosagen nitride nanosheets. Binding energy of the sheets reveals hydrogenation is providing more stability. Band structure of the hydrogenated sheets is found to be n-type semiconductor. Partial density of states shows metals (B, Al, Ga and In) and its hydrogens dominating in the Fermi region. Mulliken charge analysis indications that hydrogenated nanosheets are partially hydridic surface nature except boron nitride.

  10. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)a)

    NASA Astrophysics Data System (ADS)

    Classen, I. G. J.; Boom, J. E.; Suttrop, W.; Schmid, E.; Tobias, B.; Domier, C. W.; Luhmann, N. C.; Donné, A. J. H.; Jaspers, R. J. E.; de Vries, P. C.; Park, H. K.; Munsat, T.; García-Muñoz, M.; Schneider, P. A.

    2010-10-01

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfvén eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  11. Suspended two-dimensional electron and hole gases

    SciTech Connect

    Kazazis, D.; Bourhis, E.; Gierak, J.; Gennser, U.; Bourgeois, O.; Antoni, T.

    2013-12-04

    We report on the fabrication of fully suspended two-dimensional electron and hole gases in III-V heterostructures. Low temperature transport measurements verify that the properties of the suspended gases are only slightly degraded with respect to the non-suspended gases. Focused ion beam technology is used to pattern suspended nanostructures with minimum damage from the ion beam, due to the small width of the suspended membrane.

  12. Dual-mode operation of 2D material-base hot electron transistors

    PubMed Central

    Lan, Yann-Wen; Torres, Jr., Carlos M.; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R.; Lerner, Mitchell B.; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L.

    2016-01-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications. PMID:27581550

  13. Dual-mode operation of 2D material-base hot electron transistors

    NASA Astrophysics Data System (ADS)

    Lan, Yann-Wen; Torres, Carlos M., Jr.; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R.; Lerner, Mitchell B.; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L.

    2016-09-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  14. Dual-mode operation of 2D material-base hot electron transistors.

    PubMed

    Lan, Yann-Wen; Torres, Carlos M; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R; Lerner, Mitchell B; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L

    2016-01-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications. PMID:27581550

  15. Dual-mode operation of 2D material-base hot electron transistors.

    PubMed

    Lan, Yann-Wen; Torres, Carlos M; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R; Lerner, Mitchell B; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L

    2016-09-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  16. 2D Optical Streaking for Ultra-Short Electron Beam Diagnostics

    SciTech Connect

    Ding, Y.T.; Huang, Z.; Wang, L.; /SLAC

    2011-12-14

    field ionization, which occurs in plasma case, gases species with high field ionization threshold should be considered. For a linear polarized laser, the kick to the ionized electrons depends on the phase of the laser when the electrons are born and the unknown timing jitter between the electron beam and laser beam makes the data analysis very difficult. Here we propose to use a circular polarized laser to do a 2-dimensional (2D) streaking (both x and y) and measure the bunch length from the angular distribution on the screen, where the phase jitter causes only a rotation of the image on the screen without changing of the relative angular distribution. Also we only need to know the laser wavelength for calibration. A similar circular RF deflecting mode was used to measure long bunches. We developed a numerical particle-in-Cell (PIC) code to study the dynamics of ionization electrons with the high energy beam and the laser beam.

  17. Uniform electron gases. I. Electrons on a ring.

    PubMed

    Loos, Pierre-François; Gill, Peter M W

    2013-04-28

    We introduce a new paradigm for one-dimensional uniform electron gases (UEGs). In this model, n electrons are confined to a ring and interact via a bare Coulomb operator. We use Rayleigh-Schrödinger perturbation theory to show that, in the high-density regime, the ground-state reduced (i.e., per electron) energy can be expanded as ε(r(s),n)=ε0(n)r(s)(-2)+ε1(n)r(s)(-1)+ε2(n)+ε3(n)r(s+)⋯ , where r(s) is the Seitz radius. We use strong-coupling perturbation theory and show that, in the low-density regime, the reduced energy can be expanded as ε(r(s),n)=η0(n)r(s)(-1)+η1(n)r(s)(-3/2)+η2(n)r(s)(-2)+⋯ . We report explicit expressions for ε0(n), ε1(n), ε2(n), ε3(n), η0(n), and η1(n) and derive the thermodynamic (large-n) limits of each of these. Finally, we perform numerical studies of UEGs with n = 2, 3, [ellipsis (horizontal)], 10, using Hylleraas-type and quantum Monte Carlo methods, and combine these with the perturbative results to obtain a picture of the behavior of the new model over the full range of n and r(s) values.

  18. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probea)

    NASA Astrophysics Data System (ADS)

    Chen, Y. H.; Yang, X. Y.; Lin, C.; Wang, L.; Xu, M.; Wang, X. G.; Xiao, C. J.

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  19. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe.

    PubMed

    Chen, Y H; Yang, X Y; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  20. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  1. Preparation of 2D crystals of membrane proteins for high-resolution electron crystallography data collection.

    PubMed

    Abeyrathne, Priyanka D; Chami, Mohamed; Pantelic, Radosav S; Goldie, Kenneth N; Stahlberg, Henning

    2010-01-01

    Electron crystallography is a powerful technique for the structure determination of membrane proteins as well as soluble proteins. Sample preparation for 2D membrane protein crystals is a crucial step, as proteins have to be prepared for electron microscopy at close to native conditions. In this review, we discuss the factors of sample preparation that are key to elucidating the atomic structure of membrane proteins using electron crystallography.

  2. Nano-scale electronic and optoelectronic devices based on 2D crystals

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjuan

    In the last few years, the research community has been rapidly growing interests in two-dimensional (2D) crystals and their applications. The properties of these 2D crystals are diverse -- ranging from semi-metal such as graphene, semiconductors such as MoS2, to insulator such as boron nitride. These 2D crystals have many unique properties as compared to their bulk counterparts due to their reduced dimensionality and symmetry. A key difference is the band structures, which lead to distinct electronic and photonic properties. The 2D nature of the material also plays an important role in defining their exceptional properties of mechanical strength, surface sensitivity, thermal conductivity, tunable band-gap and their interaction with light. These unique properties of 2D crystals open up a broad territory of applications in computing, communication, energy, and medicine. In this talk, I will present our work on understanding the electrical properties of graphene and MoS2, in particular current transport and band-gap engineering in graphene, interface between gate dielectrics and graphene, and gap states in MoS2. I will also present our work on the nano-scale electronic devices (RF and logic devices) and photonic devices (plasmonic devices and photo-detectors) based on these 2D crystals.

  3. Electron energy-distribution functions in gases

    SciTech Connect

    Pitchford, L.C.

    1981-01-01

    Numerical calculation of the electron energy distribution functions in the regime of drift tube experiments is discussed. The discussion is limited to constant applied fields and values of E/N (ratio of electric field strength to neutral density) low enough that electron growth due to ionization can be neglected. (GHT)

  4. Laser driven electron acceleration in vacuum, gases and plasmas

    SciTech Connect

    Sprangle, P.; Esarey, E.; Krall, J.

    1996-04-19

    This paper discusses some of the important issues pertaining to laser acceleration in vacuum, neutral gases and plasmas. The limitations of laser vacuum acceleration as they relate to electron slippage, laser diffraction, material damage and electron aperture effects, are discussed. An inverse Cherenkov laser acceleration configuration is presented in which a laser beam is self guided in a partially ionized gas. Optical self guiding is the result of a balance between the nonlinear self focusing properties of neutral gases and the diffraction effects of ionization. The stability of self guided beams is analyzed and discussed. In addition, aspects of the laser wakefield accelerator are presented and laser driven accelerator experiments are briefly discussed.

  5. Experiments on 2D Vortex Patterns with a Photoinjected Pure Electron Plasma

    NASA Astrophysics Data System (ADS)

    Durkin, Daniel; Fajans, Joel

    1998-11-01

    The equations governing the evolution of a strongly magnetized pure electron plasma are analogous to those of an ideal 2D fluid; plasma density is analogous to fluid vorticity. Therefore, we can study vortex dynamics with pure electron plasmas. We generate our electron plasma with a photocathode electron source. The photocathode provides greater control over the initial profile than previous thermionic sources and allows us to create complicated initial density distributions, corresponding to complicated vorticity distributions in a fluid. Results on the stability of 2D vortex patterns will be presented: 1) The stability of N vortices arranged in a ring; 2) The stability of N vortices arranged in a ring with a central vortex; 3) The stability of more complicated vortex patterns.(http://socrates.berkeley.edu/ )fajans/

  6. 2-D simulation of a waveguide free electron laser having a helical undulator

    SciTech Connect

    Kim, S.K.; Lee, B.C.; Jeong, Y.U.

    1995-12-31

    We have developed a 2-D simulation code for the calculation of output power from an FEL oscillator having a helical undulator and a cylindrical waveguide. In the simulation, the current and the energy of the electron beam is 2 A and 400 keV, respectively. The parameters of the permanent-magnet helical undulator are : period = 32 mm, number of periods = 20, magnetic field = 1.3 kG. The gain per pass is 10 and the output power is calculated to be higher than 10 kW The results of the 2-D simulation are compared with those of 1-D simulation.

  7. Electron impact on atmospheric gases. I - Updated cross sections

    NASA Technical Reports Server (NTRS)

    Jackman, C. H.; Garvey, R. H.; Green, A. E. S.

    1977-01-01

    The analytic characterizations of electron impact cross sections for important atmospheric gases (namely, O2, N2, O, CO, CO2, and He) are updated. With these cross sections it is simple to communicate massive quantities of experimental and theoretical results. In addition, these forms are convenient for applications in energy degradation calculations, including a new approach described in a companion paper.

  8. Monte Carlo simulation of electrons in dense gases

    NASA Astrophysics Data System (ADS)

    Tattersall, Wade; Boyle, Greg; Cocks, Daniel; Buckman, Stephen; White, Ron

    2014-10-01

    We implement a Monte-Carlo simulation modelling the transport of electrons and positrons in dense gases and liquids, by using a dynamic structure factor that allows us to construct structure-modified effective cross sections. These account for the coherent effects caused by interactions with the relatively dense medium. The dynamic structure factor also allows us to model thermal gases in the same manner, without needing to directly sample the velocities of the neutral particles. We present the results of a series of Monte Carlo simulations that verify and apply this new technique, and make comparisons with macroscopic predictions and Boltzmann equation solutions. Financial support of the Australian Research Council.

  9. 2D electron temperature diagnostic using soft x-ray imaging technique

    SciTech Connect

    Nishimura, K. Sanpei, A. Tanaka, H.; Ishii, G.; Kodera, R.; Ueba, R.; Himura, H.; Masamune, S.; Ohdachi, S.; Mizuguchi, N.

    2014-03-15

    We have developed a two-dimensional (2D) electron temperature (T{sub e}) diagnostic system for thermal structure studies in a low-aspect-ratio reversed field pinch (RFP). The system consists of a soft x-ray (SXR) camera with two pin holes for two-kinds of absorber foils, combined with a high-speed camera. Two SXR images with almost the same viewing area are formed through different absorber foils on a single micro-channel plate (MCP). A 2D T{sub e} image can then be obtained by calculating the intensity ratio for each element of the images. We have succeeded in distinguishing T{sub e} image in quasi-single helicity (QSH) from that in multi-helicity (MH) RFP states, where the former is characterized by concentrated magnetic fluctuation spectrum and the latter, by broad spectrum of edge magnetic fluctuations.

  10. 2D PIC simulations for an EN discharge with magnetized electrons and unmagnetized ions

    NASA Astrophysics Data System (ADS)

    Lieberman, Michael A.; Kawamura, Emi; Lichtenberg, Allan J.

    2009-10-01

    We conducted 2D particle-in-cell (PIC) simulations for an electronegative (EN) discharge with magnetized electrons and unmagnetized ions, and compared the results to a previously developed 1D (radial) analytical model of an EN plasma with strongly magnetized electrons and weakly magnetized ions [1]. In both cases, there is a static uniform applied magnetic field in the axial direction. The 1D radial model mimics the wall losses of the particles in the axial direction by introducing a bulk loss frequency term νL. A special (desired) solution was found in which only positive and negative ions but no electrons escaped radially. The 2D PIC results show good agreement with the 1D model over a range of parameters and indicate that the analytical form of νL employed in [1] is reasonably accurate. However, for the PIC simulations, there is always a finite flux of electrons to the radial wall which is about 10 to 30% of the negative ion flux.[4pt] [1] G. Leray, P. Chabert, A.J. Lichtenberg and M.A. Lieberman, J. Phys. D, accepted for publication 2009.

  11. Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy.

    PubMed

    Consani, Cristina; Auböck, Gerald; van Mourik, Frank; Chergui, Majed

    2013-03-29

    Tryptophan is commonly used to study protein structure and dynamics, such as protein folding, as a donor in fluorescence resonant energy transfer (FRET) studies. By using ultra-broadband ultrafast two-dimensional (2D) spectroscopy in the ultraviolet (UV) and transient absorption in the visible range, we have disentangled the excited state decay pathways of the tryptophan amino acid residues in ferric myoglobins (MbCN and metMb). Whereas the more distant tryptophan (Trp(7)) relaxes by energy transfer to the heme, Trp(14) excitation predominantly decays by electron transfer to the heme. The excited Trp(14)→heme electron transfer occurs in <40 picoseconds with a quantum yield of more than 60%, over an edge-to-edge distance below ~10 angstroms, outcompeting the FRET process. Our results raise the question of whether such electron transfer pathways occur in a larger class of proteins.

  12. Electron Microscopy: From 2D to 3D Images with Special Reference to Muscle

    PubMed Central

    2015-01-01

    This is a brief and necessarily very sketchy presentation of the evolution in electron microscopy (EM) imaging that was driven by the necessity of extracting 3-D views from the essentially 2-D images produced by the electron beam. The lens design of standard transmission electron microscope has not been greatly altered since its inception. However, technical advances in specimen preparation, image collection and analysis gradually induced an astounding progression over a period of about 50 years. From the early images that redefined tissues, cell and cell organelles at the sub-micron level, to the current nano-resolution reconstructions of organelles and proteins the step is very large. The review is written by an investigator who has followed the field for many years, but often from the sidelines, and with great wonder. Her interest in muscle ultrastructure colors the writing. More specific detailed reviews are presented in this issue. PMID:26913146

  13. Local electronic structures and 2D topological phase transition of ultrathin Sb films

    NASA Astrophysics Data System (ADS)

    Kim, Sunghwan; Jin, Kyung-Hwan; Park, Joonbum; Kim, Jun Sung; Jhi, Seung-Hoon; Yeom, Han Woong

    We investigate local electronic structures of ultrathin Sb islands and their edges grown on Bi2Te2Se by scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) calculations. The Sb islands of various thickness are grown with atomically well ordered edge structure over the 3 bilayers (BL). On the surfaces and edges of these islands, we clearly resolve edge-localized electronic states by STS measurements, which depend on the thickness. The DFT calculations identify that the strongly localized edge states of 4 and 5 BL films correspond to a quantum spin Hall (QSH) states while the edge states of 3 BL are trivial. Our experimental and theoretical results confirm the 2D topological phase transition of the ultrathin Sb films from trivial to QSH phase. Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science and Department of Physics, Pohang University of Science and Technology, Korea.

  14. Electron Microscopy: From 2D to 3D Images with Special Reference to Muscle.

    PubMed

    Franzini-Armstrong, Clara

    2015-01-01

    This is a brief and necessarily very sketchy presentation of the evolution in electron microscopy (EM) imaging that was driven by the necessity of extracting 3-D views from the essentially 2-D images produced by the electron beam. The lens design of standard transmission electron microscope has not been greatly altered since its inception. However, technical advances in specimen preparation, image collection and analysis gradually induced an astounding progression over a period of about 50 years. From the early images that redefined tissues, cell and cell organelles at the sub-micron level, to the current nano-resolution reconstructions of organelles and proteins the step is very large. The review is written by an investigator who has followed the field for many years, but often from the sidelines, and with great wonder. Her interest in muscle ultrastructure colors the writing. More specific detailed reviews are presented in this issue. PMID:26913146

  15. Critical Behavior of a Strongly-Interacting 2D Electron System

    NASA Astrophysics Data System (ADS)

    Sarachik, Myriam P.

    2013-03-01

    Two-dimensional (2D) electron systems that obey Fermi liquid theory at high electron densities are expected to undergo one or more transitions to spatially and/or spin-ordered phases as the density is decreased, ultimately forming a Wigner crystal in the dilute, strongly-interacting limit. Interesting, unexpected behavior is observed with decreasing electron density as the electrons' interactions become increasingly important relative to their kinetic energy: the resistivity undergoes a transition from metallic to insulating temperature dependence; the resistance increases sharply and then saturates abruptly with increasing in-plane magnetic field; a number of experiments indicate that the electrons' effective mass exhibits a substantial increase approaching a finite ``critical'' density. There has been a great deal of debate concerning the underlying physics in these systems, and many have questioned whether the change of the resistivity from metallic to insulating signals a phase transition or a crossover. In this talk, I will report measurements that show that with decreasing density ns, the thermopower S of a low-disorder 2D electron system in silicon exhibits a sharp increase by more than an order of magnitude, tending to a divergence at a finite, disorder-independent density nt, consistent with the critical form (- T / S) ~(ns -nt) x with x = 1 . 0 +/- 0 . 1 (T is the temperature). Unlike the resistivity which may not clearly distinguish between a transition and crossover behavior, the thermopower provides clear evidence that a true phase transition occurs with decreasing density to a new low-density phase. Work supported by DOE Grant DE-FG02-84ER45153, BSF grant 2006375, RFBR, RAS, and the Russian Ministry of Science.

  16. Measurement of electrostatic potential variations between 2D materials using low-energy electron microscopy

    NASA Astrophysics Data System (ADS)

    de La Barrera, Sergio; Mende, Patrick; Li, Jun; Feenstra, Randall; Lin, Yu-Chuan; Robinson, Joshua; Vishwanath, Suresh; Xing, Huili

    Among the many properties that evolve as isolated 2D materials are brought together to form a heterostructure, rearrangement of charges between layers due to unintentional doping results in dipole fields at the interface, which critically affect the electronic properties of the structure. Here we report a method for directly measuring work function differences, and hence electrostatic potential variations, across the surface of 2D materials and heterostructures thereof using low energy electron microscopy (LEEM). Study of MoSe2 grown by molecular beam epitaxy on epitaxial graphene on SiC with LEEM reveals a large work function difference between the MoSe2 and the graphene, indicating charge transfer between the layers and a subsequent dipole layer. In addition to quantifying dipole effects between transition metal dichalcogenides and graphene, direct imaging of the surface, diffraction information, and the spectroscopic dependence of electron reflectivity will be discussed. This work was supported in part by the Center for Low Energy Systems Technology (LEAST), one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.

  17. Wavelet characterization of 2D turbulence and intermittency in magnetized electron plasmas

    NASA Astrophysics Data System (ADS)

    Romé, M.; Chen, S.; Maero, G.

    2016-06-01

    A study of the free relaxation of turbulence in a two-dimensional (2D) flow is presented, with a focus on the role of the initial vorticity conditions. Exploiting a well-known analogy with 2D inviscid incompressible fluids, the system investigated here is a magnetized pure electron plasma. The dynamics of this system are simulated by means of a 2D particle-in-cell code, starting from different spiral density (vorticity) distributions. A wavelet multiresolution analysis is adopted, which allows the coherent and incoherent parts of the flow to be separated. Comparison of the turbulent evolution in the different cases is based on the investigation of the time evolution of statistical properties, including the probability distribution functions and structure functions of the vorticity increments. It is also based on an analysis of the enstrophy evolution and its spectrum for the two components. In particular, while the statistical features assess the degree of flow intermittency, spectral analysis allows us not only to estimate the time required to reach a state of fully developed turbulence, but also estimate its dependence on the thickness of the initial spiral density distribution, accurately tracking the dynamics of both the coherent structures and the turbulent background. The results are compared with those relevant to annular initial vorticity distributions (Chen et al 2015 J. Plasma Phys. 81 495810511).

  18. The separation of overlapping transitions in β-carotene with broadband 2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Calhoun, Tessa R.; Davis, Jeffrey A.; Graham, Matthew W.; Fleming, Graham R.

    2012-01-01

    Broadband 2D electronic spectroscopy is applied to β-carotene, revealing new insight into the excited state dynamics of carotenoids by exploring the full energetic range encompassing the S0→S2 and S1→S1n transitions at 77 K. Multiple signals are observed in the regime associated with the proposed S∗ state and isolated through separate analysis of rephasing and nonrephasing contributions. Peaks in rephasing pathways display dynamic lineshapes characteristic of coupling to high energy vibrational modes, and simulation with a simple model supports their assignment to impulsive stimulated Raman scattering. A signal persisting beyond 10 ps in the nonrephasing spectra is still under investigation.

  19. Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria.

    PubMed

    Ostroumov, Evgeny E; Mulvaney, Rachel M; Cogdell, Richard J; Scholes, Gregory D

    2013-04-01

    Although the energy transfer processes in natural light-harvesting systems have been intensively studied for the past 60 years, certain details of the underlying mechanisms remain controversial. We performed broadband two-dimensional (2D) electronic spectroscopy measurements on light-harvesting proteins from purple bacteria and isolated carotenoids in order to characterize in more detail the excited-state manifold of carotenoids, which channel energy to bacteriochlorophyll molecules. The data revealed a well-resolved signal consistent with a previously postulated carotenoid dark state, the presence of which was confirmed by global kinetic analysis. The results point to this state's role in mediating energy flow from carotenoid to bacteriochlorophyll.

  20. Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.

    2009-01-01

    A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.

  1. Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array

    PubMed Central

    Yoganathan, S. A.; Das, K. J. Maria; Raj, D. Gowtham; Kumar, Shaleen

    2015-01-01

    The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams. PMID:26170552

  2. Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array.

    PubMed

    Yoganathan, S A; Das, K J Maria; Raj, D Gowtham; Kumar, Shaleen

    2015-01-01

    The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams.

  3. Dynamics of the Rydberg electron in H*+D2-->D*+HD reactive collisions.

    PubMed

    Hayes, Michael Y; Skodje, Rex T

    2007-03-14

    Experimental crossed-beam studies carried out previously have indicated that the dynamics of the Rydberg-atom-molecule reaction H*+D2-->D*+HD are very similar to those of the corresponding ion-molecule reaction H++D2-->D++HD. The equivalence of the cross sections for these related systems would open up a new approach to the experimental study of ion-molecule reactions. However, a recent experimental and theoretical study has brought to light some important qualitative differences between the Rydberg-atom reaction and the ion-molecule reaction; in particular, the experimental cross section for the Rydberg-atom reaction exhibits a higher degree of forward-backward scattering asymmetry than predicted by a quasiclassical trajectory study of the ion-molecule reaction. In this paper, the authors consider the dynamics of the Rydberg-electron over the course of a reactive collision and the implications of these dynamics for the Rydberg-atom-molecule crossed-beam experiment. Using an approach based on perturbation theory, they estimate the attenuation of the experimental signal due to the Rydberg-electron dynamics as a function of the scattering angle. They show that at least part of the experimental asymmetry can be ascribed to this angle dependent attenuation. Their results offer general insight into the practical aspects of the experimental study of ion-molecule reactions by means of their Rydberg-atom counterparts. PMID:17362067

  4. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Pan, X. M.; Yang, Z. J.; Ma, X. D.; Zhu, Y. L.; Luhmann, N. C.; Domier, C. W.; Ruan, B. W.; Zhuang, G.

    2016-11-01

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  5. Correlating Structural and Electronic Degrees of Freedom in 2D Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Tung, I.-Cheng; Zhang, Z.; Seyler, K. L.; Jones, A. M.; Clark, G.; Xiao, D.; Laanait, N.; Xu, X.; Wen, H.

    We have conducted a microscopic study of the interplay between structural and electronic degrees of freedom in two-dimensional (2D) transition metal dichalcogenide (TMD) monolayers, multilayers and heterostructures. Using the recently developed full field x-ray reflection interface microscopy with the photoluminescence microscopic probe capability at the Advanced Photon Source, we demonstrated the x-ray reflection imaging of a monolayer 2D material for the first time. The structural variation across an exfoliated WSe2 monolayer is quantified by interlayer spacing relative to the crystal substrate and the smoothness of the layer. This structural information is correlated with the electronic properties of TMDs characterized by the in-situ photoluminescence measurements. This work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012509. The use of Advanced Photon Source is supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

  6. Enhancement of low-energy electron emission in 2D radioactive films.

    PubMed

    Pronschinske, Alex; Pedevilla, Philipp; Murphy, Colin J; Lewis, Emily A; Lucci, Felicia R; Brown, Garth; Pappas, George; Michaelides, Angelos; Sykes, E Charles H

    2015-09-01

    High-energy radiation has been used for decades; however, the role of low-energy electrons created during irradiation has only recently begun to be appreciated. Low-energy electrons are the most important component of radiation damage in biological environments because they have subcellular ranges, interact destructively with chemical bonds, and are the most abundant product of ionizing particles in tissue. However, methods for generating them locally without external stimulation do not exist. Here, we synthesize one-atom-thick films of the radioactive isotope (125)I on gold that are stable under ambient conditions. Scanning tunnelling microscopy, supported by electronic structure simulations, allows us to directly observe nuclear transmutation of individual (125)I atoms into (125)Te, and explain the surprising stability of the 2D film as it underwent radioactive decay. The metal interface geometry induces a 600% amplification of low-energy electron emission (<10 eV; ref. ) compared with atomic (125)I. This enhancement of biologically active low-energy electrons might offer a new direction for highly targeted nanoparticle therapies.

  7. Design of transparent conductors and periodic two-dimensional electron gases without doping

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuwen; Zhang, Lijun; Zunger, Alex; Perkins, John; Materials by Design Team; John D. Perkins Collaboration

    The functionality of transparency plus conductivity plays an important role in renewable energy and information technologies, including applications such as solar cells, touch-screen sensors, and flat panel display. However, materials with such seemingly contraindicated properties are difficult to come by. The traditional strategy for designing bulk transparent conductors (TCs) starts from a wide-gap insulator and finds ways to make it conductive by extensive doping. We propose a different strategy for TC design--starting with a metallic conductor and designing transparency by control of intrinsic interband transitions and intraband plasmonic frequency. We identified specific design principles for prototypical intrinsic TC classes and searched computationally for materials that satisfy them. The electron gases in the 3D intrinsic TCs demonstrate intriguing properties, such as periodic 2D electron gas regions with very high carrier density. We will discuss a more extended search of these functionalities, in parallel with stability and growability calculations

  8. Eucken correction in high-temperature gases with electronic excitation

    SciTech Connect

    Istomin, V. A.; Kustova, E. V. Mekhonoshina, M. A.

    2014-05-14

    In the present paper, thermal conductivity coefficient of high-temperature molecular and atomic gases with excited electronic states is studied using both the kinetic theory algorithm developed by authors earlier and the well known simple expression for the thermal conductivity coefficient proposed by Eucken and generalized by Hirschfelder. The influence of large collision diameters of excited states on the thermal conductivity is discussed. The limit of validity of the Eucken correction is evaluated on the basis of the kinetic theory calculations; an improved model suitable for air species under high-temperature conditions is proposed.

  9. 2D array of cold-electron nanobolometers with double polarised cross-dipole antennas

    PubMed Central

    2012-01-01

    A novel concept of the two-dimensional (2D) array of cold-electron nanobolometers (CEB) with double polarised cross-dipole antennas is proposed for ultrasensitive multimode measurements. This concept provides a unique opportunity to simultaneously measure both components of an RF signal and to avoid complicated combinations of two schemes for each polarisation. The optimal concept of the CEB includes a superconductor-insulator-normal tunnel junction and an SN Andreev contact, which provides better performance. This concept allows for better matching with the junction gate field-effect transistor (JFET) readout, suppresses charging noise related to the Coulomb blockade due to the small area of tunnel junctions and decreases the volume of a normal absorber for further improvement of the noise performance. The reliability of a 2D array is considerably increased due to the parallel and series connections of many CEBs. Estimations of the CEB noise with JFET readout give an opportunity to realise a noise equivalent power (NEP) that is less than photon noise, specifically, NEP = 4 10−19 W/Hz1/2 at 7 THz for an optical power load of 0.02 fW. PMID:22512950

  10. 2D array of cold-electron nanobolometers with double polarised cross-dipole antennas

    NASA Astrophysics Data System (ADS)

    Kuzmin, Leonid S.

    2012-04-01

    A novel concept of the two-dimensional (2D) array of cold-electron nanobolometers (CEB) with double polarised cross-dipole antennas is proposed for ultrasensitive multimode measurements. This concept provides a unique opportunity to simultaneously measure both components of an RF signal and to avoid complicated combinations of two schemes for each polarisation. The optimal concept of the CEB includes a superconductor-insulator-normal tunnel junction and an SN Andreev contact, which provides better performance. This concept allows for better matching with the junction gate field-effect transistor (JFET) readout, suppresses charging noise related to the Coulomb blockade due to the small area of tunnel junctions and decreases the volume of a normal absorber for further improvement of the noise performance. The reliability of a 2D array is considerably increased due to the parallel and series connections of many CEBs. Estimations of the CEB noise with JFET readout give an opportunity to realise a noise equivalent power (NEP) that is less than photon noise, specifically, NEP = 4 10-19 W/Hz1/2 at 7 THz for an optical power load of 0.02 fW.

  11. Quantum Hall effect: The resistivity of a 2D electron gas—a thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Cheremisin, M. V.

    2005-09-01

    Based on a thermodynamic approach, we have calculated the resistivity of a 2D electron gas, assumed dissipationless in a strong quantum limit. Standard measurements, with extra current leads, define the resistivity caused by a combination of Peltier and Seebeck effects. The current causes heating (cooling) at the first (second) sample contacts, due to the Peltier effect. The contact temperatures are different. The measured voltage is equal to the Peltier effect-induced thermoemf which is linear in current. As a result, the resistivity is non-zero as I→0. The resistivity is a universal function of magnetic field and temperature, expressed in fundamental units h/e2. The universal features of magnetotransport data observed in the experiment confirm our predictions.

  12. Finite-size scaling in a 2D disordered electron gas with spectral nodes

    NASA Astrophysics Data System (ADS)

    Sinner, Andreas; Ziegler, Klaus

    2016-08-01

    We study the DC conductivity of a weakly disordered 2D electron gas with two bands and spectral nodes, employing the field theoretical version of the Kubo-Greenwood conductivity formula. Disorder scattering is treated within the standard perturbation theory by summing up ladder and maximally crossed diagrams. The emergent gapless (diffusion) modes determine the behavior of the conductivity on large scales. We find a finite conductivity with an intermediate logarithmic finite-size scaling towards smaller conductivities but do not obtain the logarithmic divergence of the weak-localization approach. Our results agree with the experimentally observed logarithmic scaling of the conductivity in graphene with the formation of a plateau near {{e}2}/π h .

  13. Finite-size scaling in a 2D disordered electron gas with spectral nodes.

    PubMed

    Sinner, Andreas; Ziegler, Klaus

    2016-08-01

    We study the DC conductivity of a weakly disordered 2D electron gas with two bands and spectral nodes, employing the field theoretical version of the Kubo-Greenwood conductivity formula. Disorder scattering is treated within the standard perturbation theory by summing up ladder and maximally crossed diagrams. The emergent gapless (diffusion) modes determine the behavior of the conductivity on large scales. We find a finite conductivity with an intermediate logarithmic finite-size scaling towards smaller conductivities but do not obtain the logarithmic divergence of the weak-localization approach. Our results agree with the experimentally observed logarithmic scaling of the conductivity in graphene with the formation of a plateau near [Formula: see text]. PMID:27270084

  14. Weak-localization approach to a 2D electron gas with a spectral node

    NASA Astrophysics Data System (ADS)

    Ziegler, K.; Sinner, A.

    2015-07-01

    We study a weakly disordered 2D electron gas with two bands and a spectral node within the weak-localization approach and compare its results with those of Gaussian fluctuations around the self-consistent Born approximation. The appearance of diffusive modes depends on the type of disorder. In particular, we find for a random gap a diffusive mode only from ladder contributions, whereas for a random scalar potential the diffusive mode is created by ladder and by maximally crossed contributions. The ladder (maximally crossed) contributions correspond to fermionic (bosonic) Gaussian fluctuations. We calculate the conductivity corrections from the density-density Kubo formula and find a good agreement with the experimentally observed V-shape conductivity of graphene.

  15. 2D MEMS scanning for LIDAR with sub-Nyquist sampling, electronics, and measurement procedure

    NASA Astrophysics Data System (ADS)

    Giese, Thorsten; Janes, Joachim

    2015-05-01

    Electrostatic driven 2D MEMS scanners resonantly oscillate in both axes leading to Lissajous trajectories of a digitally modulated laser beam reflected from the micro mirror. A solid angle of about 0.02 is scanned by a 658nm laser beam with a maximum repetition rate of 350MHz digital pulses. Reflected light is detected by an APD with a bandwidth of 80MHz. The phase difference between the scanned laser light and the light reflected from an obstacle is analyzed by sub-Nyquist sampling. The FPGA-based electronics and software for the evaluation of distance and velocity of objects within the scanning range are presented. Furthermore, the measures to optimize the Lidar accuracy of about 1mm and the dynamic range of up to 2m are examined. First measurements demonstrating the capability of the system and the evaluation algorithms are discussed.

  16. Electronic and geometrical properties of monoatomic and diatomic 2D honeycomb lattices. A DFT study

    NASA Astrophysics Data System (ADS)

    Rojas, Ángela; Rey, Rafael; Fonseca, Karen; Grupo de Óptica e Información Cuántica Team

    Since the discovery of graphene by Geim and Novoselov at 2004, several analogous systems have been theoretically and experimentally studied, due to their technological interest. Both monoatomic lattices, such as silicine and germanene, and diatomic lattices (h-GaAs and h-GaN) have been studied. Using Density Functional Theory we obtain and confirm the chemical stability of these hexagonal 2D systems through the total energy curves as a function of interatomic distance. Unlike graphene, silicine and germanene, gapless materials, h-GaAs and h-GaN exhibit electronic gaps, different from that of the bulk, which could be interesting for the industry. On the other hand, the ab initio band structure calculations for graphene, silicene and germanene show a non-circular cross section around K points, at variance with the prediction of usual Tight-binding models. In fact, we have found that Dirac cones display a dihedral group symmetry. This implies that Fermi speed can change up to 30 % due to the orientation of the wave vector, for both electrons and holes. Traditional analytic studies use the Dirac equation for the electron dynamics at low energies. However, this equation assumes an isotropic, homogeneous and uniform space. Authors would like to thank the División de Investigación Sede Bogotá for their financial support at Universidad Nacional de Colombia. A. M. Rojas-Cuervo would also like to thank the Colciencias, Colombia.

  17. Electron transfer and ionic displacements at the origin of the 2D electron gas at the LAO/STO interface: direct measurements with atomic-column spatial resolution.

    PubMed

    Cantoni, Claudia; Gazquez, Jaume; Miletto Granozio, Fabio; Oxley, Mark P; Varela, Maria; Lupini, Andrew R; Pennycook, Stephen J; Aruta, Carmela; di Uccio, Umberto Scotti; Perna, Paolo; Maccariello, Davide

    2012-08-01

    Using state-of-the-art, aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy with atomic-scale spatial resolution, experimental evidence for an intrinsic electronic reconstruction at the LAO/STO interface is shown. Simultaneous measurements of interfacial electron density and system polarization are crucial for establishing the highly debated origin of the 2D electron gas.

  18. Spin-Orbit Interaction and Related Transport Phenomena in 2d Electron and Hole Systems

    NASA Astrophysics Data System (ADS)

    Khaetskii, A.

    Spin-orbit interaction is responsible for many physical phenomena which are under intensive study currently. Here we discuss several of them. The first phenomenon is the edge spin accumulation, which appears due to spin-orbit interaction in 2D mesoscopic structures in the presence of a charge current. We consider the case of a strong spin-orbit-related splitting of the electron spectrum, i.e. a spin precession length is small compared to the mean free path l. The structure can be either in a ballistic regime (when the mean free path is the largest scale in the problem) or quasi-ballistic regime (when l is much smaller than the sample size). We show how physics of edge spin accumulation in different situations should be understood from the point of view of unitarity of boundary scattering. Using transparent method of scattering states, we are able to explain some previous puzzling theoretical results. We clarify the important role of the form of the spin-orbit Hamiltonian, the role of the boundary conditions, etc., and reveal the wrong results obtained in the field by other researchers. The relation between the edge spin density and the bulk spin current in different regimes is discussed. The detailed comparison with the existing theoretical works is presented. Besides, we consider several new transport phenomena which appear in the presence of spin-orbit interaction, for example, magnetotransport phenomena in an external classical magnetic field. In particular, new mechanism of negative magneto-resistance appears which is due to destruction of spin fluxes by the magnetic field, and which can be really pronounced in 2D systems with strong scatterers.

  19. Electron impact polarization and correlation properties of the inert gases

    SciTech Connect

    Csanak, G.; Cartwright, D.C.; Machado, L.E.; Meneses, G.D.

    1993-08-01

    For the heavier rare-gas targets, Ne, Ar, Kr, there is now a reasonable amount of experimental electron impact coherence parameter data available for excitation of the lowest J = 1 states. Theoretical results for those rare-gas targets have been restricted to distorted-wave approximation (DWA) type theories. A systemization of the experimental data is presented, and they are compared with available theoretical results. In the case of the heavy rare gases, the experimental and theoretical data available for the three species, Ne, Ar, Kr, are compared in order to identify trends. The experimental data are compared with results from available theories (mainly DWA type), and the importance of spin-orbit coupling effects and ``shell`` effects is discussed. A physical picture that is emerging from all collisional data is presented, and future experimental and theoretical activities that will, provide new insight into the physics of these processes are recommended.

  20. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers

    DOE PAGES

    Anasori, Babak; Shi, Chenyang; Moon, Eun Ju; Xie, Yu; Voigt, Cooper A.; Kent, Paul R. C.; May, Steven J.; Billinge, Simon J. L.; Barsoum, Michel W.; Gogotsi, Yury

    2016-02-24

    In this paper, a transition from metallic to semiconducting-like behavior has been demonstrated in two-dimensional (2D) transition metal carbides by replacing titanium with molybdenum in the outer transition metal (M) layers of M3C2 and M4C3 MXenes. The MXene structure consists of n + 1 layers of near-close packed M layers with C or N occupying the octahedral site between them in an [MX]nM arrangement. Recently, two new families of ordered 2D double transition metal carbides MXenes were discovered, M'2M"C2 and M'2M"2C3 – where M' and M" are two different early transition metals, such as Mo, Cr, Ta, Nb, V, andmore » Ti. The M' atoms only occupy the outer layers and the M" atoms fill the middle layers. In other words, M' atomic layers sandwich the middle M"–C layers. Using X-ray atomic pair distribution function (PDF) analysis on Mo2TiC2 and Mo2Ti2C3 MXenes, we present the first quantitative analysis of structures of these novel materials and experimentally confirm that Mo atoms are in the outer layers of the [MC]nM structures. The electronic properties of these Mo-containing MXenes are compared with their Ti3C2 counterparts, and are found to be no longer metallic-like conductors; instead the resistance increases mildly with decreasing temperatures. Density functional theory (DFT) calculations suggest that OH terminated Mo–Ti MXenes are semiconductors with narrow band gaps. Measurements of the temperature dependencies of conductivities and magnetoresistances have confirmed that Mo2TiC2Tx exhibits semiconductor-like transport behavior, while Ti3C2Tx is a metal. Finally, this finding opens new avenues for the control of the electronic and optical applications of MXenes and for exploring new applications, in which semiconducting properties are required.« less

  1. Destabilization of 2D magnetic current sheets by resonance with bouncing electron - a new theory

    NASA Astrophysics Data System (ADS)

    Fruit, Gabriel; Louarn, Philippe; Tur, Anatoly

    2016-07-01

    In the general context of understanding the possible destabilization of the magnetotail before a substorm, we propose a kinetic model for electromagnetic instabilities in resonant interaction with trapped bouncing electrons. The geometry is clearly 2D and uses Harris sheet profile. Fruit et al. 2013 already used this model to investigate the possibilities of electrostatic instabilities. Tur et al. 2014 generalizes the model for full electromagnetic perturbations. Starting with a modified Harris sheet as equilibrium state, the linearized gyrokinetic Vlasov equation is solved for electromagnetic fluctuations with period of the order of the electron bounce period (a few seconds). The particle motion is restricted to its first Fourier component along the magnetic field and this allows the complete time integration of the non local perturbed distribution functions. The dispersion relation for electromagnetic modes is finally obtained through the quasi neutrality condition and the Ampere's law for the current density. The present talk will focus on the main results of this theory. The electrostatic version of the model may be applied to the near-Earth environment (8-12 R_{E}) where beta is rather low. It is showed that inclusion of bouncing electron motion may enhance strongly the growth rate of the classical drift wave instability. This model could thus explain the generation of strong parallel electric fields in the ionosphere and the formation of aurora beads with wavelength of a few hundreds of km. In the electromagnetic version, it is found that for mildly stretched current sheet (B_{z} > 0.1 B _{lobes}) undamped modes oscillate at typical electron bounce frequency with wavelength of the order of the plasma sheet thickness. As the stretching of the plasma sheet becomes more intense, the frequency of these normal modes decreases and beyond a certain threshold in B_{z}/B _{lobes}, the mode becomes explosive (pure imaginary frequency) with typical growing rate of a few

  2. Progress in the electron beam treatment of stack gases

    NASA Astrophysics Data System (ADS)

    Jordan, S.

    The Electron Beam Dry Scrubbing Process removes simultaneously SO 2 and NO x from exhaust gases forming solid Ammoniumsulfate and -nitrate in the presence of NH 3 which can be sold as fertilizer. Basic research on this process started 1970 at the Japan Atomic Energy Research Institute and at Tokyo University while the technical development was followed up by EBARA Corporation. A first pilot plant was built and operated in 1977. A second phase of intense development on the process started in 1983 in the USA and the Federal Republic of Germany. Initiated by legislative efforts in West Germany to reduce SO 2 and NO x emissions, the development of a low cost, flexible and simultaneous scrubbing process was promoted. Two technical scale Electron Beam research facilities and two pilot plants are in operation since 1984 resp. 1985 in Karlsruhe, Germany, and Indianapolis, USA. From these plants operating with flue gas from crude oil, gas and coal fired boilers numerous data are available. Extensive parameter measurements enable to identify the conditions where the process has high efficiencies.

  3. Spectroscopy of emergent states in strongly interacting 2D electron systems

    NASA Astrophysics Data System (ADS)

    Hirjibehedin, Cyrus Farokh

    In this dissertation I present my recent resonant inelastic light scattering studies of the remarkable emergent states formed by strongly interacting 2D electron systems. I describe the first experimental determinations of long wavelength, low energy dispersions in the fractional quantum Hall (FQH) regime. The demonstration of existence of well defined modes at small wavevectors for the nu = 1/3 state gives a measure of the macroscopic extent of the quantum fluid beyond the micron length scale. I report evidence of a novel splitting of modes and discuss interpretations of these modes as two-roton states. I report the first studies to probe the boundary between different FQH sequences that occurs at nu = 1/3. Evidence of the coexistence of excitations from both sequences at distinct energy scales is uncovered. The abrupt appearance of lower energy modes at nu ≲ 1/3 suggests a change in the quantum ground state on crossing the nu = 1/3 boundary. The coexistence of excitations indicates a layered set of excitations of different quasiparticle flavors from a single ground state. I discuss the resonant enhancements of light scattering for spin excitations at nu = 1/3, which are strongest near photoluminescence bands assigned in the literature to negatively charged excitons. The observed enhancement profiles are interpreted by scattering mechanisms with intermediate transitions to states with charged excitonic excitations. We fabricated the first ultra-low density quantum structures and were able to show that light scattering methods are sensitive enough to probe systems currently reaching as low as n = 7.7 x 108cm -2 at wavevectors large enough to show correlation and non-local effects. I find well-defined plasmons with dispersions that deviate from the long wavelength q limit, suggesting evidence of large correlation effects. I discuss the use of light scattering to measure the electron temperature through the anti-Stokes/Stokes scattering ratio, highlighting the

  4. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    SciTech Connect

    Fujihashi, Yuta; Ishizaki, Akihito; Fleming, Graham R.

