Science.gov

Sample records for 2d electronic spectroscopy

  1. The separation of overlapping transitions in β-carotene with broadband 2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Calhoun, Tessa R.; Davis, Jeffrey A.; Graham, Matthew W.; Fleming, Graham R.

    2012-01-01

    Broadband 2D electronic spectroscopy is applied to β-carotene, revealing new insight into the excited state dynamics of carotenoids by exploring the full energetic range encompassing the S0→S2 and S1→S1n transitions at 77 K. Multiple signals are observed in the regime associated with the proposed S∗ state and isolated through separate analysis of rephasing and nonrephasing contributions. Peaks in rephasing pathways display dynamic lineshapes characteristic of coupling to high energy vibrational modes, and simulation with a simple model supports their assignment to impulsive stimulated Raman scattering. A signal persisting beyond 10 ps in the nonrephasing spectra is still under investigation.

  2. Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria.

    PubMed

    Ostroumov, Evgeny E; Mulvaney, Rachel M; Cogdell, Richard J; Scholes, Gregory D

    2013-04-01

    Although the energy transfer processes in natural light-harvesting systems have been intensively studied for the past 60 years, certain details of the underlying mechanisms remain controversial. We performed broadband two-dimensional (2D) electronic spectroscopy measurements on light-harvesting proteins from purple bacteria and isolated carotenoids in order to characterize in more detail the excited-state manifold of carotenoids, which channel energy to bacteriochlorophyll molecules. The data revealed a well-resolved signal consistent with a previously postulated carotenoid dark state, the presence of which was confirmed by global kinetic analysis. The results point to this state's role in mediating energy flow from carotenoid to bacteriochlorophyll.

  3. Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy.

    PubMed

    Consani, Cristina; Auböck, Gerald; van Mourik, Frank; Chergui, Majed

    2013-03-29

    Tryptophan is commonly used to study protein structure and dynamics, such as protein folding, as a donor in fluorescence resonant energy transfer (FRET) studies. By using ultra-broadband ultrafast two-dimensional (2D) spectroscopy in the ultraviolet (UV) and transient absorption in the visible range, we have disentangled the excited state decay pathways of the tryptophan amino acid residues in ferric myoglobins (MbCN and metMb). Whereas the more distant tryptophan (Trp(7)) relaxes by energy transfer to the heme, Trp(14) excitation predominantly decays by electron transfer to the heme. The excited Trp(14)→heme electron transfer occurs in <40 picoseconds with a quantum yield of more than 60%, over an edge-to-edge distance below ~10 angstroms, outcompeting the FRET process. Our results raise the question of whether such electron transfer pathways occur in a larger class of proteins.

  4. Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy.

    PubMed

    Spokoyny, Boris; Koh, Christine J; Harel, Elad

    2015-03-15

    Broadband supercontinuum (SC) pulses in the few cycle regime are a promising source for spectroscopic and imaging applications. However, SC sources are plagued by poor stability, greatly limiting their utility in phase-resolved nonlinear experiments such as 2D photon echo spectroscopy (2D PES). Here, we generated SC by two-stage filamentation in argon and air starting from 100 fs input pulses, which are sufficiently high-power and stable to record time-resolved 2D PE spectra in a single laser shot. We obtain a total power of 400 μJ/pulse in the visible spectral range of 500-850 nm and, after compression, yield pulses with duration of 6 fs according to transient-grating frequency-resolved optical gating (TG-FROG) measurements. We demonstrate the method on the laser dye, Cresyl Violet, and observe coherent oscillations indicative of nuclear wavepacket dynamics.

  5. Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression.

    PubMed

    Ma, Xiaonan; Dostál, Jakub; Brixner, Tobias

    2016-09-01

    We demonstrate noncollinear coherent two-dimensional (2D) electronic spectroscopy for which broadband pulses are generated in an argon-filled hollow-core fiber pumped by a 1-kHz Ti:Sapphire laser. Compression is achieved to 7 fs duration (TG-FROG) using dispersive mirrors. The hollow fiber provides a clean spatial profile and smooth spectral shape in the 500-700 nm region. The diffractive-optic-based design of the 2D spectrometer avoids directional filtering distortions and temporal broadening from time smearing. For demonstration we record data of cresyl-violet perchlorate in ethanol and use phasing to obtain broadband absorptive 2D spectra. The resulting quantum beating as a function of population time is consistent with literature data. PMID:27607681

  6. A Study of Two Dimensional Electron Gas Using 2D Fourier Transform Spectroscopy

    NASA Astrophysics Data System (ADS)

    McIntyre, Carl; Paul, Jagannath; Karaiskaj, Denis

    2015-03-01

    The dephasing of FES was measured in a symmetrically modulation doped 12 nm single quantum well GaAs/AlGaAs two dimensional electron gas system using time integrated four wave mixing (TIFWM) and a two dimensional Fourier transform spectroscopy (2DFTS). At high in-well carrier densities of ~4 x 1011 cm-2, many body effects that are prevalent and measurable with non-linear optical spectroscopy. Effects of exciton-exciton and exciton-phonon scattering events, exciton populations, and biexciton formation are detectable at these carrier concentrations. Homogeneous linewidths obtained from 2DFT and TIFWM yield a zero Kelvin linewidth of 1.42 meV and an acoustic phonon scattering coefficient of 158 μ eV/K. These observations indicate a rapid increase in homogeneous linewidth with increased temperature. NSF REU Grant # DMR-1263066: REU Site in Applied Physics at USF.

  7. Spectroscopy of emergent states in strongly interacting 2D electron systems

    NASA Astrophysics Data System (ADS)

    Hirjibehedin, Cyrus Farokh

    In this dissertation I present my recent resonant inelastic light scattering studies of the remarkable emergent states formed by strongly interacting 2D electron systems. I describe the first experimental determinations of long wavelength, low energy dispersions in the fractional quantum Hall (FQH) regime. The demonstration of existence of well defined modes at small wavevectors for the nu = 1/3 state gives a measure of the macroscopic extent of the quantum fluid beyond the micron length scale. I report evidence of a novel splitting of modes and discuss interpretations of these modes as two-roton states. I report the first studies to probe the boundary between different FQH sequences that occurs at nu = 1/3. Evidence of the coexistence of excitations from both sequences at distinct energy scales is uncovered. The abrupt appearance of lower energy modes at nu ≲ 1/3 suggests a change in the quantum ground state on crossing the nu = 1/3 boundary. The coexistence of excitations indicates a layered set of excitations of different quasiparticle flavors from a single ground state. I discuss the resonant enhancements of light scattering for spin excitations at nu = 1/3, which are strongest near photoluminescence bands assigned in the literature to negatively charged excitons. The observed enhancement profiles are interpreted by scattering mechanisms with intermediate transitions to states with charged excitonic excitations. We fabricated the first ultra-low density quantum structures and were able to show that light scattering methods are sensitive enough to probe systems currently reaching as low as n = 7.7 x 108cm -2 at wavevectors large enough to show correlation and non-local effects. I find well-defined plasmons with dispersions that deviate from the long wavelength q limit, suggesting evidence of large correlation effects. I discuss the use of light scattering to measure the electron temperature through the anti-Stokes/Stokes scattering ratio, highlighting the

  8. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  9. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy.

    PubMed

    Enriquez, Miriam M; Akhtar, Parveen; Zhang, Cheng; Garab, Győző; Lambrev, Petar H; Tan, Howe-Siang

    2015-06-01

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Qy band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240-270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet-singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  10. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy

    SciTech Connect

    Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang; Akhtar, Parveen; Garab, Győző; Lambrev, Petar H.

    2015-06-07

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  11. Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy.

    PubMed

    Bakulin, Artem A; Morgan, Sarah E; Kehoe, Tom B; Wilson, Mark W B; Chin, Alex W; Zigmantas, Donatas; Egorova, Dassia; Rao, Akshay

    2016-01-01

    Singlet fission is the spin-allowed conversion of a spin-singlet exciton into a pair of spin-triplet excitons residing on neighbouring molecules. To rationalize this phenomenon, a multiexcitonic spin-zero triplet-pair state has been hypothesized as an intermediate in singlet fission. However, the nature of the intermediate states and the underlying mechanism of ultrafast fission have not been elucidated experimentally. Here, we study a series of pentacene derivatives using ultrafast two-dimensional electronic spectroscopy and unravel the origin of the states involved in fission. Our data reveal the crucial role of vibrational degrees of freedom coupled to electronic excitations that facilitate the mixing of multiexcitonic states with singlet excitons. The resulting manifold of vibronic states drives sub-100 fs fission with unity efficiency. Our results provide a framework for understanding singlet fission and show how the formation of vibronic manifolds with a high density of states facilitates fast and efficient electronic processes in molecular systems.

  12. Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Bakulin, Artem A.; Morgan, Sarah E.; Kehoe, Tom B.; Wilson, Mark W. B.; Chin, Alex W.; Zigmantas, Donatas; Egorova, Dassia; Rao, Akshay

    2016-01-01

    Singlet fission is the spin-allowed conversion of a spin-singlet exciton into a pair of spin-triplet excitons residing on neighbouring molecules. To rationalize this phenomenon, a multiexcitonic spin-zero triplet-pair state has been hypothesized as an intermediate in singlet fission. However, the nature of the intermediate states and the underlying mechanism of ultrafast fission have not been elucidated experimentally. Here, we study a series of pentacene derivatives using ultrafast two-dimensional electronic spectroscopy and unravel the origin of the states involved in fission. Our data reveal the crucial role of vibrational degrees of freedom coupled to electronic excitations that facilitate the mixing of multiexcitonic states with singlet excitons. The resulting manifold of vibronic states drives sub-100 fs fission with unity efficiency. Our results provide a framework for understanding singlet fission and show how the formation of vibronic manifolds with a high density of states facilitates fast and efficient electronic processes in molecular systems.

  13. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  14. Correlated Electron Phenomena in 2D Materials

    NASA Astrophysics Data System (ADS)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  15. Broadband THz Spectroscopy of 2D Nanoscale Materials

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Tripathi, Shivendra; Huang, Mengchen; Hsu, Jen-Feng; D'Urso, Brian; Lee, Hyungwoo; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy

    Two-dimensional (2D) materials such as graphene and transition-metal dichalcogenides (TMDC) have attracted intense research interest in the past decade. Their unique electronic and optical properties offer the promise of novel optoelectronic applications in the terahertz regime. Recently, generation and detection of broadband terahertz (10 THz bandwidth) emission from 10-nm-scale LaAlO3/SrTiO3 nanostructures created by conductive atomic force microscope (c-AFM) lithography has been demonstrated . This unprecedented control of THz emission at 10 nm length scales creates a pathway toward hybrid THz functionality in 2D-material/LaAlO3/SrTiO3 heterostructures. Here we report initial efforts in THz spectroscopy of 2D nanoscale materials with resolution comparable to the dimensions of the nanowire (10 nm). Systems under investigation include graphene, single-layer molybdenum disulfide (MoS2), and tungsten diselenide (WSe2) nanoflakes. 1. Y. Ma, et al., Nano Lett. 13, 2884 (2013). We gratefully acknowledge financial support from the following agencies and grants: AFOSR (FA9550-12-1-0268 (JL, PRI), FA9550-12-1-0342 (CBE)), ONR (N00014-13-1-0806 (JL, CBE), N00014-15-1-2847 (JL)), NSF DMR-1124131 (JL, CBE) and DMR-1234096 (CBE).

  16. Ultra-broadband 2D electronic spectroscopy of carotenoid-bacteriochlorophyll interactions in the LH1 complex of a purple bacterium.

    PubMed

    Maiuri, Margherita; Réhault, Julien; Carey, Anne-Marie; Hacking, Kirsty; Garavelli, Marco; Lüer, Larry; Polli, Dario; Cogdell, Richard J; Cerullo, Giulio

    2015-06-01

    We investigate the excitation energy transfer (EET) pathways in the photosynthetic light harvesting 1 (LH1) complex of purple bacterium Rhodospirillum rubrum with ultra-broadband two-dimensional electronic spectroscopy (2DES). We employ a 2DES apparatus in the partially collinear geometry, using a passive birefringent interferometer to generate the phase-locked pump pulse pair. This scheme easily lends itself to two-color operation, by coupling a sub-10 fs visible pulse with a sub-15-fs near-infrared pulse. This unique pulse combination allows us to simultaneously track with extremely high temporal resolution both the dynamics of the photoexcited carotenoid spirilloxanthin (Spx) in the visible range and the EET between the Spx and the B890 bacterio-chlorophyll (BChl), whose Qx and Qy transitions peak at 585 and 881 nm, respectively, in the near-infrared. Global analysis of the one-color and two-color 2DES maps unravels different relaxation mechanisms in the LH1 complex: (i) the initial events of the internal conversion process within the Spx, (ii) the parallel EET from the first bright state S2 of the Spx towards the Qx state of the B890, and (iii) the internal conversion from Qx to Qy within the B890. PMID:26049453

  17. Ultra-broadband 2D electronic spectroscopy of carotenoid-bacteriochlorophyll interactions in the LH1 complex of a purple bacterium.

    PubMed

    Maiuri, Margherita; Réhault, Julien; Carey, Anne-Marie; Hacking, Kirsty; Garavelli, Marco; Lüer, Larry; Polli, Dario; Cogdell, Richard J; Cerullo, Giulio

    2015-06-01

    We investigate the excitation energy transfer (EET) pathways in the photosynthetic light harvesting 1 (LH1) complex of purple bacterium Rhodospirillum rubrum with ultra-broadband two-dimensional electronic spectroscopy (2DES). We employ a 2DES apparatus in the partially collinear geometry, using a passive birefringent interferometer to generate the phase-locked pump pulse pair. This scheme easily lends itself to two-color operation, by coupling a sub-10 fs visible pulse with a sub-15-fs near-infrared pulse. This unique pulse combination allows us to simultaneously track with extremely high temporal resolution both the dynamics of the photoexcited carotenoid spirilloxanthin (Spx) in the visible range and the EET between the Spx and the B890 bacterio-chlorophyll (BChl), whose Qx and Qy transitions peak at 585 and 881 nm, respectively, in the near-infrared. Global analysis of the one-color and two-color 2DES maps unravels different relaxation mechanisms in the LH1 complex: (i) the initial events of the internal conversion process within the Spx, (ii) the parallel EET from the first bright state S2 of the Spx towards the Qx state of the B890, and (iii) the internal conversion from Qx to Qy within the B890.

  18. Ultra-broadband 2D electronic spectroscopy of carotenoid-bacteriochlorophyll interactions in the LH1 complex of a purple bacterium

    SciTech Connect

    Maiuri, Margherita; Réhault, Julien; Polli, Dario; Cerullo, Giulio; Carey, Anne-Marie; Hacking, Kirsty; Cogdell, Richard J.; Garavelli, Marco; Lüer, Larry

    2015-06-07

    We investigate the excitation energy transfer (EET) pathways in the photosynthetic light harvesting 1 (LH1) complex of purple bacterium Rhodospirillum rubrum with ultra-broadband two-dimensional electronic spectroscopy (2DES). We employ a 2DES apparatus in the partially collinear geometry, using a passive birefringent interferometer to generate the phase-locked pump pulse pair. This scheme easily lends itself to two-color operation, by coupling a sub-10 fs visible pulse with a sub-15-fs near-infrared pulse. This unique pulse combination allows us to simultaneously track with extremely high temporal resolution both the dynamics of the photoexcited carotenoid spirilloxanthin (Spx) in the visible range and the EET between the Spx and the B890 bacterio-chlorophyll (BChl), whose Q{sub x} and Q{sub y} transitions peak at 585 and 881 nm, respectively, in the near-infrared. Global analysis of the one-color and two-color 2DES maps unravels different relaxation mechanisms in the LH1 complex: (i) the initial events of the internal conversion process within the Spx, (ii) the parallel EET from the first bright state S{sub 2} of the Spx towards the Q{sub x} state of the B890, and (iii) the internal conversion from Q{sub x} to Q{sub y} within the B890.

  19. Quantum process tomography by 2D fluorescence spectroscopy

    SciTech Connect

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  20. Quantum process tomography by 2D fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-01

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  1. Solution conformation of 2-aminopurine (2-AP) dinucleotide determined by ultraviolet 2D fluorescence spectroscopy (UV-2D FS)

    PubMed Central

    Widom, Julia R.; Johnson, Neil P.; von Hippel, Peter H.; Marcus, Andrew H.

    2013-01-01

    We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analog of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS) – a fluorescence-detected variation of 2D electronic spectroscopy – to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point-dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R12 = 3.5 Å ± 0.5 Å, twist angle θ12 = 5° ± 5°), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV-2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein-nucleic acid complexes. PMID:24223491

  2. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy.

    PubMed

    Giraudeau, Patrick; Frydman, Lucio

    2014-01-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry--from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  3. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)

    SciTech Connect

    Classen, I. G. J.; Boom, J. E.; Vries, P. C. de; Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A.; Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr.; Donne, A. J. H.; Jaspers, R. J. E.; Park, H. K.; Munsat, T.

    2010-10-15

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  4. Peak width issues with generalised 2D correlation NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kirwan, Gemma M.; Adams, Michael J.

    2008-12-01

    Two-dimensional spectral correlation analysis is shown to be sensitive to fluctuations in spectral peak width as a function of perturbation variable. This is particularly significant where peak width fluctuations are of similar order of magnitude as the peak width values themselves and where changes in peak width are not random but are, for example, proportional to intensity. In such cases these trends appear in the asynchronous matrix as false peaks that serve to interfere with interpretation of the data. Complex, narrow band spectra such as provided by 1H NMR spectroscopy are demonstrated to be prone to such interference. 2D correlation analysis was applied to a series of NMR spectra corresponding to a commercial wine fermentation, in which the samples collected over a period of several days exhibit dramatic changes in concentration of minor and major components. The interference due to changing peak width effects is eliminated by synthesizing the recorded spectra using a constant peak width value prior to performing 2D correlation analysis.

  5. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    SciTech Connect

    T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-07-08

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.

  6. Transient 2D IR spectroscopy of charge injection in dye-sensitized nanocrystalline thin films.

    PubMed

    Xiong, Wei; Laaser, Jennifer E; Paoprasert, Peerasak; Franking, Ryan A; Hamers, Robert J; Gopalan, Padma; Zanni, Martin T

    2009-12-23

    We use nonlinear 2D IR spectroscopy to study TiO(2) nanocrystalline thin films sensitized with a Re dye. We find that the free electron signal, which often obscures the vibrational features in the transient absorption spectrum, is not observed in the 2D IR spectra. Its absence allows the vibrational features of the dye to be much better resolved than with the typical IR absorption probe. We observe multiple absorption bands but no cross peaks in the 2D IR spectra, which indicates that the dyes have at least three conformations. Furthermore, by using a pulse sequence in which we initiate electron transfer in the middle of the infrared pulse train, we are able to assign the excited state features by correlating them to the ground state vibrational modes and determine that the three conformations have different time scales and cross sections for electron injection. 2D IR spectroscopy is proving to be very useful in disentangling overlapping structural distributions in biological and chemical physics processes. These experiments demonstrate that nonlinear infrared probes are also a powerful new tool for studying charge transfer at interfaces.

  7. THz devices based on 2D electron systems

    NASA Astrophysics Data System (ADS)

    Xing, Huili Grace; Yan, Rusen; Song, Bo; Encomendero, Jimy; Jena, Debdeep

    2015-05-01

    In two-dimensional electron systems with mobility on the order of 1,000 - 10,000 cm2/Vs, the electron scattering time is about 1 ps. For the THz window of 0.3 - 3 THz, the THz photon energy is in the neighborhood of 1 meV, substantially smaller than the optical phonon energy of solids where these 2D electron systems resides. These properties make the 2D electron systems interesting as a platform to realize THz devices. In this paper, I will review 3 approaches investigated in the past few years in my group toward THz devices. The first approach is the conventional high electron mobility transistor based on GaN toward THz amplifiers. The second approach is to employ the tunable intraband absorption in 2D electron systems to realize THz modulators, where I will use graphene as a model material system. The third approach is to exploit plasma wave in these 2D electron systems that can be coupled with a negative differential conductance element for THz amplifiers/sources/detectors.

  8. Coherent 2D Spectroscopy and Control of Molecular Complexes

    NASA Astrophysics Data System (ADS)

    Brixner, Tobias

    2007-03-01

    Coherent two-dimensional femtosecond spectroscopy is used to investigate electronic couplings within molecular complexes. Third-order optical response functions are measured in a non-collinear three-pulse photon echo geometry with heterodyne signal detection. In combination with suitable simulations this allows recovering the delocalization of excited-state wavefunctions, their coupling, and the corresponding energy transport pathways, with nanometer spatial and femtosecond temporal resolution. Examples of multichromophoric systems are the FMO and the LH3 light-harvesting complexes from green sulfur bacteria and purple bacteria, respectively, for which energy transfer processes have been determined. Additional challenges arise if one is interested in the spectroscopy of photochemical rather than photophysical processes in molecular complexes: The product yields attained by a single femtosecond laser pulse are often very small, and hence time-dependent signals are hard to measure with good signal-to-noise ratio. In the context of coherent control, this implies that bond-breaking photochemistry in liquids is still difficult despite the many successes of optimal control in gas-phase photodissociation. In a novel accumulative scheme, macroscopic amounts of stable photoproducts are generated in an optimal fashion and with high product detection sensitivity. In connection with time-resolved spectroscopy, the accumulative scheme furthermore provides kinetic information on the pathways of low-efficiency chemical reaction channels. This was applied to investigate the photoconversion of green fluorescent protein.

  9. Two dimensional spectroscopy of Liquids in THz-domain: THz analogue of 2D Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Okumura, K.; Tanimura, Y.

    1998-03-01

    After the initial proposal(Y. Tanimura and S. Mukamel, J. Chem. Phys. 99, 9496 (1993)), the two dimensional Raman spectroscopy in the liquid phase has been received a considerable attention. Both experimental and theoretical activity of this field has been quite high. Since we have two controllable delay times, we can obtain more information than the lower-order experiments such as OKE. The new information includes that on heterogeneous distribution in liquids. Recently, it is found that the coupling between the modes in liquids can be investigated by the technique, both experimentally and theoretically(A. Tokmakoff, M.J. Lang, D.S. Larsen, G.R. Fleming, V. Chernyak, and S. Mukamel, Phys. Rev. Lett. (in press))^,(K. Okumura and Y. Tanimura, Chem. Phys. Lett. 278, 175 (1997)) In this talk, we will emphasize that we can perform the THz analogue of the 2D Raman spectroscopy if the THz short-pulse laser becomes available, which may not be in the far future. Theoretically, we can formulate this novel THz spectroscopy on the same footing as the 2D Raman spectroscopy. We will clarify new aspects of this technique comparing with the 2D Raman spectroscopy--- the reason it worth trying the tough experiment. See

  10. Electron-impact spectroscopy

    NASA Technical Reports Server (NTRS)

    Trajmar, S.

    1990-01-01

    The methods of electron impact spectroscopy and cross section measurements are discussed and compared to optical spectroscopy. A brief summary of the status of this field and the available data is given.

  11. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    SciTech Connect

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  12. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  13. Quantum Oscillations in an Interfacial 2D Electron Gas.

    SciTech Connect

    Zhang, Bingop; Lu, Ping; Liu, Henan; Lin, Jiao; Ye, Zhenyu; Jaime, Marcelo; Balakirev, Fedor F.; Yuan, Huiqiu; Wu, Huizhen; Pan, Wei; Zhang, Yong

    2016-01-01

    Recently, it has been predicted that topological crystalline insulators (TCIs) may exist in SnTe and Pb1-xSnxTe thin films [1]. To date, most studies on TCIs were carried out either in bulk crystals or thin films, and no research activity has been explored in heterostructures. We present here the results on electronic transport properties of the 2D electron gas (2DEG) realized at the interfaces of PbTe/ CdTe (111) heterostructures. Evidence of topological state in this interfacial 2DEG was observed.

  14. Dye aggregation identified by vibrational coupling using 2D IR spectroscopy

    SciTech Connect

    Oudenhoven, Tracey A.; Laaser, Jennifer E.; Zanni, Martin T.; Joo, Yongho; Gopalan, Padma

    2015-06-07

    We report that a model dye, Re(CO){sub 3}(bypy)CO{sub 2}H, aggregates into clusters on TiO{sub 2} nanoparticles regardless of our preparation conditions. Using two-dimensional infrared (2D IR) spectroscopy, we have identified characteristic frequencies of monomers, dimers, and trimers. A comparison of 2D IR spectra in solution versus those deposited on TiO{sub 2} shows that the propensity to dimerize in solution leads to higher dimer formation on TiO{sub 2}, but that dimers are formed even if there are only monomers in solution. Aggregates cannot be washed off with standard protocols and are present even at submonolayer coverages. We observe cross peaks between aggregates of different sizes, primarily dimers and trimers, indicating that clusters consist of microdomains in close proximity. 2D IR spectroscopy is used to draw these conclusions from measurements of vibrational couplings, but if molecules are close enough to be vibrationally coupled, then they are also likely to be electronically coupled, which could alter charge transfer.

  15. Electron transfer and ionic displacements at the origin of the 2D electron gas at the LAO/STO interface: direct measurements with atomic-column spatial resolution.

    PubMed

    Cantoni, Claudia; Gazquez, Jaume; Miletto Granozio, Fabio; Oxley, Mark P; Varela, Maria; Lupini, Andrew R; Pennycook, Stephen J; Aruta, Carmela; di Uccio, Umberto Scotti; Perna, Paolo; Maccariello, Davide

    2012-08-01

    Using state-of-the-art, aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy with atomic-scale spatial resolution, experimental evidence for an intrinsic electronic reconstruction at the LAO/STO interface is shown. Simultaneous measurements of interfacial electron density and system polarization are crucial for establishing the highly debated origin of the 2D electron gas.

  16. Human erythrocytes analyzed by generalized 2D Raman correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wesełucha-Birczyńska, Aleksandra; Kozicki, Mateusz; Czepiel, Jacek; Łabanowska, Maria; Nowak, Piotr; Kowalczyk, Grzegorz; Kurdziel, Magdalena; Birczyńska, Malwina; Biesiada, Grażyna; Mach, Tomasz; Garlicki, Aleksander

    2014-07-01

    The most numerous elements of the blood cells, erythrocytes, consist mainly of two components: homogeneous interior filled with hemoglobin and closure which is the cell membrane. To gain insight into their specific properties we studied the process of disintegration, considering these two constituents, and comparing the natural aging process of human healthy blood cells. MicroRaman spectra of hemoglobin within the single RBC were recorded using 514.5, and 785 nm laser lines. The generalized 2D correlation method was applied to analyze the collected spectra. The time passed from blood donation was regarded as an external perturbation. The time was no more than 40 days according to the current storage limit of blood banks, although, the average RBC life span is 120 days. An analysis of the prominent synchronous and asynchronous cross peaks allow us to get insight into the mechanism of hemoglobin decomposition. Appearing asynchronous cross-peaks point towards globin and heme separation from each other, while synchronous shows already broken globin into individual amino acids. Raman scattering analysis of hemoglobin “wrapping”, i.e. healthy erythrocyte ghosts, allows for the following peculiarity of their behavior. The increasing power of the excitation laser induced alterations in the assemblage of membrane lipids. 2D correlation maps, obtained with increasing laser power recognized as an external perturbation, allows for the consideration of alterations in the erythrocyte membrane structure and composition, which occurs first in the proteins. Cross-peaks were observed indicating an asynchronous correlation between the senescent-cell antigen (SCA) and heme or proteins vibrations. The EPR spectra of the whole blood was analyzed regarding time as an external stimulus. The 2D correlation spectra points towards participation of the selected metal ion centers in the disintegration process.

  17. 2D-hyperfine sublevel correlation spectroscopy of tyrosyl radicals.

    PubMed

    Deligiannakis, Y; Ivancich, A; Rutherord, A W

    2002-04-01

    Hyperfine sublevel correlation (HYSCORE) spectroscopy has been used to study the tyrosyl radicals in Photosystem II and bovine liver catalase. The HYSCORE data allow a complete resolution of all the 1H hyperfine tensors of these radicals. The present work shows that the proper analysis of the HYSCORE data allows the complete assignment of the 1H-hyperfine tensors in tyrosine radicals and this offers an alternative experimental tool relative to ENDOR. PMID:11993467

  18. Spectroscopy and Thermometry of Drumhead Modes in a Mesoscopic 2D Coulomb Crystal of ^9Be^+

    NASA Astrophysics Data System (ADS)

    Sawyer, Brian; Britton, Joseph; Teale, Carson; Keith, Adam; Wang, Joseph; Freericks, James; Bollinger, John

    2013-04-01

    We demonstrate spectroscopy and thermometry of individual motional modes in a mesoscopic 2D ion array using entanglement between ion valence electron spins and collective motion. Our system is a ˜400 μm-diameter planar crystal of several hundred ^9Be^+ ions exhibiting complex drumhead modes in the confining potential of a Penning trap. Exploiting precise control over the ^9Be^+ valence electron spins, we apply a homogeneous spin-dependent optical dipole force to excite arbitrary transverse modes with wavelengths ranging from the array diameter to the interparticle spacing of ˜20 μm. In addition to temperature measurements, this spin-motion entanglement induced by the spin-dependent optical dipole force allows for extremely sensitive detection of external forces (˜100 yN) acting on the ion crystal. Characterization of mode frequencies and temperatures is critical for quantum simulation experiments that make use of the ion spins.

  19. Electron dynamics and valley relaxation in 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Gundogdu, Kenan

    2015-03-01

    Single layer transition metal dichalcogenides are 2D semiconducting systems with unique electronic band structure. Two-valley energy bands along with strong spin-orbital coupling lead to valley dependent career spin polarization, which is the basis for recently proposed valleytronic applications. Since the durations of valley population provide the time window in which valley specific processes take place, it is an essential parameter for developing valleytronic devices. These systems also exhibit unusually strong many body affects, such as strong exciton and trion binding, due to reduced dielectric screening of Coulomb interactions. But there is not much known about the impact of strong many particle correlations on spin and valley polarization dynamics. Here we report direct measurements of ultrafast valley specific relaxation dynamics in single layer MoS2 and WS2. We found that excitonic many body interactions significantly contribute to the relaxation process. Biexciton formation reveals hole valley spin relaxation time. Our results also suggest initial fast intervalley electron scattering and electron spin relaxation leads to loss of electron valley polarization, which then facilitates hole valley relaxation via excitonic spin exchange interaction.

  20. Electronic Spectroscopy & Dynamics

    SciTech Connect

    Mark Maroncelli, Nancy Ryan Gray

    2010-06-08

    The Gordon Research Conference (GRC) on Electronic Spectroscopy and Dynamics was held at Colby College, Waterville, NH from 07/19/2009 thru 07/24/2009. The Conference was well-attended with participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. The GRC on Electronic Spectroscopy & Dynamics showcases some of the most recent experimental and theoretical developments in electronic spectroscopy that probes the structure and dynamics of isolated molecules, molecules embedded in clusters and condensed phases, and bulk materials. Electronic spectroscopy is an important tool in many fields of research, and this GRC brings together experts having diverse backgrounds in physics, chemistry, biophysics, and materials science, making the meeting an excellent opportunity for the interdisciplinary exchange of ideas and techniques. Topics covered in this GRC include high-resolution spectroscopy, biological molecules in the gas phase, electronic structure theory for excited states, multi-chromophore and single-molecule spectroscopies, and excited state dynamics in chemical and biological systems.

  1. Two-dimensional vibrational-electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  2. Two-dimensional vibrational-electronic spectroscopy

    SciTech Connect

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  3. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  4. Probing dipole-dipole interaction in a rubidium gas via double-quantum 2D spectroscopy.

    PubMed

    Gao, Feng; Cundiff, Steven T; Li, Hebin

    2016-07-01

    We have implemented double-quantum 2D spectroscopy on a rubidium vapor and shown that this technique provides sensitive and background-free detection of the dipole-dipole interaction. The 2D spectra include signals from both individual atoms and interatomic interactions, allowing quantitative studies of the interaction. A theoretical model based on the optical Bloch equations is used to reproduce the experimental spectrum and confirm the origin of double-quantum signals. PMID:27367074

  5. Accelerated 2D magnetic resonance spectroscopy of single spins using matrix completion

    PubMed Central

    Scheuer, Jochen; Stark, Alexander; Kost, Matthias; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2015-01-01

    Two dimensional nuclear magnetic resonance (NMR) spectroscopy is one of the major tools for analysing the chemical structure of organic molecules and proteins. Despite its power, this technique requires long measurement times, which, particularly in the recently emerging diamond based single molecule NMR, limits its application to stable samples. Here we demonstrate a method which allows to obtain the spectrum by collecting only a small fraction of the experimental data. Our method is based on matrix completion which can recover the full spectral information from randomly sampled data points. We confirm experimentally the applicability of this technique by performing two dimensional electron spin echo envelope modulation (ESEEM) experiments on a two spin system consisting of a single nitrogen vacancy (NV) centre in diamond coupled to a single 13C nuclear spin. The signal to noise ratio of the recovered 2D spectrum is compared to the Fourier transform of randomly subsampled data, where we observe a strong suppression of the noise when the matrix completion algorithm is applied. We show that the peaks in the spectrum can be obtained with only 10% of the total number of the data points. We believe that our results reported here can find an application in all types of two dimensional spectroscopy, as long as the measured matrices have a low rank. PMID:26631593

  6. Electron spectroscopy analysis

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    The Surface Science Laboratories at the University of Alabama in Huntsville (UAH) are equipped with x-ray photoelectron spectroscopy (XPS or ESCA) and Auger electron spectroscopy (AES) facilities. These techniques provide information from the uppermost atomic layers of a sample, and are thus truly surface sensitive. XPS provides both elemental and chemical state information without restriction on the type of material that can be analyzed. The sample is placed into an ultra high vacuum (UHV) chamber and irradiated with x-rays which cause the ejection of photoelectrons from the sample surface. Since x-rays do not normally cause charging problems or beam damage, XPS is applicable to a wide range of samples including metals, polymers, catalysts, and fibers. AES uses a beam of high energy electrons as a surface probe. Following electronic rearrangements within excited atoms by this probe, Auger electrons characteristic of each element present are emitted from the sample. The main advantage of electron induced AES is that the electron beam can be focused down to a small diameter and localized analysis can be carried out. On the rastering of this beam synchronously with a video display using established scanning electron microscopy techniques, physical images and chemical distribution maps of the surface can be produced. Thus very small features, such as electronic circuit elements or corrosion pits in metals, can be investigated. Facilities are available on both XPS and AES instruments for depth-profiling of materials, using a beam of argon ions to sputter away consecutive layers of material to reveal sub-surface (and even semi-bulk) analyses.

  7. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics

    PubMed Central

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-01-01

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics. PMID:27796343

  8. Local electronic structures and 2D topological phase transition of ultrathin Sb films

    NASA Astrophysics Data System (ADS)

    Kim, Sunghwan; Jin, Kyung-Hwan; Park, Joonbum; Kim, Jun Sung; Jhi, Seung-Hoon; Yeom, Han Woong

    We investigate local electronic structures of ultrathin Sb islands and their edges grown on Bi2Te2Se by scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) calculations. The Sb islands of various thickness are grown with atomically well ordered edge structure over the 3 bilayers (BL). On the surfaces and edges of these islands, we clearly resolve edge-localized electronic states by STS measurements, which depend on the thickness. The DFT calculations identify that the strongly localized edge states of 4 and 5 BL films correspond to a quantum spin Hall (QSH) states while the edge states of 3 BL are trivial. Our experimental and theoretical results confirm the 2D topological phase transition of the ultrathin Sb films from trivial to QSH phase. Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science and Department of Physics, Pohang University of Science and Technology, Korea.

  9. Nanowire Electron Scattering Spectroscopy

    NASA Technical Reports Server (NTRS)

    Hunt, Brian; Bronikowsky, Michael; Wong, Eric; VonAllmen, Paul; Oyafuso, Fablano

    2009-01-01

    Nanowire electron scattering spectroscopy (NESS) has been proposed as the basis of a class of ultra-small, ultralow-power sensors that could be used to detect and identify chemical compounds present in extremely small quantities. State-of-the-art nanowire chemical sensors have already been demonstrated to be capable of detecting a variety of compounds in femtomolar quantities. However, to date, chemically specific sensing of molecules using these sensors has required the use of chemically functionalized nanowires with receptors tailored to individual molecules of interest. While potentially effective, this functionalization requires labor-intensive treatment of many nanowires to sense a broad spectrum of molecules. In contrast, NESS would eliminate the need for chemical functionalization of nanowires and would enable the use of the same sensor to detect and identify multiple compounds. NESS is analogous to Raman spectroscopy, the main difference being that in NESS, one would utilize inelastic scattering of electrons instead of photons to determine molecular vibrational energy levels. More specifically, in NESS, one would exploit inelastic scattering of electrons by low-lying vibrational quantum states of molecules attached to a nanowire or nanotube.

  10. 2D-Cosy NMR Spectroscopy as a Quantitative Tool in Biological Matrix: Application to Cyclodextrins.

    PubMed

    Dufour, Gilles; Evrard, Brigitte; de Tullio, Pascal

    2015-11-01

    Classical analytical quantifications in biological matrices require time-consuming sample pre-treatments and extractions. Nuclear magnetic resonance (NMR) analysis does not require heavy sample treatments or extractions which therefore increases its accuracy in quantification. In this study, even if quantitative (q)NMR could not be applied to 2D spectra, we demonstrated that cross-correlations and diagonal peak intensities have a linear relationship with the analyzed pharmaceutical compound concentration. This work presents the validation process of a 2D-correlation spectroscopy (COSY) NMR quantification of 2-hydroxypropyl-β-cyclodextrin in plasma. Specificity, linearity, precision (repeatability and intermediate precision), trueness, limits of quantification (LOQs), and accuracy were used as validation criteria. 2D-NMR could therefore be used as a valuable and accurate analytical technique for the quantification of pharmaceutical compounds, including hardly detectable compounds such as cyclodextrins or poloxamers, in complex biological matrices based on a calibration curve approach.

  11. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED).

    PubMed

    Pawlowski, Sylwin; Galinha, Claudia F; Crespo, João G; Velizarov, Svetlozar

    2016-01-01

    Reverse electrodialysis (RED) is one of the emerging, membrane-based technologies for harvesting salinity gradient energy. In RED process, fouling is an undesirable operation constraint since it leads to a decrease of the obtainable net power density due to increasing stack electric resistance and pressure drop. Therefore, early fouling detection is one of the main challenges for successful RED technology implementation. In the present study, two-dimensional (2D) fluorescence spectroscopy was used, for the first time, as a tool for fouling monitoring in RED. Fluorescence excitation-emission matrices (EEMs) of ion-exchange membrane surfaces and of natural aqueous streams were acquired during one month of a RED stack operation. Fouling evolvement on the ion-exchange membrane surfaces was successfully followed by 2D fluorescence spectroscopy and quantified using principal components analysis (PCA). Additionally, the efficiency of cleaning strategy was assessed by measuring the membrane fluorescence emission intensity before and after cleaning. The anion-exchange membrane (AEM) surface in contact with river water showed to be significantly affected due to fouling by humic compounds, which were found to cross through the membrane from the lower salinity (river water) to higher salinity (sea water) stream. The results obtained show that the combined approach of using 2D fluorescence spectroscopy and PCA has a high potential for studying fouling development and membrane cleaning efficiency in ion exchange membrane processes.

  12. Single-scan 2D NMR: An Emerging Tool in Analytical Spectroscopy

    PubMed Central

    Giraudeau, Patrick; Frydman, Lucio

    2016-01-01

    Two-dimensional Nuclear Magnetic Resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing an increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago a so-called “ultrafast” (UF) approach was proposed, capable to deliver arbitrary 2D NMR spectra involving any kind of homo- or hetero-nuclear correlations, in a single scan. During the intervening years the performance of this sub-second 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool witnessing an expanded scope of applications. The present reviews summarizes the principles and the main developments which have contributed to the success of this approach, and focuses on applications which have been recently demonstrated in various areas of analytical chemistry –from the real time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  13. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    SciTech Connect

    Fujihashi, Yuta; Ishizaki, Akihito; Fleming, Graham R.

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  14. Electronic structure study on 2D hydrogenated Icosagens nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Marutheeswaran, S.; Ramaclus, Jerald V.; Paul, Dolon Chapa

    2014-12-01

    Metal nitride nanosheets has attracted remarkable importance in surface catalysis due to its characteristic ionic nature. In this paper, using density functional theory, we investigate geometric stability and electronic properties of hydrogenated Icosagen nitride nanosheets. Binding energy of the sheets reveals hydrogenation is providing more stability. Band structure of the hydrogenated sheets is found to be n-type semiconductor. Partial density of states shows metals (B, Al, Ga and In) and its hydrogens dominating in the Fermi region. Mulliken charge analysis indications that hydrogenated nanosheets are partially hydridic surface nature except boron nitride.

  15. Amide I'-II' 2D IR spectroscopy provides enhanced protein secondary structural sensitivity.

    PubMed

    Deflores, Lauren P; Ganim, Ziad; Nicodemus, Rebecca A; Tokmakoff, Andrei

    2009-03-11

    We demonstrate how multimode 2D IR spectroscopy of the protein amide I' and II' vibrations can be used to distinguish protein secondary structure. Polarization-dependent amide I'-II' 2D IR experiments on poly-l-lysine in the beta-sheet, alpha-helix, and random coil conformations show that a combination of amide I' and II' diagonal and cross peaks can effectively distinguish between secondary structural content, where amide I' infrared spectroscopy alone cannot. The enhanced sensitivity arises from frequency and amplitude correlations between amide II' and amide I' spectra that reflect the symmetry of secondary structures. 2D IR surfaces are used to parametrize an excitonic model for the amide I'-II' manifold suitable to predict protein amide I'-II' spectra. This model reveals that the dominant vibrational interaction contributing to this sensitivity is a combination of negative amide II'-II' through-bond coupling and amide I'-II' coupling within the peptide unit. The empirically determined amide II'-II' couplings do not significantly vary with secondary structure: -8.5 cm(-1) for the beta sheet, -8.7 cm(-1) for the alpha helix, and -5 cm(-1) for the coil.

  16. Nonlinear 2D-IR spectroscopy as a tool to study peptide dynamics

    NASA Astrophysics Data System (ADS)

    Hamm, Peter

    2000-03-01

    The structure of bio-macromolecules (peptides, proteins, enzymes and DNA) crucially defines their function and it is the enormous progress in structure-sensitive methods (NMR, x-ray) which has lead to an extremely detailed microscopic understanding of reactions in biological systems. Our knowledge on the dynamics of these structures, which presumably is as important for the function as the structure itself, is essentially based on computer simulations with essentially no or very indirect experimental feedback. Nonlinear 2D vibrational spectroscopy (2D-IR) on the amide I mode of small globular peptides has been demonstrated recently and a detailed relationship between the static 3D structure and the strength of cross peaks has been established (in analogy to COSY in 2D-NMR spectroscopy). An extension of this technique allows to observe equilibrium fluctuations of model helices by incorporating an additional population period (i.e. 'mixing time'), giving rise to spectral diffusion of the diagonal peaks and incoherent population transfer between excitonic states (the latter being equivalent to the nuclear Overhauser effect, NOESY). In contrast to spin transitions, however, the processes are not in the 'motional narrowing limit' (i. e. τ_c>=T_2) so that the timescales of protein fluctuation can be measured directly on a picosecond timescale and in a site specific manner.

  17. Terahertz Spectroscopy and Global Analysis of the Bending Vibrations of Acetylene 12C2D2

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Drouin, Brian J.; Pearson, John C.; Pickett, Herbert M.; Lattanzi, Valerio; Walters, Adam

    2009-06-01

    Two hundred and fifty-one 12C2D2 transitions have been measured in the 0.2-1.6 THz region of its ν5-ν4 difference band and 202 of them were observed for the first time. The accuracy of these measurements is estimated to be ranging from 50 kHz to 100 kHz. The 12C2D2 molecules were generated under room temperature by passing 120-150 mTorr D2O vapor through calcium carbide (CaC2) powder. A multistate analysis was carried out for the bending vibrational modes ν4 and ν5 of 12C2D2, which includes the lines observed in this work and prior microwave, far-infrared and infrared data on the pure bending levels. Significantly improved molecular parameters were obtained for 12C2D2 by adding the new measurements to the old data set, which had only 10 lines with microwave measurement precision. New frequency and intensity predictions have been made based on the obtained molecular parameters. The more precise measurements and new predictions reported here will support the analyses of astronomical observations by the future high-resolution spectroscopy telescopes such as Herschel, SOFIA, and ALMA, which will work in the terahertz spectral region.

  18. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)a)

    NASA Astrophysics Data System (ADS)

    Classen, I. G. J.; Boom, J. E.; Suttrop, W.; Schmid, E.; Tobias, B.; Domier, C. W.; Luhmann, N. C.; Donné, A. J. H.; Jaspers, R. J. E.; de Vries, P. C.; Park, H. K.; Munsat, T.; García-Muñoz, M.; Schneider, P. A.

    2010-10-01

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfvén eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  19. Electron spectroscopy of iron disilicide

    NASA Astrophysics Data System (ADS)

    Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.

    2016-09-01

    We have reported on the results of a complex investigation of iron disilicide FeSi2 using characteristic electron energy loss spectroscopy, inelastic electron scattering cross section spectroscopy, and X-ray photoelectron spectroscopy. It has been shown that the main peak in the spectra of inelastic electron scattering for FeSi2 is a superposition of two unresolved peaks, viz., surface and bulk plasmons. An analysis of the fine structure of the spectra of inelastic electron scattering cross section by their decomposition into Lorentzlike Tougaard peaks has made it possible to quantitatively estimate the contributions of individual energy loss processes to the resulting spectrum and determine their origin and energy.

  20. Investigation on the overlapping bands of syndiotactic polystyrene by using 2D-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Qianhong; Zhao, Ying; Zhang, Chunbo; Yang, Jian; Wang, Dujin

    2016-11-01

    In this work, WAXD and FTIR spectroscopy were utilized to investigate the phase transition of syndiotactic polystyrene (sPS) from amorphous phase to mesophase during the isothermal annealing process at 130 °C. Two dimensional (2D) correlation infrared spectroscopy was applied to reveal the sub-bands from the highly overlapping bands. The ∼900 cm-1 band is shown to be composed of two sub-bands. One band located around 906 cm-1 corresponds to the amorphous phase, another peak that occurs around 900 cm-1 is associated with mesophase. The trans-planar conformation band at 1223 cm-1 turns out to consist of two bands which might be related to trans-planar conformation with different sequence lengths.

  1. Dual-mode operation of 2D material-base hot electron transistors

    PubMed Central

    Lan, Yann-Wen; Torres, Jr., Carlos M.; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R.; Lerner, Mitchell B.; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L.

    2016-01-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications. PMID:27581550

  2. Dual-mode operation of 2D material-base hot electron transistors

    NASA Astrophysics Data System (ADS)

    Lan, Yann-Wen; Torres, Carlos M., Jr.; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R.; Lerner, Mitchell B.; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L.

    2016-09-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  3. Dual-mode operation of 2D material-base hot electron transistors.

    PubMed

    Lan, Yann-Wen; Torres, Carlos M; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R; Lerner, Mitchell B; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L

    2016-01-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications. PMID:27581550

  4. Dual-mode operation of 2D material-base hot electron transistors.

    PubMed

    Lan, Yann-Wen; Torres, Carlos M; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R; Lerner, Mitchell B; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L

    2016-09-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  5. 2D exchange 31P NMR spectroscopy of bacteriophage M13 and tobacco mosaic virus.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1995-01-01

    Two-dimensional (2D) exchange 31P nuclear magnetic resonance spectroscopy is used to study the slow overall motion of the rod-shaped viruses M13 and tobacco mosaic virus in concentrated gels. Even for short mixing times, observed diagonal spectra differ remarkably from projection spectra and one-dimensional spectra. Our model readily explains this to be a consequence of the T2e anisotropy caused by slow overall rotation of the viruses about their length axis. 2D exchange spectra recorded for 30% (w/w) tobacco mosaic virus with mixing times < 1 s do not show any off-diagonal broadening, indicating that its overall motion occurs in the sub-Hz frequency range. In contrast, the exchange spectra obtained for 30% M13 show significant off-diagonal intensity for mixing times of 0.01 s and higher. A log-gaussian distribution around 25 Hz of overall diffusion coefficients mainly spread between 1 and 10(3) Hz faithfully reproduces the 2D exchange spectra of 30% M13 recorded at various mixing times in a consistent way. A small but notable change in diagonal spectra at increasing mixing time is not well accounted for by our model and is probably caused by 31P spin diffusion. PMID:7756532

  6. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    PubMed Central

    Swisher, Christine Leon; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-01-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate–lactate, pyruvate–alanine, and pyruvate–hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines. PMID:26117655

  7. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    NASA Astrophysics Data System (ADS)

    Leon Swisher, Christine; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-08-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate-lactate, pyruvate-alanine, and pyruvate-hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines.

  8. VLT/VIMOS integral field spectroscopy of luminous and ultraluminous infrared galaxies: 2D kinematic properties

    NASA Astrophysics Data System (ADS)

    Bellocchi, Enrica; Arribas, Santiago; Colina, Luis; Miralles-Caballero, Daniel

    2013-09-01

    Context. (Ultra) Luminous infrared galaxies [(U)LIRGs] host the most extreme star-forming events in the present universe and are places where a significant fraction of the past star formation beyond z ~ 1 has occurred. The kinematic characterization of this population is important to constrain the processes that govern such events. Aims: We present and discuss the 2D kinematic properties of the ionized gas (Hα) in sample local (U)LIRGs, for which relatively high linear resolution and signal-to-noise (S/N) ratio can be obtained. Methods: We have obtained Very Large Telescope VIMOS optical integral field spectroscopy (IFS) for 38 local (z < 0.1) (U)LIRGs (31 LIRGs and 7 ULIRGs, 51 individual galaxies). This sample covers well the less studied LIRG luminosity range, and it includes the morphological types corresponding to the different phases along the merging process (i.e., isolated disks, interacting and merging systems). Results: The vast majority of objects have two main kinematically distinct components. One component (i.e., narrow or systemic) extends over the whole line-emitting region and is characterized by small-to-intermediate velocity dispersions (i.e., σ from 30 to 160 km s-1). The second component (broad) has a larger velocity dispersion (up to 320 km s-1); it is mainly found in the inner regions and is generally blueshifted with respect to the systemic component. The largest extensions and extreme kinematic properties are observed in interacting and merging systems, and they are likely associated with nuclear outflows. The systemic component traces the overall velocity field, showing a large variety of kinematic 2D structures, from very regular velocity patterns typical of pure rotating disks (29%) to kinematically perturbed disks (47%) and highly disrupted and complex velocity fields (24%). Thus, most of the objects (76%) are dominated by rotation. We find that rotation is more relevant in LIRGs than in ULIRGs. There is a clear correlation between

  9. Water of Hydration Dynamics in Minerals Gypsum and Bassanite: Ultrafast 2D IR Spectroscopy of Rocks.

    PubMed

    Yan, Chang; Nishida, Jun; Yuan, Rongfeng; Fayer, Michael D

    2016-08-01

    Water of hydration plays an important role in minerals, determining their crystal structures and physical properties. Here ultrafast nonlinear infrared (IR) techniques, two-dimensional infrared (2D IR) and polarization selective pump-probe (PSPP) spectroscopies, were used to measure the dynamics and disorder of water of hydration in two minerals, gypsum (CaSO4·2H2O) and bassanite (CaSO4·0.5H2O). 2D IR spectra revealed that water arrangement in freshly precipitated gypsum contained a small amount of inhomogeneity. Following annealing at 348 K, water molecules became highly ordered; the 2D IR spectrum became homogeneously broadened (motional narrowed). PSPP measurements observed only inertial orientational relaxation. In contrast, water in bassanite's tubular channels is dynamically disordered. 2D IR spectra showed a significant amount of inhomogeneous broadening caused by a range of water configurations. At 298 K, water dynamics cause spectral diffusion that sampled a portion of the inhomogeneous line width on the time scale of ∼30 ps, while the rest of inhomogeneity is static on the time scale of the measurements. At higher temperature, the dynamics become faster. Spectral diffusion accelerates, and a portion of the lower temperature spectral diffusion became motionally narrowed. At sufficiently high temperature, all of the dynamics that produced spectral diffusion at lower temperatures became motionally narrowed, and only homogeneous broadening and static inhomogeneity were observed. Water angular motions in bassanite exhibit temperature-dependent diffusive orientational relaxation in a restricted cone of angles. The experiments were made possible by eliminating the vast amount of scattered light produced by the granulated powder samples using phase cycling methods. PMID:27385320

  10. Center Line Slope Analysis in Two-Dimensional Electronic Spectroscopy

    PubMed Central

    2015-01-01

    Center line slope (CLS) analysis in 2D infrared spectroscopy has been extensively used to extract frequency–frequency correlation functions of vibrational transitions. We apply this concept to 2D electronic spectroscopy, where CLS is a measure of electronic gap fluctuations. The two domains, infrared and electronic, possess differences: In the infrared, the frequency fluctuations are classical, often slow and Gaussian. In contrast, electronic spectra are subject to fast spectral diffusion and affected by underdamped vibrational wavepackets in addition to Stokes shift. All these effects result in non-Gaussian peak profiles. Here, we extend CLS-analysis beyond Gaussian line shapes and test the developed methodology on a solvated molecule, zinc phthalocyanine. We find that CLS facilitates the interpretation of 2D electronic spectra by reducing their complexity to one dimension. In this way, CLS provides a highly sensitive measure of model parameters describing electronic–vibrational and electronic–solvent interaction. PMID:26463085

  11. Earle K. Plyler Prize for Molecular Spectroscopy and Dynamics Lecture: 2D IR Spectroscopy of Peptide Conformation

    NASA Astrophysics Data System (ADS)

    Tokmakoff, Andrei

    2012-02-01

    Descriptions of protein and peptide conformation are colored by the methods we use to study them. Protein x-ray and NMR structures often lead to impressions of rigid or well-defined conformations, even though these are dynamic molecules. The conformational fluctuations and disorder of proteins and peptides is more difficult to quantify. This presentation will describe an approach toward characterizing and quantifying structural heterogeneity and disorder in peptides using 2D IR spectroscopy. Using amide I vibrational spectroscopy, isotope labeling strategies, and computational modeling based on molecular dynamics simulations and Markov state models allows us to characterize distinct peptide conformers and conformational variation. The examples illustrated include the beta-hairpin tripzip2 and elastin-like peptides.