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  5. Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy.

    PubMed

    Spokoyny, Boris; Koh, Christine J; Harel, Elad

    2015-03-15

    Broadband supercontinuum (SC) pulses in the few cycle regime are a promising source for spectroscopic and imaging applications. However, SC sources are plagued by poor stability, greatly limiting their utility in phase-resolved nonlinear experiments such as 2D photon echo spectroscopy (2D PES). Here, we generated SC by two-stage filamentation in argon and air starting from 100 fs input pulses, which are sufficiently high-power and stable to record time-resolved 2D PE spectra in a single laser shot. We obtain a total power of 400 μJ/pulse in the visible spectral range of 500-850 nm and, after compression, yield pulses with duration of 6 fs according to transient-grating frequency-resolved optical gating (TG-FROG) measurements. We demonstrate the method on the laser dye, Cresyl Violet, and observe coherent oscillations indicative of nuclear wavepacket dynamics.

  6. Two-dimensional B-C-O alloys: a promising class of 2D materials for electronic devices.

    PubMed

    Zhou, Si; Zhao, Jijun

    2016-04-28

    Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp2 honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor forming alternate patterns into the chain- or ring-like structures embedded in the pristine graphene regions. These B-C-O hybrid sheets can be either metals or semiconductors depending on the B : O ratio. The semiconducting (B2O)nCm and (B6O3)nCm phases exist under the B- and O-rich conditions, and possess a tunable band gap of 1.0-3.8 eV and high carrier mobility, retaining ∼1000 cm2 V(-1) s(-1) even for half coverage of B and O atoms. These B-C-O alloys form a new class of 2D materials that are promising candidates for high-speed electronic devices.

  7. A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics.

    PubMed

    Shin, Su Ryon; Farzad, Raziyeh; Tamayol, Ali; Manoharan, Vijayan; Mostafalu, Pooria; Zhang, Yu Shrike; Akbari, Mohsen; Jung, Sung Mi; Kim, Duckjin; Comotto, Mattia; Annabi, Nasim; Al-Hazmi, Faten Ebrahim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2016-05-01

    The development of electrically conductive carbon nanotube-based inks is reported. Using these inks, 2D and 3D structures are printed on various flexible substrates such as paper, hydrogels, and elastomers. The printed patterns have mechanical and electrical properties that make them beneficial for various biological applications. PMID:26915715

  8. Electronic structure of disordered CuPd alloys by positron-annihilation 2D-ACAR

    SciTech Connect

    Smedskjaer, L.C.; Benedek, R.; Siegel, R.W.; Legnini, D.G.; Stahulak, M.D.; Bansil, A.

    1988-01-01

    We report 2D-ACAR experiments and KKR CPA calculations on alpha-phase single-crystal Cu/sub 1-x/Pd/sub x/ in the range x less than or equal to 0.25. The flattening of the Fermi surface near (110) with increasing x predicted by theory is confirmed by our experimental results. 16 refs., 2 figs.

  9. A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics.

    PubMed

    Shin, Su Ryon; Farzad, Raziyeh; Tamayol, Ali; Manoharan, Vijayan; Mostafalu, Pooria; Zhang, Yu Shrike; Akbari, Mohsen; Jung, Sung Mi; Kim, Duckjin; Comotto, Mattia; Annabi, Nasim; Al-Hazmi, Faten Ebrahim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2016-05-01

    The development of electrically conductive carbon nanotube-based inks is reported. Using these inks, 2D and 3D structures are printed on various flexible substrates such as paper, hydrogels, and elastomers. The printed patterns have mechanical and electrical properties that make them beneficial for various biological applications.

  10. Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression.

    PubMed

    Ma, Xiaonan; Dostál, Jakub; Brixner, Tobias

    2016-09-01

    We demonstrate noncollinear coherent two-dimensional (2D) electronic spectroscopy for which broadband pulses are generated in an argon-filled hollow-core fiber pumped by a 1-kHz Ti:Sapphire laser. Compression is achieved to 7 fs duration (TG-FROG) using dispersive mirrors. The hollow fiber provides a clean spatial profile and smooth spectral shape in the 500-700 nm region. The diffractive-optic-based design of the 2D spectrometer avoids directional filtering distortions and temporal broadening from time smearing. For demonstration we record data of cresyl-violet perchlorate in ethanol and use phasing to obtain broadband absorptive 2D spectra. The resulting quantum beating as a function of population time is consistent with literature data. PMID:27607681

  11. Two-dimensional B-C-O alloys: a promising class of 2D materials for electronic devices

    NASA Astrophysics Data System (ADS)

    Zhou, Si; Zhao, Jijun

    2016-04-01

    Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp2 honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor forming alternate patterns into the chain- or ring-like structures embedded in the pristine graphene regions. These B-C-O hybrid sheets can be either metals or semiconductors depending on the B : O ratio. The semiconducting (B2O)nCm and (B6O3)nCm phases exist under the B- and O-rich conditions, and possess a tunable band gap of 1.0-3.8 eV and high carrier mobility, retaining ~1000 cm2 V-1 s-1 even for half coverage of B and O atoms. These B-C-O alloys form a new class of 2D materials that are promising candidates for high-speed electronic devices.Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp2 honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor

  12. Layer-by-Layer Assembled 2D Montmorillonite Dielectrics for Solution-Processed Electronics.

    PubMed

    Zhu, Jian; Liu, Xiaolong; Geier, Michael L; McMorrow, Julian J; Jariwala, Deep; Beck, Megan E; Huang, Wei; Marks, Tobin J; Hersam, Mark C

    2016-01-01

    Layer-by-layer assembled 2D montmorillonite nanosheets are shown to be high-performance, solution-processed dielectrics. These scalable and spatially uniform sub-10 nm thick dielectrics yield high areal capacitances of ≈600 nF cm(-2) and low leakage currents down to 6 × 10(-9) A cm(-2) that enable low voltage operation of p-type semiconducting single-walled carbon nanotube and n-type indium gallium zinc oxide field-effect transistors. PMID:26514248

  13. Beyond Graphene: Electronic and Mechanical Properties of Defective 2-D Materials

    NASA Astrophysics Data System (ADS)

    Terrones, Humberto

    One of the challenges in the production of 2-D materials is the synthesis of defect free systems which can achieve the desired properties for novel applications. However, the reality so far indicates that we need to deal with defective systems and understand their main features in order to perform defect engineering in such a way that we can engineer a new material. In this talk I discuss first, the introduction of defects in a hierarchic way starting from 2-D graphene to form giant Schwarzites or graphene foams, which also can exhibit further defects, thus we can have several levels of defectiveness. In this context, it will be shown that giant Schwarzites, depending on their symmetry, can exhibit Dirac-Fermion behavior and further, possess protected topological states as shown by other authors. Regarding the mechanical properties of these systems, it is possible to tune the Poisson Ratio by the addition of defects, thus shedding light to the explanation of the almost zero Poisson ratios in experimentally obtained graphene foams. Second, the idea of Haeckelites, a planar sp2 graphene-like structure with heptagons and pentagons, can be extended to transition metal dichalcogenides (TMDs) with square and octagonal-like defects, finding semi-metallic behaviors with Dirac-Fermions, and even topological insulating properties. National Science Foundation (EFRI-1433311).

  14. Binary and ternary recombination of H2D(+) and HD2(+) ions with electrons at 80 K.

    PubMed

    Dohnal, Petr; Kálosi, Ábel; Plašil, Radek; Roučka, Štěpán; Kovalenko, Artem; Rednyk, Serhiy; Johnsen, Rainer; Glosík, Juraj

    2016-08-24

    The recombination of deuterated trihydrogen cations with electrons has been studied in afterglow plasmas containing mixtures of helium, argon, hydrogen and deuterium. By monitoring the fractional abundances of H3(+), H2D(+), HD2(+) and D3(+) as a function of the [D2]/[H2] ratio using infrared absorption observed in a cavity ring down absorption spectrometer (CRDS), it was possible to deduce effective recombination rate coefficients for H2D(+) and HD2(+) ions at a temperature of 80 K. From pressure dependences of the measured effective recombination rate coefficients the binary and the ternary recombination rate coefficients for both ions have been determined. The inferred binary and ternary recombination rate coefficients are: αbinH2D(80 K) = (7.1 ± 4.2) × 10(-8) cm(3) s(-1), αbinHD2(80 K) = (8.7 ± 2.5) × 10(-8) cm(3) s(-1), KH2D(80 K) = (1.1 ± 0.6) × 10(-25) cm(6) s(-1) and KHD2(80 K) = (1.5 ± 0.4) × 10(-25) cm(6) s(-1). PMID:27506912

  15. Increasing the lego of 2D electronics materials: silicene and germanene, graphene's new synthetic cousins

    NASA Astrophysics Data System (ADS)

    Le Lay, Guy; Salomon, Eric; Angot, Thierry; Eugenia Dávila, Maria

    2015-05-01

    The realization of the first Field Effect Transistors operating at room temperature, based on a single layer silicene channel, open up highly promising perspectives, e.g., typically, for applications in digital electronics. Here, we describe recent results on the growth, characterization and electronic properties of novel synthetic two-dimensional materials beyond graphene, namely silicene and germanene, its silicon and germanium counterparts.

  16. Reorientation of the Stripe Phase of 2D Electrons by a Minute Density Modulation

    NASA Astrophysics Data System (ADS)

    Mueed, M. A.; Hossain, Md. Shafayat; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.

    2016-08-01

    Interacting two-dimensional electrons confined in a GaAs quantum well exhibit isotropic transport when the Fermi level resides in the first excited (N =1 ) Landau level. Adding an in-plane magnetic field (B||) typically leads to an anisotropic, stripelike (nematic) phase of electrons with the stripes oriented perpendicular to the B|| direction. Our experimental data reveal how a periodic density modulation, induced by a surface strain grating from strips of negative electron-beam resist, competes against the B||-induced orientational order of the stripe phase. Even a minute (<0.25 %) density modulation is sufficient to reorient the stripes along the direction of the surface grating.

  17. Ray tracing of Electron Bernstein Waves in 2D for C-2 Equilibrium

    NASA Astrophysics Data System (ADS)

    Trask, E.; Kruszelnicki, J.; Harvey, R. W.; Petrov, Yu.; TAE Team

    2013-10-01

    Ray propagation in the electron cyclotron range of frequencies (ECRF) has been studied for simulated two dimensional equilibria on the C-2 device. Studies have been performed using the Genray ray tracing code, with modifications to allow ray trajectories on open magnetic flux surfaces. Primary studies are focused on Electron Bernstein Wave (EBW) coupling mechanisms to study the potential for microwave heating of Field Reversed Configurations (FRC).

  18. Dynamic polarization of graphene by moving external charges: Comparison with 2D electron gas

    NASA Astrophysics Data System (ADS)

    Borka, D.; Radović, I.; Mišković, Z. L.

    2011-06-01

    We calculate the stopping and image forces on a point charge moving over a single-layer graphene grown on an SiC substrate, and compare them with forces arising when a charge moves over a two-dimensional electron gas (2DEG) in an Ag monolayer on a Si substrate. Given that both these systems constitute a one-atom thick 2DEG, major differences are found in the velocity and distance dependencies of the two forces owing to different electronic structures of the respective 2DEG. Within the massless Dirac fermion picture of graphene's π electron bands, the inter-band single particle excitations are found to affect the stopping and image forces at high speeds in a substantial way, whereas such excitations are absent in the 2DEG of the metallic layer described by a single parabolic band.

  19. Fast Ion Induced Shearing of 2D Alfven Eigenmodes Measured by Electron Cyclotron Emission Imaging

    SciTech Connect

    Tobias, Ben; Classen, I.G.J.; Domier, C. W.; Heidbrink, W.; Luhmann, N.C.; Nazikian, Raffi; Park, H.K.; Spong, Donald A; Van Zeeland, Michael

    2011-01-01

    Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfven eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.

  20. High temperature electronic excitation and ionization rates in gases

    NASA Technical Reports Server (NTRS)

    Hansen, Frederick

    1991-01-01

    The relaxation times for electronic excitation due to electron bombardment of atoms was found to be quite short, so that electron kinetic temperature (T sub e) and the electron excitation temperature (T asterisk) should equilibrate quickly whenever electrons are present. However, once equilibrium has been achieved, further energy to the excited electronic states and to the kinetic energy of free electrons must be fed in by collisions with heavy particles that cause vibrational and electronic state transitions. The rate coefficients for excitation of electronic states produced by heavy particle collision have not been well known. However, a relatively simple semi-classical theory has been developed here which is analytic up to the final integration over a Boltzmann distribution of collision energies; this integral can then be evaluated numerically by quadrature. Once the rate coefficients have been determined, the relaxation of electronic excitation energy can be evaluated and compared with the relaxation rates of vibrational excitation. Then the relative importance of these two factors, electronic excitation and vibrational excitation by heavy particle collision, on the transfer of energy to free electron motion, can be assessed.

  1. Electron-impact excitation of the Rb 7 2S1/2, 8 2S1/2, 5 2D3/2, and 6 2D3/2 states

    NASA Astrophysics Data System (ADS)

    Wei, Zuyi; Flynn, Connor; Redd, Aaron; Stumpf, Bernhard

    1993-03-01

    Electron-impact cross sections for excitation of the 7 2S1/2, 8 2S1/2, 5 2D3/2, and 6 2D3/2 states of rubidium have been measured from threshold to 1000 eV. The optical-excitation-function method has been employed in a crossed atom- and electron-beam apparatus. Relative, total (cascade including) experimental cross sections are made absolute by comparison with the known total cross section of the Rb D1 line. Total excitation cross sections are compared with theoretical calculations employing first Born approximation and theoretical branching ratios. Born cross sections for the 7 2S1/2 and 8 2S1/2 states are obtained from the literature, while Born cross sections for the 5 2D3/2, 6 2D3/2, and all cascading states are calculated in this paper. At high energies, the measured total 2D3/2 state cross sections show 1/E behavior and converge to first Born theory; for E>100 eV, experiment and theory agree within 6.7% for 5 2D3/2 and within 3.7% for 6 2D3/2. The total cross sections for the 2S1/2 states do not converge to Born theory even at 1000 eV, and it is shown that this cannot be attributed to cascading. At low energies, 2S1/2 and 2D3/2 state total excitation cross sections have similar shapes with sharply peaked maxima at about 0.9 eV above threshold. After cascading is corrected using first Born theory, estimated experimental cross sections for direct excitation of higher fine-structure states of rubidium are given.

  2. SPE-LEEM Studies on the Surface and Electronic Structure of 2-D Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Chun; Jin, Wencan; Zaki, Nader; Zhang, Datong; Sadowski, Jerzy; Al-Mahboob, Abdullah; van de Zande, Arend; Chenet, Daniel; Dadap, Jerry; Herman, Irving; Sutter, Petter; Hone, James; Osgood, Richard

    2014-03-01

    In this work, we studied the surface and electronic structure of monolayer and few-layer exfoliated MoS2 and WSe2, as well as chemical-vapor-deposition (CVD) grown MoS2, using Spectroscopic Photoemission and Low Energy Electron Microscope (SPE-LEEM). LEEM measurements reveal that, unlike exfoliated MoS2, CVD-grown MoS2 exhibits grain-boundary alterations due to surface strain. However, LEEM and micro-probe low energy electron diffraction show that the quality of CVD-grown MoS2 is comparable to that of exfoliated MoS2. Micrometer-scale angle-resolved photoemission spectroscopy (ARPES) measurement on exfoliated MoS2 and WSe2 single-crystals provides direct evidence for the shifting of the valence band maximum from Γ to K, when the layer number is thinned down to one, as predicted by density functional theory. Our measurements of the k-space resolved electronic structure allow for further comparison with other theoretical predictions and with transport measurements. Session I and II

  3. A Fast Parallel Algorithm for Selected Inversion of Structured Sparse Matrices with Application to 2D Electronic Structure Calculations

    SciTech Connect

    Lin, Lin; Yang, Chao; Lu, Jiangfeng; Ying, Lexing; E, Weinan

    2009-09-25

    We present an efficient parallel algorithm and its implementation for computing the diagonal of $H^-1$ where $H$ is a 2D Kohn-Sham Hamiltonian discretized on a rectangular domain using a standard second order finite difference scheme. This type of calculation can be used to obtain an accurate approximation to the diagonal of a Fermi-Dirac function of $H$ through a recently developed pole-expansion technique \\cite{LinLuYingE2009}. The diagonal elements are needed in electronic structure calculations for quantum mechanical systems \\citeHohenbergKohn1964, KohnSham 1965,DreizlerGross1990. We show how elimination tree is used to organize the parallel computation and how synchronization overhead is reduced by passing data level by level along this tree using the technique of local buffers and relative indices. We analyze the performance of our implementation by examining its load balance and communication overhead. We show that our implementation exhibits an excellent weak scaling on a large-scale high performance distributed parallel machine. When compared with standard approach for evaluating the diagonal a Fermi-Dirac function of a Kohn-Sham Hamiltonian associated a 2D electron quantum dot, the new pole-expansion technique that uses our algorithm to compute the diagonal of $(H-z_i I)^-1$ for a small number of poles $z_i$ is much faster, especially when the quantum dot contains many electrons.

  4. Uniform electron gases. III. Low-density gases on three-dimensional spheres

    SciTech Connect

    Agboola, Davids; Knol, Anneke L.; Gill, Peter M. W. Loos, Pierre-François

    2015-08-28

    By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF) calculations, we have obtained near-exact correlation energies for low-density same-spin electrons on a three-dimensional sphere (3-sphere), i.e., the surface of a four-dimensional ball. In the VMC calculations, we compare the efficacies of two types of one-electron basis functions for these strongly correlated systems and analyze the energy convergence with respect to the quality of the Jastrow factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space analogs of Cartesian Gaussian functions. At low densities, the electrons become relatively localized into Wigner crystals, and the natural SGF centers are found by solving the Thomson problem (i.e., the minimum-energy arrangement of n point charges) on the 3-sphere for various values of n. We have found 11 special values of n whose Thomson sites are equivalent. Three of these are the vertices of four-dimensional Platonic solids — the hyper-tetrahedron (n = 5), the hyper-octahedron (n = 8), and the 24-cell (n = 24) — and a fourth is a highly symmetric structure (n = 13) which has not previously been reported. By calculating the harmonic frequencies of the electrons around their equilibrium positions, we also find the first-order vibrational corrections to the Thomson energy.

  5. Parallel FE Electron-Photon Transport Analysis on 2-D Unstructured Mesh

    SciTech Connect

    Drumm, C.R.; Lorenz, J.

    1999-03-02

    A novel solution method has been developed to solve the coupled electron-photon transport problem on an unstructured triangular mesh. Instead of tackling the first-order form of the linear Boltzmann equation, this approach is based on the second-order form in conjunction with the conventional multi-group discrete-ordinates approximation. The highly forward-peaked electron scattering is modeled with a multigroup Legendre expansion derived from the Goudsmit-Saunderson theory. The finite element method is used to treat the spatial dependence. The solution method is unique in that the space-direction dependence is solved simultaneously, eliminating the need for the conventional inner iterations, a method that is well suited for massively parallel computers.

  6. Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal.

    PubMed

    Jiang, B-Y; Ni, G X; Pan, C; Fei, Z; Cheng, B; Lau, C N; Bockrath, M; Basov, D N; Fogler, M M

    2016-08-19

    We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept. PMID:27588873

  7. Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal

    NASA Astrophysics Data System (ADS)

    Jiang, B.-Y.; Ni, G. X.; Pan, C.; Fei, Z.; Cheng, B.; Lau, C. N.; Bockrath, M.; Basov, D. N.; Fogler, M. M.

    2016-08-01

    We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept.

  8. Theoretical predictions on the electronic structure and charge carrier mobility in 2D Phosphorus sheets

    PubMed Central

    Xiao, Jin; Long, Mengqiu; Zhang, Xiaojiao; Ouyang, Jun; Xu, Hui; Gao, Yongli

    2015-01-01

    We have investigated the electronic structure and carrier mobility of four types of phosphorous monolayer sheet (α-P, β-P,γ-P and δ-P) using density functional theory combined with Boltzmann transport method and relaxation time approximation. It is shown that α-P, β-P and γ-P are indirect gap semiconductors, while δ-P is a direct one. All four sheets have ultrahigh carrier mobility and show anisotropy in-plane. The highest mobility value is ~3 × 105 cm2V−1s−1, which is comparable to that of graphene. Because of the huge difference between the hole and electron mobilities, α-P, γ-P and δ-P sheets can be considered as n-type semiconductors, and β-P sheet can be considered as a p-type semiconductor. Our results suggest that phosphorous monolayer sheets can be considered as a new type of two dimensional materials for applications in optoelectronics and nanoelectronic devices. PMID:26035176

  9. A Study of Two Dimensional Electron Gas Using 2D Fourier Transform Spectroscopy

    NASA Astrophysics Data System (ADS)

    McIntyre, Carl; Paul, Jagannath; Karaiskaj, Denis

    2015-03-01

    The dephasing of FES was measured in a symmetrically modulation doped 12 nm single quantum well GaAs/AlGaAs two dimensional electron gas system using time integrated four wave mixing (TIFWM) and a two dimensional Fourier transform spectroscopy (2DFTS). At high in-well carrier densities of ~4 x 1011 cm-2, many body effects that are prevalent and measurable with non-linear optical spectroscopy. Effects of exciton-exciton and exciton-phonon scattering events, exciton populations, and biexciton formation are detectable at these carrier concentrations. Homogeneous linewidths obtained from 2DFT and TIFWM yield a zero Kelvin linewidth of 1.42 meV and an acoustic phonon scattering coefficient of 158 μ eV/K. These observations indicate a rapid increase in homogeneous linewidth with increased temperature. NSF REU Grant # DMR-1263066: REU Site in Applied Physics at USF.

  10. Parallel Finite Element Electron-Photon Transport Analysis on 2-D Unstructured Mesh

    SciTech Connect

    Drumm, C.R.

    1999-01-01

    A computer code has been developed to solve the linear Boltzmann transport equation on an unstructured mesh of triangles, from a Pro/E model. An arbitriwy arrangement of distinct material regions is allowed. Energy dependence is handled by solving over an arbitrary number of discrete energy groups. Angular de- pendence is treated by Legendre-polynomial expansion of the particle cross sections and a discrete ordinates treatment of the particle fluence. The resulting linear system is solved in parallel with a preconditioned conjugate-gradients method. The solution method is unique, in that the space-angle dependence is solved si- multaneously, eliminating the need for the usual inner iterations. Electron cross sections are obtained from a Goudsrnit-Saunderson modifed version of the CEPXS code. A one-dimensional version of the code has also been develop@ for testing and development purposes.

  11. Influence of weak vibrational-electronic couplings on 2D electronic spectra and inter-site coherence in weakly coupled photosynthetic complexes

    SciTech Connect

    Monahan, Daniele M.; Whaley-Mayda, Lukas; Fleming, Graham R.; Ishizaki, Akihito

    2015-08-14

    Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the “site-probe response.” By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.

  12. Characterization of saturated MHD instabilities through 2D electron temperature profile reconstruction from 1D ECE measurements

    NASA Astrophysics Data System (ADS)

    Sertoli, M.; Horváth, L.; Pokol, G. I.; Igochine, V.; Barrera, L.

    2013-05-01

    A new method for the reconstruction of two-dimensional (2D) electron temperature profiles in the presence of saturated magneto-hydro-dynamic (MHD) modes from the one-dimensional (1D) electron cyclotron emission (ECE) diagnostic is presented. The analysis relies on harmonic decomposition of the electron temperature oscillations through short time Fourier transforms and requires rigid poloidal mode rotation as the only assumption. The method is applicable to any magnetic perturbation as long as the poloidal and toroidal mode numbers m and n are known. Its application to the case of a (m, n) = (1, 1) internal kink mode on ASDEX Upgrade is presented and a new way to estimate the mode displacement is explained. For such modes, it is shown that the higher order harmonics usually visible in the ECE spectrogram arise also for the pure m = n = 1 mode and that they cannot be directly associated with m = n > 1 magnetic perturbations. This method opens up new possibilities for electron heat transport studies in the presence of saturated MHD modes and a way to disentangle the impurity density contributions from electron temperature effects in the analysis of the soft x-ray data.

  13. Electron affinities for rare gases and some actinides from local-spin-density-functional theory

    SciTech Connect

    Guo, Y.; Wrinn, M.C.; Whitehead, M.A. )

    1989-12-01

    The negative ions of the rare gases (He, Ne, Ar, Kr, Xe, and Rn) and some actinides (Pu, Am, Bk, Cf, and Es) have been calculated self-consistently by the generalized exchange local-spin-density-functional theory with self-interaction correction and correlation. The electron affinities were obtained as the differences between the statistical total energies of the negative ions and neutral atoms; the electron affinities were positive around several millirydbergs. Consequently, the negative ions are predicted stable for the rare gases and actinides.

  14. Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: Electronic versus vibrational coherence

    SciTech Connect

    Plenio, M. B.; Almeida, J.; Huelga, S. F.

    2013-12-21

    We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.

  15. Ion Flux Measurements in Electron Beam Produced Plasmas in Atomic and Molecular Gases

    NASA Astrophysics Data System (ADS)

    Walton, S. G.; Leonhardt, D.; Blackwell, D. D.; Murphy, D. P.; Fernsler, R. F.; Meger, R. A.

    2001-10-01

    In this presentation, mass- and time-resolved measurements of ion fluxes sampled from pulsed, electron beam-generated plasmas will be discussed. Previous works have shown that energetic electron beams are efficient at producing high-density plasmas (10^10-10^12 cm-3) with low electron temperatures (Te < 1.0 eV) over the volume of the beam. Outside the beam, the plasma density and electron temperature vary due, in part, to ion-neutral and electron-ion interactions. In molecular gases, electron-ion recombination plays a significant role while in atomic gases, ion-neutral interactions are important. These interactions also determine the temporal variations in the electron temperature and plasma density when the electron beam is pulsed. Temporally resolved ion flux and energy distributions at a grounded electrode surface located adjacent to pulsed plasmas in pure Ar, N_2, O_2, and their mixtures are discussed. Measurements are presented as a function of operating pressure, mixture ratio, and electron beam-electrode separation. The differences in the results for atomic and molecular gases will also be discussed and related to their respective gas-phase kinetics.

  16. Electronic Structure calculations in a 2D SixGe1-x alloy under an applied electric field

    NASA Astrophysics Data System (ADS)

    Padilha, José. Eduardo; Pontes, Renato B.; Seixas, Leandro; da Silva, António J. R.; Fazzio, Adalberto

    2013-03-01

    The recent advances and promises in nanoscience and nanotechnology have been focused on hexagonal materials, mainly on carbon-based nanostructures. Recently, new candidates have been raised, where the greatest efforts are devoted to a new hexagonal and buckled material made of silicon, named Silicene. This new material presents an energy gap due to spin-orbit interaction of approximately 1.5 meV, where the measurement of quantum spin Hall effect(QSHE) can be made experimentally. Some investigations also show that the QSHE in 2D low-buckled hexagonal structures of germanium is present. Since the similarities, and at the same time the differences, between Si and Ge, over the years, have motivated a lot of investigations in these materials. In this work we performed systematic investigations on the electronic structure and band topology in both ordered and disordered SixGe1-x alloys monolayer with 2D honeycomb geometry by first-principles calculations. We show that an applied electric field can tune the gap size for both alloys. However, as a function of electric field, the disordered alloy presents a W-shaped behavior, similarly to the pure Si or Ge, whereas for the ordered alloy a V-shaped behavior is observed. This work is supported by CAPES, CNPq and FAPESP.

  17. Breakdown and discharges in dense gases governed by runaway electrons

    SciTech Connect

    Babich, L.P.

    1996-03-01

    The phenomenon of runaway electrons (REs) at high values of the ratio field intensity/gas number density {ital E}/{ital N} and {ital N} up to the Loshmidt number {ital N}{sub {ital L}}{approx_equal}2.7{times}10{sup 19} cm{sup {minus}3} is described. REs are shown to govern the breakdown and discharges at such condition. {copyright} {ital 1996 American Institute of Physics.}

  18. A Stochastic Hill Climbing Approach for Simultaneous 2D Alignment and Clustering of Cryogenic Electron Microscopy Images.

    PubMed

    Reboul, Cyril F; Bonnet, Frederic; Elmlund, Dominika; Elmlund, Hans

    2016-06-01

    A critical step in the analysis of novel cryogenic electron microscopy (cryo-EM) single-particle datasets is the identification of homogeneous subsets of images. Methods for solving this problem are important for data quality assessment, ab initio 3D reconstruction, and analysis of population diversity due to the heterogeneous nature of macromolecules. Here we formulate a stochastic algorithm for identification of homogeneous subsets of images. The purpose of the method is to generate improved 2D class averages that can be used to produce a reliable 3D starting model in a rapid and unbiased fashion. We show that our method overcomes inherent limitations of widely used clustering approaches and proceed to test the approach on six publicly available experimental cryo-EM datasets. We conclude that, in each instance, ab initio 3D reconstructions of quality suitable for initialization of high-resolution refinement are produced from the cluster centers. PMID:27184214

  19. Kondo effect at low electron density and high particle-hole asymmetry in 1D, 2D, and 3D

    NASA Astrophysics Data System (ADS)

    Žitko, Rok; Horvat, Alen

    2016-09-01

    Using the perturbative scaling equations and the numerical renormalization group, we study the characteristic energy scales in the Kondo impurity problem as a function of the exchange coupling constant J and the conduction-band electron density. We discuss the relation between the energy gain (impurity binding energy) Δ E and the Kondo temperature TK. We find that the two are proportional only for large values of J , whereas in the weak-coupling limit the energy gain is quadratic in J , while the Kondo temperature is exponentially small. The exact relation between the two quantities depends on the detailed form of the density of states of the band. In the limit of low electron density the Kondo screening is affected by the strong particle-hole asymmetry due to the presence of the band-edge van Hove singularities. We consider the cases of one- (1D), two- (2D), and three-dimensional (3D) tight-binding lattices (linear chain, square lattice, cubic lattice) with inverse-square-root, step-function, and square-root onsets of the density of states that are characteristic of the respective dimensionalities. We always find two different regimes depending on whether TK is higher or lower than μ , the chemical potential measured from the bottom of the band. For 2D and 3D, we find a sigmoidal crossover between the large-J and small-J asymptotics in Δ E and a clear separation between Δ E and TK for TK<μ . For 1D, there is, in addition, a sizable intermediate-J regime where the Kondo temperature is quadratic in J due to the diverging density of states at the band edge. Furthermore, we find that in 1D the particle-hole asymmetry leads to a large decrease of TK compared to the standard result obtained by approximating the density of states to be constant (flat-band approximation), while in 3D the opposite is the case; this is due to the nontrivial interplay of the exchange and potential scattering renormalization in the presence of particle-hole asymmetry. The 2D square

  20. 2D-GMAX-DOAS measurements during TCAP: Comparison with MFRSR, HSRL and simultaneous retrievals of trace gases and aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Ortega, I.; Coburn, S.; Kassianov, E.; Barnard, J.; Berg, L. K.; Hostetler, C. A.; Hair, J. W.; Ferrare, R. A.; Volkamer, R. M.

    2012-12-01

    The two Column Aerosol Project (TCAP) investigates uncertainties in the aerosol direct effect in the northern hemisphere mid-latitudes. The DOE Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Mobile Aerosol Observing System (MAOS) provide an opportunity for 1) atmospheric radiation closure studies, and 2) test retrievals of aerosol optical properties in the presence and absence of clouds. This presentation discusses innovative means to access column information about aerosol optical properties in the lower atmosphere from ground based measurements of solar stray light spectra in the hyperspectral domain, i.e., measurements of the Raman Scattering Probability (RSP, the probability that an observed photon has undergone a rotational Raman scattering event), and oxygen dimer slant column densities (O4 SCD) by means of the University of Colorado 2D scanning ground Multi AXis Differential Optical Absorption Spectroscopy (2D-GMAX-DOAS) instrument that was located at the ARM/MAOS site at Cape Cod, MA. We compare retrievals of aerosol optical properties with those retrieved from the MFRSR and the Cimel Sunphotometer, for case studies in the presence/absence of clouds, and assess the need for atmospheric correction of NO2. 2D-GMAX-DOAS also facilitates a link between the ground-based ARM/MAOS dataset and DoE's G1 aircraft, NASA's King Air aircraft, and NASA's OMI satellite (i.e., NO2 vertical column). Early results that explore these linkages are presented for a case study that combines ground based MFRSR, in-situ observations aboard the G1 aircraft, as well as High Spectral Resolution LIDAR aboard the King Air aircraft.

  1. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy.

    PubMed

    Enriquez, Miriam M; Akhtar, Parveen; Zhang, Cheng; Garab, Győző; Lambrev, Petar H; Tan, Howe-Siang

    2015-06-01

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Qy band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240-270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet-singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  2. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy

    SciTech Connect

    Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang; Akhtar, Parveen; Garab, Győző; Lambrev, Petar H.

    2015-06-07

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  3. Gold-induced nanowires on the Ge(100) surface yield a 2D and not a 1D electronic structure

    NASA Astrophysics Data System (ADS)

    de Jong, N.; Heimbuch, R.; Eliëns, S.; Smit, S.; Frantzeskakis, E.; Caux, J.-S.; Zandvliet, H. J. W.; Golden, M. S.

    2016-06-01

    Atomic nanowires on semiconductor surfaces induced by the adsorption of metallic atoms have attracted a lot of attention as possible hosts of the elusive, one-dimensional Tomonaga-Luttinger liquid. The Au/Ge(100) system in particular is the subject of controversy as to whether the Au-induced nanowires do indeed host exotic, 1D (one-dimensional) metallic states. In light of this debate, we report here a thorough study of the electronic properties of high quality nanowires formed at the Au/Ge(100) surface. The high-resolution ARPES data show the low-lying Au-induced electronic states to possess a dispersion relation that depends on two orthogonal directions in k space. Comparison of the E (kx,ky) surface measured using high-resolution ARPES to tight-binding calculations yields hopping parameters in the two different directions that differ by approximately factor of two. Additionally, by pinpointing the Au-induced surface states in the first, second, and third surface Brillouin zones and analyzing their periodicity in k||, the nanowire propagation direction seen clearly in STM can be imported into the ARPES data. We find that the larger of the two hopping parameters corresponds, in fact, to the direction perpendicular to the nanowires (tperp). This proves that the Au-induced electron pockets possess a two-dimensional, closed Fermi surface, and this firmly places the Au/Ge(100) nanowire system outside potential hosts of a Tomonaga-Luttinger liquid. We combine these ARPES data with scanning tunneling spectroscopic measurements of the spatially resolved electronic structure and find that the spatially straight—wirelike—conduction channels observed up to energies of order one electron volt below the Fermi level do not originate from the Au-induced states seen in the ARPES data. The former are rather more likely to be associated with bulk Ge states that are localized to the subsurface region. Despite our proof of the 2D (two-dimentional) nature of the Au

  4. Electronegative gases

    SciTech Connect

    Christophorou, L.G.

    1981-01-01

    Recent knowledge on electronegative gases essential for the effective control of the number densities of free electrons in electrically stressed gases is highlighted. This knowledge aided the discovery of new gas dielectrics and the tailoring of gas dielectric mixtures. The role of electron attachment in the choice of unitary gas dielectrics or electronegative components in dielectric gas mixtures, and the role of electron scattering at low energies in the choice of buffer gases for such mixtures is outlined.

  5. Statistics of electron avalanches and bursts in low pressure gases below the breakdown voltage

    SciTech Connect

    Donko, Z.

    1995-12-31

    Avalanches in different types of dynamical systems have been subject of recent interest. Avalanches building up in gases play an important role in radiation detectors and in the breakdown process of gas discharges. We have used computer simulation to study statistical properties of electron avalanches and bursts (sequences of avalanches) in a gas subjected to a homogeneous electric field. Helium was used as buffer gas, but we believe that our results are more general. The bursts were initiated by injecting low energy electrons into the gas. We applied Monte Carlo procedure to trace the trajectories of electrons. The elementary processes considered in the model were anisotropic elastic scattering of electrons from He atoms, electron impact excitation and ionization of He atoms. The electrons were traced until the are reached the perfectly absorbing anode.

  6. Charge balancing in GaN-based 2-D electron gas devices employing an additional 2-D hole gas and its influence on dynamic behaviour of GaN-based heterostructure field effect transistors

    NASA Astrophysics Data System (ADS)

    Hahn, Herwig; Reuters, Benjamin; Geipel, Sascha; Schauerte, Meike; Benkhelifa, Fouad; Ambacher, Oliver; Kalisch, Holger; Vescan, Andrei

    2015-03-01

    GaN-based heterostructure FETs (HFETs) featuring a 2-D electron gas (2DEG) can offer very attractive device performance for power-switching applications. This performance can be assessed by evaluation of the dynamic on-resistance Ron,dyn vs. the breakdown voltage Vbd. In literature, it has been shown that with a high Vbd, Ron,dyn is deteriorated. The impairment of Ron,dyn is mainly driven by electron injection into surface, barrier, and buffer traps. Electron injection itself depends on the electric field which typically peaks at the gate edge towards the drain. A concept suitable to circumvent this issue is the charge-balancing concept which employs a 2-D hole gas (2DHG) on top of the 2DEG allowing for the electric field peak to be suppressed. Furthermore, the 2DEG concentration in the active channel cannot decrease by a change of the surface potential. Hence, beside an improvement in breakdown voltage, also an improvement in dynamic behaviour can be expected. Whereas the first aspect has already been demonstrated, the second one has not been under investigation so far. Hence, in this report, the effect of charge-balancing is discussed and its impact on the dynamic characteristics of HFETs is evaluated. It will be shown that with appropriate device design, the dynamic behaviour of HFETs can be improved by inserting an additional 2DHG.

  7. Charge balancing in GaN-based 2-D electron gas devices employing an additional 2-D hole gas and its influence on dynamic behaviour of GaN-based heterostructure field effect transistors

    SciTech Connect

    Hahn, Herwig Reuters, Benjamin; Geipel, Sascha; Schauerte, Meike; Kalisch, Holger; Vescan, Andrei; Benkhelifa, Fouad; Ambacher, Oliver

    2015-03-14

    GaN-based heterostructure FETs (HFETs) featuring a 2-D electron gas (2DEG) can offer very attractive device performance for power-switching applications. This performance can be assessed by evaluation of the dynamic on-resistance R{sub on,dyn} vs. the breakdown voltage V{sub bd}. In literature, it has been shown that with a high V{sub bd}, R{sub on,dyn} is deteriorated. The impairment of R{sub on,dyn} is mainly driven by electron injection into surface, barrier, and buffer traps. Electron injection itself depends on the electric field which typically peaks at the gate edge towards the drain. A concept suitable to circumvent this issue is the charge-balancing concept which employs a 2-D hole gas (2DHG) on top of the 2DEG allowing for the electric field peak to be suppressed. Furthermore, the 2DEG concentration in the active channel cannot decrease by a change of the surface potential. Hence, beside an improvement in breakdown voltage, also an improvement in dynamic behaviour can be expected. Whereas the first aspect has already been demonstrated, the second one has not been under investigation so far. Hence, in this report, the effect of charge-balancing is discussed and its impact on the dynamic characteristics of HFETs is evaluated. It will be shown that with appropriate device design, the dynamic behaviour of HFETs can be improved by inserting an additional 2DHG.

  8. Transient terahertz spectroscopy of excitons and unbound carriers in quasi two-dimensional electron-hole gases

    SciTech Connect

    Kaindl, Robert A.; Hagele, D.; Carnahan, M. A.; Chemla, D. S.

    2008-09-11

    We report a comprehensive experimental study and detailed model analysis of the terahertz (THz) dielectric response and density kinetics of excitons and unbound electron-hole pairs in GaAs quantum wells. A compact expression is given, in absolute units, for the complex-valued THz dielectric function of intra-excitonic transitions between the 1s and higher-energy exciton and continuum levels. It closely describes the THz spectra of resonantly generated excitons. Exciton ionization and formation are further explored, where the THz response exhibits both intra-excitonic and Drude features. Utilizing a two-component dielectric function, we derive the underlying exciton and unbound pair densities. In the ionized state, excellent agreement is found with the Saha thermodynamic equilibrium, which provides experimental verification of the two-component analysis and density scaling. During exciton formation, in turn, the pair kinetics is quantitatively described by a Saha equilibrium that follows the carrier cooling dynamics. The THz-derived kinetics is, moreover, consistent with time-resolved luminescence measured for comparison. Our study establishes a basis for tracking pair densities via transient THz spectroscopy of photoexcited quasi-2D electron-hole gases.

  9. Beam deflection measurement of bound-electronic and rotational nonlinear refraction in molecular gases.

    PubMed

    Reichert, Matthew; Zhao, Peng; Reed, Jennifer M; Ensley, Trenton R; Hagan, David J; Van Stryland, Eric W

    2015-08-24

    A polarization-resolved beam deflection technique is used to separate the bound-electronic and molecular rotational components of nonlinear refractive transients of molecular gases. Coherent rotational revivals from N(2), O(2), and two isotopologues of carbon disulfide (CS(2)), are identified in gaseous mixtures. Dephasing rates, rotational and centrifugal distortion constants of each species are measured. Polarization at the magic angle allows unambiguous measurement of the bound-electronic nonlinear refractive index of air and second hyperpolarizability of CS(2). Agreement between gas and liquid phase second hyperpolarizability measurements is found using the Lorentz-Lorenz local field correction.

  10. Validity of Eucken formula and Stokes’ viscosity relation in high-temperature electronically excited gases

    SciTech Connect

    Istomin, V. A.; Kustova, E. V.; Mekhonoshina, M. A.

    2014-12-09

    In the present work we evaluate the accuracy of the Eucken formula and Stokes’ viscosity relation in high temperature non-equilibrium air species with electronic excitation. The thermal conductivity coefficient calculated using the exact kinetic theory methods is compared with that obtained applying approximate formulas in the temperature range 200–20000 K. A modification of the Eucken formula providing a good agreement with exact calculations is proposed. It is shown that the Stokes viscosity relation is not valid in electronically excited monoatomic gases at temperatures higher than 2000 K.

  11. Electron-drift velocity and ionization and attachment coefficients in gases/mixtures for diffuse-discharge opening switches

    NASA Astrophysics Data System (ADS)

    Carter, J. G.; Hunter, S. R.; Christophorou, L. G.; Lakdawala, V. K.

    The data presented show that it is possible to find gases and gas mixtures which have the desirable drift velocity, electron attachment, and breakdown strength characteristics required for diffuse-discharge opening switch applications. Several such gases and gas mixtures were identified and their approximate operating conditions were indicated.

  12. Evaluation of theoretical cross sections for electron scattering from noble gases for plasma modeling

    NASA Astrophysics Data System (ADS)

    Pitchford, Leanne; Zatsarinny, O.; Bartschat, K.; Fursa, D. V.; Bray, I.; Alves, L. L.; Biagi, S.

    2013-09-01

    Can state-of-the-art theory now provide complete sets of cross sections for electron scattering from noble gases suitable for use in Boltzmann calculations of swarm parameters and to the accuracy required for plasma modeling? The answer is a qualified ``yes'' for He, Ne, and Ar, but ``not yet'' for Kr and Xe. Purely theoretical cross section sets for electron scattering from these species are presently available on the LXCat website in the BRAY database for He (calculated using the convergent close-coupling technique, formulated in momentum space) and in the BSR database for the other rare gases (obtained with a convergent B-spline R-matrix with pseudo-states method, formulated in coordinated space). Although significant differences occasionally appear in some of the cross sections between experiment and theory, the calculated ionization rate coefficients as a function of reduced electric field strength, E/N, for He, Ne and Ar agree with experiment to within a few percent for the three lighter noble gases. This work is supported, in part, by the United States National Science Foundation.

  13. Superradiant decay of cyclotron resonance of two-dimensional electron gases.

    PubMed

    Zhang, Qi; Arikawa, Takashi; Kato, Eiji; Reno, John L; Pan, Wei; Watson, John D; Manfra, Michael J; Zudov, Michael A; Tokman, Mikhail; Erukhimova, Maria; Belyanin, Alexey; Kono, Junichiro

    2014-07-25

    We report on the observation of collective radiative decay, or superradiance, of cyclotron resonance (CR) in high-mobility two-dimensional electron gases in GaAs quantum wells using time-domain terahertz magnetospectroscopy. The decay rate of coherent CR oscillations increases linearly with the electron density in a wide range, which is a hallmark of superradiant damping. Our fully quantum mechanical theory provides a universal formula for the decay rate, which reproduces our experimental data without any adjustable parameter. These results firmly establish the many-body nature of CR decoherence in this system, despite the fact that the CR frequency is immune to electron-electron interactions due to Kohn's theorem. PMID:25105654

  14. Nanoscale Effects on Heterojunction Electron Gases in GaN/AlGaN Core/Shell Nanowires

    PubMed Central

    2011-01-01

    The electronic properties of heterojunction electron gases formed in GaN/AlGaN core/shell nanowires with hexagonal and triangular cross sections are studied theoretically. We show that at nanoscale dimensions, the nonpolar hexagonal system exhibits degenerate quasi-one-dimensional electron gases at the hexagon corners, which transition to a core-centered electron gas at lower doping. In contrast, polar triangular core/shell nanowires show either a nondegenerate electron gas on the polar face or a single quasi-one-dimensional electron gas at the corner opposite the polar face, depending on the termination of the polar face. More generally, our results indicate that electron gases in closed nanoscale systems are qualitatively different from their bulk counterparts. PMID:21696178

  15. Interpretation of calculated transverse and longitudinal diffusion for electrons in gases

    NASA Astrophysics Data System (ADS)

    Phelps, A. V.; Hagelaar, G. J. M.

    2012-10-01

    Ratios of transverse DT and longitudinal DL diffusion coefficients to mobility μ and mean energies for electrons in gases are calculated for a wide range of E/N for He, Ar, Xe, H2, N2, and CO. These transport coefficients are determined from spatial-gradient expansion, two-term spherical harmonic theoryfootnotetextJ. H. Parker and J. J. Lowke, Phys. Rev. 181, 290 (1969).^,footnotetextG. J. M. Hagelaar (unpublished codes, 2012). and from Monte Carlo simulations.footnotetextIbid.^,footnotetextS. F. Biagi, Nucl. Instr. and Meth. A 421, 234 (1999). As predicted by simplified theoryfootnotetextParker, Lowke, Op. cit. applied to the heavier rare gases, e.g., Ar and Xe, the ratio DT/DL reaches 7 to 10 at mean electron energies for which the momentum transfer cross sections are rapidly rising functions of energy. Comparisons are made of simplifiedfootnotetextIbid. and detailed predictions of DL/DT values for N2 and CO at low electron energies where the effects of scattering by the quadrupole potential of N2 versus the dipole/quadrupole potential of CO are expected to be observed.

  16. An improved classical mapping method for homogeneous electron gases at finite temperature

    SciTech Connect

    Liu, Yu; Wu, Jianzhong

    2014-08-14

    We introduce a modified classical mapping method to predict the exchange-correlation free energy and the structure of homogeneous electron gases (HEG) at finite temperature. With the classical map temperature parameterized on the basis of the quantum Monte Carlo simulation data for the correlation energy and exact results at high and low temperature limits, the new theoretical procedure greatly improves the classical mapping method for correlating the energetic properties HEG over a broad range of thermodynamic conditions. Improvement can also be identified in predicting the long-range components of the spin-averaged pair correlation functions.

  17. The effect of electron-hole scattering on transport properties of a 2D semimetal in the HgTe quantum well

    SciTech Connect

    Entin, M. V.; Magarill, L. I.; Olshanetsky, E. B. Kvon, Z. D.; Mikhailov, N. N.; Dvoretsky, S. A.

    2013-11-15

    The influence of e-h scattering on the conductivity and magnetotransport of 2D semimetallic HgTe is studied both theoretically and experimentally. The presence of e-h scattering leads to the friction between electrons and holes resulting in a large temperature-dependent contribution to the transport coefficients. The coefficient of friction between electrons and holes is determined. The comparison of experimental data with the theory shows that the interaction between electrons and holes based on the long-range Coulomb potential strongly underestimates the e-h friction. The experimental results are in agreement with the model of strong short-range e-h interaction.

  18. The viscosity cross section for electron scattering from the heavy noble gases

    NASA Astrophysics Data System (ADS)

    Stauffer, Allan; McEachran, Robert

    2014-10-01

    The viscosity cross section is defined in terms of the elastic differential cross section σ (θ) as σv =∫0 π (1 -cos2 θ) sin θ σ (θ) dθ and appears in the Boltzmann equation for the electron distribution function in velocity space. If this distribution function is expanded in Legendre polynomials, the viscosity cross section arises from the third term. Normally, only the first two terms in this expansion are retained in the solution of the Boltzmann equation. We have recently published results for the elastic and momentum transfer cross section for electron scattering from the heavy noble gases (argon, krypton and xenon) using our complex, relativistic optical potential method which includes the effect of excitation and ionization channels on the elastic cross sections. We also provided simple analytic fits to these cross sections to aid in plasma modelling calculations. We will present similar results for the viscosity cross sections for these gases including fits using similar analytic functions. By including the third term in the expansion of the Boltzmann equation which depends on this cross section, an evaluation of the accuracy of the two-term solution can be made.

  19. Correlation of buffer strain relaxation modes with transport properties of two-dimensional electron gases

    SciTech Connect

    Goldman, R.S.; Kavanagh, K.L.; Wieder, H.H.; Robbins, V.M.; Ehrlich, S.N.; Feenstra, R.M.

    1996-12-01

    We have investigated the effects of buffer strain relaxation on the transport properties of two-dimensional electron gases (2DEGs). The 2DEGs consist of modulation-doped In{sub 0.53}Ga{sub 0.47}As/In{sub 0.52}Al{sub 0.48}As heterostructures grown lattice-mismatched to GaAs via compositionally step-graded In{sub {ital x}}Ga{sub 1{minus}{ital x}}As buffers, with different composition gradients, or lattice-matched to InP. We find a variation in 2DEG electronic properties which occurs simultaneously with large differences in epilayer tilt and mosaic spread in the step-graded buffers. This indicates a correlation between the {ital mechanism} of buffer strain relaxation and the 2DEG transport properties. {copyright} {ital 1996 American Institute of Physics.}

  20. Time-dependent resonant UHF CI approach for the photo-induced dynamics of the multi-electron system confined in 2D QD

    SciTech Connect

    Okunishi, Takuma; Clark, Richard; Takeda, Kyozaburo; Kusakabe, Kouichi; Tomita, Norikazu

    2013-12-04

    We extend the static multi-reference description (resonant UHF) to the dynamic system in order to include the correlation effect over time, and simplify the TD Schrödinger equation (TD-CI) into a time-developed rate equation where the TD external field Ĥ′(t) is then incorporated directly in the Hamiltonian without any approximations. We apply this TD-CI method to the two-electron ground state of a 2D quantum dot (QD) under photon injection and study the resulting two-electron Rabi oscillation.

  1. Third-order transport coefficients for electron and positron swarms in gases

    NASA Astrophysics Data System (ADS)

    Simonovic, Ilija; Dujko, Sasa; White, Ronald; Petrovic, Zoran

    2015-09-01

    A multi term solution of the Boltzmann equation has been used to calculate third-order transport coefficients of charged particle swarms in neutral gases under the influence of electric and magnetic fields. The hierarchy resulting from a spherical harmonic decomposition of the Boltzmann equation in the hydrodynamic regime is solved numerically by representing the speed dependence of the phase-space distribution function in terms of an expansion in Sonine polynomials about a Maxwellian velocity distribution at an internally determined temperature. A group projector technique is employed to determine the structure and symmetries along individual elements of the skewness tensor when both electric and magnetic fields are present. Results are given for electron and positron swarms for certain model and real gases over a range of electric and magnetic field strengths. The results of the Boltzmann equation analysis are compared with those obtained by a Monte Carlo simulation technique. Various aspects in the behavior of skewness tensor elements are investigated, including the existence of correlation with low-order transport coefficients, sensitivity to post-ionization energy partitioning and errors of two-term approximation for solving Boltzmann's equation.

  2. Imaginary time density-density correlations for two-dimensional electron gases at high density

    SciTech Connect

    Motta, M.; Galli, D. E.; Moroni, S.; Vitali, E.

    2015-10-28

    We evaluate imaginary time density-density correlation functions for two-dimensional homogeneous electron gases of up to 42 particles in the continuum using the phaseless auxiliary field quantum Monte Carlo method. We use periodic boundary conditions and up to 300 plane waves as basis set elements. We show that such methodology, once equipped with suitable numerical stabilization techniques necessary to deal with exponentials, products, and inversions of large matrices, gives access to the calculation of imaginary time correlation functions for medium-sized systems. We discuss the numerical stabilization techniques and the computational complexity of the methodology and we present the limitations related to the size of the systems on a quantitative basis. We perform the inverse Laplace transform of the obtained density-density correlation functions, assessing the ability of the phaseless auxiliary field quantum Monte Carlo method to evaluate dynamical properties of medium-sized homogeneous fermion systems.

  3. Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties.

    PubMed

    Island, Joshua O; Biele, Robert; Barawi, Mariam; Clamagirand, José M; Ares, José R; Sánchez, Carlos; van der Zant, Herre S J; Ferrer, Isabel J; D'Agosta, Roberto; Castellanos-Gomez, Andres

    2016-01-01

    We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance. PMID:26931161

  4. Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties

    PubMed Central

    Island, Joshua O.; Biele, Robert; Barawi, Mariam; Clamagirand, José M.; Ares, José R.; Sánchez, Carlos; van der Zant, Herre S. J.; Ferrer, Isabel J.; D’Agosta, Roberto; Castellanos-Gomez, Andres

    2016-01-01

    We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance. PMID:26931161

  5. Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties

    NASA Astrophysics Data System (ADS)

    Island, Joshua O.; Biele, Robert; Barawi, Mariam; Clamagirand, José M.; Ares, José R.; Sánchez, Carlos; van der Zant, Herre S. J.; Ferrer, Isabel J.; D'Agosta, Roberto; Castellanos-Gomez, Andres

    2016-03-01

    We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance.

  6. Fast ion induced shearing of 2D Alfvén eigenmodes measured by electron cyclotron emission imaging.

    PubMed

    Tobias, B J; Classen, I G J; Domier, C W; Heidbrink, W W; Luhmann, N C; Nazikian, R; Park, H K; Spong, D A; Van Zeeland, M A

    2011-02-18

    Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfvén eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.

  7. SPE-LEEM Studies on the Surface and Electronic Structure of 2-D Transition Metal Dichalcogenides (Part II)

    NASA Astrophysics Data System (ADS)

    Jin, Wencan; Yeh, Po-Chun; Zaki, Nader; Zhang, Datong; Sadowski, Jerzy; Al-Mahboob, Abdullah; van de Zande, Arend; Chenet, Daniel; Dadap, Jerry; Herman, Irving; Sutter, Peter; Hone, James; Osgood, Richard

    2014-03-01

    In this work, we studied the surface and electronic structure of monolayer and few-layer exfoliated MoS2 and WSe2, as well as chemical-vapor-deposition (CVD) grown MoS2, using Spectroscopic Photoemission and Low Energy Electron Microscope (SPE-LEEM). LEEM measurements reveal that, unlike exfoliated MoS2, CVD-grown MoS2 exhibits grain-boundary alterations due to surface strain. However, LEEM and micro-probe low energy electron diffraction show that the quality of CVD-grown MoS2 is comparable to that of exfoliated MoS2. Micrometer-scale angle-resolved photoemission spectroscopy (ARPES) measurement on exfoliated MoS2 and WSe2 single-crystals provides direct evidence for the shifting of the valence band maximum from Γ to K, when the layer number is thinned down to one, as predicted by density functional theory. Our measurements of the k-space resolved electronic structure allow for further comparison with other theoretical predictions and with transport measurements. This work is supported by DOE grant DE-FG 02-04-ER-46157, research carried out in part at the CFN and NSLS, Brookhaven National Laboratory.

  8. Orbital dependent Rashba splitting and electron-phonon coupling of 2D Bi phase on Cu(100) surface

    SciTech Connect

    Gargiani, Pierluigi; Lisi, Simone; Betti, Maria Grazia; Ibrahimi, Amina Taleb; Bertran, François; Le Fèvre, Patrick; Chiodo, Letizia

    2013-11-14

    A monolayer of bismuth deposited on the Cu(100) surface forms a highly ordered c(2×2) reconstructed phase. The low energy single particle excitations of the c(2×2) Bi/Cu(100) present Bi-induced states with a parabolic dispersion in the energy region close to the Fermi level, as observed by angle-resolved photoemission spectroscopy. The electronic state dispersion, the charge density localization, and the spin-orbit coupling have been investigated combining photoemission spectroscopy and density functional theory, unraveling a two-dimensional Bi phase with charge density well localized at the interface. The Bi-induced states present a Rashba splitting, when the charge density is strongly localized in the Bi plane. Furthermore, the temperature dependence of the spectral density close to the Fermi level has been evaluated. Dispersive electronic states offer a large number of decay channels for transitions coupled to phonons and the strength of the electron-phonon coupling for the Bi/Cu(100) system is shown to be stronger than for Bi surfaces and to depend on the electronic state symmetry and localization.

  9. Analysis of bell-shape negative giant-magnetoresistance in high mobility GaAs/AlGaAs 2D electron systems using multi-conduction model

    NASA Astrophysics Data System (ADS)

    Samaraweera, Rasanga; Liu, Han-Chun; Wegscheider, Werner; Mani, Ramesh

    Recent advancements in the growth techniques of the GaAs/AlGaAs two dimensional electron system (2DES) routinely yield high quality heterostructures with enhanced physical and electrical properties, including devices with 2D electron mobilities well above 107 cm2/Vs. These improvements have opened new pathways to study interesting physical phenomena associated with the 2D electron system. Negative giant-magnetoresistance (GMR) is one such phenomenon which can observed in the high mobility 2DES. However, the negative GMR in the GaAs/AlGaAs 2DES is still not fully understood. In this contribution, we present an experimental study of the bell-shape negative GMR in high mobility GaAs/AlGaAs devices and quantitatively analyze the results utilizing the multi-conduction model. The multi-conduction model includes interesting physical characteristics such as negative diagonal conductivity, non-vanishing off-diagonal conductivity, etc. The aim of the study is to examine GMR over a wider experimental parameter space and determine whether the multi-conduction model serves to describe the experimental results.

  10. Status and perspectives for the electron beam technology for flue gases treatment

    NASA Astrophysics Data System (ADS)

    Frank, Norman W.

    The electron-beam process is one of the most effective methods of removing SO 2 and NO x from industrial flue gases. This flue gas treatment consists of adding a small amount of ammonia to the flue gas and irradiating the gas by means of an electron beam, thereby causing reactions which convert the SO 2 and NO x to ammonium sulfate and ammonium sulfate-nitrate. These salts may the be collected from the flue gas by means of such conventional collectors as an electrostatic precipitator or baghouse. This process has numerous advantages over currently-used conventional processes as follows: (1) the process simultaneously removes SO 2 and NO x from flue gas at high efficiency levels; (2) it is a dry process which is easily controlled and has excellent load-following capability; (3) stack-gas reheat is not required; (4) the pollutants are converted into a saleable agricultural fertilizer; (5) the process has low capital and operating cost requirements. The history of the process is shown with a summary of the work that is presently underway. All of the current work is for the purpose of fine tuning the process for commercial usage. It is believed that with current testing and improvements, the process will be very competitive with existing processes and it will find its place in an environmental conscious world.

  11. Anisotropic plasmon-coupling dimerization of a pair of spherical electron gases.

    PubMed

    Gumbs, Godfrey; Iurov, Andrii; Balassis, Antonios; Huang, Danhong

    2014-04-01

    We have discovered a novel feature in the plasmon excitations for a pair of Coulomb-coupled non-concentric spherical two-dimensional electron gases (S2DEGs). Our results show that the plasmon excitations for such pairs depend on the orientation with respect to the external electromagnetic probe field. The origin of this anisotropy of the inter-sphere Coulomb interaction is due to the directional asymmetry of the electrostatic coupling of electrons in excited states which depend on both the angular momentum quantum number L and its projection M on the axis of quantization taken as the probe E-field direction. We demonstrate the anisotropic inter-sphere Coulomb coupling in space and present semi-analytic results in the random-phase approximation both perpendicular and parallel to the axis of quantization. For the incidence of light with a finite orbital or spin angular momentum, the magnetic field generated from an induced oscillating electric dipole on one sphere can couple to an induced magnetic dipole on another sphere in a way that is dependent on whether the direction is parallel or perpendicular to the probe E field. Such an effect from the plasmon spatial correlation is expected to be experimentally observable by employing circularly polarized light or a helical light beam for incidence. The S2DEG serves as a simple model for fullerenes as well as metallic dimers, when the energy bands are far apart. PMID:24625751

  12. Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy.

    PubMed

    Bakulin, Artem A; Morgan, Sarah E; Kehoe, Tom B; Wilson, Mark W B; Chin, Alex W; Zigmantas, Donatas; Egorova, Dassia; Rao, Akshay

    2016-01-01

    Singlet fission is the spin-allowed conversion of a spin-singlet exciton into a pair of spin-triplet excitons residing on neighbouring molecules. To rationalize this phenomenon, a multiexcitonic spin-zero triplet-pair state has been hypothesized as an intermediate in singlet fission. However, the nature of the intermediate states and the underlying mechanism of ultrafast fission have not been elucidated experimentally. Here, we study a series of pentacene derivatives using ultrafast two-dimensional electronic spectroscopy and unravel the origin of the states involved in fission. Our data reveal the crucial role of vibrational degrees of freedom coupled to electronic excitations that facilitate the mixing of multiexcitonic states with singlet excitons. The resulting manifold of vibronic states drives sub-100 fs fission with unity efficiency. Our results provide a framework for understanding singlet fission and show how the formation of vibronic manifolds with a high density of states facilitates fast and efficient electronic processes in molecular systems.

  13. Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Bakulin, Artem A.; Morgan, Sarah E.; Kehoe, Tom B.; Wilson, Mark W. B.; Chin, Alex W.; Zigmantas, Donatas; Egorova, Dassia; Rao, Akshay

    2016-01-01

    Singlet fission is the spin-allowed conversion of a spin-singlet exciton into a pair of spin-triplet excitons residing on neighbouring molecules. To rationalize this phenomenon, a multiexcitonic spin-zero triplet-pair state has been hypothesized as an intermediate in singlet fission. However, the nature of the intermediate states and the underlying mechanism of ultrafast fission have not been elucidated experimentally. Here, we study a series of pentacene derivatives using ultrafast two-dimensional electronic spectroscopy and unravel the origin of the states involved in fission. Our data reveal the crucial role of vibrational degrees of freedom coupled to electronic excitations that facilitate the mixing of multiexcitonic states with singlet excitons. The resulting manifold of vibronic states drives sub-100 fs fission with unity efficiency. Our results provide a framework for understanding singlet fission and show how the formation of vibronic manifolds with a high density of states facilitates fast and efficient electronic processes in molecular systems.

  14. Can fractional quantum Hall effect be due to the formation of coherent wave structures in a 2D electron gas?

    NASA Astrophysics Data System (ADS)

    Mirza, Babur M.

    2016-05-01

    A microscopic theory of integer and fractional quantum Hall effects is presented here. In quantum density wave representation of charged particles, it is shown that, in a two-dimensional electron gas coherent structures form under the low temperature and high density conditions. With a sufficiently high applied magnetic field, the combined N particle quantum density wave exhibits collective periodic oscillations. As a result the corresponding quantum Hall voltage function shows a step-wise change in multiples of the ratio h/e2. At lower temperatures further subdivisions emerge in the Hall resistance, exhibiting the fractional quantum Hall effect.

  15. Dissipative dynamics within the electronic friction approach: the femtosecond laser desorption of H2/D2 from Ru(0001).

    PubMed

    Füchsel, Gernot; Klamroth, Tillmann; Monturet, Serge; Saalfrank, Peter

    2011-05-21

    An electronic friction approach based on Langevin dynamics is used to describe the multidimensional (six-dimensional) dynamics of femtosecond laser induced desorption of H(2) and D(2) from a H(D)-covered Ru(0001) surface. The paper extends previous reduced-dimensional models, using a similar approach. In the present treatment forces and frictional coefficients are calculated from periodic density functional theory (DFT) and essentially parameter-free, while the action of femtosecond laser pulses on the metal surface is treated by using the two-temperature model. Our calculations shed light on the performance and validity of various adiabatic, non-adiabatic, and Arrhenius/Kramers type kinetic models to describe hot-electron mediated photoreactions at metal surfaces. The multidimensional frictional dynamics are able to reproduce and explain known experimental facts, such as strong isotope effects, scaling of properties with laser fluence, and non-equipartitioning of vibrational, rotational, and translational energies of desorbing species. Further, detailed predictions regarding translations are made, and the question for the controllability of photoreactions at surfaces with the help of vibrational preexcitation is addressed.

  16. 2D/3D electron temperature fluctuations near explosive MHD instabilities accompanied by minor and major disruptions

    NASA Astrophysics Data System (ADS)

    Choi, M. J.; Park, H. K.; Yun, G. S.; Lee, W.; Luhmann, N. C., Jr.; Lee, K. D.; Ko, W.-H.; Park, Y.-S.; Park, B. H.; In, Y.

    2016-06-01

    Minor and major disruptions by explosive MHD instabilities were observed with the novel quasi 3D electron cyclotron emission imaging (ECEI) system in the KSTAR plasma. The fine electron temperature (T e) fluctuation images revealed two types of minor disruptions: a small minor disruption is a q∼ 2 localized fast transport event due to a single m/n  =  2/1 magnetic island growth, while a large minor disruption is partial collapse of the q≤slant 2 region with two successive fast heat transport events by the correlated m/n  =  2/1 and m/n  =  1/1 instabilities. The m/n  =  2/1 magnetic island growth during the minor disruption is normally limited below the saturation width. However, as the additional interchange-like perturbation grows near the inner separatrix of the 2/1 island, the 2/1 island can expand beyond the limit through coupling with the cold bubble formed by the interchange-like perturbation.

  17. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals

    NASA Astrophysics Data System (ADS)

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.

    2016-06-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit.

  18. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals

    PubMed Central

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.

    2016-01-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit. PMID:27245646

  19. Energy of the quasi-free electron in H2, D2, and O2: Probing intermolecular potentials within the local Wigner-Seitz model

    NASA Astrophysics Data System (ADS)

    Evans, C. M.; Krynski, Kamil; Streeter, Zachary; Findley, G. L.

    2015-12-01

    We present for the first time the quasi-free electron energy V0(ρ) for H2, D2, and O2 from gas to liquid densities, on noncritical isotherms and on a near critical isotherm in each fluid. These data illustrate the ability of field enhanced photoemission (FEP) to determine V0(ρ) accurately in strongly absorbing fluids (e.g., O2) and fluids with extremely low critical temperatures (e.g., H2 and D2). We also show that the isotropic local Wigner-Seitz model for V0(ρ) — when coupled with thermodynamic data for the fluid — can yield optimized parameters for intermolecular potentials, as well as zero kinetic energy electron scattering lengths.

  20. Numerical simulations - Some results for the 2- and 3-D Hubbard models and a 2-D electron phonon model

    NASA Technical Reports Server (NTRS)

    Scalapino, D. J.; Sugar, R. L.; White, S. R.; Bickers, N. E.; Scalettar, R. T.

    1989-01-01

    Numerical simulations on the half-filled three-dimensional Hubbard model clearly show the onset of Neel order. Simulations of the two-dimensional electron-phonon Holstein model show the competition between the formation of a Peierls-CDW state and a superconducting state. However, the behavior of the partly filled two-dimensional Hubbard model is more difficult to determine. At half-filling, the antiferromagnetic correlations grow as T is reduced. Doping away from half-filling suppresses these correlations, and it is found that there is a weak attractive pairing interaction in the d-wave channel. However, the strength of the pair field susceptibility is weak at the temperatures and lattice sizes that have been simulated, and the nature of the low-temperature state of the nearly half-filled Hubbard model remains open.

  1. Controlled vapor phase growth of single crystalline, two-dimensional GaSe crystals with high photoresponse.

    PubMed

    Li, Xufan; Lin, Ming-Wei; Puretzky, Alexander A; Idrobo, Juan C; Ma, Cheng; Chi, Miaofang; Yoon, Mina; Rouleau, Christopher M; Kravchenko, Ivan I; Geohegan, David B; Xiao, Kai

    2014-06-30

    Compared with their bulk counterparts, atomically thin two-dimensional (2D) crystals exhibit new physical properties, and have the potential to enable next-generation electronic and optoelectronic devices. However, controlled synthesis of large uniform monolayer and multi-layer 2D crystals is still challenging. Here, we report the controlled synthesis of 2D GaSe crystals on SiO2/Si substrates using a vapor phase deposition method. For the first time, uniform, large (up to ~60 μm in lateral size), single-crystalline, triangular monolayer GaSe crystals were obtained and their structure and orientation were characterized from atomic scale to micrometer scale. The size, density, shape, thickness, and uniformity of the 2D GaSe crystals were shown to be controllable by growth duration, growth region, growth temperature, and argon carrier gas flow rate. The theoretical modeling of the electronic structure and Raman spectroscopy demonstrate a direct-to-indirect bandgap transition and progressive confinement-induced bandgap shifts for 2D GaSe crystals. The 2D GaSe crystals show p-type semiconductor characteristics and high photoresponsivity (~1.7 A/W under white light illumination) comparable to exfoliated GaSe nanosheets. These 2D GaSe crystals are potentially useful for next-generation electronic and optoelectronic devices such as photodetectors and field-effect transistors.

  2. Controlled Vapor Phase Growth of Single Crystalline, Two-Dimensional GaSe Crystals with High Photoresponse

    SciTech Connect

    Li, Xufan; Lin, Ming-Wei; Zhang, Huidong; Puretzky, Alexander A; Idrobo Tapia, Juan C; Ma, Cheng; Chi, Miaofang; Yoon, Mina; Rouleau, Christopher M; Kravchenko, Ivan I; Geohegan, David B; Xiao, Kai

    2014-01-01

    Abstract Compared with their bulk counterparts, atomically thin two-dimensional (2D) crystals exhibit new physical properties, and have the potential to enable next-generation electronic and optoelectronic devices. However, controlled synthesis of large uniform monolayer and multi-layer 2D crystals is still challenging. Here, we report the controlled synthesis of 2D GaSe crystals on SiO2/Si substrates using a vapor phase deposition method. For the first time, uniform, large (up to ~60 m in lateral size), single-crystalline, triangular monolayer GaSe crystals were obtained and their atomic resolution structure were characterized. The size, density, shape, thickness, and uniformity of the 2D GaSe crystals were shown to be controllable by growth duration, growth region, growth temperature, and argon carrier gas flow rate. The theoretical modeling of the electronic structure and Raman spectroscopy demonstrate a direct-to-indirect bandgap transition and progressive confinement-induced bandgap shifts for 2D GaSe crystals. The 2D GaSe crystals show p-type semiconductor characteristics and high photoresponsivity (~1.7 A/W under white light illumination) comparable to exfoliated GaSe nanosheets. These 2D GaSe crystals are potentially useful for next-generation electronic and optoelectronic devices such as photodetectors and field-effect transistors.

  3. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen

    NASA Astrophysics Data System (ADS)

    Voiry, Damien; Fullon, Raymond; Yang, Jieun; de Carvalho Castro E Silva, Cecilia; Kappera, Rajesh; Bozkurt, Ibrahim; Kaplan, Daniel; Lagos, Maureen J.; Batson, Philip E.; Gupta, Gautam; Mohite, Aditya D.; Dong, Liang; Er, Dequan; Shenoy, Vivek B.; Asefa, Tewodros; Chhowalla, Manish

    2016-09-01

    The excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution reaction (HER) has led to substantial efforts towards increasing the edge concentration. The 2H basal plane is less active for the HER because it is less conducting and therefore possesses less efficient charge transfer kinetics. Here we show that the activity of the 2H basal planes of monolayer MoS2 nanosheets can be made comparable to state-of-the-art catalytic properties of metallic edges and the 1T phase by improving the electrical coupling between the substrate and the catalyst so that electron injection from the electrode and transport to the catalyst active site is facilitated. Phase-engineered low-resistance contacts on monolayer 2H-phase MoS2 basal plane lead to higher efficiency of charge injection in the nanosheets so that its intrinsic activity towards the HER can be measured. We demonstrate that onset potentials and Tafel slopes of ~-0.1 V and ~50 mV per decade can be achieved from 2H-phase catalysts where only the basal plane is exposed. We show that efficient charge injection and the presence of naturally occurring sulfur vacancies are responsible for the observed increase in catalytic activity of the 2H basal plane. Our results provide new insights into the role of contact resistance and charge transport on the performance of two-dimensional MoS2 nanosheet catalysts for the HER.

  4. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen.

    PubMed

    Voiry, Damien; Fullon, Raymond; Yang, Jieun; de Carvalho Castro E Silva, Cecilia; Kappera, Rajesh; Bozkurt, Ibrahim; Kaplan, Daniel; Lagos, Maureen J; Batson, Philip E; Gupta, Gautam; Mohite, Aditya D; Dong, Liang; Er, Dequan; Shenoy, Vivek B; Asefa, Tewodros; Chhowalla, Manish

    2016-09-01

    The excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution reaction (HER) has led to substantial efforts towards increasing the edge concentration. The 2H basal plane is less active for the HER because it is less conducting and therefore possesses less efficient charge transfer kinetics. Here we show that the activity of the 2H basal planes of monolayer MoS2 nanosheets can be made comparable to state-of-the-art catalytic properties of metallic edges and the 1T phase by improving the electrical coupling between the substrate and the catalyst so that electron injection from the electrode and transport to the catalyst active site is facilitated. Phase-engineered low-resistance contacts on monolayer 2H-phase MoS2 basal plane lead to higher efficiency of charge injection in the nanosheets so that its intrinsic activity towards the HER can be measured. We demonstrate that onset potentials and Tafel slopes of ∼-0.1 V and ∼50 mV per decade can be achieved from 2H-phase catalysts where only the basal plane is exposed. We show that efficient charge injection and the presence of naturally occurring sulfur vacancies are responsible for the observed increase in catalytic activity of the 2H basal plane. Our results provide new insights into the role of contact resistance and charge transport on the performance of two-dimensional MoS2 nanosheet catalysts for the HER. PMID:27295098

  5. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen.

    PubMed

    Voiry, Damien; Fullon, Raymond; Yang, Jieun; de Carvalho Castro E Silva, Cecilia; Kappera, Rajesh; Bozkurt, Ibrahim; Kaplan, Daniel; Lagos, Maureen J; Batson, Philip E; Gupta, Gautam; Mohite, Aditya D; Dong, Liang; Er, Dequan; Shenoy, Vivek B; Asefa, Tewodros; Chhowalla, Manish

    2016-09-01

    The excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution reaction (HER) has led to substantial efforts towards increasing the edge concentration. The 2H basal plane is less active for the HER because it is less conducting and therefore possesses less efficient charge transfer kinetics. Here we show that the activity of the 2H basal planes of monolayer MoS2 nanosheets can be made comparable to state-of-the-art catalytic properties of metallic edges and the 1T phase by improving the electrical coupling between the substrate and the catalyst so that electron injection from the electrode and transport to the catalyst active site is facilitated. Phase-engineered low-resistance contacts on monolayer 2H-phase MoS2 basal plane lead to higher efficiency of charge injection in the nanosheets so that its intrinsic activity towards the HER can be measured. We demonstrate that onset potentials and Tafel slopes of ∼-0.1 V and ∼50 mV per decade can be achieved from 2H-phase catalysts where only the basal plane is exposed. We show that efficient charge injection and the presence of naturally occurring sulfur vacancies are responsible for the observed increase in catalytic activity of the 2H basal plane. Our results provide new insights into the role of contact resistance and charge transport on the performance of two-dimensional MoS2 nanosheet catalysts for the HER.

  6. A bridge-functional-based classical mapping method for predicting the correlation functions of uniform electron gases at finite temperature

    SciTech Connect

    Liu, Yu; Wu, Jianzhong

    2014-02-28

    Efficient and accurate prediction of the correlation functions of uniform electron gases is of great importance for both practical and theoretical applications. This paper presents a bridge-functional-based classical mapping method for calculating the correlation functions of uniform spin-unpolarized electron gases at finite temperature. The bridge functional is formulated by following Rosenfeld's universality ansatz in combination with the modified fundamental measure theory. The theoretical predictions are in good agreement with recent quantum Monte Carlo results but with negligible computational cost, and the accuracy is better than a previous attempt based on the hypernetted-chain approximation. We find that the classical mapping method is most accurate if the effective mass of electrons increases as the density falls.

  7. ZnO Nanorods on a LaAlO3 -SrTiO3 Interface: Hybrid 1D-2D Diodes with Engineered Electronic Properties.

    PubMed

    Bera, Ashok; Lin, Weinan; Yao, Yingbang; Ding, Junfeng; Lourembam, James; Wu, Tom

    2016-02-10

    Integrating nanomaterials with different dimensionalities and properties is a versatile approach toward realizing new functionalities in advanced devices. Here, a novel diode-type heterostructure is reported consisting of 1D semiconducting ZnO nanorods and 2D metallic LaAlO3-SrTiO3 interface. Tunable insulator-to-metal transitions, absent in the individual components, are observed as a result of the competing temperature-dependent conduction mechanisms. Detailed transport analysis reveals direct tunneling at low bias, Fowler-Nordheim tunneling at high forward bias, and Zener breakdown at high reverse bias. Our results highlight the rich electronic properties of such artificial diodes with hybrid dimensionalities, and the design principle may be generalized to other nanomaterials.

  8. 2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Kononenko, O.; Lopes, N. C.; Cole, J. M.; Kamperidis, C.; Mangles, S. P. D.; Najmudin, Z.; Osterhoff, J.; Poder, K.; Rusby, D.; Symes, D. R.; Warwick, J.; Wood, J. C.; Palmer, C. A. J.

    2016-09-01

    In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.

  9. Modeling study of polychlorinated dibenzo-p-dioxins and dibenzofurans behavior in flue gases under electron beam irradiation.

    PubMed

    Gerasimov, Gennady

    2016-09-01

    The efficiency of the electron beam treatment of industrial flue gases for the removal of sulfur and nitrogen oxides was investigated as applied to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) using methods of mathematical modeling. The proposed kinetic model of the process includes mechanism of PCDD/Fs decomposition caused by their interaction with OH radicals generated in the flue gases under the electron beam (EB) irradiation as well as PCDD/Fs formation from unburned aromatic compounds. The model allows to predict the main features of the process, which are observed in pilot plant installations, as well as to evaluate the process efficiency. The results of calculations are compared with the available experimental data. PMID:27258900

  10. Trace rare gases optical emission spectroscopy: nonintrusive method for measuring electron temperatures in low-pressure, low-temperature plasmas.

    PubMed

    Malyshev, M V; Donnelly, V M

    1999-11-01

    Trace rare gases optical emission spectroscopy (TRG-OES) is a new, nonintrusive method for determining electron temperatures (T(e)) and, under some conditions, estimating electron densities (n(e)) in low-temperature, low-pressure plasmas. The method is based on a comparison of atomic emission intensities from trace amounts of rare gases (an equimixture of He, Ne, Ar, Kr, and Xe) added to the plasma, with intensities calculated from a model. For Maxwellian electron energy distribution functions (EEDFs), T(e) is determined from the best fit of theory to the experimental measurements. For non-Maxwellian EEDFs, T(e) derived from the best fit describes the high-energy tail of the EEDF. This method was reported previously, and was further developed and successfully applied to several laboratory and commercial plasma reactors. It has also been used in investigations of correlations between high-T(e) and plasma-induced damage to thin gate oxide layers. In this paper, we provide a refined mechanism for the method and include a detailed description of the generation of emission from the Paschen 2p manifold of rare gases both from the ground state and through metastable states, a theoretical model to calculate the number density of metastables (n(m)) of the rare gases, a practical procedure to compute T(e) from the ratios of experimental-to-theoretical intensity ratios, a way to determine the electron density (n(e)), a discussion of the range of sensitivity of TRG-OES to the EEDF, and an estimate of the accuracy of T(e). The values of T(e) obtained by TRG-OES in a transformer-coupled plasma reactor are compared with those obtained with a Langmuir probe for a wide range of pressures and powers. The differences in T(e) from the two methods are explained in terms of the EEDF dependence on pressure.

  11. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    SciTech Connect

    Krishtopenko, S. S.

    2015-02-15

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.

  12. Screening of remote charge scattering sites from the oxide/silicon interface of strained Si two-dimensional electron gases by an intermediate tunable shielding electron layer

    SciTech Connect

    Huang, Chiao-Ti Li, Jiun-Yun; Chou, Kevin S.; Sturm, James C.

    2014-06-16

    We report the strong screening of the remote charge scattering sites from the oxide/semiconductor interface of buried enhancement-mode undoped Si two-dimensional electron gases (2DEGs), by introducing a tunable shielding electron layer between the 2DEG and the scattering sites. When a high density of electrons in the buried silicon quantum well exists, the tunneling of electrons from the buried layer to the surface quantum well can lead to the formation of a nearly immobile surface electron layer. The screening of the remote charges at the interface by this newly formed surface electron layer results in an increase in the mobility of the buried 2DEG. Furthermore, a significant decrease in the minimum mobile electron density of the 2DEG occurs as well. Together, these effects can reduce the increased detrimental effect of interface charges as the setback distance for the 2DEG to the surface is reduced for improved lateral confinement by top gates.

  13. Screening of remote charge scattering sites from the oxide/silicon interface of strained Si two-dimensional electron gases by an intermediate tunable shielding electron layer

    NASA Astrophysics Data System (ADS)

    Huang, Chiao-Ti; Li, Jiun-Yun; Chou, Kevin S.; Sturm, James C.

    2014-06-01

    We report the strong screening of the remote charge scattering sites from the oxide/semiconductor interface of buried enhancement-mode undoped Si two-dimensional electron gases (2DEGs), by introducing a tunable shielding electron layer between the 2DEG and the scattering sites. When a high density of electrons in the buried silicon quantum well exists, the tunneling of electrons from the buried layer to the surface quantum well can lead to the formation of a nearly immobile surface electron layer. The screening of the remote charges at the interface by this newly formed surface electron layer results in an increase in the mobility of the buried 2DEG. Furthermore, a significant decrease in the minimum mobile electron density of the 2DEG occurs as well. Together, these effects can reduce the increased detrimental effect of interface charges as the setback distance for the 2DEG to the surface is reduced for improved lateral confinement by top gates.

  14. Tailoring the nature and strength of electron-phonon interactions in the SrTiO3(001) 2D electron liquid.

    PubMed

    Wang, Z; McKeown Walker, S; Tamai, A; Wang, Y; Ristic, Z; Bruno, F Y; de la Torre, A; Riccò, S; Plumb, N C; Shi, M; Hlawenka, P; Sánchez-Barriga, J; Varykhalov, A; Kim, T K; Hoesch, M; King, P D C; Meevasana, W; Diebold, U; Mesot, J; Moritz, B; Devereaux, T P; Radovic, M; Baumberger, F

    2016-08-01

    Surfaces and interfaces offer new possibilities for tailoring the many-body interactions that dominate the electrical and thermal properties of transition metal oxides. Here, we use the prototypical two-dimensional electron liquid (2DEL) at the SrTiO3(001) surface to reveal a remarkably complex evolution of electron-phonon coupling with the tunable carrier density of this system. At low density, where superconductivity is found in the analogous 2DEL at the LaAlO3/SrTiO3 interface, our angle-resolved photoemission data show replica bands separated by 100 meV from the main bands. This is a hallmark of a coherent polaronic liquid and implies long-range coupling to a single longitudinal optical phonon branch. In the overdoped regime the preferential coupling to this branch decreases and the 2DEL undergoes a crossover to a more conventional metallic state with weaker short-range electron-phonon interaction. These results place constraints on the theoretical description of superconductivity and allow a unified understanding of the transport properties in SrTiO3-based 2DELs. PMID:27064529

  15. Tailoring the nature and strength of electron-phonon interactions in the SrTiO3(001) 2D electron liquid.

    PubMed

    Wang, Z; McKeown Walker, S; Tamai, A; Wang, Y; Ristic, Z; Bruno, F Y; de la Torre, A; Riccò, S; Plumb, N C; Shi, M; Hlawenka, P; Sánchez-Barriga, J; Varykhalov, A; Kim, T K; Hoesch, M; King, P D C; Meevasana, W; Diebold, U; Mesot, J; Moritz, B; Devereaux, T P; Radovic, M; Baumberger, F

    2016-08-01

    Surfaces and interfaces offer new possibilities for tailoring the many-body interactions that dominate the electrical and thermal properties of transition metal oxides. Here, we use the prototypical two-dimensional electron liquid (2DEL) at the SrTiO3(001) surface to reveal a remarkably complex evolution of electron-phonon coupling with the tunable carrier density of this system. At low density, where superconductivity is found in the analogous 2DEL at the LaAlO3/SrTiO3 interface, our angle-resolved photoemission data show replica bands separated by 100 meV from the main bands. This is a hallmark of a coherent polaronic liquid and implies long-range coupling to a single longitudinal optical phonon branch. In the overdoped regime the preferential coupling to this branch decreases and the 2DEL undergoes a crossover to a more conventional metallic state with weaker short-range electron-phonon interaction. These results place constraints on the theoretical description of superconductivity and allow a unified understanding of the transport properties in SrTiO3-based 2DELs.

  16. Tailoring the nature and strength of electron-phonon interactions in the SrTiO3(001) 2D electron liquid

    NASA Astrophysics Data System (ADS)

    Wang, Z.; McKeown Walker, S.; Tamai, A.; Wang, Y.; Ristic, Z.; Bruno, F. Y.; de la Torre, A.; Riccò, S.; Plumb, N. C.; Shi, M.; Hlawenka, P.; Sánchez-Barriga, J.; Varykhalov, A.; Kim, T. K.; Hoesch, M.; King, P. D. C.; Meevasana, W.; Diebold, U.; Mesot, J.; Moritz, B.; Devereaux, T. P.; Radovic, M.; Baumberger, F.