  12. Nanowire electron scattering spectroscopy

    NASA Technical Reports Server (NTRS)

    Hunt, Brian D. (Inventor); Bronikowski, Michael (Inventor); Wong, Eric W. (Inventor); von Allmen, Paul (Inventor); Oyafuso, Fabiano A. (Inventor)

    2009-01-01

    Methods and devices for spectroscopic identification of molecules using nanoscale wires are disclosed. According to one of the methods, nanoscale wires are provided, electrons are injected into the nanoscale wire; and inelastic electron scattering is measured via excitation of low-lying vibrational energy levels of molecules bound to the nanoscale wire.

  13. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probea)

    NASA Astrophysics Data System (ADS)

    Chen, Y. H.; Yang, X. Y.; Lin, C.; Wang, L.; Xu, M.; Wang, X. G.; Xiao, C. J.

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  14. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe.

    PubMed

    Chen, Y H; Yang, X Y; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  15. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  16. Fast acquisition of high-resolution 2D NMR spectroscopy in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Zeng, Qing; Yang, Jian; Lin, Yanqin; Chen, Zhong

    2016-05-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical and biological analyses. In this study, we combine the J-coupling coherence transfer module with the echo-train acquisition technique for fast acquisition of high-resolution 2D NMR spectra in magnetic fields with unknown spatial variations. The proposed method shows satisfactory performance on a 5 mM ethyl 3-bromopropionate sample, under a 5-kHz (10 ppm at 11.7 T) B0 inhomogeneous field, as well as under varying degrees of pulse-flip-angle deviations. Moreover, a simulative ex situ NMR measurement is also conducted to show the effectiveness of the proposed pulse sequence.

  17. How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping

    PubMed Central

    Shim, Sang-Hee; Zanni, Martin T.

    2010-01-01

    We have recently developed a new and simple way of collecting 2D infrared and visible spectra that utilizes a pulse shaper and a partly collinear beam geometry. 2D IR and Vis spectroscopies are powerful tools for studying molecular structures and their dynamics. They can be used to correlate vibrational or electronic eigenstates, measure energy transfer rates, and quantify the dynamics of lineshapes, for instance, all with femtosecond time-resolution. As a result, they are finding use in systems that exhibit fast dynamics, such as sub-millisecond chemical and biological dynamics, and in hard-to-study environments, such as in membranes. While powerful, these techniques have been difficult to implement because they require a series of femtosecond pulses to be spatially and temporally overlapped with precise time-resolution and interferometric phase stability. However, many of the difficulties associated with implementing 2D spectroscopies are eliminated by using a pulse shaper and a simple beam geometry, which substantially lowers the technical barriers required for researchers to enter this exciting field while simultaneously providing many new capabilities. The aim of this paper is to provide an overview of the methods for collecting 2D spectra so that an outsider considering using 2D spectroscopy in their own research can judge which approach would be most suitable for their research aims. This paper focuses primarily on 2D IR spectroscopy, but also includes our recent work on adapting this technology to collecting 2D Vis spectra. We review work that has already been published as well as cover several topics that we have not reported previously, including phase cycling methods to remove background signals, eliminate unwanted scatter, and shift data collection into the rotating frame. PMID:19290321

  18. Detection of 2D phase transitions at the electrode/electrolyte interface using electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Tymoczko, Jakub; Colic, Viktor; Bandarenka, Aliaksandr S.; Schuhmann, Wolfgang

    2015-01-01

    The capacitance of the electric double layer, CDL, formed at the electrode/electrolyte interface is generally determined by electrochemical impedance spectroscopy (EIS). However, CDL values obtained using EIS data often depend on the ac frequency of the potential perturbation used in EIS. The reasons for the observed frequency dispersions can be various, and hence extracting valuable information about the status of the electrified interface is not possible with the required certainty. In this work, using well-understood electrochemical systems, namely Pt(111) electrodes in contact with a series of acidic sulfate ions containing electrolytes, we provide strong evidence that 2D phase transitions in the adsorbate layers and, in general, structural effects at the electrode/electrolyte interface are in many cases responsible for the frequency dispersion of the double layer capacitance. These empirical findings open new opportunities for the detection and evaluation of 2D phase transition processes and other structural effects using EIS, even in presence of simultaneously occurring electrochemical processes. However, further theoretical elaboration of this effect is necessary.

  19. pH-induced structural changes of ovalbumin studied by 2D correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kang, Daehoon; Ryu, Soo Ryeon; Park, Yeonju; Czarnik-Matusewicz, Bogusława; Jung, Young Mee

    2014-07-01

    The secondary structural changes of pH-induced ovalbumin during the transition from native state into intermediate state were studied with the use of 2D correlation spectroscopy and principal component analysis. 2D correlation spectra constructed from the pH-dependent IR spectra of ovalbumin solution revealed the following scenario of the intensity changes with pH decrease. When pH decreased from 5.5 and 3.6 intensity of components attributed to the β-turns, the α-helical elements, and native β-sheets increased. It was caused by protonation induced changes in environment of these elements. When the protonation of the acidic groups were finalized the system adopted the intermediate structure. It was accompanied by weak structural changes that mainly included the β-turns and the α-helices. In extreme acidic conditions at pH below pH 2 the intermediate structure was no longer stable and oligomers rich in the β-sheet structure were formed.

  20. A 2D correlation Raman spectroscopy analysis of a human cataractous lens

    NASA Astrophysics Data System (ADS)

    Sacharz, Julia; Wesełucha-Birczyńska, Aleksandra; Paluszkiewicz, Czesława; Chaniecki, Piotr; Błażewicz, Marta

    2016-11-01

    This work is a continuation of our study of a cataractous human eye lens removed after phacoemulsification surgery. There are clear differences in the lens colors that allowed for distinguishing two opaque phases in the obtained biological material: the white- and yellow-phase. The Raman spectroscopy and 2D correlation spectroscopy method were used to trace a pathologically altered human cataract lens at a molecular level. Although the Raman spectra of these two phases are relatively similar, taking advantage of 2D correlation, and considering time as an external perturbation, the synchronous and asynchronous spectra were obtained showing completely different patterns. Prominent synchronous auto-peaks appear at 3340, 2920, 1736, 1665 and 1083 cm-1 for the white-, and at 2929 and 1670 cm-1 for the yellow phase. The white phase is characterized by intensive asynchronous peaks at -(2936, 3360), -(1650, 1674) and +(1620,1678). The modifications in the water contained in the white phase structure are ahead of the changes in the protein (CH3-groups), furthermore changes in β-conformation are asynchronous with respect to the α-structure. The yellow phase demonstrates asynchronous peaks: +(2857, 2928), +(1645,1673), +(1663, 1679), and +(1672,1707). These illustrate concomitant modifications in the β- and unordered conformation. Both forms of cataractous human eye lens, white- and yellow-phases, are degenerate forms of the eye lens proteins, both are arranged in a different way. The main differences are observed for the amide I, methyl, methylene and Osbnd H vibrational band region. The effect of Asp, Glu and Tyr amino acids in cataractous lens transformations was observed.

  1. Preparation of 2D crystals of membrane proteins for high-resolution electron crystallography data collection.

    PubMed

    Abeyrathne, Priyanka D; Chami, Mohamed; Pantelic, Radosav S; Goldie, Kenneth N; Stahlberg, Henning

    2010-01-01

    Electron crystallography is a powerful technique for the structure determination of membrane proteins as well as soluble proteins. Sample preparation for 2D membrane protein crystals is a crucial step, as proteins have to be prepared for electron microscopy at close to native conditions. In this review, we discuss the factors of sample preparation that are key to elucidating the atomic structure of membrane proteins using electron crystallography.

  2. Nano-scale electronic and optoelectronic devices based on 2D crystals

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjuan

    In the last few years, the research community has been rapidly growing interests in two-dimensional (2D) crystals and their applications. The properties of these 2D crystals are diverse -- ranging from semi-metal such as graphene, semiconductors such as MoS2, to insulator such as boron nitride. These 2D crystals have many unique properties as compared to their bulk counterparts due to their reduced dimensionality and symmetry. A key difference is the band structures, which lead to distinct electronic and photonic properties. The 2D nature of the material also plays an important role in defining their exceptional properties of mechanical strength, surface sensitivity, thermal conductivity, tunable band-gap and their interaction with light. These unique properties of 2D crystals open up a broad territory of applications in computing, communication, energy, and medicine. In this talk, I will present our work on understanding the electrical properties of graphene and MoS2, in particular current transport and band-gap engineering in graphene, interface between gate dielectrics and graphene, and gap states in MoS2. I will also present our work on the nano-scale electronic devices (RF and logic devices) and photonic devices (plasmonic devices and photo-detectors) based on these 2D crystals.

  3. Multidimensional Electronic Spectroscopy of Photochemical Reactions.

    PubMed

    Nuernberger, Patrick; Ruetzel, Stefan; Brixner, Tobias

    2015-09-21

    Coherent multidimensional electronic spectroscopy can be employed to unravel various channels in molecular chemical reactions. This approach is thus not limited to analysis of energy transfer or charge transfer (i.e. processes from photophysics), but can also be employed in situations where the investigated system undergoes permanent structural changes (i.e. in photochemistry). Photochemical model reactions are discussed by using the example of merocyanine/spiropyran-based molecular switches, which show a rich variety of reaction channels, in particular ring opening and ring closing, cis-trans isomerization, coherent vibrational wave-packet motion, radical ion formation, and population relaxation. Using pump-probe, pump-repump-probe, coherent two-dimensional and three-dimensional, triggered-exchange 2D, and quantum-control spectroscopy, we gain intuitive pictures on which product emerges from which reactant and which reactive molecular modes are associated. PMID:26382095

  4. Water dynamics in salt solutions studied with ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy.

    PubMed

    Fayer, Michael D; Moilanen, David E; Wong, Daryl; Rosenfeld, Daniel E; Fenn, Emily E; Park, Sungnam

    2009-09-15

    Water is ubiquitous in nature, but it exists as pure water infrequently. From the ocean to biology, water molecules interact with a wide variety of dissolved species. Many of these species are charged. In the ocean, water interacts with dissolved salts. In biological systems, water interacts with dissolved salts as well as charged amino acids, the zwitterionic head groups of membranes, and other biological groups that carry charges. Water plays a central role in a vast number of chemical processes because of its dynamic hydrogen-bond network. A water molecule can form up to four hydrogen bonds in an approximately tetrahedral arrangement. These hydrogen bonds are continually being broken, and new bonds are being formed on a picosecond time scale. The ability of the hydrogen-bond network of water to rapidly reconfigure enables water to accommodate and facilitate chemical processes. Therefore, the influence of charged species on water hydrogen-bond dynamics is important. Recent advances in ultrafast coherent infrared spectroscopy have greatly expanded our understanding of water dynamics. Two-dimensional infrared (2D IR) vibrational echo spectroscopy is providing new observables that yield direct information on the fast dynamics of molecules in their ground electronic state under thermal equilibrium conditions. The 2D IR vibrational echoes are akin to 2D nuclear magnetic resonance (NMR) but operate on time scales that are many orders of magnitude shorter. In a 2D IR vibrational echo experiment (see the Conspectus figure), three IR pulses are tuned to the vibrational frequency of interest, which in this case is the frequency of the hydroxyl stretching mode of water. The first two pulses "label" the initial molecular structures by their vibrational frequencies. The system evolves between pulses two and three, and the third pulse stimulates the emission of the vibrational echo pulse, which is the signal. The vibrational echo pulse is heterodyne, detected by combining it

  5. Ultrafast Charge Transfer Visualized by Two-Dimensional Electronic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bixner, O.; Christensson, N.; Hauer, J.; Milota, F.; Mančal, T.; Lukeš, V.; Kauffmann, H. F.

    2013-03-01

    Two-dimensional electronic spectroscopy (2D-ES) is used to investigate ultrafast excited-state dynamics in a lutetium bisphthalocyanine dimer. Following optical excitation, a chain of electron and hole transfer steps gives rise to characteristic cross-peak dynamics in the electronic 2D spectra. The combination of density matrix propagation and quantum chemical calculations results in a molecular view of the charge transfer dynamics and highlights the role of the counter-ion in providing an energetic perturbation which promotes charge transfer across the complex.

  6. Experiments on 2D Vortex Patterns with a Photoinjected Pure Electron Plasma

    NASA Astrophysics Data System (ADS)

    Durkin, Daniel; Fajans, Joel

    1998-11-01

    The equations governing the evolution of a strongly magnetized pure electron plasma are analogous to those of an ideal 2D fluid; plasma density is analogous to fluid vorticity. Therefore, we can study vortex dynamics with pure electron plasmas. We generate our electron plasma with a photocathode electron source. The photocathode provides greater control over the initial profile than previous thermionic sources and allows us to create complicated initial density distributions, corresponding to complicated vorticity distributions in a fluid. Results on the stability of 2D vortex patterns will be presented: 1) The stability of N vortices arranged in a ring; 2) The stability of N vortices arranged in a ring with a central vortex; 3) The stability of more complicated vortex patterns.(http://socrates.berkeley.edu/ )fajans/

  7. Two-dimensional electronic spectroscopy using incoherent light: theoretical analysis.

    PubMed

    Turner, Daniel B; Howey, Dylan J; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J

    2013-07-25

    Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I((4)) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and new opportunities.

  8. 2-D simulation of a waveguide free electron laser having a helical undulator

    SciTech Connect

    Kim, S.K.; Lee, B.C.; Jeong, Y.U.

    1995-12-31

    We have developed a 2-D simulation code for the calculation of output power from an FEL oscillator having a helical undulator and a cylindrical waveguide. In the simulation, the current and the energy of the electron beam is 2 A and 400 keV, respectively. The parameters of the permanent-magnet helical undulator are : period = 32 mm, number of periods = 20, magnetic field = 1.3 kG. The gain per pass is 10 and the output power is calculated to be higher than 10 kW The results of the 2-D simulation are compared with those of 1-D simulation.

  9. Study of aging in oil paintings by 1D and 2D NMR spectroscopy.

    PubMed

    Spyros, Apostolos; Anglos, Demetrios

    2004-09-01

    Nuclear magnetic resonance spectroscopy is proposed as an efficient analytical tool in the study of painted artworks. The binding medium from two original oil paintings, dated from the early 20th and the late 17th century, was studied via high-resolution 1D and 2D NMR, establishing the advanced state of hydrolysis and oxidation of the oil paint. Studies of the solvent-extractable component from model samples of various drying oils, raw oil paints, and aged oil paints allowed the definition of several markers based on the integral ratios of various chemical species present in the 1H and 13C NMR spectra. These markers are sensitive to hydrolytic and oxidative processes that reflect the extent of aging in oil paintings. The rapidity, simplicity, and nondestructive nature of the proposed analytical NMR methodology represents a great advantage, since the usually minute sample quantities available from original artwork can be subsequently analyzed further by other analytical techniques, if necessary. PMID:15373425

  10. Two-Dimensional Electronic Spectroscopy in the Ultraviolet Wavelength Range.

    PubMed

    West, Brantley A; Moran, Andrew M

    2012-09-20

    Coherent two-dimensional (2D) spectroscopies conducted at visible and infrared wavelengths are having a transformative impact on the understanding of numerous processes in condensed phases. The extension of 2D spectroscopy to the ultraviolet spectral range (2DUV) must contend with several challenges, including the attainment of adequate laser bandwidth, interferometric phase stability, and the suppression of undesired nonlinearities in the sample medium. Solutions to these problems are motivated by the study of a wide range of biological systems whose lowest-frequency electronic resonances are found in the UV. The development of 2DUV spectroscopy also makes possible the attainment of new insights into elementary chemical reaction dynamics (e.g., electrocyclic ring opening in cycloalkenes). Substantial progress has been made in both the implementation and application of 2DUV spectroscopy in the past several years. In this Perspective, we discuss 2DUV methodology, review recent applications, and speculate on what the future will hold.

  11. Peak separation and sorting by coherent 2D resonance Raman spectroscopy.

    PubMed

    Chen, Peter C; Joyner, Candace C

    2005-09-01

    The ability to separate and sort peaks is explored using a new coherent two-dimensional form of resonance Raman spectroscopy. This experimental technique distributes normally congested rotational-vibrational peaks along a series of curved lines according to vibrational sequence, rotational quantum number, and selection rule. Each line consists of rotational-vibrational peaks that have the same vibrational sequence and the same value for DeltaJ, distributed in order by rotational quantum number. For diatomic molecules, these lines originate from points where they initially travel in opposite or orthogonal directions in two-dimensional space, which helps facilitate the separation between lines. Simulations and experimental results on C2 in a flame confirm the ability to separate and sort these normally congested rotational-vibrational peaks. This method appears to provide a solution to the long-standing problems of spectral congestion and disorder in gas-phase electronic spectra.

  12. Positron spectroscopy of 2D materials using an advanced high intensity positron beam

    NASA Astrophysics Data System (ADS)

    McDonald, A.; Chirayath, V.; Lim, Z.; Gladen, R.; Chrysler, M.; Fairchild, A.; Koymen, A.; Weiss, A.

    An advanced high intensity variable energy positron beam(~1eV to 20keV) has been designed, tested and utilized for the first coincidence Doppler broadening (CDB) measurements on 6-8 layers graphene on polycrystalline Cu sample. The system is capable of simultaneous Positron annihilation induced Auger electron Spectroscopy (PAES) and CDB measurements giving it unparalleled sensitivity to chemical structure at external surfaces, interfaces and internal pore surfaces. The system has a 3m flight path up to a micro channel plate (MCP) for the Auger electrons emitted from the sample. This gives a superior energy resolution for PAES. A solid rare gas(Neon) moderator was used for the generation of the monoenergetic positron beam. The positrons were successfully transported to the sample chamber using axial magnetic field generated with a series of Helmholtz coils. We will discuss the PAES and coincidence Doppler broadening measurements on graphene -Cu sample and present an analysis of the gamma spectra which indicates that a fraction of the positrons implanted at energies 7-60eV can become trapped at the graphene/metal interface. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  13. High resolution spectroscopy of the Cs2 D 1Sigma u + -X 1Sigma g + transition and hyperfine structure

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tooru; Usui, Takashi; Kumauchi, Takahiro; Baba, Masaaki; Ishikawa, Kiyoshi; Katô, Hajime

    1993-02-01

    The Doppler-free high resolution laser spectroscopy of Cs2 D 1Σu+-X 1Σg+ transition is extended up to v'=65. By comparing the spectral linewidth and the time-resolved fluorescence intensity, the line broadening observed for transitions to the D 1Σu+(v'=63,J'≤70) levels is identified as the lifetime broadening originating from the predissociation. Line splittings are observed for the D 1Σu+(v'=46,J'≥95)-X 1Σg+(v`= 1,J`) transitions and are identified as the hyperfine splitting due to a magnetic dipole interaction between nuclear spin and electron. The hyperfine splitting is attributed to mixing of the (2) 3Πu state, whose wave function changes from Hund's case (a) to case (b) at large J. The dependence of the electric dipole transition moment on the internuclear distance for the D 1Σu+-X 1Σg+ transition is determined by comparing the observed and calculated line intensities of the dispersed fluorescence.

  14. Single Scan 2D NMR Spectroscopy on a 25 T Bitter Magnet.

    PubMed

    Shapira, Boaz; Shetty, Kiran; Brey, William W; Gan, Zhehong; Frydman, Lucio

    2007-07-16

    2D NMR relies on monitoring systematic changes in the phases incurred by spin coherences as a function of an encoding time t(1), whose value changes over the course of independent experiments. The intrinsic multiscan nature of such protocols implies that resistive and/or hybrid magnets, capable of delivering the highest magnetic field strengths but possessing poor temporal stabilities, become unsuitable for 2D NMR acquisitions. It is here shown with a series of homo- and hetero-nuclear examples that such limitations can be bypassed using recently proposed 2D "ultrafast" acquisition schemes, which correlate interactions along all spectral dimensions within a single scan.

  15. Single Scan 2D NMR Spectroscopy on a 25 T Bitter Magnet

    PubMed Central

    Shapira, Boaz; Shetty, Kiran; Brey, William W.; Gan, Zhehong; Frydman, Lucio

    2007-01-01

    2D NMR relies on monitoring systematic changes in the phases incurred by spin coherences as a function of an encoding time t1, whose value changes over the course of independent experiments. The intrinsic multiscan nature of such protocols implies that resistive and/or hybrid magnets, capable of delivering the highest magnetic field strengths but possessing poor temporal stabilities, become unsuitable for 2D NMR acquisitions. It is here shown with a series of homo- and hetero-nuclear examples that such limitations can be bypassed using recently proposed 2D “ultrafast” acquisition schemes, which correlate interactions along all spectral dimensions within a single scan. PMID:18037970

  16. 2D electron temperature diagnostic using soft x-ray imaging technique

    SciTech Connect

    Nishimura, K. Sanpei, A. Tanaka, H.; Ishii, G.; Kodera, R.; Ueba, R.; Himura, H.; Masamune, S.; Ohdachi, S.; Mizuguchi, N.

    2014-03-15

    We have developed a two-dimensional (2D) electron temperature (T{sub e}) diagnostic system for thermal structure studies in a low-aspect-ratio reversed field pinch (RFP). The system consists of a soft x-ray (SXR) camera with two pin holes for two-kinds of absorber foils, combined with a high-speed camera. Two SXR images with almost the same viewing area are formed through different absorber foils on a single micro-channel plate (MCP). A 2D T{sub e} image can then be obtained by calculating the intensity ratio for each element of the images. We have succeeded in distinguishing T{sub e} image in quasi-single helicity (QSH) from that in multi-helicity (MH) RFP states, where the former is characterized by concentrated magnetic fluctuation spectrum and the latter, by broad spectrum of edge magnetic fluctuations.

  17. 2D PIC simulations for an EN discharge with magnetized electrons and unmagnetized ions

    NASA Astrophysics Data System (ADS)

    Lieberman, Michael A.; Kawamura, Emi; Lichtenberg, Allan J.

    2009-10-01

    We conducted 2D particle-in-cell (PIC) simulations for an electronegative (EN) discharge with magnetized electrons and unmagnetized ions, and compared the results to a previously developed 1D (radial) analytical model of an EN plasma with strongly magnetized electrons and weakly magnetized ions [1]. In both cases, there is a static uniform applied magnetic field in the axial direction. The 1D radial model mimics the wall losses of the particles in the axial direction by introducing a bulk loss frequency term νL. A special (desired) solution was found in which only positive and negative ions but no electrons escaped radially. The 2D PIC results show good agreement with the 1D model over a range of parameters and indicate that the analytical form of νL employed in [1] is reasonably accurate. However, for the PIC simulations, there is always a finite flux of electrons to the radial wall which is about 10 to 30% of the negative ion flux.[4pt] [1] G. Leray, P. Chabert, A.J. Lichtenberg and M.A. Lieberman, J. Phys. D, accepted for publication 2009.

  18. Electron Microscopy: From 2D to 3D Images with Special Reference to Muscle

    PubMed Central

    2015-01-01

    This is a brief and necessarily very sketchy presentation of the evolution in electron microscopy (EM) imaging that was driven by the necessity of extracting 3-D views from the essentially 2-D images produced by the electron beam. The lens design of standard transmission electron microscope has not been greatly altered since its inception. However, technical advances in specimen preparation, image collection and analysis gradually induced an astounding progression over a period of about 50 years. From the early images that redefined tissues, cell and cell organelles at the sub-micron level, to the current nano-resolution reconstructions of organelles and proteins the step is very large. The review is written by an investigator who has followed the field for many years, but often from the sidelines, and with great wonder. Her interest in muscle ultrastructure colors the writing. More specific detailed reviews are presented in this issue. PMID:26913146

  19. Electron Microscopy: From 2D to 3D Images with Special Reference to Muscle.

    PubMed

    Franzini-Armstrong, Clara

    2015-01-01

    This is a brief and necessarily very sketchy presentation of the evolution in electron microscopy (EM) imaging that was driven by the necessity of extracting 3-D views from the essentially 2-D images produced by the electron beam. The lens design of standard transmission electron microscope has not been greatly altered since its inception. However, technical advances in specimen preparation, image collection and analysis gradually induced an astounding progression over a period of about 50 years. From the early images that redefined tissues, cell and cell organelles at the sub-micron level, to the current nano-resolution reconstructions of organelles and proteins the step is very large. The review is written by an investigator who has followed the field for many years, but often from the sidelines, and with great wonder. Her interest in muscle ultrastructure colors the writing. More specific detailed reviews are presented in this issue. PMID:26913146

  20. Critical Behavior of a Strongly-Interacting 2D Electron System

    NASA Astrophysics Data System (ADS)

    Sarachik, Myriam P.

    2013-03-01

    Two-dimensional (2D) electron systems that obey Fermi liquid theory at high electron densities are expected to undergo one or more transitions to spatially and/or spin-ordered phases as the density is decreased, ultimately forming a Wigner crystal in the dilute, strongly-interacting limit. Interesting, unexpected behavior is observed with decreasing electron density as the electrons' interactions become increasingly important relative to their kinetic energy: the resistivity undergoes a transition from metallic to insulating temperature dependence; the resistance increases sharply and then saturates abruptly with increasing in-plane magnetic field; a number of experiments indicate that the electrons' effective mass exhibits a substantial increase approaching a finite ``critical'' density. There has been a great deal of debate concerning the underlying physics in these systems, and many have questioned whether the change of the resistivity from metallic to insulating signals a phase transition or a crossover. In this talk, I will report measurements that show that with decreasing density ns, the thermopower S of a low-disorder 2D electron system in silicon exhibits a sharp increase by more than an order of magnitude, tending to a divergence at a finite, disorder-independent density nt, consistent with the critical form (- T / S) ~(ns -nt) x with x = 1 . 0 +/- 0 . 1 (T is the temperature). Unlike the resistivity which may not clearly distinguish between a transition and crossover behavior, the thermopower provides clear evidence that a true phase transition occurs with decreasing density to a new low-density phase. Work supported by DOE Grant DE-FG02-84ER45153, BSF grant 2006375, RFBR, RAS, and the Russian Ministry of Science.

  1. Measurement of electrostatic potential variations between 2D materials using low-energy electron microscopy

    NASA Astrophysics Data System (ADS)

    de La Barrera, Sergio; Mende, Patrick; Li, Jun; Feenstra, Randall; Lin, Yu-Chuan; Robinson, Joshua; Vishwanath, Suresh; Xing, Huili

    Among the many properties that evolve as isolated 2D materials are brought together to form a heterostructure, rearrangement of charges between layers due to unintentional doping results in dipole fields at the interface, which critically affect the electronic properties of the structure. Here we report a method for directly measuring work function differences, and hence electrostatic potential variations, across the surface of 2D materials and heterostructures thereof using low energy electron microscopy (LEEM). Study of MoSe2 grown by molecular beam epitaxy on epitaxial graphene on SiC with LEEM reveals a large work function difference between the MoSe2 and the graphene, indicating charge transfer between the layers and a subsequent dipole layer. In addition to quantifying dipole effects between transition metal dichalcogenides and graphene, direct imaging of the surface, diffraction information, and the spectroscopic dependence of electron reflectivity will be discussed. This work was supported in part by the Center for Low Energy Systems Technology (LEAST), one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.

  2. Complex formation in liquid diethyl ether-chloroform mixtures examined by 2D correlation MID-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kutsyk, Andrii; Ilchenko, Oleksii; Pilgun, Yuriy; Obukhovsky, Vyacheslav; Nikonova, Viktoria

    2016-11-01

    Molecular complexes formation in diethyl ether-chloroform liquid solution is investigated by Mid-IR absorbance spectroscopy. The spectra were measured in spectral ranges of 1000-1550 cm-1 and 2650-3100 cm-1. 2D correlation analysis of spectral data indicates the presence of a third component in the solution. Excess spectroscopy shows that maximum of complex concentration is concentrated at around of 55% (vol.) of diethyl ether. 2D codistribution analysis supports such conclusion and provides the order of species distribution. Three-components MCR decomposition of spectral data was performed for the determination of concentration and spectral profiles of mixture components. Spectral transformations due to intermolecular interactions are in full agreement with those calculated according to density functional theory with B3LYP functional and cc-pVTz basis set for the case of equimolecular complex.

  3. Hydrogen Bond Lifetimes and Energetics for Solute-Solvent Complexes Studied with 2D-IR Vibrational Echo Spectroscopy

    PubMed Central

    Zheng, Junrong; Fayer, Michael D.

    2008-01-01

    Weak π hydrogen bonded solute-solvent complexes are studied with ultrafast two dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy, temperature dependent IR absorption spectroscopy, and density functional theory calculations. Eight solute-solvent complexes composed of a number of phenol derivatives and various benzene derivatives are investigated. The complexes are formed between the phenol derivative (solute) in a mixed solvent of the benzene derivative and CCl4. The time dependence of the 2D-IR vibrational echo spectra of the phenol hydroxyl stretch is used to directly determine the dissociation and formation rates of the hydrogen bonded complexes. The dissociation rates of the weak hydrogen bonds are found to be strongly correlated with their formation enthalpies. The correlation can be described with an equation similar to the Arrhenius equation. The results are discussed in terms of transition state theory. PMID:17373792

  4. Wavelet characterization of 2D turbulence and intermittency in magnetized electron plasmas

    NASA Astrophysics Data System (ADS)

    Romé, M.; Chen, S.; Maero, G.

    2016-06-01

    A study of the free relaxation of turbulence in a two-dimensional (2D) flow is presented, with a focus on the role of the initial vorticity conditions. Exploiting a well-known analogy with 2D inviscid incompressible fluids, the system investigated here is a magnetized pure electron plasma. The dynamics of this system are simulated by means of a 2D particle-in-cell code, starting from different spiral density (vorticity) distributions. A wavelet multiresolution analysis is adopted, which allows the coherent and incoherent parts of the flow to be separated. Comparison of the turbulent evolution in the different cases is based on the investigation of the time evolution of statistical properties, including the probability distribution functions and structure functions of the vorticity increments. It is also based on an analysis of the enstrophy evolution and its spectrum for the two components. In particular, while the statistical features assess the degree of flow intermittency, spectral analysis allows us not only to estimate the time required to reach a state of fully developed turbulence, but also estimate its dependence on the thickness of the initial spiral density distribution, accurately tracking the dynamics of both the coherent structures and the turbulent background. The results are compared with those relevant to annular initial vorticity distributions (Chen et al 2015 J. Plasma Phys. 81 495810511).

  5. Low frequency 2D Raman-THz spectroscopy of ionic solution: A simulation study

    NASA Astrophysics Data System (ADS)

    Pan, Zhijun; Wu, Tianmin; Jin, Tan; Liu, Yong; Nagata, Yuki; Zhang, Ruiting; Zhuang, Wei

    2015-06-01

    The 2D Raman-THz spectrum of the MgCl2 solution was simulated using the molecular dynamics simulation and the stability matrix method and compared with that of the pure water. The 2D Raman-THz signal provides more information on the ion effects on the collective water motion than the conventional 1D signal. The presence of MgCl2 suppresses the cross peak of water between the hydrogen bond bending and the other intermolecular vibrational mode, which clearly illustrates that the water hydrogen bending motion is affected by the confining effect of the ions. Our theoretical work thus demonstrates that the 2D Raman-THz technique can become a valuable nonlinear vibrational probe for the molecular dynamics in the ionic solutions.

  6. Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.

    2009-01-01

    A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.

  7. Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array

    PubMed Central

    Yoganathan, S. A.; Das, K. J. Maria; Raj, D. Gowtham; Kumar, Shaleen

    2015-01-01

    The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams. PMID:26170552

  8. Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array.

    PubMed

    Yoganathan, S A; Das, K J Maria; Raj, D Gowtham; Kumar, Shaleen

    2015-01-01

    The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams.

  9. 2D-Raman-THz spectroscopy: a sensitive test of polarizable water models.

    PubMed

    Hamm, Peter

    2014-11-14

    In a recent paper, the experimental 2D-Raman-THz response of liquid water at ambient conditions has been presented [J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)]. Here, all-atom molecular dynamics simulations are performed with the goal to reproduce the experimental results. To that end, the molecular response functions are calculated in a first step, and are then convoluted with the laser pulses in order to enable a direct comparison with the experimental results. The molecular dynamics simulation are performed with several different water models: TIP4P/2005, SWM4-NDP, and TL4P. As polarizability is essential to describe the 2D-Raman-THz response, the TIP4P/2005 water molecules are amended with either an isotropic or a anisotropic polarizability a posteriori after the molecular dynamics simulation. In contrast, SWM4-NDP and TL4P are intrinsically polarizable, and hence the 2D-Raman-THz response can be calculated in a self-consistent way, using the same force field as during the molecular dynamics simulation. It is found that the 2D-Raman-THz response depends extremely sensitively on details of the water model, and in particular on details of the description of polarizability. Despite the limited time resolution of the experiment, it could easily distinguish between various water models. Albeit not perfect, the overall best agreement with the experimental data is obtained for the TL4P water model.

  10. 2D-Raman-THz spectroscopy: A sensitive test of polarizable water models

    NASA Astrophysics Data System (ADS)

    Hamm, Peter

    2014-11-01

    In a recent paper, the experimental 2D-Raman-THz response of liquid water at ambient conditions has been presented [J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)]. Here, all-atom molecular dynamics simulations are performed with the goal to reproduce the experimental results. To that end, the molecular response functions are calculated in a first step, and are then convoluted with the laser pulses in order to enable a direct comparison with the experimental results. The molecular dynamics simulation are performed with several different water models: TIP4P/2005, SWM4-NDP, and TL4P. As polarizability is essential to describe the 2D-Raman-THz response, the TIP4P/2005 water molecules are amended with either an isotropic or a anisotropic polarizability a posteriori after the molecular dynamics simulation. In contrast, SWM4-NDP and TL4P are intrinsically polarizable, and hence the 2D-Raman-THz response can be calculated in a self-consistent way, using the same force field as during the molecular dynamics simulation. It is found that the 2D-Raman-THz response depends extremely sensitively on details of the water model, and in particular on details of the description of polarizability. Despite the limited time resolution of the experiment, it could easily distinguish between various water models. Albeit not perfect, the overall best agreement with the experimental data is obtained for the TL4P water model.

  11. 2D-Raman-THz spectroscopy: A sensitive test of polarizable water models

    SciTech Connect

    Hamm, Peter

    2014-11-14

    In a recent paper, the experimental 2D-Raman-THz response of liquid water at ambient conditions has been presented [J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)]. Here, all-atom molecular dynamics simulations are performed with the goal to reproduce the experimental results. To that end, the molecular response functions are calculated in a first step, and are then convoluted with the laser pulses in order to enable a direct comparison with the experimental results. The molecular dynamics simulation are performed with several different water models: TIP4P/2005, SWM4-NDP, and TL4P. As polarizability is essential to describe the 2D-Raman-THz response, the TIP4P/2005 water molecules are amended with either an isotropic or a anisotropic polarizability a posteriori after the molecular dynamics simulation. In contrast, SWM4-NDP and TL4P are intrinsically polarizable, and hence the 2D-Raman-THz response can be calculated in a self-consistent way, using the same force field as during the molecular dynamics simulation. It is found that the 2D-Raman-THz response depends extremely sensitively on details of the water model, and in particular on details of the description of polarizability. Despite the limited time resolution of the experiment, it could easily distinguish between various water models. Albeit not perfect, the overall best agreement with the experimental data is obtained for the TL4P water model.

  12. Overtone spectroscopy of H2D+ and D2H+ using laser induced reactions

    NASA Astrophysics Data System (ADS)

    Asvany, Oskar; Hugo, Edouard; Müller, Frank; Kühnemann, Frank; Schiller, Stephan; Tennyson, Jonathan; Schlemmer, Stephan

    2007-10-01

    The method of laser induced reaction is used to obtain high-resolution IR spectra of H2D+ and D2H+ in collision with n-H2 at a nominal temperature of 17K. For this purpose three cw-laser systems have been coupled to a 22-pole ion trap apparatus, two commercial diode laser systems in the ranges of 6100-6600cm-1 and 6760-7300cm-1, respectively, and a high-power optical parametric oscillator tunable in the range of 2600-3200cm-1. In total, 27 new overtone and combination transitions have been detected for H2D + and D2H+, as well as a weak line in the ν1 vibrational band of H2D+ (220←101) at 3164.118cm-1. The line positions are compared to high accuracy ab initio calculations, showing small but mode-dependent differences, being largest for three vibrational quanta in the ν2 symmetric bending of H2D+. Within the experimental accuracy, the relative values of the ab initio predicted Einstein B coefficients are confirmed.

  13. Ultrabroadband two-quantum two-dimensional electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Gellen, Tobias A.; Bizimana, Laurie A.; Carbery, William P.; Breen, Ilana; Turner, Daniel B.

    2016-08-01

    A recent theoretical study proposed that two-quantum (2Q) two-dimensional (2D) electronic spectroscopy should be a background-free probe of post-Hartree-Fock electronic correlations. Testing this theoretical prediction requires an instrument capable of not only detecting multiple transitions among molecular excited states but also distinguishing molecular 2Q signals from nonresonant response. Herein we describe a 2Q 2D spectrometer with a spectral range of 300 nm that is passively phase stable and uses only beamsplitters and mirrors. We developed and implemented a dual-chopping balanced-detection method to resolve the weak molecular 2Q signals. Experiments performed on cresyl violet perchlorate and rhodamine 6G revealed distinct 2Q signals convolved with nonresonant response. Density functional theory computations helped reveal the molecular origin of these signals. The experimental and computational results demonstrate that 2Q electronic spectra can provide a singular probe of highly excited electronic states.

  14. Dynamics of the Rydberg electron in H*+D2-->D*+HD reactive collisions.

    PubMed

    Hayes, Michael Y; Skodje, Rex T

    2007-03-14

    Experimental crossed-beam studies carried out previously have indicated that the dynamics of the Rydberg-atom-molecule reaction H*+D2-->D*+HD are very similar to those of the corresponding ion-molecule reaction H++D2-->D++HD. The equivalence of the cross sections for these related systems would open up a new approach to the experimental study of ion-molecule reactions. However, a recent experimental and theoretical study has brought to light some important qualitative differences between the Rydberg-atom reaction and the ion-molecule reaction; in particular, the experimental cross section for the Rydberg-atom reaction exhibits a higher degree of forward-backward scattering asymmetry than predicted by a quasiclassical trajectory study of the ion-molecule reaction. In this paper, the authors consider the dynamics of the Rydberg-electron over the course of a reactive collision and the implications of these dynamics for the Rydberg-atom-molecule crossed-beam experiment. Using an approach based on perturbation theory, they estimate the attenuation of the experimental signal due to the Rydberg-electron dynamics as a function of the scattering angle. They show that at least part of the experimental asymmetry can be ascribed to this angle dependent attenuation. Their results offer general insight into the practical aspects of the experimental study of ion-molecule reactions by means of their Rydberg-atom counterparts. PMID:17362067

  15. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Pan, X. M.; Yang, Z. J.; Ma, X. D.; Zhu, Y. L.; Luhmann, N. C.; Domier, C. W.; Ruan, B. W.; Zhuang, G.

    2016-11-01

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  16. Correlating Structural and Electronic Degrees of Freedom in 2D Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Tung, I.-Cheng; Zhang, Z.; Seyler, K. L.; Jones, A. M.; Clark, G.; Xiao, D.; Laanait, N.; Xu, X.; Wen, H.

    We have conducted a microscopic study of the interplay between structural and electronic degrees of freedom in two-dimensional (2D) transition metal dichalcogenide (TMD) monolayers, multilayers and heterostructures. Using the recently developed full field x-ray reflection interface microscopy with the photoluminescence microscopic probe capability at the Advanced Photon Source, we demonstrated the x-ray reflection imaging of a monolayer 2D material for the first time. The structural variation across an exfoliated WSe2 monolayer is quantified by interlayer spacing relative to the crystal substrate and the smoothness of the layer. This structural information is correlated with the electronic properties of TMDs characterized by the in-situ photoluminescence measurements. This work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012509. The use of Advanced Photon Source is supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

  17. Optical Signatures from Magnetic 2-D Electron Gases in High Magnetic Fields to 60 Tesla

    SciTech Connect

    Crooker, S.A.; Kikkawa, J.M.; Awschalom, D.D.; Smorchikova, I.P.; Samarth, N.

    1998-11-08

    We present experiments in the 60 Tesla Long-Pulse magnet at the Los Alamos National High Magnetic Field Lab (NHMFL) focusing on the high-field, low temperature photoluminescence (PL) from modulation-doped ZnSe/Zn(Cd,Mn)Se single quantum wells. High-speed charge-coupled array detectors and the long (2 second) duration of the magnet pulse permit continuous acquisition of optical spectra throughout a single magnet shot. High-field PL studies of the magnetic 2D electron gases at temperatures down to 350mK reveal clear intensity oscillations corresponding to integer quantum Hall filling factors, from which we determine the density of the electron gas. At very high magnetic fields, steps in the PL energy are observed which correspond to the partial unlocking of antiferromagnetically bound pairs of Mn2+ spins.

  18. Enhancement of low-energy electron emission in 2D radioactive films.

    PubMed

    Pronschinske, Alex; Pedevilla, Philipp; Murphy, Colin J; Lewis, Emily A; Lucci, Felicia R; Brown, Garth; Pappas, George; Michaelides, Angelos; Sykes, E Charles H

    2015-09-01

    High-energy radiation has been used for decades; however, the role of low-energy electrons created during irradiation has only recently begun to be appreciated. Low-energy electrons are the most important component of radiation damage in biological environments because they have subcellular ranges, interact destructively with chemical bonds, and are the most abundant product of ionizing particles in tissue. However, methods for generating them locally without external stimulation do not exist. Here, we synthesize one-atom-thick films of the radioactive isotope (125)I on gold that are stable under ambient conditions. Scanning tunnelling microscopy, supported by electronic structure simulations, allows us to directly observe nuclear transmutation of individual (125)I atoms into (125)Te, and explain the surprising stability of the 2D film as it underwent radioactive decay. The metal interface geometry induces a 600% amplification of low-energy electron emission (<10 eV; ref. ) compared with atomic (125)I. This enhancement of biologically active low-energy electrons might offer a new direction for highly targeted nanoparticle therapies.

  19. In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T

    NASA Astrophysics Data System (ADS)

    Ramadan, Saadallah; Ratai, Eva-Maria; Wald, Lawrence L.; Mountford, Carolyn E.

    2010-05-01

    AimThis study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. MethodSix healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28 cm diameter detunable birdcage coil for signal excitation and an 8.5 cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the 'progressive saturation' method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4 ms increment size) and eight averages per scan, with a total time of 17 min. ResultsT1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20-0.26 ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. ConclusionIn vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers.

  20. 2D array of cold-electron nanobolometers with double polarised cross-dipole antennas

    PubMed Central

    2012-01-01

    A novel concept of the two-dimensional (2D) array of cold-electron nanobolometers (CEB) with double polarised cross-dipole antennas is proposed for ultrasensitive multimode measurements. This concept provides a unique opportunity to simultaneously measure both components of an RF signal and to avoid complicated combinations of two schemes for each polarisation. The optimal concept of the CEB includes a superconductor-insulator-normal tunnel junction and an SN Andreev contact, which provides better performance. This concept allows for better matching with the junction gate field-effect transistor (JFET) readout, suppresses charging noise related to the Coulomb blockade due to the small area of tunnel junctions and decreases the volume of a normal absorber for further improvement of the noise performance. The reliability of a 2D array is considerably increased due to the parallel and series connections of many CEBs. Estimations of the CEB noise with JFET readout give an opportunity to realise a noise equivalent power (NEP) that is less than photon noise, specifically, NEP = 4 10−19 W/Hz1/2 at 7 THz for an optical power load of 0.02 fW. PMID:22512950

  1. 2D array of cold-electron nanobolometers with double polarised cross-dipole antennas

    NASA Astrophysics Data System (ADS)

    Kuzmin, Leonid S.

    2012-04-01

    A novel concept of the two-dimensional (2D) array of cold-electron nanobolometers (CEB) with double polarised cross-dipole antennas is proposed for ultrasensitive multimode measurements. This concept provides a unique opportunity to simultaneously measure both components of an RF signal and to avoid complicated combinations of two schemes for each polarisation. The optimal concept of the CEB includes a superconductor-insulator-normal tunnel junction and an SN Andreev contact, which provides better performance. This concept allows for better matching with the junction gate field-effect transistor (JFET) readout, suppresses charging noise related to the Coulomb blockade due to the small area of tunnel junctions and decreases the volume of a normal absorber for further improvement of the noise performance. The reliability of a 2D array is considerably increased due to the parallel and series connections of many CEBs. Estimations of the CEB noise with JFET readout give an opportunity to realise a noise equivalent power (NEP) that is less than photon noise, specifically, NEP = 4 10-19 W/Hz1/2 at 7 THz for an optical power load of 0.02 fW.

  2. Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory.

    PubMed

    Spencer, Austin P; Li, Hebin; Cundiff, Steven T; Jonas, David M

    2015-04-30

    A solution to Maxwell's equations in the three-dimensional frequency domain is used to calculate rephasing two-dimensional Fourier transform (2DFT) spectra of the D2 line of atomic rubidium vapor in argon buffer gas. Experimental distortions from the spatial propagation of pulses through the sample are simulated in 2DFT spectra calculated for the homogeneous Bloch line shape model. Spectral features that appear at optical densities of up to 3 are investigated. As optical density increases, absorptive and dispersive distortions start with peak shape broadening, progress to peak splitting, and ultimately result in a previously unexplored coherent transient twisting of the split peaks. In contrast to the low optical density limit, where the 2D peak shape for the Bloch model depends only on the total dephasing time, these distortions of the 2D peak shape at finite optical density vary with the waiting time and the excited state lifetime through coherent transient effects. Experiment-specific conditions are explored, demonstrating the effects of varying beam overlap within the sample and of pseudo-time domain filtering. For beam overlap starting at the sample entrance, decreasing the length of beam overlap reduces the line width along the ωτ axis but also reduces signal intensity. A pseudo-time domain filter, where signal prior to the center of the last excitation pulse is excluded from the FID-referenced 2D signal, reduces propagation distortions along the ωt axis. It is demonstrated that 2DFT rephasing spectra cannot take advantage of an excitation-detection transformation that can eliminate propagation distortions in 2DFT relaxation spectra. Finally, the high optical density experimental 2DFT spectrum of rubidium vapor in argon buffer gas [J. Phys. Chem. A 2013, 117, 6279-6287] is quantitatively compared, in line width, in depth of peak splitting, and in coherent transient peak twisting, to a simulation with optical density higher than that reported.

  3. 2D attenuated total reflectance infrared spectroscopy reveals ultrafast vibrational dynamics of organic monolayers at metal-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Kraack, Jan Philip; Lotti, Davide; Hamm, Peter

    2015-06-01

    We present two-dimensional infrared (2D IR) spectra of organic monolayers immobilized on thin metallic films at the solid liquid interface. The experiments are acquired under Attenuated Total Reflectance (ATR) conditions which allow a surface-sensitive measurement of spectral diffusion, sample inhomogeneity, and vibrational relaxation of the monolayers. Terminal azide functional groups are used as local probes of the environment and structural dynamics of the samples. Specifically, we investigate the influence of different alkyl chain-lengths on the ultrafast dynamics of the monolayer, revealing a smaller initial inhomogeneity and faster spectral diffusion with increasing chain-length. Furthermore, by varying the environment (i.e., in different solvents or as bare sample), we conclude that the most significant contribution to spectral diffusion stems from intra- and intermolecular dynamics within the monolayer. The obtained results demonstrate that 2D ATR IR spectroscopy is a versatile tool for measuring interfacial dynamics of adsorbed molecules.

  4. 2D attenuated total reflectance infrared spectroscopy reveals ultrafast vibrational dynamics of organic monolayers at metal-liquid interfaces.

    PubMed

    Kraack, Jan Philip; Lotti, Davide; Hamm, Peter

    2015-06-01

    We present two-dimensional infrared (2D IR) spectra of organic monolayers immobilized on thin metallic films at the solid liquid interface. The experiments are acquired under Attenuated Total Reflectance (ATR) conditions which allow a surface-sensitive measurement of spectral diffusion, sample inhomogeneity, and vibrational relaxation of the monolayers. Terminal azide functional groups are used as local probes of the environment and structural dynamics of the samples. Specifically, we investigate the influence of different alkyl chain-lengths on the ultrafast dynamics of the monolayer, revealing a smaller initial inhomogeneity and faster spectral diffusion with increasing chain-length. Furthermore, by varying the environment (i.e., in different solvents or as bare sample), we conclude that the most significant contribution to spectral diffusion stems from intra- and intermolecular dynamics within the monolayer. The obtained results demonstrate that 2D ATR IR spectroscopy is a versatile tool for measuring interfacial dynamics of adsorbed molecules.

  5. Quantum Hall effect: The resistivity of a 2D electron gas—a thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Cheremisin, M. V.

    2005-09-01

    Based on a thermodynamic approach, we have calculated the resistivity of a 2D electron gas, assumed dissipationless in a strong quantum limit. Standard measurements, with extra current leads, define the resistivity caused by a combination of Peltier and Seebeck effects. The current causes heating (cooling) at the first (second) sample contacts, due to the Peltier effect. The contact temperatures are different. The measured voltage is equal to the Peltier effect-induced thermoemf which is linear in current. As a result, the resistivity is non-zero as I→0. The resistivity is a universal function of magnetic field and temperature, expressed in fundamental units h/e2. The universal features of magnetotransport data observed in the experiment confirm our predictions.

  6. Finite-size scaling in a 2D disordered electron gas with spectral nodes

    NASA Astrophysics Data System (ADS)

    Sinner, Andreas; Ziegler, Klaus

    2016-08-01

    We study the DC conductivity of a weakly disordered 2D electron gas with two bands and spectral nodes, employing the field theoretical version of the Kubo-Greenwood conductivity formula. Disorder scattering is treated within the standard perturbation theory by summing up ladder and maximally crossed diagrams. The emergent gapless (diffusion) modes determine the behavior of the conductivity on large scales. We find a finite conductivity with an intermediate logarithmic finite-size scaling towards smaller conductivities but do not obtain the logarithmic divergence of the weak-localization approach. Our results agree with the experimentally observed logarithmic scaling of the conductivity in graphene with the formation of a plateau near {{e}2}/π h .

  7. Finite-size scaling in a 2D disordered electron gas with spectral nodes.

    PubMed

    Sinner, Andreas; Ziegler, Klaus

    2016-08-01

    We study the DC conductivity of a weakly disordered 2D electron gas with two bands and spectral nodes, employing the field theoretical version of the Kubo-Greenwood conductivity formula. Disorder scattering is treated within the standard perturbation theory by summing up ladder and maximally crossed diagrams. The emergent gapless (diffusion) modes determine the behavior of the conductivity on large scales. We find a finite conductivity with an intermediate logarithmic finite-size scaling towards smaller conductivities but do not obtain the logarithmic divergence of the weak-localization approach. Our results agree with the experimentally observed logarithmic scaling of the conductivity in graphene with the formation of a plateau near [Formula: see text]. PMID:27270084

  8. Weak-localization approach to a 2D electron gas with a spectral node

    NASA Astrophysics Data System (ADS)

    Ziegler, K.; Sinner, A.