    2016-08-01

    Surfaces and interfaces offer new possibilities for tailoring the many-body interactions that dominate the electrical and thermal properties of transition metal oxides. Here, we use the prototypical two-dimensional electron liquid (2DEL) at the SrTiO3(001) surface to reveal a remarkably complex evolution of electron-phonon coupling with the tunable carrier density of this system. At low density, where superconductivity is found in the analogous 2DEL at the LaAlO3/SrTiO3 interface, our angle-resolved photoemission data show replica bands separated by 100 meV from the main bands. This is a hallmark of a coherent polaronic liquid and implies long-range coupling to a single longitudinal optical phonon branch. In the overdoped regime the preferential coupling to this branch decreases and the 2DEL undergoes a crossover to a more conventional metallic state with weaker short-range electron-phonon interaction. These results place constraints on the theoretical description of superconductivity and allow a unified understanding of the transport properties in SrTiO3-based 2DELs.

  17. An unambiguous identification of 2D electron gas features in the photoluminescence spectrum of AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Jana, Dipankar; Sharma, T. K.

    2016-07-01

    A fast and non-destructive method for probing the true signatures of 2D electron gas (2DEG) states in AlGaN/GaN heterostructures is presented. Two broad features superimposed with interference oscillations are observed in the low temperature photoluminescence (PL) spectrum. The two features are identified as the ground and excited 2DEG states which are confirmed by comparing the PL spectra of as-grown and top barrier layer etched samples. Broad PL features disappear at a certain temperature along with the associated interference oscillations. Furthermore, the two broad PL features depicts specific temperature and excitation intensity dependencies which make them easily distinguishable from the bandedge excitonic or defect related PL features. The presence of strong interference oscillations associated with the 2DEG PL features is explained by considering the localized generation of PL signal at the AlGaN/GaN heterointerface. Finally, a large value of the polarization induced electric field of ~1.01 MV cm-1 is reported from PL measurements for AlGaN/GaN HEMT structures. It became possible only when the true identification of 2DEG features was made possible by the proposed method.

  18. Electronic fluctuations in nanotube circuits and their sensitivity to gases and liquids.

    PubMed

    Kingrey, Derek; Khatib, Omar; Collins, Philip G

    2006-07-01

    The temperature-dependent noise of individual, single-walled carbon nanotubes is measured here in a variety of different gases and liquids. The ambient environment is found to have only a weak relationship with device noise, even in cases where adsorption significantly changes the dc resistance. Correspondingly, a 450 K degassing procedure typically reduces the device noise by only 1 order of magnitude. An important exception to this finding is a pronounced, 100-fold increase in noise observed near gas-liquid phase transitions of the ambient. Wide-range temperature scans clearly identify the condensation of N(2), H(2), and CH(4) onto metallic nanotubes, but not the sublimation of CO(2). The observations suggest that nanotube devices can directly transduce ambient density fluctuations, though without an inherent gas specificity. Even so, the method is a particularly sensitive characterization of nanotube chemical interactions, one which is successful even for the extreme case of inert gases adsorbed on metallic nanotubes.

  19. A dedicated setup for the measurement of the electron transport parameters in gases at large electric fields

    NASA Astrophysics Data System (ADS)

    Fonte, P.; Mangiarotti, A.; Botelho, S.; Gonçalves, J. A. C.; Ridenti, M. A.; Bueno, C. C.

    2010-01-01

    Electron transport parameters are important in several areas ranging from particle detectors to plasma-assisted processing reactors. Nevertheless, especially at high fields strengths and for complex gases, relatively few data are published. A dedicated setup has been developed to measure the electron drift velocity and the first Townsend coefficient in parallel plate geometry. An RPC-like cell has been adopted to reach high field strengths without the risk of destructive sparks. The validation data obtained with pure Nitrogen will be presented and compared to a selection of the available literature and to calculations performed with Magboltz 2 version 8.6. The new data collected in pure Isobutane will then be discussed. This is the first time the electron drift velocity in pure Isobutane is measured well into the saturation region. Good agreement is found with expectations from Magboltz.

  20. Studies of scattering mechanisms in gate tunable InAs/(Al,Ga)Sb two dimensional electron gases

    SciTech Connect

    Shojaei, B.; McFadden, A.; Schultz, B. D.; Shabani, J.; Palmstrøm, C. J.

    2015-06-01

    A study of scattering mechanisms in gate tunable two dimensional electron gases confined to InAs/(Al,Ga)Sb heterostructures with varying interface roughness and dislocation density is presented. By integrating an insulated gate structure the evolution of the low temperature electron mobility and single-particle lifetime was determined for a previously unexplored density regime, 10{sup 11}–10{sup 12 }cm{sup −2}, in this system. Existing theoretical models were used to analyze the density dependence of the electron mobility and single particle lifetime in InAs quantum wells. Scattering was found to be dominated by charged dislocations and interface roughness. It was demonstrated that the growth of InAs quantum wells on nearly lattice matched GaSb substrate results in fewer dislocations, lower interface roughness, and improved low temperature transport properties compared to growth on lattice mismatched GaAs substrates.

  1. Application of Momentum Transfer Theory for Ion and Electron Transport in Pure Gases and in Gas Mixtures

    SciTech Connect

    Jovanovic, J.V.; Vrhovac, S. B.

    2004-12-01

    In this paper we have presented two applications of Momentum Transfer Theory (MTT), which were both aimed at obtaining reliable data for modeling of non-equilibrium plasma. Transport properties of ion swarms in presence of Resonant Charge Transfer (RCT) collisions are studied using Momentum Transfer Theory (MTT). Using the developed MTT we tested a previously available anisotropic set of cross-sections for Ar++Ar collisions bay making the comparisons with the available data for the transverse diffusion coefficient. We also developed an anisotropic set of Ne++Ne integral cross-sections based on the available data for mobility, longitudinal and transverse diffusion. Anisotropic sets of cross-sections are needed for Monte Carlo simulations of ion transport and plasma models. Application of Blanc's Law for drift velocities of electrons and ions in gas mixtures at arbitrary reduced electric field strengths E/n0 was studied theoretically and by numerical examples. Corrections for Blanc's Law that include effects of inelastic collisions were derived. In addition we have derived the common mean energy procedure that was proposed by Chiflikian in a general case both for ions and electrons. Both corrected common E/n0 and common mean energy procedures provide excellent results even for electrons at moderate E/n0 where application of Blanc's Law was regarded as impossible. In mixtures of two gases that have negative differential conductivity (NDC) even when neither of the two pure gases show NDC the Blanc's Law procedure was able to give excellent predictions.

  2. Effects of Pauli, Rashba and Dresselhaus spin-orbit interactions on electronic states in 2D circular hydrogenic anti-dot

    NASA Astrophysics Data System (ADS)

    Abuali, Z.; Golshan, M. M.; Davatolhagh, S.

    2016-09-01

    The present work is concerned with a report on the effects of Pauli, Rashba and Dresselhaus spin-orbit interactions (SOI) on the energy levels of a 2D circular hydrogenic quantum anti-dot(QAD). To pursue this aim, we first present a brief review on the analytical solutions to the Schrödinger equation of electronic states in a quantum anti-dot when a hydrogenic donor is placed at the center, revealing the degeneracies involved in the ground, first and second excited states. We then proceed by adding the aforementioned spin-orbit interactions to the Hamiltonian and treat them as perturbation, thereby, calculating the energy shifts to the first three states. As we show, the Rashba spin-orbit interaction gives rise to a shift in the energies of the ground and second excited states, while it partially lifts the degeneracy of the first excited state. Our calculations also indicate that the Dresselhaus effect, while keeping the degeneracy of the ground and second excited states intact, removes the degeneracy of the first excited state in the opposite sense. The Pauli spin-orbit interaction, on the other hand, is diagonal in the appropriate bases, and thus its effect is readily calculated. The results show that degeneracy of ℓ = 0 (prevailing in the ground and second excited state) remains but the degeneracy of ℓ = 1 (prevailing in the first excited state) is again partially lifted. Moreover, we present the energy corrections due to the three spin-orbit interactions as functions of anti-dot's radius, Rashba and Dresselhaus strengths discussing how they affect the corresponding states. The material presented in the article conceives the possibility of generating spin currents in the hydrogenic circular anti-dots.

  3. Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces by charge-transfer-induced modulation doping

    NASA Astrophysics Data System (ADS)

    Chen, Y. Z.; Trier, F.; Wijnands, T.; Green, R. J.; Gauquelin, N.; Egoavil, R.; Christensen, D. V.; Koster, G.; Huijben, M.; Bovet, N.; Macke, S.; He, F.; Sutarto, R.; Andersen, N. H.; Sulpizio, J. A.; Honig, M.; Prawiroatmodjo, G. E. D. K.; Jespersen, T. S.; Linderoth, S.; Ilani, S.; Verbeeck, J.; van Tendeloo, G.; Rijnders, G.; Sawatzky, G. A.; Pryds, N.

    2015-08-01

    Two-dimensional electron gases (2DEGs) formed at the interface of insulating complex oxides promise the development of all-oxide electronic devices. These 2DEGs involve many-body interactions that give rise to a variety of physical phenomena such as superconductivity, magnetism, tunable metal-insulator transitions and phase separation. Increasing the mobility of the 2DEG, however, remains a major challenge. Here, we show that the electron mobility is enhanced by more than two orders of magnitude by inserting a single-unit-cell insulating layer of polar La1-xSrxMnO3 (x = 0, 1/8, and 1/3) at the interface between disordered LaAlO3 and crystalline SrTiO3 produced at room temperature. Resonant X-ray spectroscopy and transmission electron microscopy show that the manganite layer undergoes unambiguous electronic reconstruction, leading to modulation doping of such atomically engineered complex oxide heterointerfaces. At low temperatures, the modulation-doped 2DEG exhibits Shubnikov-de Haas oscillations and fingerprints of the quantum Hall effect, demonstrating unprecedented high mobility and low electron density.

  4. Quasimonoenergic collimated electrons from the ionization of low density gases by a chirped intense Gaussian laser pulse

    NASA Astrophysics Data System (ADS)

    Singh, Kunwar Pal; Malik, Anil K.; Arya, Rashmi

    2016-09-01

    The spectrum of energy and angle of emittance of the electrons generated during ionization of neon ions Ne 8 + , krypton ions Kr 32 + , and argon ions Ar 16 + by a laser pulse have been obtained for different values of laser frequency chirp and normalized laser pulse duration. The energy of the electron beam shifts to higher energy with the introduction of frequency chirp. The energy peak shifts towards lower energy with an increase in frequency chirp, and the electron beam becomes more quasi-monoenergetic. The energy peak shifts to higher energy with decreasing laser pulse duration due to increase in asymmetry of the pulse, however, the quasi-monoenergetic property of the electron beam decreases. We can obtain MeV, MeV/GeV, and GeV electron beams using neon, krypton, and argon gases as target. The scattering of the electrons decreases with decreasing laser pulse duration and increasing laser intensity. The energy peak is sharper and at higher energy for the ions located after laser focus than that for the ions located before laser focus for a tightly focused laser pulse.

  5. Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces by charge-transfer-induced modulation doping.

    PubMed

    Chen, Y Z; Trier, F; Wijnands, T; Green, R J; Gauquelin, N; Egoavil, R; Christensen, D V; Koster, G; Huijben, M; Bovet, N; Macke, S; He, F; Sutarto, R; Andersen, N H; Sulpizio, J A; Honig, M; Prawiroatmodjo, G E D K; Jespersen, T S; Linderoth, S; Ilani, S; Verbeeck, J; Van Tendeloo, G; Rijnders, G; Sawatzky, G A; Pryds, N

    2015-08-01

    Two-dimensional electron gases (2DEGs) formed at the interface of insulating complex oxides promise the development of all-oxide electronic devices. These 2DEGs involve many-body interactions that give rise to a variety of physical phenomena such as superconductivity, magnetism, tunable metal-insulator transitions and phase separation. Increasing the mobility of the 2DEG, however, remains a major challenge. Here, we show that the electron mobility is enhanced by more than two orders of magnitude by inserting a single-unit-cell insulating layer of polar La(1-x)Sr(x)MnO3 (x = 0, 1/8, and 1/3) at the interface between disordered LaAlO3 and crystalline SrTiO3 produced at room temperature. Resonant X-ray spectroscopy and transmission electron microscopy show that the manganite layer undergoes unambiguous electronic reconstruction, leading to modulation doping of such atomically engineered complex oxide heterointerfaces. At low temperatures, the modulation-doped 2DEG exhibits Shubnikov-de Haas oscillations and fingerprints of the quantum Hall effect, demonstrating unprecedented high mobility and low electron density. PMID:26030303

  6. Scanning drift tube measurements of electron transport parameters in different gases: argon, synthetic air, methane and deuterium

    NASA Astrophysics Data System (ADS)

    Korolov, I.; Vass, M.; Donkó, Z.

    2016-10-01

    Measurements of transport coefficients of electrons in a scanning drift tube apparatus are reported for different gases: argon, synthetic air, methane and deuterium. The experimental system allows the spatio-temporal development of the electron swarms (‘swarm maps’) to be recorded and this information, when compared with the profiles predicted by theory, makes it possible to determine the ‘time-of-flight’ transport coefficients: the bulk drift velocity, the longitudinal diffusion coefficient and the effective ionization coefficient, in a well-defined way. From these data, the effective Townsend ionization coefficient is determined as well. The swarm maps provide, additionally, direct, unambiguous information about the hydrodynamic/non-hydrodynamic regimes of the swarms, aiding the selection of the proper regions applicable for the determination of the transport coefficients.

  7. 76 FR 36472 - Mandatory Reporting of Greenhouse Gases; Changes to Provisions for Electronics Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... proposal (75 FR 18652) concerning the monitoring and reporting methods for electronics manufacturing... Manufacturing of the Greenhouse Gas Reporting Rule on December 1, 2011 (40 CFR part 98, subpart I) (75 FR 74774... Electronics Manufacturing (Subpart I) To Provide Flexibility AGENCY: Environmental Protection Agency...

  8. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  9. Negative Compressibility and Charge Partitioning Between Graphene and MoS2 Two-Dimensional Electron Gases

    NASA Astrophysics Data System (ADS)

    Tolsma, John; Larentis, Stefano; Tutuc, Emanuel; MacDonald, Allan

    2014-03-01

    Electron-electron interactions often have opposite influences on thermodynamic properties of electrons in graphene compared to conventional two-dimensional electron gases (2DEGs), for example by lowering charge and spin-susceptibilities in the graphene case and enhancing them in the ordinary 2DEG case. In ordinary 2DEGs the charge susceptibility diverges at a finite carrier density, below which the compressibility becomes negative. We theoretically explore the influence of this qualitative difference on how charge is partitioned between a MoS2 and a graphene sheet 2DEG when they act as a compound capacitor electrode. Our theory is based on a random phase approximation for charge fluctuations in the 2DEGS and the coupling constant formulation for the ground state energy. We find that in the ideal case the MoS2 2DEG carrier density jumps immediately to a finite value when it is initially populated and discuss how this effect is moderated by disorder. Work supported by the Welch Foundation grant TBF1473 and the DOE Division of Materials Sciences Engineering grant DE-FG03-02ER45958.

  10. Dissociative excitation of vacuum ultraviolet emission features by electron impact on molecular gases. 3: CO2

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; Borst, W. L.; Zipf, E. C.

    1972-01-01

    Vacuum ultraviolet multiplets of C I, C II, and O I were produced by electron impact on CO2. Absolute emission cross sections for these multiplets were measured from threshold to 350 eV. The electrostatically focused electron gun used is described in detail. The atomic multiplets which were produced by dissociative excitation of CO2 and the cross sections at 100 eV are presented. The dependence of the excitation functions on electron energy shows that these multiplets are produced by electric-dipole-allowed transitions in CO2.

  11. Modelling study of NOx removal in oil-fired waste off-gases under electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Zwolińska, Ewa; Sun, Yongxia; Chmielewski, A. G.; Nichipor, H.; Bulka, S.

    2015-08-01

    Computer simulations for high concentration of NOx removal from oil-fired waste off-gases under electron beam irradiation were carried out by using the Computer code "Kinetic" and GEAR method. 293 reactions involving 64 species were used for the modelling calculations. The composition of simulated oil-fired off-gas was the same as the experimental conditions. The calculations were made for following system: (75.78% N2+11.5% CO2+8.62% H2O+4.1% O2), NOx concentration varies from 200 ppm to 1500 ppm. Calculation results qualitatively agree with the experimental results. Furthermore the influence of temperature, SO2 concentration and ammonia addition is discussed.

  12. Experiments on the Photoelectric Effect and on the Diffusion of Electrons in Gases

    ERIC Educational Resources Information Center

    McClellan, G.; And Others

    1978-01-01

    Describes an apparatus for investigating the behavior of photoelectrons in a uniform magnetic field in either a vacuum or a low-pressure gas. Presents data and discusses some basic features of the photoelectric effect and the diffusion of free electrons in a gas. (GA)

  13. Chemistry induced during the thermalization and transport of positrons and secondary electrons in gases and liquids

    NASA Astrophysics Data System (ADS)

    Marjanović, S.; Banković, A.; White, R. D.; Buckman, S. J.; Garcia, G.; Malović, G.; Dujko, S.; Petrović, Z. Lj

    2015-04-01

    The recent availability of cross sections for positron (and positronium) interactions has made it possible to calculate transport properties and rates of collisions, and study in a quantitative fashion some aspects of positron-induced processes and their effects on living tissue. This paper models the interaction of primary positrons, and their secondary electrons, with water vapour (and subsequently liquid) using complete sets of cross sections predominately based on experimental binary collision data. We use a simple procedure to represent the presence of organic molecules where we look for dissociation of methane as a prototype of organic molecule dissociation. We isolate this particular process in order to establish whether the degree of damage is directly associated with the energy deposited in the tissue or whether some specific processes may cause excessive damage even with little energy deposition. We thus report on the relative contributions of initial positrons and secondary electrons in inducing dissociation, the spatial and energy profiles of individual collisional events, and positron/secondary electron tracks. It was found that secondary electrons induce 2-3 times more dissociations than the original positrons and with a longer range.

  14. Femtosecond-pulse-driven, electron-excited XUV lasers in eight-times-ionized noble gases.

    PubMed

    Lemoff, B E; Barty, C P; Harris, S E

    1994-04-15

    We propose three XUV laser schemes in the 30-50-nm wavelength region that can be driven by 10-Hz ultrashort-pulse terawatt laser systems. Tunneling ionization by circularly polarized radiation produces both the ions and hot electrons necessary to excite the upper laser level.

  15. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  16. Towards 2D nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sook; Yu, Changqian; Hayes, Robert; Granick, Steve

    2015-03-01

    Polymer vesicles (``polymersomes'') are an intriguing class of soft materials, commonly used to encapsulate small molecules or particles. Here we reveal they can also effectively incorporate nanoparticles inside their polymer membrane, leading to novel ``2D nanocomposites.'' The embedded nanoparticles alter the capacity of the polymersomes to bend and to stretch upon external stimuli.

  17. Macroscopic transverse drift of long current-induced spin coherence in two-dimensional electron gases

    NASA Astrophysics Data System (ADS)

    Hernandez, F. G. G.; Ullah, S.; Ferreira, G. J.; Kawahala, N. M.; Gusev, G. M.; Bakarov, A. K.

    2016-07-01

    We imaged the transport of current-induced spin coherence in a two-dimensional electron gas confined in a triple quantum well. Nonlocal Kerr rotation measurements, based on the optical resonant amplification of the electrically-induced polarization, revealed a large spatial variation of the electron g factor and the efficient generation of a current-controlled spin-orbit field in a macroscopic Hall bar device. We observed coherence times in the nanoseconds range transported beyond half-millimeter distances in a direction transverse to the applied electric field. The measured long spin transport length can be explained by two material properties: large mean free path for charge diffusion in clean systems and enhanced spin-orbit coefficients in the triple well.

  18. Spatially resolved transport data for electrons in gases: Definition, interpretation and calculation

    NASA Astrophysics Data System (ADS)

    Dujko, S.; White, R. D.; Raspopović, Z. M.; Petrović, Z. Lj.

    2012-05-01

    The spatiotemporal evolution of electron swarms in the presence of electric and magnetic fields is investigated to facilitate understanding temporal and spatial non-locality in low-temperature plasmas. Using two independent techniques, a multi-term solution of Boltzmann's equation and a Monte Carlo simulation technique, the synergism of an applied magnetic field and non-conservative collisions (ionization and/or electron attachment) is demonstrated as a means to control the non-locality of relaxation processes. In particular, oscillatory features in the spatial and temporal profiles are demonstrated, and shown to be enhanced or suppressed through the magnetic field strength, the angle between the electric and magnetic fields, and the degree of ionization. Finally we discuss the impact of field configurations and strengths on the transport properties, highlighting the distinctions in the measured transport properties between various experimental configurations when non-conservative processes are present.

  19. Comparative study of the collisional electron detachment of C-, Si-, and Ge- by light noble gases

    NASA Astrophysics Data System (ADS)

    Luna, H.; Zappa, F.; Martins, M. H.; Magalhães, S. D.; Jalbert, Ginette; Coelho, L. F.; de Castro Faria, N. V.

    2001-05-01

    Collisional electron detachment of anions with np3 structures (n=2, 3, and 4), namely, C-, Si-, and Ge-, was studied for He, Ne, and Ar targets and relative velocities ranging from 0.2 a.u. to 2.2 a.u.. Single, double, and triple electron ejection cross sections were also measured for the C- anion colliding with an Ar target, being observed to obey a binomial distribution. Two striking universal features were observed concerning the total detachment cross sections: for each target a multiplicative scaling may be made for the cross sections of the three projectiles, and these factors are target independent. The maxima of these three curves show a nonmonotonic correspondence with the noble-gas atomic numbers. A simple law, proposed for the scaling, indicates the presence of metastable states in the Si- and Ge- beams.

  20. Nonlinear optical response of noble gases via the metastable electronic state approach

    NASA Astrophysics Data System (ADS)

    Bahl, A.; Wright, E. M.; Kolesik, M.

    2016-08-01

    The goal of this paper is to elucidate the theoretical underpinnings of the metastable electronic state approach (MESA) and demonstrate its utility for the evaluation of the nonlinear optical response of noble-gas atoms with emphasis on the application of the method to the propagation of multicolor optical fields in large-scale, spatially resolved simulations. More specifically, single-active-electron models of various atoms are employed to calculate their nonlinear properties both within the adiabatic approximation, involving a single metastable state and beyond, capturing inertial effects, and wavelength-dependent ionization. Simulations for excitation pulses at different center wavelengths as well as ionization in two-color pulses are presented and compared with numerical solutions of the time-dependent Schrödinger equation. Illustrative examples of the numerical simulation of high-power pulse propagation incorporating MESA data are also presented and showcase the successful application to optical filamentation in the midinfrared region.

  1. Relativistic contributions to single and double core electron ionization energies of noble gases.

    PubMed

    Niskanen, J; Norman, P; Aksela, H; Agren, H

    2011-08-01

    We have performed relativistic calculations of single and double core 1s hole states of the noble gas atoms in order to explore the relativistic corrections and their additivity to the ionization potentials. Our study unravels the interplay of progression of relaxation, dominating in the single and double ionization potentials of the light elements, versus relativistic one-electron effects and quantum electrodynamic effects, which dominate toward the heavy end. The degree of direct relative additivity of the relativistic corrections for the single electron ionization potentials to the double electron ionization potentials is found to gradually improve toward the heavy elements. The Dirac-Coulomb Hamiltonian is found to predict a scaling ratio of ∼4 for the relaxation induced relativistic energies between double and single ionization. Z-scaling of the computed quantities were obtained by fitting to power law. The effects of nuclear size and form were also investigated and found to be small. The results indicate that accurate predictions of double core hole ionization potentials can now be made for elements across the full periodic table.

  2. Relativistic contributions to single and double core electron ionization energies of noble gases

    SciTech Connect

    Niskanen, J.; Norman, P.; Aksela, H.; Aagren, H.

    2011-08-07

    We have performed relativistic calculations of single and double core 1s hole states of the noble gas atoms in order to explore the relativistic corrections and their additivity to the ionization potentials. Our study unravels the interplay of progression of relaxation, dominating in the single and double ionization potentials of the light elements, versus relativistic one-electron effects and quantum electrodynamic effects, which dominate toward the heavy end. The degree of direct relative additivity of the relativistic corrections for the single electron ionization potentials to the double electron ionization potentials is found to gradually improve toward the heavy elements. The Dirac-Coulomb Hamiltonian is found to predict a scaling ratio of {approx}4 for the relaxation induced relativistic energies between double and single ionization. Z-scaling of the computed quantities were obtained by fitting to power law. The effects of nuclear size and form were also investigated and found to be small. The results indicate that accurate predictions of double core hole ionization potentials can now be made for elements across the full periodic table.

  3. Ultra-strong light-matter coupling and superradiance using dense electron gases

    NASA Astrophysics Data System (ADS)

    Vasanelli, Angela; Todorov, Yanko; Sirtori, Carlo

    2016-10-01

    The physics of the interaction between a dense two-dimensional electron gas and a microcavity photonic mode is reviewed. For high electronic densities, this system enters the ultra-strong coupling regime in which the Rabi energy, which measures the strength of the light-matter coupling, is of the same order of magnitude as the matter excitation. The ultra-strong coupling has been experimentally demonstrated by inserting a highly doped semiconductor layer between two metal plates that produce a microcavity, with extreme sub-wavelength confinement of the electromagnetic field. A record value at room temperature (73%) of the ratio between the Rabi and the matter excitation energies (the relative Rabi energy) has been measured together with a very large photonic gap induced by the polariton splitting. The ultra-strong coupling is a manifestation of a huge cooperative dipole, which is proportional to the number of electrons participating in the interaction. Such a phenomenal interaction with light appears also in the absence of a microcavity and, for a dipole coupled with free space, it gives rise to superradiance.

  4. Exact exact-exchange potential of two- and one-dimensional electron gases beyond the asymptotic limit

    NASA Astrophysics Data System (ADS)

    Nazarov, Vladimir U.

    2016-05-01

    The exchange-correlation potential experienced by an electron in the free space adjacent to a solid surface or to a low-dimensional system defines the fundamental image states and is generally important in surface and nanoscience. Here we determine the potential near the two- and one-dimensional electron gases (EG), doing this analytically at the level of the exact exchange of the density-functional theory (DFT). We find that, at r⊥≫kF-1 , where r⊥ is the distance from the EG and kF is the Fermi radius, the potential obeys the already known asymptotic -e2/r⊥ , while at r⊥≲kF-1 , but still in vacuum, qualitative and quantitative deviations of the exchange potential from the asymptotic law occur. The playground of the excitations to the low-lying image states falls into the latter regime, causing significant departure from the Rydberg series. In general, our analytical exchange potentials establish benchmarks for numerical approaches in the low-dimensional science, where DFT is by far the most common tool.

  5. Intersubband scattering in modulation-doped Si two-dimensional electron gases

    NASA Astrophysics Data System (ADS)

    Su, Yi-Hsin; Li, Jiun-Yun; Rokhinson, Leonid; Sturm, James

    A bilayer of modulation doped two-dimensional electron gas (2DEG) is of great interest to probe Coulomb drag. For bottom-doped Si 2DEGs, impurity scattering due to poor phosphorus (P) turn-off results in low carrier mobility. Here we demonstrate a record-high electron mobility of 470,000 cm2/V-s at 0.3 K in a bottom-doped 2DEG, comparable to that in top-doped structures. The power-law exponent of mobility vs. density was also evaluated for different P turn-off slopes. With fast turn-off, the power is 1.5, indicative of dominant remote doping scattering. The power decreases with slower P turn-off due to the enhanced scattering from the segregated P atoms. Further, for the first time, we report the second subband occupancy and intersubband scattering in a single Si quantum well, supported by the Shubnikov-de Haas oscillation data.

  6. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  7. Spin-polarized dynamic transport in tubular two-dimensional electron gases

    NASA Astrophysics Data System (ADS)

    Rothstein, E. A.; Horovitz, B.; Entin-Wohlman, O.; Aharony, A.

    2014-12-01

    The ac conductance of a finite tubular two-dimensional electron gas is studied in the presence of the Rashba spin-orbit interaction. When the tube is coupled to two reservoirs, that interaction splits the steps in the dc current, introducing energy ranges with spin-polarized currents. For this setup, we calculate the current-current correlations (the noise spectrum) and show that the existence of these dc spin-polarized currents can be deduced from the shot noise. We also find that the Wigner-Smith time delay is almost unaffected by the spin-orbit interaction. When the tube is coupled to a single reservoir, we calculate the quantum capacitance and the charge-relaxation resistance, and find that they exhibit singularities near the openings of new channels.

  8. Noble Gases

    NASA Astrophysics Data System (ADS)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the

  9. A deterministic solver for the transport of the AlGaN/GaN 2D electron gas including hot-phonon and degeneracy effects

    SciTech Connect

    Galler, M. . E-mail: galler@itp.tu-graz.ac.at; Schuerrer, F. . E-mail: schuerrer@itp.tu-graz.ac.at

    2005-12-10

    The transport of the two-dimensional electron gas formed at an AlGaN/GaN heterostructure in the presence of strain polarization fields is investigated. For this purpose, we develop a deterministic multigroup model to the Boltzmann transport equations. The envelope wave functions for the confined electrons are calculated using a self-consistent Poisson-Schroedinger solver. The electron gas degeneracy and hot phonons are included in our transport equations. Numerical results are given for the dependence of macroscopic quantities on the electric field strength and on time and for the electron and phonon distribution functions. We compare our results to those of Monte Carlo simulations and with experiments.

  10. Evaluation of super-resolution performance of the K2 electron-counting camera using 2D crystals of aquaporin-0.

    PubMed

    Chiu, Po-Lin; Li, Xueming; Li, Zongli; Beckett, Brian; Brilot, Axel F; Grigorieff, Nikolaus; Agard, David A; Cheng, Yifan; Walz, Thomas

    2015-11-01

    The K2 Summit camera was initially the only commercially available direct electron detection camera that was optimized for high-speed counting of primary electrons and was also the only one that implemented centroiding so that the resolution of the camera can be extended beyond the Nyquist limit set by the physical pixel size. In this study, we used well-characterized two-dimensional crystals of the membrane protein aquaporin-0 to characterize the performance of the camera below and beyond the physical Nyquist limit and to measure the influence of electron dose rate on image amplitudes and phases.

  11. Preparation of cultured cells using high-pressure freezing and freeze substitution for subsequent 2D or 3D visualization in the transmission electron microscope.

    PubMed

    Hawes, Philippa C

    2015-01-01

    Transmission electron microscopy (TEM) is an invaluable technique used for imaging the ultrastructure of samples and it is particularly useful when determining virus-host interactions at a cellular level. The environment inside a TEM is not favorable for biological material (high vacuum and high energy electrons). Also biological samples have little or no intrinsic electron contrast, and rarely do they naturally exist in very thin sheets, as is required for optimum resolution in the TEM. To prepare these samples for imaging in the TEM therefore requires extensive processing which can alter the ultrastructure of the material. Here we describe a method which aims to minimize preparation artifacts by freezing the samples at high pressure to instantaneously preserve ultrastructural detail, then rapidly substituting the ice and infiltrating with resin to provide a firm matrix which can be cut into thin sections for imaging. Thicker sections of this material can also be imaged and reconstructed into 3D volumes using electron tomography.

  12. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  13. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  14. Glitter in a 2D monolayer.

    PubMed

    Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric

    2015-10-21

    We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.

  15. Controlled Confinement of Half-metallic 2D Electron Gas in BaTiO3/Ba2FeReO6/BaTiO3 Heterostructures: A First-principles Study

    NASA Astrophysics Data System (ADS)

    Saha-Dasgupta, Tanusri; Baidya, Santu; Waghmare, Umesh; Paramekanti, Arun

    Using density functional theory calculations, we establish that the half-metallicity of bulk Ba2FeReO6 survives down i to 1 nm thickness in BaTiO3/Ba2FeReO6/BaTiO3 heterostructures grown along the (001) and (111) directions. The confinement of the two-dimensional (2D) electron gas in this quantum well structure arises from the suppressed hybridization between Re/Fe d states and unoccupied Ti d states, and it is further strengthened by polar fields for the (111) direction. This mechanism, distinct from the polar catastrophe, leads to an order of magnitude stronger confinement of the 2D electron gas than that at the LaAlO3/SrTiO3 interface. We further show low-energy bands of (111) heterostructure display nontrivial topological character. Our work opens up the possibility of realizing ultra-thin spintronic devices. Journal Ref: Phys. Rev. B 92, 161106(R) (2015) S.B. and T.S.D thank Department of Science and Technology, India for the support through Thematic Unit of Excellence. AP was supported by NSERC (Canada).

  16. Energy of the quasi-free electron in H{sub 2}, D{sub 2}, and O{sub 2}: Probing intermolecular potentials within the local Wigner-Seitz model

    SciTech Connect

    Evans, C. M. Krynski, Kamil; Streeter, Zachary; Findley, G. L.

    2015-12-14

    We present for the first time the quasi-free electron energy V{sub 0}(ρ) for H{sub 2}, D{sub 2}, and O{sub 2} from gas to liquid densities, on noncritical isotherms and on a near critical isotherm in each fluid. These data illustrate the ability of field enhanced photoemission (FEP) to determine V{sub 0}(ρ) accurately in strongly absorbing fluids (e.g., O{sub 2}) and fluids with extremely low critical temperatures (e.g., H{sub 2} and D{sub 2}). We also show that the isotropic local Wigner-Seitz model for V{sub 0}(ρ) — when coupled with thermodynamic data for the fluid — can yield optimized parameters for intermolecular potentials, as well as zero kinetic energy electron scattering lengths.

  17. Small-angle shubnikov-de haas measurements in a 2D electron system: the effect of a strong In-plane magnetic field

    PubMed

    Vitkalov; Zheng; Mertes; Sarachik; Klapwijk

    2000-09-01

    Measurements in magnetic fields applied at small angles relative to the electron plane in silicon MOSFETs indicate a factor of 2 increase of the frequency of Shubnikov-de Haas oscillations at H>H(sat). This signals the onset of full spin polarization above H(sat), the parallel field above which the resistivity saturates to a constant value. For H

  18. A quantum dynamical comparison of the electronic couplings derived from quantum electrodynamics and Förster theory: application to 2D molecular aggregates

    NASA Astrophysics Data System (ADS)

    Frost, James E.; Jones, Garth A.

    2014-11-01

    The objective of this study is to investigate under what circumstances Förster theory of electronic (resonance) energy transfer breaks down in molecular aggregates. This is achieved by simulating the dynamics of exciton diffusion, on the femtosecond timescale, in molecular aggregates using the Liouville-von Neumann equation of motion. Specifically the focus of this work is the investigation of both spatial and temporal deviations between exciton dynamics driven by electronic couplings calculated from Förster theory and those calculated from quantum electrodynamics. The quantum electrodynamics (QED) derived couplings contain medium- and far-zone terms that do not exist in Förster theory. The results of the simulations indicate that Förster coupling is valid when the dipole centres are within a few nanometres of one another. However, as the distance between the dipole centres increases from 2 nm to 10 nm, the intermediate- and far-zone coupling terms play non-negligible roles and Förster theory begins to break down. Interestingly, the simulations illustrate how contributions to the exciton dynamics from the intermediate- and far-zone coupling terms of QED are quickly washed-out by the near-zone mechanism of Förster theory for lattices comprising closely packed molecules. On the other hand, in the case of sparsely packed arrays, the exciton dynamics resulting from the different theories diverge within the 100 fs lifetime of the trajectories. These results could have implications for the application of spectroscopic ruler techniques as well as design principles relating to energy harvesting materials.

  19. Ultra-broadband 2D electronic spectroscopy of carotenoid-bacteriochlorophyll interactions in the LH1 complex of a purple bacterium.

    PubMed

    Maiuri, Margherita; Réhault, Julien; Carey, Anne-Marie; Hacking, Kirsty; Garavelli, Marco; Lüer, Larry; Polli, Dario; Cogdell, Richard J; Cerullo, Giulio

    2015-06-01

    We investigate the excitation energy transfer (EET) pathways in the photosynthetic light harvesting 1 (LH1) complex of purple bacterium Rhodospirillum rubrum with ultra-broadband two-dimensional electronic spectroscopy (2DES). We employ a 2DES apparatus in the partially collinear geometry, using a passive birefringent interferometer to generate the phase-locked pump pulse pair. This scheme easily lends itself to two-color operation, by coupling a sub-10 fs visible pulse with a sub-15-fs near-infrared pulse. This unique pulse combination allows us to simultaneously track with extremely high temporal resolution both the dynamics of the photoexcited carotenoid spirilloxanthin (Spx) in the visible range and the EET between the Spx and the B890 bacterio-chlorophyll (BChl), whose Qx and Qy transitions peak at 585 and 881 nm, respectively, in the near-infrared. Global analysis of the one-color and two-color 2DES maps unravels different relaxation mechanisms in the LH1 complex: (i) the initial events of the internal conversion process within the Spx, (ii) the parallel EET from the first bright state S2 of the Spx towards the Qx state of the B890, and (iii) the internal conversion from Qx to Qy within the B890. PMID:26049453

  20. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms

    PubMed Central

    Bangert, U.; Pierce, W.; Boothroyd, C.; Pan, C.-T.; Gwilliam, R.

    2016-01-01

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes. PMID:27271352

  1. Ultra-broadband 2D electronic spectroscopy of carotenoid-bacteriochlorophyll interactions in the LH1 complex of a purple bacterium.

    PubMed

    Maiuri, Margherita; Réhault, Julien; Carey, Anne-Marie; Hacking, Kirsty; Garavelli, Marco; Lüer, Larry; Polli, Dario; Cogdell, Richard J; Cerullo, Giulio

    2015-06-01

    We investigate the excitation energy transfer (EET) pathways in the photosynthetic light harvesting 1 (LH1) complex of purple bacterium Rhodospirillum rubrum with ultra-broadband two-dimensional electronic spectroscopy (2DES). We employ a 2DES apparatus in the partially collinear geometry, using a passive birefringent interferometer to generate the phase-locked pump pulse pair. This scheme easily lends itself to two-color operation, by coupling a sub-10 fs visible pulse with a sub-15-fs near-infrared pulse. This unique pulse combination allows us to simultaneously track with extremely high temporal resolution both the dynamics of the photoexcited carotenoid spirilloxanthin (Spx) in the visible range and the EET between the Spx and the B890 bacterio-chlorophyll (BChl), whose Qx and Qy transitions peak at 585 and 881 nm, respectively, in the near-infrared. Global analysis of the one-color and two-color 2DES maps unravels different relaxation mechanisms in the LH1 complex: (i) the initial events of the internal conversion process within the Spx, (ii) the parallel EET from the first bright state S2 of the Spx towards the Qx state of the B890, and (iii) the internal conversion from Qx to Qy within the B890.

  2. Microwave polarization angle study of the radiation-induced magnetoresistance oscillations in the GaAs/AlGaAs 2D electron system under dc current bias

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad-Zahir; Liu, Han-Chun; Heimbeck, Martin S.; Everitt, Henry O.; Wegscheider, Werner; Mani, Ramesh G.

    Microwave-induced magnetoresistance oscillations followed by the vanishing resistance states are a prime representation of non-equilibrium transport phenomena in two-dimensional electron systems (2DES). The effect of a dc current bias on the nonlinear response of 2DES with microwave polarization angle under magnetic field is a subject of interest. Here, we have studied the effect of various dc current bias on microwave radiation-induced magnetoresistance oscillations in a high mobility 2DES. Further, we systematically investigate the effect of the microwave polarization angle on the magneto-resistance oscillations at two different frequencies 152.78 GHz and 185.76 GHz. This study aims to better understand the effects of both dc current and microwave polarization angle in the GaAs/AlGaAs system, both of which modify the observed magneto-transport properties DOE-BES, Mat'l. Sci. & Eng. Div., DE-SC0001762; ARO W911NF-14-2-0076; ARO W911NF-15-1-0433.

  3. Study of microwave reflection in the regime of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs 2D electron system

    NASA Astrophysics Data System (ADS)

    Kriisa, Annika; Liu, H.-C.; Samaraweera, R. L.; Heimbeck, M. S.; Everitt, H. O.; Wegscheider, W.; Mani, R. G.

    Microwave-induced zero-resistance-states in the photo-excited GaAs/AlGaAs system evolve from the minima of microwave photo-excited ``quarter-cycle shifted'' magnetoresistance oscillations. Such magnetoresistance oscillations are known to exhibit nodes at cyclotron resonance (hf = ℏωc) and cyclotron resonance harmonics (hf = nℏωc). Further, the effective mass extracted from the radiation-induced magnetoresistance oscillations is known to differ from the canonical effective mass ratio for electrons in the GaAs/AlGaAs system. In an effort to reconcile this difference, we have looked for cyclotron resonance in the microwave reflection from the high mobility 2DES and attempted to correlate the observations with observed oscillatory magnetoresistance over the 30 <= f <= 330 GHz band. The results of such a study will be reported here. DOE-BES, Mat'l. Sci. & Eng. Div., DE-SC0001762; ARO W911NF-14-2-0076; ARO W911NF-15-1-0433.

  4. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms

    NASA Astrophysics Data System (ADS)

    Bangert, U.; Pierce, W.; Boothroyd, C.; Pan, C.-T.; Gwilliam, R.

    2016-06-01

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes.

  5. Ultra-broadband 2D electronic spectroscopy of carotenoid-bacteriochlorophyll interactions in the LH1 complex of a purple bacterium

    SciTech Connect

    Maiuri, Margherita; Réhault, Julien; Polli, Dario; Cerullo, Giulio; Carey, Anne-Marie; Hacking, Kirsty; Cogdell, Richard J.; Garavelli, Marco; Lüer, Larry

    2015-06-07

    We investigate the excitation energy transfer (EET) pathways in the photosynthetic light harvesting 1 (LH1) complex of purple bacterium Rhodospirillum rubrum with ultra-broadband two-dimensional electronic spectroscopy (2DES). We employ a 2DES apparatus in the partially collinear geometry, using a passive birefringent interferometer to generate the phase-locked pump pulse pair. This scheme easily lends itself to two-color operation, by coupling a sub-10 fs visible pulse with a sub-15-fs near-infrared pulse. This unique pulse combination allows us to simultaneously track with extremely high temporal resolution both the dynamics of the photoexcited carotenoid spirilloxanthin (Spx) in the visible range and the EET between the Spx and the B890 bacterio-chlorophyll (BChl), whose Q{sub x} and Q{sub y} transitions peak at 585 and 881 nm, respectively, in the near-infrared. Global analysis of the one-color and two-color 2DES maps unravels different relaxation mechanisms in the LH1 complex: (i) the initial events of the internal conversion process within the Spx, (ii) the parallel EET from the first bright state S{sub 2} of the Spx towards the Q{sub x} state of the B890, and (iii) the internal conversion from Q{sub x} to Q{sub y} within the B890.

  6. Engineering the Electronic Structure of 2D WS2 Nanosheets Using Co Incorporation as Cox W(1- x ) S2 for Conspicuously Enhanced Hydrogen Generation.

    PubMed

    Shifa, Tofik Ahmed; Wang, Fengmei; Liu, Kaili; Xu, Kai; Wang, Zhenxing; Zhan, Xueying; Jiang, Chao; He, Jun

    2016-07-01

    Transition metal dichalcogenides (TMDs), as one of potential electrocatalysts for hydrogen evolution reaction (HER), have been extensively studied. Such TMD-based ternary materials are believed to engender optimization of hydrogen adsorption free energy to thermoneutral value. Theoretically, cobalt is predicted to actively promote the catalytic activity of WS2 . However, experimentally it requires systematic approach to form Cox W(1- x ) S2 without any concomitant side phases that are detrimental for the intended purpose. This study reports a rational method to synthesize pure ternary Cox W(1- x ) S2 nanosheets for efficiently catalyzing HER. Benefiting from the modification in the electronic structure, the resultant material requires overpotential of 121 mV versus reversible hydrogen electrode (RHE) to achieve current density of 10 mA cm(-2) and shows Tafel slope of 67 mV dec(-1) . Furthermore, negligible loss of activity is observed over continues electrolysis of up to 2 h demonstrating its fair stability. The finding provides noticeable experimental support for other computational reports and paves the way for further works in the area of HER catalysis based on ternary materials. PMID:27322598

  7. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  8. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938

  9. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  10. PAMELA: An open-source software package for calculating nonlocal exact exchange effects on electron gases in core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Long, Andrew W.; Wong, Bryan M.