    2015-07-01

    We study a weakly disordered 2D electron gas with two bands and a spectral node within the weak-localization approach and compare its results with those of Gaussian fluctuations around the self-consistent Born approximation. The appearance of diffusive modes depends on the type of disorder. In particular, we find for a random gap a diffusive mode only from ladder contributions, whereas for a random scalar potential the diffusive mode is created by ladder and by maximally crossed contributions. The ladder (maximally crossed) contributions correspond to fermionic (bosonic) Gaussian fluctuations. We calculate the conductivity corrections from the density-density Kubo formula and find a good agreement with the experimentally observed V-shape conductivity of graphene.

  9. 2D MEMS scanning for LIDAR with sub-Nyquist sampling, electronics, and measurement procedure

    NASA Astrophysics Data System (ADS)

    Giese, Thorsten; Janes, Joachim

    2015-05-01

    Electrostatic driven 2D MEMS scanners resonantly oscillate in both axes leading to Lissajous trajectories of a digitally modulated laser beam reflected from the micro mirror. A solid angle of about 0.02 is scanned by a 658nm laser beam with a maximum repetition rate of 350MHz digital pulses. Reflected light is detected by an APD with a bandwidth of 80MHz. The phase difference between the scanned laser light and the light reflected from an obstacle is analyzed by sub-Nyquist sampling. The FPGA-based electronics and software for the evaluation of distance and velocity of objects within the scanning range are presented. Furthermore, the measures to optimize the Lidar accuracy of about 1mm and the dynamic range of up to 2m are examined. First measurements demonstrating the capability of the system and the evaluation algorithms are discussed.

  10. Two-dimensional electronic spectroscopy with birefringent wedges

    SciTech Connect

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  11. Two dimensional molecular electronics spectroscopy for molecular fingerprinting, DNA sequencing, and cancerous DNA recognition.

    PubMed

    Rajan, Arunkumar Chitteth; Rezapour, Mohammad Reza; Yun, Jeonghun; Cho, Yeonchoo; Cho, Woo Jong; Min, Seung Kyu; Lee, Geunsik; Kim, Kwang S

    2014-02-25

    Laser-driven molecular spectroscopy of low spatial resolution is widely used, while electronic current-driven molecular spectroscopy of atomic scale resolution has been limited because currents provide only minimal information. However, electron transmission of a graphene nanoribbon on which a molecule is adsorbed shows molecular fingerprints of Fano resonances, i.e., characteristic features of frontier orbitals and conformations of physisorbed molecules. Utilizing these resonance profiles, here we demonstrate two-dimensional molecular electronics spectroscopy (2D MES). The differential conductance with respect to bias and gate voltages not only distinguishes different types of nucleobases for DNA sequencing but also recognizes methylated nucleobases which could be related to cancerous cell growth. This 2D MES could open an exciting field to recognize single molecule signatures at atomic resolution. The advantages of the 2D MES over the one-dimensional (1D) current analysis can be comparable to those of 2D NMR over 1D NMR analysis.

  12. Studies of Photosynthetic Energy and Charge Transfer by Two-dimensional Fourier transform electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Ogilvie, Jennifer

    2010-03-01

    Two-dimensional (2D) Fourier transform electronic spectroscopy has recently emerged as a powerful tool for the study of energy transfer in complex condensed-phase systems. Its experimental implementation is challenging but can be greatly simplified by implementing a pump-probe geometry, where the two phase-stable collinear pump pulses are created with an acousto-optic pulse-shaper. This approach also allows the use of a continuum probe pulse, expanding the available frequency range of the detection axis and allowing studies of energy transfer and electronic coupling over a broad range of frequencies. We discuss several benefits of 2D electronic spectroscopy and present 2D data on the D1-D2 reaction center complex of Photosystem II from spinach. We discuss the ability of 2D spectroscopy to distinguish between current models of energy and charge transfer in this system.

  13. 2D correlation spectroscopy and multivariate curve resolution in analyzing pH-dependent evolving systems monitored by FT-IR spectroscopy, a comparative study.

    PubMed

    Diewok, Josef; Ayora-Cañada, María Jose; Lendl, Bernhard

    2002-10-01

    Multivariate curve resolution (MCR) and 2D correlation spectroscopy (2D-CoS), including sample-sample correlation, have been applied to the analysis of evolving midinfrared spectroscopic data sets obtained from titrations of organic acids in aqueous solution. In these data sets, well-defined species with significant differences in their spectra are responsible for the spectral variation observed. The two fundamentally different chemometric techniques have been evaluated and discussed on the basis of experimental and supportive simulated data sets. MCR gives information that can be directly related to the chemical species that is of importance from a practical point of view, whereas 2D-CoS results normally require more interpretation. The obtained conclusions are regarded valid for similar evolving data, which are increasingly being encountered in analytical chemistry when multivariate detectors are used to follow dynamic processes, including separations as well as chemical reactions, among others.

  14. Electronic and geometrical properties of monoatomic and diatomic 2D honeycomb lattices. A DFT study

    NASA Astrophysics Data System (ADS)

    Rojas, Ángela; Rey, Rafael; Fonseca, Karen; Grupo de Óptica e Información Cuántica Team

    Since the discovery of graphene by Geim and Novoselov at 2004, several analogous systems have been theoretically and experimentally studied, due to their technological interest. Both monoatomic lattices, such as silicine and germanene, and diatomic lattices (h-GaAs and h-GaN) have been studied. Using Density Functional Theory we obtain and confirm the chemical stability of these hexagonal 2D systems through the total energy curves as a function of interatomic distance. Unlike graphene, silicine and germanene, gapless materials, h-GaAs and h-GaN exhibit electronic gaps, different from that of the bulk, which could be interesting for the industry. On the other hand, the ab initio band structure calculations for graphene, silicene and germanene show a non-circular cross section around K points, at variance with the prediction of usual Tight-binding models. In fact, we have found that Dirac cones display a dihedral group symmetry. This implies that Fermi speed can change up to 30 % due to the orientation of the wave vector, for both electrons and holes. Traditional analytic studies use the Dirac equation for the electron dynamics at low energies. However, this equation assumes an isotropic, homogeneous and uniform space. Authors would like to thank the División de Investigación Sede Bogotá for their financial support at Universidad Nacional de Colombia. A. M. Rojas-Cuervo would also like to thank the Colciencias, Colombia.

  15. PAC spectroscopy of electronic ceramics

    SciTech Connect

    Gardner, J.A.; Wang, Ruiping; Schwenker, R. . Dept. of Physics); Evenson, W.E. . Dept. of Physics and Astronomy); Rasera, R.L. . Dept. of Physics); Sommers, J.A. )

    1991-01-01

    Dilute indium dopants in cerium oxides and YBa{sub 2}Cu{sub 3}O{sub x} have been studied by{sup 111}In/Cd Perturbed Angular Correlation (PAC) spectroscopy. By controlling oxygen vacancy concentration in the cerium oxides through doping or high-temperature vacuum annealing, we have found that indium always forms a defect complex unless the sample is doped to reduce greatly the oxygen vacancy concentration. Three different vacancy-associated complexes are found with concentrations that depend on doping and oxygen stoichiometry. Another defect complex occurs in samples having negligible vacancy concentration. At low temperatures, evidence is found of interaction with an electronic hole trapped by {sup 111}Cd after the radioactive decay of the {sup 111}In parent. In YBa{sub 2}Cu{sub 3}O{sub x} the indium substitutes preferentially at the Y site but has measurable probability of substitution in at least one of the two copper sites. A symmetry change near 650 {degree}C is consistent with the well-documented orthorhombic/tetragonal transition for samples in air or oxygen.

  16. PAC spectroscopy of electronic ceramics

    SciTech Connect

    Gardner, J.A.; Wang, Ruiping; Schwenker, R.; Evenson, W.E.; Rasera, R.L.; Sommers, J.A.

    1991-12-31

    Dilute indium dopants in cerium oxides and YBa{sub 2}Cu{sub 3}O{sub x} have been studied by{sup 111}In/Cd Perturbed Angular Correlation (PAC) spectroscopy. By controlling oxygen vacancy concentration in the cerium oxides through doping or high-temperature vacuum annealing, we have found that indium always forms a defect complex unless the sample is doped to reduce greatly the oxygen vacancy concentration. Three different vacancy-associated complexes are found with concentrations that depend on doping and oxygen stoichiometry. Another defect complex occurs in samples having negligible vacancy concentration. At low temperatures, evidence is found of interaction with an electronic hole trapped by {sup 111}Cd after the radioactive decay of the {sup 111}In parent. In YBa{sub 2}Cu{sub 3}O{sub x} the indium substitutes preferentially at the Y site but has measurable probability of substitution in at least one of the two copper sites. A symmetry change near 650 {degree}C is consistent with the well-documented orthorhombic/tetragonal transition for samples in air or oxygen.

  17. Communication: two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): simultaneous planar imaging and multiplex spectroscopy in a single laser shot.

    PubMed

    Bohlin, Alexis; Kliewer, Christopher J

    2013-06-14

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15,000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm(2). PMID:23781772

  18. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    NASA Astrophysics Data System (ADS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-06-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  19. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    SciTech Connect

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15, 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  20. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy

    PubMed Central

    Díaz-Visurraga, Judith; Daza, Carla; Pozo, Claudio; Becerra, Abraham; von Plessing, Carlos; García, Apolinaria

    2012-01-01

    Background The objective of this study was to clarify the intermolecular interaction between antibacterial copper nanoparticles (Cu NPs) and sodium alginate (NaAlg) by Fourier transform infrared spectroscopy (FT-IR) and to process the spectra applying two-dimensional infrared (2D-IR) correlation analysis. To our knowledge, the addition of NaAlg as a stabilizer of copper nanoparticles has not been previously reported. It is expected that the obtained results will provide valuable additional information on: (1) the influence of reducing agent ratio on the formation of copper nanoparticles in order to design functional nanomaterials with increased antibacterial activity, and (2) structural changes related to the incorporation of Cu NPs into the polymer matrix. Methods Cu NPs were prepared by microwave heating using ascorbic acid as reducing agent and NaAlg as stabilizing agent. The characterization of synthesized Cu NPs by ultraviolet visible spectroscopy, transmission electron microscopy (TEM), electron diffraction analysis, X-ray diffraction (XRD), and semiquantitative analysis of the weight percentage composition indicated that the average particle sizes of Cu NPs are about 3–10 nm, they are spherical in shape, and consist of zerovalent Cu and Cu2O. Also, crystallite size and relative particle size of stabilized Cu NPs were calculated by XRD using Scherrer’s formula and FT from the X-ray diffraction data. Thermogravimetric analysis, differential thermal analysis, differential scanning calorimetry (DSC), FT-IR, second-derivative spectra, and 2D-IR correlation analysis were applied to studying the stabilization mechanism of Cu NPs by NaAlg molecules. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of stabilized Cu NPs against five bacterial strains (Staphylococccus aureus ATCC 6538P, Escherichia coli ATCC 25922 and O157: H7, and Salmonella enterica serovar Typhimurium ATCC 13311 and 14028) were evaluated with macrodilution

  1. Quantitative Analysis of Metabolic Mixtures by 2D 13C-Constant-Time TOCSY NMR Spectroscopy

    PubMed Central

    Bingol, Kerem; Zhang, Fengli; Bruschweiler-Li, Lei; Brüschweiler, Rafael

    2013-01-01

    An increasing number of organisms can be fully 13C-labeled, which has the advantage that their metabolomes can be studied by high-resolution 2D NMR 13C–13C constant-time (CT) TOCSY experiments. Individual metabolites can be identified via database searching or, in the case of novel compounds, through the reconstruction of their backbone-carbon topology. Determination of quantitative metabolite concentrations is another key task. Because significant peak overlaps in 1D NMR spectra prevents straightforward quantification through 1D peak integrals, we demonstrate here the direct use of 13C–13C CT-TOCSY spectra for metabolite quantification. This is accomplished through the quantum-mechanical treatment of the TOCSY magnetization transfer at short and long mixing times or by the use of analytical approximations, which are solely based on the knowledge of the carbon-backbone topologies. The methods are demonstrated for carbohydrate and amino-acid mixtures. PMID:23773204

  2. 2D Optical Streaking for Ultra-Short Electron Beam Diagnostics

    SciTech Connect

    Ding, Y.T.; Huang, Z.; Wang, L.; /SLAC

    2011-12-14

    field ionization, which occurs in plasma case, gases species with high field ionization threshold should be considered. For a linear polarized laser, the kick to the ionized electrons depends on the phase of the laser when the electrons are born and the unknown timing jitter between the electron beam and laser beam makes the data analysis very difficult. Here we propose to use a circular polarized laser to do a 2-dimensional (2D) streaking (both x and y) and measure the bunch length from the angular distribution on the screen, where the phase jitter causes only a rotation of the image on the screen without changing of the relative angular distribution. Also we only need to know the laser wavelength for calibration. A similar circular RF deflecting mode was used to measure long bunches. We developed a numerical particle-in-Cell (PIC) code to study the dynamics of ionization electrons with the high energy beam and the laser beam.

  3. Spin-Orbit Interaction and Related Transport Phenomena in 2d Electron and Hole Systems

    NASA Astrophysics Data System (ADS)

    Khaetskii, A.

    Spin-orbit interaction is responsible for many physical phenomena which are under intensive study currently. Here we discuss several of them. The first phenomenon is the edge spin accumulation, which appears due to spin-orbit interaction in 2D mesoscopic structures in the presence of a charge current. We consider the case of a strong spin-orbit-related splitting of the electron spectrum, i.e. a spin precession length is small compared to the mean free path l. The structure can be either in a ballistic regime (when the mean free path is the largest scale in the problem) or quasi-ballistic regime (when l is much smaller than the sample size). We show how physics of edge spin accumulation in different situations should be understood from the point of view of unitarity of boundary scattering. Using transparent method of scattering states, we are able to explain some previous puzzling theoretical results. We clarify the important role of the form of the spin-orbit Hamiltonian, the role of the boundary conditions, etc., and reveal the wrong results obtained in the field by other researchers. The relation between the edge spin density and the bulk spin current in different regimes is discussed. The detailed comparison with the existing theoretical works is presented. Besides, we consider several new transport phenomena which appear in the presence of spin-orbit interaction, for example, magnetotransport phenomena in an external classical magnetic field. In particular, new mechanism of negative magneto-resistance appears which is due to destruction of spin fluxes by the magnetic field, and which can be really pronounced in 2D systems with strong scatterers.

  4. SPE-LEEM Studies on the Surface and Electronic Structure of 2-D Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Chun; Jin, Wencan; Zaki, Nader; Zhang, Datong; Sadowski, Jerzy; Al-Mahboob, Abdullah; van de Zande, Arend; Chenet, Daniel; Dadap, Jerry; Herman, Irving; Sutter, Petter; Hone, James; Osgood, Richard

    2014-03-01

    In this work, we studied the surface and electronic structure of monolayer and few-layer exfoliated MoS2 and WSe2, as well as chemical-vapor-deposition (CVD) grown MoS2, using Spectroscopic Photoemission and Low Energy Electron Microscope (SPE-LEEM). LEEM measurements reveal that, unlike exfoliated MoS2, CVD-grown MoS2 exhibits grain-boundary alterations due to surface strain. However, LEEM and micro-probe low energy electron diffraction show that the quality of CVD-grown MoS2 is comparable to that of exfoliated MoS2. Micrometer-scale angle-resolved photoemission spectroscopy (ARPES) measurement on exfoliated MoS2 and WSe2 single-crystals provides direct evidence for the shifting of the valence band maximum from Γ to K, when the layer number is thinned down to one, as predicted by density functional theory. Our measurements of the k-space resolved electronic structure allow for further comparison with other theoretical predictions and with transport measurements. Session I and II

  5. Electrostatic interactions in phospholipid membranes revealed by coherent 2D IR spectroscopy

    PubMed Central

    Volkov, V. V.; Chelli, R.; Zhuang, W.; Nuti, F.; Takaoka, Y.; Papini, A. M.; Mukamel, S.; Righini, R.

    2007-01-01

    The inter- and intramolecular interactions of the carbonyl moieties at the polar interface of a phospholipid membrane are probed by using nonlinear femtosecond infrared spectroscopy. Two-dimensional IR correlation spectra separate homogeneous and inhomogeneous broadenings and show a distinct cross-peak pattern controlled by electrostatic interactions. The inter- and intramolecular electrostatic interactions determine the inhomogeneous character of the optical response. Using molecular dynamics simulation and the nonlinear exciton equations approach, we extract from the spectra short-range structural correlations between carbonyls at the interface. PMID:17881567

  6. Direct MD Simulations of Terahertz Absorption and 2D Spectroscopy Applied to Explosive Crystals.

    PubMed

    Katz, G; Zybin, S; Goddard, W A; Zeiri, Y; Kosloff, R

    2014-03-01

    A direct molecular dynamics simulation of the THz spectrum of a molecular crystal is presented. A time-dependent electric field is added to a molecular dynamics simulation of a crystal slab. The absorption spectrum is composed from the energy dissipated calculated from a series of applied pulses characterized by a carrier frequency. The spectrum of crystalline cyclotrimethylenetrinitramine (RDX) and triacetone triperoxide (TATP) were simulated with the ReaxFF force field. The proposed direct method avoids the linear response and harmonic approximations. A multidimensional extension of the spectroscopy is suggested and simulated based on the nonlinear response to a single polarized pulse of radiation in the perpendicular polarization direction. PMID:26274066

  7. (13)C NMR assignments of regenerated cellulose from solid-state 2D NMR spectroscopy.

    PubMed

    Idström, Alexander; Schantz, Staffan; Sundberg, Johan; Chmelka, Bradley F; Gatenholm, Paul; Nordstierna, Lars

    2016-10-20

    From the assignment of the solid-state (13)C NMR signals in the C4 region, distinct types of crystalline cellulose, cellulose at crystalline surfaces, and disordered cellulose can be identified and quantified. For regenerated cellulose, complete (13)C assignments of the other carbon regions have not previously been attainable, due to signal overlap. In this study, two-dimensional (2D) NMR correlation methods were used to resolve and assign (13)C signals for all carbon atoms in regenerated cellulose. (13)C-enriched bacterial nanocellulose was biosynthesized, dissolved, and coagulated as highly crystalline cellulose II. Specifically, four distinct (13)C signals were observed corresponding to conformationally different anhydroglucose units: two signals assigned to crystalline moieties and two signals assigned to non-crystalline species. The C1, C4 and C6 regions for cellulose II were fully examined by global spectral deconvolution, which yielded qualitative trends of the relative populations of the different cellulose moieties, as a function of wetting and drying treatments. PMID:27474592

  8. Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy

    SciTech Connect

    Khatun, Sufia; Castner, Edward W.

    2014-11-26

    Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulk IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.

  9. Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy

    DOE PAGES

    Khatun, Sufia; Castner, Edward W.

    2014-11-26

    Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulkmore » IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.« less

  10. High-resolution 2D NMR spectroscopy of bicelles to measure the membrane interaction of ligands.

    PubMed

    Dvinskikh, Sergey V; Dürr, Ulrich H N; Yamamoto, Kazutoshi; Ramamoorthy, Ayyalusamy

    2007-01-31

    Magnetically aligned bicelles are increasingly being used as model membranes in solution- and solid-state NMR studies of the structure, dynamics, topology, and interaction of membrane-associated peptides and proteins. These studies commonly utilize the PISEMA pulse sequence to measure dipolar coupling and chemical shift, the two key parameters used in subsequent structural analysis. In the present study, we demonstrate that the PISEMA and other rotating-frame pulse sequences are not suitable for the measurement of long-range heteronuclear dipolar couplings, and that they provide inaccurate values when multiple protons are coupled to a 13C nucleus. Furthermore, we demonstrate that a laboratory-frame separated-local-field experiment is capable of overcoming these difficulties in magnetically aligned bicelles. An extension of this approach to accurately measure 13C-31P and 1H-31P couplings from phospholipids, which are useful to understand the interaction of molecules with the membrane, is also described. In these 2D experiments, natural abundance 13C was observed from bicelles containing DMPC and DHPC lipid molecules. As a first application, these solid-state NMR approaches were utilized to probe the membrane interaction of an antidepressant molecule, desipramine, and its location in the membrane.

  11. Interactions in two-component liposomes studied by 2D correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Murawska, Agnieszka; Cieślik-Boczula, Katarzyna; Czarnik-Matusewicz, Bogusława

    2010-06-01

    The effect of dipping amphiphilic ICPANs (1-Alkylaminium, N-[2-[3-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropoxy]ethyl]-N,N-dimethyl-, bromide) homologues, characterized by varying alkyl chain length ( n = 8, 10, 12, and 16), into large multilamellar vesicles (MLVs) of dipalmitoylphosphatidylcholine (DPPC) was studied. Attenuated total reflectance infrared (ATR-IR) spectroscopy combined with 31P-NMR enabled observing a cut-off effect for the longest homologue. By employing two-dimensional correlation spectroscopy (2DCOS) for monitoring spectral changes induced by the heating process, detailed information about structural changes was obtained. They confirmed the substantial reorganization in the structure of the interfacial region in the ICPAN-C16/DPPC vesicles compared with the shorter homologues, where mainly the alkyl chains experience significant trans-to-gauche reorganization. Absorbance changes around 1400 cm -1 assigned to the symmetric deformation mode δsym ( +N(CH 3) 3) are a good marker of changes in vesicle shape and are sensitive to the percentage of DPPC molecules directly interacting with the surface of the ATR crystal. This study clearly demonstrates the potential of 2DCOS in investigating interactions in two-component liposomes.

  12. Computational Amide I 2D IR Spectroscopy as a Probe of Protein Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Reppert, Mike; Tokmakoff, Andrei

    2016-05-01

    Two-dimensional infrared spectroscopy of amide I vibrations is increasingly being used to study the structure and dynamics of proteins and peptides. Amide I, a primarily carbonyl stretching vibration of the protein backbone, provides information on secondary structures as a result of vibrational couplings and on hydrogen-bonding contacts when isotope labeling is used to isolate specific sites. In parallel with experiments, computational models of amide I spectra that use atomistic structures from molecular dynamics simulations have evolved to calculate experimental spectra. Mixed quantum-classical models use spectroscopic maps to translate the structural information into a quantum-mechanical Hamiltonian for the spectroscopically observed vibrations. This allows one to model the spectroscopy of large proteins, disordered states, and protein conformational dynamics. With improvements in amide I models, quantitative modeling of time-dependent structural ensembles and of direct feedback between experiments and simulations is possible. We review the advances in developing these models, their theoretical basis, and current and future applications.

  13. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers

    DOE PAGES

    Anasori, Babak; Shi, Chenyang; Moon, Eun Ju; Xie, Yu; Voigt, Cooper A.; Kent, Paul R. C.; May, Steven J.; Billinge, Simon J. L.; Barsoum, Michel W.; Gogotsi, Yury

    2016-02-24

    In this paper, a transition from metallic to semiconducting-like behavior has been demonstrated in two-dimensional (2D) transition metal carbides by replacing titanium with molybdenum in the outer transition metal (M) layers of M3C2 and M4C3 MXenes. The MXene structure consists of n + 1 layers of near-close packed M layers with C or N occupying the octahedral site between them in an [MX]nM arrangement. Recently, two new families of ordered 2D double transition metal carbides MXenes were discovered, M'2M"C2 and M'2M"2C3 – where M' and M" are two different early transition metals, such as Mo, Cr, Ta, Nb, V, andmore » Ti. The M' atoms only occupy the outer layers and the M" atoms fill the middle layers. In other words, M' atomic layers sandwich the middle M"–C layers. Using X-ray atomic pair distribution function (PDF) analysis on Mo2TiC2 and Mo2Ti2C3 MXenes, we present the first quantitative analysis of structures of these novel materials and experimentally confirm that Mo atoms are in the outer layers of the [MC]nM structures. The electronic properties of these Mo-containing MXenes are compared with their Ti3C2 counterparts, and are found to be no longer metallic-like conductors; instead the resistance increases mildly with decreasing temperatures. Density functional theory (DFT) calculations suggest that OH terminated Mo–Ti MXenes are semiconductors with narrow band gaps. Measurements of the temperature dependencies of conductivities and magnetoresistances have confirmed that Mo2TiC2Tx exhibits semiconductor-like transport behavior, while Ti3C2Tx is a metal. Finally, this finding opens new avenues for the control of the electronic and optical applications of MXenes and for exploring new applications, in which semiconducting properties are required.« less

  14. Rapid identification of Pterocarpus santalinus and Dalbergia louvelii by FTIR and 2D correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Fang-Da; Xu, Chang-Hua; Li, Ming-Yu; Huang, An-Min; Sun, Su-Qin

    2014-07-01

    Since Pterocarpus santalinus and Dalbergia louvelii, which are of precious Rosewood, are very similar in their appearance and anatomy characteristics, cheaper Hongmu D. louvelii is often illegally used to impersonate valuable P. santalinus, especially in Chinese furniture manufacture. In order to develop a rapid and effective method for easy confused wood furniture differentiation, we applied tri-step identification method, i.e., conventional infrared spectroscopy (FT-IR), second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2DCOS-IR) spectroscopy to investigate P. santalinus and D. louvelii furniture. According to FT-IR and SD-IR spectra, it has been found two unconditional stable difference at 848 cm-1 and 700 cm-1 and relative stable differences at 1735 cm-1, 1623 cm-1, 1614 cm-1, 1602 cm-1, 1509 cm-1, 1456 cm-1, 1200 cm-1, 1158 cm-1, 1055 cm-1, 1034 cm-1 and 895 cm-1 between D. louvelii and P. santalinus IR spectra. The stable discrepancy indicates that the category of extractives is different between the two species. Besides, the relative stable differences imply that the content of holocellulose in P. santalinus is more than that of D. louvelii, whereas the quantity of extractives in D. louvelii is higher. Furthermore, evident differences have been observed in their 2DCOS-IR spectra of 1550-1415 cm-1 and 1325-1030 cm-1. P. santalinus has two strong auto-peaks at 1459 cm-1 and 1467 cm-1, three mid-strong auto-peaks at 1518 cm-1, 1089 cm-1 and 1100 cm-1 and five weak auto-peaks at 1432 cm-1, 1437 cm-1, 1046 cm-1, 1056 cm-1 and 1307 cm-1 while D. louvelii has four strong auto-peaks at 1465 cm-1, 1523 cm-1, 1084 cm-1 and 1100 cm-1, four mid-strong auto-peaks at 1430 cm-1, 1499 cm-1, 1505 cm-1 and 1056 cm-1 and two auto-peaks at 1540 cm-1 and 1284 cm-1. This study has proved that FT-IR integrated with 2DCOS-IR could be applicable for precious wood furniture authentication in a direct, rapid and holistic manner.

  15. Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS)

    NASA Astrophysics Data System (ADS)

    Choi, Doo-Won; Jeon, Min-Gyu; Cho, Gyeong-Rae; Kamimoto, Takahiro; Deguchi, Yoshihiro; Doh, Deog-Hee

    2016-02-01

    Performance improvement was attained in data reconstructions of 2-dimensional tunable diode laser absorption spectroscopy (TDLAS). Multiplicative Algebraic Reconstruction Technique (MART) algorithm was adopted for data reconstruction. The data obtained in an experiment for the measurement of temperature and concentration fields of gas flows were used. The measurement theory is based upon the Beer-Lambert law, and the measurement system consists of a tunable laser, collimators, detectors, and an analyzer. Methane was used as a fuel for combustion with air in the Bunsen-type burner. The data used for the reconstruction are from the optical signals of 8-laser beams passed on a cross-section of the methane flame. The performances of MART algorithm in data reconstruction were validated and compared with those obtained by Algebraic Reconstruction Technique (ART) algorithm.

  16. Destabilization of 2D magnetic current sheets by resonance with bouncing electron - a new theory

    NASA Astrophysics Data System (ADS)

    Fruit, Gabriel; Louarn, Philippe; Tur, Anatoly

    2016-07-01

    In the general context of understanding the possible destabilization of the magnetotail before a substorm, we propose a kinetic model for electromagnetic instabilities in resonant interaction with trapped bouncing electrons. The geometry is clearly 2D and uses Harris sheet profile. Fruit et al. 2013 already used this model to investigate the possibilities of electrostatic instabilities. Tur et al. 2014 generalizes the model for full electromagnetic perturbations. Starting with a modified Harris sheet as equilibrium state, the linearized gyrokinetic Vlasov equation is solved for electromagnetic fluctuations with period of the order of the electron bounce period (a few seconds). The particle motion is restricted to its first Fourier component along the magnetic field and this allows the complete time integration of the non local perturbed distribution functions. The dispersion relation for electromagnetic modes is finally obtained through the quasi neutrality condition and the Ampere's law for the current density. The present talk will focus on the main results of this theory. The electrostatic version of the model may be applied to the near-Earth environment (8-12 R_{E}) where beta is rather low. It is showed that inclusion of bouncing electron motion may enhance strongly the growth rate of the classical drift wave instability. This model could thus explain the generation of strong parallel electric fields in the ionosphere and the formation of aurora beads with wavelength of a few hundreds of km. In the electromagnetic version, it is found that for mildly stretched current sheet (B_{z} > 0.1 B _{lobes}) undamped modes oscillate at typical electron bounce frequency with wavelength of the order of the plasma sheet thickness. As the stretching of the plasma sheet becomes more intense, the frequency of these normal modes decreases and beyond a certain threshold in B_{z}/B _{lobes}, the mode becomes explosive (pure imaginary frequency) with typical growing rate of a few

  17. Hemispherical Analyser with 2-D PSD for Zero-degree Auger Projectile Spectroscopy

    NASA Astrophysics Data System (ADS)

    Benis, E. P.; Zouros, T. J. M.; Aliabadi, H.; Richard, P.

    Details of a new high gain zero-degree Auger projectile electron spectrograph using a hemispherical analyser and a 2-dimensional position sensitive detector (PSD) with multichannel plates and a resistive anode encoder are presented. A four-element lens mounted at the entrance of the analyser, provides a virtual slit for the incoming electrons by focusing them while at the same time decelerating them to improve their energy resolution. Electrons enter through an aperture at a position R0 which is displaced (along the energy dispersion axis) with respect to the commonly used central entrance position at 1/2 (R1+R2). The analyser has an acceptance energy range of 20% and an energy resolution of 0.9%. An ion-optics trajectory simulation indicates improved focusing properties for this off-center position thus avoiding the need for cumbersome fringing field correction schemes. Test measurements of high resolution projectile Auger spectra produced in 21.7 MeV collisions of F8+ and F7+ projectiles with H2 and He are presented.

  18. Electron spectrometer for gas-phase spectroscopy

    SciTech Connect

    Bozek, J.D.; Schlachter, A.S.

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  19. Narrow electron injector for ballistic electron spectroscopy

    SciTech Connect

    Kast, M.; Pacher, C.; Strasser, G.; Gornik, E.

    2001-06-04

    A three-terminal hot electron transistor is used to measure the normal energy distribution of ballistic electrons generated by an electron injector utilizing an improved injector design. A triple barrier resonant tunneling diode with a rectangular transmission function acts as a narrow (1 meV) energy filter. An asymmetric energy distribution with its maximum on the high-energy side with a full width at half maximum of {Delta}E{sub inj}=10 meV is derived. {copyright} 2001 American Institute of Physics.

  20. Two-dimensional (2D) infrared (IR) correlation spectroscopy for dynamic absorption behavior of oleic acid (OA) onto silica gel

    NASA Astrophysics Data System (ADS)

    Genkawa, Takuma; Kanematsu, Wataru; Shinzawa, Hideyuki

    2014-07-01

    Dynamic absorption behavior of oleic acid (OA) onto silica gel was probed by infrared (IR) spectroscopy. Once OA is injected into silica gel placed on a horizontal attenuated total reflectance prism, the silica gel starts to absorb the OA molecules due to the molecular-level interaction based on hydrogen bonding between the COOH of OA and the OH of silica gel. The substantial level of variation of spectral feature is readily observed during the absorption of OA onto silica gel. 2D correlation analysis of the time-dependent IR spectra reveals fine details of absorption dynamics of OA molecules depending on the molecular structure. The predominant absorption of the monomers occurs at the onset of the absorption, and it is then quickly followed by the decrease in the dimers. In other words, the dissociation of the liquid crystals occurs via the disuniting of the tightly packed OA dimers.

  1. Near-infrared (NIR) monitoring of Nylon 6 during quenching studied by projection two-dimensional (2D) correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Mizukado, Junji

    2016-11-01

    Evolutionary change in supermolecular structure of Nylon 6 during its melt-quenched process was studied by Near-infrared (NIR) spectroscopy. Time-resolved NIR spectra was measured by taking the advantage of high-speed NIR monitoring based on an acousto-optic tunable filter (AOTF). Fine spectral features associated with the variation of crystalline and amorphous structure occurring in relatively short time scale were readily captured. For example, synchronous and asynchronous 2D correlation spectra reveal the initial decrease in the contribution of the NIR band at 1485 nm due to the amorphous structure, predominantly existing in the melt Nylon 6. This is then followed by the emerging contribution of the band intensity at 1535 nm associated with the crystalline structure. Consequently, the results clearly demonstrate a definite advantage of the high-speed NIR monitoring for analyzing fleeting phenomena.

  2. Two-dimensional (2D) Chemiluminescence (CL) correlation spectroscopy for studying thermal oxidation of isotactic polypropylene (iPP)

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Hagihara, Hideaki; Suda, Hiroyuki; Mizukado, Jyunji

    2016-11-01

    Application of the two-dimensional (2D) correlation spectroscopy is extended to Chemiluminescence (CL) spectra of isotactic polypropylene (iPP) under thermally induced oxidation. Upon heating, the polymer chains of the iPP undergoes scissoring and fragmentation to develop several intermediates. While different chemical species provides the emission at different wavelength regions, entire feature of the time-dependent CL spectra of the iPP samples were complicated by the presence of overlapped contributions from singlet oxygen (1O2) and carbonyl species within sample. 2D correlation spectra showed notable enhancement of the spectral resolution to provide penetrating insight into the thermodynamics of the polymer system. For example, the, oxidation induce scissoring and fragmentation of the polymer chains to develop the carbonyl group. Further reaction results in the consumption of the carbonyl species and subsequent production of different 1O2 species each developed in different manner. Consequently, key information on the thermal oxidation can be extracted in a surprisingly simple manner without any analytical expression for the actual response curves of spectral intensity signals during the reaction.

  3. Rapid discrimination of extracts of Chinese propolis and poplar buds by FT-IR and 2D IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Yan-Wen; Sun, Su-Qin; Zhao, Jing; Li, Yi; Zhou, Qun

    2008-07-01

    The extract of Chinese propolis (ECP) has recently been adulterated with that of poplar buds (EPB), because most of ECP is derived from the poplar plant, and ECP and EPB have almost identical chemical compositions. It is very difficult to differentiate them by using the chromatographic methods such as high performance liquid chromatography (HPLC) and gas chromatography (GC). Therefore, how to effectively discriminate these two mixtures is a problem to be solved urgently. In this paper, a rapid method for discriminating ECP and EPB was established by the Fourier transform infrared (FT-IR) spectra combined with the two-dimensional infrared correlation (2D IR) analysis. Forty-three ECP and five EPB samples collected from different areas of China were analyzed by the FT-IR spectroscopy. All the ECP and EPB samples tested show similar IR spectral profiles. The significant differences between ECP and EPB appear in the region of 3000-2800 cm -1 of the spectra. Based on such differences, the two species were successfully classified with the soft independent modeling of class analogy (SIMCA) pattern recognition technique. Furthermore, these differences were well validated by a series of temperature-dependent dynamic FT-IR spectra and the corresponding 2D IR plots. The results indicate that the differences in these two natural products are caused by the amounts of long-chain alkyl compounds (including long-chain alkanes, long-chain alkyl esters and long chain alkyl alcohols) in them, rather than the flavonoid compounds, generally recognized as the bioactive substances of propolis. There are much more long-chain alkyl compounds in ECP than those in EPB, and the carbon atoms of the compounds in ECP remain in an order Z-shaped array, but those in EPB are disorder. It suggests that FT-IR and 2D IR spectroscopy can provide a valuable method for the rapid differentiation of similar natural products, ECP and EPB. The IR spectra could directly reflect the integrated chemical

  4. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Popescu, Maria-Cristina; Froidevaux, Julien; Navi, Parviz; Popescu, Carmen-Mihaela

    2013-02-01

    It is known that heat treatment of wood combined with a low percent of relative humidity causes transformations in the chemical composition of it. The modifications and/or degradation of wood components occur by hydrolysis, oxidation, and decarboxylation reactions. The aim of this study was to give better insights on wood chemical modifications during wood heat treatment under low temperature at about 140 °C and 10% percentage of relative humidity, by infrared, principal component analysis and two dimensional infrared correlation spectroscopy. For this purpose, hardwood samples of lime (Tilia cordata) were investigated and analysed. The infrared spectra of treated samples were compared with the reference ones, the most important differences being observed in the "fingerprint" region. Due to the complexity of this region, which have contributions from all the wood constituents the chemical changes during hydro-thermal treatment were examined in detail using principal component analysis and 2D IR correlation spectroscopy. By hydro-thermal treatment of wood results the formation of acetic acid, which catalyse the hydrolysis reactions of hemicelluloses and amorphous cellulose. The cleavage of the β-O-4 linkages and splitting of the aliphatic methoxyl chains from the aromatic lignin ring was also observed. For the first treatment interval, a higher extent of carbohydrates degradation was observed, then an increase of the extent of the lignin degradation also took place.

  5. Excitons and exciton-phonon interactions in 2D MoS2 , WS2 and WSe2 studied by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pimenta, Marcos; Del Corro, Elena; Carvalho, Bruno; Malard, Leandro; Alves, Juliana; Fantini, Cristiano; Terrones, Humberto; Elias, Ana Laura; Terrones, Mauricio

    The 2D materials exhibit a very strong exciton binding energy, and the exciton-phonon coupling plays an important role in their optical properties. Resonance Raman spectroscopy (RRS) is a very useful tool to provide information about excitons and their couplings with phonons. We will present in this work a RRS study of different samples of 2D transition metal dichalcogenides (MoS2, WS2 and WSe2) with one, two and three layers (1L, 2L, 3L) and bulk samples, using more than 30 different laser excitation lines covering the visible range. We have observed that all Raman features are enhanced by resonances with excitonic transitions. From the laser energy dependence of the Raman excitation profile (REP) we obtained the energies of the excitonic states and their dependence with the number of atomic layers.. In the case of MoS2, we observed that the electron-phonon coupling is symmetry dependent, and our results provide experimental evidence of the C exciton recently predicted theoretically. The RRS results WSe2 show that the Raman modes are enhanced by the excited excitonic states and we will present the dependence of the excited states energies on the number of layers.

  6. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 2: 2D NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ashish P.; Pacheco, Carlos; Hay, Michael B.; Myneni, Satish C. B.

    2007-07-01

    Carboxyl groups are abundant in natural organic molecules (NOM) and play a major role in their reactivity. The structural environments of carboxyl groups in IHSS soil and river humic samples were investigated using 2D NMR (heteronuclear and homonuclear correlation) spectroscopy. Based on the 1H- 13C heteronuclear multiple-bond correlation (HMBC) spectroscopy results, the carboxyl environments in NOM were categorized as Type I (unsubstituted and alkyl-substituted aliphatic/alicyclic), Type II (functionalized carbon substituted), Type IIIa, b (heteroatom and olefin substituted), and Type IVa, b (5-membered heterocyclic aromatic and 6-membered aromatic). The most intense signal in the HMBC spectra comes from the Type I carboxyl groups, including the 2JCH and 3JCH couplings of unsubstituted aliphatic and alicyclic acids, though this spectral region also includes the 3JCH couplings of Type II and III structures. Type II and III carboxyls have small but detectable 2JCH correlations in all NOM samples except for the Suwannee River humic acid. Signals from carboxyls bonded to 5-membered aromatic heterocyclic fragments (Type IVa) are observed in the soil HA and Suwannee River FA, while correlations to 6-membered aromatics (Type IVb) are only observed in Suwannee River HA. In general, aromatic carboxylic acids may be present at concentrations lower than previously imagined in these samples. Vibrational spectroscopy results for these NOM samples, described in an accompanying paper [Hay M. B. and Myneni S. C. B. (2007) Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta (in press)], suggest that Type II and Type III carboxylic acids with α substituents (e.g., -OH, -OR, or -CO 2H) constitute the majority of carboxyl structures in all humic substances examined. Furoic and salicylic acid structures (Type IV) are also feasible fragments, albeit as minor constituents. The

  7. Final LDRD report : the physics of 1D and 2D electron gases in III-nitride heterostructure NWs.

    SciTech Connect

    Armstrong, Andrew M.; Arslan, Ilke; Upadhya, Prashanth C.; Morales, Eugenia T.; Leonard, Francois Leonard; Li, Qiming; Wang, George T.; Talin, Albert Alec; Prasankumar, Rohit P.; Lin, Yong

    2009-09-01

    The proposed work seeks to demonstrate and understand new phenomena in novel, freestanding III-nitride core-shell nanowires, including 1D and 2D electron gas formation and properties, and to investigate the role of surfaces and heterointerfaces on the transport and optical properties of nanowires, using a combined experimental and theoretical approach. Obtaining an understanding of these phenomena will be a critical step that will allow development of novel, ultrafast and ultraefficient nanowire-based electronic and photonic devices.

  8. Two-dimensional B-C-O alloys: a promising class of 2D materials for electronic devices.

    PubMed

    Zhou, Si; Zhao, Jijun

    2016-04-28

    Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp2 honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor forming alternate patterns into the chain- or ring-like structures embedded in the pristine graphene regions. These B-C-O hybrid sheets can be either metals or semiconductors depending on the B : O ratio. The semiconducting (B2O)nCm and (B6O3)nCm phases exist under the B- and O-rich conditions, and possess a tunable band gap of 1.0-3.8 eV and high carrier mobility, retaining ∼1000 cm2 V(-1) s(-1) even for half coverage of B and O atoms. These B-C-O alloys form a new class of 2D materials that are promising candidates for high-speed electronic devices.

  9. A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics.

    PubMed

    Shin, Su Ryon; Farzad, Raziyeh; Tamayol, Ali; Manoharan, Vijayan; Mostafalu, Pooria; Zhang, Yu Shrike; Akbari, Mohsen; Jung, Sung Mi; Kim, Duckjin; Comotto, Mattia; Annabi, Nasim; Al-Hazmi, Faten Ebrahim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2016-05-01

    The development of electrically conductive carbon nanotube-based inks is reported. Using these inks, 2D and 3D structures are printed on various flexible substrates such as paper, hydrogels, and elastomers. The printed patterns have mechanical and electrical properties that make them beneficial for various biological applications. PMID:26915715

  10. Electronic structure of disordered CuPd alloys by positron-annihilation 2D-ACAR

    SciTech Connect

    Smedskjaer, L.C.; Benedek, R.; Siegel, R.W.; Legnini, D.G.; Stahulak, M.D.; Bansil, A.

    1988-01-01

    We report 2D-ACAR experiments and KKR CPA calculations on alpha-phase single-crystal Cu/sub 1-x/Pd/sub x/ in the range x less than or equal to 0.25. The flattening of the Fermi surface near (110) with increasing x predicted by theory is confirmed by our experimental results. 16 refs., 2 figs.

  11. A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics.

    PubMed

    Shin, Su Ryon; Farzad, Raziyeh; Tamayol, Ali; Manoharan, Vijayan; Mostafalu, Pooria; Zhang, Yu Shrike; Akbari, Mohsen; Jung, Sung Mi; Kim, Duckjin; Comotto, Mattia; Annabi, Nasim; Al-Hazmi, Faten Ebrahim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2016-05-01

    The development of electrically conductive carbon nanotube-based inks is reported. Using these inks, 2D and 3D structures are printed on various flexible substrates such as paper, hydrogels, and elastomers. The printed patterns have mechanical and electrical properties that make them beneficial for various biological applications.

  12. Electron spectroscopy of the diamond surface

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1981-01-01

    The diamond surface is studied by ionization loss spectroscopy and Auger electron spectroscopy. For surfaces heated to temperatures not exceeding 900 C, the band gap was found to be devoid of empty states in the absence of electron beam effects. The incident electron beam generates empty states in the band gap and loss of structure in the valence band for these surfaces. A cross section of 1.4 x 10 to the -19th sq cm was obtained for this effect. For surfaces heated to temperatures exceeding 900 C the spectra were identical to those from surfaces modified by the electron beam. The diamond surface undergoes a thermal conversion in its electronic structure at about 900 C.

  13. Highly-accelerated quantitative 2D and 3D localized spectroscopy with linear algebraic modeling (SLAM) and sensitivity encoding

    PubMed Central

    Zhang, Yi; Gabr, Refaat E.; Zhou, Jinyuan; Weiss, Robert G.; Bottomley, Paul A.

    2013-01-01

    Noninvasive magnetic resonance spectroscopy (MRS) with chemical shift imaging (CSI) provides valuable metabolic information for research and clinical studies, but is often limited by long scan times. Recently, spectroscopy with linear algebraic modeling (SLAM) was shown to provide compartment-averaged spectra resolved in one spatial dimension with many-fold reductions in scan-time. This was achieved using a small subset of the CSI phase-encoding steps from central image k-space that maximized the signal-to-noise ratio. Here, SLAM is extended to two- and three-dimensions (2D, 3D). In addition, SLAM is combined with sensitivity-encoded (SENSE) parallel imaging techniques, enabling the replacement of even more CSI phase-encoding steps to further accelerate scan-speed. A modified SLAM reconstruction algorithm is introduced that significantly reduces the effects of signal nonuniformity within compartments. Finally, main-field inhomogeneity corrections are provided, analogous to CSI. These methods are all tested on brain proton MRS data from a total of 24 patients with brain tumors, and in a human cardiac phosphorus 3D SLAM study at 3T. Acceleration factors of up to 120-fold versus CSI are demonstrated, including speed-up factors of 5-fold relative to already-accelerated SENSE CSI. Brain metabolites are quantified in SLAM and SENSE SLAM spectra and found to be indistinguishable from CSI measures from the same compartments. The modified reconstruction algorithm demonstrated immunity to maladjusted segmentation and errors from signal heterogeneity in brain data. In conclusion, SLAM demonstrates the potential to supplant CSI in studies requiring compartment-average spectra or large volume coverage, by dramatically reducing scan-time while providing essentially the same quantitative results. PMID:24188921

  14. Highly-accelerated quantitative 2D and 3D localized spectroscopy with linear algebraic modeling (SLAM) and sensitivity encoding

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Gabr, Refaat E.; Zhou, Jinyuan; Weiss, Robert G.; Bottomley, Paul A.

    2013-12-01

    Noninvasive magnetic resonance spectroscopy (MRS) with chemical shift imaging (CSI) provides valuable metabolic information for research and clinical studies, but is often limited by long scan times. Recently, spectroscopy with linear algebraic modeling (SLAM) was shown to provide compartment-averaged spectra resolved in one spatial dimension with many-fold reductions in scan-time. This was achieved using a small subset of the CSI phase-encoding steps from central image k-space that maximized the signal-to-noise ratio. Here, SLAM is extended to two- and three-dimensions (2D, 3D). In addition, SLAM is combined with sensitivity-encoded (SENSE) parallel imaging techniques, enabling the replacement of even more CSI phase-encoding steps to further accelerate scan-speed. A modified SLAM reconstruction algorithm is introduced that significantly reduces the effects of signal nonuniformity within compartments. Finally, main-field inhomogeneity corrections are provided, analogous to CSI. These methods are all tested on brain proton MRS data from a total of 24 patients with brain tumors, and in a human cardiac phosphorus 3D SLAM study at 3T. Acceleration factors of up to 120-fold versus CSI are demonstrated, including speed-up factors of 5-fold relative to already-accelerated SENSE CSI. Brain metabolites are quantified in SLAM and SENSE SLAM spectra and found to be indistinguishable from CSI measures from the same compartments. The modified reconstruction algorithm demonstrated immunity to maladjusted segmentation and errors from signal heterogeneity in brain data. In conclusion, SLAM demonstrates the potential to supplant CSI in studies requiring compartment-average spectra or large volume coverage, by dramatically reducing scan-time while providing essentially the same quantitative results.

  15. Dynamical effects in electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Jianqiang Sky; Kas, J. J.; Sponza, Lorenzo; Reshetnyak, Igor; Guzzo, Matteo; Giorgetti, Christine; Gatti, Matteo; Sottile, Francesco; Rehr, J. J.; Reining, Lucia

    2015-11-01

    One of the big challenges of theoretical condensed-matter physics is the description, understanding, and prediction of the effects of the Coulomb interaction on materials properties. In electronic spectra, the Coulomb interaction causes a renormalization of energies and change of spectral weight. Most importantly, it can lead to new structures, often called satellites. These can be linked to the coupling of excitations, also termed dynamical effects. State-of-the-art methods in the framework of many-body perturbation theory, in particular, the widely used GW approximation, often fail to describe satellite spectra. Instead, approaches based on a picture of electron-boson coupling such as the cumulant expansion are promising for the description of plasmon satellites. In this work, we give a unified derivation of the GW approximation and the cumulant expansion for the one-body Green's function. Using the example of bulk sodium, we compare the resulting spectral functions both in the valence and in the core region, and we discuss the dispersion of quasi-particles and satellites. We show that self-consistency is crucial to obtain meaningful results, in particular, at large binding energies. Very good agreement with experiment is obtained when the intrinsic spectral function is corrected for extrinsic and interference effects. Finally, we sketch how one can approach the problem in the case of the two-body Green's function, and we discuss the cancellation of various dynamical effects that occur in that case.

  16. Dynamical effects in electron spectroscopy

    SciTech Connect

    Zhou, Jianqiang Sky Reshetnyak, Igor; Giorgetti, Christine; Sottile, Francesco; Reining, Lucia; Kas, J. J.; Rehr, J. J.; Sponza, Lorenzo; Guzzo, Matteo; Gatti, Matteo

    2015-11-14

    One of the big challenges of theoretical condensed-matter physics is the description, understanding, and prediction of the effects of the Coulomb interaction on materials properties. In electronic spectra, the Coulomb interaction causes a renormalization of energies and change of spectral weight. Most importantly, it can lead to new structures, often called satellites. These can be linked to the coupling of excitations, also termed dynamical effects. State-of-the-art methods in the framework of many-body perturbation theory, in particular, the widely used GW approximation, often fail to describe satellite spectra. Instead, approaches based on a picture of electron-boson coupling such as the cumulant expansion are promising for the description of plasmon satellites. In this work, we give a unified derivation of the GW approximation and the cumulant expansion for the one-body Green’s function. Using the example of bulk sodium, we compare the resulting spectral functions both in the valence and in the core region, and we discuss the dispersion of quasi-particles and satellites. We show that self-consistency is crucial to obtain meaningful results, in particular, at large binding energies. Very good agreement with experiment is obtained when the intrinsic spectral function is corrected for extrinsic and interference effects. Finally, we sketch how one can approach the problem in the case of the two-body Green’s function, and we discuss the cancellation of various dynamical effects that occur in that case.

  17. Dynamical effects in electron spectroscopy.

    PubMed

    Zhou, Jianqiang Sky; Kas, J J; Sponza, Lorenzo; Reshetnyak, Igor; Guzzo, Matteo; Giorgetti, Christine; Gatti, Matteo; Sottile, Francesco; Rehr, J J; Reining, Lucia

    2015-11-14

    One of the big challenges of theoretical condensed-matter physics is the description, understanding, and prediction of the effects of the Coulomb interaction on materials properties. In electronic spectra, the Coulomb interaction causes a renormalization of energies and change of spectral weight. Most importantly, it can lead to new structures, often called satellites. These can be linked to the coupling of excitations, also termed dynamical effects. State-of-the-art methods in the framework of many-body perturbation theory, in particular, the widely used GW approximation, often fail to describe satellite spectra. Instead, approaches based on a picture of electron-boson coupling such as the cumulant expansion are promising for the description of plasmon satellites. In this work, we give a unified derivation of the GW approximation and the cumulant expansion for the one-body Green's function. Using the example of bulk sodium, we compare the resulting spectral functions both in the valence and in the core region, and we discuss the dispersion of quasi-particles and satellites. We show that self-consistency is crucial to obtain meaningful results, in particular, at large binding energies. Very good agreement with experiment is obtained when the intrinsic spectral function is corrected for extrinsic and interference effects. Finally, we sketch how one can approach the problem in the case of the two-body Green's function, and we discuss the cancellation of various dynamical effects that occur in that case. PMID:26567648

  18. Hydrogen bonding and Raman, IR, and 2D-IR spectroscopy of dilute HOD in liquid D2O.

    PubMed

    Auer, B; Kumar, R; Schmidt, J R; Skinner, J L

    2007-09-01

    We present improvements on our previous approaches for calculating vibrational spectroscopy observables for the OH stretch region of dilute HOD in liquid D2O. These revised approaches are implemented to calculate IR and isotropic Raman spectra, using the SPC/E simulation model, and the results are in good agreement with experiment. We also calculate observables associated with three-pulse IR echoes: the peak shift and 2D-IR spectrum. The agreement with experiment for the former is improved over our previous calculations, but discrepancies between theory and experiment still exist. Using our proposed definition for hydrogen bonding in liquid water, we decompose the distribution of frequencies in the OH stretch region in terms of subensembles of HOD molecules with different local hydrogen-bonding environments. Such a decomposition allows us to make the connection with experiments and calculations on water clusters and more generally to understand the extent of the relationship between transition frequency and local structure in the liquid.