    2012-09-01

    We present a new pseudospectral approach for incorporating many-body, nonlocal exact exchange interactions to understand the formation of electron gases in core-shell nanowires. Our approach is efficiently implemented in the open-source software package PAMELA (Pseudospectral Analysis Method with Exchange & Local Approximations) that can calculate electronic energies, densities, wavefunctions, and band-bending diagrams within a self-consistent Schrödinger-Poisson formalism. The implementation of both local and nonlocal electronic effects using pseudospectral methods is key to PAMELA's efficiency, resulting in significantly reduced computational effort compared to finite-element methods. In contrast to the new nonlocal exchange formalism implemented in this work, we find that the simple, conventional Schrödinger-Poisson approaches commonly used in the literature (1) considerably overestimate the number of occupied electron levels, (2) overdelocalize electrons in nanowires, and (3) significantly underestimate the relative energy separation between electronic subbands. In addition, we perform several calculations in the high-doping regime that show a critical tunneling depth exists in these nanosystems where tunneling from the core-shell interface to the nanowire edge becomes the dominant mechanism of electron gas formation. Finally, in order to present a general-purpose set of tools that both experimentalists and theorists can easily use to predict electron gas formation in core-shell nanowires, we document and provide our efficient and user-friendly PAMELA source code that is freely available at http://alum.mit.edu/www/usagi.

  11. Study of dust particle charging in weakly ionized inert gases taking into account the nonlocality of the electron energy distribution function

    SciTech Connect

    Filippov, A. V. Dyatko, N. A.; Kostenko, A. S.

    2014-11-15

    The charging of dust particles in weakly ionized inert gases at atmospheric pressure has been investigated. The conditions under which the gas is ionized by an external source, a beam of fast electrons, are considered. The electron energy distribution function in argon, krypton, and xenon has been calculated for three rates of gas ionization by fast electrons: 10{sup 13}, 10{sup 14}, and 10{sup 15} cm{sup −1}. A model of dust particle charging with allowance for the nonlocal formation of the electron energy distribution function in the region of strong plasma quasi-neutrality violation around the dust particle is described. The nonlocality is taken into account in an approximation where the distribution function is a function of only the total electron energy. Comparative calculations of the dust particle charge with and without allowance for the nonlocality of the electron energy distribution function have been performed. Allowance for the nonlocality is shown to lead to a noticeable increase in the dust particle charge due to the influence of the group of hot electrons from the tail of the distribution function. It has been established that the screening constant virtually coincides with the smallest screening constant determined according to the asymptotic theory of screening with the electron transport and recombination coefficients in an unperturbed plasma.

  12. Non-ionizing energy loss calculations for modeling electron-induced degradation of Cu(In, Ga)Se2 thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Lu, Ming; Xu, Jing; Huang, Jian-Wei

    2016-09-01

    The lowest energies which make Cu, In, Ga, and Se atoms composing Cu(In, Ga)Se2 (CIGS) material displaced from their lattice sites are evaluated, respectively. The non-ionizing energy loss (NIEL) for electron in CIGS material is calculated analytically using the Mott differential cross section. The relation of the introduction rate (k) of the recombination centers to NIEL is modified, then the values of k at different electron energies are calculated. Degradation modeling of CIGS thin-film solar cells irradiated with various-energy electrons is performed according to the characterization of solar cells and the recombination centers. The validity of the modeling approach is verified by comparison with the experimental data. Project supported by the National Natural Science Foundation of China (Grant No. 11547151).

  13. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  14. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  15. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  16. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  17. ATOMIC AND MOLECULAR PHYSICS: Retrieval of Electron Return Time from High-order Harmonics Generated in a Mixture of He and Ne Gases

    NASA Astrophysics Data System (ADS)

    Jin, Cheng; Zhou, Xiao-Xin; Zhao, Song-Feng

    2010-04-01

    In terms of single-atom induced dipole moment by Lewenstein model, we present the macroscopic high-order harmonic generation from mixed He and Ne gases with different mixture ratios by solving three-dimensional Maxwell's equation of harmonic held. And then we show the validity of mixture formulation by Wagner et al. [Phys. Rev. A 76 (2007) 061403(R)] in macroscopic response level. Finally, using least squares fitting we retrieve the electron return time of short trajectory by formulation in Kanai et al. [Phys. Rev. Lett. 98 (2007) 153904] when the gas jet is put after the laser focus.

  18. Greenhouse Gases

    MedlinePlus

    ... Greenhouse Gases Come From Outlook for Future Emissions Recycling and Energy Nonrenewable Sources Oil and Petroleum Products ... Power Wave Power Ocean Thermal Energy Conversion Biomass Wood and Wood Waste Waste-to-Energy (MSW) Landfill ...

  19. Ultrafast 2D IR microscopy

    PubMed Central

    Baiz, Carlos R.; Schach, Denise; Tokmakoff, Andrei

    2014-01-01

    We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with μm-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear “one beam” geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments. PMID:25089490

  20. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  1. 2D materials: Graphene and others

    NASA Astrophysics Data System (ADS)

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  2. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  3. Synthetic Covalent and Non-Covalent 2D Materials.

    PubMed

    Boott, Charlotte E; Nazemi, Ali; Manners, Ian

    2015-11-16

    The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.

  4. Controlled formation of high-mobility shallow electron gases in SrTiO3 single crystal

    NASA Astrophysics Data System (ADS)

    Chang, Jung-Won; Lee, Joon Sung; Lee, Tae Ho; Kim, Jinhee; Doh, Yong-Joo

    2015-05-01

    We report on the controlled formation of sub-100-nm-thin electron channels in SrTiO3 by doping with oxygen vacancies induced by Ar+ ion irradiation. The conducting channels exhibit a consistently high electron mobility (˜15,000 cm2 V-1 s-1), which enables a clear observation of magnetic quantum oscillations, and a gate-tunable linear magnetoresistance. Near the onset of electrical conduction, a metal-insulator transition is induced by mobility suppression. With the high electron mobility and the ease of controlled channel formation, this ion irradiation doping method may provide an excellent basis for developing oxide electronics.

  5. Electron energy enhancement by frequency chirp of a radially polarized laser pulse during ionization of low-density gases

    NASA Astrophysics Data System (ADS)

    Pal Singh, Kunwar; Arya, Rashmi; Malik, Anil K.; Fisch, N. J.

    2016-11-01

    A scheme is proposed to enhance the energy of the electrons generated during the ionization of low-density krypton ions \\text{K}{{\\text{r}}32+} and argon ions \\text{A}{{\\text{r}}16+} by a radially polarized laser pulse using a negative frequency chirp. If a suitable frequency chirp is introduced then the energy of the electrons increases significantly and scattering decreases. The optimum value of the frequency chirp decreases with laser intensity and as well as spot size. The laser spot size also has an optimum value. The electron energy shows strong initial phase dependence. The scheme can be used to obtain quasi-monoenergetic collimated \\text{MeV}/\\text{GeV} electrons using the right choice of parameters. The chirped radially polarized laser pulse is more efficient than a chirped circularly polarized laser pulse to enhance energy and obtain quasi-monoenergetic electron beams.

  6. Two-dimensional electron gases at head-to-head and tail-to-tail domain walls in ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    García-Fernández, Pablo; Íñiguez, Jorge; Junquera, Javier

    Symmetry breaking at ferroelectric domain walls gives rise to new physical properties, offering the opportunity to use the domain walls themselves as a functional separate object in a device. One example is the appearance of an enhanced conductivity at the boundaries between ferroelectric domains in oxides. A realistic first-principles simulation of the domains walls is limited to highly-symmetric cleanly-cut walls in order to keep the number of atoms in the simulation box small. Here we use a recently developed second-principles method that treats all the lattice degrees of freedom and the relevant electronic ones on the same foot with high accuracy at a modest computational cost. We apply it to the demading physical problem of head-to-head (HH) and tail-to-tail (TT) domain walls in ferroelectric PbTiO3 thin films. These interfaces present a large and unfavourable electrostatic energy due to the polarization-induced bound charge at the domain wall. An accurate simulation should capture eventual charge transfers between the walls, and the concomitant electron-lattice coupling. We show how the polarization discontinuity in HH and TT domain walls in PbTiO3 thin films can be effectively screened by the formation of two-dimensional electron gases of electrons and holes. Finantial support from MINECO Grant No. FIS2012-37549-C05-04.

  7. Final report to US Department of Energy: Cyclotron autoresonance accelerator for electron beam dry scrubbing of flue gases

    SciTech Connect

    Hirshfield, J.L.

    2001-05-25

    Several designs have been built and operated of microwave cyclotron autoresonance accelerators (CARA's) with electron beam parameters suitable for remediation of pollutants in flue gas emissions from coal-burning power plants. CARA designs have also been developed with a TW-level 10.6 micron laser driver for electron acceleration from 50 to 100 MeV, and with UHF drivers for proton acceleration to over 500 MeV. Dose requirements for reducing SO2, NOx, and particulates in flue gas emissions to acceptable levels have been surveyed, and used to optimize the design of an electron beam source to deliver this dose.

  8. Mesospheric removal of very long-lived greenhouse gases SF6 and CFC-115 by metal reactions, Lyman-α photolysis, and electron attachment.

    PubMed

    Totterdill, Anna; Kovács, Tamás; Gómez Martín, Juan Carlos; Feng, Wuhu; Plane, John M C

    2015-03-12

    The fluorinated gases SF6 and C2F5Cl (CFC-115) are chemically inert with atmospheric lifetimes of many centuries which, combined with their strong absorption of IR radiation, results in unusually high global warming potentials. Very long lifetimes imply that mesospheric sinks could make important contributions to their atmospheric removal. In order to investigate this, the photolysis cross sections at the prominent solar Lyman-α emission line (121.6 nm), and the reaction kinetics of SF6 and CFC-115 with the neutral meteoric metal atoms Na, K, Mg, and Fe over large temperature ranges, were measured experimentally. The Na and K reactions exhibit significant non-Arrhenius behavior; quantum chemistry calculations of the potential energy surfaces for the SF6 reactions indicate that the Na and K reactions with SF6 are probably activated by vibrational excitation of the F-SF5 (v3) stretching mode. A limited set of kinetic measurements on Na + SF5CF3 are also presented. The atmospheric removal of these long-lived gases by a variety of processes is then evaluated. For SF6, the removal processes in decreasing order of importance are electron attachment, VUV photolysis, and reaction with K, Na, and H. For CFC-115, the removal processes in decreasing order of importance are reaction with O((1)D), VUV photolysis, and reaction with Na, K, and H.

  9. Toxic gases.

    PubMed Central

    Matthews, G.

    1989-01-01

    An overview of the widespread use of gases and some volatile solvents in modern society is given. The usual circumstances in which undue exposure may occur are described. The most prominent symptoms and general principles of diagnosis and treatment are given and are followed by more specific information on the commoner, more toxic materials. While acute poisonings constitute the greater part of the paper, some indication of chronic disorders arising from repeated or prolonged exposure is also given. PMID:2687827

  10. Spin splitting in 2D monochalcogenide semiconductors

    PubMed Central

    Do, Dat T.; Mahanti, Subhendra D.; Lai, Chih Wei

    2015-01-01

    We report ab initio calculations of the spin splitting of the uppermost valence band (UVB) and the lowermost conduction band (LCB) in bulk and atomically thin GaS, GaSe, GaTe, and InSe. These layered monochalcogenides appear in four major polytypes depending on the stacking order, except for the monoclinic GaTe. Bulk and few-layer ε-and γ -type, and odd-number β-type GaS, GaSe, and InSe crystals are noncentrosymmetric. The spin splittings of the UVB and the LCB near the Γ-point in the Brillouin zone are finite, but still smaller than those in a zinc-blende semiconductor such as GaAs. On the other hand, the spin splitting is zero in centrosymmetric bulk and even-number few-layer β-type GaS, GaSe, and InSe, owing to the constraint of spatial inversion symmetry. By contrast, GaTe exhibits zero spin splitting because it is centrosymmetric down to a single layer. In these monochalcogenide semiconductors, the separation of the non-degenerate conduction and valence bands from adjacent bands results in the suppression of Elliot-Yafet spin relaxation mechanism. Therefore, the electron- and hole-spin relaxation times in these systems with zero or minimal spin splittings are expected to exceed those in GaAs when the D’yakonov-Perel’ spin relaxation mechanism is also suppressed. PMID:26596907

  11. Will Allis Prize for the Study of Ionized Gases Lecture: Electron and Photon Collisions with Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Burke, Philip G.

    2012-06-01

    After a brief historical introduction this talk will review the broad range of collision processes involving electron and photon collisions with atoms and molecules that are now being considered. Their application in the analysis of astronomical spectra, atmospheric observations and laboratory plasmas will be considered. The talk will review the R-matrix computational method which has been widely used by international collaborations and by other scientists in the field to obtain accurate scattering amplitudes and cross sections of importance in these applications. Results of some recent calculations of electron and photon collisions with atoms and molecules will be presented. In conclusion some challenges for future research will be briefly discussed.

  12. DYNA2D96. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.

    1992-04-01

    DYNA2D is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  13. Electron thermalization distances and free ion yields in dense gases and liquids: Effect of molecular dipole moment

    NASA Astrophysics Data System (ADS)

    Gee, Norman; Freeman, Gordon R.

    1989-11-01

    The effect of a molecular dipole moment on electron thermalization in X-irradiated fluids was examined by determining the effect of density on the density-normalized electron thermalization distance bGPd in dimethyl ether. Free ion yields were measured as a function of electric field strength at 0.06≤d/dc<2.7 (critical fluid density dc =271 kg m-3), and bGP values were obtained using an extended Onsager model. The permanent dipole increases the thermalizing ability of the fluid at all densities. However, the effect is smaller in the dense fluids and the transition from low-density gas behavior occurs at d/dc≊0.2.

  14. Impact of electric-field dependent dielectric constants on two-dimensional electron gases in complex oxides

    SciTech Connect

    Peelaers, H.; Gordon, L.; Steiauf, D.; Janotti, A.; Van de Walle, C. G.; Krishnaswamy, K.; Sarwe, A.

    2015-11-02

    High-density two-dimensional electron gas (2DEG) can be formed at complex oxide interfaces such as SrTiO{sub 3}/GdTiO{sub 3} and SrTiO{sub 3}/LaAlO{sub 3}. The electric field in the vicinity of the interface depends on the dielectric properties of the material as well as on the electron distribution. However, it is known that electric fields can strongly modify the dielectric constant of SrTiO{sub 3} as well as other complex oxides. Solving the electrostatic problem thus requires a self-consistent approach in which the dielectric constant varies according to the local magnitude of the field. We have implemented the field dependence of the dielectric constant in a Schrödinger-Poisson solver in order to study its effect on the electron distribution in a 2DEG. Using the SrTiO{sub 3}/GdTiO{sub 3} interface as an example, we demonstrate that including the field dependence results in the 2DEG being confined closer to the interface compared to assuming a single field-independent value for the dielectric constant. Our conclusions also apply to SrTiO{sub 3}/LaAlO{sub 3} as well as other similar interfaces.

  15. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  16. Crossover between the Hikami and spin-resolved band limits of weak anti-localization in two-dimensional electron gases

    NASA Astrophysics Data System (ADS)

    Araki, Yasufumi; Khalsa, Guru; MacDonald, Allan H.

    2014-03-01

    We investigate the quantum interference corrections to transport which lead to weak localization (WL) or weak anti-localization (WAL) for the case of spin-independent disorder scattering in two-dimensional electron gases with spin-orbit interactions of arbitrary strength. We formulate our theory in terms of microscopic linear response including multiple scattering by the disorder potential to derive the current-current response function when Rashba (or Dresselhaus) spin-orbit coupling is included in the electronic band structure. We analyze the crossover from the weak spin-orbit coupling limit in which spin-splitting of the bands is not resolved, to the strong spin-orbit coupling limit of clearly spin-split bands. In the weak and strong spin-orbit coupling limits we generally recover the well-known WL and WAL behavior first predicted by Hikami, Larkin and Nagaoka, although the degeneracy of spin triplet channels is lifted leading to a more complex crossover between the traditional WL and WAL limits. Our results can be summarized by a phase diagram in spin-orbit coupling strength and temperature (or the coherence length from inelastic scattering), with several regions separated by different crossover lines. Y. A. is supported by JSPS Postdoctoral Fellowship for Research Abroad (No.25-56).

  17. Symmetry origins of the `caldera' valence band distortion in 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Li, Pengke; Appelbaum, Ian; Physics Department Team

    The electronic structures of many two-dimensional van der Waals semiconductors exhibit various fascinating properties distinct from their three-dimensional bulk counterparts. Through an examination of their lattice symmetries, we identify several universal rules dictating their band dispersion in the monolayer limit, where in-plane mirror symmetry and quantum confinement play critical roles. Taking group-III metal monochalcogenides (such as GaSe) as an example, we reveal the origin of the unusual `caldera' shape of the valence band edge (otherwise inelegantly dubbed an `upside down Mexican hat'), which we show is surprisingly common among other 2D semiconductors (such as in phosphorene for k along its zigzag direction). Reference: arXiv:1508.06963

  18. Direct electrical observation of plasma wave-related effects in GaN-based two-dimensional electron gases

    SciTech Connect

    Zhao, Y.; Chen, W.; Li, W.; Zhu, M.; Yue, Y.; Song, B.; Encomendero, J.; Xing, H.; Fay, P.; Sensale-Rodriguez, B.

    2014-10-27

    In this work, signatures of plasma waves in GaN-based high electron mobility transistors were observed by direct electrical measurement at room temperature. Periodic grating-gate device structures were fabricated and characterized by on-wafer G-band (140–220 GHz) s-parameter measurements as a function of gate bias voltage and device geometry. A physics-based equivalent circuit model was used to assist in interpreting the measured s-parameters. The kinetic inductance extracted from the measurement data matches well with theoretical predictions, consistent with direct observation of plasma wave-related effects in GaN-channel devices at room temperature. This observation of electrically significant room-temperature plasma-wave effects in GaN-channel devices may have implications for future millimeter-wave and THz device concepts and designs.

  19. Van der Waals stacked 2D layered materials for optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  20. Catching the role of anisotropic electronic distribution and charge transfer in halogen bonded complexes of noble gases

    SciTech Connect

    Bartocci, Alessio; Cappelletti, David; Pirani, Fernando; Belpassi, Leonardo; Falcinelli, Stefano; Grandinetti, Felice; Tarantelli, Francesco

    2015-05-14

    The systems studied in this work are gas-phase weakly bound adducts of the noble-gas (Ng) atoms with CCl{sub 4} and CF{sub 4}. Their investigation was motivated by the widespread current interest for the intermolecular halogen bonding (XB), a structural motif recognized to play a role in fields ranging from elementary processes to biochemistry. The simulation of the static and dynamic behaviors of complex systems featuring XB requires the formulation of reliable and accurate model potentials, whose development relies on the detailed characterization of strength and nature of the interactions occurring in simple exemplary halogenated systems. We thus selected the prototypical Ng-CCl{sub 4} and Ng-CF{sub 4} and performed high-resolution molecular beam scattering experiments to measure the absolute scale of their intermolecular potentials, with high sensitivity. In general, we expected to probe typical van der Waals interactions, consisting of a combination of size (exchange) repulsion with dispersion/induction attraction. For the He/Ne-CF{sub 4}, the analysis of the glory quantum interference pattern, observable in the velocity dependence of the integral cross section, confirmed indeed this expectation. On the other hand, for the He/Ne/Ar-CCl{sub 4}, the scattering data unravelled much deeper potential wells, particularly for certain configurations of the interacting partners. The experimental data can be properly reproduced only including a shifting of the repulsive wall at shorter distances, accompanied by an increased role of the dispersion attraction, and an additional short-range stabilization component. To put these findings on a firmer ground, we performed, for selected geometries of the interacting complexes, accurate theoretical calculations aimed to evaluate the intermolecular interaction and the effects of the complex formation on the electron charge density of the constituting moieties. It was thus ascertained that the adjustments of the potential

  1. Catching the role of anisotropic electronic distribution and charge transfer in halogen bonded complexes of noble gases

    NASA Astrophysics Data System (ADS)

    Bartocci, Alessio; Belpassi, Leonardo; Cappelletti, David; Falcinelli, Stefano; Grandinetti, Felice; Tarantelli, Francesco; Pirani, Fernando

    2015-05-01

    The systems studied in this work are gas-phase weakly bound adducts of the noble-gas (Ng) atoms with CCl4 and CF4. Their investigation was motivated by the widespread current interest for the intermolecular halogen bonding (XB), a structural motif recognized to play a role in fields ranging from elementary processes to biochemistry. The simulation of the static and dynamic behaviors of complex systems featuring XB requires the formulation of reliable and accurate model potentials, whose development relies on the detailed characterization of strength and nature of the interactions occurring in simple exemplary halogenated systems. We thus selected the prototypical Ng-CCl4 and Ng-CF4 and performed high-resolution molecular beam scattering experiments to measure the absolute scale of their intermolecular potentials, with high sensitivity. In general, we expected to probe typical van der Waals interactions, consisting of a combination of size (exchange) repulsion with dispersion/induction attraction. For the He/Ne-CF4, the analysis of the glory quantum interference pattern, observable in the velocity dependence of the integral cross section, confirmed indeed this expectation. On the other hand, for the He/Ne/Ar-CCl4, the scattering data unravelled much deeper potential wells, particularly for certain configurations of the interacting partners. The experimental data can be properly reproduced only including a shifting of the repulsive wall at shorter distances, accompanied by an increased role of the dispersion attraction, and an additional short-range stabilization component. To put these findings on a firmer ground, we performed, for selected geometries of the interacting complexes, accurate theoretical calculations aimed to evaluate the intermolecular interaction and the effects of the complex formation on the electron charge density of the constituting moieties. It was thus ascertained that the adjustments of the potential suggested by the analysis of the

  2. Role of inelastic collisions in explanation of the effect of rotating wall trap of electrons/positrons in gases

    NASA Astrophysics Data System (ADS)

    Petrovic, Zoran; Marjanovic, Srdjan

    2015-05-01

    The only existing explanation of the rotating wall positron trap operating in the low space charge limit (swarm) [ref] is based on momentum transfer collisions to represent the collisions of positrons in gas and to facilitate the effective narrowing of the profile and heating/cooling succession. The collisions are represented through a viscous term of a simple transport equation. In that model effective viscosity term is used to fit the observed data with no attention paid to the magnitude of the term compared to the measured or theoretically predicted values. We apply a well tested Monte Carlo technique whereby all interactions may be described by exact experimental or theoretical cross sections. We separate effects due to inelastic processes with small and large energy losses (i.e. on vibrational or rotational excitation versus electronic excitation). It turns out that large energy loss processes are essential in narrowing the profile but also that low energy loss processes define thermalization to the room temperature or lower and allow cooling of the ensemble. Heating was necessary to allow narrowing of the profile but the particles have to return to the thermal equilibrium with low fields.

  3. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

  4. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices. PMID:26839956

  5. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  6. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    SciTech Connect

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1998-12-14

    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  7. Langmuir probe characterization of capacitively driven discharges in different gases.

    NASA Astrophysics Data System (ADS)

    McFarland, J.; Mahony, C. M. O.; Steen, P. G.; Graham, W. G.

    1997-10-01

    A compensated Langmuir probe technique has been used to study and contrast the plasma parameters of 13.56 MHz capacitively driven discharges operating in H_2, D_2, He and Ar. The discharge was created in a GEC reference reactor configured in the asymmetric capacitive mode. Standard GEC I(V) measurement techniques were used to characterize the energy input. In all gases the form of the electron energy distribution function (EEDF) was found to be dependent on the operating power and pressure and in a manner which was consistent with those previously reported in other capacitively coupled systems (V.A. Godyak, R.B. Piejak and B.M. Alexandrovich, Plasma Sources Sci. Technol., 1 p 36-58 (1992)). In Ar the electron densities, mean energies and plasma potentials were gratifyingly close to those measured in the University of Texas GEC reference reactor (L.J. Overzet and F.Y. Leong-Rousey, Private communication). For input powers between 10 and 100 watts and pressures in the range 75 mTorr to 1000 mTorr the electron densities were between 5 x 10^8 and 9 x 10^10 cm-3 with the highest density in Ar and the lowest in D_2. Mean electron energies were between 2-4 eV. A detailed discussion of the variation between the different gases will be presented.

  8. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  9. Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.

  10. Emerging and potential opportunities for 2D flexible nanoelectronics

    NASA Astrophysics Data System (ADS)

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  11. Transport Properties of 2D-Electron Gas in a InGaAs/GaAs DQW in a Vicinity of Low Magnetic-Field-Induced Insulator-Quantum Hall Liquid Transition

    NASA Astrophysics Data System (ADS)

    Arapov, Yu. G.; Yakunin, M. V.; Gudina, S. V.; Harus, G. I.; Neverov, V. N.; Shelushinina, N. G.; Podgornyh, S. M.; Uskova, E. A.; Zvonkov, B. N.

    2007-04-01

    The resistivity ρ of low mobility dilute 2D-elecron gas in a InGaAs/GaAs double quantum well (DQW) exhibits the monotonic "insulating-like" temperature dependence (dρ/dT < 0) at T = 1.8-70K in zero magnetic field. This temperature interval corresponds to a ballistic regime (kBTτ/ℏ > 0.1) for our samples. We observed the coexistence of both the quantum Hall (QH) effect for the filling factors v = 2, 4 and the low magnetic field insulator — QH liquid (with v = 10) transition.

  12. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  13. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets.

    PubMed

    Zhou, Yubing; Nie, Yufeng; Liu, Yujing; Yan, Kai; Hong, Jinhua; Jin, Chuanhong; Zhou, Yu; Yin, Jianbo; Liu, Zhongfan; Peng, Hailin

    2014-02-25

    We present the controlled synthesis of high-quality two-dimensional (2D) GaSe crystals on flexible transparent mica substrates via a facile van der Waals epitaxy method. Single- and few-layer GaSe nanoplates with the lateral size of up to tens of micrometers were produced. The orientation and nucleation sites of GaSe nanoplates were well-controlled. The 2D GaSe crystal-based photodetectors were demonstrated on both mechanically rigid SiO2/Si and flexible mica substrates. Efficient photoresponse was observed in 2D GaSe crystal devices on transparent flexible mica substrates, regardless of repeated bending with different radii. The controlled growth of 2D GaSe crystals with efficient photoresponsivity opens up opportunities for both fundamental aspects and new applications in photodetectors.

  14. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  15. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950

  16. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations.

  17. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  18. Temperature dependence of photoluminescence spectra of bilayer two-dimensional electron gases in LaAlO{sub 3}/SrTiO{sub 3} superlattices: coexistence of Auger recombination and single-carrier trapping

    SciTech Connect

    Ma, H. J. Harsan Ariando; Venkatesan, T.; Wang, S. J.

    2015-06-15

    We report emerging photoluminescence (PL) of bilayer two-dimensional electron gases (2DEG) in LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) systems. A strong blue PL emerges in bilayer-2DEGs in LAO/STO/LAO/STO which doesn’t show in LAO/STO. PL band in bilayer-2DEGs includes both nearly temperature independent Auger recombination and temperature dependent free electron trapping while it crossovers from Auger recombination to single carrier trapping in LAO/STO. The PL signal of free electron trapping appears at high temperatures and it is much stronger than Auger recombination in the conducting channel in bilayer 2DEGs. This observation shows that high mobility carriers dominate the carrier dynamics in bilayer-2DEGs in LAO/STO superlattices.

  19. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, Santi

    1986-01-01

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  20. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.

    1986-08-19

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  1. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, Santi; Kulkarni, Sudhir S.

    1986-01-01

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  2. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  3. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.

    PubMed

    Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios

    2016-09-01

    van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs. PMID:27537619

  4. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.

    PubMed

    Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E

    2016-08-21

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR. PMID:27448174

  5. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.

    PubMed

    Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E

    2016-08-21

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.

  6. 2D materials: to graphene and beyond.

    PubMed

    Mas-Ballesté, Rubén; Gómez-Navarro, Cristina; Gómez-Herrero, Julio; Zamora, Félix

    2011-01-01

    This review is an attempt to illustrate the different alternatives in the field of 2D materials. Graphene seems to be just the tip of the iceberg and we show how the discovery of alternative 2D materials is starting to show the rest of this iceberg. The review comprises the current state-of-the-art of the vast literature in concepts and methods already known for isolation and characterization of graphene, and rationalizes the quite disperse literature in other 2D materials such as metal oxides, hydroxides and chalcogenides, and metal-organic frameworks.

  7. Annihilation in Gases and Galaxies

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J. (Editor)

    1990-01-01

    This publication contains most of the papers, both invited and contributed, that were presented at the Workshop of Annihilation in Gases and Galaxies. This was the fifth in a biennial series associated with the International Conference on the Physics of Electronic and Atomic Collisions. Subjects covered included the scattering and annihilation of positrons and positronium atoms in various media, including those of astrophysical interest. In addition, the topics of antimatter and dark matter were covered.

  8. 2D Electronic Transport with Strong Spin-Orbit Coupling in Bi(2-) Square Net of Y2O2Bi Thin Film Grown by Multilayer Solid-Phase Epitaxy.

    PubMed

    Sei, Ryosuke; Fukumura, Tomoteru; Hasegawa, Tetsuya

    2015-11-18

    Highly crystalline Y2O2Bi epitaxial thin film with monatomic Bi(2-) square net layer was grown by newly developed multilayer solid phase epitaxy. High reactivity of the nanometer-scale multilayered precursor enabled efficient formation of single crystalline Y2O2Bi phase with one-step heating. The reductive state of Bi(2-) square net was observed by X-ray photoemission spectroscopy. The electrical resistivity was one order lower than that of polycrystalline powder in previous study. The magnetotransport showed weak antilocalization effect well fitted by the Hikami-Larkin-Nagaoka model, exhibiting two-dimensional electronic nature with strong spin-orbit coupling in the Bi(2-) square net.

  9. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  10. 2-d Finite Element Code Postprocessor

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  11. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  12. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  13. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  14. Valley and electric photocurrents in 2D silicon and graphene

    SciTech Connect

    Tarasenko, S. A.; Ivchenko, E. L.; Olbrich, P.; Ganichev, S. D.

    2013-12-04

    We show that the optical excitation of multi-valley systems leads to valley currents which depend on the light polarization. The net electric current, determined by the vector sum of single-valley contributions, vanishes for some peculiar distributions of carriers in the valley and momentum spaces forming a pure valley current. We report on the study of this phenomenon, both experimental and theoretical, for graphene and 2D electron channels on the silicon surface.

  15. CBEAM. 2-D: a two-dimensional beam field code

    SciTech Connect

    Dreyer, K.A.

    1985-05-01

    CBEAM.2-D is a two-dimensional solution of Maxwell's equations for the case of an electron beam propagating through an air medium. Solutions are performed in the beam-retarded time frame. Conductivity is calculated self-consistently with field equations, allowing sophisticated dependence of plasma parameters to be handled. A unique feature of the code is that it is implemented on an IBM PC microcomputer in the BASIC language. Consequently, it should be available to a wide audience.

  16. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083

  17. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  18. 2d index and surface operators

    NASA Astrophysics Data System (ADS)

    Gadde, Abhijit; Gukov, Sergei

    2014-03-01

    In this paper we compute the superconformal index of 2d (2, 2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in = 2 super-conformal gauge theories. They are engineered by coupling the 2d (2, 2) supersymmetric gauge theory living on the support of the surface operator to the 4d = 2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role.

  19. A 2-D ECE Imaging Diagnostic for TEXTOR

    NASA Astrophysics Data System (ADS)

    Wang, J.; Deng, B. H.; Domier, C. W.; Luhmann, H. Lu, Jr.

    2002-11-01

    A true 2-D extension to the UC Davis ECE Imaging (ECEI) concept is under development for installation on the TEXTOR tokamak in 2003. This combines the use of linear arrays with multichannel conventional wideband heterodyne ECE radiometers to provide a true 2-D imaging system. This is in contrast to current 1-D ECEI systems in which 2-D images are obtained through the use of multiple plasma discharges (varying the scanned emission frequency each discharge). Here, each array element of the 20 channel mixer array measures plasma emission at 16 simultaneous frequencies to form a 16x20 image of the plasma electron temperature Te. Correlation techniques can then be applied to any pair of the 320 image elements to study both radial and poloidal characteristics of turbulent Te fluctuations. The system relies strongly on the development of low cost, wideband (2-18 GHz) IF detection electronics for use in both ECE Imaging as well as conventional heterodyne ECE radiometry. System details, with a strong focus on the wideband IF electronics development, will be presented. *Supported by U.S. DoE Contracts DE-FG03-95ER54295 and DE-FG03-99ER54531.

  20. Investigation of the surface chemical and electronic states of pyridine-capped CdSe nanocrystal films after plasma treatments using H{sub 2}, O{sub 2}, and Ar gases

    SciTech Connect

    Wang, Seok-Joo; Kim, Hyuncheol; Park, Hyung-Ho; Lee, Young-Su; Jeon, Hyeongtag; Chang, Ho Jung

    2010-07-15

    Surface chemical bonding and the electronic states of pyridine-capped CdSe nanocrystal films were evaluated using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy before and after plasma treatments using H{sub 2}, O{sub 2}, and Ar gases from the viewpoint of studying the effects of surface capping organic molecules and surface oxidation. Surface capping organic molecules could be removed during the plasma treatment due to the chemical reactivity, ion energy transfer, and vacuum UV (VUV) of the plasma gases. With O{sub 2} plasma treatment, surface capping organic molecules were effectively removed but substantial oxidation of CdSe occurred during the plasma treatment. The valence band maximum energy (E{sub VBM}) of CdSe nanocrystal films mainly depends on the apparent size of pyridine-capped CdSe nanocrystals, which controls the interparticle distance, and also on the oxidation of CdSe nanocrystals. Cd-rich surface in O{sub 2} and H{sub 2} plasma treatments partially would compensate for the decrease in E{sub VBM}. After Ar plasma treatment, the smallest value of E{sub VBM} resulted from high VUV photon flux, short wavelength, and ion energy transfer. The surface bonding states of CdSe had a strong influence on the electronic structure with the efficient strip of capping molecules as well as different surface oxidations and surface capping molecule contents.

  1. Low-Resistance 2D/2D Ohmic Contacts: A Universal Approach to High-Performance WSe2, MoS2, and MoSe2 Transistors.

    PubMed

    Chuang, Hsun-Jen; Chamlagain, Bhim; Koehler, Michael; Perera, Meeghage Madusanka; Yan, Jiaqiang; Mandrus, David; Tománek, David; Zhou, Zhixian

    2016-03-01

    We report a new strategy for fabricating 2D/2D low-resistance ohmic contacts for a variety of transition metal dichalcogenides (TMDs) using van der Waals assembly of substitutionally doped TMDs as drain/source contacts and TMDs with no intentional doping as channel materials. We demonstrate that few-layer WSe2 field-effect transistors (FETs) with 2D/2D contacts exhibit low contact resistances of ∼0.3 kΩ μm, high on/off ratios up to >10(9), and high drive currents exceeding 320 μA μm(-1). These favorable characteristics are combined with a two-terminal field-effect hole mobility μFE ≈ 2 × 10(2) cm(2) V(-1) s(-1) at room temperature, which increases to >2 × 10(3) cm(2) V(-1) s(-1) at cryogenic temperatures. We observe a similar performance also in MoS2 and MoSe2 FETs with 2D/2D drain and source contacts. The 2D/2D low-resistance ohmic contacts presented here represent a new device paradigm that overcomes a significant bottleneck in the performance of TMDs and a wide variety of other 2D materials as the channel materials in postsilicon electronics.

  2. Band Engineering by Controlling vdW Epitaxy Growth Mode in 2D Gallium Chalcogenides.

    PubMed

    Cai, Hui; Soignard, Emmanuel; Ataca, Can; Chen, Bin; Ko, Changhyun; Aoki, Toshihiro; Pant, Anupum; Meng, Xiuqing; Yang, Shengxue; Grossman, Jeffrey; Ogletree, Frank D; Tongay, Sefaattin

    2016-09-01

    Atomically thin quasi-2D GaSe flakes are synthesized via van der Waals (vdW) epitaxy on a polar Si (111) surface. The bandgap is continuously tuned from its commonly accepted value at 620 down to the 700 nm range, only attained previously by alloying Te into GaSe (GaSex Te1- x ). This is accomplished by manipulating various vdW epitaxy kinetic factors, which allows the choice bet ween screw-dislocation-driven and layer-bylayer growth, and the design of different morphologies with different material-substrate interaction (strain) energies. PMID:27271214

  3. Light Collection in Liquid Noble Gases

    SciTech Connect

    McKinsey, Dan

    2013-05-29

    Liquid noble gases are increasingly used as active detector materials in particle and nuclear physics. Applications include calorimeters and neutrino oscillation experiments as well as searches for neutrinoless double beta decay, direct dark matter, muon electron conversion, and the neutron electric dipole moment. One of the great advantages of liquid noble gases is their copious production of ultraviolet scintillation light, which contains information about event energy and particle type. I will review the scintillation properties of the various liquid noble gases and the means used to collect their scintillation light, including recent advances in photomultiplier technology and wavelength shifters.

  4. Determination of the total electron scattering cross sections of the noble gases by a linear transmission technique in the intermediate energy range 0.3 keV to 2.0 keV

    NASA Astrophysics Data System (ADS)

    Goains, Christopher P.

    Total electron scattering cross sections for the noble gases He, Ne, Ar, Kr and Xe have been determined by the linear transmission technique in the intermediate energy range 0.3 keV to 2.0 keV with a random experimental error of +/-3.0%. The total electron scattering cross sections were compared to other total cross sections determined by the linear transmission technique and the Ramsauer technique previously reported in the literature. In general, the total electron scattering cross sections determined in the present agree with the previously-reported total electron scattering cross sections determined by other experimental groups using the linear transmission technique, especially with those that report relatively large random errors of +/-6. Deviations of up to 11% are, however, seen in the cross sections for He and deviations of up to 15% can be seen with experiments citing large corrections for small-angle elastically- and inelastically-scattered electrons. The total cross sections determined by the Ramsauer technique agree with the present ones to within 7% for Ne and Ar, but show deviations of up to nearly 20% for He, Kr and Xe at energies above 1000 eV.

  5. Trends in source gases

    NASA Technical Reports Server (NTRS)

    Ehhalt, D. H.; Fraser, P. J.; Albritton, D.; Cicerone, R. J.; Khalil, M. A. K.; Legrand, M.; Makide, Y.; Rowland, F. S.; Steele, L. P.; Zander, R.

    1989-01-01

    Source gases are defined as those gases that, by their breakdown, introduce into the stratosphere halogen, hydrogen, and nitrogen compounds that are important in stratospheric ozone destruction. Given here is an update of the existing concentration time series for chlorocarbons, nitrous oxide, and methane. Also reviewed is information on halogen containing species and the use of these data for establishing trends. Also reviewed is evidence on trends in trace gases that influence tropospheric chemistry and thus the tropospheric lifetimes of source gases, such as carbon dioxide, carbon monoxide, or nitrogen oxides. Much of the information is given in tabular form.

  6. Thermopower enhancement by fractional layer control in 2D oxide superlattices.

    PubMed

    Choi, Woo Seok; Ohta, Hiromichi; Lee, Ho Nyung

    2014-10-22

    Precise tuning of the 2D carrier density by using fractional δ-doping of d electrons improves the thermoelectric properties of oxide heterostructures. This promising result can be attributed to the anisotropic band structure in the 2D system, indicating that δ-doped oxide superlattices are good candidates for advanced thermoelectrics.

  7. Interconnection of nanoparticles within 2D superlattices of PbS/oleic acid thin films.

    PubMed

    Simon, Paul; Bahrig, Lydia; Baburin, Igor A; Formanek, Petr; Röder, Falk; Sickmann, Jan; Hickey, Stephen G; Eychmüller, Alexander; Lichte, Hannes; Kniep, Rüdiger; Rosseeva, Elena

    2014-05-21

    Make it connected! 2D close-packed layers of inorganic nanoparticles are interconnected by organic fibrils of oleic acid as clearly visualized by electron holography. These fibrils can be mineralised by PbS to transform an organic-inorganic framework to a completely interconnected inorganic semiconducting 2D array.

  8. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures

    NASA Astrophysics Data System (ADS)

    Roy, Tania; Tosun, Mahmut; Hettick, Mark; Ahn, Geun Ho; Hu, Chenming; Javey, Ali

    2016-02-01

    Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ˜100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.

  9. Optical modulators with 2D layered materials

    NASA Astrophysics Data System (ADS)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  10. Functionalized 2D atomic sheets with new properties

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Zhou, Jian; Wang, Qian; Jena, Puru

    2011-03-01

    Due to the unique atomic structure and novel physical and chemical properties, graphene has sparked tremendous theoretical and experimental efforts to explore other 2D atomic sheets like B-N, Al-N, and Zn-O, where the two components offer much more complexities and flexibilities in surface modifications. Using First principles calculations based on density functional theory, we have systematically studied the semi- and fully-decorated 2D sheets with H and F and Cl. We have found that the electronic structures and magnetic properties can be effectively tuned, and the system can be a direct or an indirect semiconductor or even a half-metal, and the system can be made ferromagnetic, antiferromagnetic, or magnetically degenerate depending upon how the surface is functionalized. Discussions are made for the possible device applications.

  11. 2D Thermoluminescence imaging of dielectric surface long term charge memory of plasma surface interaction in DBD discharges

    NASA Astrophysics Data System (ADS)

    Ambrico, Paolo F.; Ambrico, Marianna; Schiavulli, Luigi; De Benedictis, Santolo

    2014-07-01

    The charge trapping effect due to the exposure of alumina surfaces to plasma has been studied in a volume dielectric barrier discharge (DBD) in Ar and He noble gases. The long lasting charge trapping of alumina dielectric plates, used as barriers in DBDs, is evidenced by an ex situ thermoluminescence (TL) experiment performed with a standard and a custom two-dimensional (2D)-TL apparatus. The spatial density of trapped surface charges is found to be strongly correlated to the plasma morphology, and the surface spatial memory lasted for several minutes to hours after plasma exposure. In the case of Ar, the plasma channel impact signature on the surface shows a higher equivalent radiation dose with respect to the surface plasma wave and the post-discharge species signature. As a consequence, for the development of discharges, inside the dielectric surface the availability of lower energy trapped electrons is larger in the first region of plasma impact. The reported spatial memory increases the likelihood of the occurrence of plasma filaments in the same position in different runs. In He plasmas, the dielectric barrier shows an almost uniform distribution of trapped charges, meaning that there is no preferred region for the development of the discharge. In all cases a slight asymmetry was shown in the direction of the gas flow. This can be interpreted as being due to the long-living species moving in the direction of the gas flow, corresponding with the TL side experiment on the sample exposed to the plasma afterglow. The maximum values and the integral of the 2D-TL images showed a linear relation with the total charge per ac cycle, corresponding with findings for the TL glow curve. In conclusion, 2D-TL images allow the retrieval of information regarding the plasma surface interaction such as the plasma morphology, trap sites and their activation temperature.

  12. Solution conformation of 2-aminopurine (2-AP) dinucleotide determined by ultraviolet 2D fluorescence spectroscopy (UV-2D FS)

    PubMed Central

    Widom, Julia R.; Johnson, Neil P.; von Hippel, Peter H.; Marcus, Andrew H.