  19. Two-dimensional B-C-O alloys: a promising class of 2D materials for electronic devices

    NASA Astrophysics Data System (ADS)

    Zhou, Si; Zhao, Jijun

    2016-04-01

    Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp2 honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor forming alternate patterns into the chain- or ring-like structures embedded in the pristine graphene regions. These B-C-O hybrid sheets can be either metals or semiconductors depending on the B : O ratio. The semiconducting (B2O)nCm and (B6O3)nCm phases exist under the B- and O-rich conditions, and possess a tunable band gap of 1.0-3.8 eV and high carrier mobility, retaining ~1000 cm2 V-1 s-1 even for half coverage of B and O atoms. These B-C-O alloys form a new class of 2D materials that are promising candidates for high-speed electronic devices.Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp2 honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor

  20. Layer-by-Layer Assembled 2D Montmorillonite Dielectrics for Solution-Processed Electronics.

    PubMed

    Zhu, Jian; Liu, Xiaolong; Geier, Michael L; McMorrow, Julian J; Jariwala, Deep; Beck, Megan E; Huang, Wei; Marks, Tobin J; Hersam, Mark C

    2016-01-01

    Layer-by-layer assembled 2D montmorillonite nanosheets are shown to be high-performance, solution-processed dielectrics. These scalable and spatially uniform sub-10 nm thick dielectrics yield high areal capacitances of ≈600 nF cm(-2) and low leakage currents down to 6 × 10(-9) A cm(-2) that enable low voltage operation of p-type semiconducting single-walled carbon nanotube and n-type indium gallium zinc oxide field-effect transistors. PMID:26514248

  1. Beyond Graphene: Electronic and Mechanical Properties of Defective 2-D Materials

    NASA Astrophysics Data System (ADS)

    Terrones, Humberto

    One of the challenges in the production of 2-D materials is the synthesis of defect free systems which can achieve the desired properties for novel applications. However, the reality so far indicates that we need to deal with defective systems and understand their main features in order to perform defect engineering in such a way that we can engineer a new material. In this talk I discuss first, the introduction of defects in a hierarchic way starting from 2-D graphene to form giant Schwarzites or graphene foams, which also can exhibit further defects, thus we can have several levels of defectiveness. In this context, it will be shown that giant Schwarzites, depending on their symmetry, can exhibit Dirac-Fermion behavior and further, possess protected topological states as shown by other authors. Regarding the mechanical properties of these systems, it is possible to tune the Poisson Ratio by the addition of defects, thus shedding light to the explanation of the almost zero Poisson ratios in experimentally obtained graphene foams. Second, the idea of Haeckelites, a planar sp2 graphene-like structure with heptagons and pentagons, can be extended to transition metal dichalcogenides (TMDs) with square and octagonal-like defects, finding semi-metallic behaviors with Dirac-Fermions, and even topological insulating properties. National Science Foundation (EFRI-1433311).

  2. Binary and ternary recombination of H2D(+) and HD2(+) ions with electrons at 80 K.

    PubMed

    Dohnal, Petr; Kálosi, Ábel; Plašil, Radek; Roučka, Štěpán; Kovalenko, Artem; Rednyk, Serhiy; Johnsen, Rainer; Glosík, Juraj

    2016-08-24

    The recombination of deuterated trihydrogen cations with electrons has been studied in afterglow plasmas containing mixtures of helium, argon, hydrogen and deuterium. By monitoring the fractional abundances of H3(+), H2D(+), HD2(+) and D3(+) as a function of the [D2]/[H2] ratio using infrared absorption observed in a cavity ring down absorption spectrometer (CRDS), it was possible to deduce effective recombination rate coefficients for H2D(+) and HD2(+) ions at a temperature of 80 K. From pressure dependences of the measured effective recombination rate coefficients the binary and the ternary recombination rate coefficients for both ions have been determined. The inferred binary and ternary recombination rate coefficients are: αbinH2D(80 K) = (7.1 ± 4.2) × 10(-8) cm(3) s(-1), αbinHD2(80 K) = (8.7 ± 2.5) × 10(-8) cm(3) s(-1), KH2D(80 K) = (1.1 ± 0.6) × 10(-25) cm(6) s(-1) and KHD2(80 K) = (1.5 ± 0.4) × 10(-25) cm(6) s(-1). PMID:27506912

  3. Single Molecule Spectroscopy of Electron Transfer

    SciTech Connect

    Michael Holman; Ling Zang; Ruchuan Liu; David M. Adams

    2009-10-20

    The objectives of this research are threefold: (1) to develop methods for the study electron transfer processes at the single molecule level, (2) to develop a series of modifiable and structurally well defined molecular and nanoparticle systems suitable for detailed single molecule/particle and bulk spectroscopic investigation, (3) to relate experiment to theory in order to elucidate the dependence of electron transfer processes on molecular and electronic structure, coupling and reorganization energies. We have begun the systematic development of single molecule spectroscopy (SMS) of electron transfer and summaries of recent studies are shown. There is a tremendous need for experiments designed to probe the discrete electronic and molecular dynamic fluctuations of single molecules near electrodes and at nanoparticle surfaces. Single molecule spectroscopy (SMS) has emerged as a powerful method to measure properties of individual molecules which would normally be obscured in ensemble-averaged measurement. Fluctuations in the fluorescence time trajectories contain detailed molecular level statistical and dynamical information of the system. The full distribution of a molecular property is revealed in the stochastic fluctuations, giving information about the range of possible behaviors that lead to the ensemble average. In the case of electron transfer, this level of understanding is particularly important to the field of molecular and nanoscale electronics: from a device-design standpoint, understanding and controlling this picture of the overall range of possible behaviors will likely prove to be as important as designing ia the ideal behavior of any given molecule.

  4. Moving-window 2D correlation spectroscopy in studies of fluphenazine-DPPC dehydrated film as a function of temperature

    NASA Astrophysics Data System (ADS)

    Szwed, Joanna; Cieślik-Boczula, Katarzyna; Czarnik-Matusewicz, Bogusława; Jaszczyszyn, Agata; Gąsiorowski, Kazimierz; Świątek, Piotr; Malinka, Wiesław

    2010-06-01

    The effect of incorporating fluphenazine (FPh) into the dipalmitoylphosphatidylcholine (DPPC) multibilayers was studied by means of two-dimensional correlation spectroscopy (2DCOS) applied to attenuated total reflection (ATR) infrared spectra. DPPC is used as a model membrane that mimics the organization of lipids in biological membranes and their interaction with FPh. ATR-IR spectra for both DPPC dry film alone and the film doped with FPh were recorded as a function of temperature to provide information about the interaction between FPh molecules and DPPC lipid. The chain-melting phase-transition temperature changes are strictly correlated with the conformational order of the lipid hydrocarbon chains. To gain deeper insight into the accompanying spectral changes, we employed moving-window 2D correlation spectroscopy. Subdividing all the measurements from 10 to 90 °C into 20° subsets enables a detailed identification of spectral features induced by embedding FPh into DPPC multilayers. Moving-window analysis of the power spectra for the ν asym,symCH 2, δ sCH 2, and δ rCH 2 vibrations provides evidence that FPh is embedded in the region between the bilayers, penetrating their hydrophilic part, which destabilizes the interchain interaction. Above 60 °C the FPh-DPPC system reaches the liquid crystalline phase with the well-established location of FPh. A further temperature increase to 90 °C has little effect on the intrachain conformational order and the packing character of the FPh-DPPC system in the liquid crystalline phase. In addition, FPh hinders the formation of large domains. Comparison of the moving-window analysis done by using slice spectra for DPPC and FPh-doped DPPC dry film for ν asym,symCH 2, νC dbnd O, and νPO2- shows that the interaction between the DPPC and FPh molecules is accompanied by very distinct spectral changes located in a both lower and narrower temperature range than those observed in pure DPPC film.

  5. Dynamics-based selective 2D 1H/1H chemical shift correlation spectroscopy under ultrafast MAS conditions

    PubMed Central

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-01-01

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of 1H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of 1H/1H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials. PMID:26026440

  6. Increasing the lego of 2D electronics materials: silicene and germanene, graphene's new synthetic cousins

    NASA Astrophysics Data System (ADS)

    Le Lay, Guy; Salomon, Eric; Angot, Thierry; Eugenia Dávila, Maria

    2015-05-01

    The realization of the first Field Effect Transistors operating at room temperature, based on a single layer silicene channel, open up highly promising perspectives, e.g., typically, for applications in digital electronics. Here, we describe recent results on the growth, characterization and electronic properties of novel synthetic two-dimensional materials beyond graphene, namely silicene and germanene, its silicon and germanium counterparts.

  7. Reorientation of the Stripe Phase of 2D Electrons by a Minute Density Modulation

    NASA Astrophysics Data System (ADS)

    Mueed, M. A.; Hossain, Md. Shafayat; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.

    2016-08-01

    Interacting two-dimensional electrons confined in a GaAs quantum well exhibit isotropic transport when the Fermi level resides in the first excited (N =1 ) Landau level. Adding an in-plane magnetic field (B||) typically leads to an anisotropic, stripelike (nematic) phase of electrons with the stripes oriented perpendicular to the B|| direction. Our experimental data reveal how a periodic density modulation, induced by a surface strain grating from strips of negative electron-beam resist, competes against the B||-induced orientational order of the stripe phase. Even a minute (<0.25 %) density modulation is sufficient to reorient the stripes along the direction of the surface grating.

  8. Ray tracing of Electron Bernstein Waves in 2D for C-2 Equilibrium

    NASA Astrophysics Data System (ADS)

    Trask, E.; Kruszelnicki, J.; Harvey, R. W.; Petrov, Yu.; TAE Team

    2013-10-01

    Ray propagation in the electron cyclotron range of frequencies (ECRF) has been studied for simulated two dimensional equilibria on the C-2 device. Studies have been performed using the Genray ray tracing code, with modifications to allow ray trajectories on open magnetic flux surfaces. Primary studies are focused on Electron Bernstein Wave (EBW) coupling mechanisms to study the potential for microwave heating of Field Reversed Configurations (FRC).

  9. Image simulation for electron energy loss spectroscopy

    SciTech Connect

    Oxley, Mark P.; Pennycook, Stephen J.

    2007-10-22

    In this paper, aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to be increased in size, resulting in probes of the order of 1 Å in diameter. The next generation of correctors promise even smaller probes. Improved spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The localization of images based on core-loss electron energy loss spectroscopy is examined as function of both probe-forming aperture and detector size. The effective ionization is nonlocal in nature, and two common local approximations are compared to full nonlocal calculations. Finally, the affect of the channelling of the electron probe within the sample is also discussed.

  10. Collisional electron spectroscopy method for gas analysis

    NASA Astrophysics Data System (ADS)

    Stefanova, M. S.; Pramatarov, P. M.; Kudryavtsev, A. A.; Peyeva, R. A.; Patrikov, T. B.

    2016-05-01

    Recently developed collisional electron spectroscopy (CES) method, based on identification of gas impurities by registration of groups of nonlocal fast electrons released by Penning ionization of the impurity particles by helium metastable atoms, is verified experimentally. Detection and identification of atoms and molecules of gas impurities in helium at pressures of 14 - 90 Torr with small admixtures of Ar, Kr, CO2, and N2 are carried out. The nonlocal negative glow plasma of short dc microdischarge is used as most suitable medium. Records of the energy spectra of penning electrons are performed by means of an additional electrode - sensor, located at the boundary of the discharge volume. Maxima appear in the electron energy spectra at the characteristic energies corresponding to Penning ionization of the impurity particles by helium metastable atoms.

  11. Image simulation for electron energy loss spectroscopy

    DOE PAGES

    Oxley, Mark P.; Pennycook, Stephen J.

    2007-10-22

    In this paper, aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to be increased in size, resulting in probes of the order of 1 Å in diameter. The next generation of correctors promise even smaller probes. Improved spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The localization of images based on core-loss electron energy loss spectroscopy is examined as function of both probe-forming aperture and detector size. The effective ionization is nonlocal in nature, and two common local approximations are compared to full nonlocal calculations.more » Finally, the affect of the channelling of the electron probe within the sample is also discussed.« less

  12. Quantification of transition dipole strengths using 1D and 2D spectroscopy for the identification of molecular structures via exciton delocalization: Application to α-helices

    NASA Astrophysics Data System (ADS)

    Grechko, Maksim; Zanni, Martin T.

    2012-11-01

    Vibrational and electronic transition dipole strengths are often good probes of molecular structures, especially in excitonically coupled systems of chromophores. One cannot determine transition dipole strengths using linear spectroscopy unless the concentration is known, which in many cases it is not. In this paper, we report a simple method for measuring transition dipole moments from linear absorption and 2D IR spectra that does not require knowledge of concentrations. Our method is tested on several model compounds and applied to the amide I' band of a polypeptide in its random coil and α-helical conformation as modulated by the solution temperature. It is often difficult to confidently assign polypeptide and protein secondary structures to random coil or α-helix by linear spectroscopy alone, because they absorb in the same frequency range. We find that the transition dipole strength of the random coil state is 0.12 ± 0.013 D2, which is similar to a single peptide unit, indicating that the vibrational mode of random coil is localized on a single peptide unit. In an α-helix, the lower bound of transition dipole strength is 0.26 ± 0.03 D2. When taking into account the angle of the amide I' transition dipole vector with respect to the helix axis, our measurements indicate that the amide I' vibrational mode is delocalized across a minimum of 3.5 residues in an α-helix. Thus, one can confidently assign secondary structure based on exciton delocalization through its effect on the transition dipole strength. Our method will be especially useful for kinetically evolving systems, systems with overlapping molecular conformations, and other situations in which concentrations are difficult to determine.

  13. Dynamic polarization of graphene by moving external charges: Comparison with 2D electron gas

    NASA Astrophysics Data System (ADS)

    Borka, D.; Radović, I.; Mišković, Z. L.

    2011-06-01

    We calculate the stopping and image forces on a point charge moving over a single-layer graphene grown on an SiC substrate, and compare them with forces arising when a charge moves over a two-dimensional electron gas (2DEG) in an Ag monolayer on a Si substrate. Given that both these systems constitute a one-atom thick 2DEG, major differences are found in the velocity and distance dependencies of the two forces owing to different electronic structures of the respective 2DEG. Within the massless Dirac fermion picture of graphene's π electron bands, the inter-band single particle excitations are found to affect the stopping and image forces at high speeds in a substantial way, whereas such excitations are absent in the 2DEG of the metallic layer described by a single parabolic band.

  14. Oxide 2D electron gases as a route for high carrier densities on (001) Si

    SciTech Connect

    Kornblum, Lior; Jin, Eric N.; Kumah, Divine P.; Walker, Fred J.; Ernst, Alexis T.; Broadbridge, Christine C.; Ahn, Charles H.

    2015-05-18

    Two dimensional electron gases (2DEGs) formed at the interfaces of oxide heterostructures draw considerable interest owing to their unique physics and potential applications. Growing such heterostructures on conventional semiconductors has the potential to integrate their functionality with semiconductor device technology. We demonstrate 2DEGs on a conventional semiconductor by growing GdTiO{sub 3}-SrTiO{sub 3} on silicon. Structural analysis confirms the epitaxial growth of heterostructures with abrupt interfaces and a high degree of crystallinity. Transport measurements show the conduction to be an interface effect, ∼9 × 10{sup 13} cm{sup −2} electrons per interface. Good agreement is demonstrated between the electronic behavior of structures grown on Si and on an oxide substrate, validating the robustness of this approach to bridge between lab-scale samples to a scalable, technologically relevant materials system.

  15. Fast Ion Induced Shearing of 2D Alfven Eigenmodes Measured by Electron Cyclotron Emission Imaging

    SciTech Connect

    Tobias, Ben; Classen, I.G.J.; Domier, C. W.; Heidbrink, W.; Luhmann, N.C.; Nazikian, Raffi; Park, H.K.; Spong, Donald A; Van Zeeland, Michael

    2011-01-01

    Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfven eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.

  16. Electron-impact excitation of the Rb 7 2S1/2, 8 2S1/2, 5 2D3/2, and 6 2D3/2 states

    NASA Astrophysics Data System (ADS)

    Wei, Zuyi; Flynn, Connor; Redd, Aaron; Stumpf, Bernhard

    1993-03-01

    Electron-impact cross sections for excitation of the 7 2S1/2, 8 2S1/2, 5 2D3/2, and 6 2D3/2 states of rubidium have been measured from threshold to 1000 eV. The optical-excitation-function method has been employed in a crossed atom- and electron-beam apparatus. Relative, total (cascade including) experimental cross sections are made absolute by comparison with the known total cross section of the Rb D1 line. Total excitation cross sections are compared with theoretical calculations employing first Born approximation and theoretical branching ratios. Born cross sections for the 7 2S1/2 and 8 2S1/2 states are obtained from the literature, while Born cross sections for the 5 2D3/2, 6 2D3/2, and all cascading states are calculated in this paper. At high energies, the measured total 2D3/2 state cross sections show 1/E behavior and converge to first Born theory; for E>100 eV, experiment and theory agree within 6.7% for 5 2D3/2 and within 3.7% for 6 2D3/2. The total cross sections for the 2S1/2 states do not converge to Born theory even at 1000 eV, and it is shown that this cannot be attributed to cascading. At low energies, 2S1/2 and 2D3/2 state total excitation cross sections have similar shapes with sharply peaked maxima at about 0.9 eV above threshold. After cascading is corrected using first Born theory, estimated experimental cross sections for direct excitation of higher fine-structure states of rubidium are given.

  17. A Fast Parallel Algorithm for Selected Inversion of Structured Sparse Matrices with Application to 2D Electronic Structure Calculations

    SciTech Connect

    Lin, Lin; Yang, Chao; Lu, Jiangfeng; Ying, Lexing; E, Weinan

    2009-09-25

    We present an efficient parallel algorithm and its implementation for computing the diagonal of $H^-1$ where $H$ is a 2D Kohn-Sham Hamiltonian discretized on a rectangular domain using a standard second order finite difference scheme. This type of calculation can be used to obtain an accurate approximation to the diagonal of a Fermi-Dirac function of $H$ through a recently developed pole-expansion technique \\cite{LinLuYingE2009}. The diagonal elements are needed in electronic structure calculations for quantum mechanical systems \\citeHohenbergKohn1964, KohnSham 1965,DreizlerGross1990. We show how elimination tree is used to organize the parallel computation and how synchronization overhead is reduced by passing data level by level along this tree using the technique of local buffers and relative indices. We analyze the performance of our implementation by examining its load balance and communication overhead. We show that our implementation exhibits an excellent weak scaling on a large-scale high performance distributed parallel machine. When compared with standard approach for evaluating the diagonal a Fermi-Dirac function of a Kohn-Sham Hamiltonian associated a 2D electron quantum dot, the new pole-expansion technique that uses our algorithm to compute the diagonal of $(H-z_i I)^-1$ for a small number of poles $z_i$ is much faster, especially when the quantum dot contains many electrons.

  18. Parallel FE Electron-Photon Transport Analysis on 2-D Unstructured Mesh

    SciTech Connect

    Drumm, C.R.; Lorenz, J.

    1999-03-02

    A novel solution method has been developed to solve the coupled electron-photon transport problem on an unstructured triangular mesh. Instead of tackling the first-order form of the linear Boltzmann equation, this approach is based on the second-order form in conjunction with the conventional multi-group discrete-ordinates approximation. The highly forward-peaked electron scattering is modeled with a multigroup Legendre expansion derived from the Goudsmit-Saunderson theory. The finite element method is used to treat the spatial dependence. The solution method is unique in that the space-direction dependence is solved simultaneously, eliminating the need for the conventional inner iterations, a method that is well suited for massively parallel computers.

  19. Fourier transform two-dimensional electronic-vibrational spectroscopy using an octave-spanning mid-IR probe.

    PubMed

    Gaynor, James D; Courtney, Trevor L; Balasubramanian, Madhumitha; Khalil, Munira

    2016-06-15

    The development of coherent Fourier transform two-dimensional electronic-vibrational (2D EV) spectroscopy with acousto-optic pulse-shaper-generated near-UV pump pulses and an octave-spanning broadband mid-IR probe pulse is detailed. A 2D EV spectrum of a silicon wafer demonstrates the full experimental capability of this experiment, and a 2D EV spectrum of dissolved hexacyanoferrate establishes the viability of our 2D EV experiment for studying condensed phase molecular ensembles. PMID:27304316

  20. Simulating electron energy loss spectroscopy with the MNPBEM toolbox

    NASA Astrophysics Data System (ADS)

    Hohenester, Ulrich

    2014-03-01

    Within the MNPBEM toolbox, we show how to simulate electron energy loss spectroscopy (EELS) of plasmonic nanoparticles using a boundary element method approach. The methodology underlying our approach closely follows the concepts developed by García de Abajo and coworkers (Garcia de Abajo, 2010). We introduce two classes eelsret and eelsstat that allow in combination with our recently developed MNPBEM toolbox for a simple, robust, and efficient computation of EEL spectra and maps. The classes are accompanied by a number of demo programs for EELS simulation of metallic nanospheres, nanodisks, and nanotriangles, and for electron trajectories passing by or penetrating through the metallic nanoparticles. We also discuss how to compute electric fields induced by the electron beam and cathodoluminescence. Catalogue identifier: AEKJ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKJ_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 38886 No. of bytes in distributed program, including test data, etc.: 1222650 Distribution format: tar.gz Programming language: Matlab 7.11.0 (R2010b). Computer: Any which supports Matlab 7.11.0 (R2010b). Operating system: Any which supports Matlab 7.11.0 (R2010b). RAM:≥1 GB Classification: 18. Catalogue identifier of previous version: AEKJ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 370 External routines: MESH2D available at www.mathworks.com Does the new version supersede the previous version?: Yes Nature of problem: Simulation of electron energy loss spectroscopy (EELS) for plasmonic nanoparticles. Solution method: Boundary element method using electromagnetic potentials. Reasons for new version: The new version of the toolbox includes two additional classes for the simulation of electron energy

  1. Inelastic electron tunneling spectroscopy for topological insulators.

    PubMed

    She, Jian-Huang; Fransson, Jonas; Bishop, A R; Balatsky, Alexander V

    2013-01-11

    Inelastic electron tunneling spectroscopy is a powerful spectroscopy that allows one to investigate the nature of local excitations and energy transfer in the system of interest. We study inelastic electron tunneling spectroscopy for topological insulators and investigate the role of inelastic scattering on the Dirac node states on the surface of topological insulators. Local inelastic scattering is shown to significantly modify the Dirac node spectrum. In the weak coupling limit, peaks and steps are induced in second derivative d2I/dV2. In the strong coupling limit, the local negative-U centers are formed at impurity sites, and the Dirac cone structure is fully destroyed locally. At intermediate coupling, resonance peaks emerge. We map out the evolution of the resonance peaks from weak to strong coupling, which interpolate nicely between the two limits. There is a sudden qualitative change of behavior at intermediate coupling, indicating the possible existence of a local quantum phase transition. We also find that, even for a simple local phonon mode, the inherent coupling of spin and orbital degrees in topological insulators leads to the spin-polarized texture in inelastic Friedel oscillations induced by the local mode.

  2. Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal.

    PubMed

    Jiang, B-Y; Ni, G X; Pan, C; Fei, Z; Cheng, B; Lau, C N; Bockrath, M; Basov, D N; Fogler, M M

    2016-08-19

    We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept. PMID:27588873

  3. Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal

    NASA Astrophysics Data System (ADS)

    Jiang, B.-Y.; Ni, G. X.; Pan, C.; Fei, Z.; Cheng, B.; Lau, C. N.; Bockrath, M.; Basov, D. N.; Fogler, M. M.

    2016-08-01

    We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept.

  4. Residue-Specific Structural Kinetics of Proteins through the Union of Isotope Labeling, Mid-IR Pulse Shaping, and Coherent 2D IR Spectroscopy

    PubMed Central

    Middleton, Chris T.; Woys, Ann Marie; Mukherjee, Sudipta S.; Zanni, Martin T.

    2010-01-01

    We describe a methodology for studying protein kinetics using a rapid-scan technology for collecting 2D IR spectra. In conjunction with isotope labeling, 2D IR spectroscopy is able to probe the secondary structure and environment of individual residues in polypeptides and proteins. It is particularly useful for membrane and aggregate proteins. Our rapid-scan technology relies on a mid-IR pulse shaper that computer generates the pulse shapes, much like in an NMR spectrometer. With this device, data collection is faster, easier, and more accurate. We describe our 2D IR spectrometer, as well as protocols for 13C=18O isotope labeling, and then illustrate the technique with an application to the aggregation of the human islet amyloid polypeptide form type 2 diabetes. PMID:20472067

  5. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    SciTech Connect

    Nenov, Artur Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco E-mail: marco.garavelli@ens-lyon.fr

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  6. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Nenov, Artur; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco

    2015-06-01

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040-1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  7. Theoretical predictions on the electronic structure and charge carrier mobility in 2D Phosphorus sheets

    PubMed Central

    Xiao, Jin; Long, Mengqiu; Zhang, Xiaojiao; Ouyang, Jun; Xu, Hui; Gao, Yongli

    2015-01-01

    We have investigated the electronic structure and carrier mobility of four types of phosphorous monolayer sheet (α-P, β-P,γ-P and δ-P) using density functional theory combined with Boltzmann transport method and relaxation time approximation. It is shown that α-P, β-P and γ-P are indirect gap semiconductors, while δ-P is a direct one. All four sheets have ultrahigh carrier mobility and show anisotropy in-plane. The highest mobility value is ~3 × 105 cm2V−1s−1, which is comparable to that of graphene. Because of the huge difference between the hole and electron mobilities, α-P, γ-P and δ-P sheets can be considered as n-type semiconductors, and β-P sheet can be considered as a p-type semiconductor. Our results suggest that phosphorous monolayer sheets can be considered as a new type of two dimensional materials for applications in optoelectronics and nanoelectronic devices. PMID:26035176

  8. Secondary Electron Emission Spectroscopy of Diamond Surfaces

    NASA Technical Reports Server (NTRS)

    Krainsky, Isay L.; Asnin, Vladimir M.; Petukhov, Andre G.

    1999-01-01

    This report presents the results of the secondary electron emission spectroscopy study of hydrogenated diamond surfaces for single crystals and chemical vapor-deposited polycrystalline films. One-electron calculations of Auger spectra of diamond surfaces having various hydrogen coverages are presented, the major features of the experimental spectra are explained, and a theoretical model for Auger spectra of hydrogenated diamond surfaces is proposed. An energy shift and a change in the line shape of the carbon core-valence-valence (KVV) Auger spectra were observed for diamond surfaces after exposure to an electron beam or by annealing at temperatures higher than 950 C. This change is related to the redistribution of the valence-band local density of states caused by hydrogen desorption from the surface. A strong negative electron affinity (NEA) effect, which appeared as a large, narrow peak in the low-energy portion of the spectrum of the secondary electron energy distribution, was also observed on the diamond surfaces. A fine structure in this peak, which was found for the first time, reflected the energy structure of the bottom of the conduction band. Further, the breakup of the bulk excitons at the surface during secondary electron emission was attributed to one of the features of this structure. The study demonstrated that the NEA type depends on the extent of hydrogen coverage of the diamond surface, changing from the true type for the completely hydrogenated surface to the effective type for the partially hydrogenated surface.

  9. Parallel Finite Element Electron-Photon Transport Analysis on 2-D Unstructured Mesh

    SciTech Connect

    Drumm, C.R.

    1999-01-01

    A computer code has been developed to solve the linear Boltzmann transport equation on an unstructured mesh of triangles, from a Pro/E model. An arbitriwy arrangement of distinct material regions is allowed. Energy dependence is handled by solving over an arbitrary number of discrete energy groups. Angular de- pendence is treated by Legendre-polynomial expansion of the particle cross sections and a discrete ordinates treatment of the particle fluence. The resulting linear system is solved in parallel with a preconditioned conjugate-gradients method. The solution method is unique, in that the space-angle dependence is solved si- multaneously, eliminating the need for the usual inner iterations. Electron cross sections are obtained from a Goudsrnit-Saunderson modifed version of the CEPXS code. A one-dimensional version of the code has also been develop@ for testing and development purposes.

  10. The structure of salt bridges between Arg(+) and Glu(-) in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries.

    PubMed

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander

    2015-06-01

    Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu(-)) and arginine (Arg(+)) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu(-) and Arg(+), which provide a sensitive structural probe of Glu(-)⋯Arg(+) salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.

  11. The structure of salt bridges between Arg+ and Glu- in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries

    NASA Astrophysics Data System (ADS)

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R.; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander

    2015-06-01

    Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu-) and arginine (Arg+) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu- and Arg+, which provide a sensitive structural probe of Glu-⋯Arg+ salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.

  12. [Analysis and identification of Poria cocos peels harvested from different producing areas by FTIR and 2D-IR correlation spectroscopy].

    PubMed

    Ma, Fang; Zhang, Fang; Tang, Jin; Chen, Ping; Chen, Jian-Bo; Zhou, Qun; Sun, Su-Qin

    2014-02-01

    Different geographical regions of traditional Chinese medicine (TCM), its chemical composition is different, the accumulation of drug and medicinal properties is different. The accurate identification and analysis of different production area of medicinal herbs is critical for the quality control and pharmacological research of TCM. In this paper, a tri-step infrared spectroscopy (Fourier transform infrared spectroscopy (FTIR) combined with second derivative spectra and two-dimensional correlation infrared spectroscopy (2D-COS) were employed to identify and analyze the main components of Hubei (HB), Anhui (AH), Yun-nan (YN) genuine Poria Cocos peels. The emergence of several characteristic absorption peaks of carbohydrates including 1149, 1079 1036 cm(-1), peaks around 1619, 1315, 780 cm(-1) belonged to calcium oxalate suggested that HB and AH Poria Cocos peels contained calcium oxalate, but peaks around 797, 779, 537, 470 cm(-1) belonged to kaoline suggested that YN Poria Cocos peels contained kaoline. Their carbohydrates were different by comparing the second derivative infrared spectra in the range of 1640-450 cm(-1) and Yongping come from YN contains both calcium oxalate and kaoline. Furthermore, the above differences were visually validated by two-dimensional correlation spectroscopy (2D-COS). It was demonstrated that the Tri-step infrared spectroscopy were successfully applied to fast analyze and identify Poria Cocos peels from different geographical regions and subsequently would be applicable to explain the relevance of geographical regions and medicinal properties for the TCM.

  13. Influence of weak vibrational-electronic couplings on 2D electronic spectra and inter-site coherence in weakly coupled photosynthetic complexes

    SciTech Connect

    Monahan, Daniele M.; Whaley-Mayda, Lukas; Fleming, Graham R.; Ishizaki, Akihito

    2015-08-14

    Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the “site-probe response.” By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.

  14. Two-dimensional electronic spectroscopy signatures of the glass transition

    DOE PAGES

    Lewis, K. L. .. M.; Myers, J. A.; Fuller, F.; Tekavec, P. F.; Ogilvie, J. P.

    2010-01-01

    Two-dimensional electronic spectroscopy is a sensitive probe of solvation dynamics. Using a pump–probe geometry with a pulse shaper [ Optics Express 15 (2007), 16681-16689; Optics Express 16 (2008), 17420-17428], we present temperature dependent 2D spectra of laser dyes dissolved in glass-forming solvents. At low waiting times, the system has not yet relaxed, resulting in a spectrum that is elongated along the diagonal. At longer times, the system loses its memory of the initial excitation frequency, and the 2D spectrum rounds out. As the temperature is lowered, the time scale of this relaxation grows, and the elongation persists for longermore » waiting times. This can be measured in the ratio of the diagonal width to the anti-diagonal width; the behavior of this ratio is representative of the frequency–frequency correlation function [ Optics Letters 31 (2006), 3354–3356]. Near the glass transition temperature, the relaxation behavior changes. Understanding this change is important for interpreting temperature-dependent dynamics of biological systems.« less

  15. Characterization of saturated MHD instabilities through 2D electron temperature profile reconstruction from 1D ECE measurements

    NASA Astrophysics Data System (ADS)

    Sertoli, M.; Horváth, L.; Pokol, G. I.; Igochine, V.; Barrera, L.

    2013-05-01

    A new method for the reconstruction of two-dimensional (2D) electron temperature profiles in the presence of saturated magneto-hydro-dynamic (MHD) modes from the one-dimensional (1D) electron cyclotron emission (ECE) diagnostic is presented. The analysis relies on harmonic decomposition of the electron temperature oscillations through short time Fourier transforms and requires rigid poloidal mode rotation as the only assumption. The method is applicable to any magnetic perturbation as long as the poloidal and toroidal mode numbers m and n are known. Its application to the case of a (m, n) = (1, 1) internal kink mode on ASDEX Upgrade is presented and a new way to estimate the mode displacement is explained. For such modes, it is shown that the higher order harmonics usually visible in the ECE spectrogram arise also for the pure m = n = 1 mode and that they cannot be directly associated with m = n > 1 magnetic perturbations. This method opens up new possibilities for electron heat transport studies in the presence of saturated MHD modes and a way to disentangle the impurity density contributions from electron temperature effects in the analysis of the soft x-ray data.

  16. Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition

    NASA Astrophysics Data System (ADS)

    Heisler, Ismael A.; Moca, Roberta; Camargo, Franco V. A.; Meech, Stephen R.

    2014-06-01

    We report an improved experimental scheme for two-dimensional electronic spectroscopy (2D-ES) based solely on conventional optical components and fast data acquisition. This is accomplished by working with two choppers synchronized to a 10 kHz repetition rate amplified laser system. We demonstrate how scattering and pump-probe contributions can be removed during 2D measurements and how the pump probe and local oscillator spectra can be generated and saved simultaneously with each population time measurement. As an example the 2D-ES spectra for cresyl violet were obtained. The resulting 2D spectra show a significant oscillating signal during population evolution time which can be assigned to an intramolecular vibrational mode.

  17. Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition

    SciTech Connect

    Heisler, Ismael A. Moca, Roberta; Meech, Stephen R.; Camargo, Franco V. A.

    2014-06-15

    We report an improved experimental scheme for two-dimensional electronic spectroscopy (2D-ES) based solely on conventional optical components and fast data acquisition. This is accomplished by working with two choppers synchronized to a 10 kHz repetition rate amplified laser system. We demonstrate how scattering and pump-probe contributions can be removed during 2D measurements and how the pump probe and local oscillator spectra can be generated and saved simultaneously with each population time measurement. As an example the 2D-ES spectra for cresyl violet were obtained. The resulting 2D spectra show a significant oscillating signal during population evolution time which can be assigned to an intramolecular vibrational mode.

  18. Pu electronic structure and photoelectron spectroscopy

    SciTech Connect

    Joyce, John J; Durakiewicz, Tomasz; Graham, Kevin S; Bauer, Eric D; Moore, David P; Mitchell, Jeremy N; Kennison, John A; Martin, Richard L; Roy, Lindsay E; Scuseria, G. E.

    2010-01-01

    The electronic structure of PuCoGa{sub 5}, Pu metal, and PuO{sub 2} is explored using photoelectron spectroscopy. Ground state electronic properties are inferred from temperature dependent photoemission near the Fermi energy for Pu metal. Angle-resolved photoemission details the energy vs. crystaJ momentum landscape near the Fermi energy for PuCoGa{sub 5} which shows significant dispersion in the quasiparticle peak near the Fermi energy. For the Mott insulators AnO{sub 2}(An = U, Pu) the photoemission results are compared against hybrid functional calculations and the model prediction of a cross over from ionic to covalent bonding is found to be reasonable.

  19. Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: Electronic versus vibrational coherence

    SciTech Connect

    Plenio, M. B.; Almeida, J.; Huelga, S. F.

    2013-12-21

    We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.

  20. Orbital dependent Rashba splitting and electron-phonon coupling of 2D Bi phase on Cu(100) surface

    SciTech Connect

    Gargiani, Pierluigi; Lisi, Simone; Betti, Maria Grazia; Ibrahimi, Amina Taleb; Bertran, François; Le Fèvre, Patrick; Chiodo, Letizia

    2013-11-14

    A monolayer of bismuth deposited on the Cu(100) surface forms a highly ordered c(2×2) reconstructed phase. The low energy single particle excitations of the c(2×2) Bi/Cu(100) present Bi-induced states with a parabolic dispersion in the energy region close to the Fermi level, as observed by angle-resolved photoemission spectroscopy. The electronic state dispersion, the charge density localization, and the spin-orbit coupling have been investigated combining photoemission spectroscopy and density functional theory, unraveling a two-dimensional Bi phase with charge density well localized at the interface. The Bi-induced states present a Rashba splitting, when the charge density is strongly localized in the Bi plane. Furthermore, the temperature dependence of the spectral density close to the Fermi level has been evaluated. Dispersive electronic states offer a large number of decay channels for transitions coupled to phonons and the strength of the electron-phonon coupling for the Bi/Cu(100) system is shown to be stronger than for Bi surfaces and to depend on the electronic state symmetry and localization.

  1. Electronic Structure calculations in a 2D SixGe1-x alloy under an applied electric field

    NASA Astrophysics Data System (ADS)

    Padilha, José. Eduardo; Pontes, Renato B.; Seixas, Leandro; da Silva, António J. R.; Fazzio, Adalberto

    2013-03-01

    The recent advances and promises in nanoscience and nanotechnology have been focused on hexagonal materials, mainly on carbon-based nanostructures. Recently, new candidates have been raised, where the greatest efforts are devoted to a new hexagonal and buckled material made of silicon, named Silicene. This new material presents an energy gap due to spin-orbit interaction of approximately 1.5 meV, where the measurement of quantum spin Hall effect(QSHE) can be made experimentally. Some investigations also show that the QSHE in 2D low-buckled hexagonal structures of germanium is present. Since the similarities, and at the same time the differences, between Si and Ge, over the years, have motivated a lot of investigations in these materials. In this work we performed systematic investigations on the electronic structure and band topology in both ordered and disordered SixGe1-x alloys monolayer with 2D honeycomb geometry by first-principles calculations. We show that an applied electric field can tune the gap size for both alloys. However, as a function of electric field, the disordered alloy presents a W-shaped behavior, similarly to the pure Si or Ge, whereas for the ordered alloy a V-shaped behavior is observed. This work is supported by CAPES, CNPq and FAPESP.

  2. 2D IR spectroscopy at 100 kHz utilizing a Mid-IR OPCPA laser source.

    PubMed

    Luther, Bradley M; Tracy, Kathryn M; Gerrity, Michael; Brown, Susannah; Krummel, Amber T

    2016-02-22

    We present a 100 kHz 2D IR spectrometer. The system utilizes a ytterbium all normal dispersion fiber oscillator as a common source for the pump and seed beams of a MgO:PPLN OPCPA. The 1030 nm OPCPA pump is generated by amplification of the oscillator in cryocooled Yb:YAG amplifiers, while the 1.68 μm seed is generated in a OPO pumped by the oscillator. The OPCPA outputs are used in a ZGP DFG stage to generate 4.65 μm pulses. A mid-IR pulse shaper delivers pulse pairs to a 2D IR spectrometer allowing for data collection at 100 kHz. PMID:26907062

  3. A Stochastic Hill Climbing Approach for Simultaneous 2D Alignment and Clustering of Cryogenic Electron Microscopy Images.

    PubMed

    Reboul, Cyril F; Bonnet, Frederic; Elmlund, Dominika; Elmlund, Hans

    2016-06-01

    A critical step in the analysis of novel cryogenic electron microscopy (cryo-EM) single-particle datasets is the identification of homogeneous subsets of images. Methods for solving this problem are important for data quality assessment, ab initio 3D reconstruction, and analysis of population diversity due to the heterogeneous nature of macromolecules. Here we formulate a stochastic algorithm for identification of homogeneous subsets of images. The purpose of the method is to generate improved 2D class averages that can be used to produce a reliable 3D starting model in a rapid and unbiased fashion. We show that our method overcomes inherent limitations of widely used clustering approaches and proceed to test the approach on six publicly available experimental cryo-EM datasets. We conclude that, in each instance, ab initio 3D reconstructions of quality suitable for initialization of high-resolution refinement are produced from the cluster centers. PMID:27184214

  4. Four divalent transition metal carboxyarylphosphonate compounds: Hydrothermal synthesis, structural chemistry and generalized 2D FTIR correlation spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Lei, Ran; Chai, Xiaochuan; Mei, Hongxin; Zhang, Hanhui; Chen, Yiping; Sun, Yanqiong

    2010-07-01

    Four divalent transition metal carboxyarylphosphonates, [Ni(4,4'-bipy)H 2L 1(HL 1) 2(H 2O) 2]·2H 2O 1, [Ni 2(4,4'-bipy)(L 2)(OH)(H 2O) 2]·3H 2O 2, Mn(phen) 2(H 2L 1) 23 and Mn(phen)(HL 2) 4 (H 3L 1= p-H 2O 3PCH 2-C 6H 4-COOH, H 3L 2= m-H 2O 3PCH 2-C 6H 4-COOH, 4,4'-bipy=4,4'-bipyridine, phen=1,10-phenanthroline) were synthesized under hydrothermal conditions. 1 features 1D linear chains built from Ni(II) ions bridging 4,4'-bipy. In 2, neighboring Ni 4 cluster units are connected by pairs of H 3L 2 ligands to form 1D double-crankshaft chains, which are interconnected by pairs of 4,4'-bipy into 2D sheets. 3 exhibits 2D supramolecular layers via the R 22(8) ringed hydrogen bonding units. 4 has 1D ladderlike chains, in which the 4-membered rings are cross-linked by the organic moieties of the H 3L 2 ligands. Additionally, 2D FTIR correlation analysis is applied with thermal and magnetic perturbation to clarify the structural changes of functional groups from H 3L 1 and H 3L 2 ligands in the compounds more efficiently.

  5. Kondo effect at low electron density and high particle-hole asymmetry in 1D, 2D, and 3D

    NASA Astrophysics Data System (ADS)

    Žitko, Rok; Horvat, Alen

    2016-09-01

    Using the perturbative scaling equations and the numerical renormalization group, we study the characteristic energy scales in the Kondo impurity problem as a function of the exchange coupling constant J and the conduction-band electron density. We discuss the relation between the energy gain (impurity binding energy) Δ E and the Kondo temperature TK. We find that the two are proportional only for large values of J , whereas in the weak-coupling limit the energy gain is quadratic in J , while the Kondo temperature is exponentially small. The exact relation between the two quantities depends on the detailed form of the density of states of the band. In the limit of low electron density the Kondo screening is affected by the strong particle-hole asymmetry due to the presence of the band-edge van Hove singularities. We consider the cases of one- (1D), two- (2D), and three-dimensional (3D) tight-binding lattices (linear chain, square lattice, cubic lattice) with inverse-square-root, step-function, and square-root onsets of the density of states that are characteristic of the respective dimensionalities. We always find two different regimes depending on whether TK is higher or lower than μ , the chemical potential measured from the bottom of the band. For 2D and 3D, we find a sigmoidal crossover between the large-J and small-J asymptotics in Δ E and a clear separation between Δ E and TK for TK<μ . For 1D, there is, in addition, a sizable intermediate-J regime where the Kondo temperature is quadratic in J due to the diverging density of states at the band edge. Furthermore, we find that in 1D the particle-hole asymmetry leads to a large decrease of TK compared to the standard result obtained by approximating the density of states to be constant (flat-band approximation), while in 3D the opposite is the case; this is due to the nontrivial interplay of the exchange and potential scattering renormalization in the presence of particle-hole asymmetry. The 2D square

  6. Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties.

    PubMed

    Island, Joshua O; Biele, Robert; Barawi, Mariam; Clamagirand, José M; Ares, José R; Sánchez, Carlos; van der Zant, Herre S J; Ferrer, Isabel J; D'Agosta, Roberto; Castellanos-Gomez, Andres

    2016-01-01

    We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance. PMID:26931161

  7. Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties

    PubMed Central

    Island, Joshua O.; Biele, Robert; Barawi, Mariam; Clamagirand, José M.; Ares, José R.; Sánchez, Carlos; van der Zant, Herre S. J.; Ferrer, Isabel J.; D’Agosta, Roberto; Castellanos-Gomez, Andres

    2016-01-01

    We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance. PMID:26931161

  8. Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties

    NASA Astrophysics Data System (ADS)

    Island, Joshua O.; Biele, Robert; Barawi, Mariam; Clamagirand, José M.; Ares, José R.; Sánchez, Carlos; van der Zant, Herre S. J.; Ferrer, Isabel J.; D'Agosta, Roberto; Castellanos-Gomez, Andres

    2016-03-01

    We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance.

  9. Unraveling the heterogeneity in N butyl-N-methylpiperidinium trifluromethanesulfonimide ionic liquid by 1D and 2D NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tripathi, Neha; Saha, Satyen

    2014-06-01

    Room temperature ionic liquids are one of the most exciting classes of materials in the last decade. In particular piperidinium (PIP) cation based ionic liquid (IL) (such as PIP14NTf2) have found application in electrochemistry/batteries. In this Letter, 2D NMR (NOESY and HOESY) is employed for studying the interactions present between cations and anions. HOESY spectrum shows that fluorine of NTf2 unusually interacts with all proton of the cation (PIP14). Combined HOESY and NOESY indicate that NTf2 anion is distributed heterogeneously in liquid. Existence of micro heterogeneity in this important class of IL is proposed.

  10. Four divalent transition metal carboxyarylphosphonate compounds: Hydrothermal synthesis, structural chemistry and generalized 2D FTIR correlation spectroscopy studies

    SciTech Connect

    Lei Ran; Chai Xiaochuan; Mei Hongxin; Zhang Hanhui; Chen Yiping; Sun Yanqiong

    2010-07-15

    Four divalent transition metal carboxyarylphosphonates, [Ni(4,4'-bipy)H{sub 2}L{sup 1}(HL{sup 1}){sub 2}(H{sub 2}O){sub 2}].2H{sub 2}O 1, [Ni{sub 2}(4,4'-bipy)(L{sup 2})(OH)(H{sub 2}O){sub 2}].3H{sub 2}O 2, Mn(phen){sub 2}(H{sub 2}L{sup 1}){sub 2}3 and Mn(phen)(HL{sup 2}) 4 (H{sub 3}L{sup 1}=p-H{sub 2}O{sub 3}PCH{sub 2}-C{sub 6}H{sub 4}-COOH, H{sub 3}L{sup 2}=m-H{sub 2}O{sub 3}PCH{sub 2}-C{sub 6}H{sub 4}-COOH, 4,4'-bipy=4,4'-bipyridine, phen=1,10-phenanthroline) were synthesized under hydrothermal conditions. 1 features 1D linear chains built from Ni(II) ions bridging 4,4'-bipy. In 2, neighboring Ni{sub 4} cluster units are connected by pairs of H{sub 3}L{sup 2} ligands to form 1D double-crankshaft chains, which are interconnected by pairs of 4,4'-bipy into 2D sheets. 3 exhibits 2D supramolecular layers via the R{sub 2}{sup 2}(8) ringed hydrogen bonding units. 4 has 1D ladderlike chains, in which the 4-membered rings are cross-linked by the organic moieties of the H{sub 3}L{sup 2} ligands. Additionally, 2D FTIR correlation analysis is applied with thermal and magnetic perturbation to clarify the structural changes of functional groups from H{sub 3}L{sup 1} and H{sub 3}L{sup 2} ligands in the compounds more efficiently. - Graphical abstract: A series of divalent transition metal carboxyarylphosphonate compounds were synthesized under hydrothermal conditions. The figure displays 2D sheet structure with large windows in compound 2.

  11. Tunneling spectroscopy of the two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Chan, Ho Bun

    We measure the single particle density of states (DOS) of a two-dimensional electron system (2DES) in a GaAs/AlGaAs heterostructure. Using a technique that we call ``Time Domain Capacitance Spectroscopy'' (TDCS), we measure the complete current-voltage characteristics for tunneling into the 2DES without making ohmic contacts to it. TDCS detects the tunneling current in regimes difficult to access by conventional methods, such as when the in-plane conductance is low. For the first time we detect the contributions of localized states to the tunneling current. The DOS of an interacting 2DES in the diffusive limit displays logarithmic energy dependence near the Fermi level. Using TDCS, we measure the voltage dependence of the tunneling conductance of a semiconductor 2DES and observe the logarithmic Coulomb anomaly for the first time in 2D systems other than thin metal films. As we increase the density, this suppression in tunneling conductance narrows and recedes. Nevertheless suppression reappears when we apply a magnetic field perpendicular to the 2D plane. We find that the tunneling conductance depends linearly on voltage near zero bias for all magnetic field strengths and electron densities. Moreover, the slopes of this linear gap are strongly field dependent. The data are suggestive of a new model of the tunneling gap in the presence of disorder and screening. We also use TDCS to study the interactions among electronic spins. By applying excitations less than kT, we observe that equilibrium tunneling into spin-polarized quantum Hall states (ν = 1, 3, 1/3) occurs at two distinct tunneling rates for samples of very high mobility. Some electrons tunnel into the 2DES at a fast rate while the rest tunnel at a rate up to 2 orders of magnitude slower. Such novel double- rate tunneling is not observed at even-integer filling fractions where the 2DES is not spin-polarized. The dependence of the two rates on magnetic field, temperature and tunnel barrier thickness suggests

  12. 2D IR Spectroscopy using Four-Wave Mixing, Pulse Shaping, and IR Upconversion: A Quantitative Comparison

    PubMed Central

    Rock, William; Li, Yun-Liang; Pagano, Philip; Cheatum, Christopher M.

    2013-01-01

    Recent technological advances have led to major changes in the apparatuses used to collect 2D IR spectra. Pulse shaping offers several advantages including rapid data collection, inherent phase stability, and phase cycling capabilities. Visible array detection via upconversion allows the use of visible detectors that are cheaper, faster, more sensitive, and less noisy than IR detectors. However, despite these advantages, many researchers are reluctant to implement these technologies. Here we present a quantitative study of the S/N of 2D IR spectra collected with a traditional four-wave mixing (FWM) apparatus, with a pulse shaping apparatus, and with visible detection via upconversion to address the question of whether or not weak chromophores at low concentrations are still accessible with such an apparatus. We find that the enhanced averaging capability of the pulse shaping apparatus enables the detection of small signals that would be challenging to measure even with the traditional FWM apparatus, and we demonstrate this ability on a sample of cyanylated dihydrofolate reductase (DHFR). PMID:23687988

  13. Electronic Spectroscopy of Trapped PAH Photofragments

    NASA Astrophysics Data System (ADS)

    Joblin, Christine; Bonnamy, Anthony

    2016-06-01

    The PIRENEA set-up combines an ion cyclotron resonance cell mass spectrometer with cryogenic cooling in order to study the physical and chemical properties of polycyclic aromatic hydrocarbons (PAHs) of astrophysical interest. In space, PAHs are submitted to UV photons that lead to their dissociation. It is therefore of interest to study fragmentation pathways and search for species that might be good interstellar candidates because of their stability. Electronic spectroscopy can bring major insights into the structure of species formed by photofragmentation. This is also a way to identify new species in space as recently illustrated in the case of C60^+. In PIRENEA, the trapped ions are not cold enough, and thus we cannot use complexation with rare gas in order to record spectroscopy, as was nicely performed in the work by Campbell et al. on C60^+. We are therefore using the dissociation of the trapped ions themselves instead, which requires in general a multiple photon scheme. This leads to non-linear effects that affect the measured spectrum. We are working on improving this scheme in the specific case of the photofragment obtained by H-loss from 1-methylpyrene cation (CH_3-C16H9^+). A recent theoretical study has shown that a rearrangement can occur from 1-pyrenemethylium cation (CH_2-C16H9^+) to a system containing a seven membered ring (tropylium like pyrene system). This study also reports the calculated electronic spectra of both isomers, which are specific enough to distinguish them, and as a function of temperature. We will present experiments that have been performed to study the photophysics of these ions using the PIRENEA set-up and a two-laser scheme for the action spectroscopy. J. Montillaud, C. Joblin, D. Toublanc, Astron. & Astrophys. 552 (2013), id.A15 E.K. Campbell, M. Holz, D. Gerlich, and J.P. Maier, Nature 523 (2015), 322-323 F. Useli-Bacchitta, A. Bonnamy, G. Malloci, et al., Chem. Phys. 371 (2010), 16-23; J. Zhen, A. Bonnamy, G. Mulas, C

  14. Terahertz Spectroscopy and Global Analysis of the Bending Vibrations of ^{12}C_2H_2 and ^{12}C_2D_2

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Drouin, Brian J.; Pearson, John C.; Pickett, Herbert M.; Lattanzi, Valerio; Walters, Adam

    2009-06-01

    Symmetric molecules have no permanent dipole moment and are undetectable by rotational spectroscopy. Their interstellar observations have previously been limited to mid-infrared vibration-rotation spectroscopy. Although relatively weak, vibrational difference bands provide a means for detection of non polar molecules by terahertz techniques with microwave precision. Herschel, SOFIA, and ALMA have the potential to identify a number of difference bands of light symmetric species, e.g., C_2H_2, CH_4 and C_3. This paper reports the results of the laboratory study on ^{12}C_2H_2 and ^{12}C_2D_2. The symmetric isotopomers of acetylene have two bending modes, the trans bending ν_4 (^1{π}_g), and the cis bending ν_5 (^1{π}_u). For ^{12}C_2H_2, the two bending modes occur at 612 and 729 cm^{-1}, respectively. For ^{12}C_2D_2, the two bending modes occur at 511 and 538 cm^{-1}. The ν_5-ν_4 difference bands are allowed and occur in the microwave, terahertz, and far-infrared wavelengths, with band origins at 117 cm^{-1} (3500 GHz) for ^{12}C_2H_2 and 27 cm^{-1} (900 GHz) for ^{12}C_2D_2. Two hundred and fifty-one ^{12}C_2D_2 transitions, which are from ν_5-ν_4, (ν_5+ν_4)-2ν_4 and 2ν_5-(ν_5+ν_4) bands, have been measured in the 0.2-1.6 THz region, and 202 of them were observed for the first time. The precision of these measurements is estimated to be from 50 kHz to 100 kHz. A multistate analysis was carried out for the bending vibrational modes ν_4 and ν_5 of ^{12}C_2D_2, which includes the lines observed in this work and prior microwave, far-infrared and infrared data on the pure bending levels. Significantly improved molecular parameters were obtained for ^{12}C_2D_2 by adding the new measurements to the old data set which had only 10 lines with microwave measurement precision. The experiments on ^{12}C_2H_2 are in progress and ten P branch lines have been observed. We will present the ^{12}C_2H_2 results to date.

  15. SPE-LEEM Studies on the Surface and Electronic Structure of 2-D Transition Metal Dichalcogenides (Part II)

    NASA Astrophysics Data System (ADS)

    Jin, Wencan; Yeh, Po-Chun; Zaki, Nader; Zhang, Datong; Sadowski, Jerzy; Al-Mahboob, Abdullah; van de Zande, Arend; Chenet, Daniel; Dadap, Jerry; Herman, Irving; Sutter, Peter; Hone, James; Osgood, Richard

    2014-03-01

    In this work, we studied the surface and electronic structure of monolayer and few-layer exfoliated MoS2 and WSe2, as well as chemical-vapor-deposition (CVD) grown MoS2, using Spectroscopic Photoemission and Low Energy Electron Microscope (SPE-LEEM). LEEM measurements reveal that, unlike exfoliated MoS2, CVD-grown MoS2 exhibits grain-boundary alterations due to surface strain. However, LEEM and micro-probe low energy electron diffraction show that the quality of CVD-grown MoS2 is comparable to that of exfoliated MoS2. Micrometer-scale angle-resolved photoemission spectroscopy (ARPES) measurement on exfoliated MoS2 and WSe2 single-crystals provides direct evidence for the shifting of the valence band maximum from Γ to K, when the layer number is thinned down to one, as predicted by density functional theory. Our measurements of the k-space resolved electronic structure allow for further comparison with other theoretical predictions and with transport measurements. This work is supported by DOE grant DE-FG 02-04-ER-46157, research carried out in part at the CFN and NSLS, Brookhaven National Laboratory.

  16. Synthesis and structure elucidation of a series of pyranochromene chalcones and flavanones using 1D and 2D NMR spectroscopy and X-ray crystallography.

    PubMed

    Pawar, Sunayna S; Koorbanally, Neil A

    2014-06-01

    A series of novel pyranochromene chalcones and corresponding flavanones were synthesized. This is the first report on the confirmation of the absolute configuration of chromene-based flavanones using X-ray crystallography. These compounds were characterized by 2D NMR spectroscopy, and their assignments are reported herein. The 3D structure of the chalcone 3b and flavanone 4g was determined by X-ray crystallography, and the structure of the flavanone was confirmed to be in the S configuration at C-2.

  17. Polarization shaping in the mid-IR and polarization-based balanced heterodyne detection with application to 2D IR spectroscopy

    PubMed Central

    Middleton, Chris T.; Strasfeld, David B.; Zanni, Martin T.

    2010-01-01

    We demonstrate amplitude, phase and polarization shaping of femtosecond mid-IR pulses using a germanium acousto-optical modulator by independently shaping the frequency-dependent amplitudes and phases of two orthogonally polarized pulses which are then collinearly overlapped using a wire-grid polarizer. We use a feedback loop to set and stabilize the relative phase of the orthogonal pulses. We have also used a wire-grid polarizer to implement polarization-based balanced heterodyne detection for improved signal-to-noise of 2D IR spectra collected in a pump-probe geometry. Applications include coherent control of molecular vibrations and improvements in multidimensional IR spectroscopy. PMID:19687931

  18. Characterization of thermal shock damage in a 2D-woven fiber CVI SiC composite using resonant ultrasound spectroscopy

    SciTech Connect

    Webb, J.E.; Singh, R.N.; Cari, H.; Ferber, M.K.

    1996-12-31

    Thermal shock damage was generated by a water quench technique in 2-D woven-Nicalon{trademark} fiber chemical vapor infiltrated (CVI) SiC composite bars. In this study, resonant ultrasound spectroscopy (RUS) was used as a nondestructive evaluation (NDE) technique to quantify such damage. RUS spectra were measured for each specimen before and after quenching. The results show a clear correlation between the quench temperature difference ({Delta}T) and changes in the RUS spectra. Both the resonant frequencies and the resonance quality factor decreased with increasing magnitude of {Delta}T, thus, providing quantitative measures for the degree of thermal shock damage.

  19. Studies on the mechanism of the peroxyoxalate chemiluminescence reaction: part 2. Further identification of intermediates using 2D EXSY 13C nuclear magnetic resonance spectroscopy.

    PubMed

    Tonkin, Sarah A; Bos, Richard; Dyson, Gail A; Lim, Kieran F; Russell, Richard A; Watson, Simon P; Hindson, Christopher M; Barnett, Neil W

    2008-05-01

    Further consideration has been given to the reaction pathway of a model peroxyoxalate chemiluminescence system. Again utilising doubly labelled oxalyl chloride and anhydrous hydrogen peroxide, 2D EXSY (13)C nuclear magnetic resonance (NMR) spectroscopy experiments allowed for the characterisation of unknown products and key intermediate species on the dark side of the peroxyoxalate chemiluminescence reaction. Exchange spectroscopy afforded elucidation of a scheme comprised of two distinct mechanistic pathways, one of which contributes to chemiluminescence. (13)C NMR experiments carried out at varied reagent molar ratios demonstrated that excess amounts of hydrogen peroxide favoured formation of 1,2-dioxetanedione: the intermediate that, upon thermolysis, has been long thought to interact with a fluorophore to produce light. PMID:18420048

  20. Gold-induced nanowires on the Ge(100) surface yield a 2D and not a 1D electronic structure

    NASA Astrophysics Data System (ADS)

    de Jong, N.; Heimbuch, R.; Eliëns, S.; Smit, S.; Frantzeskakis, E.; Caux, J.-S.; Zandvliet, H. J. W.; Golden, M. S.

    2016-06-01

    Atomic nanowires on semiconductor surfaces induced by the adsorption of metallic atoms have attracted a lot of attention as possible hosts of the elusive, one-dimensional Tomonaga-Luttinger liquid. The Au/Ge(100) system in particular is the subject of controversy as to whether the Au-induced nanowires do indeed host exotic, 1D (one-dimensional) metallic states. In light of this debate, we report here a thorough study of the electronic properties of high quality nanowires formed at the Au/Ge(100) surface. The high-resolution ARPES data show the low-lying Au-induced electronic states to possess a dispersion relation that depends on two orthogonal directions in k space. Comparison of the E (kx,ky) surface measured using high-resolution ARPES to tight-binding calculations yields hopping parameters in the two different directions that differ by approximately factor of two. Additionally, by pinpointing the Au-induced surface states in the first, second, and third surface Brillouin zones and analyzing their periodicity in k||, the nanowire propagation direction seen clearly in STM can be imported into the ARPES data. We find that the larger of the two hopping parameters corresponds, in fact, to the direction perpendicular to the nanowires (tperp). This proves that the Au-induced electron pockets possess a two-dimensional, closed Fermi surface, and this firmly places the Au/Ge(100) nanowire system outside potential hosts of a Tomonaga-Luttinger liquid. We combine these ARPES data with scanning tunneling spectroscopic measurements of the spatially resolved electronic structure and find that the spatially straight—wirelike—conduction channels observed up to energies of order one electron volt below the Fermi level do not originate from the Au-induced states seen in the ARPES data. The former are rather more likely to be associated with bulk Ge states that are localized to the subsurface region. Despite our proof of the 2D (two-dimentional) nature of the Au

  1. Communication: Vibrational and vibronic coherences in the two dimensional spectroscopy of coupled electron-nuclear motion

    NASA Astrophysics Data System (ADS)

    Albert, Julian; Falge, Mirjam; Gomez, Sandra; Sola, Ignacio R.; Hildenbrand, Heiko; Engel, Volker

    2015-07-01

    We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.

  2. Communication: Vibrational and vibronic coherences in the two dimensional spectroscopy of coupled electron-nuclear motion.

    PubMed

    Albert, Julian; Falge, Mirjam; Gomez, Sandra; Sola, Ignacio R; Hildenbrand, Heiko; Engel, Volker

    2015-07-28

    We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.

  3. Complete momentum and energy resolved TOF electron spectrometerfor time-resolved photoemission spectroscopy

    SciTech Connect

    Hussain, Zahid; Lebedev, G.; Tremsin, A.; Siegmund, O.; Chen, Y.; Shen, Z.X.; Hussain, Z.

    2007-08-12

    Over the last decade, high-resolution Angle-Resolved Photoemission Spectroscopy (ARPES) has emerged as a tool of choice for studying the electronic structure of solids, in particular, strongly correlated complex materials such as cuprate superconductors. In this paper we present the design of a novel time-of-flight based electron analyzer with capability of 2D in momentum space (kx and ky) and all energies (calculated from time of flight) in the third dimension. This analyzer will utilize an improved version of a 2D delay linedetector capable of imaging with<35 mm (700x700 pixels) spatial resolution and better than 120 ps FWHM timing resolution. Electron optics concepts and optimization procedure are considered for achieving an energy resolution less than 1 meV and an angular resolution better than 0.11.

  4. Communication: Vibrational and vibronic coherences in the two dimensional spectroscopy of coupled electron-nuclear motion

    SciTech Connect

    Albert, Julian; Falge, Mirjam; Hildenbrand, Heiko; Engel, Volker; Gomez, Sandra; Sola, Ignacio R.

    2015-07-28

    We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.

  5. Evaluation on intrinsic quality of licorice influenced by environmental factors by using FTIR combined with 2D-IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Ying-qun; Yu, Hua; Zhang, Yan-ling; Sun, Su-qin; Chen, Shi-lin; Zhao, Run-huai; Zhou, Qun; Noda, Isao

    2010-06-01

    To evaluate the intrinsic quality of licorice influenced by environmental factors, the spectral comparison of licorice from two typical ecological habitats was conducted by using FTIR and 2D-IR correlation spectroscopy. There were differences in the peak intensities of 1155, 1076 and 1048 cm -1 of FTIR profiles. The difference was amplified by the second derivative spectrum for the peak intensities at 1370, 1365 and 1317 cm -1 and the peak shape in 958-920 cm -1 and 1050-988 cm -1. The synchronous 2D-IR spectra within the range of 860-1300 cm -1 were classified into type I and type II and their frequency in the two groups was noticeably different. Although the chemical compounds of licorice samples from two areas were generally similar, the contents of starch, calcium oxalate, and some chemical compounds containing alcohol hydroxyl group were different, indicating the influence of precipitation and temperature. This study demonstrates that the systematical analysis of FTIR, the second derivative spectrum and 2D-IR can effectively determine the differences in licorice samples from different ecological habitats.

  6. Two Keggin-type heteropolytungstates with transition metal as a central atom: Crystal structure and magnetic study with 2D-IR correlation spectroscopy

    SciTech Connect

    Chai, Feng; Chen, YiPing; You, ZhuChai; Xia, ZeMin; Ge, SuZhi; Sun, YanQiong; Huang, BiHua

    2013-06-01

    Two Keggin-type heteropolytungstates, [Co(phen)₃]₃[CoW₁₂O₄₀]·9H₂O 1 (phen=1,10-phenanthroline) and [Fe(phen)₃]₂[FeW₁₂O₄₀]·H₃O·H₂O 2, have been synthesized via the hydrothermal technique and characterized by single crystal X-ray diffraction analyses, IR, XPS, TG analysis, UV–DRS, XRD, thermal-dependent and magnetic-dependent 2D-COS IR (two-dimensional infrared correlation spectroscopy). Crystal structure analysis reveals that the polyanions in compound 1 are linked into 3D supramolecule through hydrogen bonding interactions between lattice water molecules and terminal oxygen atoms of polyanion units, and [Co(phen)₃]²⁺ cations distributed in the polyanion framework with many hydrogen bonding interactions. The XPS spectra indicate that all the Co atoms in 1 are +2 oxidation state, the Fe atoms in 2 existing with +2 and +3 mixed oxidation states. - Graphical abstract: The magnetic-dependent synchronous 2D correlation IR spectra of 1 (a), 2 (b) over 0–50 mT in the range of 600–1000 cm⁻¹, the obvious response indicate two Keggin polyanions skeleton susceptible to applied magnetic field. Highlights: • Two Keggin-type heteropolytungstates with transition metal as a central atom has been obtained. • Compound 1 forms into 3D supramolecular architecture through hydrogen bonding between water molecules and polyanions. • Magnetic-dependent 2D-IR correlation spectroscopy was introduced to discuss the magnetism of polyoxometalate.

  7. Surface sensitivity of elastic peak electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Jablonski, A.

    2016-08-01

    New theoretical model describing the sampling depth of elastic peak electron spectroscopy (EPES) has been proposed. Surface sensitivity of this technique can be generally identified with the maximum depth reached by trajectories of elastically backscattered electrons. A parameter called the penetration depth distribution function (PDDF) has been proposed for this description. Two further parameters are descendant from this definition: the mean penetration depth (MPD) and the information depth (ID). From the proposed theory, relatively simple analytical expressions describing the above parameters can be derived. Although the Monte Carlo simulations can be effectively used to estimate the sampling depth of EPES, this approach may require a considerable amount of computations. In contrast, the analytical model proposed here (AN) is very fast and provides the parameters PDDF, MPD and ID that very well compare with results of MC simulations. As follows from detailed comparisons performed for four elements (Al, Ni, Pd and Au), the AN model practically reproduced complicated emission angle dependences of the MPDs and the IDs, correctly indicating numerous maximum and minimum positions. In the energy range from 200 eV to 5 keV, the averaged percentage differences between MPDs obtained from the MC and the AN models were close to 4%. An important conclusion resulting from the present studies refers to the procedure of determination of the inelastic mean free path (IMFP) from EPES. Frequently, the analyzed sample is deposited as a thin overlayer on a smooth substrate. From an analysis of the presently obtained IDs, is follows that 99% of trajectories in analyzed experimental configurations reaches depth not exceeding 2.39 in units of IMFP. Thus, one can postulate that a safe minimum thickness of an overlayer should be larger than about 3 IMFPs. For example, the minimum thickness of an Al overlayer shoud be about 8 nm at 5000 eV.

  8. Electronic resonances in broadband stimulated Raman spectroscopy

    PubMed Central

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process. PMID:26728791

  9. Solvation of fluoro-acetonitrile in water by 2D-IR spectroscopy: A combined experimental-computational study

    SciTech Connect

    Cazade, Pierre-André; Das, Akshaya K.; Tran, Halina; Kläsi, Felix; Hamm, Peter; Bereau, Tristan; Meuwly, Markus

    2015-06-07

    The solvent dynamics around fluorinated acetonitrile is characterized by 2-dimensional infrared spectroscopy and atomistic simulations. The lineshape of the linear infrared spectrum is better captured by semiempirical (density functional tight binding) mixed quantum mechanical/molecular mechanics simulations, whereas force field simulations with multipolar interactions yield lineshapes that are significantly too narrow. For the solvent dynamics, a relatively slow time scale of 2 ps is found from the experiments and supported by the mixed quantum mechanical/molecular mechanics simulations. With multipolar force fields fitted to the available thermodynamical data, the time scale is considerably faster—on the 0.5 ps time scale. The simulations provide evidence for a well established CF–HOH hydrogen bond (population of 25%) which is found from the radial distribution function g(r) from both, force field and quantum mechanics/molecular mechanics simulations.

  10. Charge balancing in GaN-based 2-D electron gas devices employing an additional 2-D hole gas and its influence on dynamic behaviour of GaN-based heterostructure field effect transistors

    NASA Astrophysics Data System (ADS)

    Hahn, Herwig; Reuters, Benjamin; Geipel, Sascha; Schauerte, Meike; Benkhelifa, Fouad; Ambacher, Oliver; Kalisch, Holger; Vescan, Andrei

    2015-03-01

    GaN-based heterostructure FETs (HFETs) featuring a 2-D electron gas (2DEG) can offer very attractive device performance for power-switching applications. This performance can be assessed by evaluation of the dynamic on-resistance Ron,dyn vs. the breakdown voltage Vbd. In literature, it has been shown that with a high Vbd, Ron,dyn is deteriorated. The impairment of Ron,dyn is mainly driven by electron injection into surface, barrier, and buffer traps. Electron injection itself depends on the electric field which typically peaks at the gate edge towards the drain. A concept suitable to circumvent this issue is the charge-balancing concept which employs a 2-D hole gas (2DHG) on top of the 2DEG allowing for the electric field peak to be suppressed. Furthermore, the 2DEG concentration in the active channel cannot decrease by a change of the surface potential. Hence, beside an improvement in breakdown voltage, also an improvement in dynamic behaviour can be expected. Whereas the first aspect has already been demonstrated, the second one has not been under investigation so far. Hence, in this report, the effect of charge-balancing is discussed and its impact on the dynamic characteristics of HFETs is evaluated. It will be shown that with appropriate device design, the dynamic behaviour of HFETs can be improved by inserting an additional 2DHG.

  11. Charge balancing in GaN-based 2-D electron gas devices employing an additional 2-D hole gas and its influence on dynamic behaviour of GaN-based heterostructure field effect transistors

    SciTech Connect

    Hahn, Herwig Reuters, Benjamin; Geipel, Sascha; Schauerte, Meike; Kalisch, Holger; Vescan, Andrei; Benkhelifa, Fouad; Ambacher, Oliver

    2015-03-14

    GaN-based heterostructure FETs (HFETs) featuring a 2-D electron gas (2DEG) can offer very attractive device performance for power-switching applications. This performance can be assessed by evaluation of the dynamic on-resistance R{sub on,dyn} vs. the breakdown voltage V{sub bd}. In literature, it has been shown that with a high V{sub bd}, R{sub on,dyn} is deteriorated. The impairment of R{sub on,dyn} is mainly driven by electron injection into surface, barrier, and buffer traps. Electron injection itself depends on the electric field which typically peaks at the gate edge towards the drain. A concept suitable to circumvent this issue is the charge-balancing concept which employs a 2-D hole gas (2DHG) on top of the 2DEG allowing for the electric field peak to be suppressed. Furthermore, the 2DEG concentration in the active channel cannot decrease by a change of the surface potential. Hence, beside an improvement in breakdown voltage, also an improvement in dynamic behaviour can be expected. Whereas the first aspect has already been demonstrated, the second one has not been under investigation so far. Hence, in this report, the effect of charge-balancing is discussed and its impact on the dynamic characteristics of HFETs is evaluated. It will be shown that with appropriate device design, the dynamic behaviour of HFETs can be improved by inserting an additional 2DHG.

  12. Volcanic SO2 and SiF4 visualization and their ratio monitored using 2-D thermal emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Stremme, W.; Krueger, A.; Harig, R.; Grutter, M.

    2011-09-01

    The composition and emission rates of volcanic gas plumes provide insight of the geologic internal activity, atmospheric chemistry, aerosol formation and radiative processes around it. Observations are necessary for public security and the aviation industry. Ground-based thermal emission infrared spectroscopy, which uses the radiation of the volcanic gas itself, allows for continuously monitoring during day and night from a save distance. We present measurements on Popocatépetl volcano based on thermal emission spectroscopy during different campaigns between 2006-2009 using a Scanning Infrared Gas Imaging System (SIGIS). The experimental set-up, measurement geometries and analytical algorithms are described. The equipment was operated from a safe distance of 12 km from the volcano at two different spectral resolutions: 0.5 and 4 cm-1. The 2-dimensional scanning capability of the instrument allows for an on-line visualization of the volcanic SO2 plume, animation and determination of its propagation speed. SiF4 was also identified in the infrared spectra recorded at both resolutions. The SiF4/SO2 molecular ratio can be calculated from each image and used as a highly useful parameter to follow changes in volcanic activity. A small Vulcanian eruption was monitored during the night of 16 to 17 November 2008 which was confirmed from the strong ash emission registered around 01:00 a.m. LST (Local Standard Time) and a pronounced SO2 cloud was registered. Enhanced SiF4/SO2 ratios were observed before and after the eruption. A validation of the results from thermal emission measurements with those from absorption spectra of the moon taken at the same time, as well as an error analysis, are presented. The inferred propagation speed from sequential imagees is used to calculate the emission rates at different distances from the crater.

  13. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals

    NASA Astrophysics Data System (ADS)

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.

    2016-06-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit.

  14. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals

    PubMed Central

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.

    2016-01-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit. PMID:27245646

  15. Probing environment fluctuations by two-dimensional electronic spectroscopy of molecular systems at temperatures below 5 K.

    PubMed

    Rancova, Olga; Jankowiak, Ryszard; Abramavicius, Darius

    2015-06-01

    Two-dimensional (2D) electronic spectroscopy at cryogenic and room temperatures reveals excitation energy relaxation and transport, as well as vibrational dynamics, in molecular systems. These phenomena are related to the spectral densities of nuclear degrees of freedom, which are directly accessible by means of hole burning and fluorescence line narrowing approaches at low temperatures (few K). The 2D spectroscopy, in principle, should reveal more details about the fluctuating environment than the 1D approaches due to peak extension into extra dimension. By studying the spectral line shapes of a dimeric aggregate at low temperature, we demonstrate that 2D spectra have the potential to reveal the fluctuation spectral densities for different electronic states, the interstate correlation of static disorder and, finally, the time scales of spectral diffusion with high resolution.

  16. Probing environment fluctuations by two-dimensional electronic spectroscopy of molecular systems at temperatures below 5 K

    SciTech Connect

    Rancova, Olga; Abramavicius, Darius; Jankowiak, Ryszard

    2015-06-07

    Two-dimensional (2D) electronic spectroscopy at cryogenic and room temperatures reveals excitation energy relaxation and transport, as well as vibrational dynamics, in molecular systems. These phenomena are related to the spectral densities of nuclear degrees of freedom, which are directly accessible by means of hole burning and fluorescence line narrowing approaches at low temperatures (few K). The 2D spectroscopy, in principle, should reveal more details about the fluctuating environment than the 1D approaches due to peak extension into extra dimension. By studying the spectral line shapes of a dimeric aggregate at low temperature, we demonstrate that 2D spectra have the potential to reveal the fluctuation spectral densities for different electronic states, the interstate correlation of static disorder and, finally, the time scales of spectral diffusion with high resolution.

  17. Electron impact spectroscopy. [for atom and molecule quantum state investigation

    NASA Technical Reports Server (NTRS)

    Trajmar, S.

    1980-01-01

    The concepts of electron impact spectroscopy are discussed, comparing the electron spectroscopy techniques with those of the optical spectroscopy. The main advantage of the electron spectroscopy is to be found in the elimination of optical selection rules in excitation processes and the ability to scan the spectrum from the infrared to the X-ray region. The range of the method is indicated through a review of several examples, including electron impact excitation of Ba and rotational excitation of H2. The sensitivity of the method is demonstrated by vibrational excitation spectrum of N2. It is shown that the application of the method to the inner-shell excitation allows to obtain information about molecular species which are not commonly available, while spectroscopy of negative ions yields information about their energy and symmetry properties. However, the techniques are still under development and more data are expected to become available in the coming years.

  18. Ultrafast photo-induced charge transfer unveiled by two-dimensional electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Bixner, Oliver; Lukeš, Vladimír; Mančal, Tomáš; Hauer, Jürgen; Milota, Franz; Fischer, Michael; Pugliesi, Igor; Bradler, Maximilian; Schmid, Walther; Riedle, Eberhard; Kauffmann, Harald F.; Christensson, Niklas

    2012-05-01

    The interaction of exciton and charge transfer (CT) states plays a central role in photo-induced CT processes in chemistry, biology, and physics. In this work, we use a combination of two-dimensional electronic spectroscopy (2D-ES), pump-probe measurements, and quantum chemistry to investigate the ultrafast CT dynamics in a lutetium bisphthalocyanine dimer in different oxidation states. It is found that in the anionic form, the combination of strong CT-exciton interaction and electronic asymmetry induced by a counter-ion enables CT between the two macrocycles of the complex on a 30 fs timescale. Following optical excitation, a chain of electron and hole transfer steps gives rise to characteristic cross-peak dynamics in the electronic 2D spectra, and we monitor how the excited state charge density ultimately localizes on the macrocycle closest to the counter-ion within 100 fs. A comparison with the dynamics in the radical species further elucidates how CT states modulate the electronic structure and tune fs-reaction dynamics. Our experiments demonstrate the unique capability of 2D-ES in combination with other methods to decipher ultrafast CT dynamics.

  19. Electron-transfer acceleration investigated by time resolved infrared spectroscopy.

    PubMed

    Vlček, Antonín; Kvapilová, Hana; Towrie, Michael; Záliš, Stanislav

    2015-03-17

    discussed process, back-ET in a porphyrin-Re(I)(CO)3(N,N) dyad, demonstrates that formation of a hot product accelerates highly exergonic ET in the Marcus inverted region. Overall, it follows that ET can be accelerated by enhancing the electronic interaction and by vibrational excitation of the reacting system and its medium, stressing the importance of quantum nuclear dynamics in ET reactivity. These effects are experimentally accessible by time-resolved vibrational spectroscopies (IR, Raman) in combination with quantum chemical calculations. It is suggested that structural dynamics play different mechanistic roles in light-triggered ET involving electronically excited donors or acceptors than in ground-state processes. While TRIR spectroscopy is well suitable to elucidate ET processes on a molecular-level, transient 2D-IR techniques combining optical and two IR (or terahertz) laser pulses present future opportunities for investigating, driving, and controlling ET.

  20. Near-infrared (NIR) imaging analysis of polylactic acid (PLA) nanocomposite by multiple-perturbation two-dimensional (2D) correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Murakami, Takurou N.; Nishida, Masakazu; Kanematsu, Wataru; Noda, Isao

    2014-07-01

    Multiple-perturbation two-dimensional (2D) correlation spectroscopy was applied to sets of near-infrared (NIR) imaging data of polylactic acid (PLA) nanocomposite samples undergoing UV degradation. Incorporation of clay nanoparticles substantially lowers the surface free energy barrier for the nucleation of PLA and eventually increases the frequency of the spontaneous nucleation of PLA crystals. Thus, when exposed to external stimuli such as UV light, PLA nanocomposite may show different structure alternation depending on the clay dispersion. Multiple-perturbation 2D correlation analysis of the PLA nanocomposite samples revealed different spatial variation between crystalline and amorphous structure of PLA, and the phenomenon especially becomes acute in the region where the clay particles are coagulated. The incorporation of the clay leads to the cleavage-induced crystallization of PLA when the sample is subjected to the UV light. The additional development of the ordered crystalline structure then works favorably to restrict the initial degradation of the polymer, providing the delay in the weight loss of the PLA.

  1. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    SciTech Connect

    Ghosh, Ayanjeet E-mail: gai@sas.upenn.edu; Gai, Feng E-mail: gai@sas.upenn.edu; Hochstrasser, Robin M.; Wang, Jun; DeGrado, William F.; Moroz, Yurii S.; Korendovych, Ivan V.; Zanni, Martin

    2014-06-21

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs.

  2. Synthesis, structure and temperature-depended 2D IR correlation spectroscopy of an organo-bismuth benzoate with 1,10-phenanthroline

    NASA Astrophysics Data System (ADS)

    Sun, Yan-Qiong; Zhong, Jie-Cen; Liu, Le-Hui; Qiu, Xing-Tai; Chen, Yi-Ping

    2016-11-01

    An organo-bismuth benzoate with phen as auxiliary ligand, [Bi(phen)(C6H5COO)(C6H4COO)] (1) (phen = 1,10-phenanthroline) has been hydrothermally synthesized from bismuth nitrate, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, PXRD, IR spectra, TG analyses, temperature-depended 2D-IR COS (two-dimensional infrared correlation spectroscopy). Interestingly, benzoate anions in 1 came from the desulfuration reaction of 2-mercaptonbenzoic acid under hydrothermal condition. Compound 1 is a discrete organo-bismuth compound with benzoate and phen ligands. The offset face-to-face π-π stacking interactions and C-H⋯O hydrogen bonds link the isolate complex into a 3D supramolecular network. The temperature-depended 2D-IR COS indicates that the stretching vibrations of Cdbnd C/Cdbnd N of aromatic rings and Cdbnd O bonds are sensitive to the temperature change.

  3. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    PubMed Central

    Ghosh, Ayanjeet; Wang, Jun; Moroz, Yurii S.; Korendovych, Ivan V.; Zanni, Martin; DeGrado, William F.; Gai, Feng; Hochstrasser, Robin M.

    2014-01-01

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs. PMID:24952572

  4. Analytical Chemistry of Surfaces: Part II. Electron Spectroscopy.

    ERIC Educational Resources Information Center

    Hercules, David M.; Hercules, Shirley H.

    1984-01-01

    Discusses two surface techniques: X-ray photoelectron spectroscopy (ESCA) and Auger electron spectroscopy (AES). Focuses on fundamental aspects of each technique, important features of instrumentation, and some examples of how ESCA and AES have been applied to analytical surface problems. (JN)

  5. Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation.

    PubMed

    Asner, D M; Bradley, R F; de Viveiros, L; Doe, P J; Fernandes, J L; Fertl, M; Finn, E C; Formaggio, J A; Furse, D; Jones, A M; Kofron, J N; LaRoque, B H; Leber, M; McBride, E L; Miller, M L; Mohanmurthy, P; Monreal, B; Oblath, N S; Robertson, R G H; Rosenberg, L J; Rybka, G; Rysewyk, D; Sternberg, M G; Tedeschi, J R; Thümmler, T; VanDevender, B A; Woods, N L

    2015-04-24

    It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed directly. We demonstrate single-electron detection in a novel radio-frequency spectrometer. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay end point, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.

  6. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy

    SciTech Connect

    Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-09-28

    Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.

  7. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy.

    PubMed

    Lewis, Nicholas H C; Dong, Hui; Oliver, Thomas A A; Fleming, Graham R

    2015-09-28

    Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.

  8. The roles of carbohydrates, proteins and lipids in the process of aggregation of natural marine organic matter investigated by means of 2D correlation spectroscopy applied to infrared spectra

    NASA Astrophysics Data System (ADS)

    Mecozzi, Mauro; Pietrantonio, Eva; Pietroletti, Marco

    2009-01-01

    In this paper the marine organic matter soluble in an alkaline medium called extractable humic substance (EHS), was extracted from three sediment samples of Tyrrhenian Sea and separated by precipitation at pH 2 in the two fractions of fulvic acids (FAs) and humic acids (HAs). FAs were further fractionated in seven sub-samples of different molecular weight (mw) by means of seven different ultrafiltration membranes operating in the range between mw < 1 kDa and mw > 100 kDa. Then the qualitative composition of each sample of fractionated FAs and HAs was studied by means of one-dimensional Fourier transform infrared spectroscopy in reflectance mode (FTIR-DRIFT) and by two-dimensional (2D) correlation spectroscopy both in wavelength-wavelength (WW) and in sample-sample (SS) mode. The application of 2D correlation WW spectroscopy allows to elucidate the different roles played by carbohydrates and proteins with respect to some lipid compounds such as fatty acids and ester fatty acids during the process of aggregate formations from mw ˜1 kDa to higher size aggregates. In addition, 2D correlation WW spectroscopy allows to observe some peculiar interactions between carbohydrates and proteins in the formation of EHS aggregates, interactions which vary from a sample to another sample. The results of 2D correlation SS spectroscopy confirm the general evidences obtained by 2D WW spectroscopy and moreover, they also describe the formation of EHS aggregates as a complex process where evolutionary links and connectivity between aggregates of neighbour molecular size ranges are not evident. Two-dimensional correlation spectroscopy applied to FTIR spectroscopy shows to be a powerful tool for the investigation of the mechanisms involved in EHS aggregation because it supports the acquisition of structural information which sometimes can be hardly obtained by one-dimensional FTIR spectroscopy.

  9. The effect of electron-hole scattering on transport properties of a 2D semimetal in the HgTe quantum well

    SciTech Connect

    Entin, M. V.; Magarill, L. I.; Olshanetsky, E. B. Kvon, Z. D.; Mikhailov, N. N.; Dvoretsky, S. A.

    2013-11-15

    The influence of e-h scattering on the conductivity and magnetotransport of 2D semimetallic HgTe is studied both theoretically and experimentally. The presence of e-h scattering leads to the friction between electrons and holes resulting in a large temperature-dependent contribution to the transport coefficients. The coefficient of friction between electrons and holes is determined. The comparison of experimental data with the theory shows that the interaction between electrons and holes based on the long-range Coulomb potential strongly underestimates the e-h friction. The experimental results are in agreement with the model of strong short-range e-h interaction.

  10. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy - Part 2: Wind propagation and emission rates

    NASA Astrophysics Data System (ADS)

    Krueger, A.; Stremme, W.; Harig, R.; Grutter, M.

    2013-01-01

    A technique for measuring two-dimensional (2-D) plumes of volcanic gases with thermal emission spectroscopy was described in Part 1 by Stremme et al. (2012a). In that paper the instrumental aspects as well as retrieval strategies for obtaining the slant column images of SO2 and SiF4, as well as animations of particular events observed at the Popocatépetl volcano, were presented. This work focuses on the procedures for determining the propagation speed of the gases and estimating an emission rate from the given image sequences. A 2-D column density distribution of a volcanic gas, available as time-consecutive frames, provides information of a projected wind field and the average velocity at which the volcanic plume is propagating. This information is valuable since the largest uncertainties when calculating emission rates of the gases using remote sensing techniques arise from propagation velocities which are often inadequately assumed. The presented reconstruction method solves the equation of continuity as an ill-posed problem using mainly a Tikhonov-like regularisation. It is observed from the available data sets that if the main direction of propagation is perpendicular to the line-of-sight, the algorithm works well for SO2, which has the strongest signals, and also for SiF4 in some favourable cases. Due to the similarity of the algorithm used here with the reconstruction methods used for profile retrievals based on optimal estimation theory, diagnostic tools like the averaging kernels can be calculated in an analogous manner and the information can be quantified as degrees of freedom. Thus, it is shown that the combination of wind field and column distribution of the gas plume can provide the emission rate of the volcano both during day and night.

  11. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy - Part 2: Wind propagation and emission fluxes

    NASA Astrophysics Data System (ADS)

    Krueger, A.; Stremme, W.; Harig, R.; Grutter, M.

    2012-07-01

    The technique for measuring two-dimensional (2-D) plumes of volcanic gases with thermal emission spectroscopy was described in Part 1 by Stremme et al. (2012). In that paper the instrumental aspects as well as retrieval strategies for obtaining the slant column images of SO2 and SiF4, as well as animations of particular events observed at the Popocatépetl volcano, were presented. This work focuses on the procedures for determining the propagation speed of the gases and estimating an emission flux from the given image sequences. A 2-D column density distribution of a volcanic gas, available as time-consecutive frames, provides information of a wind-field and the average velocity at which the volcanic plume is propagating. The presented reconstruction method solves the equation of continuity as an ill-posed problem using mainly a Tikhonov-like regularization. It is observed from the available data sets that if the main direction of propagation is perpendicular to the line-of-sight, the algorithm works well for SO2 which has the strongest signals, and also for SiF4 in some favourable cases. Due to the similarity of the algorithm used here with the reconstruction methods used for profile retrievals based on optimal estimation theory, diagnostic tools like the averaging kernels can be calculated analogously and the information can be quantified as degrees of freedom. Thus, it is shown that the combination of wind-field and column distribution of the gas plume can provide the emission flux of the volcano both during day and night.

  12. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    SciTech Connect

    Asner, David M.; Bradley, Rich; De Viveiros Souza Filho, Luiz A.; Doe, Peter J.; Fernandes, Justin L.; Fertl, M.; Finn, Erin C.; Formaggio, Joseph; Furse, Daniel L.; Jones, Anthony M.; Kofron, Jared N.; LaRoque, Benjamin; Leber, Michelle; MCBride, Lisa; Miller, M. L.; Mohanmurthy, Prajwal T.; Monreal, Ben; Oblath, Noah S.; Robertson, R. G. H.; Rosenberg, Leslie; Rybka, Gray; Rysewyk, Devyn M.; Sternberg, Michael G.; Tedeschi, Jonathan R.; Thummler, Thomas; VanDevender, Brent A.; Woods, N. L.

    2015-04-01

    It has been understood since 1897 that accelerating charges should emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spectrometer. We observe the cyclotron radiation emitted by individual electrons that are produced with mildly-relativistic energies by a gaseous radioactive source and are magnetically trapped. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work is a proof-of-concept for future neutrino mass experiments using this technique.

  13. Diamond Analyzed by Secondary Electron Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Krainsky, Isay L.

    1998-01-01

    Diamond is a promising semiconductor material for novel electronic applications because of its chemical stability and inertness, heat conduction properties, and so-called negative electron affinity (NEA). When a surface has NEA, electrons generated inside the bulk of the material are able to come out into the vacuum without any potential barrier (work function). Such a material would have an extremely high secondary electron emission coefficient o, very high photoelectron (quantum) yield, and would probably be an efficient field emitter. Chemical-vapor-deposited (CVD) polycrystalline diamond films have even more advantages than diamond single crystals. Their fabrication is relatively easy and inexpensive, and they can be grown with high levels of doping--consequently, they can have relatively high conductivity. Because of these properties, diamond can be used for cold cathodes and photocathodes in high-power electronics and in high-frequency and high-temperature semiconductor devices.

  14. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: quantitative benchmark for the interpretation of amyloid and protein infrared spectra.

    PubMed

    Woys, Ann Marie; Almeida, Aaron M; Wang, Lu; Chiu, Chi-Cheng; McGovern, Michael; de Pablo, Juan J; Skinner, James L; Gellman, Samuel H; Zanni, Martin T

    2012-11-21

    Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel β-sheets. Using a synthetic macrocycle that enforces a two stranded parallel β-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly (13)C═(18)O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequencies of the labels ranged from 1585 to 1595 cm(-1), with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the line widths and frequencies nearly quantitatively. Historically, the characteristic features of β-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through-space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel β-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm(-1) line width. Narrower line widths indicate that the amide I backbone is solvent

  15. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.

    PubMed

    Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei

    2016-06-13

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of

  16. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.

    PubMed

    Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei

    2016-06-13

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of

  17. Some performance tests of a microarea AES. [Auger Electron Spectroscopy

    NASA Technical Reports Server (NTRS)

    Todd, G.; Poppa, H.

    1978-01-01

    An Auger electron spectroscopy (AES) system which has a submicron analysis capability is described. The system provides secondary electron imaging, as well as micro- and macro-area AES. The resolution of the secondary electron image of an oxidized Al contact pad on a charge-coupled device chip indicates a primary beam size of about 1000 A. For Auger mapping, a useful resolution of about 4000 A is reported

  18. Interplay of Ion-Water and Water-Water Interactions within the Hydration Shells of Nitrate and Carbonate Directly Probed with 2D IR Spectroscopy.

    PubMed

    Fournier, Joseph A; Carpenter, William; De Marco, Luigi; Tokmakoff, Andrei

    2016-08-01

    The long-range influence of ions in solution on the water hydrogen-bond (H-bond) network remains a topic of vigorous debate. Recent spectroscopic and theoretical studies have, for the most part, reached the consensus that weakly coordinating ions only affect water molecules in the first hydration shell. Here, we apply ultrafast broadband two-dimensional infrared (2D IR) spectroscopy to aqueous nitrate and carbonate in neat H2O to study the solvation structure and dynamics of ions on opposite ends of the Hofmeister series. By exciting both the water OH stretches and ion stretches and probing the associated cross-peaks between them, we are afforded a comprehensive view into the complex nature of ion hydration. We show in aqueous nitrate that weak ion-water H-bonding leads to water-water interactions in the ion solvation shells dominating the dynamics. In contrast, the carbonate CO stretches show significant mixing with the water OH stretches due to strong ion-water H-bonding such that the water and ion modes are intimately correlated. Further, the excitonic nature of vibrations in neat H2O, which spans multiple water molecules, is an important factor in describing ion hydration. We attribute these complex dynamics to the likely presence of intermediate-range effects influenced by waters beyond the first solvation shell. PMID:27404015

  19. Spectral lineshapes in nonlinear electronic spectroscopy.

    PubMed

    Nenov, Artur; Giussani, Angelo; Fingerhut, Benjamin P; Rivalta, Ivan; Dumont, Elise; Mukamel, Shaul; Garavelli, Marco

    2015-12-14

    We outline a computational approach for nonlinear electronic spectra, which accounts for the electronic energy fluctuations due to nuclear degrees of freedom and explicitly incorporates the fluctuations of higher excited states, induced by the dynamics in the photoactive state(s). This approach is based on mixed quantum-classical dynamics simulations. Tedious averaging over multiple trajectories is avoided by employing the linearly displaced Brownian harmonic oscillator to model the correlation functions. The present strategy couples accurate computations of the high-lying excited state manifold with dynamics simulations. The application is made to the two-dimensional electronic spectra of pyrene, a polycyclic aromatic hydrocarbon characterized by an ultrafast (few tens of femtoseconds) decay from the bright S2 state to the dark S1 state. The spectra for waiting times t2 = 0 and t2 = 1 ps demonstrate the ability of this approach to model electronic state fluctuations and realistic lineshapes. Comparison with experimental spectra [Krebs et al., New Journal of Physics, 2013, 15, 085016] shows excellent agreement and allows us to unambiguously assign the excited state absorption features.

  20. Time-dependent resonant UHF CI approach for the photo-induced dynamics of the multi-electron system confined in 2D QD

    SciTech Connect

    Okunishi, Takuma; Clark, Richard; Takeda, Kyozaburo; Kusakabe, Kouichi; Tomita, Norikazu

    2013-12-04

    We extend the static multi-reference description (resonant UHF) to the dynamic system in order to include the correlation effect over time, and simplify the TD Schrödinger equation (TD-CI) into a time-developed rate equation where the TD external field Ĥ′(t) is then incorporated directly in the Hamiltonian without any approximations. We apply this TD-CI method to the two-electron ground state of a 2D quantum dot (QD) under photon injection and study the resulting two-electron Rabi oscillation.

  1. Electron spectroscopy for chemical analysis: Sample analysis

    NASA Technical Reports Server (NTRS)

    Carter, W. B.

    1989-01-01

    Exposure conditions in atomic oxygen (ESCA) was performed on an SSL-100/206 Small Spot Spectrometer. All data were taken with the use of a low voltage electron flood gun and a charge neutralization screen to minimize charging effects on the data. The X-ray spot size and electron flood gun voltage used are recorded on the individual spectra as are the instrumental resolutions. Two types of spectra were obtained for each specimen: (1) general surveys, and (2) high resolution spectra. The two types of data reduction performed are: (1) semiquantitative compositional analysis, and (2) peak fitting. The materials analyzed are: (1) kapton 4, 5, and 6, (2) HDPE 19, 20, and 21, and (3) PVDF 4, 5, and 6.

  2. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-01

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D 1H/13C/1H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond 13C/1H and 13C/13C chemical shift correlations, the 3D 1H/13C/1H experiment also provides a COSY-type 1H/1H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices (1H/1H chemical shift correlation spectrum) at different 13C chemical shift frequencies from the 3D 1H/13C/1H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D 1H/13C/1H experiment would be useful to study the structure and dynamics of a variety of chemical and biological

  3. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D (1)H/(13)C/(1)H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond (13)C/(1)H and (13)C/(13)C chemical shift correlations, the 3D (1)H/(13)C/(1)H experiment also provides a COSY-type (1)H/(1)H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ((1)H/(1)H chemical shift correlation spectrum) at different (13)C chemical shift frequencies from the 3D (1)H/(13)C/(1)H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D (1)H/(13)C/(1)H experiment would be useful to study the structure and dynamics of

  4. Electronic and Photoelectron Spectroscopy of Toluene

    NASA Astrophysics Data System (ADS)

    Gardner, Adrian M.; Green, Alistair M.; Tame-Reyes, Victor; Wright, Timothy G.

    2012-06-01

    Electronic and photoelectron spectra of toluene are presented and discussed. The utilization of a recently reported scheme for assigning the normal vibrations of substituted benzenes allows these spectra to be compared to those of other molecules with unprecedented clarity. Changes in vibrational activity within a series of substituted benzene molecules will be discussed, specifically the increased rate of intramolecular vibrational energy redistribution observed in molecules where the substituent is a methyl group. A. M. Gardner and T. G. Wright, J. Chem. Phys., 135, 114305 (2011)

  5. Molecular decision trees realized by ultrafast electronic spectroscopy

    PubMed Central

    Fresch, Barbara; Hiluf, Dawit; Collini, Elisabetta; Levine, R. D.; Remacle, F.

    2013-01-01

    The outcome of a light–matter interaction depends on both the state of matter and the state of light. It is thus a natural setting for implementing bilinear classical logic. A description of the state of a time-varying system requires measuring an (ideally complete) set of time-dependent observables. Typically, this is prohibitive, but in weak-field spectroscopy we can move toward this goal because only a finite number of levels are accessible. Recent progress in nonlinear spectroscopies means that nontrivial measurements can be implemented and thereby give rise to interesting logic schemes where the outputs are functions of the observables. Lie algebra offers a natural tool for generating the outcome of the bilinear light–matter interaction. We show how to synthesize these ideas by explicitly discussing three-photon spectroscopy of a bichromophoric molecule for which there are four accessible states. Switching logic would use the on–off occupancies of these four states as outcomes. Here, we explore the use of all 16 observables that define the time-evolving state of the bichromophoric system. The bilinear laser–system interaction with the three pulses of the setup of a 2D photon echo spectroscopy experiment can be used to generate a rich parallel logic that corresponds to the implementation of a molecular decision tree. Our simulations allow relaxation by weak coupling to the environment, which adds to the complexity of the logic operations. PMID:24043793

  6. Dynamics-based selective 2D {sup 1}H/{sup 1}H chemical shift correlation spectroscopy under ultrafast MAS conditions

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of {sup 1}H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of {sup 1}H/{sup 1}H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  7. Rotationally resolved electronic spectroscopy of 4-aminobenzonitrile

    NASA Astrophysics Data System (ADS)

    Berden, Giel; van Rooy, Jack; Meerts, W. Leo; Zachariasse, Klaas A.

    1997-10-01

    The rotationally resolved fluorescence excitation spectrum of the 0 00 band in the S 1 ← S 0 transition of 4-aminobenzonitrile (ABN) was recorded, at 299 nm, by using laser induced fluorescence in a molecular beam apparatus. This spectrum exhibits pure b-type character, which indicates that the electronic transition moment vector is oriented along the short molecular axis. The rotational constants of the S 0 and S 1 states were determined. In addition, the rotationally resolved fluorescence excitation spectra of two vibronic bands in the S 1 state, at 807 and 816 cm -1, were recorded. The molecular structure of the ABN molecule is discussed by comparing the rotational constants and the inertial defects.

  8. Hypernuclear Spectroscopy with Electron Beam at JLab Hall C

    NASA Astrophysics Data System (ADS)

    Fujii, Y.; Chiba, A.; Doi, D.; Gogami, T.; Hashimoto, O.; Kanda, H.; Kaneta, M.; Kawama, D.; Maeda, K.; Maruta, T.; Matsumura, A.; Nagao, S.; Nakamura, S. N.; Shichijo, A.; Tamura, H.; Taniya, N.; Yamamoto, T.; Yokota, K.; Kato, S.; Sato, Y.; Takahashi, T.; Noumi, H.; Motoba, T.; Hiyama, E.; Albayrak, I.; Ates, O.; Chen, C.; Christy, M.; Keppel, C.; Kohl, M.; Li, Y.; Liyanage, A.; Tang, L.; Walton, T.; Ye, Z.; Yuan, L.; Zhu, L.; Baturin, P.; Boeglin, W.; Dhamija, S.; Markowitz, P.; Raue, B.; Reinhold, J.; Hungerford, Ed. V.; Ent, R.; Fenker, H.; Gaskell, D.; Horn, T.; Jones, M.; Smith, G.; Vulcan, W.; Wood, S. A.; Johnston, C.; Simicevic, N.; Wells, S.; Samanta, C.; Hu, B.; Shen, J.; Wang, W.; Zhang, X.; Zhang, Y.; Feng, J.; Fu, Y.; Zhou, J.; Zhou, S.; Jiang, Y.; Lu, H.; Yan, X.; Ye, Y.; Gan, L.; Ahmidouch, A.; Danagoulian, S.; Gasparian, A.; Elaasar, M.; Wesselmann, F. R.; Asaturyan, A.; Margaryan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Androic, D.; Furic, M.; Petkovic, T.; Seva, T.; Niculescu, G.; Niculescu, I.; López, V. M. Rodríguez; Cisbani, E.; Cusanno, F.; Garibaldi, F.; Uuciuoli, G. M.; de Leo, R.; Maronne, S.

    2010-10-01

    Hypernuclear spectroscopy with electron beam at JLab Hall C has been studied since 2000. The first experiment, JLab E89-009, demonstrated the possibility of the (e,e'K+) reaction for hypernuclear spectroscopy by achieving an energy resolution of better than 1 MeV (FWHM). The second experiment, JLab E01-011 employed a newly constructed high resolution kaon spectrometer and introduced a vertically tilted electron arm setup to avoid electrons from bremsstrahlung and Moeller scattering. The setup allowed us to have 10 times yield rate and 4 times better signal to accidental ratio with expected energy resolution of 400 keV (FWHM). The third experiment, JLab E05-11B will be performed in 2009 with employing newly constructed high resolution electron spectrometer and a new charge-separation magnet. With the fully customized third generation experimental setup, we can study a variety of targets up to medium-heavy ones such as 52Cr.

  9. Pulse-shaping assisted multidimensional coherent electronic spectroscopy

    SciTech Connect

    Rodriguez, Yuseff; Frei, Franziska; Cannizzo, Andrea Feurer, Thomas

    2015-06-07

    Understanding nuclear and electronic dynamics of molecular systems has advanced considerably by probing their nonlinear responses with a suitable sequence of pulses. Moreover, the ability to control crucial parameters of the excitation pulses, such as duration, sequence, frequency, polarization, slowly varying envelope, or carrier phase, has led to a variety of advanced time-resolved spectroscopic methodologies. Recently, two-dimensional electronic spectroscopy with ultrashort pulses has become a more and more popular tool since it allows to obtain information on energy and coherence transfer phenomena, line broadening mechanisms, or the presence of quantum coherences in molecular complexes. Here, we present a high fidelity two-dimensional electronic spectroscopy setup designed for molecular systems in solution. It incorporates the versatility of pulse-shaping methods to achieve full control on the amplitude and phase of the individual exciting and probing pulses. Selective and precise amplitude- and phase-modulation is shown and applied to investigate electronic dynamics in several reference molecular systems.

  10. Probing battery chemistry with liquid cell electron energy loss spectroscopy

    DOE PAGES

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren Leslie; Aguiar, Jeffery A.

    2015-09-15

    Electron energy loss spectroscopy (EELS) was used to determine the chemistry and oxidation state of LiMn2O4 and Li4Ti5O12 thin film battery electrodes in liquid cells for in situ scanning/transmission electron microscopy (S/TEM). Using the L2,3 white line intensity ratio method we determine the oxidation state of Mn and Ti in a liquid electrolyte solvent and discuss experimental parameters that influence measurement sensitivity.