    2013-01-01

    We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analog of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS) – a fluorescence-detected variation of 2D electronic spectroscopy – to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point-dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R12 = 3.5 Å ± 0.5 Å, twist angle θ12 = 5° ± 5°), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV-2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein-nucleic acid complexes. PMID:24223491

  13. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; et al

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  14. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  15. Flatbands in 2D boroxine-linked covalent organic frameworks.

    PubMed

    Wang, Rui-Ning; Zhang, Xin-Ran; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Jiang-Long

    2016-01-14

    Density functional calculations have been performed to analyze the electronic and mechanical properties of a number of 2D boroxine-linked covalent organic frameworks (COFs), which are experimentally fabricated from di-borate aromatic molecules. Furthermore, the band structures are surprising and show flat-band characteristics which are mainly attributed to the delocalized π-conjugated electrons around the phenyl rings and can be better understood within aromaticity theories. Next, the effects of branch sizes and hydrostatic strains on their band structures are systematically considered within generalized gradient approximations. It is found that their band gaps will start to saturate when the branch size reaches 9. For boroxine-linked COFs with only one benzene ring in the branch, the band gap is robust under compressive strain while it decreases with the tensile strain increasing. When the branch size is equal or greater than 2, their band gaps will monotonously increase with the strain increasing in the range of [-1.0, 2.0] Å. All boroxine-linked COFs are semiconductors with controllable band gaps, depending on the branch length and the applied strain. In comparison with other 2D materials, such as graphene, hexagonal boron nitride, and even γ-graphyne, all boroxine-linked COFs are much softer and even more stable. That is, they can maintain the planar features under a larger compressive strain, which means that they are good candidates in flexible electronics. PMID:26662215

  16. Flatbands in 2D boroxine-linked covalent organic frameworks.

    PubMed

    Wang, Rui-Ning; Zhang, Xin-Ran; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Jiang-Long

    2016-01-14

    Density functional calculations have been performed to analyze the electronic and mechanical properties of a number of 2D boroxine-linked covalent organic frameworks (COFs), which are experimentally fabricated from di-borate aromatic molecules. Furthermore, the band structures are surprising and show flat-band characteristics which are mainly attributed to the delocalized π-conjugated electrons around the phenyl rings and can be better understood within aromaticity theories. Next, the effects of branch sizes and hydrostatic strains on their band structures are systematically considered within generalized gradient approximations. It is found that their band gaps will start to saturate when the branch size reaches 9. For boroxine-linked COFs with only one benzene ring in the branch, the band gap is robust under compressive strain while it decreases with the tensile strain increasing. When the branch size is equal or greater than 2, their band gaps will monotonously increase with the strain increasing in the range of [-1.0, 2.0] Å. All boroxine-linked COFs are semiconductors with controllable band gaps, depending on the branch length and the applied strain. In comparison with other 2D materials, such as graphene, hexagonal boron nitride, and even γ-graphyne, all boroxine-linked COFs are much softer and even more stable. That is, they can maintain the planar features under a larger compressive strain, which means that they are good candidates in flexible electronics.

  17. Magnetic gating of a 2D topological insulator.

    PubMed

    Dang, Xiaoqian; Burton, J D; Tsymbal, Evgeny Y

    2016-09-28

    Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic 'gate' representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate. PMID:27437829

  18. Magnetic gating of a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Dang, Xiaoqian; Burton, J. D.; Tsymbal, Evgeny Y.

    2016-09-01

    Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic ‘gate’ representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate.

  19. Bound states and Cooper pairs of molecules in 2D optical lattices bilayer

    NASA Astrophysics Data System (ADS)

    Camacho-Guardian, A.; Domínguez-Castro, G. A.; Paredes, R.

    2016-08-01

    We investigate the formation of Cooper pairs, bound dimers and the dimer-dimer elastic scattering of ultra- cold dipolar Fermi molecules confined in a 2D optical lattice bilayer configuration. While the energy and their associated bound states are determined in a variational way, the correlated two-molecule pair is addressed as in the original Cooper formulation. We demonstrate that the 2D lattice confinement favors the formation of zero center mass momentum bound states. Regarding the Cooper pairs binding energy, this depends on the molecule populations in each layer. Maximum binding energies occur for non-zero (zero) pair momentum when the Fermi system is polarized (unpolarized). We find an analytic expression for the dimer-dimer effective interaction in the deep BEC regime. The present analysis represents a route for addressing the BCS-BEC crossover superfluidity in dipolar Fermi gases confined in 2D optical lattices within the current experimental panorama.

  20. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  1. Explicit 2-D Hydrodynamic FEM Program

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  2. Stochastic Inversion of 2D Magnetotelluric Data

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  3. Static & Dynamic Response of 2D Solids

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less

  4. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  5. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  6. 2D photonic-crystal optomechanical nanoresonator.

    PubMed

    Makles, K; Antoni, T; Kuhn, A G; Deléglise, S; Briant, T; Cohadon, P-F; Braive, R; Beaudoin, G; Pinard, L; Michel, C; Dolique, V; Flaminio, R; Cagnoli, G; Robert-Philip, I; Heidmann, A

    2015-01-15

    We present the optical optimization of an optomechanical device based on a suspended InP membrane patterned with a 2D near-wavelength grating (NWG) based on a 2D photonic-crystal geometry. We first identify by numerical simulation a set of geometrical parameters providing a reflectivity higher than 99.8% over a 50-nm span. We then study the limitations induced by the finite value of the optical waist and lateral size of the NWG pattern using different numerical approaches. The NWG grating, pierced in a suspended InP 265-nm thick membrane, is used to form a compact microcavity involving the suspended nanomembrane as an end mirror. The resulting cavity has a waist size smaller than 10 μm and a finesse in the 200 range. It is used to probe the Brownian motion of the mechanical modes of the nanomembrane. PMID:25679837

  7. Broadband THz Spectroscopy of 2D Nanoscale Materials

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Tripathi, Shivendra; Huang, Mengchen; Hsu, Jen-Feng; D'Urso, Brian; Lee, Hyungwoo; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy

    Two-dimensional (2D) materials such as graphene and transition-metal dichalcogenides (TMDC) have attracted intense research interest in the past decade. Their unique electronic and optical properties offer the promise of novel optoelectronic applications in the terahertz regime. Recently, generation and detection of broadband terahertz (10 THz bandwidth) emission from 10-nm-scale LaAlO3/SrTiO3 nanostructures created by conductive atomic force microscope (c-AFM) lithography has been demonstrated . This unprecedented control of THz emission at 10 nm length scales creates a pathway toward hybrid THz functionality in 2D-material/LaAlO3/SrTiO3 heterostructures. Here we report initial efforts in THz spectroscopy of 2D nanoscale materials with resolution comparable to the dimensions of the nanowire (10 nm). Systems under investigation include graphene, single-layer molybdenum disulfide (MoS2), and tungsten diselenide (WSe2) nanoflakes. 1. Y. Ma, et al., Nano Lett. 13, 2884 (2013). We gratefully acknowledge financial support from the following agencies and grants: AFOSR (FA9550-12-1-0268 (JL, PRI), FA9550-12-1-0342 (CBE)), ONR (N00014-13-1-0806 (JL, CBE), N00014-15-1-2847 (JL)), NSF DMR-1124131 (JL, CBE) and DMR-1234096 (CBE).

  8. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  9. Layer Engineering of 2D Semiconductor Junctions.

    PubMed

    He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel

    2016-07-01

    A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275

  10. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  11. 2D Spinodal Decomposition in Forced Turbulence

    NASA Astrophysics Data System (ADS)

    Fan, Xiang; Diamond, Patrick; Chacon, Luis; Li, Hui

    2015-11-01

    Spinodal decomposition is a second order phase transition for binary fluid mixture, from one thermodynamic phase to form two coexisting phases. The governing equation for this coarsening process below critical temperature, Cahn-Hilliard Equation, is very similar to 2D MHD Equation, especially the conserved quantities have a close correspondence between each other, so theories for MHD turbulence are used to study spinodal decomposition in forced turbulence. Domain size is increased with time along with the inverse cascade, and the length scale can be arrested by a forced turbulence with direct cascade. The two competing mechanisms lead to a stabilized domain size length scale, which can be characterized by Hinze Scale. The 2D spinodal decomposition in forced turbulence is studied by both theory and simulation with ``pixie2d.'' This work focuses on the relation between Hinze scale and spectra and cascades. Similarities and differences between spinodal decomposition and MHD are investigated. Also some transport properties are studied following MHD theories. This work is supported by the Department of Energy under Award Number DE-FG02-04ER54738.

  12. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  13. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  14. Photochemistry of biogenic gases

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1989-01-01

    The relationship between the biosphere and the atmosphere is examined, emphasizing the composition and photochemistry and chemistry of the troposphere and stratosphere. The reactions of oxygen, ozone, and hydroxyl are reviewed and the fate of the biogenic gases ammonia, methane, reduced sulfur species, reduced halogen species, carbon monoxide, nitric oxide, nitrous oxide, nitrogen, and carbon dioxide are described. A list is given of the concentration and sources of the various gases.

  15. Interface adhesion between 2D materials and elastomers measured by buckle delamination

    NASA Astrophysics Data System (ADS)

    Brennan, Christopher; Lu, Nanshu

    2015-03-01

    A major application for 2D materials is creating electronic devices, including flexible and wearable devices. These applications require complicated fabrication processes where 2D materials are either mechanically exfoliated or grown via chemical vapor deposition and then transferred to a host substrate. Both processes require intimate knowledge of the interactions between the 2D material and the substrate to allow for a controllable transfer. Although adhesion between 2D materials and stiff substrates such as silicon and copper have been measured by bulge or peeling tests, adhesion between 2D materials and soft polymer substrates are hard to measure by conventional methods. Here we propose a simple way of measuring the adhesion between 2D materials and soft, stretchable elastomers using mature continuum mechanics equations. By creating buckle delamination in 2D atomic layers and measuring the buckle profile using an atomic force microscope, we can readily extract 2D-elastomer adhesion energy. Here we look at the adhesion of MoS2 and graphene to PDMS. The measured adhesion values are found insensitive to the applied strains in the substrate and are one order smaller than 2D-silicon oxide adhesion which is mainly attributed substrate surface roughness differences.

  16. Screening and transport in 2D semiconductor systems at low temperatures

    PubMed Central

    Das Sarma, S.; Hwang, E. H.

    2015-01-01

    Low temperature carrier transport properties in 2D semiconductor systems can be theoretically well-understood within RPA-Boltzmann theory as being limited by scattering from screened Coulomb disorder arising from random quenched charged impurities in the environment. In this work, we derive a number of analytical formula, supported by realistic numerical calculations, for the relevant density, mobility, and temperature range where 2D transport should manifest strong intrinsic (i.e., arising purely from electronic effects) metallic temperature dependence in different semiconductor materials arising entirely from the 2D screening properties, thus providing an explanation for why the strong temperature dependence of the 2D resistivity can only be observed in high-quality and low-disorder 2D samples and also why some high-quality 2D materials manifest much weaker metallicity than other materials. We also discuss effects of interaction and disorder on the 2D screening properties in this context as well as compare 2D and 3D screening functions to comment why such a strong intrinsic temperature dependence arising from screening cannot occur in 3D metallic carrier transport. Experimentally verifiable predictions are made about the quantitative magnitude of the maximum possible low-temperature metallicity in 2D systems and the scaling behavior of the temperature scale controlling the quantum to classical crossover. PMID:26572738

  17. Two-dimensional electron gases in strained quantum wells for AlN/GaN/AlN double heterostructure field-effect transistors on AlN

    SciTech Connect

    Li, Guowang; Song, Bo; Ganguly, Satyaki; Zhu, Mingda; Wang, Ronghua; Yan, Xiaodong; Verma, Jai; Protasenko, Vladimir; Grace Xing, Huili; Jena, Debdeep

    2014-05-12

    Double heterostructures of strained GaN quantum wells (QWs) sandwiched between relaxed AlN layers provide a platform to investigate the quantum-confined electronic and optical properties of the wells. The growth of AlN/GaN/AlN heterostructures with varying GaN quantum well thicknesses on AlN by plasma molecular beam epitaxy (MBE) is reported. Photoluminescence spectra provide the optical signature of the thin GaN QWs. Reciprocal space mapping in X-ray diffraction shows that a GaN layer as thick as ∼28 nm is compressively strained to the AlN layer underneath. The density of the polarization-induced two-dimensional electron gas (2DEG) in the undoped heterostructures increases with the GaN QW thickness, reaching ∼2.5 × 10{sup 13}/cm{sup 2}. This provides a way to tune the 2DEG channel density without changing the thickness of the top barrier layer. Electron mobilities less than ∼400 cm{sup 2}/Vs are observed, leaving ample room for improvement. Nevertheless, owing to the high 2DEG density, strained GaN QW field-effect transistors with MBE regrown ohmic contacts exhibit an on-current density ∼1.4 A/mm, a transconductance ∼280 mS/mm, and a cut off frequency f{sub T}∼104 GHz for a 100-nm-gate-length device. These observations indicate high potential for high-speed radio frequency and high voltage applications that stand to benefit from the extreme-bandgap and high thermal conductivity of AlN.

  18. GBL-2D Version 1.0: a 2D geometry boolean library.

    SciTech Connect

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  19. Electrical and photoelectric characteristics of structures based on InSe and GaSe layered semiconductors irradiated with 12.5-MeV electrons

    SciTech Connect

    Kovalyuk, Z. D. Politanska, O. A.; Sydor, O. N.; Maslyuk, V. T.

    2008-11-15

    The effect of irradiation with 12.5-MeV electrons on the electrical and photoelectric parameters of layered photoconverters based on p-InSe-n-InSe and p-GaSe-n-InSe structures is studied. The observed variations in the current-voltage characteristics, photoresponse spectra, open-circuit voltage, and short-circuit current are caused by the formation of point defects. The absence of pronounced changes in the characteristics of the homojunctions and heterojunctions even after irradiation at the highest dose makes it possible to recommend these junctions for use in the fabrication of radiation-resistant photodetectors.

  20. Phase diagrams of two-dimensional and three-dimensional disordered Bose gases in the local density approximation

    NASA Astrophysics Data System (ADS)

    Bourdel, Thomas

    2012-12-01

    We study superfluid transitions in bidimensional (2D) and tridimensional (3D) disordered and interacting Bose gases. We work in the limit of long-range correlated disorder such that it can be treated in the local density approximation. We present superfluid transition curves in both the disorder-temperature plane and the disorder-entropy plane in 2D and 3D Bose gases. Surprisingly, we find that a small amount of disorder is always favorable to the apparition of a superfluid. Our results offer a quantitative comparison with recent experiments in 2D disordered ultracold gases, for which no exact theory exists.

  1. Nuclear Fusion In Gases Of Deuterium Clusters And Hot Electron Generation In Droplet Sprays Under Irradiation With An Intense Femtosecond Laser

    SciTech Connect

    T. Ditmire; Zweiback, J; Cowan, T E; Hays, G; Wharton, K B; Crane, J K; Wilks, S C; Smith, R A; Donnelly, T D; Rust, M; Weiner, I; Allen, M

    2001-07-18

    In conclusion, we have observed the production of 2.45 MeV deuterium fusion neutrons when a gas of deuterium clusters is irradiated with a 120 mJ, 35 fs laser pulse. When the focal position is optimized, we have observed as many as 10{sup 4} neutrons per laser shot. This yield is consistent with some simple estimates for the fusion yield. We also find that the fusion yield is a sensitive function of the deuterium cluster size in the target jet, a consequence of the Coulomb explosion origin of the fast deuterons. We also find that the neutron pulse duration is fast, with a characteristic burn time of well under 1 ns. This experiment may represent a means for producing a compact, table-top source of short pulse fusion neutrons for applications. Furthermore, we have measured hard x-ray yield from femtosecond laser interactions with both solid and micron scale droplet targets. Strong hard x-ray production is observed from both targets. However, the inferred electron temperature is somewhat higher in the case of irradiation of the droplets. These data are consistent with PIC simulations. This finding indicates that quite unique hot electron dynamics occur during the irradiation of wavelength scale particles by an intense laser field and likely warrants further study.

  2. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  3. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  4. Collective modes in cold paramagnetic gases

    SciTech Connect

    Andreeva, T L; Rubin, P L

    2014-02-28

    We have obtained a condition for the emergence of spin waves in paramagnetic gases Re >> ImÂ, which is fulfilled only at temperatures of the order of 1 μK. (laser applications and other topics in quantum electronics)

  5. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  6. Multienzyme Inkjet Printed 2D Arrays.

    PubMed

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  7. Planetary noble gases

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin

    1993-01-01

    An overview of the history and current status of research on planetary noble gases is presented. The discovery that neon and argon are vastly more abundant on Venus than on earth points to the solar wind rather than condensation as the fundamental process for placing noble gases in the atmospheres of the terrestrial planets; however, solar wind implantation may not be able to fully reproduce the observed gradient, nor does it obviously account for similar planetary Ne/Ar ratios and dissimilar planetary Ar/Kr ratios. More recent studies have emphasized escape rather than accretion. Hydrodynamic escape, which is fractionating, readily accounts for the difference between atmospheric neon and isotopically light mantle neon. Atmospheric cratering, which is nearly nonfractionating, can account for the extreme scarcity of nonradiogenic noble gases (and other volatiles) on Mars.

  8. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  9. Growth of 2D black phosphorus film from chemical vapor deposition.

    PubMed

    Smith, Joshua B; Hagaman, Daniel; Ji, Hai-Feng

    2016-05-27

    Phosphorene, a novel 2D material isolated from bulk black phosphorus (BP), is an intrinsic p-type material with a variable bandgap for a variety of applications. However, these applications are limited by the inability to isolate large films of phosphorene. Here we present an in situ chemical vapor deposition type approach that demonstrates progress towards growth of large area 2D BP with average areas >3 μm2 and thicknesses representing samples around four layers and thicker samples with average areas >100 μm2. Transmission electron microscopy and Raman spectroscopy have confirmed successful growth of 2D BP from red phosphorus. PMID:27087456

  10. First 2D-ACAR Measurements on Cu with the new Spectrometer at TUM

    NASA Astrophysics Data System (ADS)

    Weber, J. A.; Böni, P.; Ceeh, H.; Leitner, M.; Hugenschmidt, Ch

    2013-06-01

    The two-dimensional measurement of the angular correlation of the positron annihilation radiation (2D-ACAR) is a powerful tool to investigate the electronic structure of materials. Here we report on the first results obtained with the new 2D-ACAR spectrometer at the Technische Universitat München (TUM). To get experience in processing and interpreting 2D-ACAR data, first measurements were made on copper. The obtained data are treated with standard procedures and compared to theoretical calculations. It is shown that the measurements are in good agreement with the calculations and that the Fermi surface can be entirely reconstructed using three projections only.

  11. Positron beam optics for the 2D-ACAR spectrometer at the NEPOMUC beamline

    NASA Astrophysics Data System (ADS)

    Ceeh, H.; Weber, J. A.; Hugenschmidt, C.; Leitner, M.; Boni, P.

    2014-04-01

    In the last year a conventional 2D-ACAR spectrometer has been set up and brought to operation at TUM. Once the NEPOMUC beamline is extended to the new experimental hall at the research reactor FRM-II the conventional 2D-ACAR spectrometer will be upgraded with a second sample chamber in order to be integrated to the NEPOMUC beamline facility. This spectrometer will add a complete new quality to 2D-ACAR experiments as it allows to track the evolution of the electronic structure from the surface to the bulk. We present the design features of the positron beam optics and the sample environment.

  12. Growth of 2D black phosphorus film from chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Smith, Joshua B.; Hagaman, Daniel; Ji, Hai-Feng

    2016-05-01

    Phosphorene, a novel 2D material isolated from bulk black phosphorus (BP), is an intrinsic p-type material with a variable bandgap for a variety of applications. However, these applications are limited by the inability to isolate large films of phosphorene. Here we present an in situ chemical vapor deposition type approach that demonstrates progress towards growth of large area 2D BP with average areas >3 μm2 and thicknesses representing samples around four layers and thicker samples with average areas >100 μm2. Transmission electron microscopy and Raman spectroscopy have confirmed successful growth of 2D BP from red phosphorus.

  13. Strongly correlated Bose gases

    NASA Astrophysics Data System (ADS)

    Chevy, F.; Salomon, C.

    2016-10-01

    The strongly interacting Bose gas is one of the most fundamental paradigms of quantum many-body physics and the subject of many experimental and theoretical investigations. We review recent progress on strongly correlated Bose gases, starting with a description of beyond mean-field corrections. We show that the Efimov effect leads to non universal phenomena and to a metastability of the low temperature Bose gas through three-body recombination to deeply bound molecular states. We outline differences and similarities with ultracold Fermi gases, discuss recent experiments on the unitary Bose gas, and finally present a few perspectives for future research.

  14. Van der Waals Epitaxial Growth of Two-Dimensional Single-Crystalline GaSe Domains on Graphene.

    PubMed

    Li, Xufan; Basile, Leonardo; Huang, Bing; Ma, Cheng; Lee, Jaekwang; Vlassiouk, Ivan V; Puretzky, Alexander A; Lin, Ming-Wei; Yoon, Mina; Chi, Miaofang; Idrobo, Juan C; Rouleau, Christopher M; Sumpter, Bobby G; Geohegan, David B; Xiao, Kai

    2015-08-25

    Two-dimensional (2D) van der Waals (vdW) heterostructures are a family of artificially structured materials that promise tunable optoelectronic properties for devices with enhanced functionalities. Compared to transferring, direct epitaxy of vdW heterostructures is ideal for clean interlayer interfaces and scalable device fabrication. Here we report the synthesis and preferred orientations of 2D GaSe atomic layers on graphene (Gr) by vdW epitaxy. GaSe crystals are found to nucleate predominantly on random wrinkles or grain boundaries of graphene, share a preferred lattice orientation with underlying graphene, and grow into large (tens of micrometers) irregularly shaped, single-crystalline domains. The domains are found to propagate with triangular edges that merge into the large single crystals during growth. Electron diffraction reveals that approximately 50% of the GaSe domains are oriented with a 10.5 ± 0.3° interlayer rotation with respect to the underlying graphene. Theoretical investigations of interlayer energetics reveal that a 10.9° interlayer rotation is the most energetically preferred vdW heterostructure. In addition, strong charge transfer in these GaSe/Gr vdW heterostructures is predicted, which agrees with the observed enhancement in the Raman E(2)1g band of monolayer GaSe and highly quenched photoluminescence compared to GaSe/SiO2. Despite the very large lattice mismatch of GaSe/Gr through vdW epitaxy, the predominant orientation control and convergent formation of large single-crystal flakes demonstrated here is promising for the scalable synthesis of large-area vdW heterostructures for the development of new optical and optoelectronic devices.

  15. Van der Waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene

    DOE PAGES

    Li, Xufan; Basile, Leonardo; Huang, Bing; Ma, Cheng; Lee, Jaekwang; Vlassiouk, Ivan V.; Puretzky, Alexander A.; Lin, Ming -Wei; Chi, Miaofang; Idrobo Tapia, Juan Carlos; et al

    2015-07-22

    Two-dimensional (2D) van der Waals (vdW) heterostructures are a family of artificially-structured materials that promise tunable optoelectronic properties for devices with enhanced functionalities. Compared to stamping, direct epitaxy of vdW heterostructures is ideal for clean interlayer interfaces and scalable device fabrication. Here, we explore the synthesis and preferred orientations of 2D GaSe atomic layers on graphene (Gr) by vdW epitaxy. Guided by the wrinkles on graphene, GaSe nuclei form that share a predominant lattice orientation. Due to vdW epitaxial growth many nuclei grow as perfectly aligned crystals and coalesce to form large (tens of microns), single-crystal flakes. Through theoretical investigationsmore » of interlayer energetics, and measurements of preferred orientations by atomic-resolution STEM and electron diffraction, a 10.9 interlayer rotation of the GaSe lattice with respect to the underlying graphene is found to be the most energetically preferred vdW heterostructure with the largest binding energy and the longest-range ordering. These GaSe/Gr vdW heterostructures exhibit an enhanced Raman E21g band of monolayer GaSe along with highly-quenched photoluminescence due to strong charge transfer. Despite the very large lattice mismatch of GaSe/Gr through vdW epitaxy, the predominant orientation control and convergent formation of large single-crystal flakes demonstrated here is promising for the scalable synthesis of large-area vdW heterostructures for the development of new optical and optoelectronic devices.« less

  16. Van der Waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene

    SciTech Connect

    Li, Xufan; Basile, Leonardo; Huang, Bing; Ma, Cheng; Lee, Jaekwang; Vlassiouk, Ivan V.; Puretzky, Alexander A.; Lin, Ming -Wei; Chi, Miaofang; Idrobo Tapia, Juan Carlos; Rouleau, Christopher M.; Sumpter, Bobby G.; Yoon, Mina; Geohegan, David B.; Xiao, Kai

    2015-07-22

    Two-dimensional (2D) van der Waals (vdW) heterostructures are a family of artificially-structured materials that promise tunable optoelectronic properties for devices with enhanced functionalities. Compared to stamping, direct epitaxy of vdW heterostructures is ideal for clean interlayer interfaces and scalable device fabrication. Here, we explore the synthesis and preferred orientations of 2D GaSe atomic layers on graphene (Gr) by vdW epitaxy. Guided by the wrinkles on graphene, GaSe nuclei form that share a predominant lattice orientation. Due to vdW epitaxial growth many nuclei grow as perfectly aligned crystals and coalesce to form large (tens of microns), single-crystal flakes. Through theoretical investigations of interlayer energetics, and measurements of preferred orientations by atomic-resolution STEM and electron diffraction, a 10.9 interlayer rotation of the GaSe lattice with respect to the underlying graphene is found to be the most energetically preferred vdW heterostructure with the largest binding energy and the longest-range ordering. These GaSe/Gr vdW heterostructures exhibit an enhanced Raman E21g band of monolayer GaSe along with highly-quenched photoluminescence due to strong charge transfer. Despite the very large lattice mismatch of GaSe/Gr through vdW epitaxy, the predominant orientation control and convergent formation of large single-crystal flakes demonstrated here is promising for the scalable synthesis of large-area vdW heterostructures for the development of new optical and optoelectronic devices.

  17. Van der Waals Epitaxial Growth of Two-Dimensional Single-Crystalline GaSe Domains on Graphene.

    PubMed

    Li, Xufan; Basile, Leonardo; Huang, Bing; Ma, Cheng; Lee, Jaekwang; Vlassiouk, Ivan V; Puretzky, Alexander A; Lin, Ming-Wei; Yoon, Mina; Chi, Miaofang; Idrobo, Juan C; Rouleau, Christopher M; Sumpter, Bobby G; Geohegan, David B; Xiao, Kai

    2015-08-25

    Two-dimensional (2D) van der Waals (vdW) heterostructures are a family of artificially structured materials that promise tunable optoelectronic properties for devices with enhanced functionalities. Compared to transferring, direct epitaxy of vdW heterostructures is ideal for clean interlayer interfaces and scalable device fabrication. Here we report the synthesis and preferred orientations of 2D GaSe atomic layers on graphene (Gr) by vdW epitaxy. GaSe crystals are found to nucleate predominantly on random wrinkles or grain boundaries of graphene, share a preferred lattice orientation with underlying graphene, and grow into large (tens of micrometers) irregularly shaped, single-crystalline domains. The domains are found to propagate with triangular edges that merge into the large single crystals during growth. Electron diffraction reveals that approximately 50% of the GaSe domains are oriented with a 10.5 ± 0.3° interlayer rotation with respect to the underlying graphene. Theoretical investigations of interlayer energetics reveal that a 10.9° interlayer rotation is the most energetically preferred vdW heterostructure. In addition, strong charge transfer in these GaSe/Gr vdW heterostructures is predicted, which agrees with the observed enhancement in the Raman E(2)1g band of monolayer GaSe and highly quenched photoluminescence compared to GaSe/SiO2. Despite the very large lattice mismatch of GaSe/Gr through vdW epitaxy, the predominant orientation control and convergent formation of large single-crystal flakes demonstrated here is promising for the scalable synthesis of large-area vdW heterostructures for the development of new optical and optoelectronic devices. PMID:26202730

  18. Digital transfer growth of patterned 2D metal chalcogenides by confined nanoparticle evaporation.

    PubMed

    Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; Boulesbaa, Abdelaziz; Rouleau, Christopher M; Puretzky, Alexander A; McGuire, Michael A; Srijanto, Bernadeta R; Xiao, Kai; Eres, Gyula; Duscher, Gerd; Geohegan, David B

    2014-11-25

    Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor-phase synthesis. Here, we demonstrate a method to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substrate by pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (∼100 μm lateral sizes) of GaSe and MoSe2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.

  19. Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation

    SciTech Connect

    Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; Puretzky, Alexander A.; McGuire, Michael A.; Srijanto, Bernadeta R.; Xiao, Kai; Eres, Gyula; Duscher, Gerd; Geohegan, David B.

    2014-10-19

    Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substrate by pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.

  20. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  1. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  2. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  3. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  4. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  5. Electron

    NASA Astrophysics Data System (ADS)

    Springford, Michael

    1997-03-01

    1. J. J. Thomson and the discovery of the electron A. B. P. Pippard; 2. The isolated electron W. N. Cottingham; 3. The relativistic electron D. I. Olive; 4. The electron glue B. L. Gyorffy; 5. The electron fluid P. Coleman; 6. The magnetic electron G. G. Lonzarich; 7. The paired electron A. J. Leggett; 8. The heavy electron M. Springford; 9. The coherent electron Y. Imry and M. Peskin; 10. The composite electron R. Nicholas; 11. The electron in the cosmos M. S. Longair.

  6. Electron

    NASA Astrophysics Data System (ADS)

    Springford, Michael

    2008-12-01

    1. J. J. Thomson and the discovery of the electron A. B. P. Pippard; 2. The isolated electron W. N. Cottingham; 3. The relativistic electron D. I. Olive; 4. The electron glue B. L. Gyorffy; 5. The electron fluid P. Coleman; 6. The magnetic electron G. G. Lonzarich; 7. The paired electron A. J. Leggett; 8. The heavy electron M. Springford; 9. The coherent electron Y. Imry and M. Peskin; 10. The composite electron R. Nicholas; 11. The electron in the cosmos M. S. Longair.

  7. Thickness dependence on the optoelectronic properties of multilayered GaSe based photodetector

    NASA Astrophysics Data System (ADS)

    Ko, Pil Ju; Abderrahmane, Abdelkader; Takamura, Tsukasa; Kim, Nam-Hoon; Sandhu, Adarsh

    2016-08-01

    Two-dimensional (2D) layered materials exhibit unique optoelectronic properties at atomic thicknesses. In this paper, we fabricated metal–semiconductor–metal based photodetectors using layered gallium selenide (GaSe) with different thicknesses. The electrical and optoelectronic properties of the photodetectors were studied, and these devices showed good electrical characteristics down to GaSe flake thicknesses of 30 nm. A photograting effect was observed in the absence of a gate voltage, thereby implying a relatively high photoresponsivity. Higher values of the photoresponsivity occurred for thicker layers of GaSe with a maximum value 0.57 AW‑1 and external quantum efficiency of of 132.8%, and decreased with decreasing GaSe flake thickness. The detectivity was 4.05 × 1010 cm Hz1/2 W‑1 at 532 nm laser wavelength, underscoring that GaSe is a promising p-type 2D material for photodetection applications in the visible spectrum.

  8. Thickness dependence on the optoelectronic properties of multilayered GaSe based photodetector

    NASA Astrophysics Data System (ADS)

    Ko, Pil Ju; Abderrahmane, Abdelkader; Takamura, Tsukasa; Kim, Nam-Hoon; Sandhu, Adarsh

    2016-08-01

    Two-dimensional (2D) layered materials exhibit unique optoelectronic properties at atomic thicknesses. In this paper, we fabricated metal-semiconductor-metal based photodetectors using layered gallium selenide (GaSe) with different thicknesses. The electrical and optoelectronic properties of the photodetectors were studied, and these devices showed good electrical characteristics down to GaSe flake thicknesses of 30 nm. A photograting effect was observed in the absence of a gate voltage, thereby implying a relatively high photoresponsivity. Higher values of the photoresponsivity occurred for thicker layers of GaSe with a maximum value 0.57 AW-1 and external quantum efficiency of of 132.8%, and decreased with decreasing GaSe flake thickness. The detectivity was 4.05 × 1010 cm Hz1/2 W-1 at 532 nm laser wavelength, underscoring that GaSe is a promising p-type 2D material for photodetection applications in the visible spectrum.

  9. Strong Second-Harmonic Generation in Atomic Layered GaSe.

    PubMed

    Zhou, Xu; Cheng, Jingxin; Zhou, Yubing; Cao, Ting; Hong, Hao; Liao, Zhimin; Wu, Shiwei; Peng, Hailin; Liu, Kaihui; Yu, Dapeng

    2015-07-01

    Nonlinear effects in two-dimensional (2D) atomic layered materials have recently attracted increasing interest. Phenomena such as nonlinear optical edge response, chiral electroluminescence, and valley and spin currents beyond linear orders have opened up a great opportunity to expand the functionalities and potential applications of 2D materials. Here we report the first observation of strong optical second-harmonic generation (SHG) in monolayer GaSe under nonresonant excitation and emission condition. Our experiments show that the nonresonant SHG intensity of GaSe is the strongest among all the 2D atomic crystals measured up to day. At the excitation wavelength of 1600 nm, the SHG signal from monolayer GaSe is around 1-2 orders of magnitude larger than that from monolayer MoS2 under the same excitation power. Such a strong nonlinear signal facilitates the use of polarization-dependent SHG intensity and SHG mapping to investigate the symmetry properties of this material: the monolayer GaSe shows 3-fold lattice symmetry with an intrinsic correspondence to its geometric triangular shape in our growth condition; whereas the bilayer GaSe exhibits two dominant stacking orders: AA and AB stacking. The correlation between the stacking orders and the interlayer twist angles in GaSe bilayer indicates that different triangular GaSe atomic layers have the same dominant edge configuration. Our results provide a route toward exploring the structural information and the possibility to observe other nonlinear effects in GaSe atomic layers.

  10. Gases in Tektite Bubbles.

    PubMed

    O'keefe, J A; Lowman, P D; Dunning, K L

    1962-07-20

    Spectroscopic analysis of light produced by electrodeless discharge in a tektite bubble showed the main gases in the bubble to be neon, helium, and oxygen. The neon and helium have probably diffused in from the atmosphere, while the oxygen may be atmospheric gas incorporated in the tektite during its formation.

  11. Noxious gases in greenhouses.

    PubMed

    Likas, C; Exarchou, V; Gourgoulianis, K; Giaglaras, P; Gemptos, T; Kittas, K; Molyvdas, P A

    2001-01-01

    The concentration of NO(2) and SO(2) was measured in a commercial greenhouse from 23/9/1999 25/01/2000. The measurements showed that the level of the two gases is very high in the greenhouse atmosphere. Lung function tests in 42 workers showed that temporary work did not influence significantly the respiratory health status. PMID:11426932

  12. Gases in Tektite Bubbles.

    PubMed

    O'keefe, J A; Lowman, P D; Dunning, K L

    1962-07-20

    Spectroscopic analysis of light produced by electrodeless discharge in a tektite bubble showed the main gases in the bubble to be neon, helium, and oxygen. The neon and helium have probably diffused in from the atmosphere, while the oxygen may be atmospheric gas incorporated in the tektite during its formation. PMID:17801113

  13. CYP2D6*36 gene arrangements within the cyp2d6 locus: association of CYP2D6*36 with poor metabolizer status.

    PubMed

    Gaedigk, Andrea; Bradford, L Dianne; Alander, Sarah W; Leeder, J Steven

    2006-04-01

    Unexplained cases of CYP2D6 genotype/phenotype discordance continue to be discovered. In previous studies, several African Americans with a poor metabolizer phenotype carried the reduced function CYP2D6*10 allele in combination with a nonfunctional allele. We pursued the possibility that these alleles harbor either a known sequence variation (i.e., CYP2D6*36 carrying a gene conversion in exon 9 along the CYP2D6*10-defining 100C>T single-nucleotide polymorphism) or novel sequences variation(s). Discordant cases were evaluated by long-range polymerase chain reaction (PCR) to test for gene rearrangement events, and a 6.6-kilobase pair PCR product encompassing the CYP2D6 gene was cloned and entirely sequenced. Thereafter, allele frequencies were determined in different study populations comprising whites, African Americans, and Asians. Analyses covering the CYP2D7 to 2D6 gene region established that CYP2D6*36 did not only exist as a gene duplication (CYP2D6*36x2) or in tandem with *10 (CYP2D6*36+*10), as previously reported, but also by itself. This "single" CYP2D6*36 allele was found in nine African Americans and one Asian, but was absent in the whites tested. Ultimately, the presence of CYP2D6*36 resolved genotype/phenotype discordance in three cases. We also discovered an exon 9 conversion-positive CYP2D6*4 gene in a duplication arrangement (CYP2D6*4Nx2) and a CYP2D6*4 allele lacking 100C>T (CYP2D6*4M) in two white subjects. The discovery of an allele that carries only one CYP2D6*36 gene copy provides unequivocal evidence that both CYP2D6*36 and *36x2 are associated with a poor metabolizer phenotype. Given a combined frequency of between 0.5 and 3% in African Americans and Asians, genotyping for CYP2D6*36 should improve the accuracy of genotype-based phenotype prediction in these populations.

  14. Modelling RF sources using 2-D PIC codes

    SciTech Connect

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT`S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (``port approximation``). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.

  15. Modelling RF sources using 2-D PIC codes

    SciTech Connect

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT'S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field ( port approximation''). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.

  16. Local currents in a 2D topological insulator.

    PubMed

    Dang, Xiaoqian; Burton, J D; Tsymbal, Evgeny Y

    2015-12-23

    Symmetry protected edge states in 2D topological insulators are interesting both from the fundamental point of view as well as from the point of view of potential applications in nanoelectronics as perfectly conducting 1D channels and functional elements of circuits. Here using a simple tight-binding model and the Landauer-Büttiker formalism we explore local current distributions in a 2D topological insulator focusing on effects of non-magnetic impurities and vacancies as well as finite size effects. For an isolated edge state, we show that the local conductance decays into the bulk in an oscillatory fashion as explained by the complex band structure of the bulk topological insulator. We demonstrate that although the net conductance of the edge state is topologically protected, impurity scattering leads to intricate local current patterns. In the case of vacancies we observe vortex currents of certain chirality, originating from the scattering of current-carrying electrons into states localized at the edges of hollow regions. For finite size strips of a topological insulator we predict the formation of an oscillatory band gap in the spectrum of the edge states, the emergence of Friedel oscillations caused by an open channel for backscattering from an impurity and antiresonances in conductance when the Fermi energy matches the energy of the localized state created by an impurity. PMID:26610145

  17. Suspended 2-D photonic crystal aluminum nitride membrane reflector.

    PubMed

    Ho, Chong Pei; Pitchappa, Prakash; Soon, Bo Woon; Lee, Chengkuo

    2015-04-20

    We experimentally demonstrated a free-standing two-dimensional (2-D) photonic crystal (PhC) aluminum nitride (AlN) membrane to function as a free space (or out-of-plane) reflector working in the mid infrared region. By etching circular holes of radius 620nm in a 330nm thick AlN slab, greater than 90% reflection was measured from 3.08μm to 3.78μm, with the peak reflection of 96% at 3.16μm. Due to the relatively low refractive index of AlN, we also investigated the importance of employing methods such as sacrificial layer release to enhance the performance of the PhC. In addition, characterization of the AlN based PhC was also done up to 450°C to examine the impact of thermo-optic effect on the performance. Despite the high temperature operation, the redshift in the peak reflection wavelengths of the device was estimated to be only 14.1nm. This equates to a relatively low thermo-optic coefficient 2.22 × 10(-5) K(-1) for AlN. Such insensitivity to thermo-optic effect makes AlN based 2-D PhC a promising technology to be used as photonic components for high temperature applications such as Fabry-Perot interferometer used for gas sensing in down-hole oil drilling and ruggedized electronics. PMID:25969099

  18. Local currents in a 2D topological insulator.

    PubMed

    Dang, Xiaoqian; Burton, J D; Tsymbal, Evgeny Y

    2015-12-23

    Symmetry protected edge states in 2D topological insulators are interesting both from the fundamental point of view as well as from the point of view of potential applications in nanoelectronics as perfectly conducting 1D channels and functional elements of circuits. Here using a simple tight-binding model and the Landauer-Büttiker formalism we explore local current distributions in a 2D topological insulator focusing on effects of non-magnetic impurities and vacancies as well as finite size effects. For an isolated edge state, we show that the local conductance decays into the bulk in an oscillatory fashion as explained by the complex band structure of the bulk topological insulator. We demonstrate that although the net conductance of the edge state is topologically protected, impurity scattering leads to intricate local current patterns. In the case of vacancies we observe vortex currents of certain chirality, originating from the scattering of current-carrying electrons into states localized at the edges of hollow regions. For finite size strips of a topological insulator we predict the formation of an oscillatory band gap in the spectrum of the edge states, the emergence of Friedel oscillations caused by an open channel for backscattering from an impurity and antiresonances in conductance when the Fermi energy matches the energy of the localized state created by an impurity.

  19. New Approach for 2D Readout of GEM Detectors

    SciTech Connect

    Hasell, Douglas K

    2011-10-29

    Detectors based on Gas Electron Multiplication (GEM) technology are becoming more and more widely used in nuclear and high energy physics and are being applied in astronomy, medical physics, industry, and homeland security. GEM detectors are thin, low mass, insensitive to magnetic fields, and can currently provide position resolutions down to {approx}50 microns. However, the designs for reconstructing the position, in two dimensions (2D), of the charged particles striking a GEM detector are often complicated to fabricate and expensive. The objective of this proposal is to investigate a simpler procedure for producing the two dimensional readout layer of GEM detectors using readily available printed circuit board technology which can be tailored to the detector requirements. We will use the established GEM laboratory and facilities at M.I.T. currently employed in developing GEM detectors for the STAR forward tracking upgrade to simplify the testing and evaluation of the new 2D readout designs. If this new design proves successful it will benefit future nuclear and high energy physics experiments already being planned and will similarly extend and simplify the application of GEM technology to other branches of science, medicine, and industry. These benefits would be not only in lower costs for fabrication but also it increased flexibility for design and application.

  20. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.

    2001-01-01

    We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on an equal footing. Electron bandstructure is treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are consistent with 1D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller leakage current than the longer gate length device without a significant trade-off in on-current.

  1. Suspended 2-D photonic crystal aluminum nitride membrane reflector.

    PubMed

    Ho, Chong Pei; Pitchappa, Prakash; Soon, Bo Woon; Lee, Chengkuo

    2015-04-20

    We experimentally demonstrated a free-standing two-dimensional (2-D) photonic crystal (PhC) aluminum nitride (AlN) membrane to function as a free space (or out-of-plane) reflector working in the mid infrared region. By etching circular holes of radius 620nm in a 330nm thick AlN slab, greater than 90% reflection was measured from 3.08μm to 3.78μm, with the peak reflection of 96% at 3.16μm. Due to the relatively low refractive index of AlN, we also investigated the importance of employing methods such as sacrificial layer release to enhance the performance of the PhC. In addition, characterization of the AlN based PhC was also done up to 450°C to examine the impact of thermo-optic effect on the performance. Despite the high temperature operation, the redshift in the peak reflection wavelengths of the device was estimated to be only 14.1nm. This equates to a relatively low thermo-optic coefficient 2.22 × 10(-5) K(-1) for AlN. Such insensitivity to thermo-optic effect makes AlN based 2-D PhC a promising technology to be used as photonic components for high temperature applications such as Fabry-Perot interferometer used for gas sensing in down-hole oil drilling and ruggedized electronics.