  11. 2dF-AAOmega spectroscopy of massive stars in the Magellanic Clouds. The north-eastern region of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Evans, C. J.; van Loon, J. Th.; Hainich, R.; Bailey, M.

    2015-12-01

    We present spectral classifications from optical spectroscopy of 263 massive stars in the north-eastern region of the Large Magellanic Cloud. The observed two-degree field includes the massive 30 Doradus star-forming region, the environs of SN1987A, and a number of star-forming complexes to the south of 30 Dor. These are the first classifications for the majority (203) of the stars and include eleven double-lined spectroscopic binaries. The sample also includes the first examples of early OC-type spectra (AAΩ 30 Dor 248 and 280), distinguished by the weakness of their nitrogen spectra and by C IV λ4658 emission. We propose that these stars have relatively unprocessed CNO abundances compared to morphologically normal O-type stars, indicative of an earlier evolutionary phase. From analysis of observations obtained on two consecutive nights, we present radial-velocity estimates for 233 stars, finding one apparent single-lined binary and nine (>3σ) outliers compared to the systemic velocity; the latter objects could be runaway stars or large-amplitude binary systems and further spectroscopy is required to investigate their nature. Tables 2-4 are available in electronic form at http://www.aanda.orgCopies of the spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A5

  12. Fast ion induced shearing of 2D Alfvén eigenmodes measured by electron cyclotron emission imaging.

    PubMed

    Tobias, B J; Classen, I G J; Domier, C W; Heidbrink, W W; Luhmann, N C; Nazikian, R; Park, H K; Spong, D A; Van Zeeland, M A

    2011-02-18

    Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfvén eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.

  13. Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins

    ERIC Educational Resources Information Center

    Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…

  14. Electron Spectroscopy: Ultraviolet and X-Ray Excitation.

    ERIC Educational Resources Information Center

    Baker, A. D.; And Others

    1980-01-01

    Reviews recent growth in electron spectroscopy (54 papers cited). Emphasizes advances in instrumentation and interpretation (52); photoionization, cross-sections and angular distributions (22); studies of atoms and small molecules (35); transition, lanthanide and actinide metal complexes (50); organometallic (12) and inorganic compounds (2);…

  15. Analysis of bell-shape negative giant-magnetoresistance in high mobility GaAs/AlGaAs 2D electron systems using multi-conduction model

    NASA Astrophysics Data System (ADS)

    Samaraweera, Rasanga; Liu, Han-Chun; Wegscheider, Werner; Mani, Ramesh

    Recent advancements in the growth techniques of the GaAs/AlGaAs two dimensional electron system (2DES) routinely yield high quality heterostructures with enhanced physical and electrical properties, including devices with 2D electron mobilities well above 107 cm2/Vs. These improvements have opened new pathways to study interesting physical phenomena associated with the 2D electron system. Negative giant-magnetoresistance (GMR) is one such phenomenon which can observed in the high mobility 2DES. However, the negative GMR in the GaAs/AlGaAs 2DES is still not fully understood. In this contribution, we present an experimental study of the bell-shape negative GMR in high mobility GaAs/AlGaAs devices and quantitatively analyze the results utilizing the multi-conduction model. The multi-conduction model includes interesting physical characteristics such as negative diagonal conductivity, non-vanishing off-diagonal conductivity, etc. The aim of the study is to examine GMR over a wider experimental parameter space and determine whether the multi-conduction model serves to describe the experimental results.

  16. Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy.

    PubMed

    Mankos, Marian; Persson, Henrik H J; N'Diaye, Alpha T; Shadman, Khashayar; Schmid, Andreas K; Davis, Ronald W

    2016-01-01

    DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectron and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. Both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging. PMID:27149617

  17. Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy

    PubMed Central

    Schmid, Andreas K.; Davis, Ronald W.

    2016-01-01

    DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectron and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. Both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging. PMID:27149617

  18. Terahertz electromodulation spectroscopy of electron transport in GaN

    SciTech Connect

    Engelbrecht, S. G.; Arend, T. R.; Kersting, R.; Zhu, T.; Kappers, M. J.

    2015-03-02

    Time-resolved terahertz (THz) electromodulation spectroscopy is applied to investigate the high-frequency transport of electrons in gallium nitride at different doping concentrations and densities of threading dislocations. At THz frequencies, all structures reveal Drude transport. The analysis of the spectral response provides the fundamental transport properties, such as the electron scattering time and the electrons' conductivity effective mass. We observe the expected impact of ionized-impurity scattering and that scattering at threading dislocations only marginally affects the high-frequency mobility.

  19. Can fractional quantum Hall effect be due to the formation of coherent wave structures in a 2D electron gas?

    NASA Astrophysics Data System (ADS)

    Mirza, Babur M.

    2016-05-01

    A microscopic theory of integer and fractional quantum Hall effects is presented here. In quantum density wave representation of charged particles, it is shown that, in a two-dimensional electron gas coherent structures form under the low temperature and high density conditions. With a sufficiently high applied magnetic field, the combined N particle quantum density wave exhibits collective periodic oscillations. As a result the corresponding quantum Hall voltage function shows a step-wise change in multiples of the ratio h/e2. At lower temperatures further subdivisions emerge in the Hall resistance, exhibiting the fractional quantum Hall effect.

  20. Multidimensional electronic spectroscopy of phycobiliproteins from cryptophyte algae

    NASA Astrophysics Data System (ADS)

    Turner, Daniel

    2011-03-01

    We describe new spectroscopic measurements which reveal additional information regarding the observed quantum coherences in proteins extracted from photosynthetic algae. The proteins we investigate are the phycobiliproteins phycoerythrin 545 and phycocyanin 645. Two new avenues have been explored. We describe how changes to the chemical and biological environment impact the quantum coherence present in the 2D electronic correlation spectrum. We also use new multidimensional spectroscopic techniques to reveal insights into the nature of the quantum coherence and the nature of the participating states.

  1. Dissipative dynamics within the electronic friction approach: the femtosecond laser desorption of H2/D2 from Ru(0001).

    PubMed

    Füchsel, Gernot; Klamroth, Tillmann; Monturet, Serge; Saalfrank, Peter

    2011-05-21

    An electronic friction approach based on Langevin dynamics is used to describe the multidimensional (six-dimensional) dynamics of femtosecond laser induced desorption of H(2) and D(2) from a H(D)-covered Ru(0001) surface. The paper extends previous reduced-dimensional models, using a similar approach. In the present treatment forces and frictional coefficients are calculated from periodic density functional theory (DFT) and essentially parameter-free, while the action of femtosecond laser pulses on the metal surface is treated by using the two-temperature model. Our calculations shed light on the performance and validity of various adiabatic, non-adiabatic, and Arrhenius/Kramers type kinetic models to describe hot-electron mediated photoreactions at metal surfaces. The multidimensional frictional dynamics are able to reproduce and explain known experimental facts, such as strong isotope effects, scaling of properties with laser fluence, and non-equipartitioning of vibrational, rotational, and translational energies of desorbing species. Further, detailed predictions regarding translations are made, and the question for the controllability of photoreactions at surfaces with the help of vibrational preexcitation is addressed.

  2. 2D/3D electron temperature fluctuations near explosive MHD instabilities accompanied by minor and major disruptions

    NASA Astrophysics Data System (ADS)

    Choi, M. J.; Park, H. K.; Yun, G. S.; Lee, W.; Luhmann, N. C., Jr.; Lee, K. D.; Ko, W.-H.; Park, Y.-S.; Park, B. H.; In, Y.

    2016-06-01

    Minor and major disruptions by explosive MHD instabilities were observed with the novel quasi 3D electron cyclotron emission imaging (ECEI) system in the KSTAR plasma. The fine electron temperature (T e) fluctuation images revealed two types of minor disruptions: a small minor disruption is a q∼ 2 localized fast transport event due to a single m/n  =  2/1 magnetic island growth, while a large minor disruption is partial collapse of the q≤slant 2 region with two successive fast heat transport events by the correlated m/n  =  2/1 and m/n  =  1/1 instabilities. The m/n  =  2/1 magnetic island growth during the minor disruption is normally limited below the saturation width. However, as the additional interchange-like perturbation grows near the inner separatrix of the 2/1 island, the 2/1 island can expand beyond the limit through coupling with the cold bubble formed by the interchange-like perturbation.

  3. Energy of the quasi-free electron in H2, D2, and O2: Probing intermolecular potentials within the local Wigner-Seitz model

    NASA Astrophysics Data System (ADS)

    Evans, C. M.; Krynski, Kamil; Streeter, Zachary; Findley, G. L.

    2015-12-01

    We present for the first time the quasi-free electron energy V0(ρ) for H2, D2, and O2 from gas to liquid densities, on noncritical isotherms and on a near critical isotherm in each fluid. These data illustrate the ability of field enhanced photoemission (FEP) to determine V0(ρ) accurately in strongly absorbing fluids (e.g., O2) and fluids with extremely low critical temperatures (e.g., H2 and D2). We also show that the isotropic local Wigner-Seitz model for V0(ρ) — when coupled with thermodynamic data for the fluid — can yield optimized parameters for intermolecular potentials, as well as zero kinetic energy electron scattering lengths.

  4. Numerical simulations - Some results for the 2- and 3-D Hubbard models and a 2-D electron phonon model

    NASA Technical Reports Server (NTRS)

    Scalapino, D. J.; Sugar, R. L.; White, S. R.; Bickers, N. E.; Scalettar, R. T.

    1989-01-01

    Numerical simulations on the half-filled three-dimensional Hubbard model clearly show the onset of Neel order. Simulations of the two-dimensional electron-phonon Holstein model show the competition between the formation of a Peierls-CDW state and a superconducting state. However, the behavior of the partly filled two-dimensional Hubbard model is more difficult to determine. At half-filling, the antiferromagnetic correlations grow as T is reduced. Doping away from half-filling suppresses these correlations, and it is found that there is a weak attractive pairing interaction in the d-wave channel. However, the strength of the pair field susceptibility is weak at the temperatures and lattice sizes that have been simulated, and the nature of the low-temperature state of the nearly half-filled Hubbard model remains open.

  5. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen

    NASA Astrophysics Data System (ADS)

    Voiry, Damien; Fullon, Raymond; Yang, Jieun; de Carvalho Castro E Silva, Cecilia; Kappera, Rajesh; Bozkurt, Ibrahim; Kaplan, Daniel; Lagos, Maureen J.; Batson, Philip E.; Gupta, Gautam; Mohite, Aditya D.; Dong, Liang; Er, Dequan; Shenoy, Vivek B.; Asefa, Tewodros; Chhowalla, Manish

    2016-09-01

    The excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution reaction (HER) has led to substantial efforts towards increasing the edge concentration. The 2H basal plane is less active for the HER because it is less conducting and therefore possesses less efficient charge transfer kinetics. Here we show that the activity of the 2H basal planes of monolayer MoS2 nanosheets can be made comparable to state-of-the-art catalytic properties of metallic edges and the 1T phase by improving the electrical coupling between the substrate and the catalyst so that electron injection from the electrode and transport to the catalyst active site is facilitated. Phase-engineered low-resistance contacts on monolayer 2H-phase MoS2 basal plane lead to higher efficiency of charge injection in the nanosheets so that its intrinsic activity towards the HER can be measured. We demonstrate that onset potentials and Tafel slopes of ~-0.1 V and ~50 mV per decade can be achieved from 2H-phase catalysts where only the basal plane is exposed. We show that efficient charge injection and the presence of naturally occurring sulfur vacancies are responsible for the observed increase in catalytic activity of the 2H basal plane. Our results provide new insights into the role of contact resistance and charge transport on the performance of two-dimensional MoS2 nanosheet catalysts for the HER.

  6. Probing deactivation pathways of DNA nucleobases by two-dimensional electronic spectroscopy: first principles simulations.

    PubMed

    Nenov, Artur; Segarra-Martí, Javier; Giussani, Angelo; Conti, Irene; Rivalta, Ivan; Dumont, Elise; Jaiswal, Vishal K; Altavilla, Salvatore Flavio; Mukamel, Shaul; Garavelli, Marco

    2015-01-01

    The SOS//QM/MM [Rivalta et al., Int. J. Quant. Chem., 2014, 114, 85] method consists of an arsenal of computational tools allowing accurate simulation of one-dimensional (1D) and bi-dimensional (2D) electronic spectra of monomeric and dimeric systems with unprecedented details and accuracy. Prominent features like doubly excited local and excimer states, accessible in multi-photon processes, as well as charge-transfer states arise naturally through the fully quantum-mechanical description of the aggregates. In this contribution the SOS//QM/MM approach is extended to simulate time-resolved 2D spectra that can be used to characterize ultrafast excited state relaxation dynamics with atomistic details. We demonstrate how critical structures on the excited state potential energy surface, obtained through state-of-the-art quantum chemical computations, can be used as snapshots of the excited state relaxation dynamics to generate spectral fingerprints for different de-excitation channels. The approach is based on high-level multi-configurational wavefunction methods combined with non-linear response theory and incorporates the effects of the solvent/environment through hybrid quantum mechanics/molecular mechanics (QM/MM) techniques. Specifically, the protocol makes use of the second-order Perturbation Theory (CASPT2) on top of Complete Active Space Self Consistent Field (CASSCF) strategy to compute the high-lying excited states that can be accessed in different 2D experimental setups. As an example, the photophysics of the stacked adenine-adenine dimer in a double-stranded DNA is modeled through 2D near-ultraviolet (NUV) spectroscopy.

  7. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy

    SciTech Connect

    Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng

    2015-12-07

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.

  8. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy.

    PubMed

    Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng

    2015-12-01

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials. PMID:26646862

  9. On the electronic configuration in Pu: spectroscopy and theory

    SciTech Connect

    Tobin, J G; Soderlind, P; Landa, A; Moore, K T; Schwartz, A J; Chung, B W; Wall, M; Wills, J M; Eriksson, O; Haire, R; Kutepov, A L

    2006-10-11

    Photoelectron spectroscopy, synchrotron-radiation-based x-ray absorption, electron energy-loss spectroscopy, and density-functional calculations within the mixed-level and magnetic models, together with canonical band theory have been used to study the electron configuration in Pu. These methods suggest a 5f{sup n} configuration for Pu of 5 {le} n < 6, with n {ne} 6, contrary to what has recently been suggested in several publications. We show that the n = 6 picture is inconsistent with the usual interpretation of photoemission and x-ray absorption spectra. Instead, these spectra support the traditional conjecture of a 5f{sup 5} configuration in Pu as is obtained by density-functional theory. We further argue, based on 5f-band filling, that an n = 6 hypothesis is incompatible with the position of Pu in the actinide series and its monoclinic ground-state phase.

  10. Vibrational photodetachment spectroscopy near the electron affinity of S2

    NASA Astrophysics Data System (ADS)

    Barrick, J. B.; Yukich, J. N.

    2016-02-01

    We have conducted laser photodetachment spectroscopy near the detachment threshold of the electron affinity of S2 in a 1.8-T field. The ions are prepared by dissociative electron attachment to carbonyl sulfide. The experiment is conducted in a Penning ion trap and with a narrow-band, tunable, Ti:sapphire laser. A hybrid model for photodetachment in an ion trap is fit to the data using the appropriate Franck-Condon factors. The observations reveal detachment from and to the first few vibrational levels of the anion and the neutral molecule, respectively. Evaporative cooling of the anion ensemble condenses the thermal distribution to the lowest initial vibrational states. The subsequent detachment spectroscopy yields results consistent with a vibrationally cooled anion population.

  11. Electron Spectroscopy and Computational Studies of Dimethyl Methylphosphonate.

    PubMed

    Head, Ashley R; Tsyshevsky, Roman; Trotochaud, Lena; Eichhorn, Bryan; Kuklja, Maija M; Bluhm, Hendrik

    2016-03-31

    Dimethyl methylphosphonate (DMMP) is one of the most widely used molecules to simulate chemical warfare agents in adsorption experiments. However, the details of the electronic structure of the isolated molecule have not yet been reported. We have directly probed the occupied valence and core levels using gas phase photoelectron spectroscopy and the unoccupied states using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Density functional theory (DFT) calculations were used to study the electronic structure, assign the spectral features, and visualize the molecular orbitals. Comparison with parent molecules shows that valence and core-level binding energies of DMMP follow trends of functional group substitution on the P center. The photoelectron and NEXAFS spectra of the isolated molecule will serve as a reference in studies of DMMP adsorbed on surfaces. PMID:26977778

  12. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen.

    PubMed

    Voiry, Damien; Fullon, Raymond; Yang, Jieun; de Carvalho Castro E Silva, Cecilia; Kappera, Rajesh; Bozkurt, Ibrahim; Kaplan, Daniel; Lagos, Maureen J; Batson, Philip E; Gupta, Gautam; Mohite, Aditya D; Dong, Liang; Er, Dequan; Shenoy, Vivek B; Asefa, Tewodros; Chhowalla, Manish

    2016-09-01

    The excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution reaction (HER) has led to substantial efforts towards increasing the edge concentration. The 2H basal plane is less active for the HER because it is less conducting and therefore possesses less efficient charge transfer kinetics. Here we show that the activity of the 2H basal planes of monolayer MoS2 nanosheets can be made comparable to state-of-the-art catalytic properties of metallic edges and the 1T phase by improving the electrical coupling between the substrate and the catalyst so that electron injection from the electrode and transport to the catalyst active site is facilitated. Phase-engineered low-resistance contacts on monolayer 2H-phase MoS2 basal plane lead to higher efficiency of charge injection in the nanosheets so that its intrinsic activity towards the HER can be measured. We demonstrate that onset potentials and Tafel slopes of ∼-0.1 V and ∼50 mV per decade can be achieved from 2H-phase catalysts where only the basal plane is exposed. We show that efficient charge injection and the presence of naturally occurring sulfur vacancies are responsible for the observed increase in catalytic activity of the 2H basal plane. Our results provide new insights into the role of contact resistance and charge transport on the performance of two-dimensional MoS2 nanosheet catalysts for the HER. PMID:27295098

  13. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen.

    PubMed

    Voiry, Damien; Fullon, Raymond; Yang, Jieun; de Carvalho Castro E Silva, Cecilia; Kappera, Rajesh; Bozkurt, Ibrahim; Kaplan, Daniel; Lagos, Maureen J; Batson, Philip E; Gupta, Gautam; Mohite, Aditya D; Dong, Liang; Er, Dequan; Shenoy, Vivek B; Asefa, Tewodros; Chhowalla, Manish

    2016-09-01

    The excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution reaction (HER) has led to substantial efforts towards increasing the edge concentration. The 2H basal plane is less active for the HER because it is less conducting and therefore possesses less efficient charge transfer kinetics. Here we show that the activity of the 2H basal planes of monolayer MoS2 nanosheets can be made comparable to state-of-the-art catalytic properties of metallic edges and the 1T phase by improving the electrical coupling between the substrate and the catalyst so that electron injection from the electrode and transport to the catalyst active site is facilitated. Phase-engineered low-resistance contacts on monolayer 2H-phase MoS2 basal plane lead to higher efficiency of charge injection in the nanosheets so that its intrinsic activity towards the HER can be measured. We demonstrate that onset potentials and Tafel slopes of ∼-0.1 V and ∼50 mV per decade can be achieved from 2H-phase catalysts where only the basal plane is exposed. We show that efficient charge injection and the presence of naturally occurring sulfur vacancies are responsible for the observed increase in catalytic activity of the 2H basal plane. Our results provide new insights into the role of contact resistance and charge transport on the performance of two-dimensional MoS2 nanosheet catalysts for the HER.

  14. A Molecular Beam Source for Electron Spectroscopy of Clusters

    SciTech Connect

    Marburger, Simon P.; Kugeler, Oliver; Hergenhahn, Uwe

    2004-05-12

    We describe the construction and testing of a supersonic jet apparatus to carry out electron spectroscopy on Van-der-Waals clusters using Synchrotron Radiation as an excitation source. The cluster source works with a conical nozzle that can be cooled with LHe as well as with LN2. The system has been optimized for mechanical and thermal stability, for low residual magnetic fields and is of a compact design.

  15. Simulations of inelastic electron tunneling spectroscopy of semifluorinated hexadecanethiol junctions

    NASA Astrophysics Data System (ADS)

    Wang, Chuan-Kui; Zou, Bin; Song, Xiu-Neng; Li, Ying-De; Li, Zong-Liang; Lin, Li-Li

    2009-09-01

    The inelastic electron tunneling spectroscopy (IETS) of semifluorinated hexadecanethiol junctions is theoretically studied. The numerical results show that the C-F vibration modes of semifluorinated alkanethiol series can not be detected, and the C-H stretching mode in IETS is related to the CH2 vibration. It is demonstrated that the Raman modes are preferred over IR modes in IETS, which is in good agreement with the experimental measurements presented by Beebe et al. [Nano Lett., 2007, 7(5): 1364].

  16. Molecular shock response of explosives: electronic absorption spectroscopy

    SciTech Connect

    Mcgrne, Shawn D; Moore, David S; Whitley, Von H; Bolme, Cindy A; Eakins, Daniel E

    2009-01-01

    Electronic absorption spectroscopy in the range 400-800 nm was coupled to ultrafast laser generated shocks to begin addressing the question of the extent to which electronic excitations are involved in shock induced reactions. Data are presented on shocked polymethylmethacrylate (PMMA) thin films and single crystal pentaerythritol tetranitrate (PETN). Shocked PMMA exhibited thin film interference effects from the shock front. Shocked PETN exhibited interference from the shock front as well as broadband increased absorption. Relation to shock initiation hypotheses and the need for time dependent absorption data (future experiments) is briefly discussed.

  17. Probing battery chemistry with liquid cell electron energy loss spectroscopy.

    PubMed

    Unocic, Raymond R; Baggetto, Loïc; Veith, Gabriel M; Aguiar, Jeffery A; Unocic, Kinga A; Sacci, Robert L; Dudney, Nancy J; More, Karren L

    2015-11-25

    We demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. This is significant as the use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. We discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies.

  18. Probing Battery Chemistry with Liquid Cell Electron Energy Loss Spectroscopy

    SciTech Connect

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Aguiar, Jeffery A.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren L.

    2015-11-25

    We demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. The use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. Furthermore, we discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies.

  19. Probing battery chemistry with liquid cell electron energy loss spectroscopy

    SciTech Connect

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren Leslie; Aguiar, Jeffery A.

    2015-09-15

    Electron energy loss spectroscopy (EELS) was used to determine the chemistry and oxidation state of LiMn2O4 and Li4Ti5O12 thin film battery electrodes in liquid cells for in situ scanning/transmission electron microscopy (S/TEM). Using the L2,3 white line intensity ratio method we determine the oxidation state of Mn and Ti in a liquid electrolyte solvent and discuss experimental parameters that influence measurement sensitivity.

  20. Probing battery chemistry with liquid cell electron energy loss spectroscopy.

    PubMed

    Unocic, Raymond R; Baggetto, Loïc; Veith, Gabriel M; Aguiar, Jeffery A; Unocic, Kinga A; Sacci, Robert L; Dudney, Nancy J; More, Karren L

    2015-11-25

    We demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. This is significant as the use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. We discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies. PMID:26404766

  1. Theory of collisional electron spectroscopy for gas analysis

    SciTech Connect

    Panasyuk, George Y.; Tsyganov, Alexander B.

    2012-06-01

    We develop an analytical model for a proposed method of gas analysis. The method is based on collisional electron spectroscopy, where a limited number of electron scatterings on gas molecules inside the analyzer is permitted. The proposed method can be used to identify impurity species in a main gas from the resulted energy spectra of photoelectrons collected by the cathode. The photoelectrons are produced by vacuum ultraviolet-ionization of impurity species. Physical processes are explored in the case of detecting impurities in atmospheric air. The electron velocity distribution function inside the detector is derived. It is shown that the voltage dependence of the second derivative of the cathode current with respect to the applied cathode voltage can provide electron energy spectrum and subsequent identification of the impurity species.

  2. Electron energy loss spectroscopy of gold nanoparticles on graphene

    SciTech Connect

    DeJarnette, Drew; Roper, D. Keith

    2014-08-07

    Plasmon excitation decay by absorption, scattering, and hot electron transfer has been distinguished from effects induced by incident photons for gold nanoparticles on graphene monolayer using electron energy loss spectroscopy (EELS). Gold nano-ellipses were evaporated onto lithographed graphene, which was transferred onto a silicon nitride transmission electron microscopy grid. Plasmon decay from lithographed nanoparticles measured with EELS was compared in the absence and presence of the graphene monolayer. Measured decay values compared favorably with estimated radiative and non-radiative contributions to decay in the absence of graphene. Graphene significantly enhanced low-energy plasmon decay, increasing mode width 38%, but did not affect higher energy plasmon or dark mode decay. This decay beyond expected radiative and non-radiative mechanisms was attributed to hot electron transfer, and had quantum efficiency of 20%, consistent with previous reports.

  3. Characterizing Localized Surface Plasmons Using Electron Energy-Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cherqui, Charles; Thakkar, Niket; Li, Guoliang; Camden, Jon P.; Masiello, David J.

    2016-05-01

    Electron energy-loss spectroscopy (EELS) offers a window to view nanoscale properties and processes. When performed in a scanning transmission electron microscope, EELS can simultaneously render images of nanoscale objects with subnanometer spatial resolution and correlate them with spectroscopic information at a spectral resolution of ˜10-100 meV. Consequently, EELS is a near-perfect tool for understanding the optical and electronic properties of individual plasmonic metal nanoparticles and few-nanoparticle assemblies, which are significant in a wide range of fields. This review presents an overview of basic plasmonics and EELS theory and highlights several recent noteworthy experiments involving the interrogation of plasmonic metal nanoparticle systems using electron beams.

  4. DNA Electronic Fingerprints by Local Spectroscopy on Graphene

    NASA Astrophysics Data System (ADS)

    Balatsky, Alexander

    2013-03-01

    Working and scalable alternatives to the conventional chemical methods of DNA sequencing that are based on electronic/ionic signatures would revolutionize the field of sequencing. The approach of a single molecule imaging and spectroscopy with unprecedented resolution, achieved by Scanning Tunneling Spectroscopy (STS) and nanopore electronics could enable this revolution. We use the data from our group and others in applying this local scanning tunneling microscopy and illustrate possibilities of electronic sequencing of freeze dried deposits on graphene. We will present two types of calculated fingerprints: first in Local Density of States (LDOS) of DNA nucleotide bases (A,C,G,T) deposited on graphene. Significant base-dependent features in the LDOS in an energy range within few eV of the Fermi level were found in our calculations. These features can serve as electronic fingerprints for the identification of individual bases in STS. In the second approach we present calculated base dependent electronic transverse conductance as DNA translocates through the graphene nanopore. Thus we argue that the fingerprints of DNA-graphene hybrid structures may provide an alternative route to DNA sequencing using STS. Work supported by US DOE, NORDITA.

  5. The electronic properties of potassium doped copper-phthalocyanine studied by electron energy-loss spectroscopy.

    PubMed

    Flatz, K; Grobosch, M; Knupfer, M

    2007-06-01

    The authors have studied the electronic structure of potassium doped copper-phthalocyanine using electron energy-loss spectroscopy. The evolution of the loss function indicates the formation of distinct KxCuPc phases. Taking into account the C1s and K2p core level excitations and recent results by Giovanelli et al. [J. Chem. Phys. 126, 044709 (2007)], they conclude that these are K2CuPc and K4CuPc. They discuss the changes in the electronic excitations upon doping on the basis of the molecular electronic levels and the presence of electronic correlations.

  6. Near-IR 2D-spectroscopy of the 4''x 4'' region around the Active Galactic Nucleus of NGC 1068 with ISAAC/VLT

    NASA Astrophysics Data System (ADS)

    Galliano, E.; Alloin, D.

    2002-10-01

    New near-IR long slit spectroscopic data obtained with ISAAC on VLT/ANTU (ESO/Paranal) complement and extend our previously published near-IR data (Alloin et al. \\cite{all01}) to produce Brgamma and H2 emission line maps and line profile grids of the central 4'' x 4'' region surrounding the central engine of NGC 1068. The seeing quality together with the use of an 0.3'' wide slit and 0.3'' slit position offsets allow one to perform 2D-spectroscopy at a spatial resolution ~ 0.5''. Slit orientations (PA = 102 degr and PA = 12 degr) were chosen so as to match respectively the equatorial plane and the axis of the suspected molecular/dusty torus in NGC 1068. The selected wavelength range from 2.1 to 2.2μm is suitable to detect and analyze the Brgamma and H2 emission lines at a spectral resolution corresponding to 35km s-1. An asymmetric distribution of H2 emission around the continuum peak is observed. No H2 emission is detected at the location of the strong 2.2μm continuum core (coincident within error-bars with the central engine location), while two conspicuous knots of H2 emission are detected at about 1'' on each side of the central engine along PA = 90 degr, with a projected velocity difference of 140km s-1: this velocity jump has been interpreted in Alloin et al. (\\cite{all01}) as the signature of a rotating disk of molecular material. From this new data set, we find that only very low intensity Brgamma emission is detected at the location of the two main knots of H2 emission. Another knot with both H2 and Brgamma emission is detected to the North of the central engine, close to the radio source C where the small scale radio jet is redirected and close to the brightest [OIII] cloud NLR-B. It has a counterpart to the South, placed almost symmetrically with respect to the central engine, although mainly visible in the Brgamma emission. The northern and southern knots appear to be related to the ionization cone. At the achieved spectral resolution, the H2

  7. ZnO Nanorods on a LaAlO3 -SrTiO3 Interface: Hybrid 1D-2D Diodes with Engineered Electronic Properties.

    PubMed

    Bera, Ashok; Lin, Weinan; Yao, Yingbang; Ding, Junfeng; Lourembam, James; Wu, Tom

    2016-02-10

    Integrating nanomaterials with different dimensionalities and properties is a versatile approach toward realizing new functionalities in advanced devices. Here, a novel diode-type heterostructure is reported consisting of 1D semiconducting ZnO nanorods and 2D metallic LaAlO3-SrTiO3 interface. Tunable insulator-to-metal transitions, absent in the individual components, are observed as a result of the competing temperature-dependent conduction mechanisms. Detailed transport analysis reveals direct tunneling at low bias, Fowler-Nordheim tunneling at high forward bias, and Zener breakdown at high reverse bias. Our results highlight the rich electronic properties of such artificial diodes with hybrid dimensionalities, and the design principle may be generalized to other nanomaterials.

  8. 2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Kononenko, O.; Lopes, N. C.; Cole, J. M.; Kamperidis, C.; Mangles, S. P. D.; Najmudin, Z.; Osterhoff, J.; Poder, K.; Rusby, D.; Symes, D. R.; Warwick, J.; Wood, J. C.; Palmer, C. A. J.

    2016-09-01

    In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.

  9. Nonlinear inelastic electron scattering revealed by plasmon-enhanced electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Chun Kai; Liu, Wen Jie; Zhang, Pan Ke; Li, Meng; Zhang, Han Jun; Xu, Ke Zun; Luo, Yi; Chen, Xiang Jun

    2014-10-01

    Electron energy-loss spectroscopy is a powerful tool for identifying the chemical composition of materials. It relies mostly on the measurement of inelastic electrons, which carry specific atomic or molecular information. Inelastic electron scattering, however, has a very low intensity, often orders of magnitude weaker than that of elastically scattered electrons. Here, we report the observation of enhanced inelastic electron scattering from silver nanostructures, the intensity of which can reach up to 60% of its elastic counterpart. A home-made scanning probe electron energy-loss spectrometer was used to produce highly localized plasmonic excitations, significantly enhancing the strength of the local electric field of silver nanostructures. The intensity of inelastic electron scattering was found to increase nonlinearly with respect to the electric field generated by the tip-sample bias, providing direct evidence of nonlinear electron scattering processes.

  10. GEL-STATE NMR OF BALL-MILLED WHOLE CELL WALLS IN DMSO-d6 USING 2D SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell walls were used for obtaining 2D solution-state NMR spectra without actual solubilization or structural modification. Ball-milled whole cell walls were swelled directly in the NMR tube with DMSO-d6 where they formed a gel. There are relatively few gel-state NMR studies. Most have involved...

  11. Synthesis and Resolution of the Atropisomeric 1,1'-Bi-2-Naphthol: An Experiment in Organic Synthesis and 2-D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Mak, Kendrew K. W.

    2004-01-01

    NMR spectroscopy is presented. It is seen that the experiment regarding the synthesis and resolution of 1,1'-Bi-2-naphtol presents a good experiment for teaching organic synthesis and NMR spectroscopy and provides a strategy for obtaining enantiopure compounds from achiral starting materials.

  12. Development of Electron Energy Loss Spectroscopy in the Biological Sciences

    PubMed Central

    Aronova, M.A.; Leapman, R.D.

    2012-01-01

    The high sensitivity of electron energy loss spectroscopy (EELS) for detecting light elements at the nanoscale makes it a valuable technique for application to biological systems. In particular, EELS provides quantitative information about elemental distributions within subcellular compartments, specific atoms bound to individual macromolecular assemblies, and the composition of bionanoparticles. The EELS data can be acquired either in the fixed beam energy-filtered transmission electron microscope (EFTEM) or in the scanning transmission electron microscope (STEM), and recent progress in the development of both approaches has greatly expanded the range of applications for EELS analysis. Near single atom sensitivity is now achievable for certain elements bound to isolated macromolecules, and it becomes possible to obtain three-dimensional compositional distributions from sectioned cells through EFTEM tomography. PMID:23049161

  13. Single-atom electron energy loss spectroscopy of light elements

    PubMed Central

    Senga, Ryosuke; Suenaga, Kazu

    2015-01-01

    Light elements such as alkali metal (lithium, sodium) or halogen (fluorine, chlorine) are present in various substances and indeed play significant roles in our life. Although atomic behaviours of these elements are often a key to resolve chemical or biological activities, they are hardly visible in transmission electron microscope because of their smaller scattering power and higher knock-on probability. Here we propose a concept for detecting light atoms encaged in a nanospace by means of electron energy loss spectroscopy using inelastically scattered electrons. In this method, we demonstrate the single-atom detection of lithium, fluorine, sodium and chlorine with near-atomic precision, which is limited by the incident probe size, signal delocalization and atomic movement in nanospace. Moreover, chemical shifts of lithium K-edge have been successfully identified with various atomic configurations in one-dimensional lithium compounds. PMID:26228378

  14. Electron energy spectra in helium observed in a microplasma collisional electron spectroscopy detector

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. A.; Mustafaev, A. S.; Tsyganov, A. B.; Chirtsov, A. S.; Yakovleva, V. I.

    2012-10-01

    The energy spectra of fast electrons resulting from pair collisions between metastable atoms and from collisions of the second kind with electrons are observed in the afterglow of a helium-filled microplasma collisional electron spectroscopy (CES) detector at a pressure of 5-40 Torr. It is demonstrated that impurities present in the main inert gas can be detected and their composition can be determined using a planar double-electrode detector in which the cathode simultaneously serves as an analyzer of electrons in the afterglow.

  15. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Seidel, Robert; Winter, Bernd; Bradforth, Stephen E.

    2016-05-01

    The valence orbital electron binding energies of water and of embedded solutes are crucial quantities for understanding chemical reactions taking place in aqueous solution, including oxidation/reduction, transition-metal coordination, and radiation chemistry. Their experimental determination based on liquid-photoelectron spectroscopy using soft X-rays is described, and we provide an overview of valence photoelectron spectroscopy studies reported to date. We discuss principal experimental aspects and several theoretical approaches to compute the measured binding energies of the least tightly bound molecular orbitals. Solutes studied are presented chronologically, from simple electrolytes, via transition-metal ion solutions and several organic and inorganic molecules, to biologically relevant molecules, including aqueous nucleotides and their components. In addition to the lowest vertical ionization energies, the measured valence photoelectron spectra also provide information on adiabatic ionization energies and reorganization energies for the oxidation (ionization) half-reaction. For solutes with low solubility, resonantly enhanced ionization provides a promising alternative pathway.

  16. High Resolution Λ Hypernuclear Spectroscopy with Electron Beams

    NASA Astrophysics Data System (ADS)

    Gogami, T.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Baturin, P.; Badui, R.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chen, C.; Chiba, A.; Christy, E.; Danagoulian, S.; De Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fujii, Y.; Fujita, M.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed. V.; Jones, M.; Kanda, H.; Kaneta, M.; Kato, S.; Kawai, M.; Kawama, D.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Margaryan, A.; Markowitz, P.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman; Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Tang, L.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Ya, L.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.

    JLab E05-115 which is an experiment for Λ hypernuclear spectroscopy with electron beams was carried out at Jefferson Lab (JLab) in 2009. In the experiment, Λ 7He, Λ 9Li, Λ 10Be, Λ 12B and Λ 52V were measured by new magnetic spectrometer systems (SPL+HES+HKS) which were necessary for spectroscopy with high energy resolution of sub-MeV (FWHM). This is the first attempt to measure a Λ hypernucleus with up to medium-heavy mass region by the (e,e' K + ) reaction, overcoming high rate and high multiplicity conditions due to electromagnetic background particles. An overview of the hypernuclear experiments at JLab Hall-C and preliminary binding energy spectrum of Λ 10Be are shown.

  17. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy.

    PubMed

    Seidel, Robert; Winter, Bernd; Bradforth, Stephen E

    2016-05-27

    The valence orbital electron binding energies of water and of embedded solutes are crucial quantities for understanding chemical reactions taking place in aqueous solution, including oxidation/reduction, transition-metal coordination, and radiation chemistry. Their experimental determination based on liquid-photoelectron spectroscopy using soft X-rays is described, and we provide an overview of valence photoelectron spectroscopy studies reported to date. We discuss principal experimental aspects and several theoretical approaches to compute the measured binding energies of the least tightly bound molecular orbitals. Solutes studied are presented chronologically, from simple electrolytes, via transition-metal ion solutions and several organic and inorganic molecules, to biologically relevant molecules, including aqueous nucleotides and their components. In addition to the lowest vertical ionization energies, the measured valence photoelectron spectra also provide information on adiabatic ionization energies and reorganization energies for the oxidation (ionization) half-reaction. For solutes with low solubility, resonantly enhanced ionization provides a promising alternative pathway.

  18. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    SciTech Connect

    Krishtopenko, S. S.

    2015-02-15

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.

  19. 2012 ELECTRONIC SPECTROSCOPY & DYNAMICS GORDON RESEARCH CONFERENCE, JULY 22-27, 2012

    SciTech Connect

    Kohler, Bern

    2012-07-27

    Topics covered in this GRC include high-resolution spectroscopy, coherent electronic energy transport in biology, excited state theory and dynamics, excitonics, electronic spectroscopy of cold and ultracold molecules, and the spectroscopy of nanostructures. Several sessions will highlight innovative techniques such as time-resolved x-ray spectroscopy, frequency combs, and liquid microjet photoelectron spectroscopy that have forged stimulating new connections between gas-phase and condensed-phase work.

  20. Imidization induced structural changes of 6FDA-ODA poly(amic acid) by two-dimensional (2D) infrared correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Seo, Hyemi; Chae, Boknam; Im, Ji Hyuk; Jung, Young Mee; Lee, Seung Woo

    2014-07-01

    Two-dimensional (2D) gradient mapping method and 2D correlation analysis of in situ FTIR spectra were used to probe the thermal imidization-induced spectral changes in 6FDA-ODA poly(amic acid) (PAA) films prepared by a reaction of 4,4‧-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 4,4‧-oxydianiline (ODA) in N,N‧-dimethylacetamide. Large spectral changes in the in situ FTIR spectra of 6FDA-ODA PAA film were observed in the range, 130-230 °C. The thermal imidization of 6FDA-ODA PAA films strongly affects the spectral changes in amic acid groups in the PAA unit. The spectral change in the amic acid groups occurred before those of the imide ring. The cyclic anhydrides, isoimdes and intermolecular links are present together with the imide ring in the thermally-cured 6FDA-ODA PAA films.

  1. Spin-resolved electron spectroscopies of epitaxial magnetite (001) (abstract)

    NASA Astrophysics Data System (ADS)

    Shaw, Kimberly A.; Lochner, Eric; Lind, David M.; DiBari, Rebecca C.; Stoyanov, Plamen; Singer, Brian

    1996-04-01

    We will present the first spin-resolving electron spectroscopic studies of a magnetite (Fe3O4)(001) surface. Magnetite is a semimetal with a high density of states in the minority band, but a large band gap in the majority states at the Fermi energy. The polarization of the secondary emission cascade is measured using spin-resolved secondary electron emission spectroscopy (SRSEES), and reflects the semimetallic spin structure of Fe3O4. The polarization plateau of spin-resolved secondary emission (29.8%) matches the average 3D band polarization of stoichiometric Fe3O4 as determined from spin-resolved band structure calculations (34.2%). An enhancement of the polarization of the secondary electrons at lowest energies will also be discussed. Spin-resolved Auger emission spectroscopy (SRAES) of the Fe3O4 films have been measured and show correlation effects in the valence-valence Auger transitions. Suppressed intensity and polarization of M23M45M45 Auger emission relative to M1M45M45 Auger emission is observed, as well as strong resonant emission with shake-up. Conversely, no spin polarization is detected in the spin-resolved oxygen LMM Auger features, although oxygen Auger emission (in which we can distinguish between adsorbed and bonded oxygen) is used to verify surface cleanliness of the samples. The synthesis of Fe3O4 films grown on magnesium oxide (001) substrates using oxygen plasma-assisted molecular beam epitaxy will be discussed, as will thin-film characterization using SQUID magnetometry and x-ray and electron diffraction. A unique angle-, energy-, and spin-resolved electron spectrometer has been designed and built for the study of magnetic surfaces, and these studies represent its' first use. That spectrometer is based on a tandem configuration of an energy-dispersive energy analyzer and Mott spin polarimeter.

  2. Electron spectroscopy of selected atmospheric molecules and hydrocarbons

    NASA Astrophysics Data System (ADS)

    Davies, Julia Ann

    The thesis presents experimental results obtained by electron impact energy-loss spectroscopy. Differential oscillator strengths (DOS) of selected atmospheric molecules and hydrocarbons and vibrational excitation cross sections of ozone are measured. A critical comparison with earlier experiments and theory (where it exists) is made. The thesis is arranged in seven chapters. The first discusses molecular structure, spectroscopy and electron-molecule scattering as is relevant to the scope of this thesis. The next two chapters describe the experimental apparatus used. A high resolution electron spectrometer produces an electron beam (˜10 nA) incident upon the molecular target. Scattered electrons of selected energy-loss and scattering angle are detected by the spectrometer providing a total apparatus resolution of ˜50 meV. The vacuum system, gas inlet system and power supplies are also discussed. Chapters 4, 5 and 6 contain the main results obtained during postgraduate studies. DOS of selected atmospheric molecules (O2, N2, N2O, CO and CO2) are presented and critically compared with previous optical and synchrotron studies. Good agreement between results validates the experimental apparatus and techniques used in this work. A detailed study of the DOS of small alkanes (CH4, C2H6, C3H8 and C4H10) and small alkenes (C2H4, C3H6 and C4H8) shows similarities and trends in these series. DOS of ozone, O3, are also measured and the vibrational excitation of ozone is investigated as a function of scattering angle (40° ≤ theta ≤ 120°) and inccident energy (3 eV

  3. Tomography of Particle Plasmon Fields from Electron Energy Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hörl, Anton; Trügler, Andreas; Hohenester, Ulrich

    2013-08-01

    We theoretically investigate electron energy loss spectroscopy (EELS) of metallic nanoparticles in the optical frequency domain. Using a quasistatic approximation scheme together with a plasmon eigenmode expansion, we show that EELS can be rephrased in terms of a tomography problem. For selected single and coupled nanoparticles we extract the three-dimensional plasmon fields from a collection of rotated EELS maps. Our results pave the way for a fully three-dimensional plasmon-field tomography and establish EELS as a quantitative measurement device for plasmonics.

  4. Inelastic electron tunneling spectroscopy of a single nuclear spin.

    PubMed

    Delgado, F; Fernández-Rossier, J

    2011-08-12

    Detection of a single nuclear spin constitutes an outstanding problem in different fields of physics such as quantum computing or magnetic imaging. Here we show that the energy levels of a single nuclear spin can be measured by means of inelastic electron tunneling spectroscopy (IETS). We consider two different systems, a magnetic adatom probed with scanning tunneling microscopy and a single Bi dopant in a silicon nanotransistor. We find that the hyperfine coupling opens new transport channels which can be resolved at experimentally accessible temperatures. Our simulations evince that IETS yields information about the occupations of the nuclear spin states, paving the way towards transport-detected single nuclear spin resonance.

  5. Inelastic electron tunneling spectroscopy study of thin gate dielectrics.

    PubMed

    Reiner, James W; Cui, Sharon; Liu, Zuoguang; Wang, Miaomiao; Ahn, Charles H; Ma, T P

    2010-07-20

    A broad range of materials is currently being studied for possible use as the insulating layer in next generation metal-oxide-semiconductor transistors. Inelastic electron tunneling spectroscopy (IETS) has become a powerful tool to characterize both the structural and electrical properties of the resulting device structures made from these materials. IETS can address issues related to reactions and intermixing at interfaces, as well as properties related to carrier mobility, such as phonon modes and charge traps, for structures that are difficult to characterize accurately by other techniques.

  6. Electron Wavepacket Interference Observed by Attosecond Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gallmann, L.; Holler, M.; Schapper, F.; Keller, U.

    Attosecond time-resolved transient absorption spectroscopy is performed in a dense helium target by superimposing an attosecond pulse train (APT) with a moderately strong infrared field. We observe rapid oscillations of the absorption of the individual harmonics as a function of time-delay between the APT and IR field even for harmonic energies well below the ionization threshold. The phase dependence of these modulations on atto-chirp and IR intensity yields direct evidence for the interference of transiently bound electronic wavepackets as the underlying mechanism.

  7. 8th international conference on electronic spectroscopy and structure

    SciTech Connect

    Robinson, Art

    2000-10-16

    Gathering from 33 countries around the world, 408 registrants and a number of local drop-in participants descended on the Clark Kerr Campus of the University of California, Berkeley, from Monday, August 7 through Saturday, August 12, 2000 for the Eighth International Conference on Electronic Structure and Spectroscopy (ICESS8). At the conference, participants benefited from an extensive scientific program comprising more than 100 oral presentations (plenary lectures and invited and contributed talks) and 330 poster presentations, as well as ample time for socializing and a tour of the Advanced Light Source (ALS) at the nearby Lawrence Berkeley National Laboratory.

  8. In situ electron energy-loss spectroscopy in liquids.

    PubMed

    Holtz, Megan E; Yu, Yingchao; Gao, Jie; Abruña, Héctor D; Muller, David A

    2013-08-01

    In situ scanning transmission electron microscopy (STEM) through liquids is a promising approach for exploring biological and materials processes. However, options for in situ chemical identification are limited: X-ray analysis is precluded because the liquid cell holder shadows the detector and electron energy-loss spectroscopy (EELS) is degraded by multiple scattering events in thick layers. Here, we explore the limits of EELS in the study of chemical reactions in their native environments in real time and on the nanometer scale. The determination of the local electron density, optical gap, and thickness of the liquid layer by valence EELS is demonstrated. By comparing theoretical and experimental plasmon energies, we find that liquids appear to follow the free-electron model that has been previously established for solids. Signals at energies below the optical gap and plasmon energy of the liquid provide a high signal-to-background ratio regime as demonstrated for LiFePO4 in an aqueous solution. The potential for the use of valence EELS to understand in situ STEM reactions is demonstrated for beam-induced deposition of metallic copper: as copper clusters grow, EELS develops low-loss peaks corresponding to metallic copper. From these techniques, in situ imaging and valence EELS offer insights into the local electronic structure of nanoparticles and chemical reactions. PMID:23721691

  9. Electron Density Measurement of Argon Containing Plasmas by Saturation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishiyama, S.; Wang, H.; Tomioka, S.; Sasaki, K.

    2014-10-01

    Langmuir probes are widely used for electron density measurements in plasmas. However, the use of a conventional probe should be avoided in a plasma which needs high purity because of the possibility of contamination. Optical measurements are suitable for these plasmas. In this work, we applied saturation spectroscopy to the electron density measurement. The peak height of the saturation spectrum is affected by the relaxation frequency of the related energy levels. In the case of the metastable levels of argon, the electron impact quenching rate, which is proportional to the electron density, is the dominant factor. In our experiments, an inductively coupled plasma source and a tunable cw diode laser were used. The frequency of the laser was scanned over the Doppler width of the 4 s[3/ 2 ] 2 o - 4 p[ 3 / 2 ] 2 (763.51 nm) transition. The experimental saturation spectrum was composed of a sharp Lorentzian peak and a broad base component, which was caused by velocity changing collisions. We deduced a new relationship between the saturation parameter and the measured saturated absorption spectrum with considering velocity changing collisions. We confirmed a linear relationship, which was expected theoretically, between the inverse of the saturation parameter and the electron density. Part of this work is supported by JSPS KAKENHI Grant Number 24540529.

  10. Electron Spectroscopy for Chemical Analysis (ESCA) study of atmospheric particles

    NASA Technical Reports Server (NTRS)

    Dillard, J. G.; Seals, R. D.; Wightman, J. P.

    1979-01-01

    The results of analyses by ESCA (Electron Spectroscopy for Chemical Analysis) on several Nuclepore filters which were exposed during air pollution studies are presented along with correlative measurements by Neutron Activation Analysis and Scanning Electron Microscopy. Samples were exposed during air pollution studies at Norfolk, Virginia and the NASA Kennedy Space Center (KSC). It was demonstrated that with the ESCA technique it was possible to identify the chemical (bonding) state of elements contained in the atmospheric particulate matter collected on Nuclepore filters. Sulfur, nitrogen, mercury, chlorine, alkali, and alkaline earth metal species were identified in the Norfolk samples. ESCA binding energy data for aluminum indicated that three chemically different types of aluminum are present in the launch and background samples from NASA-KSC.

  11. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-01

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  12. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    SciTech Connect

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions

  13. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    DOE PAGES

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate themore » slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions« less

  14. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy.

    PubMed

    Dong, Hui; Lewis, Nicholas H C; Oliver, Thomas A A; Fleming, Graham R

    2015-05-01

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  15. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    SciTech Connect

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  16. Inexpensive electronics and software for photon statistics and correlation spectroscopy

    PubMed Central

    Gamari, Benjamin D.; Zhang, Dianwen; Buckman, Richard E.; Milas, Peker; Denker, John S.; Chen, Hui; Li, Hongmin; Goldner, Lori S.

    2016-01-01

    Single-molecule-sensitive microscopy and spectroscopy are transforming biophysics and materials science laboratories. Techniques such as fluorescence correlation spectroscopy (FCS) and single-molecule sensitive fluorescence resonance energy transfer (FRET) are now commonly available in research laboratories but are as yet infrequently available in teaching laboratories. We describe inexpensive electronics and open-source software that bridges this gap, making state-of-the-art research capabilities accessible to undergraduates interested in biophysics. We include a discussion of the intensity correlation function relevant to FCS and how it can be determined from photon arrival times. We demonstrate the system with a measurement of the hydrodynamic radius of a protein using FCS that is suitable for the undergraduate teaching laboratory. The FPGA-based electronics, which are easy to construct, are suitable for more advanced measurements as well, and several applications are described. As implemented, the system has 8 ns timing resolution, can control up to four laser sources, and can collect information from as many as four photon-counting detectors. PMID:26924846

  17. Inexpensive electronics and software for photon statistics and correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Gamari, Benjamin D.; Zhang, Dianwen; Buckman, Richard E.; Milas, Peker; Denker, John S.; Chen, Hui; Li, Hongmin; Goldner, Lori S.

    2014-07-01

    Single-molecule-sensitive microscopy and spectroscopy are transforming biophysics and materials science laboratories. Techniques such as fluorescence correlation spectroscopy (FCS) and single-molecule sensitive fluorescence resonance energy transfer (FRET) are now commonly available in research laboratories but are as yet infrequently available in teaching laboratories. We describe inexpensive electronics and open-source software that bridges this gap, making state-of-the-art research capabilities accessible to undergraduates interested in biophysics. We include a discussion of the intensity correlation function relevant to FCS and how it can be determined from photon arrival times. We demonstrate the system with a measurement of the hydrodynamic radius of a protein using FCS that is suitable for the undergraduate teaching laboratory. The FPGA-based electronics, which are easy to construct, are suitable for more advanced measurements as well, and several applications are described. As implemented, the system has 8 ns timing resolution, can control up to four laser sources, and can collect information from as many as four photon-counting detectors.