  2. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  3. Helical Quantum Edge Gears in 2D Topological Insulators

    NASA Astrophysics Data System (ADS)

    Chou, Yang-Zhi; Levchenko, Alex; Foster, Matthew

    A remarkable and as-yet-unexploited aspect of topological insulator (TI) physics is the topology of the edge states, i.e. the fact that the edge liquid of a 2D TI forms a closed, unbreakable loop in the absence of electrical contacts or magnetic fields. We propose a novel experimental setup in which edge loops rotate as interlocking ``gears'' through Coulomb drag, in TIs with Rashba spin-orbit coupling. We show that two-terminal transport can measure the Luttinger liquid parameter K, a quantity that is otherwise notoriously difficult to measure. In the low-temperature (T --> 0) perfect drag regime, the conductance is (e2 / h) (2 K + 1) / (K + 1) . At higher T we predict a conductivity ~T - 4 K + 3 . Our results should trigger new experiments and may open a new venue for edge gear-based electronic devices.Ref: Phys. Rev. Lett. 115, 186404 (2015)

  4. Interpretive 2-D treatment of scrape-off-layer plasmas

    SciTech Connect

    Umansky, M.; Allen, A.; Daughton, W.

    1996-12-31

    The width of the scrape-off-layer in a tokamak is determined by cross field transport. In Alcator C-mod the plasma parameters in the scrape-off-layer are measured at upstream and divertor plate locations. We solve a 2-D scrape-off-layer heat conduction equation in the flux geometry (as determined by EFIT) of the C-mod experiment. Bolometric measurements are utilized for the radiative loss term. We use the end wall probe measurements of electron temperature as a boundary condition and the fast scanning probe measurements of upstream temperature are treated as constraints to determine the cross field transport and thermal conductivity. Results are compared with 1-D onion-skin-model predictions.

  5. INVITED ARTICLE: Towards dense, realistic granular media in 2D

    NASA Astrophysics Data System (ADS)

    Luding, Stefan

    2009-12-01

    The development of an applicable theory for granular matter—with both qualitative and quantitative value—is a challenging prospect, given the multitude of states, phases and (industrial) situations it has to cover. Given the general balance equations for mass, momentum and energy, the limiting case of dilute and almost elastic granular gases, where kinetic theory works perfectly well, is the starting point. In most systems, low density co-exists with very high density, where the latter is an open problem for kinetic theory. Furthermore, many additional nonlinear phenomena and material properties are important in realistic granular media, involving, e.g.: (i) multi-particle interactions and elasticity (ii) strong dissipation, (iii) friction, (iv) long-range forces and wet contacts, (v) wide particle size distributions and (vi) various particle shapes. Note that, while some of these issues are more relevant for high density, others are important for both low and high densities; some of them can be dealt with by means of kinetic theory, some cannot. This paper is a review of recent progress towards more realistic models for dense granular media in 2D, even though most of the observations, conclusions and corrections given are qualitatively true also in 3D. Starting from an elastic, frictionless and monodisperse hard sphere gas, the (continuum) balance equations of mass, momentum and energy are given. The equation of state, the (Navier-Stokes level) transport coefficients and the energy-density dissipation rate are considered. Several corrections are applied to those constitutive material laws—one by one—in order to account for the realistic physical effects and properties listed above.

  6. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  7. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  8. Measurements of Schottky barrier heights formed from metals and 2D transition metal dichalcogedides

    NASA Astrophysics Data System (ADS)

    Kim, Changsik; Moon, Inyong; Nam, Seunggeol; Cho, Yeonchoo; Shin, Hyeon-Jin; Park, Seongjun; Yoo, Won Jong

    Schottky barrier height (SBH) is an important parameter that needs to be considered for designing electronic devices. However, for two dimensional (2D) materials based devices, SBH control is limited by 2D structure induced quantum confinement and 2D surface induced Fermi level pinning. In this work, we explore differences in measuring SBH between 2D and 3D materials. Recently, low temperature I-V measurement has been reported to extract SBH based on thermionic emission equation for Schottky diode. However, 2D devices are not real Schottky diode in that both source and drain metal electrodes make Schottky contact. According to our experimental results, SBH extracted from linear slope of ln (I/T3/2) against 1/T show widely diverse values, dependent on applied voltage bias and tested temperature which affect carrier transport including tunneling or thermionic emission across the metal-2D material interface. In this work, we wish to demonstrate the method to determine SBH and Fermi level pinning which are attributed to 2D transition metal dichalcogedides, differently from conventional 3D materials. .

  9. Sparse and incomplete factorial matrices to screen membrane protein 2D crystallization.

    PubMed

    Lasala, R; Coudray, N; Abdine, A; Zhang, Z; Lopez-Redondo, M; Kirshenbaum, R; Alexopoulos, J; Zolnai, Z; Stokes, D L; Ubarretxena-Belandia, I

    2015-02-01

    Electron crystallography is well suited for studying the structure of membrane proteins in their native lipid bilayer environment. This technique relies on electron cryomicroscopy of two-dimensional (2D) crystals, grown generally by reconstitution of purified membrane proteins into proteoliposomes under conditions favoring the formation of well-ordered lattices. Growing these crystals presents one of the major hurdles in the application of this technique. To identify conditions favoring crystallization a wide range of factors that can lead to a vast matrix of possible reagent combinations must be screened. However, in 2D crystallization these factors have traditionally been surveyed in a relatively limited fashion. To address this problem we carried out a detailed analysis of published 2D crystallization conditions for 12 β-barrel and 138 α-helical membrane proteins. From this analysis we identified the most successful conditions and applied them in the design of new sparse and incomplete factorial matrices to screen membrane protein 2D crystallization. Using these matrices we have run 19 crystallization screens for 16 different membrane proteins totaling over 1300 individual crystallization conditions. Six membrane proteins have yielded diffracting 2D crystals suitable for structure determination, indicating that these new matrices show promise to accelerate the success rate of membrane protein 2D crystallization.

  10. Sparse and incomplete factorial matrices to screen membrane protein 2D crystallization

    PubMed Central

    Lasala, R.; Coudray, N.; Abdine, A.; Zhang, Z.; Lopez-Redondo, M.; Kirshenbaum, R.; Alexopoulos, J.; Zolnai, Z.; Stokes, D.L.; Ubarretxena-Belandia, I.

    2014-01-01

    Electron crystallography is well suited for studying the structure of membrane proteins in their native lipid bilayer environment. This technique relies on electron cryomicroscopy of two-dimensional (2D) crystals, grown generally by reconstitution of purified membrane proteins into proteoliposomes under conditions favoring the formation of well-ordered lattices. Growing these crystals presents one of the major hurdles in the application of this technique. To identify conditions favoring crystallization a wide range of factors that can lead to a vast matrix of possible reagent combinations must be screened. However, in 2D crystallization these factors have traditionally been surveyed in a relatively limited fashion. To address this problem we carried out a detailed analysis of published 2D crystallization conditions for 12 β-barrel and 138 α-helical membrane proteins. From this analysis we identified the most successful conditions and applied them in the design of new sparse and incomplete factorial matrices to screen membrane protein 2D crystallization. Using these matrices we have run 19 crystallization screens for 16 different membrane proteins totaling over 1,300 individual crystallization conditions. Six membrane proteins have yielded diffracting 2D crystals suitable for structure determination, indicating that these new matrices show promise to accelerate the success rate of membrane protein 2D crystallization. PMID:25478971

  11. Sparse and incomplete factorial matrices to screen membrane protein 2D crystallization.

    PubMed

    Lasala, R; Coudray, N; Abdine, A; Zhang, Z; Lopez-Redondo, M; Kirshenbaum, R; Alexopoulos, J; Zolnai, Z; Stokes, D L; Ubarretxena-Belandia, I

    2015-02-01

    Electron crystallography is well suited for studying the structure of membrane proteins in their native lipid bilayer environment. This technique relies on electron cryomicroscopy of two-dimensional (2D) crystals, grown generally by reconstitution of purified membrane proteins into proteoliposomes under conditions favoring the formation of well-ordered lattices. Growing these crystals presents one of the major hurdles in the application of this technique. To identify conditions favoring crystallization a wide range of factors that can lead to a vast matrix of possible reagent combinations must be screened. However, in 2D crystallization these factors have traditionally been surveyed in a relatively limited fashion. To address this problem we carried out a detailed analysis of published 2D crystallization conditions for 12 β-barrel and 138 α-helical membrane proteins. From this analysis we identified the most successful conditions and applied them in the design of new sparse and incomplete factorial matrices to screen membrane protein 2D crystallization. Using these matrices we have run 19 crystallization screens for 16 different membrane proteins totaling over 1300 individual crystallization conditions. Six membrane proteins have yielded diffracting 2D crystals suitable for structure determination, indicating that these new matrices show promise to accelerate the success rate of membrane protein 2D crystallization. PMID:25478971

  12. Alloyed 2D Metal-Semiconductor Heterojunctions: Origin of Interface States Reduction and Schottky Barrier Lowering.

    PubMed

    Kim, Yonghun; Kim, Ah Ra; Yang, Jin Ho; Chang, Kyoung Eun; Kwon, Jung-Dae; Choi, Sun Young; Park, Jucheol; Lee, Kang Eun; Kim, Dong-Ho; Choi, Sung Mook; Lee, Kyu Hwan; Lee, Byoung Hun; Hahm, Myung Gwan; Cho, Byungjin

    2016-09-14

    The long-term stability and superior device reliability through the use of delicately designed metal contacts with two-dimensional (2D) atomic-scale semiconductors are considered one of the critical issues related to practical 2D-based electronic components. Here, we investigate the origin of the improved contact properties of alloyed 2D metal-semiconductor heterojunctions. 2D WSe2-based transistors with mixed transition layers containing van der Waals (M-vdW, NbSe2/WxNb1-xSe2/WSe2) junctions realize atomically sharp interfaces, exhibiting long hot-carrier lifetimes of approximately 75,296 s (78 times longer than that of metal-semiconductor, Pd/WSe2 junctions). Such dramatic lifetime enhancement in M-vdW-junctioned devices is attributed to the synergistic effects arising from the significant reduction in the number of defects and the Schottky barrier lowering at the interface. Formation of a controllable mixed-composition alloyed layer on the 2D active channel would be a breakthrough approach to maximize the electrical reliability of 2D nanomaterial-based electronic applications. PMID:27552187

  13. On the current drive capability of low dimensional semiconductors: 1D versus 2D

    DOE PAGES

    Zhu, Y.; Appenzeller, J.

    2015-10-29

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Lastly, our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  14. On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D.

    PubMed

    Zhu, Y; Appenzeller, J

    2015-12-01

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  15. Kinetic Theory of Gases

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The theory, developed in the nineteenth century, notably by Rudolf Clausius (1822-88) and James Clerk Maxwell (1831-79), that the properties of a gas (temperature, pressure, etc) could be described in terms of the motions (and kinetic energy) of the molecules comprising the gases. The theory has wide implications in astrophysics. In particular, the perfect gas law, which relates the pressure, vol...

  16. Toxic gases from fires.

    PubMed

    Terrill, J B; Montgomery, R R; Reinhardt, C F

    1978-06-23

    The major lethal factors in uncontrolled fires are toxic gases, heat, and oxygen deficiency. The predominant toxic gas is carbon monoxide, which is readily generated from the combusion of wood and other cellulosic materials. Increasing use of a variety of synthetic polymers has stimulated interest in screening tests to evaluated the toxicity of polymeric materials when thermally decomposed. As yet, this country lacks a standardized fire toxicity test protocol. PMID:208143

  17. 2-D Animation's Not Just for Mickey Mouse.

    ERIC Educational Resources Information Center

    Weinman, Lynda

    1995-01-01

    Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)

  18. Few-layer III-VI and IV-VI 2D semiconductor transistors

    NASA Astrophysics Data System (ADS)

    Sucharitakul, Sukrit; Liu, Mei; Kumar, Rajesh; Sankar, Raman; Chou, Fang C.; Chen, Yit-Tsong; Gao, Xuan

    Since the discovery of atomically thin graphene, a large variety of exfoliable 2D materials have been thoroughly explored for their exotic transport behavior and promises in technological breakthroughs. While most attention on 2D materials beyond graphene is focused on transition metal-dichalcogenides, relatively less attention is paid to layered III-VI and IV-VI semiconductors such as InSe, SnSe etc which bear stronger potential as 2D materials with high electron mobility or thermoelectric figure of merit. We will discuss our recent work on few-layer InSe 2D field effect transistors which exhibit carrier mobility approaching 1000 cm2/Vs and ON-OFF ratio exceeding 107 at room temperature. In addition, the fabrication and device performance of transistors made of mechanically exfoliated multilayer IV-VI semiconductor SnSe and SnSe2 will be discussed.

  19. 2 D patterns of soil gas diffusivity , soil respiration, and methane oxidation in a soil profile

    NASA Astrophysics Data System (ADS)

    Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2015-04-01

    The apparent gas diffusion coefficient in soil (DS) is an important parameter describing soil aeration, which makes it a key parameter for root growth and gas production and consumption. Horizontal homogeneity in soil profiles is assumed in most studies for soil properties - including DS. This assumption, however, is not valid, even in apparently homogeneous soils, as we know from studies using destructive sampling methods. Using destructive methods may allow catching a glimpse, but a large uncertainty remains, since locations between the sampling positions cannot be analyzed, and measurements cannot be repeated. We developed a new method to determine in situ the apparent soil gas diffusion coefficient in order to examine 2 D pattern of DS and methane oxidation in a soil profile. Different tracer gases (SF6, CF4, C2H6) were injected continuously into the subsoil and measured at several locations in the soil profile. These data allow for modelling inversely the 2 D patterns of DS using Finite Element Modeling. The 2D DS patterns were then combined with naturally occurring CH4 and CO2 concentrations sampled at the same locations to derive the 2D pattern of soil respiration and methane oxidation in the soil profile. We show that methane oxidation and soil respiration zones shift within the soil profile while the gas fluxes at the surface remain rather stable during a the 3 week campaign.

  20. Precision measurement of the 3 d 3/2 2D-state lifetime in a single trapped +40Ca

    NASA Astrophysics Data System (ADS)

    Shao, H.; Huang, Y.; Guan, H.; Qian, Y.; Gao, K.

    2016-10-01

    We present a high-precision measurement of the 3 d 3/2 2D-state lifetime in a single trapped +40Ca. The measurement was performed using a high-efficiency quantum-state detection technique to monitor quantum jumps and a high-precision and highly synchronous measurement sequence for laser control. A feature in our measurement is the pumping rate of the 729-nm laser that was corrected in a real-time way. The 3 d 3/2 2D-state lifetime was obtained through the measurement of the spontaneous decay rate after incoherent shelving of the ion to the 3 d 3/2 2D state with a wait time. Systematic errors, such as collisions with background gases, heating effects, impurity components, the shelving and pumping rates, and state detection, were carefully analyzed and estimated. We determined an improved value of the 3 d 3/2 2D-state lifetime to be τ3 /2=1.195 (8 ) s. Furthermore, the 3 d 3/2 2D →4 s 1/2 2S quadrupole transition matrix element was measured to be Sk i=7.936 (26 ) e a02 , and the ratio between the lifetimes of 3 d 2D3 /2 and 3 d 2D5 /2 was determined to be 1.018(11). Our method can be universally applied to lifetime measurements of other single ions and atoms with a similar structure.

  1. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  2. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  3. Method for introduction of gases into microspheres

    DOEpatents

    Hendricks, Charles D.; Koo, Jackson C.; Rosencwaig, Allan

    1981-01-01

    A method for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500.mu. with both thin walls (0.5 to 4.mu.) and thick walls (5 to 20.mu.) that contain various fill gases, such as Ar, Kr, Xe, Br, DT, H.sub.2, D.sub.2, He, N.sub.2, Ne, CO.sub.2, etc. in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace. Almost any gas can be introduced into the inner cavity of a glass microsphere by this method during the formation of the microsphere provided that the gas is diffused into the gel membrane or microsphere prior to its transformation into glass. The process of this invention provides a significant savings of time and related expense of filling glass microspheres with various gases. For example, the time for filling a glass microballoon with 1 atmosphere of DT is reduced from about two hours to a few seconds.

  4. 2d PDE Linear Symmetric Matrix Solver

    1983-10-01

    ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  5. 2d PDE Linear Asymmetric Matrix Solver

    1983-10-01

    ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  6. Position control using 2D-to-2D feature correspondences in vision guided cell micromanipulation.

    PubMed

    Zhang, Yanliang; Han, Mingli; Shee, Cheng Yap; Ang, Wei Tech

    2007-01-01

    Conventional camera calibration that utilizes the extrinsic and intrinsic parameters of the camera and the objects has certain limitations for micro-level cell operations due to the presence of hardware deviations and external disturbances during the experimental process, thereby invalidating the extrinsic parameters. This invalidation is often neglected in macro-world visual servoing and affects the visual image processing quality, causing deviation from the desired position in micro-level cell operations. To increase the success rate of vision guided biological micromanipulations, a novel algorithm monitoring the changing image pattern of the manipulators including the injection micropipette and cell holder is designed and implemented based on 2 dimensional (2D)-to 2D feature correspondences and can adjust the manipulator and perform position control simultaneously. When any deviation is found, the manipulator is retracted to the initial focusing plane before continuing the operation.

  7. Selective Growth of Noble Gases at Metal/Oxide Interface.

    PubMed

    Takahashi, Keisuke; Oka, Hiroshi; Ohnuki, Somei

    2016-02-17

    The locations and roles of noble gases at an oxide/metal interface in oxide dispersed metal are theoretically and experimentally investigated. Oxide dispersed metal consisting of FCC Fe and Y2Hf2O7 (Y2Ti2O7) is synthesized by mechanical alloying under a saturated Ar gas environment. Transmission electron microscopy and density functional theory observes the strain field at the interface of FCC Fe {111} and Y2Hf2O7 {111} whose physical origin emerges from surface reconstruction due to charge transfer. Noble gases are experimentally observed at the oxide (Y2Ti2O7) site and calculations reveal that the noble gases segregate the interface and grow toward the oxide site. In general, the interface is defined as the trapping site for noble gases; however, transmission electron microscopy and density functional theory found evidence which shows that noble gases grow toward the oxide, contrary to the generally held idea that the interface is the final trapping site for noble gases. Furthermore, calculations show that the inclusion of He/Ar hardens the oxide, suggesting that material fractures could begin from the noble gas bubble within the oxides. Thus, experimental and theoretical results demonstrate that noble gases grow from the interface toward the oxide and that oxides behave as a trapping site for noble gases. PMID:26840881

  8. Collisions of ions in gases

    NASA Astrophysics Data System (ADS)

    Bailey, T. L.

    1982-03-01

    This report is a summary description of research carried out under the ONR Project 'Collisions of Ions in Gases'. The work consisted of experimental studies of collisions of low-energy ions (4 < or = E sub L < or = 500 eV) with atoms and molecules, using the ion-beam gas-target technique, and of theoretical and computational studies done in support of the experiments. Three types of experiments were carried out: (a) measurements of relative differential cross-sections for elastic and inelastic (i.e., charge transfer) scattering in collisions of the He(++) ions with Ne, Ar, and Kr atoms, over the ion energy range 8 < or = E sub L < or = 60 eV; (b) kinematical studies of charge transfer in collisions of 30 < or = E sub L < or = 373 eV Ne(+), Ar(+), and Kr(+) ions with H2, D2, O2, and N2 molecules, in which the KE-distributions of the product H2(+), etc., were measured; and (c) measurements of the absolute total cross-sections for the charge transfer process He(++) + R = He(+) + R(+), where R = Ne, Ar, Kr, over the energy range 4 < or = E sub L < or = 500 eV. The experimental results, and their interpretations in terms of appropriate quantum scattering theory (where the latter was feasible) are discussed briefly. The effects of the thermal motions of collision participants (i.e., thermal broadening) in ion-atom and similar scattering experiments were investigated in computational studies, and a new crossed ion-supersonic atom/molecule beams apparatus, designed to remove the thermal broadening effect and to give high resolution in energy and angle, is discussed.

  9. 'Brukin2D': a 2D visualization and comparison tool for LC-MS data

    PubMed Central

    Tsagkrasoulis, Dimosthenis; Zerefos, Panagiotis; Loudos, George; Vlahou, Antonia; Baumann, Marc; Kossida, Sophia

    2009-01-01

    Background Liquid Chromatography-Mass Spectrometry (LC-MS) is a commonly used technique to resolve complex protein mixtures. Visualization of large data sets produced from LC-MS, namely the chromatogram and the mass spectra that correspond to its compounds is the focus of this work. Results The in-house developed 'Brukin2D' software, built in Matlab 7.4, which is presented here, uses the compound data that are exported from the Bruker 'DataAnalysis' program, and depicts the mean mass spectra of all the chromatogram compounds from one LC-MS run, in one 2D contour/density plot. Two contour plots from different chromatograph runs can then be viewed in the same window and automatically compared, in order to find their similarities and differences. The results of the comparison can be examined through detailed mass quantification tables, while chromatogram compound statistics are also calculated during the procedure. Conclusion 'Brukin2D' provides a user-friendly platform for quick, easy and integrated view of complex LC-MS data. The software is available at . PMID:19534737

  10. Inhibition of human cytochrome P450 2D6 (CYP2D6) by methadone.

    PubMed Central

    Wu, D; Otton, S V; Sproule, B A; Busto, U; Inaba, T; Kalow, W; Sellers, E M

    1993-01-01

    1. In microsomes prepared from three human livers, methadone competitively inhibited the O-demethylation of dextromethorphan, a marker substrate for CYP2D6. The apparent Ki value of methadone ranged from 2.5 to 5 microM. 2. Two hundred and fifty-two (252) white Caucasians, including 210 unrelated healthy volunteers and 42 opiate abusers undergoing treatment with methadone were phenotyped using dextromethorphan as the marker drug. Although the frequency of poor metabolizers was similar in both groups, the extensive metabolizers among the opiate abusers tended to have higher O-demethylation metabolic ratios and to excrete less of the dose as dextromethorphan metabolites than control extensive metabolizer subjects. These data suggest inhibition of CYP2D6 by methadone in vivo as well. 3. Because methadone is widely used in the treatment of opiate abuse, inhibition of CYP2D6 activity in these patients might contribute to exaggerated response or unexpected toxicity from drugs that are substrates of this enzyme. PMID:8448065

  11. Electric Field Cancellation on Quartz by Rb Adsorbate-Induced Negative Electron Affinity

    NASA Astrophysics Data System (ADS)

    Sedlacek, J. A.; Kim, E.; Rittenhouse, S. T.; Weck, P. F.; Sadeghpour, H. R.; Shaffer, J. P.

    2016-04-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results will be important for integrating Rydberg atoms into hybrid quantum systems, as fundamental probes of atom-surface interactions, and for studies of 2D electron gases bound to surfaces.

  12. Electric Field Cancellation on Quartz by Rb Adsorbate-Induced Negative Electron Affinity.

    PubMed

    Sedlacek, J A; Kim, E; Rittenhouse, S T; Weck, P F; Sadeghpour, H R; Shaffer, J P

    2016-04-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results will be important for integrating Rydberg atoms into hybrid quantum systems, as fundamental probes of atom-surface interactions, and for studies of 2D electron gases bound to surfaces. PMID:27081976

  13. Unusual dimensionality effects and surface charge density in 2D Mg(OH)2

    PubMed Central

    Suslu, Aslihan; Wu, Kedi; Sahin, Hasan; Chen, Bin; Yang, Sijie; Cai, Hui; Aoki, Toshihiro; Horzum, Seyda; Kang, Jun; Peeters, Francois M.; Tongay, Sefaattin

    2016-01-01

    We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics. PMID:26846617

  14. Unusual dimensionality effects and surface charge density in 2D Mg(OH)2

    NASA Astrophysics Data System (ADS)

    Suslu, Aslihan; Wu, Kedi; Sahin, Hasan; Chen, Bin; Yang, Sijie; Cai, Hui; Aoki, Toshihiro; Horzum, Seyda; Kang, Jun; Peeters, Francois M.; Tongay, Sefaattin

    2016-02-01

    We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics.

  15. 2D/2D nano-hybrids of γ-MnO₂ on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation.

    PubMed

    Wang, Yuxian; Xie, Yongbing; Sun, Hongqi; Xiao, Jiadong; Cao, Hongbin; Wang, Shaobin

    2016-01-15

    Two-dimensional reduced graphene oxide (2D rGO) was employed as both a shape-directing medium and support to fabricate 2D γ-MnO2/2D rGO nano-hybrids (MnO2/rGO) via a facile hydrothermal route. For the first time, the 2D/2D hybrid materials were used for catalytic ozonation of 4-nitrophenol. The catalytic efficiency of MnO2/rGO was much higher than either MnO2 or rGO only, and rGO was suggested to play the role for promoting electron transfers. Quenching tests using tert-butanol, p-benzoquinone, and sodium azide suggested that the major radicals responsible for 4-nitrophenol degradation and mineralization are O2(-) and (1)O2, but not ·OH. Reusability tests demonstrated a high stability of the materials in catalytic ozonation with minor Mn leaching below 0.5 ppm. Degradation mechanism, reaction kinetics, reusability and a synergistic effect between catalytic ozonation and coupling peroxymonosulfate (PMS) activation were also discussed.

  16. Laboratory studies on N(2D) reactions of relevance to the chemistry of planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Balucani, N.; Casavecchia, P.

    Molecular nitrogen is a very stable molecule, practically inert from a chemical point of view. For a nitrogen chemistry to occur in the planetary atmospheres which contain N2 , it is necessary to transform it into an active form, such as atoms or ions. As far as the production of atomic nitrogen in the upper atmospheres of planets (like Mars) or moons (like Titan) is concerned, several processes - as N2 dissociation induced by electron impact, EUV photolysis (λ <80 nm) and dissociative photoionization, or galactic cosmic ray absorption and N+ dissociative recombination all 2 lead to atomic nitrogen, notably in the ground, 4 S3/2 , and first electronically excited, 2 D3/2,5/2 , states with comparable yields. The radiative lifetimes of the metastable states 2 D3/2 and 2 D5/2 are quite long (12.3 and 48 hours, respectively), because the transition from a doublet to a quartet state is strongly forbidden. In addition, the physical quenching of N(2 D) is often a slow process and in some important cases the main fate of N(2 D) is chemical reaction with other constituents of the planetary atmospheres. The production of N atoms in the 2 D state is an important fact, because N(4 S) atoms exhibit very low reactivity with closed-shell molecules and the probability of collision with an open-shell radical is small. Unfortunately laboratory experiments on the gas-phase reactions of N(2 D) have been lacking until recently, because of serious experimental difficulties in studying these reactive systems. Accurate kinetic data on the reactions of N(2 D) with the some molecules of relevance to the chemistry of planetary atmospheres have finally become available in the late 90's, but a better knowledge of the reactive behavior requires a dynamical investigation of N(2 D) reactions. The capability of generating intense continuous beams of N(2 D) achieved in our laboratory some years ago has opened up the possibility of studying the reactive scattering of this species under single

  17. Strongly Correlated 2D Quantum Phases with Cold Polar Molecules: Controlling the Shape of the Interaction Potential

    SciTech Connect

    Buechler, H. P.; Micheli, A.; Pupillo, G.; Zoller, P.; Demler, E.; Lukin, M.; Prokof'ev, N.

    2007-02-09

    We discuss techniques to tune and shape the long-range part of the interaction potentials in quantum gases of bosonic polar molecules by dressing rotational excitations with static and microwave fields. This provides a novel tool towards engineering strongly correlated quantum phases in combination with low-dimensional trapping geometries. As an illustration, we discuss the 2D superfluid-crystal quantum phase transition for polar molecules interacting via an electric-field-induced dipole-dipole potential.

  18. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  19. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  20. Quasi 2D Materials: Raman Nanometrology and Thermal Management Applications

    NASA Astrophysics Data System (ADS)

    Shahil, Khan Mohammad Farhan

    Quasi two-dimensional (2D) materials obtained by the "graphene-like" exfoliation attracted tremendous attention. Such materials revealed unique electronic, thermal and optical properties, which can be potentially used in electronics, thermal management and energy conversion. This dissertation research addresses two separate but synergetic problems: (i) preparation and optical characterization of quasi-2D films of the bismuth-telluride (Bi 2Te3) family of materials, which demonstrate both thermoelectric and topological insulator properties; and (ii) investigation of thermal properties of composite materials prepared with graphene and few-layer graphene (FLG). The first part of dissertation reports properties of the exfoliated few-quintuple layers of Bi2Te3, Bi2Se3 and Sb 2Te3. Both non-resonant and resonant Raman scattering spectra have been investigated. It was found that the crystal symmetry breaking in few-quintuple films results in appearance of A1u-symmetry Raman peaks, which are not active in the bulk crystals. The scattering spectra measured under the 633-nm wavelength excitation reveals a number of resonant features, which could be used for analysis of the electronic and phonon processes in these materials. The obtained results help to understand the physical mechanisms of Raman scattering in the few-quintuple-thick films and can be used for nanometrology of topological insulator films on various substrates. The second part of the dissertation is dedicated to investigation of properties of composite materials prepared with graphene and FLG. It was found that the optimized mixture of graphene and multilayer graphene---produced by the high-yield inexpensive liquid-phase-exfoliation technique---can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300 % in the graphene-based polymer at the filler loading fraction f =10 vol. %. It was

  1. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  2. 2D Quantum Mechanical Study of Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25, 50 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. Surprisingly, the self-consistent potential profile shows lower injection barrier in the channel in quantum case. These results are qualitatively consistent with ID Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  3. Hydrostatic pressure response of an oxide-based two-dimensional electron system

    NASA Astrophysics Data System (ADS)

    Zabaleta, J.; Borisov, V. S.; Wanke, R.; Jeschke, H. O.; Parks, S. C.; Baum, B.; Teker, A.; Harada, T.; Syassen, K.; Kopp, T.; Pavlenko, N.; Valentí, R.; Mannhart, J.

    2016-06-01

    Two-dimensional electron systems with fascinating properties exist in multilayers of standard semiconductors, on helium surfaces, and in oxides. Compared to the two-dimensional (2D) electron gases of semiconductors, the 2D electron systems in oxides are typically more strongly correlated and more sensitive to the microscopic structure of the hosting lattice. This sensitivity suggests that the oxide 2D systems are highly tunable by hydrostatic pressure. Here we explore the effects of hydrostatic pressure on the well-characterized 2D electron system formed at LaAlO3-SrTiO3 interfaces [A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004), 10.1038/nature02308] and measure a pronounced, unexpected response. Pressure of ˜2 GPa reversibly doubles the 2D carrier density ns at 4 K. Along with the increase of ns, the conductivity and mobility are reduced under pressure. First-principles pressure simulations reveal the same behavior of the carrier density and suggest a possible mechanism of the mobility reduction, based on the dielectric properties of both materials and their variation under external pressure.

  4. 2D-3D MIGRATION AND CONFORMATIONAL MULTIPLICATION OF CHEMICALS IN LARGE CHEMICAL INVENTORIES

    EPA Science Inventory

    Chemical interactions are three-dimensional (3D) in nature and require modeling chemicals as 3D entities. In turn, using 3D models of chemicals leads to the realization that a single 2D structure can have hundreds of different conformations, and the electronic properties of these...

  5. Plasma as a tool for growth of 1D and 2D nanomaterials and their conversions

    NASA Astrophysics Data System (ADS)

    Cvelbar, Uros

    2015-09-01

    The growth of 1D and 2D nanostructures in low pressure oxygen plasma is presented with the special stress on metal-oxide nanowires and their deterministic growth mechanisms. Since the resulting nanostructures not always have required properties for applications their modifications are required. Therefore their conversions into different oxides or sulphites/nitrides are required with either molecules, atoms, electrons or photons.

  6. Edge absorption and circular photogalvanic effect in 2D topological insulator edges

    NASA Astrophysics Data System (ADS)

    Entin, M. V.; Magarill, L. I.

    2016-06-01

    The electron absorption on the edge states and the edge photocurrent of a 2D topological insulator (TI) are studied. We consider the optical transitions within linear edge branches of the energy spectrum. The interaction with impurities is taken into account. The circular polarization is found to produce the edge photocurrent, the direction of which is determined by light polarization and edge orientation.

  7. Equilibration of quantum gases

    NASA Astrophysics Data System (ADS)

    Farrelly, Terry

    2016-07-01

    Finding equilibration times is a major unsolved problem in physics with few analytical results. Here we look at equilibration times for quantum gases of bosons and fermions in the regime of negligibly weak interactions, a setting which not only includes paradigmatic systems such as gases confined to boxes, but also Luttinger liquids and the free superfluid Hubbard model. To do this, we focus on two classes of measurements: (i) coarse-grained observables, such as the number of particles in a region of space, and (ii) few-mode measurements, such as phase correlators. We show that, in this setting, equilibration occurs quite generally despite the fact that the particles are not interacting. Furthermore, for coarse-grained measurements the timescale is generally at most polynomial in the number of particles N, which is much faster than previous general upper bounds, which were exponential in N. For local measurements on lattice systems, the timescale is typically linear in the number of lattice sites. In fact, for one-dimensional lattices, the scaling is generally linear in the length of the lattice, which is optimal. Additionally, we look at a few specific examples, one of which consists of N fermions initially confined on one side of a partition in a box. The partition is removed and the fermions equilibrate extremely quickly in time O(1/N).

  8. Synthesis, properties and applications of 2D non-graphene materials

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Wang, Zhenxing; Wang, Qisheng; Wang, Fengmei; Yin, Lei; Xu, Kai; Huang, Yun; He, Jun

    2015-07-01

    As an emerging class of new materials, two-dimensional (2D) non-graphene materials, including layered and non-layered, and their heterostructures are currently attracting increasing interest due to their promising applications in electronics, optoelectronics and clean energy. In contrast to traditional semiconductors, such as Si, Ge and III-V group materials, 2D materials show significant merits of ultrathin thickness, very high surface-to-volume ratio, and high compatibility with flexible devices. Owing to these unique properties, while scaling down to ultrathin thickness, devices based on these materials as well as artificially synthetic heterostructures exhibit novel and surprising functions and performances. In this review, we aim to provide a summary on the state-of-the-art research activities on 2D non-graphene materials. The scope of the review will cover the preparation of layered and non-layered 2D materials, construction of 2D vertical van der Waals and lateral ultrathin heterostructures, and especially focus on the applications in electronics, optoelectronics and clean energy. Moreover, the review is concluded with some perspectives on the future developments in this field.

  9. Synthesis, properties and applications of 2D non-graphene materials.

    PubMed

    Wang, Feng; Wang, Zhenxing; Wang, Qisheng; Wang, Fengmei; Yin, Lei; Xu, Kai; Huang, Yun; He, Jun

    2015-07-24

    As an emerging class of new materials, two-dimensional (2D) non-graphene materials, including layered and non-layered, and their heterostructures are currently attracting increasing interest due to their promising applications in electronics, optoelectronics and clean energy. In contrast to traditional semiconductors, such as Si, Ge and III-V group materials, 2D materials show significant merits of ultrathin thickness, very high surface-to-volume ratio, and high compatibility with flexible devices. Owing to these unique properties, while scaling down to ultrathin thickness, devices based on these materials as well as artificially synthetic heterostructures exhibit novel and surprising functions and performances. In this review, we aim to provide a summary on the state-of-the-art research activities on 2D non-graphene materials. The scope of the review will cover the preparation of layered and non-layered 2D materials, construction of 2D vertical van der Waals and lateral ultrathin heterostructures, and especially focus on the applications in electronics, optoelectronics and clean energy. Moreover, the review is concluded with some perspectives on the future developments in this field.

  10. 2D-MoO3 nanosheets for superior gas sensors

    NASA Astrophysics Data System (ADS)

    Ji, Fangxu; Ren, Xianpei; Zheng, Xiaoyao; Liu, Yucheng; Pang, Liuqing; Jiang, Jiaxing; Liu, Shengzhong (Frank)

    2016-04-01

    By taking advantages of both grinding and sonication, an effective exfoliation process is developed to prepare two-dimensional (2D) molybdenum oxide (MoO3) nanosheets. The approach avoids high-boiling-point solvents that would leave a residue and cause aggregation. Gas sensors fabricated using the 2D-MoO3 nanosheets provide a significantly enhanced chemical sensor performance. Compared with the sensors using bulk MoO3, the response of the 2D-MoO3 sensor increases from 7 to 33; the sensor response time is reduced from 27 to 21 seconds, and the recovery time is shortened from 26 to 10 seconds. We attribute the superior performance to the 2D-structure with a much increased surface area and reactive sites.By taking advantages of both grinding and sonication, an effective exfoliation process is developed to prepare two-dimensional (2D) molybdenum oxide (MoO3) nanosheets. The approach avoids high-boiling-point solvents that would leave a residue and cause aggregation. Gas sensors fabricated using the 2D-MoO3 nanosheets provide a significantly enhanced chemical sensor performance. Compared with the sensors using bulk MoO3, the response of the 2D-MoO3 sensor increases from 7 to 33; the sensor response time is reduced from 27 to 21 seconds, and the recovery time is shortened from 26 to 10 seconds. We attribute the superior performance to the 2D-structure with a much increased surface area and reactive sites. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00880a

  11. Bioinspired 2D-Carbon Flakes and Fe3O4 Nanoparticles Composite for Arsenite Removal.

    PubMed

    Venkateswarlu, Sada; Lee, Daeho; Yoon, Minyoung

    2016-09-14

    Development of carbon-based materials has received tremendous attention owing to their multifunctional properties. Biomaterials often serve as an inspiration for the preparation of new carbon materials. Herein, we present a facile synthesis of a new bioinspired graphene oxide-like 2D-carbon flake (CF) using a natural resource, waste onion sheathing (Allium cepa). The 2D-CF was further decorated with crystalline Fe3O4 nanoparticles for applications. Superparamagnetic Fe3O4 nanoparticles (7 nm) were well-dispersed on the surface of the 2D-CF, which was characterized by X-ray diffractometry, X-ray photoelectron spectroscopy, Raman spectrometry, and transmission electron microscopy. Batch As(III) adsorption experiments showed that aqueous arsenic ions strongly adsorbed to the Fe3O4@2D-CF composite. The adsorption capacity of the Fe3O4@2D-CF composite for As(III) was 57.47 mg g(-1). The synergetic effect of both graphene oxide-like 2D-CF and Fe3O4 nanoparticles aided in excellent As(III) adsorption. An As(III) ion adsorption kinetics study showed that adsorption was very fast at the initial stage, and equilibrium was reached within 60 min following a pseudo-second-order rate model. Owing to the excellent superparamagnetic properties (52.6 emu g(-1)), the Fe3O4@2D-CF composite exhibited superb reusability with the shortest recovery time (28 s) among reported materials. This study indicated that Fe3O4@2D-CF composites can be used for practical applications as a global economic material for future generations. PMID:27463424

  12. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  13. Trapped noble gases in meteorites

    NASA Technical Reports Server (NTRS)

    Swindle, Timothy D.

    1988-01-01

    The trapped noble gases in meteorites come in two main varieties, usually referred to as solar and planetary. The solar noble gases are implanted solar-wind or solar-flare materials, and thus their relative elemental abundances provide a good estimate of those of the sun. The planetary noble gases have relative elemental abundances similar to those in the terrestrial atmosphere, but there are also important distinctions. At least one other elemental pattern (subsolar) and several isotopic patterns have also been identified.

  14. Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation

    DOE PAGES

    Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; Puretzky, Alexander A.; McGuire, Michael A.; Srijanto, Bernadeta R.; Xiao, Kai; Eres, Gyula; et al

    2014-10-19

    Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substrate bymore » pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.« less

  15. Electron Excitation Cross Sections for the S// Transitions 3s(sup 2)3p(sup 3) (sup 4)s(deg) (leads to)3s(sup 2)3p(sup 3) (sup 2)D(deg), (sup 2)p(deg) and 3s3p(sup 4) (sup 4)p

    NASA Technical Reports Server (NTRS)

    Liao, C.; Smith, S. J.; Hitz, D.; Chutjian, A.; Tayal, S. S.

    1996-01-01

    Experimental and theoretical collisional excitation cross sections are reported for the transitions 3s(sup 2)3p(sup 3) (sup 4)s(deg) (leads to)3s(sup 2)3p(sup 3)(sup 2)D(deg), (sup 2)p(deg) and 3s3p(sup 4) (sup 4)p in s//.

  16. Electronic transport in graphene-based heterostructures

    SciTech Connect

    Tan, J. Y.; Avsar, A.; Balakrishnan, J.; Taychatanapat, T.; O'Farrell, E. C. T.; Eda, G.; Castro Neto, A. H.; Koon, G. K. W.; Özyilmaz, B.; Watanabe, K.; Taniguchi, T.

    2014-05-05

    While boron nitride (BN) substrates have been utilized to achieve high electronic mobilities in graphene field effect transistors, it is unclear how other layered two dimensional (2D) crystals influence the electronic performance of graphene. In this Letter, we study the surface morphology of 2D BN, gallium selenide (GaSe), and transition metal dichalcogenides (tungsten disulfide (WS{sub 2}) and molybdenum disulfide (MoS{sub 2})) crystals and their influence on graphene's electronic quality. Atomic force microscopy analysis shows that these crystals have improved surface roughness (root mean square value of only ∼0.1 nm) compared to conventional SiO{sub 2} substrate. While our results confirm that graphene devices exhibit very high electronic mobility (μ) on BN substrates, graphene devices on WS{sub 2} substrates (G/WS{sub 2}) are equally promising for high quality electronic transport (μ ∼ 38 000 cm{sup 2}/V s at room temperature), followed by G/MoS{sub 2} (μ ∼ 10 000 cm{sup 2}/V s) and G/GaSe (μ ∼ 2200 cm{sup 2}/V s). However, we observe a significant asymmetry in electron and hole conduction in G/WS{sub 2} and G/MoS{sub 2} heterostructures, most likely due to the presence of sulphur vacancies in the substrate crystals. GaSe crystals are observed to degrade over time even under ambient conditions, leading to a large hysteresis in graphene transport making it a less suitable substrate.

  17. A Geometric Boolean Library for 2D Objects

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various filemore » formats, are also provided in the library.« less

  18. 2D numerical simulation of the MEP energy-transport model with a finite difference scheme

    SciTech Connect

    Romano, V. . E-mail: romano@dmi.unict.it

    2007-02-10

    A finite difference scheme of Scharfetter-Gummel type is used to simulate a consistent energy-transport model for electron transport in semiconductors devices, free of any fitting parameters, formulated on the basis of the maximum entropy principle. Simulations of silicon n{sup +}-n-n{sup +} diodes, 2D-MESFET and 2D-MOSFET and comparisons with the results obtained by a direct simulation of the Boltzmann transport equation and with other energy-transport models, known in the literature, show the validity of the model and the robustness of the numerical scheme.

  19. Phase transitions in real gases and ideal Bose gases

    NASA Astrophysics Data System (ADS)

    Maslov, V. P.

    2011-05-01

    Based on number theory, we present a new concept of gas without the particle interaction taken into account in which there are first-order phase transitions for T < T cr on isotherms. We present formulas for new ideal gases, solving the Gibbs paradox, and also formulas for the transition to real gases based on the concept of the Zeno line.

  20. VizieR Online Data Catalog: The 2dF Galaxy Redshift Survey (2dFGRS) (2dFGRS Team, 1998-2003)

    NASA Astrophysics Data System (ADS)

    Colless, M.; Dalton, G.; Maddox, S.; Sutherland, W.; Norberg, P.; Cole, S.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Collins, C.; Couch, W.; Cross, N.; Deeley, K.; de Propris, R.; Driver, S. P.; Efstathiou, G.; Ellis, R. S.; Frenk, C. S.; Glazebrook, K.; Jackson, C.; Lahav, O.; Lewis, I.; Lumsden, S.; Madgwick, D.; Peacock, J. A.; Peterson, B. A.; Price, I.; Seaborne, M.; Taylor, K.

    2007-11-01

    The 2dF Galaxy Redshift Survey (2dFGRS) is a major spectroscopic survey taking full advantage of the unique capabilities of the 2dF facility built by the Anglo-Australian Observatory. The 2dFGRS is integrated with the 2dF QSO survey (2QZ, Cat. VII/241). The 2dFGRS obtained spectra for 245591 objects, mainly galaxies, brighter than a nominal extinction-corrected magnitude limit of bJ=19.45. Reliable (quality>=3) redshifts were obtained for 221414 galaxies. The galaxies cover an area of approximately 1500 square degrees selected from the extended APM Galaxy Survey in three regions: a North Galactic Pole (NGP) strip, a South Galactic Pole (SGP) strip, and random fields scattered around the SGP strip. Redshifts are measured from spectra covering 3600-8000 Angstroms at a two-pixel resolution of 9.0 Angstrom and a median S/N of 13 per pixel. All redshift identifications are visually checked and assigned a quality parameter Q in the range 1-5; Q>=3 redshifts are 98.4% reliable and have an rms uncertainty of 85 km/s. The overall redshift completeness for Q>=3 redshifts is 91.8% but this varies with magnitude from 99% for the brightest galaxies to 90% for objects at the survey limit. The 2dFGRS data base is available on the World Wide Web at http://www.mso.anu.edu.au/2dFGRS/. (6 data files).

  1. Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung

    NASA Astrophysics Data System (ADS)

    Bergmeir, Christoph; Subramanian, Navneeth

    Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.

  2. CVMAC 2D Program: A method of converting 3D to 2D

    SciTech Connect

    Lown, J.

    1990-06-20

    This paper presents the user with a method of converting a three- dimensional wire frame model into a technical illustration, detail, or assembly drawing. By using the 2D Program, entities can be mapped from three-dimensional model space into two-dimensional model space, as if they are being traced. Selected entities to be mapped can include circles, arcs, lines, and points. This program prompts the user to digitize the view to be mapped, specify the layers in which the new two-dimensional entities will reside, and select the entities, either by digitizing or windowing. The new two-dimensional entities are displayed in a small view which the program creates in the lower left corner of the drawing. 9 figs.

  3. Band Gap Engineering in a 2D Material for Solar-to-Chemical Energy Conversion.

    PubMed

    Hu, Jun; Guo, Zhenkun; Mcwilliams, Peter E; Darges, John E; Druffel, Daniel L; Moran, Andrew M; Warren, Scott C

    2016-01-13

    The electronic structure of 2D semiconductors depends on their thickness, providing new opportunities to engineer semiconductors for energy conversion, electronics, and catalysis. Here we show how a 3D semiconductor, black phosphorus, becomes active for solar-to-chemical energy conversion when it is thinned to a 2D material. The increase in its band gap, from 0.3 eV (3D) to 2.1 eV (2D monolayer), is accompanied by a 40-fold enhancement in the formation of chemical products. Despite this enhancement, smaller flakes also have shorter excited state lifetimes. We deduce a mechanism in which recombination occurs at flake edges, while the "van der Waals" surface of black phosphorus bonds to chemical intermediates and facilitates electron transfer. The unique properties of black phosphorus highlight its potential as a customizable material for solar energy conversion and catalysis, while also allowing us to identify design rules for 2D photocatalysts that will enable further improvements in these materials. PMID:26651872

  4. Transient 2D IR spectroscopy of charge injection in dye-sensitized nanocrystalline thin films.

    PubMed

    Xiong, Wei; Laaser, Jennifer E; Paoprasert, Peerasak; Franking, Ryan A; Hamers, Robert J; Gopalan, Padma; Zanni, Martin T

    2009-12-23

    We use nonlinear 2D IR spectroscopy to study TiO(2) nanocrystalline thin films sensitized with a Re dye. We find that the free electron signal, which often obscures the vibrational features in the transient absorption spectrum, is not observed in the 2D IR spectra. Its absence allows the vibrational features of the dye to be much better resolved than with the typical IR absorption probe. We observe multiple absorption bands but no cross peaks in the 2D IR spectra, which indicates that the dyes have at least three conformations. Furthermore, by using a pulse sequence in which we initiate electron transfer in the middle of the infrared pulse train, we are able to assign the excited state features by correlating them to the ground state vibrational modes and determine that the three conformations have different time scales and cross sections for electron injection. 2D IR spectroscopy is proving to be very useful in disentangling overlapping structural distributions in biological and chemical physics processes. These experiments demonstrate that nonlinear infrared probes are also a powerful new tool for studying charge transfer at interfaces.

  5. Band Gap Engineering in a 2D Material for Solar-to-Chemical Energy Conversion.

    PubMed

    Hu, Jun; Guo, Zhenkun; Mcwilliams, Peter E; Darges, John E; Druffel, Daniel L; Moran, Andrew M; Warren, Scott C

    2016-01-13

    The electronic structure of 2D semiconductors depends on their thickness, providing new opportunities to engineer semiconductors for energy conversion, electronics, and catalysis. Here we show how a 3D semiconductor, black phosphorus, becomes active for solar-to-chemical energy conversion when it is thinned to a 2D material. The increase in its band gap, from 0.3 eV (3D) to 2.1 eV (2D monolayer), is accompanied by a 40-fold enhancement in the formation of chemical products. Despite this enhancement, smaller flakes also have shorter excited state lifetimes. We deduce a mechanism in which recombination occurs at flake edges, while the "van der Waals" surface of black phosphorus bonds to chemical intermediates and facilitates electron transfer. The unique properties of black phosphorus highlight its potential as a customizable material for solar energy conversion and catalysis, while also allowing us to identify design rules for 2D photocatalysts that will enable further improvements in these materials.

  6. 2D Four-Channel Perfect Reconstruction Filter Bank Realized with the 2D Lattice Filter Structure

    NASA Astrophysics Data System (ADS)

    Sezen, S.; Ertüzün, A.

    2006-12-01

    A novel orthogonal 2D lattice structure is incorporated into the design of a nonseparable 2D four-channel perfect reconstruction filter bank. The proposed filter bank is obtained by using the polyphase decomposition technique which requires the design of an orthogonal 2D lattice filter. Due to constraint of perfect reconstruction, each stage of this lattice filter bank is simply parameterized by two coefficients. The perfect reconstruction property is satisfied regardless of the actual values of these parameters and of the number of the lattice stages. It is also shown that a separable 2D four-channel perfect reconstruction lattice filter bank can be constructed from the 1D lattice filter and that this is a special case of the proposed 2D lattice filter bank under certain conditions. The perfect reconstruction property of the proposed 2D lattice filter approach is verified by computer simulations.

  7. 2D modeling of electromagnetic waves in cold plasmas

    SciTech Connect

    Crombé, K.; Van Eester, D.; Koch, R.; Kyrytsya, V.

    2014-02-12

    The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was felt as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.

  8. Iterative 2D deconvolution of portal imaging radiographs.

    PubMed

    Looe, Hui Khee; Harder, Dietrich; Willborn, Kay C; Poppe, Björn

    2011-01-01

    Portal imaging has become an integral part of modern radiotherapy techniques such as IMRT and IGRT. It serves to verify the accuracy of day-to-day patient positioning, a prerequisite for treatment success. However, image blurring attributable to different physical and geometrical effects, analysed in this work, impairs the image quality of the portal images, and anatomical structures cannot always be clearly outlined. A 2D iterative deconvolution method was developed to reduce this image blurring. The affiliated data basis was generated by the separate measurement of the components contributing to image blurring. Secondary electron transport and pixel size within the EPID, as well as geometrical penumbra due to the finite photon source size were found to be the major contributors, whereas photon scattering in the patient is less important. The underlying line-spread kernels of these components were shown to be Lorentz functions. This implies that each of these convolution kernels and also their combination can be characterized by a single characteristic, the width parameter λ of the Lorentz function. The overall resulting λ values were 0.5mm for 6 MV and 0.65 mm for 15 MV. Portal images were deconvolved using the point-spread function derived from the Lorentz function together with the experimentally determined λ values. The improvement of the portal images was quantified in terms of the modulation transfer function of a bar pattern. The resulting clinical images show a clear enhancement of sharpness and contrast.

  9. Synthesis and characterization of 2D molybdenum carbide (MXene)

    DOE PAGES

    Halim, Joseph; Kota, Sankalp; Lukatskaya, Maria R.; Naguib, Michael; Zhao, Meng -Qiang; Moon, Eun Ju; Pitock, Jeremy; Nanda, Jagjit; May, Steven J.; Gogotsi, Yury; et al

    2016-02-17

    Large scale synthesis and delamination of 2D Mo2CT x (where T is a surface termination group) has been achieved by selectively etching gallium from the recently discovered nanolaminated, ternary transition metal carbide Mo2Ga2C. Different synthesis and delamination routes result in different flake morphologies. The resistivity of free-standing Mo2CT x films increases by an order of magnitude as the temperature is reduced from 300 to 10 K, suggesting semiconductor-like behavior of this MXene, in contrast to Ti3C2T x which exhibits metallic behavior. At 10 K, the magnetoresistance is positive. Additionally, changes in electronic transport are observed upon annealing of the films.more » When 2 μm thick films are tested as electrodes in supercapacitors, capacitances as high as 700 F cm–3 in a 1 m sulfuric acid electrolyte and high capacity retention for at least 10,000 cycles at 10 A g–1 are obtained. Free-standing Mo2CT x films, with ≈8 wt% carbon nanotubes, perform well when tested as an electrode material for Li-ions, especially at high rates. In conclusion, at 20 and 131 C cycling rates, stable reversible capacities of 250 and 76 mAh g–1, respectively, are achieved for over 1000 cycles.« less

  10. Fracture morphology of 2-D carbon-carbon composition

    NASA Technical Reports Server (NTRS)

    Avery, W. B.; Herakovich, C. T.

    1985-01-01

    Out-of-plane tensile tests of a woven fabric carbon-carbon composite were performed in a scanning electron microscope equipped with a tensile stage and a videotape recording system. The composite was prepared from T-300 8-harness satin graphite fabric and a phenolic resin. The (0/90/0/90/0 sub 1/2) sub 2 laminate, with a Theta describing the orientation of the warp fibers of the fabric, was cured at 160 C and pyrolized at 871 C. This was followed by four cycles of resin impregnation, curing, and pyrolysis. A micrograph of the cross section of the composite is presented. Inspection of the specimen fracture surface revealed that the filaments had no residual matrix bonded to them. Further inspection revealed that the fracture was interlaminar in nature. Failure occurred where filaments of adjacent plies had the same orientation. Thus it is postulated that improvement in transverse tensile strength of 2-D carbon-carbon depends on the improvement of the filament-matrix bond strength.

  11. Quantum Simulation with 2D Arrays of Trapped Ions

    NASA Astrophysics Data System (ADS)

    Richerme, Philip

    2016-05-01

    The computational difficulty of solving fully quantum many-body spin problems is a significant obstacle to understanding the behavior of strongly correlated quantum matter. This work proposes the design and construction of a 2D quantum spin simulator to investigate the physics of frustrated materials, highly entangled states, mechanisms potentially underpinning high-temperature superconductivity, and other topics inaccessible to current 1D systems. The effective quantum spins will be encoded within the well-isolated electronic levels of trapped ions, confined in a two-dimensional planar geometry, and made to interact using phonon-mediated optical dipole forces. The system will be scalable to 100+ quantum particles, far beyond the realm of classical intractability, while maintaining individual-ion control, long quantum coherence times, and site-resolved projective spin measurements. Once constructed, the two-dimensional quantum simulator will implement a broad range of spin models on a variety of reconfigurable lattices and characterize their behavior through measurements of spin-spin correlations and entanglement. This versatile tool will serve as an important experimental resource for exploring difficult quantum many-body problems in a regime where classical methods fail.

  12. Ab initio modeling of 2D layered organohalide lead perovskites.

    PubMed

    Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio

    2016-04-28

    A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place. PMID:27131557

  13. Functional characterization of CYP2D6 enhancer polymorphisms

    PubMed Central

    Wang, Danxin; Papp, Audrey C.; Sun, Xiaochun

    2015-01-01

    CYP2D6 metabolizes nearly 25% of clinically used drugs. Genetic polymorphisms cause large inter-individual variability in CYP2D6 enzyme activity and are currently used as biomarker to predict CYP2D6 metabolizer phenotype. Previously, we had identified a region 115 kb downstream of CYP2D6 as enhancer for CYP2D6, containing two completely linked single nucleotide polymorphisms (SNPs), rs133333 and rs5758550, associated with enhanced transcription. However, the enhancer effect on CYP2D6 expression, and the causative variant, remained to be ascertained. To characterize the CYP2D6 enhancer element, we applied chromatin conformation capture combined with the next-generation sequencing (4C assays) and chromatin immunoprecipitation with P300 antibody, in HepG2 and human primary culture hepatocytes. The results confirmed the role of the previously identified enhancer region in CYP2D6 expression, expanding the number of candidate variants to three highly linked SNPs (rs133333, rs5758550 and rs4822082). Among these, only rs5758550 demonstrated regulating enhancer activity in a reporter gene assay. Use of clustered regularly interspaced short palindromic repeats mediated genome editing in HepG2 cells targeting suspected enhancer regions decreased CYP2D6 mRNA expression by 70%, only upon deletion of the rs5758550 region. These results demonstrate robust effects of both the enhancer element and SNP rs5758550 on CYP2D6 expression, supporting consideration of rs5758550 for CYP2D6 genotyping panels to yield more accurate phenotype prediction. PMID:25381333

  14. Thermal Conductivity and Thermopower near the 2D Metal-Insulator transition, Final Technical Report

    SciTech Connect

    SARACHIK, MYRIAM P

    2015-02-20

    STUDIES OF STRONGLY-INTERACTING 2D ELECTRON SYSTEMS – There is a great deal of current interest in the properties of systems in which the interaction between electrons (their potential energy) is large compared to their kinetic energy. We have investigated an apparent, unexpected metal-insulator transition inferred from the behavior of the temperature-dependence of the resistivity; moreover, detailed analysis of the behavior of the magnetoresistance suggests that the electrons’ effective mass diverges, supporting this scenario. Whether this is a true phase transition or crossover behavior has been strenuously debated over the past 20 years. Our measurements have now shown that the thermoelectric power of these 2D materials diverges at a finite density, providing clear evidence that this is, in fact, a phase transition to a new low-density phase which may be a precursor or a direct transition to the long sought-after electronic crystal predicted by Eugene Wigner in 1934.

  15. Gases in Seawater

    NASA Astrophysics Data System (ADS)

    Nightingale, P. D.; Liss, P. S.

    2003-12-01

    The annual gross and net primary productivity of the surface oceans is similar in size to that on land (IPCC, 2001). Marine productivity drives the cycling of gases such as oxygen (O2), dimethyl sulfide (DMS), carbon monoxide (CO), carbon dioxide (CO2), and methyl iodide (CH3I) which are of fundamental importance in studies of marine productivity, biogeochemical cycles, atmospheric chemistry, climate, and human health, respectively. For example, ˜30% of the world's population (1,570 million) is thought to be at risk of iodine-deficiency disorders that impair mental development (WHO, 1996). The main source of iodine to land is the supply of volatile iodine compounds produced in the ocean and then transferred to the atmosphere via the air-surface interface. The flux of these marine iodine species to the atmosphere is also thought to be important in the oxidation capacity of the troposphere by the production of the iodine oxide radical ( Alicke et al., 1999). A further example is that the net flux of CO2 from the atmosphere to the ocean, ˜1.7±0.5 Gt C yr-1, represents ˜30% of the annual release of anthropogenic CO2 to the atmosphere (IPCC, 2001). This net flux is superimposed on a huge annual flux (90 Gt C yr-1) of CO2 that is cycled "naturally" between the ocean and the atmosphere. The long-term sink for anthropogenic CO2 is recognized as transfer to the ocean from the atmosphere. A final example is the emission of volatile sulfur, in the form of DMS, from the oceans. Not only is an oceanic flux from the oceans needed to balance the loss of sulfur (a bioessential element) from the land via weathering, it has also been proposed as having a major control on climate due to the formation of cloud condensation nuclei (Charlson et al., 1987). Indeed, the existence of DMS and CH3I has been used as evidence in support of the Gaia hypothesis (Lovelock, 1979).There are at least four main processes that affect the concentration of gases in the water column: biological

  16. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  17. Strain-displacement relations for strain engineering in single-layer 2d materials

    NASA Astrophysics Data System (ADS)

    Midtvedt, Daniel; Lewenkopf, Caio H.; Croy, Alexander

    2016-03-01

    We investigate the electromechanical coupling in single-layer 2d materials. For non-Bravais lattices, we find important corrections to the standard macroscopic strain-microscopic atomic-displacement theory. We put forward a general and systematic approach to calculate strain-displacement relations for several classes of 2d materials. We apply our findings to graphene as a study case, by combining a tight binding and a valence force-field model to calculate electronic and mechanical properties of graphene nanoribbons under strain. The results show good agreement with the predictions of the Dirac equation coupled to continuum mechanics. For this long wave-limit effective theory, we find that the strain-displacement relations lead to a renormalization correction to the strain-induced pseudo-magnetic fields. A similar renormalization is found for the strain-induced band-gap of black phosphorous. Implications for nanomechanical properties and electromechanical coupling in 2d materials are discussed.

  18. Tuning the hysteresis voltage in 2D multilayer MoS2 FETs

    NASA Astrophysics Data System (ADS)

    Jiang, Jie; Zheng, Zhouming; Guo, Junjie

    2016-10-01

    The hysteresis tuning is of great significance before the two-dimensional (2D) molybdenum disulfide (MoS2) field-effect transistors (FETs) can be practically used in the next-generation nanoelectronic devices. In this paper, a simple and effective annealing method was developed to tune the hysteresis voltage in 2D MoS2 transistors. It was found that high temperature (175 °C) annealing in air could increase the hysteresis voltage from 8.0 V (original device) to 28.4 V, while a next vacuum annealing would reduce the hysteresis voltage to be only 2.0 V. An energyband diagram model based on electron trapping/detrapping due to oxygen adsorption is proposed to understand the hysteresis mechanism in multilayer MoS2 FET. This simple method for tuning the hysteresis voltage of MoS2 FET can make a significant step toward 2D nanoelectronic device applications.

  19. 2D:4D finger ratio positively correlates with total cerebral cortex in males.

    PubMed

    Darnai, Gergely; Plózer, Enikő; Perlaki, Gábor; Orsi, Gergely; Nagy, Szilvia Anett; Horváth, Réka; Schwarcz, Attila; Kovács, Norbert; Altbäcker, Anna; Janszky, József; Clemens, Zsófia

    2016-02-26

    Although there is evidence that the ratio of 2nd-4th digit length (2D:4D) correlates with prenatal testosterone level, psychological and health traits only two studies have assessed the relationship with brain morphological features. Here we investigated the association between the 2D:4D ratio and several brain subvolumes. Seventy-five subjects between the ages of 18 and 30 were included in the study. The length of the 2nd and 4th digits were measured with an electronic vernier caliper while MRI measurements were performed on a Siemens Magnetom Trio Tim (3T) system. Freesurfer software suite was used for volumetric segmentation. Finger ratio significantly positively correlated with total cerebral cortex, total cerebellar white matter and total cerebellar cortex in males but not in females. Our results indicate that prenatal testosterone, as estimated by the 2D:4D ratio has an effect on adult brain morphology in males. PMID:26780566

  20. Chemiresistive Sensor Arrays from Conductive 2D Metal-Organic Frameworks.

    PubMed

    Campbell, Michael G; Liu, Sophie F; Swager, Timothy M; Dincă, Mircea

    2015-11-01

    Applications of porous metal-organic frameworks (MOFs) in electronic devices are rare, owing in large part to a lack of MOFs that display electrical conductivity. Here, we describe the use of conductive two-dimensional (2D) MOFs as a new class of materials for chemiresistive sensing of volatile organic compounds (VOCs). We demonstrate that a family of structurally analogous 2D MOFs can be used to construct a cross-reactive sensor array that allows for clear discrimination between different categories of VOCs. Experimental data show that multiple sensing mechanisms are operative with high degrees of orthogonality, establishing that the 2D MOFs used here are mechanistically unique and offer advantages relative to other known chemiresistor materials.

  1. Landau levels in 2D materials using Wannier Hamiltonians obtained by first principles

    NASA Astrophysics Data System (ADS)

    Lado, J. L.; Fernández-Rossier, J.

    2016-09-01

    We present a method to calculate the Landau levels and the corresponding edge states of two dimensional (2D) crystals using as a starting point their electronic structure as obtained from standard density functional theory (DFT). The DFT Hamiltonian is represented in the basis of maximally localized Wannier functions. This defines a tight-binding Hamiltonian for the bulk that can be used to describe other structures, such as ribbons, provided that atomic scale details of the edges are ignored. The effect of the orbital magnetic field is described using the Peierls substitution in the hopping matrix elements. Implementing this approach in a ribbon geometry, we obtain both the Landau levels and the dispersive edge states for a series of 2D crystals, including graphene, Boron Nitride, MoS2, Black Phosphorous, Indium Selenide and MoO3. Our procedure can readily be used in any other 2D crystal, and provides an alternative to effective mass descriptions.

  2. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  3. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  4. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density. PMID:27334788

  5. CYP2D6: novel genomic structures and alleles

    PubMed Central

    Kramer, Whitney E.; Walker, Denise L.; O’Kane, Dennis J.; Mrazek, David A.; Fisher, Pamela K.; Dukek, Brian A.; Bruflat, Jamie K.; Black, John L.

    2010-01-01

    Objective CYP2D6 is a polymorphic gene. It has been observed to be deleted, to be duplicated and to undergo recombination events involving the CYP2D7 pseudogene and surrounding sequences. The objective of this study was to discover the genomic structure of CYP2D6 recombinants that interfere with clinical genotyping platforms that are available today. Methods Clinical samples containing rare homozygous CYP2D6 alleles, ambiguous readouts, and those with duplication signals and two different alleles were analyzed by long-range PCR amplification of individual genes, PCR fragment analysis, allele-specific primer extension assay, and DNA sequencing to characterize alleles and genomic structure. Results Novel alleles, genomic structures, and the DNA sequence of these structures are described. Interestingly, in 49 of 50 DNA samples that had CYP2D6 gene duplications or multiplications where two alleles were detected, the chromosome containing the duplication or multiplication had identical tandem alleles. Conclusion Several new CYP2D6 alleles and genomic structures are described which will be useful for CYP2D6 genotyping. The findings suggest that the recombination events responsible for CYP2D6 duplications and multiplications are because of mechanisms other than interchromosomal crossover during meiosis. PMID:19741566

  6. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

  7. Single particle 3D reconstruction for 2D crystal images of membrane proteins.

    PubMed

    Scherer, Sebastian; Arheit, Marcel; Kowal, Julia; Zeng, Xiangyan; Stahlberg, Henning

    2014-03-01

    In cases where ultra-flat cryo-preparations of well-ordered two-dimensional (2D) crystals are available, electron crystallography is a powerful method for the determination of the high-resolution structures of membrane and soluble proteins. However, crystal unbending and Fourier-filtering methods in electron crystallography three-dimensional (3D) image processing are generally limited in their performance for 2D crystals that are badly ordered or non-flat. Here we present a single particle image processing approach, which is implemented as an extension of the 2D crystallographic pipeline realized in the 2dx software package, for the determination of high-resolution 3D structures of membrane proteins. The algorithm presented, addresses the low single-to-noise ratio (SNR) of 2D crystal images by exploiting neighborhood correlation between adjacent proteins in the 2D crystal. Compared with conventional single particle processing for randomly oriented particles, the computational costs are greatly reduced due to the crystal-induced limited search space, which allows a much finer search space compared to classical single particle processing. To reduce the considerable computational costs, our software features a hybrid parallelization scheme for multi-CPU clusters and computer with high-end graphic processing units (GPUs). We successfully apply the new refinement method to the structure of the potassium channel MloK1. The calculated 3D reconstruction shows more structural details and contains less noise than the map obtained by conventional Fourier-filtering based processing of the same 2D crystal images.

  8. 2D Hybrid Nanostructure of Reduced Graphene Oxide-CdS Nanosheet for Enhanced Photocatalysis.

    PubMed

    Bera, Rajesh; Kundu, Simanta; Patra, Amitava

    2015-06-24

    Graphene-based hybrid nanostructures have recently emerged as a new class of functional materials for light-energy conversion and storage. Here, we have synthesized reduced graphene oxide (RGO)-semiconductor composites to improve the efficiency of photocatalysis. Zero-dimensional CdS nanoparticles (0D), one-dimensional CdS nanorods (1D), and two-dimensional CdS nanosheets (2D) are grafted on the RGO sheet (2D) by a surface modification method using 4-aminothiophenol (4-ATP). Structural analysis confirms the attachment of CdS nanocrystals with RGO, and the strong electronic interaction is found in the case of a CdS nanosheet and RGO, which has an influence on photocatalytic properties. The degradation of dye under visible light varies with changing the dimension of nanocrystals, and the catalytic activity of the CdS NS/RGO composite is ∼4 times higher than that of CdS nanoparticle/RGO and 3.4 times higher than that of CdS nanorod/RGO composite samples. The catalytic activity of the CdS nanosheet/RGO composite is also found to be ∼2.5 times than that of pure CdS nanosheet samples. The unique 2D-2D nanoarchitecture would be effective to harvest photons from solar light and transport electrons to reaction sites with respect to other 0D-2D and 1D-2D hybrid systems. This observation can be extended to other graphene-based inorganic semiconductor composites, which can provide a valuable opportunity to explore novel hybrid materials with superior visible-light-induced catalytic activity.

  9. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  10. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice

    PubMed Central

    Pan, Xian

    2015-01-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter. PMID:25943116

  11. Construction of 2D atomic crystals on transition metal surfaces: graphene, silicene, and hafnene.

    PubMed

    Pan, Yi; Zhang, Lizhi; Huang, Li; Li, Linfei; Meng, Lei; Gao, Min; Huan, Qing; Lin, Xiao; Wang, Yeliang; Du, Shixuan; Freund, Hans-Joachim; Gao, Hong-Jun

    2014-06-12

    The synthesis and structures of graphene on Ru(0001) and Pt(111), silicene on Ag(111) and Ir(111) and the honeycomb hafnium lattice on Ir(111) are reviewed. Epitaxy on a transition metal (TM) substrate is a pro-mising method to produce a variety of two dimensional (2D) atomic crystals which potentially can be used in next generation electronic devices. This method is particularly valuable in the case of producing 2D materials that do not exist in 3D forms, for instance, silicene. Based on the intensive investigations of epitaxial graphene on TM in recent years, it is known that the quality of graphene is affected by many factors, including the interaction between the 2D material overlayer and the substrate, the lattice mismatch, the nucleation density at the early stage of growth. It is found that these factors also apply to many other epitaxial 2D crystals on TM. The knowledge from the reviewed systems will shine light on the design and synthesis of new 2D crystals with novel properties.

  12. 40 CFR 89.312 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Analytical gases. 89.312 Section 89.312....312 Analytical gases. (a) The shelf life of all calibration gases must not be exceeded. The expiration date of the calibration gases stated by the gas manufacturer shall be recorded. (b) Pure gases....

  13. A Large-Area Transferable Wide Band Gap 2D Silicon Dioxide Layer.

    PubMed

    Büchner, Christin; Wang, Zhu-Jun; Burson, Kristen M; Willinger, Marc-Georg; Heyde, Markus; Schlögl, Robert; Freund, Hans-Joachim

    2016-08-23

    An atomically smooth silica bilayer is transferred from the growth substrate to a new support via mechanical exfoliation at millimeter scale. The atomic structure and morphology are maintained perfectly throughout the process. A simple heating treatment results in complete removal of the transfer medium. Low-energy electron diffraction, Auger electron spectroscopy, scanning tunneling microscopy, and environmental scanning electron microscopy show the success of the transfer steps. Excellent chemical and thermal stability result from the absence of dangling bonds in the film structure. By adding this wide band gap oxide to the toolbox of 2D materials, possibilities for van der Waals heterostructures will be broadened significantly.

  14. A Large-Area Transferable Wide Band Gap 2D Silicon Dioxide Layer.

    PubMed

    Büchner, Christin; Wang, Zhu-Jun; Burson, Kristen M; Willinger, Marc-Georg; Heyde, Markus; Schlögl, Robert; Freund, Hans-Joachim

    2016-08-23

    An atomically smooth silica bilayer is transferred from the growth substrate to a new support via mechanical exfoliation at millimeter scale. The atomic structure and morphology are maintained perfectly throughout the process. A simple heating treatment results in complete removal of the transfer medium. Low-energy electron diffraction, Auger electron spectroscopy, scanning tunneling microscopy, and environmental scanning electron microscopy show the success of the transfer steps. Excellent chemical and thermal stability result from the absence of dangling bonds in the film structure. By adding this wide band gap oxide to the toolbox of 2D materials, possibilities for van der Waals heterostructures will be broadened significantly. PMID:27421042

  15. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  16. A study of a sector spectrophotometer and auroral O+(2P-2D) emissions

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.

    1976-01-01

    The metastable O+(2P-2D) auroral emission was investigated. The neighboring OH contaminants and low intensity levels of the emission itself necessitated the evolution of an instrument capable of separating the emission from the contaminants and having a high sensitivity in the wavelength region of interest. A new type of scanning photometer was developed and its properties are discussed. The theoretical aspects of auroral electron interaction with atomic oxygen and the resultant O+(2P-2D) emissions were examined in conjunction with N2(+)1NEG emissions. Ground based measurements of O+(2P-2D) auroral emission intensities were made using the spatial scanning photometer (sector spectrophotometer). Simultaneous measurements of N2(+)1NEG sub 1,0 emission intensity were made in the same field of view using a tilting photometer. Time histories of the ratio of these two emissions made in the magnetic zenith during auroral breakup periods are given. Theories of I sub 7319/I sub 4278 of previous investigators were presented. A rocket measurement of N2(+)1NEG sub 0,0 and O+(2P-2D) emission in aurora was examined in detail and was found to agree with the ground based measurements. Theoretical examination resulted in the deduction of the electron impact efficiency generating O+(2P) and also suggests a large source of O+(2P) at low altitude. A possible source is charge exchange of N+(1S) with OI(3P).

  17. Reconfigurable 2D cMUT-ASIC arrays for 3D ultrasound image

    NASA Astrophysics Data System (ADS)

    Song, Jongkeun; Jung, Sungjin; Kim, Youngil; Cho, Kyungil; Kim, Baehyung; Lee, Seunghun; Na, Junseok; Yang, Ikseok; Kwon, Oh-kyong; Kim, Dongwook

    2012-03-01

    This paper describes the design and implementations of the complete 2D capacitive micromachined ultrasound transducer electronics and its analog front-end module for transmitting high voltage ultrasound pulses and receiving its echo signals to realize 3D ultrasound image. In order to minimize parasitic capacitances and ultimately improve signal-to- noise ratio (SNR), cMUT has to be integrate with Tx/Rx electronics. Additionally, in order to integrate 2D cMUT array module, significant optimized high voltage pulser circuitry, low voltage analog/digital circuit design and packaging challenges are required due to high density of elements and small pitch of each element. We designed 256(16x16)- element cMUT and reconfigurable driving ASIC composed of 120V high voltage pulser, T/R switch, low noise preamplifier and digital control block to set Tx frequency of ultrasound and pulse train in each element. Designed high voltage analog ASIC was successfully bonded with 2D cMUT array by flip-chip bonding process and it connected with analog front-end board to transmit pulse-echo signals. This implementation of reconfigurable cMUT-ASIC-AFE board enables us to produce large aperture 2D transducer array and acquire high quality of 3D ultrasound image.

  18. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  19. Practical Algorithm For Computing The 2-D Arithmetic Fourier Transform

    NASA Astrophysics Data System (ADS)

    Reed, Irving S.; Choi, Y. Y.; Yu, Xiaoli

    1989-05-01

    Recently, Tufts and Sadasiv [10] exposed a method for computing the coefficients of a Fourier series of a periodic function using the Mobius inversion of series. They called this method of analysis the Arithmetic Fourier Transform(AFT). The advantage of the AFT over the FN 1' is that this method of Fourier analysis needs only addition operations except for multiplications by scale factors at one stage of the computation. The disadvantage of the AFT as they expressed it originally is that it could be used effectively only to compute finite Fourier coefficients of a real even function. To remedy this the AFT developed in [10] is extended in [11] to compute the Fourier coefficients of both the even and odd components of a periodic function. In this paper, the improved AFT [11] is extended to a two-dimensional(2-D) Arithmetic Fourier Transform for calculating the Fourier Transform of two-dimensional discrete signals. This new algorithm is based on both the number-theoretic method of Mobius inversion of double series and the complex conjugate property of Fourier coefficients. The advantage of this algorithm over the conventional 2-D FFT is that the corner-turning problem needed in a conventional 2-D Discrete Fourier Transform(DFT) can be avoided. Therefore, this new 2-D algorithm is readily suitable for VLSI implementation as a parallel architecture. Comparing the operations of 2-D AFT of a MxM 2-D data array with the conventional 2-D FFT, the number of multiplications is significantly reduced from (2log2M)M2 to (9/4)M2. Hence, this new algorithm is faster than the FFT algorithm. Finally, two simulation results of this new 2-D AFT algorithm for 2-D artificial and real images are given in this paper.

  20. Noble gases in the moon

    NASA Technical Reports Server (NTRS)

    Manuel, O. K.; Srinivasan, B.; Hennecke, E. W.; Sinclair, D. E.

    1972-01-01

    The abundance and isotopic composition of helium, neon, argon, krypton, and xenon which were released by stepwise heating of lunar fines (15601.64) and (15271.65) were measured spectrometrically. The results of a composition of noble gases released from the lunar fines with noble gases in meteorites and in the earth are presented along with the isotopic composition of noble gases in lunar fines, in meteorites, and in the atmosphere. A study of two isotopically distinct components of trapped xenon in carbonaceous chondrites is also included.

  1. Environmental implications of anesthetic gases.

    PubMed

    Yasny, Jeffrey S; White, Jennifer

    2012-01-01

    For several decades, anesthetic gases have greatly enhanced the comfort and outcome for patients during surgery. The benefits of these agents have heavily outweighed the risks. In recent years, the attention towards their overall contribution to global climate change and the environment has increased. Anesthesia providers have a responsibility to minimize unnecessary atmospheric pollution by utilizing techniques that can lessen any adverse effects of these gases on the environment. Moreover, health care facilities that use anesthetic gases are accountable for ensuring that all anesthesia equipment, including the scavenging system, is effective and routinely maintained. Implementing preventive practices and simple strategies can promote the safest and most healthy environment.

  2. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  3. Recent advances in 2D materials for photocatalysis.

    PubMed

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-04-01

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  4. Phase Separation and Pair Condensation in a Spin-Imbalanced 2D Fermi Gas

    NASA Astrophysics Data System (ADS)

    Mitra, Debayan; Brown, Peter T.; Schauß, Peter; Kondov, Stanimir S.; Bakr, Waseem S.

    2016-08-01

    We study a two-component quasi-two-dimensional Fermi gas with imbalanced spin populations. We probe the gas at different interaction strengths and polarizations by measuring the density of each spin component in the trap and the pair momentum distribution after time of flight. For a wide range of experimental parameters, we observe in-trap phase separation characterized by the appearance of a spin-balanced core surrounded by a polarized gas. Our momentum space measurements indicate pair condensation in the imbalanced gas even for large polarizations where phase separation vanishes, pointing to the presence of a polarized pair condensate. Our observation of zero momentum pair condensates in 2D spin-imbalanced gases opens the way to explorations of more exotic superfluid phases that occupy a large part of the phase diagram in lower dimensions.

  5. Phase Separation and Pair Condensation in a Spin-Imbalanced 2D Fermi Gas.

    PubMed

    Mitra, Debayan; Brown, Peter T; Schauß, Peter; Kondov, Stanimir S; Bakr, Waseem S

    2016-08-26

    We study a two-component quasi-two-dimensional Fermi gas with imbalanced spin populations. We probe the gas at different interaction strengths and polarizations by measuring the density of each spin component in the trap and the pair momentum distribution after time of flight. For a wide range of experimental parameters, we observe in-trap phase separation characterized by the appearance of a spin-balanced core surrounded by a polarized gas. Our momentum space measurements indicate pair condensation in the imbalanced gas even for large polarizations where phase separation vanishes, pointing to the presence of a polarized pair condensate. Our observation of zero momentum pair condensates in 2D spin-imbalanced gases opens the way to explorations of more exotic superfluid phases that occupy a large part of the phase diagram in lower dimensions. PMID:27610853

  6. Phase Separation and Pair Condensation in a Spin-Imbalanced 2D Fermi Gas.

    PubMed

    Mitra, Debayan; Brown, Peter T; Schauß, Peter; Kondov, Stanimir S; Bakr, Waseem S

    2016-08-26

    We study a two-component quasi-two-dimensional Fermi gas with imbalanced spin populations. We probe the gas at different interaction strengths and polarizations by measuring the density of each spin component in the trap and the pair momentum distribution after time of flight. For a wide range of experimental parameters, we observe in-trap phase separation characterized by the appearance of a spin-balanced core surrounded by a polarized gas. Our momentum space measurements indicate pair condensation in the imbalanced gas even for large polarizations where phase separation vanishes, pointing to the presence of a polarized pair condensate. Our observation of zero momentum pair condensates in 2D spin-imbalanced gases opens the way to explorations of more exotic superfluid phases that occupy a large part of the phase diagram in lower dimensions.

  7. 2D hexagonal quaternion Fourier transform in color image processing

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.

    2016-05-01

    In this paper, we present a novel concept of the quaternion discrete Fourier transform on the two-dimensional hexagonal lattice, which we call the two-dimensional hexagonal quaternion discrete Fourier transform (2-D HQDFT). The concept of the right-side 2D HQDFT is described and the left-side 2-D HQDFT is similarly considered. To calculate the transform, the image on the hexagonal lattice is described in the tensor representation when the image is presented by a set of 1-D signals, or splitting-signals which can be separately processed in the frequency domain. The 2-D HQDFT can be calculated by a set of 1-D quaternion discrete Fourier transforms (QDFT) of the splitting-signals.

  8. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  9. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  10. ORION96. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L.A.; Hallquist, J.O.

    1992-02-02

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  11. A 2 D high accuracy slope measuring system based on a Stitching Shack Hartmann Optical Head.

    PubMed

    Idir, Mourad; Kaznatcheev, Konstantine; Dovillaire, Guillaume; Legrand, Jerome; Rungsawang, Rakchanok

    2014-02-10

    We present a 2D Slope measuring System based on a Stitching Shack Hartmann Optical Head (SSH-OH) aiming to perform high accuracy optical metrology for X-ray mirrors. This system was developed to perform high-accuracy automated metrology for extremely high quality optical components needed for synchrotrons or Free Electrons Lasers (FEL), EUV lithography and x-ray astronomy with slope error accuracy better than 50 nrad rms. PMID:24663568

  12. Drift instability of a 2D magnetoplasma in a periodic potential

    NASA Astrophysics Data System (ADS)

    Fessatidis, Vassilios; Horing, Norman J. M.; Sawamura, Makoto

    2010-01-01

    We examine the drift instability of a magnetized 2D electron plasma in a weak periodic potential, taking account of a steady current. In this, we treat a strong magnetic field inducing Landau quantization, and analyze both the inter- and intra-Landau band aspects of the magneto-plasmon spectrum within the framework of the random phase approximation, determining the occurrence of magnetoplasmon instability as a function of drift speed.

  13. A general route to 2D nanoleaves and nanoplates of polyaniline

    NASA Astrophysics Data System (ADS)

    Tao, Yulun; Cheng, Guojun; Zhang, Miao; Hu, Leilei; Yu, Qingbo; Ding, Guoxing

    2015-12-01

    Novel 2D nanoleaves and nanoplates are synthesized by a facile and general method. A set of doping control experiments are carried out to show how PANI self-assemble to nanoleaves and nanoplates. Interestingly, the nanoleaves and nanorods have high crystallinity, according to their XRD patterns. The novel method will be readily scalable to produce polyaniline crystals with different morphologies with high quality and low cost. The polymer semiconductor crystals could be useful for next generation organic electronics such as nanotransistors.

  14. The yield of N/2D/ atoms in the dissociative recombination of NO/+/

    NASA Technical Reports Server (NTRS)

    Kley, D.; Lawrence, G. M.; Stone, E. J.

    1977-01-01

    The quantum yield or branching ratio of N(2D) atoms formed in the reaction e + NO(+) yields N + O was measured to be 76% plus or minus 6%. Photoionization of buffered nitric oxide by a flash lamp was studied using time-resolved atomic absorption. Atoms were produced both by direct photodissociation and by dissociative recombination, and these two effects were separated by means of SF6 as an electron scavenger.

  15. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  16. Generating a 2D Representation of a Complex Data Structure

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  17. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics.

    PubMed

    Nemilentsau, Andrei; Low, Tony; Hanson, George

    2016-02-12

    Motivated by the recent emergence of a new class of anisotropic 2D materials, we examine their electromagnetic modes and demonstrate that a broad class of the materials can host highly directional hyperbolic plasmons. Their propagation direction can be manipulated on the spot by gate doping, enabling hyperbolic beam reflection, refraction, and bending. The realization of these natural 2D hyperbolic media opens up a new avenue in dynamic control of hyperbolic plasmons not possible in the 3D version.

  18. A simultaneous 2D/3D autostereo workstation

    NASA Astrophysics Data System (ADS)

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  19. QUENCH2D. Two-Dimensional IHCP Code

    SciTech Connect

    Osman, A.; Beck, J.V.

    1995-01-01

    QUENCH2D* is developed for the solution of general, non-linear, two-dimensional inverse heat transfer problems. This program provides estimates for the surface heat flux distribution and/or heat transfer coefficient as a function of time and space by using transient temperature measurements at appropriate interior points inside the quenched body. Two-dimensional planar and axisymmetric geometries such as turnbine disks and blades, clutch packs, and many other problems can be analyzed using QUENCH2D*.

  20. CoPc 2D and 1D Arrangement on a Ferromagnetic Surface.

    PubMed

    Annese, Emilia; ViolBarbosa, Carlos E; Rossi, Giorgio; Fujii, Jun

    2016-05-31

    We investigated the growth and electronic properties of Co-phthalocyanine (CoPc) molecule deposited on iron film with different structures (pseudomorph-fcc and bcc) and on iron nanowires by scanning tunnelling microscopy and X-ray absorption spectroscopy (XAS). CoPc molecules self-assemble in a two-dimensional (2D) arrangement with the molecular plane parallel to the iron surfaces, and the local order is lost after the first layer. The molecule-ferromagnet interaction causes the broadening of Co and N unoccupied molecular states as well as different electronic distribution of N states as a function of the atomic structure of iron surface. The ferromagnetic coupling between the molecule and the iron film is dominated by the electronic interaction between Co and the first Fe layer. CoPc 2D arrangement turns into 1D by using as a template the iron nanowire grown on a facet surface of oxidized Cu(332) surface. CoPc molecules interact weakly with the iron nanowires manifesting a substantial Co 3dz spectral feature in XAS spectrum and the possibility of a magnetic interaction between Co moment and iron nanowires. Both CoPc 2D and 1D arrangements can open up new interesting scenarios to tune the magnetic properties of hybrid interfaces involving metallorganic molecules. PMID:27191039