  18. Tailoring the nature and strength of electron-phonon interactions in the SrTiO3(001) 2D electron liquid.

    PubMed

    Wang, Z; McKeown Walker, S; Tamai, A; Wang, Y; Ristic, Z; Bruno, F Y; de la Torre, A; Riccò, S; Plumb, N C; Shi, M; Hlawenka, P; Sánchez-Barriga, J; Varykhalov, A; Kim, T K; Hoesch, M; King, P D C; Meevasana, W; Diebold, U; Mesot, J; Moritz, B; Devereaux, T P; Radovic, M; Baumberger, F

    2016-08-01

    Surfaces and interfaces offer new possibilities for tailoring the many-body interactions that dominate the electrical and thermal properties of transition metal oxides. Here, we use the prototypical two-dimensional electron liquid (2DEL) at the SrTiO3(001) surface to reveal a remarkably complex evolution of electron-phonon coupling with the tunable carrier density of this system. At low density, where superconductivity is found in the analogous 2DEL at the LaAlO3/SrTiO3 interface, our angle-resolved photoemission data show replica bands separated by 100 meV from the main bands. This is a hallmark of a coherent polaronic liquid and implies long-range coupling to a single longitudinal optical phonon branch. In the overdoped regime the preferential coupling to this branch decreases and the 2DEL undergoes a crossover to a more conventional metallic state with weaker short-range electron-phonon interaction. These results place constraints on the theoretical description of superconductivity and allow a unified understanding of the transport properties in SrTiO3-based 2DELs. PMID:27064529

  19. Tailoring the nature and strength of electron-phonon interactions in the SrTiO3(001) 2D electron liquid.

    PubMed

    Wang, Z; McKeown Walker, S; Tamai, A; Wang, Y; Ristic, Z; Bruno, F Y; de la Torre, A; Riccò, S; Plumb, N C; Shi, M; Hlawenka, P; Sánchez-Barriga, J; Varykhalov, A; Kim, T K; Hoesch, M; King, P D C; Meevasana, W; Diebold, U; Mesot, J; Moritz, B; Devereaux, T P; Radovic, M; Baumberger, F

    2016-08-01

    Surfaces and interfaces offer new possibilities for tailoring the many-body interactions that dominate the electrical and thermal properties of transition metal oxides. Here, we use the prototypical two-dimensional electron liquid (2DEL) at the SrTiO3(001) surface to reveal a remarkably complex evolution of electron-phonon coupling with the tunable carrier density of this system. At low density, where superconductivity is found in the analogous 2DEL at the LaAlO3/SrTiO3 interface, our angle-resolved photoemission data show replica bands separated by 100 meV from the main bands. This is a hallmark of a coherent polaronic liquid and implies long-range coupling to a single longitudinal optical phonon branch. In the overdoped regime the preferential coupling to this branch decreases and the 2DEL undergoes a crossover to a more conventional metallic state with weaker short-range electron-phonon interaction. These results place constraints on the theoretical description of superconductivity and allow a unified understanding of the transport properties in SrTiO3-based 2DELs.

  20. Tailoring the nature and strength of electron-phonon interactions in the SrTiO3(001) 2D electron liquid

    NASA Astrophysics Data System (ADS)

    Wang, Z.; McKeown Walker, S.; Tamai, A.; Wang, Y.; Ristic, Z.; Bruno, F. Y.; de la Torre, A.; Riccò, S.; Plumb, N. C.; Shi, M.; Hlawenka, P.; Sánchez-Barriga, J.; Varykhalov, A.; Kim, T. K.; Hoesch, M.; King, P. D. C.; Meevasana, W.; Diebold, U.; Mesot, J.; Moritz, B.; Devereaux, T. P.; Radovic, M.; Baumberger, F.

    2016-08-01

    Surfaces and interfaces offer new possibilities for tailoring the many-body interactions that dominate the electrical and thermal properties of transition metal oxides. Here, we use the prototypical two-dimensional electron liquid (2DEL) at the SrTiO3(001) surface to reveal a remarkably complex evolution of electron-phonon coupling with the tunable carrier density of this system. At low density, where superconductivity is found in the analogous 2DEL at the LaAlO3/SrTiO3 interface, our angle-resolved photoemission data show replica bands separated by 100 meV from the main bands. This is a hallmark of a coherent polaronic liquid and implies long-range coupling to a single longitudinal optical phonon branch. In the overdoped regime the preferential coupling to this branch decreases and the 2DEL undergoes a crossover to a more conventional metallic state with weaker short-range electron-phonon interaction. These results place constraints on the theoretical description of superconductivity and allow a unified understanding of the transport properties in SrTiO3-based 2DELs.

  1. Uranium trioxide behavior during electron energy loss spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Alekseev, Evgeny V.

    2015-03-01

    A sample of uranium trioxide (UO3) was produced by focused ion beam (~10 μm×~10 μm×<0.5 μm) for transmission electron and electron energy loss (EEL) spectroscopy examinations in a transmission electron microscope (TEM). The EEL spectra were recorded as a function of the thickness for the P and O edges in the low energy range 0-350 eV and were compared to spectra of UO3 small grains attached to a TEM grid. The EEL spectrum was studied through a range of thicknesses going from ~60 to ~260 nm. The EEL spectra recorded for UO3 are compared with those recorded for UO2. The reduction of UO3 into U4O9 and/or UO2 is readily observed apparently during the TEM investigations and as confirmed by electron diffraction (eD). This redox effect is similar to that known for other redox sensitive oxides. Recommendations are suggested to avoid sample decomposition.

  2. Mid-infrared pulse shaping permits the pathway of amyloid aggregation to be determined with rapid-scan 2D IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zanni, Martin

    2010-03-01

    We have developed a means for rapidly acquiring 2D IR spectra in a continuous fashion to monitoring protein kinetics. Our method relies on a mid-IR pulse shaper that generates precise pulse trains for collecting 2D IR spectra. The phase, amplitude and now the polarization of the pulse trains can be automatically generated without optical alignment, which produces higher accuracy spectra in a much easier fashion than with standard 4-wave mixing. Using this new technology as well as site-specific isotope labeling, we have measured the development of secondary structures for six residues during the aggregation process of the 37-residue polypeptide associated with type 2 diabetes, the human islet amyloid polypeptide (hIAPP), also called amylin. By monitoring the kinetics at six different labeled sites, we find that the peptides initially develop well ordered structures near the ordered loop of the fibrils, followed by formation of the two parallel β-sheets with the N-terminal β-sheet likely forming before the C-terminal sheet. This experimental approach provides residue-by-residue details on the aggregation pathway of hIAPP fibril formation as well as a general methodology for studying other amyloid forming proteins without the use of structure perturbing labels. Moreover, this approach is also applicable to membrane catalyzed amyloid formation, and experiments along these lines will be presented as well.

  3. Hyperfine structure and lifetime measurements in the 4s2nd 2D3/2 Rydberg sequence of Ga I by time-resolved laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Chunqing; Tian, Yanshan; Yu, Qi; Bai, Wanshuang; Wang, Xinghao; Wang, Chong; Dai, Zhenwen

    2016-05-01

    The hyperfine structure (HFS) constants of the 4s2nd 2D3/2 (n=6-18) Rydberg sequence and the 4s26p 2P3/2 level for two isotopes of 69Ga and 71Ga atoms were measured by means of the time-resolved laser-induced fluorescence (TR-LIF) technique and the quantum beat method. The observed hyperfine quantum beat spectra were analyzed and the magnetic-dipole HFS constants A as well as the electric-quadrupole HFS constants B of these levels were obtained by Fourier transform and a program for multiple regression analysis. Also using TR-LIF method radiative lifetimes of the above sequence states were determined at room temperature. The measured lifetime values range from 69 to 2279 ns with uncertainties no more than 10%. To our knowledge, the HFS constants of this Rydberg sequence and the lifetimes of the 4s2nd 2D3/2 (n=10-18) levels are reported for the first time. Good agreement between our results and the previous is achieved.

  4. Nanogap structures: combining enhanced Raman spectroscopy and electronic transport.

    PubMed

    Natelson, Douglas; Li, Yajing; Herzog, Joseph B

    2013-04-21

    Surface-enhanced Raman spectroscopy (SERS) is an experimental tool for accessing vibrational and chemical information, down to the single molecule level. SERS typically relies on plasmon excitations in metal nanostructures to concentrate the incident radiation and to provide an enhanced photon density of states to couple emitted radiation to the far field. Many common SERS platforms involve metal nanoparticles to generate the required electromagnetic enhancements. Here we concentrate on an alternative approach, in which the relevant plasmon excitations are supported at a truly nanoscale gap between extended electrodes, rather than discrete subwavelength nanoparticles. The ability to fabricate precise gaps on demand, and in some cases to tune the gap size in situ, combined with the additional capability of simultaneous electronic transport measurements of the nanogap, provides access to information not previously available in standard SERS. We summarize the rich plasmonic physics at work in these extended systems and highlight the recent state of the art including tip-enhanced Raman spectroscopy (TERS) and the application of mechanical break junctions and electromigrated junctions. We describe in detail how we have performed in situ gap-enhanced Raman measurements of molecular-scale junctions while simultaneously subjecting these structures to electronic transport. These extended electrode structures allow us to study the pumping of vibrational modes by the flow of tunneling electrons, as well as the shifting of vibrational energies due to the applied bias. These experiments extend SERS into a tool for examining fundamental processes of dissipation, and provide insight into the mechanisms behind SERS spectral diffusion. We conclude with a brief discussion of future directions. PMID:23385304

  5. An unambiguous identification of 2D electron gas features in the photoluminescence spectrum of AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Jana, Dipankar; Sharma, T. K.

    2016-07-01

    A fast and non-destructive method for probing the true signatures of 2D electron gas (2DEG) states in AlGaN/GaN heterostructures is presented. Two broad features superimposed with interference oscillations are observed in the low temperature photoluminescence (PL) spectrum. The two features are identified as the ground and excited 2DEG states which are confirmed by comparing the PL spectra of as-grown and top barrier layer etched samples. Broad PL features disappear at a certain temperature along with the associated interference oscillations. Furthermore, the two broad PL features depicts specific temperature and excitation intensity dependencies which make them easily distinguishable from the bandedge excitonic or defect related PL features. The presence of strong interference oscillations associated with the 2DEG PL features is explained by considering the localized generation of PL signal at the AlGaN/GaN heterointerface. Finally, a large value of the polarization induced electric field of ~1.01 MV cm-1 is reported from PL measurements for AlGaN/GaN HEMT structures. It became possible only when the true identification of 2DEG features was made possible by the proposed method.

  6. Interfacial Electron Transfer and Transient Photoconductivity Studied with Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Milot, Rebecca Lee

    Terahertz spectroscopy is distinguished from other far infrared and millimeter wave spectroscopies by its inherent phase sensitivity and sub-picosecond time resolution making it a versatile technique to study a wide range of physical phenomena. As THz spectroscopy is still a relatively new field, many aspects of THz generation mechanisms have not been fully examined. Using terahertz emission spectroscopy (TES), THz emission from ZnTe(110) was analyzed and found to be limited by two-photon absorption and free-carrier generation at high excitation fluences. Due to concerns about the continued use of fossil fuels, solar energy has been widely investigated as a promising source of renewable energy. Dye-sensitized solar cells (DSSCs) have been developed as a low-cost alternative to conventional photovoltaic solar cells. To solve the issues of the intermittency and inefficient transport associated with solar energy, researchers are attempting to adapt DSSCs for water oxidation and chemical fuel production. Both device designs incorporate sensitizer molecules covalently bound to metal oxide nanoparticles. The sensitizer, which is comprised of a chromophore and anchoring group, absorbs light and transfers an electron from its excited state to the conduction band of the metal oxide, producing an electric current. Using time-resolved THz spectroscopy (TRTS), an optical pump/THz probe technique, the efficiency and dynamics of electron injection from sensitizers to metal oxides was evaluated as a function of the chromophore, its anchoring group, and the metal oxide identity. Experiments for studying fully functioning DSSCs and water oxidation devices are also described. Bio-inspired pentafluorophenyl porphyrin chromophores have been designed and synthesized for use in photoelectrochemical water oxidation cells. Influences on the efficiency and dynamics of electron injection from the chromophores into TiO2 and SnO2 nanoparticles due to changes in both the central substituent to

  7. Functional Materials characterizations by Scanning/Transmission Electron Microscopy and Electron Energy Loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Bo

    Along with the fast development of science and technology, the studied materials are becoming more complicated and smaller. All these achievements have advanced with the fast development of powerful tools currently, such as Scanning electron microscopy (SEM), Focused Ion Beam (FIB), Transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDX), Electron energy loss spectroscopy (EELS) and so on. SiTiO3 thin film, which is grown on Si (100) single crystals, attracts a lot of interest in its structural and electronic properties close to its interface. Valence EELS is used to investigate the Plasmon excitations of the ultrathin SrTiO3 thin film which is sandwiched between amorphous Si and crystalline Si layers. On the other hand, theoretical simulations based on dielectric functions have been done to interpret the experimental results. Our findings demonstrate the value of valence electron energy-loss spectroscopy in detecting a local change in the effective electron mass. Recently it is reported that ZnO-LiYbO2 hybrid phosphor is an efficient UV-infrared convertor for silicon solar cell but the mechanism is still not very clear. The microstructure of Li and Yb co-doped ZnO has been studied by SEM and EDX, and our results suggest that a reaction (or diffusion) zone is very likely to exist between LiYbO2 and ZnO. Such diffusion regions may be responsible for the enhanced infrared emission in the Yb and Li co-doped ZnO. Furthermore, to help us study the diffusion zone under TEM in future, the radiation damage on synthesized LiYbO2 has been studied at first, and then the electronic structure of the synthesized LiYbO2 is compared with Yb2O 3 experimentally and theoretically, by EELS and FEFF8 respectively.

  8. Ultrafast vibrational spectroscopy (2D-IR) of CO{sub 2} in ionic liquids: Carbon capture from carbon dioxide’s point of view

    SciTech Connect

    Brinzer, Thomas; Berquist, Eric J.; Ren, Zhe; Dutta, Samrat; Johnson, Clinton A.; Krisher, Cullen S.; Lambrecht, Daniel S.; Garrett-Roe, Sean

    2015-06-07

    The CO{sub 2}ν{sub 3} asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO{sub 2} is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C{sub 4}C{sub 1}im][X], where [X]{sup −} is the anion from the series hexafluorophosphate (PF{sub 6}{sup −}), tetrafluoroborate (BF{sub 4}{sup −}), bis-(trifluoromethyl)sulfonylimide (Tf{sub 2}N{sup −}), triflate (TfO{sup −}), trifluoroacetate (TFA{sup −}), dicyanamide (DCA{sup −}), and thiocyanate (SCN{sup −})). In the ionic liquids studied, the ν{sub 3} center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO{sub 2} and from CO{sub 2} to the cation. The charge transfer drives geometrical distortion of CO{sub 2}, which in turn changes the ν{sub 3} frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν{sub 2} and ν{sub 3} normal modes of CO{sub 2}. Thermal fluctuations in the ν{sub 2} population stochastically modulate the ν{sub 3} frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO{sub 2}. The results suggest that the picosecond dynamics of CO{sub 2} are gated by local diffusion of anions and cations.

  9. Ultrafast vibrational spectroscopy (2D-IR) of CO2 in ionic liquids: Carbon capture from carbon dioxide's point of view

    NASA Astrophysics Data System (ADS)

    Brinzer, Thomas; Berquist, Eric J.; Ren, Zhe; Dutta, Samrat; Johnson, Clinton A.; Krisher, Cullen S.; Lambrecht, Daniel S.; Garrett-Roe, Sean

    2015-06-01

    The CO2ν3 asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO2 is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C4C1im][X], where [X]- is the anion from the series hexafluorophosphate (PF 6- ), tetrafluoroborate (BF 4- ), bis-(trifluoromethyl)sulfonylimide (Tf2N-), triflate (TfO-), trifluoroacetate (TFA-), dicyanamide (DCA-), and thiocyanate (SCN-)). In the ionic liquids studied, the ν3 center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO2 and from CO2 to the cation. The charge transfer drives geometrical distortion of CO2, which in turn changes the ν3 frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν2 and ν3 normal modes of CO2. Thermal fluctuations in the ν2 population stochastically modulate the ν3 frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO2. The results suggest that the picosecond dynamics of CO2 are gated by local diffusion of anions and cations.

  10. Structural determination of prunusins A and B, new C-alkylated flavonoids from Prunus domestica, by 1D and 2D NMR spectroscopy.

    PubMed

    Mahmood, Azhar; Fatima, Itrat; Kosar, Shaheen; Ahmed, Rehana; Malik, Abdul

    2010-02-01

    Prunusins A (1) and B (2), the new C-alkylated flavonoids, have been isolated from the seed kernels of Prunus domestica. Their structures were assigned from (1)H and (13)C nuclear magnetic resonating spectra, DEPT and by correlation spectroscopy, HMQC and HMBC experiments. 3, 5, 7, 4'-Tetrahydroxyflavone (3) and 3, 5, 7-trihydroxy-8, 4'-dimethoxyflavone (4) have also been reported from this species. Both compounds (1) and (2) showed significant antifungal activity against pathogenic fungus Trichophyton simmi.

  11. An Auger electron spectroscopy study of surface-preparation contaminants

    NASA Technical Reports Server (NTRS)

    Wu, D.; Stephens, R. M.; Outlaw, R. A.; Hopson, P.

    1990-01-01

    There are many cleaning techniques that are presently being employed for surface preparation of materials that are subsequently exposed to ultrahigh vacuum (UHV). Unfortunately, there are virtually no comparative measurements which establish the residual contaminant level of each method. In this report, eleven different cleaning methods, ranging from only detergent cleaning to electrochemical polishing, were applied to identical samples of 347 stainless steel. Two surface conditions, a standard machined surface and a mechanically polished surface, were studied. Auger electron spectroscopy (AES) within a UHV environment was then used to detect the types of contaminants and the magnitudes found on the sample surfaces. It was found that the electrochemical polishing gave the least contaminated surface of all metals studied and that mechanically polished surfaces were significantly cleaner than the as-machined surfaces for any given cleaning method. Furthermore, it was also found that the residual contaminations left by methanol, ethanol, isopropyl alcohol, acetone, and freon finishing rinses are almost the same.

  12. Moessbauer spectroscopy and scanning electron microscopy of the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Brown, Christopher L.; Oliver, Frederick W.; Hammond, Ernest C., Jr.

    1989-01-01

    Meteorites provide a wealth of information about the solar system's formation, since they have similar building blocks as the Earth's crust but have been virtually unaltered since their formation. Some stony meteorites contain minerals and silicate inclusions, called chondrules, in the matrix. Utilizing Moessbauer spectroscopy, we identified minerals in the Murchison meteorite, a carbonaceous chondritic meteorite, by the gamma ray resonance lines observed. Absorption patterns of the spectra were found due to the minerals olivine and phyllosilicate. We used a scanning electron microscope to describe the structure of the chondrules in the Murchison meteorite. The chondrules were found to be deformed due to weathering of the meteorite. Diameters varied in size from 0.2 to 0.5 mm. Further enhancement of the microscopic imagery using a digital image processor was used to describe the physical characteristics of the inclusions.

  13. Tracking conformational dynamics of polypeptides by nonlinear electronic spectroscopy of aromatic residues: a first-principles simulation study.

    PubMed

    Nenov, Artur; Beccara, Silvio; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco

    2014-10-20

    The ability of nonlinear electronic spectroscopy to track folding/unfolding processes of proteins in solution by monitoring aromatic interactions is investigated by first-principles simulations of two-dimensional (2D) electronic spectra of a model peptide. A dominant reaction pathway approach is employed to determine the unfolding pathway of a tetrapeptide, which connects the initial folded configuration with stacked aromatic side chains and the final unfolded state with distant noninteracting aromatic residues. The π-stacking and excitonic coupling effects are included through ab initio simulations based on multiconfigurational methods within a hybrid quantum mechanics/molecular mechanics scheme. It is shown that linear absorption spectroscopy in the ultraviolet (UV) region is unable to resolve the unstacking dynamics characterized by the three-step process: T-shaped→twisted offset stacking→unstacking. Conversely, pump-probe spectroscopy can be used to resolve aromatic interactions by probing in the visible region, the excited-state absorptions (ESAs) that involve charge-transfer states. 2D UV spectroscopy offers the highest sensitivity to the unfolding process, by providing the disentanglement of ESA signals belonging to different aromatic chromophores and high correlation between the conformational dynamics and the quartic splitting.

  14. A Laser Absorption Spectroscopy System for 2D Mapping of CO2 Over Large Spatial Areas for Monitoring, Reporting and Verification of Ground Carbon Storage Sites

    NASA Astrophysics Data System (ADS)

    Dobler, J. T.; Braun, M.; Blume, N.; McGregor, D.; Zaccheo, T. S.; Pernini, T.; Botos, C.

    2014-12-01

    We will present the development of the Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE). GreenLITE consists of two laser based transceivers and a number of retro-reflectors to measure differential transmission (DT) of a number of overlapping chords in a plane over the site being monitored. The transceivers use the Intensity Modulated Continuous Wave (IM-CW) approach, which is a technique that allows simultaneous transmission/reception of multiple fixed wavelength lasers and a lock-in, or matched filter, to measure amplitude and phase of the different wavelengths in the digital domain. The technique was developed by Exelis and has been evaluated using an airborne demonstrator for the past 10 years by NASA Langley Research Center. The method has demonstrated high accuracy and high precision measurements as compared to an in situ monitor tracable to WMO standards, agreeing to 0.65 ppm +/-1.7 ppm. The GreenLITE system is coupled to a cloud-based data storage and processing system that takes the measured chord data, along with auxiliary data to retrieve an average CO2 concentration per chord and which combines the chords to provide an estimate of the spatial distribution of CO2 concentration in the plane. A web-based interface allows users to view real-time CO2 concentrations and 2D concentration maps of the area being monitored. The 2D maps can be differenced as a function of time for an estimate of the flux across the plane measured by the system. The system is designed to operate autonomously from semi-remote locations with a very low maintenance cycle. Initial instrument tests, conducted in June, showed signal to noise in the measured ratio of >3000 for 10 s averages. Additional local field testing and a quantifiable field testing at the Zero Emissions Research and Technology (ZERT) site in Bozeman, MT are planned for this fall. We will present details on the instrument and software tools that have been developed, along with results from the local

  15. Stochastic stimulated electronic x-ray Raman spectroscopy.

    PubMed

    Kimberg, Victor; Rohringer, Nina

    2016-05-01

    Resonant inelastic x-ray scattering (RIXS) is a well-established tool for studying electronic, nuclear, and collective dynamics of excited atoms, molecules, and solids. An extension of this powerful method to a time-resolved probe technique at x-ray free electron lasers (XFELs) to ultimately unravel ultrafast chemical and structural changes on a femtosecond time scale is often challenging, due to the small signal rate in conventional implementations at XFELs that rely on the usage of a monochromator setup to select a small frequency band of the broadband, spectrally incoherent XFEL radiation. Here, we suggest an alternative approach, based on stochastic spectroscopy, which uses the full bandwidth of the incoming XFEL pulses. Our proposed method is relying on stimulated resonant inelastic x-ray scattering, where in addition to a pump pulse that resonantly excites the system a probe pulse on a specific electronic inelastic transition is provided, which serves as a seed in the stimulated scattering process. The limited spectral coherence of the XFEL radiation defines the energy resolution in this process and stimulated RIXS spectra of high resolution can be obtained by covariance analysis of the transmitted spectra. We present a detailed feasibility study and predict signal strengths for realistic XFEL parameters for the CO molecule resonantly pumped at the [Formula: see text] transition. Our theoretical model describes the evolution of the spectral and temporal characteristics of the transmitted x-ray radiation, by solving the equation of motion for the electronic and vibrational degrees of freedom of the system self consistently with the propagation by Maxwell equations. PMID:26958585

  16. Stochastic stimulated electronic x-ray Raman spectroscopy

    PubMed Central

    Kimberg, Victor; Rohringer, Nina

    2016-01-01

    Resonant inelastic x-ray scattering (RIXS) is a well-established tool for studying electronic, nuclear, and collective dynamics of excited atoms, molecules, and solids. An extension of this powerful method to a time-resolved probe technique at x-ray free electron lasers (XFELs) to ultimately unravel ultrafast chemical and structural changes on a femtosecond time scale is often challenging, due to the small signal rate in conventional implementations at XFELs that rely on the usage of a monochromator setup to select a small frequency band of the broadband, spectrally incoherent XFEL radiation. Here, we suggest an alternative approach, based on stochastic spectroscopy, which uses the full bandwidth of the incoming XFEL pulses. Our proposed method is relying on stimulated resonant inelastic x-ray scattering, where in addition to a pump pulse that resonantly excites the system a probe pulse on a specific electronic inelastic transition is provided, which serves as a seed in the stimulated scattering process. The limited spectral coherence of the XFEL radiation defines the energy resolution in this process and stimulated RIXS spectra of high resolution can be obtained by covariance analysis of the transmitted spectra. We present a detailed feasibility study and predict signal strengths for realistic XFEL parameters for the CO molecule resonantly pumped at the O1s→π* transition. Our theoretical model describes the evolution of the spectral and temporal characteristics of the transmitted x-ray radiation, by solving the equation of motion for the electronic and vibrational degrees of freedom of the system self consistently with the propagation by Maxwell equations. PMID:26958585

  17. Femtosecond Hydrogen Bond Dynamics of Bulk-like and Bound Water at Positively and Negatively Charged Lipid Interfaces Revealed by 2D HD-VSFG Spectroscopy.

    PubMed

    Singh, Prashant Chandra; Inoue, Ken-Ichi; Nihonyanagi, Satoshi; Yamaguchi, Shoichi; Tahara, Tahei

    2016-08-26

    Interfacial water in the vicinity of lipids plays an important role in many biological processes, such as drug delivery, ion transportation, and lipid fusion. Hence, molecular-level elucidation of the properties of water at lipid interfaces is of the utmost importance. We report the two-dimensional heterodyne-detected vibrational sum frequency generation (2D HD-VSFG) study of the OH stretch of HOD at charged lipid interfaces, which shows that the hydrogen bond dynamics of interfacial water differ drastically, depending on the lipids. The data indicate that the spectral diffusion of the OH stretch at a positively charged lipid interface is dominated by the ultrafast (<∼100 fs) component, followed by the minor sub-picosecond slow dynamics, while the dynamics at a negatively charged lipid interface exhibit sub-picosecond dynamics almost exclusively, implying that fast hydrogen bond fluctuation is prohibited. These results reveal that the ultrafast hydrogen bond dynamics at the positively charged lipid-water interface are attributable to the bulk-like property of interfacial water, whereas the slow dynamics at the negatively charged lipid interface are due to bound water, which is hydrogen-bonded to the hydrophilic head group. PMID:27482947

  18. FAST TRACK COMMUNICATION: Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques

    NASA Astrophysics Data System (ADS)

    Voggu, Rakesh; Das, Barun; Sekhar Rout, Chandra; Rao, C. N. R.

    2008-11-01

    The effects of the interaction of few-layer graphene with electron donor and acceptor molecules have been investigated by employing Raman spectroscopy, and the results compared with those from electrochemical doping. The G-band softens progressively with increasing concentration of tetrathiafulvalene (TTF) which is an electron donor, while the band stiffens with increasing concentration of tetracyanoethylene (TCNE) which is an electron acceptor. Interaction with both TTF and TCNE broadens the G-band. Hole and electron doping by electrochemical means, however, stiffen and sharpen the G-band. The 2D-band position is also affected by interaction with TTF and TCNE. More importantly, the intensity of the 2D-band decreases markedly with the concentration of either. The ratio of intensities of the 2D-band and G-band decreases with an increase in TTF or TCNE concentration, and provides a means for carrier titration in the charge transfer system. Unlike the intensity of the 2D-band, that of the D-band increases on interaction with TTF or TCNE. All of these effects occur due to molecular charge transfer, also evidenced by the occurrence of charge transfer bands in the electronic absorption spectra. The electrical resistivity of graphene varies in opposite directions on interaction with TTF and TCNE, the resistivity depending on the concentration of either compound.

  19. Pulsed electron paramagnetic resonance spectroscopy powered by a free-electron laser.

    PubMed

    Takahashi, S; Brunel, L-C; Edwards, D T; van Tol, J; Ramian, G; Han, S; Sherwin, M S

    2012-09-20

    Electron paramagnetic resonance (EPR) spectroscopy interrogates unpaired electron spins in solids and liquids to reveal local structure and dynamics; for example, EPR has elucidated parts of the structure of protein complexes that other techniques in structural biology have not been able to reveal. EPR can also probe the interplay of light and electricity in organic solar cells and light-emitting diodes, and the origin of decoherence in condensed matter, which is of fundamental importance to the development of quantum information processors. Like nuclear magnetic resonance, EPR spectroscopy becomes more powerful at high magnetic fields and frequencies, and with excitation by coherent pulses rather than continuous waves. However, the difficulty of generating sequences of powerful pulses at frequencies above 100 gigahertz has, until now, confined high-power pulsed EPR to magnetic fields of 3.5 teslas and below. Here we demonstrate that one-kilowatt pulses from a free-electron laser can power a pulsed EPR spectrometer at 240 gigahertz (8.5 teslas), providing transformative enhancements over the alternative, a state-of-the-art ∼30-milliwatt solid-state source. Our spectrometer can rotate spin-1/2 electrons through π/2 in only 6 nanoseconds (compared to 300 nanoseconds with the solid-state source). Fourier-transform EPR on nitrogen impurities in diamond demonstrates excitation and detection of EPR lines separated by about 200 megahertz. We measured decoherence times as short as 63 nanoseconds, in a frozen solution of nitroxide free-radicals at temperatures as high as 190 kelvin. Both free-electron lasers and the quasi-optical technology developed for the spectrometer are scalable to frequencies well in excess of one terahertz, opening the way to high-power pulsed EPR spectroscopy up to the highest static magnetic fields currently available. PMID:22996555

  20. Pulsed electron paramagnetic resonance spectroscopy powered by a free-electron laser.

    PubMed

    Takahashi, S; Brunel, L-C; Edwards, D T; van Tol, J; Ramian, G; Han, S; Sherwin, M S

    2012-09-20

    Electron paramagnetic resonance (EPR) spectroscopy interrogates unpaired electron spins in solids and liquids to reveal local structure and dynamics; for example, EPR has elucidated parts of the structure of protein complexes that other techniques in structural biology have not been able to reveal. EPR can also probe the interplay of light and electricity in organic solar cells and light-emitting diodes, and the origin of decoherence in condensed matter, which is of fundamental importance to the development of quantum information processors. Like nuclear magnetic resonance, EPR spectroscopy becomes more powerful at high magnetic fields and frequencies, and with excitation by coherent pulses rather than continuous waves. However, the difficulty of generating sequences of powerful pulses at frequencies above 100 gigahertz has, until now, confined high-power pulsed EPR to magnetic fields of 3.5 teslas and below. Here we demonstrate that one-kilowatt pulses from a free-electron laser can power a pulsed EPR spectrometer at 240 gigahertz (8.5 teslas), providing transformative enhancements over the alternative, a state-of-the-art ∼30-milliwatt solid-state source. Our spectrometer can rotate spin-1/2 electrons through π/2 in only 6 nanoseconds (compared to 300 nanoseconds with the solid-state source). Fourier-transform EPR on nitrogen impurities in diamond demonstrates excitation and detection of EPR lines separated by about 200 megahertz. We measured decoherence times as short as 63 nanoseconds, in a frozen solution of nitroxide free-radicals at temperatures as high as 190 kelvin. Both free-electron lasers and the quasi-optical technology developed for the spectrometer are scalable to frequencies well in excess of one terahertz, opening the way to high-power pulsed EPR spectroscopy up to the highest static magnetic fields currently available.

  1. Electronic spectroscopy of carbon chains and rings of astrophysical interest.

    PubMed

    Rice, C A; Maier, J P

    2013-07-11

    This perspective is concerned with laboratory measurements of the electronic spectra of carbon chains, rings, and their ions, including derivatives terminated by hydrogen and nitrogen atoms. The selected-species have relevance to astronomical observations through diffuse clouds, absorption features known as diffuse interstellar bands (DIBs). Two indications to decide which molecules should be studied are the observations of polar carbon chains in dense clouds by rotational spectroscopy and the knowledge that a certain number of these have electronic transitions in the DIB region. This information has been obtained initially by measurements of the electronic absorptions in 6 K neon matrixes using mass-selection. This was followed by the gas-phase observations using cavity ringdown and resonance enhanced techniques in combination with pulsed-supersonic discharge sources or via laser vaporization. The gas-phase spectra were then compared with DIB data, all with negative results, except for the detection of C3, but leading to upper limits of their column densities <10(12) cm–2. By reference to mm-wave absorption measurements in the diffuse medium, it is shown that, although species such as H2C3 are present there, the product of the expected column densities and oscillator strength of the transitions will lead to only very weak DIBs. The significant conclusion is that carbon chains and their derivatives containing hydrogen or nitrogen comprising up to a dozen atoms cannot be responsible for stronger DIBs. However, chains with an odd-number of carbon atoms, C17, C19, ···, have very intense transitions in the region above 4400 Å and remain attractive candidates. An uncertainty is the excited electronic state lifetime; if this is less than 70 fs, then the resulting absorptions would be too broad to be astronomically relevant. The electronic absorptions of some of the species studied bear a striking resemblance to DIB data. The two peaked rotational contour of the

  2. Effects of Pauli, Rashba and Dresselhaus spin-orbit interactions on electronic states in 2D circular hydrogenic anti-dot

    NASA Astrophysics Data System (ADS)

    Abuali, Z.; Golshan, M. M.; Davatolhagh, S.

    2016-09-01

    The present work is concerned with a report on the effects of Pauli, Rashba and Dresselhaus spin-orbit interactions (SOI) on the energy levels of a 2D circular hydrogenic quantum anti-dot(QAD). To pursue this aim, we first present a brief review on the analytical solutions to the Schrödinger equation of electronic states in a quantum anti-dot when a hydrogenic donor is placed at the center, revealing the degeneracies involved in the ground, first and second excited states. We then proceed by adding the aforementioned spin-orbit interactions to the Hamiltonian and treat them as perturbation, thereby, calculating the energy shifts to the first three states. As we show, the Rashba spin-orbit interaction gives rise to a shift in the energies of the ground and second excited states, while it partially lifts the degeneracy of the first excited state. Our calculations also indicate that the Dresselhaus effect, while keeping the degeneracy of the ground and second excited states intact, removes the degeneracy of the first excited state in the opposite sense. The Pauli spin-orbit interaction, on the other hand, is diagonal in the appropriate bases, and thus its effect is readily calculated. The results show that degeneracy of ℓ = 0 (prevailing in the ground and second excited state) remains but the degeneracy of ℓ = 1 (prevailing in the first excited state) is again partially lifted. Moreover, we present the energy corrections due to the three spin-orbit interactions as functions of anti-dot's radius, Rashba and Dresselhaus strengths discussing how they affect the corresponding states. The material presented in the article conceives the possibility of generating spin currents in the hydrogenic circular anti-dots.

  3. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy - Part 1: Slant-columns and their ratios

    NASA Astrophysics Data System (ADS)

    Stremme, W.; Krueger, A.; Harig, R.; Grutter, M.

    2012-02-01

    The composition and emission rates of volcanic gas plumes provide insight of the geologic internal activity, atmospheric chemistry, aerosol formation and radiative processes around it. Observations are necessary for public security and the aviation industry. Ground-based thermal emission infrared spectroscopy, which uses the radiation of the volcanic gas itself, allows for continuously monitoring during day and night from a safe distance. We present measurements on Popocatépetl volcano based on thermal emission spectroscopy during different campaigns between 2006-2009 using a Scanning Infrared Gas Imaging System (SIGIS). The experimental set-up, measurement geometries and analytical algorithms are described. The equipment was operated from a safe distance of 12 km from the volcano at two different spectral resolutions: 0.5 and 4 cm-1. The 2-dimensional scanning capability of the instrument allows for an on-line visualization of the volcanic SO2 plume and its animation. SiF4 was also identified in the infrared spectra recorded at both resolutions. The SiF4/SO2 molecular ratio can be calculated from each image and used as a highly useful parameter to follow changes in volcanic activity. A small Vulcanian eruption was monitored during the night of 16 to 17 November 2008 and strong ash emission together with a pronounced SO2 cloud was registered around 01:00 a.m. LST (Local Standard Time). Enhanced SiF4/SO2 ratios were observed before and after the eruption. A validation of the results from thermal emission measurements with those from absorption spectra of the moon taken at the same time, as well as an error analysis, are presented. The inferred propagation speed from sequential images is used in a subsequent paper (Part 2) to calculate the emission rates at different distances from the crater.

  4. Electronic structure and electron energy-loss spectroscopy of ZrO2 zirconia

    NASA Astrophysics Data System (ADS)

    Dash, L. K.; Vast, Nathalie; Baranek, Philippe; Cheynet, Marie-Claude; Reining, Lucia

    2004-12-01

    The atomic and electronic structures of zirconia are calculated within density functional theory, and their evolution is analyzed as the crystal-field symmetry changes from tetrahedral [cubic (c-ZrO2) and tetragonal (t-ZrO2) phases] to octahedral (hypothetical rutile ZrO2 ), to a mixing of these symmetries (monoclinic phase, m-ZrO2 ). We find that the theoretical bulk modulus in c-ZrO2 is 30% larger than the experimental value, showing that the introduction of yttria in zirconia has a significant effect. Electronic structure fingerprints which characterize each phase from their electronic spectra are identified. We have carried out electron energy-loss spectroscopy experiments at low momentum transfer and compared these results to the theoretical spectra calculated within the random phase approximation. We show a dependence of the valence and 4p ( N2,3 edge) plasmons on the crystal structure, the dependence of the latter being brought into the spectra by local-field effects. Last, we attribute low energy excitations observed in EELS of m-ZrO2 to defect states 2eV above the top of the intrinsic valence band, and the EELS fundamental band gap value is reconciled with the 5.2 or 5.8eV gaps determined by vacuum ultraviolet spectroscopy.

  5. Hydrogen bonding induced distortion of CO3 units and kinetic stabilization of amorphous calcium carbonate: results from 2D (13)C NMR spectroscopy.

    PubMed

    Sen, Sabyasachi; Kaseman, Derrick C; Colas, Bruno; Jacob, Dorrit E; Clark, Simon M

    2016-07-27

    Systematic correlation in alkaline-earth carbonate compounds between the deviation of the CO3 units from the perfect D3h symmetry and their (13)C nuclear magnetic resonance (NMR) chemical shift anisotropy (CSA) parameters is established. The (13)C NMR CSA parameters of amorphous calcium carbonate (ACC) are measured using two-dimensional (13)C phase adjusted spinning sidebands (PASS) NMR spectroscopy and are analyzed on the basis of this correlation. The results indicate a distortion of the CO3 units in ACC in the form of an in-plane displacement of the C atom away from the centroid of the O3 triangle, resulting from hydrogen bonding with the surrounding H2O molecules, without significant out-of-plane displacement. Similar distortion for all C atoms in the structure of ACC suggests a uniform spatial disposition of H2O molecules around the CO3 units forming a hydrogen-bonded amorphous network. This amorphous network is stabilized against crystallization by steric frustration, while additives such as Mg presumably provide further stabilization by increasing the energy of dehydration. PMID:27276013

  6. Structural studies of an arabinan from the stems of Ephedra sinica by methylation analysis and 1D and 2D NMR spectroscopy.

    PubMed

    Xia, Yong-Gang; Liang, Jun; Yang, Bing-You; Wang, Qiu-Hong; Kuang, Hai-Xue

    2015-05-01

    Plant arabinan has important biological activity. In this study, a water-soluble arabinan (Mw∼6.15kDa) isolated from the stems of Ephedra sinica was found to consist of (1→5)-Araƒ, (1→3,5)-Araƒ, T-Araƒ, (1→3)-Araƒ and (1→2,5)-Araƒ residues at proportions of 10:2:3:2:1. A tentative structure was proposed by methylation analysis, nuclear magnetic resonance (NMR) spectroscopy ((1)H NMR, (13)C NMR, DEPT-135, (1)H-(1)H COSY, HSQC, HMBC and ROESY) and literature. The structure proposed includes a branched (1→5)-α-Araf backbone where branching occurs at the O-2 and O-3 positions of the residues with 7.7% and 15.4% of the 1,5-linked α-Araf substituted at the O-2 and O-3 positions. The presence of a branched structure was further observed by atomic force microscopy. This polymer was characterized as having a much longer linear (1→5)-α-Araf backbone as a repeating unit. In particular, the presence of α-Araf→3)-α-Araf-(1→3)-α-Araf-(1→ attached at the O-2 is a new finding. This study may facilitate a deeper understanding of structure-activity relationships of biological polysaccharides from the stems of E. sinica.

  7. Growth of 2D black phosphorus film from chemical vapor deposition.

    PubMed

    Smith, Joshua B; Hagaman, Daniel; Ji, Hai-Feng

    2016-05-27

    Phosphorene, a novel 2D material isolated from bulk black phosphorus (BP), is an intrinsic p-type material with a variable bandgap for a variety of applications. However, these applications are limited by the inability to isolate large films of phosphorene. Here we present an in situ chemical vapor deposition type approach that demonstrates progress towards growth of large area 2D BP with average areas >3 μm2 and thicknesses representing samples around four layers and thicker samples with average areas >100 μm2. Transmission electron microscopy and Raman spectroscopy have confirmed successful growth of 2D BP from red phosphorus. PMID:27087456

  8. Growth of 2D black phosphorus film from chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Smith, Joshua B.; Hagaman, Daniel; Ji, Hai-Feng

    2016-05-01

    Phosphorene, a novel 2D material isolated from bulk black phosphorus (BP), is an intrinsic p-type material with a variable bandgap for a variety of applications. However, these applications are limited by the inability to isolate large films of phosphorene. Here we present an in situ chemical vapor deposition type approach that demonstrates progress towards growth of large area 2D BP with average areas >3 μm2 and thicknesses representing samples around four layers and thicker samples with average areas >100 μm2. Transmission electron microscopy and Raman spectroscopy have confirmed successful growth of 2D BP from red phosphorus.

  9. Theory of Auger-electron and appearance-potential spectroscopy for interacting valence-band electrons

    NASA Astrophysics Data System (ADS)

    Nolting, W.; Geipel, G.; Ertl, K.

    1991-12-01

    A theory of Auger-electron spectroscopy (AES) and appearance-potential spectroscopy (APS) is presented for interacting electrons in a nondegenerate energy band, described within the framework of the Hubbard model. Both types of spectroscopy are based on the same two-particle spectral density. A diagrammatic vertex-correction method (Matsubara formalism) is used to express this function in terms of the one-particle spectral density. The latter is approximately determined for arbitrary temperature T, arbitrary coupling strength U/W (U, the intra-atomic Coulomb matrix element; W, the width of the ``free'' Bloch band), and arbitrary band occupations n (0<=n<=2 average number of band electrons per site) by a self-consistent moment method. In weakly coupled systems the electron correlations give rise to certain deformations of the quasiparticle density of states (QDOS) in relation to the Bloch density of states (BDOS), where, however, spontaneous magnetic order is excluded, irrespective of the band filling n. The AE (AP) spectra consist of only one structure a few eV wide (``bandlike'') which is strongly n dependent, but only slightly T dependent, being rather well approximated by a simple self-convolution of the occupied (unoccupied) QDOS. For strongly correlated electrons the Bloch band splits into two quasiparticle subbands. This leads for n<1 to one line in the AE spectrum and three lines in the AP spectrum, and vice versa for n>1. For sufficiently strong correlations U/W additional satellites appear that refer to situations where the two excited quasiparticles (quasiholes) propagate as tightly bound pairs through the lattice without being scattered by other charge carriers. As soon as the satellite splits off from the bandlike part of the spectrum, it takes almost the full spectral weight, conveying the impression of an ``atomiclike'' AE (AP) line shape. The satellite has almost exactly the structure of the free BDOS. If the particle density n as well as the hole

  10. Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Mishra, P.; Lohani, H.; Kundu, A. K.; Patel, R.; Solanki, G. K.; Menon, Krishnakumar S. R.; Sekhar, B. R.

    2015-07-01

    The valence band electronic structure of GeSe single crystals has been investigated using angle resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy. The experimentally observed bands from ARPES, match qualitatively with our LDA-based band structure calculations along the Γ-Z, Γ-Y and Γ-T symmetry directions. The valence band maximum occurs nearly midway along the Γ-Z direction, at a binding energy of -0.5 eV, substantiating the indirect band gap of GeSe. Non-dispersive features associated with surface states and indirect transitions have been observed. The difference in hybridization of Se and Ge 4p orbitals leads to the variation of dispersion along the three symmetry directions. The predominance of the Se 4pz orbitals, evidenced from theoretical calculations, may be the cause for highly dispersive bands along the Γ-T direction. Detailed electronic structure analysis reveals the significance of the cation-anion 4p orbitals hybridization in the valence band dispersion of IV-VI semiconductors. This is the first comprehensive report of the electronic structure of a GeSe single crystal using ARPES in conjugation with theoretical band structure analysis.

  11. Communication: Uncovering correlated vibrational cooling and electron transfer dynamics with multidimensional spectroscopy

    NASA Astrophysics Data System (ADS)

    Guo, Zhenkun; Giokas, Paul G.; Cheshire, Thomas P.; Williams, Olivia F.; Dirkes, David J.; You, Wei; Moran, Andrew M.

    2016-09-01

    Analogues of 2D photon echo methods in which two population times are sampled have recently been used to expose heterogeneity in chemical kinetics. In this work, the two population times sampled for a transition metal complex are transformed into a 2D rate spectrum using the maximum entropy method. The 2D rate spectrum suggests heterogeneity in the vibrational cooling (VC) rate within the ensemble. In addition, a cross peak associated with VC and back electron transfer (BET) dynamics reveals correlation between the two processes. We hypothesize that an increase in the strength of solute-solvent interactions, which accelerates VC, drives the system toward the activationless regime of BET.

  12. Communication: Uncovering correlated vibrational cooling and electron transfer dynamics with multidimensional spectroscopy.

    PubMed

    Guo, Zhenkun; Giokas, Paul G; Cheshire, Thomas P; Williams, Olivia F; Dirkes, David J; You, Wei; Moran, Andrew M

    2016-09-14

    Analogues of 2D photon echo methods in which two population times are sampled have recently been used to expose heterogeneity in chemical kinetics. In this work, the two population times sampled for a transition metal complex are transformed into a 2D rate spectrum using the maximum entropy method. The 2D rate spectrum suggests heterogeneity in the vibrational cooling (VC) rate within the ensemble. In addition, a cross peak associated with VC and back electron transfer (BET) dynamics reveals correlation between the two processes. We hypothesize that an increase in the strength of solute-solvent interactions, which accelerates VC, drives the system toward the activationless regime of BET. PMID:27634244

  13. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  14. Compact design for two-dimensional electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Zheng; Wang, Peng; Shen, Xiong; Yan, Tian-Min; Zhang, Yizhu; Liu, Jun

    2016-03-01

    We present a passively phase-stabilized two-dimensional electronic spectroscopy (2DES) with a compact size, and the ease of implementation and maintenance. Our design relies on a mask beam-splitter with four holes to form non-collinear box geometry, and a homebuilt stacked retroreflector, which introduces the phase-locked pulse sequence, remedying the instability of commonly used translation stages. The minimized size of the setup suppresses the influences of optical path-length fluctuations during measurements, improving the phase stability and precise timing of pulse sequences. In our 2DES, only few conventional optical components are used, which make this sophisticated instrumentation convenient to establish and particularly easy to conduct alignment. In data analysis, the self-referencing spectral interferometry (SRSI) method is first introduced to extract the complex-valued signal from spectral interferometry in 2DES. The alternative algorithm achieves the improvement of the signal-to-noise ratio (SNR) and considerable reduction of data acquisition time. The new setup is suitable over a tunable range of spectroscopic wavelength, from ultraviolet (UV) to the near-infrared (NIR) regime, and for ultra-broadband bandwidth, few-cycle laser pulses.

  15. 2003 Electronic Spectroscopy and Dynamics - July 6-11, 2003

    SciTech Connect

    Elliot Bernstein

    2004-09-10

    The Gordon Research Conference (GRC) on 2003 Electronic Spectroscopy and Dynamics - July 6-11, 2003 was held at Bates College, Lewiston, Maine, July 6-11, 2003. The Conference was well-attended with 103 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, ''free time'' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.

  16. Solution structure of the 45-residue MgATP-binding peptide of adenylate kinase as examined by 2-D NMR, FTIR, and CD spectroscopy.

    PubMed

    Fry, D C; Byler, D M; Susi, H; Brown, E M; Kuby, S A; Mildvan, A S

    1988-05-17

    The structure of a synthetic peptide corresponding to residues 1-45 of rabbit muscle adenylate kinase has been studied in aqueous solution by two-dimensional NMR, FTIR, and CD spectroscopy. This peptide, which binds MgATP and is believed to represent most of the MgATP-binding site of the enzyme [Fry, D.C., Kuby, S.A., & Mildvan, A.S. (1985) Biochemistry 24, 4680-4694], appears to maintain a conformation similar to that of residues 1-45 in the X-ray structure of intact porcine adenylate kinase [Sachsenheimer, W., & Schulz, G.E. (1977) J. Mol. Biol. 114, 23-26], with 42% of the residues of the peptide showing NOEs indicative of phi and psi angles corresponding to those found in the protein. The NMR studies suggest that the peptide is composed of two helical regions of residues 4-7 and 23-29, and three stretches of beta-strand at residues 8-15, 30-32, and 35-40, yielding an overall secondary structure consisting of 24% alpha-helix, 38% beta-structure, and 38% aperiodic. Although the resolution-enhanced amide I band of the peptide FTIR spectrum is broad and rather featureless, possibly due to disorder, it can be fit by using methods developed on well-characterized globular proteins. On this basis, the peptide consists of 35 +/- 10% beta-structure, 60 +/- 12% turns and aperiodic structure, and not more than 10% alpha-helix. The CD spectrum is best fit by assuming the presence of at most 13% alpha-helix in the peptide, 24 +/- 2% beta-structure, and 66 +/- 4% aperiodic. The inability of the high-frequency FTIR and CD methods to detect helices in the amount found by NMR may result from the short helical lengths as well as from static and dynamic disorder in the peptide. Upon binding of MgATP, numerous conformational changes in the backbone of the peptide are detected by NMR, with smaller alterations in the overall secondary structure as assessed by CD. Detailed assignments of resonances in the peptide spectrum and intermolecular NOEs between protons of bound MgATP and

  17. Precessed electron beam electron energy loss spectroscopy of graphene: Beyond channelling effects

    SciTech Connect

    Yedra, Ll.; Estradé, S.; Torruella, P.; Eljarrat, A.; Peiró, F.; Darbal, A. D.; Weiss, J. K.

    2014-08-04

    The effects of beam precession on the Electron Energy Loss Spectroscopy (EELS) signal of the carbon K edge in a 2 monolayer graphene sheet are studied. In a previous work, we demonstrated the use of precession to compensate for the channeling-induced reduction of EELS signal when in zone axis. In the case of graphene, no enhancement of EELS signal is found in the usual experimental conditions, as graphene is not thick enough to present channeling effects. Interestingly, though it is found that precession makes it possible to increase the collection angle, and, thus, the overall signal, without a loss of signal-to-background ratio.

  18. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser-Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations.

    PubMed

    Najbauer, Eszter E; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2015-08-20

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, six conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-life of (3.7 ± 0.5) × 10(3) s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser-induced conversions revealed that the excitation of the stretching overtone of both the side chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations. PMID:26201050

  19. Threshold photoelectron spectroscopy of the methyl radical isotopomers, CH3, CH2D, CHD2 and CD3: synergy between VUV synchrotron radiation experiments and explicitly correlated coupled cluster calculations.

    PubMed

    Cunha de Miranda, Bárbara K; Alcaraz, Christian; Elhanine, Mohamed; Noller, Bastian; Hemberger, Patrick; Fischer, Ingo; Garcia, Gustavo A; Soldi-Lose, Héloïse; Gans, Bérenger; Mendes, Luiz A Vieira; Boyé-Péronne, Séverine; Douin, Stéphane; Zabka, Jan; Botschwina, Peter

    2010-04-15

    Threshold photoelectron spectra (TPES) of the isotopomers of the methyl radical (CH(3), CH(2)D, CHD(2), and CD(3)) have been recorded in the 9.5-10.5 eV VUV photon energy range using third generation synchrotron radiation to investigate the vibrational spectroscopy of the corresponding cations at a 7-11 meV resolution. A threshold photoelectron-photoion coincidence (TPEPICO) spectrometer based on velocity map imaging and Wiley-McLaren time-of-flight has been used to simultaneously record the TPES of several radical species produced in a Ar-seeded beam by dc flash-pyrolysis of nitromethane (CH(x)D(y)NO(2), x + y = 3). Vibrational bands belonging to the symmetric stretching and out-of-plane bending modes have been observed and P, Q, and R branches have been identified in the analysis of the rotational profiles. Vibrational configuration interaction (VCI), in conjunction with near-equilibrium potential energy surfaces calculated by the explicitly correlated coupled cluster method CCSD(T*)-F12a, is used to calculate vibrational frequencies for the four radical isotopomers and the corresponding cations. Agreement with data from high-resolution IR spectroscopy is very good and a large number of predictions is made. In particular, the calculated wavenumbers for the out-of-plane bending vibrations, nu(2)(CH(3)(+)) = 1404 cm(-1), nu(4)(CH(2)D(+)) = 1308 cm(-1), nu(4)(CHD(2)(+)) = 1205 cm(-1), and nu(2)(CD(3)(+)) = 1090 cm(-1), should be accurate to ca. 2 cm(-1). Additionally, computed Franck-Condon factors are used to estimate the importance of autoionization relative to direct ionization. The chosen models globally account for the observed transitions, but in contrast to PES spectroscopy, evidence for rotational and vibrational autoionization is found. It is shown that state-selected methyl cations can be produced by TPEPICO spectroscopy for ion-molecule reaction studies, which are very important for the understanding of the planetary ionosphere chemistry. PMID:20218643

  20. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  1. Two-dimensional Penning ionization electron spectroscopy of open-shell metallocenes: outer valence ionic states of vanadocene and nickelocene.

    PubMed

    Kishimoto, Naoki; Kimura, Miku; Ohno, Koichi

    2013-04-11

    In order to investigate outer valence ionic states of open-shell metallocenes, we have applied two-dimensional collision-energy/electron-energy-resolved Penning ionization electron spectroscopy (2D-PIES) upon collision with metastable He*(2(3)S) excited atoms as well as a high level ab initio molecular orbital calculation (the partial third-order quasiparticle theory of the electron propagator (P3)) to ionization from neutral ground states of vanadocene ((4)A2g) and nickelocene ((3)A2g). Assignments of observed Penning ionization electron/He I ultraviolet photoelectron spectra were consistent with the P3 calculation results for ionization of α and β spin electrons except for electron correlation bands observed by PIES. Negative collision energy dependence of partial Penning ionization cross-sections (CEDPICS) indicate attractive interaction with He*(2(3)S) around the molecule. Results by model potential calculation utilizing Li(2(2)S) instead of He*(2(3)S) for interaction between He*(2(3)S) and open-shell metallocenes do not explain the strong negative CEDPICS of the bands observed in PIES.

  2. Two-dimensional electronic spectroscopy can fully characterize the population transfer in molecular systems

    NASA Astrophysics Data System (ADS)

    Dostál, Jakub; Benešová, Barbora; Brixner, Tobias

    2016-09-01

    Excitation energy transfer in complex systems often proceeds through series of intermediate states. One of the goals of time-resolved spectroscopy is to identify the spectral signatures of all of them in the acquired experimental data and to characterize the energy transfer scheme between them. It is well known that in the case of transient absorption spectra such decomposition is ambiguous even if many simplifying considerations are taken. In contrast to transient absorption, absorptive 2D spectra intuitively resemble population transfer matrices. Therefore, it seems possible to decompose the 2D spectra unambiguously. Here we show that all necessary information is encoded in the combination of absorptive 2D and linear absorption spectra. We set up a simple model describing a broad class of absorptive 2D spectra and prove analytically that they can be inverted uniquely towards physical parameters fully determining the species-associated spectra of individual constituents together with all connecting intrinsic rate constants. Due to the matrix formulation of the model, it is suitable for fast computer calculation necessary to efficiently perform the inversion numerically by fitting the combination of experimental 2D and absorption spectra. Moreover, the model allows for decomposition of the 2D spectrum into its stimulated emission, ground-state bleach, and excited-state absorption components almost unambiguously. The numerical procedure is illustrated exemplarily.

  3. Diffusive and inelastic scattering in ballistic-electron-emission spectroscopy and ballistic-electron-emission microscopy

    SciTech Connect

    Lee, E.Y.; Turner, B.R.; Schowalter, L.J.

    1993-07-01

    Ballistic-electron-emission microscopy (BEEM) of Au/Si(001) n type was done to study whether elastic scattering in the Au overlayer is dominant. It was found that there is no dependence of the BEEM current on the relative gradient of the Au surface with respect to the Si interface, and this demonstrates that significant elastic scattering must occur in the Au overlayer. Ballistic-electron-emission spectroscopy (BEES) was also done, and, rather than using the conventional direct-current BEES, alternating-current (ac) BEES was done on Au/Si and also on Au/PtSi/Si(001) n type. The technique of ac BEES was found to give linear threshold for the Schottky barrier, and it also clearly showed the onset of electron-hole pair creation and other inelastic scattering events. The study of device quality PtSi in Au/PtSi/Si(001) yielded an attenuation length of 4 nm for electrons of energy 1 eV above the PtSi Fermi energy. 20 refs., 5 figs.

  4. Disentangling Peptide Configurations via Two-Dimensional Electronic Spectroscopy: Ab Initio Simulations Beyond the Frenkel Exciton Hamiltonian.

    PubMed

    Nenov, Artur; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco

    2014-02-20

    Two-dimensional (2D) optical spectroscopy techniques based on ultrashort laser pulses have been recently extended to the optical domain in the ultraviolet (UV) spectral region. UV-active aromatic side chains can thus be used as local highly specific markers for tracking dynamics and structural rearrangements of proteins. Here we demonstrate that 2D electronic spectra of a model proteic system, a tetrapeptide with two aromatic side chains, contain enough structural information to distinguish between two different configurations with distant and vicinal side chains. For accurate simulations of the 2DUV spectra in solution, we combine a quantum mechanics/molecular mechanics approach based on wave function methods, accounting for interchromophores coupling and environmental effects, with nonlinear response theory. The proposed methodology reveals effects, such as charge transfer between vicinal aromatic residues that remain concealed in conventional exciton Hamiltonian approaches. Possible experimental setups are discussed, including multicolor experiments and signal manipulation techniques for limiting undesired background contributions and enhancing 2DUV signatures of specific electronic couplings.

  5. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  6. Towards 2D nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sook; Yu, Changqian; Hayes, Robert; Granick, Steve

    2015-03-01

    Polymer vesicles (``polymersomes'') are an intriguing class of soft materials, commonly used to encapsulate small molecules or particles. Here we reveal they can also effectively incorporate nanoparticles inside their polymer membrane, leading to novel ``2D nanocomposites.'' The embedded nanoparticles alter the capacity of the polymersomes to bend and to stretch upon external stimuli.

  7. Low-loss electron energy loss spectroscopy: An atomic-resolution complement to optical spectroscopies and application to graphene

    SciTech Connect

    Kapetanakis, Myron; Zhou, Wu; Oxley, Mark P.; Lee, Jaekwang; Prange, Micah P.; Pennycook, Stephen J.; Idrobo Tapia, Juan Carlos; Pantelides, Sokrates T.

    2015-09-25

    Photon-based spectroscopies have played a central role in exploring the electronic properties of crystalline solids and thin films. They are a powerful tool for probing the electronic properties of nanostructures, but they are limited by lack of spatial resolution. On the other hand, electron-based spectroscopies, e.g., electron energy loss spectroscopy (EELS), are now capable of subangstrom spatial resolution. Core-loss EELS, a spatially resolved analog of x-ray absorption, has been used extensively in the study of inhomogeneous complex systems. In this paper, we demonstrate that low-loss EELS in an aberration-corrected scanning transmission electron microscope, which probes low-energy excitations, combined with a theoretical framework for simulating and analyzing the spectra, is a powerful tool to probe low-energy electron excitations with atomic-scale resolution. The theoretical component of the method combines density functional theory–based calculations of the excitations with dynamical scattering theory for the electron beam. We apply the method to monolayer graphene in order to demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly periodic structure. The method is a complement to optical spectroscopy as it probes transitions entailing momentum transfer. The theoretical analysis identifies the spatial and orbital origins of excitations, holding the promise of ultimately becoming a powerful probe of the structure and electronic properties of individual point and extended defects in both crystals and inhomogeneous complex nanostructures. The method can be extended to probe magnetic and vibrational properties with atomic resolution.

  8. Low-loss electron energy loss spectroscopy: An atomic-resolution complement to optical spectroscopies and application to graphene

    DOE PAGES

    Kapetanakis, Myron; Zhou, Wu; Oxley, Mark P.; Lee, Jaekwang; Prange, Micah P.; Pennycook, Stephen J.; Idrobo Tapia, Juan Carlos; Pantelides, Sokrates T.

    2015-09-25

    Photon-based spectroscopies have played a central role in exploring the electronic properties of crystalline solids and thin films. They are a powerful tool for probing the electronic properties of nanostructures, but they are limited by lack of spatial resolution. On the other hand, electron-based spectroscopies, e.g., electron energy loss spectroscopy (EELS), are now capable of subangstrom spatial resolution. Core-loss EELS, a spatially resolved analog of x-ray absorption, has been used extensively in the study of inhomogeneous complex systems. In this paper, we demonstrate that low-loss EELS in an aberration-corrected scanning transmission electron microscope, which probes low-energy excitations, combined with amore » theoretical framework for simulating and analyzing the spectra, is a powerful tool to probe low-energy electron excitations with atomic-scale resolution. The theoretical component of the method combines density functional theory–based calculations of the excitations with dynamical scattering theory for the electron beam. We apply the method to monolayer graphene in order to demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly periodic structure. The method is a complement to optical spectroscopy as it probes transitions entailing momentum transfer. The theoretical analysis identifies the spatial and orbital origins of excitations, holding the promise of ultimately becoming a powerful probe of the structure and electronic properties of individual point and extended defects in both crystals and inhomogeneous complex nanostructures. The method can be extended to probe magnetic and vibrational properties with atomic resolution.« less

  9. Reflection electron energy-loss spectroscopy and imaging for surface studies in transmission electron microscopes.

    PubMed

    Wang, Z L; Bentley, J

    1992-02-15

    A review is given on the techniques and applications of high-energy reflection electron energy-loss spectroscopy (REELS) and reflection electron microscopy (REM) for surface studies in scanning transmission electron microscopes (STEM) and conventional transmission electron microscopes (TEM). A diffraction method is introduced to identify a surface orientation in the geometry of REM. The surface dielectric response theory is presented and applied for studying alpha-alumina surfaces. Domains of the alpha-alumina (012) surface initially terminated with oxygen can be reduced by an intense electron beam to produce Al metal; the resistance to beam damage of surface domains initially terminated with Al+3 ions is attributed to the screening effect of adsorbed oxygen. Surface energy-loss near-edge structure (ELNES), extended energy-loss fine structure (EXELFS), and microanalysis using REELS are illustrated based on the studies of TiO2 and MgO. Effects of surface resonances (or channeling) on the REELS signal-to-background ratio are described. The REELS detection of a monolayer of oxygen adsorption on diamond (111) surfaces is reported. It is shown that phase contrast REM image content can be significantly increased with the use of a field emission gun (FEG). Phase contrast effects close to the core of a screw dislocation are discussed and the associated Fresnel fringes around a surface step are observed. Finally, an in situ REM experiment is described for studying atomic desorption and diffusion processes on alpha-alumina surfaces at temperatures of 1,300-1,400 degrees C.

  10. Inelastic Electron Tunneling Spectroscopy in Molecular Electronic Devices from First-Principles

    NASA Astrophysics Data System (ADS)

    Ji, Tao

    In this thesis, we present the first-principle calculations of inelastic electron tunneling spectroscopy(IETS) in single molecular break junctions. In a two-probe electrode-molecule-electrode setup, density functional theory(DFT) is used for the construction of the Hamiltonian and the Keldysh non-equilibrium Green's function(NEGF) technique will be employed for determining the electron density in non-equilibrium system conditions. Total energy functional, atomic forces and Hessian matrix can be obtained in the DFT-NEGF formalism and self-consistent Born approximation(SCBA) is used to integrate the molecular vibrations (phonons) into the framework once the phonon spectra and eigenvectors are calculated from the dynamic matrix. Geometry optimization schemes will also be discussed as an indispensable part of the formalism as the equilibrium condition is crucial to correctly calculate the phonon properties of the system. To overcome the numerical difficulties, especially the large computational time demand of the electron-phonon coupling problem, we develop a numerical approximation for the electron self-energy due to phonons and the error is controlled within numerical precision. Besides, a direct IETS second order I-V derivative expression is derived to reduce the error of numerical differentiation under reasonable assumptions. These two approximations greatly reduce the computation requirement and make the calculation feasible within current numerical capability. As the application of the DFT-NEGF-SCBA formalism, we calculate the IETS of the gold-octanedithiol(ODT) molecular junction. The I-V curve, conductance and IETS from ab-inito calculations are compared directly to experiments. A microscopic understanding of the electron-phonon coupling mechanism in the molecular tunneling junctions is explained in this example. In addition, comparisons of the hydrogen-dissociative and hydrogen-non-dissociative ODT junctions as well as the different charge transfer behaviors

  11. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations.

    PubMed

    Ferreira da Silva, F; Lange, E; Limão-Vieira, P; Jones, N C; Hoffmann, S V; Hubin-Franskin, M-J; Delwiche, J; Brunger, M J; Neves, R F C; Lopes, M C A; de Oliveira, E M; da Costa, R F; Varella, M T do N; Bettega, M H F; Blanco, F; García, G; Lima, M A P; Jones, D B

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  12. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.; Neves, R. F. C.; Lopes, M. C. A.; de Oliveira, E. M.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Lima, M. A. P.; Jones, D. B.

    2015-10-01

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  13. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    SciTech Connect

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P. E-mail: michael.brunger@flinders.edu.au; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J. E-mail: michael.brunger@flinders.edu.au; and others

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  14. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations.

    PubMed

    Ferreira da Silva, F; Lange, E; Limão-Vieira, P; Jones, N C; Hoffmann, S V; Hubin-Franskin, M-J; Delwiche, J; Brunger, M J; Neves, R F C; Lopes, M C A; de Oliveira, E M; da Costa, R F; Varella, M T do N; Bettega, M H F; Blanco, F; García, G; Lima, M A P; Jones, D B

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range. PMID:26472380

  15. Two dimensional laser induced fluorescence spectroscopy: A powerful technique for elucidating rovibronic structure in electronic transitions of polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Gascooke, Jason R.; Alexander, Ula N.; Lawrance, Warren D.

    2011-05-01

    We demonstrate the power of high resolution, two dimensional laser induced fluorescence (2D-LIF) spectroscopy for observing rovibronic transitions of polyatomic molecules. The technique involves scanning a tunable laser over absorption features in the electronic spectrum while monitoring a segment, in our case 100 cm-1 wide, of the dispersed fluorescence spectrum. 2D-LIF images separate features that overlap in the usual laser induced fluorescence spectrum. The technique is illustrated by application to the S1-S0 transition in fluorobenzene. Images of room temperature samples show that overlap of rotational contours by sequence band structure is minimized with 2D-LIF allowing a much larger range of rotational transitions to be observed and high precision rotational constants to be extracted. A significant advantage of 2D-LIF imaging is that the rotational contours separate into their constituent branches and these can be targeted to determine the three rotational constants individually. The rotational constants determined are an order of magnitude more precise than those extracted from the analysis of the rotational contour and we find the previously determined values to be in error by as much as 5% [G. H. Kirby, Mol. Phys. 19, 289 (1970), 10.1080/00268977000101291]. Comparison with earlier ab initio calculations of the S0 and S1 geometries [I. Pugliesi, N. M. Tonge, and M. C. R. Cockett, J. Chem. Phys. 129, 104303 (2008), 10.1063/1.2970092] reveals that the CCSD/6-311G** and RI-CC2/def2-TZVPP levels of theory predict the rotational constants, and hence geometries, with comparable accuracy. Two ground state Fermi resonances were identified by the distinctive patterns that such resonances produce in the images. 2D-LIF imaging is demonstrated to be a sensitive method capable of detecting weak spectral features, particularly those that are otherwise hidden beneath stronger bands. The sensitivity is demonstrated by observation of the three isotopomers of fluorobenzene

  16. Practical spatial resolution of electron energy loss spectroscopy in aberration corrected scanning transmission electron microscopy.

    PubMed

    Shah, A B; Ramasse, Q M; Wen, J G; Bhattacharya, A; Zuo, J M

    2011-08-01

    The resolution of electron energy loss spectroscopy (EELS) is limited by delocalization of inelastic electron scattering rather than probe size in an aberration corrected scanning transmission electron microscope (STEM). In this study, we present an experimental quantification of EELS spatial resolution using chemically modulated 2×(LaMnO(3))/2×(SrTiO(3)) and 2×(SrVO(3))/2×(SrTiO(3)) superlattices by measuring the full width at half maxima (FWHM) of integrated Ti M(2,3), Ti L(2,3), V L(2,3), Mn L(2,3), La N(4,5), La N(2,3) La M(4,5) and Sr L(3) edges over the superlattices. The EELS signals recorded using large collection angles are peaked at atomic columns. The FWHM of the EELS profile, obtained by curve-fitting, reveals a systematic trend with the energy loss for the Ti, V, and Mn edges. However, the experimental FWHM of the Sr and La edges deviates significantly from the observed experimental tendency.

  17. Electronic spectroscopy and electronic structure of the smallest metal clusters: the diatomic 3D transition metal aluminides

    NASA Astrophysics Data System (ADS)

    Behm, Jane M.; Morse, Michael D.

    1994-06-01

    A systematic study of the electronic spectroscopy, electronic structure, and chemical bonding has been initiated for the 3d series of diatomic transition metal aluminides. This report provides a review of the progress to date, with specific emphasis on AlCa, AlV, AlCr, AlMn, AlCo, AlNi, AlCu, and AlZn.

  18. Electron beam imaging and spectroscopy of plasmonic nanoantenna resonances

    NASA Astrophysics Data System (ADS)

    Vesseur, E. J. R.

    2011-07-01

    Nanoantennas are metal structures that provide strong optical coupling between a nanoscale volume and the far field. This coupling is mediated by surface plasmons, oscillations of the free electrons in the metal. Increasing the control over the resonant plasmonic field distribution opens up a wide range of applications of nanoantennas operating both in receiving and transmitting mode. This thesis presents how the dispersion and confinement of surface plasmons in nanoantennas are resolved and further engineered. Fabrication of nanostructures is done using focused ion beam milling (FIB) in metallic surfaces. We demonstrate that patterning in single-crystal substrates allows us to precisely control the geometry in which plasmons are confined. The nanoscale properties of the resonant plasmonic fields are resolved using a new technique developed in this thesis: angle- and polarization controlled cathodoluminescence (CL) imaging spectroscopy. The use of a tightly focused electron beam allows us to probe the optical antenna properties with deep subwavelength resolution. We show using this technique that nanoantennas consisting of 500-1200 nm long polycrystalline Au nanowires support standing plasmon waves. We directly observe the plasmon wavelengths which we use to derive the dispersion relation of guided nanowire plasmons. A 590-nm-long ridge-shaped nanoantenna was fabricated using FIB milling on a single-crystal Au substrate, demonstrating a level of control over the fabrication impossible with polycrystalline metals. CL experiments show that the ridge supports multiple-order resonances. The confinement of surface plasmons to the ridge is confirmed by boundary-element-method (BEM) calculations. The resonant modes in plasmonic whispering gallery cavities consisting of a FIB-fabricated circular groove are resolved. We find an excellent agreement between boundary element method calculations and the measured CL emission from the ring-shaped cavities. The calculations show

  19. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  20. Electronic properties of Mn-phthalocyanine–C{sub 60} bulk heterojunctions: Combining photoemission and electron energy-loss spectroscopy

    SciTech Connect

    Roth, Friedrich; Lupulescu, Cosmin; Darlatt, Erik; Gottwald, Alexander; Eberhardt, Wolfgang

    2015-11-14

    The electronic properties of co-evaporated mixtures (blends) of manganese phthalocyanine and the fullerene C{sub 60} (MnPc:C{sub 60}) have been studied as a function of the concentration of the two constituents using two supplementary electron spectroscopic methods, photoemission spectroscopy (PES) and electron energy-loss spectroscopy (EELS) in transmission. Our PES measurements provide a detailed picture of the electronic structure measured with different excitation energies as well as different mixing ratios between MnPc and C{sub 60}. Besides a relative energy shift, the occupied electronic states of the two materials remain essentially unchanged. The observed energy level alignment is different compared to that of the related CuPc:C{sub 60} bulk heterojunction. Moreover, the results from our EELS investigations show that, despite the rather small interface interaction, the MnPc related electronic excitation spectrum changes significantly by admixing C{sub 60} to MnPc thin films.

  1. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    SciTech Connect

    Zhou, X.J.

    2010-04-30

    In addition to the record high superconducting transition temperature (T{sub c}), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T{sub c}, and anomalous normal state properties above T{sub c}. In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T{sub c}. As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T{sub c} superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not

  2. The electron spectroscopy for chemical analysis microscopy beamline data acquisition system at ELETTRA

    NASA Astrophysics Data System (ADS)

    Gariazzo, C.; Krempaska, R.; Morrison, G. R.

    1996-07-01

    The electron spectroscopy for chemical analysis (ESCA) microscopy data acquisition system enables the user to control the imaging and spectroscopy modes of operation of the beamline ESCA microscopy at ELETTRA. It allows the user to integrate all experiment, beamline and machine operations in one single environment. The system also provides simple data analysis for both spectra and images data to guide further data acquisition.

  3. Development of a multifunctional surface analysis system based on a nanometer scale scanning electron beam: Combination of ultrahigh vacuum-scanning electron microscopy, scanning reflection electron microscopy, Auger electron spectroscopy, and x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Watanabe, Heiji; Ichikawa, Masakazu

    1996-12-01

    We have developed a multifunctional surface analysis system based on a scanning electron beam for nanofabrication and characterization of surface reactions for fabrication processes. The system performs scanning electron microscopy (SEM), scanning reflection electron microscopy (SREM), Auger electron spectroscopy (AES), and x-ray photoelectron spectroscopy. Nanometer scale resolution is obtained for ultrahigh vacuum (UHV)-SEM while the mechanical pumping instruments are operated. Single atomic steps on Si(111) surfaces are observed through SREM. Surface sensitive AES measurement is achieved with SREM geometry; this has a great advantage for investigating atomic step related surface reactions. High spatial resolution AES analysis is also achieved by using a nanometer scale probe beam. Auger electron signals from a hundred Ag atoms on a Si(111) surface are successfully detected with high sensitivity.

  4. Applications of infrared free electron lasers in picosecond and nonlinear spectroscopy

    NASA Astrophysics Data System (ADS)

    Fann, W. S.; Benson, S. V.; Madey, J. M. J.; Etemad, S.; Baker, G. L.; Rothberg, L.; Roberson, M.; Austin, R. H.

    1990-10-01

    In this paper we describe two different types of spectroscopic experiments that exploit the characteristics of the infrared FEL, Mark III, for studies of condensed matter: - the spectrum of χ(3)(-3ω; ω, ω, ω) in polyacetylene: an application of the free electron laser in nonlinear optical spectroscopy, and - a dynamical test of Davydov-like solitons in acetanilide using a picosecond free electron laser. These two studies highlight the unique contributions FELs can make to condensed-matter spectroscopy.

  5. A deterministic solver for the transport of the AlGaN/GaN 2D electron gas including hot-phonon and degeneracy effects

    SciTech Connect

    Galler, M. . E-mail: galler@itp.tu-graz.ac.at; Schuerrer, F. . E-mail: schuerrer@itp.tu-graz.ac.at

    2005-12-10

    The transport of the two-dimensional electron gas formed at an AlGaN/GaN heterostructure in the presence of strain polarization fields is investigated. For this purpose, we develop a deterministic multigroup model to the Boltzmann transport equations. The envelope wave functions for the confined electrons are calculated using a self-consistent Poisson-Schroedinger solver. The electron gas degeneracy and hot phonons are included in our transport equations. Numerical results are given for the dependence of macroscopic quantities on the electric field strength and on time and for the electron and phonon distribution functions. We compare our results to those of Monte Carlo simulations and with experiments.

  6. Magnetic dynamics studied by high-resolution electron spectroscopy and time-resolved electron microscopy

    NASA Astrophysics Data System (ADS)

    Jayaraman, Rajeswari

    emergence and switching between domains with different lattice orientations, and the temporal fluctuation of these domains is filmed. These observations pave the way to the control of a large 2D array of skyrmions.

  7. Time- and angle-resolved photoemission spectroscopy of hydrated electrons near a liquid water surface.

    PubMed

    Yamamoto, Yo-ichi; Suzuki, Yoshi-Ichi; Tomasello, Gaia; Horio, Takuya; Karashima, Shutaro; Mitríc, Roland; Suzuki, Toshinori

    2014-05-01

    We present time- and angle-resolved photoemission spectroscopy of trapped electrons near liquid surfaces. Photoemission from the ground state of a hydrated electron at 260 nm is found to be isotropic, while anisotropic photoemission is observed for the excited states of 1,4-diazabicyclo[2,2,2]octane and I- in aqueous solutions. Our results indicate that surface and subsurface species create hydrated electrons in the bulk side. No signature of a surface-bound electron has been observed.

  8. Time- and Angle-Resolved Photoemission Spectroscopy of Hydrated Electrons Near a Liquid Water Surface

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yo-ichi; Suzuki, Yoshi-Ichi; Tomasello, Gaia; Horio, Takuya; Karashima, Shutaro; Mitríc, Roland; Suzuki, Toshinori

    2014-05-01

    We present time- and angle-resolved photoemission spectroscopy of trapped electrons near liquid surfaces. Photoemission from the ground state of a hydrated electron at 260 nm is found to be isotropic, while anisotropic photoemission is observed for the excited states of 1,4-diazabicyclo[2,2,2]octane and I- in aqueous solutions. Our results indicate that surface and subsurface species create hydrated electrons in the bulk side. No signature of a surface-bound electron has been observed.

  9. Electronic and optical properties of selected polymers studied by reflection electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Tahir, Dahlang; Tougaard, Sven

    2012-03-01

    We have determined the electronic and optical properties of six polymers: Polymethyl-methacrylate (PMMA), polyethylene (PE), polyvinyl chloride (PVC), polyester (PET), polypyrrole (PPY), and polyamide (PA6) for energy losses from 0 to 70 eV by analysis of reflection electron energy-loss spectroscopy (REELS) spectra. We found that the surface was easily damaged by the incident electron beam, in particular for energies above 500 eV. The damage results in new peaks in the bandgap region and the polymers become metallic. Great care was exerted to determine experimental conditions under which these effects are minimized. The REELS spectra were corrected for multiple inelastically scattered electrons with the QUASES-XS-REELS software to determine the effective inelastic-scattering cross sections. From these cross sections, we found that the band gaps for PMMA, PE, PVC, PET, PPY, and PA6 are 5.0 eV, 7.5 eV, 7.0 eV, 3.0 eV, 3.5 eV, and 5.1 eV, respectively. Quantitative analysis of the experimental cross sections was carried out by using the QUEELS-ɛ(k,ω)-REELS software to determine the dielectric function and optical properties. This is done by comparing the experimental REELS inelastic electron-scattering cross-section with a simulated cross section in which the only input is Im(-1/ɛ). The dielectric function is expressed as a sum of oscillators and the oscillator parameters are determined. Good agreement between the experimental and theoretical cross section is achieved for all polymers. From Im(-1/ɛ), the real and imaginary parts of ɛ (ω), the refractive index, and the extinction coefficient were determined for all polymers in the energy range ћω = 0 to 70 eV. An oscillator is clearly observed for PPY, PET, and PA6 at ˜ 6.7 eV, which corresponds to the π plasmon. This oscillator is not found for PMMA, PE, and PVC. A set of oscillators in the 20-30 eV energy range corresponding to the σ+π plasmon is found for all polymers.

  10. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  11. Evaluation of super-resolution performance of the K2 electron-counting camera using 2D crystals of aquaporin-0.

    PubMed

    Chiu, Po-Lin; Li, Xueming; Li, Zongli; Beckett, Brian; Brilot, Axel F; Grigorieff, Nikolaus; Agard, David A; Cheng, Yifan; Walz, Thomas

    2015-11-01

    The K2 Summit camera was initially the only commercially available direct electron detection camera that was optimized for high-speed counting of primary electrons and was also the only one that implemented centroiding so that the resolution of the camera can be extended beyond the Nyquist limit set by the physical pixel size. In this study, we used well-characterized two-dimensional crystals of the membrane protein aquaporin-0 to characterize the performance of the camera below and beyond the physical Nyquist limit and to measure the influence of electron dose rate on image amplitudes and phases.

  12. Preparation of cultured cells using high-pressure freezing and freeze substitution for subsequent 2D or 3D visualization in the transmission electron microscope.

    PubMed

    Hawes, Philippa C

    2015-01-01

    Transmission electron microscopy (TEM) is an invaluable technique used for imaging the ultrastructure of samples and it is particularly useful when determining virus-host interactions at a cellular level. The environment inside a TEM is not favorable for biological material (high vacuum and high energy electrons). Also biological samples have little or no intrinsic electron contrast, and rarely do they naturally exist in very thin sheets, as is required for optimum resolution in the TEM. To prepare these samples for imaging in the TEM therefore requires extensive processing which can alter the ultrastructure of the material. Here we describe a method which aims to minimize preparation artifacts by freezing the samples at high pressure to instantaneously preserve ultrastructural detail, then rapidly substituting the ice and infiltrating with resin to provide a firm matrix which can be cut into thin sections for imaging. Thicker sections of this material can also be imaged and reconstructed into 3D volumes using electron tomography.

  13. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  14. Electron spectroscopy for chemical analysis (ESCA) study of aluminum-containing atmospheric particles

    SciTech Connect

    Dillard, J.G.; Seals, R.D.; Wightman, J.P.

    1980-01-01

    Electron spectroscopy and scanning electron microscopy have been utilized for the analysis of aluminum-laden particulates. Collection and analysis of samples are described. Samples were collected during a rocket launch at the NASA Kennedy Space Center. Analysis reveals that at least three chemically different types of aluminum are present in the samples. (3 graphs, 5 photos, 35 references, 2 tables)

  15. X-ray spectroscopy of highly-ionized atoms in an electron beam ion trap (EBIT)

    SciTech Connect

    Marrs, R.E.; Bennett, C.; Chen, M.H.; Cowan, T.; Dietrich, D.; Henderson, J.R.; Knapp, D.A.; Levine, M.A.; Schneider, M.B.; Scofield, J.H.

    1988-01-01

    An Electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged-ions (q /le/ 70+) for x-ray spectroscopy measurements. Recent measurements of dielectronic recombination, electron impact excitation and transition energies are presented. 15 refs., 12 figs., 1 tab.

  16. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950

  17. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations.

  18. Unusual dimensionality effects and surface charge density in 2D Mg(OH)2

    PubMed Central

    Suslu, Aslihan; Wu, Kedi; Sahin, Hasan; Chen, Bin; Yang, Sijie; Cai, Hui; Aoki, Toshihiro; Horzum, Seyda; Kang, Jun; Peeters, Francois M.; Tongay, Sefaattin

    2016-01-01

    We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics. PMID:26846617

  19. Unusual dimensionality effects and surface charge density in 2D Mg(OH)2

    NASA Astrophysics Data System (ADS)

    Suslu, Aslihan; Wu, Kedi; Sahin, Hasan; Chen, Bin; Yang, Sijie; Cai, Hui; Aoki, Toshihiro; Horzum, Seyda; Kang, Jun; Peeters, Francois M.; Tongay, Sefaattin

    2016-02-01

    We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics.

  20. The Electron-Phonon Interaction as Studied by Photoelectron Spectroscopy

    SciTech Connect

    D.W. Lynch

    2004-09-30

    With recent advances in energy and angle resolution, the effects of electron-phonon interactions are manifest in many valence-band photoelectron spectra (PES) for states near the Fermi level in metals.

  1. Gas Phase Electronic Spectroscopy of 5-FLUOROSALICYLIC Acid.

    NASA Astrophysics Data System (ADS)

    Young, Justin W.; Fleisher, Adam J.; Pratt, David W.

    2010-06-01

    Methyl salicylate and its derivatives have generated large amounts of interest due to the possibility of intramolecular proton transfer in their electronically excited states (ESPT). Here, the excited state dynamics of 5-fluorosalicylic acid and its dimer will be discussed within the context of their vibrationally and rotationally resolved electronic spectra. Stark effect studies of the latter permit identification of specific conformers of 5FSA. However, some species exhibit broadened spectra, whereas others do not, suggesting a species-specific ESPT reaction. thanks

  2. Orientation-dependent C-60 electronic structures revealed byphotoemission spectroscopy

    SciTech Connect

    Brouet, V.; Yang, W.L.; Zhou, X.J.; Choi, H.J.; Louie, S.G.; Cohen, M.L.; Goldoni, A.; Parmigiani, F.; Hussain, Z.; Shen, Z.X.

    2008-01-17

    We observe, with angle-resolved photoemission, a dramaticchange in the electronic structure of two C60 monolayers, deposited,respectively, on Ag (111) and (100) substrates, and similarly doped withpotassium to half filling of the C60 lowest unoccupied molecular orbital.The Fermi surface symmetry, the bandwidth, and the curvature of thedispersion at gamma point are different. Orient ations of the C60molecules on the two substrates are known to be the main structuraldifference between the two monolayers, and we present new band-structurecalculations for some of these orientations. We conclude thatorientations play a key role in the electronic structure offullerides.

  3. Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy

    SciTech Connect

    Bizimana, Laurie A.; Brazard, Johanna; Carbery, William P.; Gellen, Tobias; Turner, Daniel B.

    2015-10-28

    Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.

  4. Electronic excited States of polynucleotides: a study by electroabsorption spectroscopy.

    PubMed

    Krawczyk, Stanislaw; Luchowski, Rafal

    2007-02-01

    Electroabsorption spectra were obtained for single-stranded polynucleotides poly(U), poly(C), poly(A), and poly(G) in glycerol/water glass at low temperature, and the differences in permanent dipole moment (Deltamu) and polarizability (Deltaalpha) were estimated for several spectral ranges covering the lowest energy absorption band around 260 nm. In each spectral range, the electrooptical parameters associated with apparent features in the absorption spectrum exhibit distinct values representing either a dominant single transition or the resultant value for a group of a relatively narrow cluster of overlapping transitions. The estimated spacing in energy between electronic origins of these transitions is larger than the electronic coupling within the Coulombic interaction model which is usually adopted in computational studies. The electroabsorption data allow us to distinguish a weak electronic transition associated with a wing in polynucleotide absorption spectra, at an energy below the electronic origin in absorption spectra of monomeric nucleobases. In poly(C) and poly(G), these low-energy transitions are related to increased values of Deltamu and Deltaalpha, possibly indicating a weak involvement of charge resonance in the respective excited states. A model capable of explaining the origin of low-energy excited states, based on the interaction of pipi* and npi* transitions in neighboring bases, is introduced and briefly discussed on the grounds of point dipole interaction. PMID:17266277

  5. Characteristics of auroral electron precipitation derived from optical spectroscopy

    SciTech Connect

    Rees, M. H.; Lummerzheim, D.

    1989-06-01

    Electron impact excitation of auroral spectral features in the visible and ultraviolet are computed by solving the complete electron transport equation. Excitation rates are given for several bands of N/sub 2/ (A /sup 3//Sigma/, B /sup 3//Pi/, W /sup 3//Delta/, a /sup 1//Pi/, C /sup 3//Pi/) and of N/sub 2//sup +/, for bands of O/sub 2/ (a /sup 1//Delta/, b /sup 1//Sigma/) and of O/sub 2//sup +/, and for several states of O (/sup 1/D, /sup 1/S, /sup 5/S, /sup 3/S) and of O/sup +/. The theoretical results are tested by comparing the predicted emission rate ratios N/sub 2/ 2PG(0,0)/N/sub 2//sup +/ 1NG(0,1) to ratios derived from photometer measurements of I(3371 A) and I(4278 A) that were acquired over many hours of observations from a high-flying aircraft. The observations spanned a wide range of auroral types that were ordered by their electron spectral hardness. The results show that the ratio I(3371 A)/I(4278 A) is a better indicator of the characteristic energy of the electron spectrum than the so-called ''red to blue'' ratio, I(6300 A)/I(4178 A), which has been used over the years. Results of observations of the I(3371 A)/I(4278 A) ratio acquired by rocket-borne photometers, by satellite borne photometers and by a spectrometer show poor agreement with the airborne experimental results and with the model predictions. Significant differences between the model results reported here and previously published predictions of this spectroscopic ratio are also noted. A relationship between the energy flux and the characteristic energy of electron precipitation, first reported by Eather and Mended (1972), is found to hold over a wide range of fluxes. /copyright/ American Geophysical Union 1989

  6. Glitter in a 2D monolayer.

    PubMed

    Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric

    2015-10-21

    We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.

  7. TOF Electron Energy Analyzer for Spin and Angular Resolved Photoemission Spectroscopy

    SciTech Connect

    Lebedev, Gennadi; Jozwiak, Chris; Andresen, Nord; Lanzara, Alessandra; Hussain, Zahid

    2008-07-09

    Current pulsed laser and synchrotron x-ray sources provide new opportunities for Time-Of- Flight (TOF) based photoemission spectroscopy to increase photoelectron energy resolution and efficiency compared to current standard techniques. The principals of photoelectron timing front formation, temporal aberration minimization, and optimization of electron beam transmission are presented. We have developed these concepts into a high resolution Electron Optical Scheme (EOS) of a TOF Electron Energy Analyzer (TOF-EEA) for photoemission spectroscopy. The EOS of the analyzer includes an electrostatic objective lens, three columns of transport lenses and a 90 degree energy band pass filter (BPF). The analyzer has two modes of operation: Spectrometer Mode (SM) with straight passage of electrons through the EOS undeflected by the BPF, allowing the entire spectrum to be measured, and Monochromator Mode (MM) in which the BPF defines a certain energy window inside the scope of the electron energy spectrum.

  8. TOF Electron Energy Analyzer for Spin and Angular Resolved Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lebedev, Gennadi; Jozwiak, Chris; Andresen, Nord; Hussain, Zahid; Lanzara, Alessandra

    2007-03-01

    Current pulsed laser and synchrotron x-ray sources provide new opportunities for Time-Of- Flight (TOF) based photoemission spectroscopy to increase photoelectron energy resolution and efficiency compared to current standard techniques. The principals of photoelectron timing front formation, temporal aberration minimization, and optimization of electron beam transmission are presented. We have developed these concepts into a high resolution a TOF Electron Energy Analyzer for photoemission spectroscopy. The electron optical scheme of the analyzer includes an electrostatic objective lens, three columns of transport lenses and a 90 degree energy band pass filter (BPF). High efficiency exchange scattering based spin polarimeter [1] is used for electron spin detection. The analyzer support two modes of operation: Spectrometer Mode allowing the entire spectrum to be measured, and Monochromator Mode in which the BPF passes a specified energy window inside the scope of the electron energy spectrum. [1] J. Graf, C. Jozwiak, A. K. Schmid, Z. Hussain, and A. Lanzara, Physical. Rev. B 71, 144429 (2005)

  9. Damage-free vibrational spectroscopy of biological materials in the electron microscope

    PubMed Central

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L.; Dellby, Niklas; Lovejoy, Tracy C.; Wolf, Sharon G.; Cohen, Hagai

    2016-01-01

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be ‘safely' investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope. PMID:26961578

  10. Microwave Reflection Spectroscopy of a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Liu, Ruiyuan; Du, Lingjie; Du, Rui-Rui; Pfeiffer, Loren; West, Ken

    Cyclotron resonance (CR) is a standard method to determine the carrier effective mass in two-dimensional electron systems, typically by measuring/analyzing the absorption or transmission signal. Here we report a microwave spectrometer utilizing the reflection signal. In our experiment setup based on a top-loading helium3 cryostat and a superconducting solenoid, the microwave (up to 40GHz) is sent down via a coax cable to the sample surface, and the reflection signal is then collected by the same cable and fed upward to a directional coupler, and being detected. We demonstrate the applicability of the spectrometer by measuring the CR of high-mobility electrons or holes in GaAs/AlGaAs quantum wells. The construction of spectrometer, preliminary data, and brief discussions will be presented. The work at Rice was supported by Welch Foundation Grant C-1682.

  11. Spectroscopy of Argon Excited in an Electron Beam Ion Trap

    SciTech Connect

    Trabert, E

    2005-04-18

    Argon is one of the gases best investigated and most widely used in plasma discharge devices for a multitude of applications that range from wavelength reference standards to controlled fusion experiments. Reviewing atomic physics and spectroscopic problems in various ionization stages of Ar, the past use and future options of employing an electron beam ion trap (EBIT) for better and more complete Ar data in the x-ray, EUV and visible spectral ranges are discussed.

  12. Electronic Structure and Spectroscopy of HBr and HBr^+

    NASA Astrophysics Data System (ADS)

    Vazquez, Gabriel J.; Liebermann, H. P.; Lefebvre-Brion, H.

    2016-06-01

    We report preliminary ab initio electronic structure calculations of HBr and HBr^+. The computations were carried out employing the MRD-CI package, with a basis set of cc-pVQZ quality augmented with s--, p-- and d--type diffuse functions. In a first series of calculations, without inclusion of spin--orbit splitting, potential energy curves of about 20 doublet and quartet electronic states of HBr^+, and about 30 singlet and triplet (valence and Rydberg) states of HBr were computed. This exploratory step provides a perspective of the character, shape, leading configurations, energetics, and asymptotic behaviour of the electronic states. The calculations taking into account spin-orbit are currently being performed. Our study focuses mainly on the Rydberg states and their interactions with the repulsive valence states and with the bound valence ion-pair state. In particular, the current calculations seek to provide information that might be relevant to the interpretation of recent REMPI measurements which involve the interaction between the diabatic E^1Σ^+ Rydberg state and the diabatic V^1Σ^+ ion--pair state (which together constitute the adiabatic, double-well, B^1Σ^+ state). Several new states of both HBr and HBr^+ are reported. D. Zaouris, A. Kartakoullis, P. Glodic, P. C. Samartzis, H. R. Hródmarsson, Á. Kvaran, Phys. Chem. Chem. Phys., 17, 10468 (2015)

  13. Imaging electron dynamics with time- and angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Popova-Gorelova, Daria; Küpper, Jochen; Santra, Robin

    2016-07-01

    We theoretically study how time- and angle-resolved photoemission spectroscopy can be applied for imaging coherent electron dynamics in molecules. We consider a process in which a pump pulse triggers coherent electronic dynamics in a molecule by creating a valence electron hole. An ultrashort extreme ultraviolet probe pulse creates a second electron hole in the molecule. Information about the electron dynamics is accessed by analyzing angular distributions of photoemission probabilities at a fixed photoelectron energy. We demonstrate that a rigorous theoretical analysis, which takes into account the indistinguishability of transitions induced by the ultrashort, broadband probe pulse and electron hole correlation effects, is necessary for the interpretation of time- and angle-resolved photoelectron spectra. We show how a Fourier analysis of time- and angle-resolved photoelectron spectra from a molecule can be applied to follow its electron dynamics by considering photoelectron distributions from an indole molecular cation with coherent electron dynamics.

  14. Auger electron spectroscopy, secondary ion mass spectroscopy and optical characterization of a-C-H and BN films

    NASA Technical Reports Server (NTRS)

    Pouch, J. J.; Alterovitz, S. A.; Warner, J. D.

    1986-01-01

    The amorphous dielectrics a-C:H and BN were deposited on III-V semiconductors. Optical band gaps as high as 3 eV were measured for a-C:H generated by C4H10 plasmas; a comparison was made with bad gaps obtained from films prepared by CH4 glow discharges. The ion beam deposited BN films exhibited amorphous behavior with band gaps on the order of 5 eV. Film compositions were studied by Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The optical properties were characterized by ellipsometry, UV/VIS absorption, and IR reflection and transmission. Etching rates of a-C:H subjected to O2 dicharges were determined.

  15. Electronic Spectroscopy of Carbon Chains of Astrophysical Relevance

    NASA Astrophysics Data System (ADS)

    Maier, John P.

    2011-06-01

    Electronic spectra of radicals and ions containing carbon chain skeleton are measured in the laboratory using a number of spectroscopic techniques. The species are selected because of their astrophysical relevance: possessing allowed electronic transitions in the optical range, where absorption measurements through diffuse interstellar clouds have been made. Initial survey spectra are obtained by observation of the absorption of mass-selected species in 6 K neon matrices. Examples of this are the detections of the electronic transitions of protonated coronene and C_7H_7+ isomers. This information is then used to search for the relevant transitions in the gas phase using a number of sensitive laser techniques. In the gas phase the species are produced at low temperatures, 20-80 K, using slit jet supersonic expansions through which a discharge runs. The absorptions are detected by cavity ring-down and degenerate four wave mixing methods; the latter approach providing certain advantages. Using a two color degenerate four wave approach both double resonance labeling of rotational levels and mapping of the ground state vibrational manifold is achieved, such as for C_4H, X ^2Σ^+. Using a combination of the above techniques the electronic transitions of H_2CCC could be identified in the gas phase and these match with two broad diffuse interstellar bands, implying the first identification of such a carrier. Electronic absorptions of mass-selected cations constrained in a 22-pole radio-frequency trap are measured. The vibrational and rotational degrees of freedom are equilibrated to around 20 K by collisions with cryogenically cooled helium. The transition of the ion is then detected by a two color excitation-dissociation scheme. Examples of this are polyacetylene cations, revealing that not only the lowest energy transitions but higher ones are of relevance to astronomical observations. The spectra are also without overlapping features of other species as is encountered

  16. Controlled Confinement of Half-metallic 2D Electron Gas in BaTiO3/Ba2FeReO6/BaTiO3 Heterostructures: A First-principles Study

    NASA Astrophysics Data System (ADS)

    Saha-Dasgupta, Tanusri; Baidya, Santu; Waghmare, Umesh; Paramekanti, Arun

    Using density functional theory calculations, we establish that the half-metallicity of bulk Ba2FeReO6 survives down i to 1 nm thickness in BaTiO3/Ba2FeReO6/BaTiO3 heterostructures grown along the (001) and (111) directions. The confinement of the two-dimensional (2D) electron gas in this quantum well structure arises from the suppressed hybridization between Re/Fe d states and unoccupied Ti d states, and it is further strengthened by polar fields for the (111) direction. This mechanism, distinct from the polar catastrophe, leads to an order of magnitude stronger confinement of the 2D electron gas than that at the LaAlO3/SrTiO3 interface. We further show low-energy bands of (111) heterostructure display nontrivial topological character. Our work opens up the possibility of realizing ultra-thin spintronic devices. Journal Ref: Phys. Rev. B 92, 161106(R) (2015) S.B. and T.S.D thank Department of Science and Technology, India for the support through Thematic Unit of Excellence. AP was supported by NSERC (Canada).

  17. Energy of the quasi-free electron in H{sub 2}, D{sub 2}, and O{sub 2}: Probing intermolecular potentials within the local Wigner-Seitz model

    SciTech Connect

    Evans, C. M. Krynski, Kamil; Streeter, Zachary; Findley, G. L.

    2015-12-14

    We present for the first time the quasi-free electron energy V{sub 0}(ρ) for H{sub 2}, D{sub 2}, and O{sub 2} from gas to liquid densities, on noncritical isotherms and on a near critical isotherm in each fluid. These data illustrate the ability of field enhanced photoemission (FEP) to determine V{sub 0}(ρ) accurately in strongly absorbing fluids (e.g., O{sub 2}) and fluids with extremely low critical temperatures (e.g., H{sub 2} and D{sub 2}). We also show that the isotropic local Wigner-Seitz model for V{sub 0}(ρ) — when coupled with thermodynamic data for the fluid — can yield optimized parameters for intermolecular potentials, as well as zero kinetic energy electron scattering lengths.

  18. Transient terahertz spectroscopy of excitons and unbound carriers in quasi two-dimensional electron-hole gases

    SciTech Connect

    Kaindl, Robert A.; Hagele, D.; Carnahan, M. A.; Chemla, D. S.

    2008-09-11

    We report a comprehensive experimental study and detailed model analysis of the terahertz (THz) dielectric response and density kinetics of excitons and unbound electron-hole pairs in GaAs quantum wells. A compact expression is given, in absolute units, for the complex-valued THz dielectric function of intra-excitonic transitions between the 1s and higher-energy exciton and continuum levels. It closely describes the THz spectra of resonantly generated excitons. Exciton ionization and formation are further explored, where the THz response exhibits both intra-excitonic and Drude features. Utilizing a two-component dielectric function, we derive the underlying exciton and unbound pair densities. In the ionized state, excellent agreement is found with the Saha thermodynamic equilibrium, which provides experimental verification of the two-component analysis and density scaling. During exciton formation, in turn, the pair kinetics is quantitatively described by a Saha equilibrium that follows the carrier cooling dynamics. The THz-derived kinetics is, moreover, consistent with time-resolved luminescence measured for comparison. Our study establishes a basis for tracking pair densities via transient THz spectroscopy of photoexcited quasi-2D electron-hole gases.

  19. Small-angle shubnikov-de haas measurements in a 2D electron system: the effect of a strong In-plane magnetic field

    PubMed

    Vitkalov; Zheng; Mertes; Sarachik; Klapwijk

    2000-09-01

    Measurements in magnetic fields applied at small angles relative to the electron plane in silicon MOSFETs indicate a factor of 2 increase of the frequency of Shubnikov-de Haas oscillations at H>H(sat). This signals the onset of full spin polarization above H(sat), the parallel field above which the resistivity saturates to a constant value. For H

  20. A quantum dynamical comparison of the electronic couplings derived from quantum electrodynamics and Förster theory: application to 2D molecular aggregates

    NASA Astrophysics Data System (ADS)

    Frost, James E.; Jones, Garth A.

    2014-11-01

    The objective of this study is to investigate under what circumstances Förster theory of electronic (resonance) energy transfer breaks down in molecular aggregates. This is achieved by simulating the dynamics of exciton diffusion, on the femtosecond timescale, in molecular aggregates using the Liouville-von Neumann equation of motion. Specifically the focus of this work is the investigation of both spatial and temporal deviations between exciton dynamics driven by electronic couplings calculated from Förster theory and those calculated from quantum electrodynamics. The quantum electrodynamics (QED) derived couplings contain medium- and far-zone terms that do not exist in Förster theory. The results of the simulations indicate that Förster coupling is valid when the dipole centres are within a few nanometres of one another. However, as the distance between the dipole centres increases from 2 nm to 10 nm, the intermediate- and far-zone coupling terms play non-negligible roles and Förster theory begins to break down. Interestingly, the simulations illustrate how contributions to the exciton dynamics from the intermediate- and far-zone coupling terms of QED are quickly washed-out by the near-zone mechanism of Förster theory for lattices comprising closely packed molecules. On the other hand, in the case of sparsely packed arrays, the exciton dynamics resulting from the different theories diverge within the 100 fs lifetime of the trajectories. These results could have implications for the application of spectroscopic ruler techniques as well as design principles relating to energy harvesting materials.

  1. Study of the Dielectric Function of Graphene from Spectroscopic Ellipsometry and Electron Energy Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nelson, Florence

    For more than 60 years, semiconductor research has been advancing up the periodic table. The first transistor was made from germanium. This later gave way to silicon-based devices due to the latter's ability to form an excellent interface with thermally-grown oxide. Now for the last ˜8 years, the focus has moved up one more row to carbon for post-CMOS devices in order to comply with the scaling limitations of Moore's law. However, for each of these, the measurements of film properties and dimensions have always been required for technological applications. These measurement methods often incorporate the use of light or electrons in order to take advantage of a wavelength that is on the order of, or smaller than, the feature sizes of interest. This thesis compares the dielectric function of graphene measured by an optical method to that obtained from an electron energy loss method in order to observe the effect of contamination and substrate on the optical properties of graphene exposed to the environment. Whether viewed in terms of how light affects a material (dielectric function) or how a material affects light (refractive index), the optical response is a quantity that may be used to obtain information about a film's thickness, energy structure, and the types of excitations that are responsible for energy loss. The three main experimental methods used in this thesis work are spectroscopic ellipsometry (SE), scanning transmission electron microscopy (STEM), and electron energy loss spectroscopy (EELS). SE is commonly used in clean-room environments for optical measurement over the energy range of ˜0-5 eV. This method is used to study graphene's dielectric function from the ultraviolet (UV) through infrared (IR) regions through use of an oscillator dispersion model. A nearly constant absorbance over the IR and into the visible region is observed due to vertical transitions between graphene's linearly dispersed pi-bands at the Dirac points. An exciton

  2. Strong electronic correlation effects in coherent multidimensional nonlinear optical spectroscopy.

    PubMed

    Karadimitriou, M E; Kavousanaki, E G; Dani, K M; Fromer, N A; Perakis, I E

    2011-05-12

    We discuss a many-body theory of the coherent ultrafast nonlinear optical response of systems with a strongly correlated electronic ground state that responds unadiabatically to photoexcitation. We introduce a truncation of quantum kinetic density matrix equations of motion that does not rely on an expansion in terms of the interactions and thus applies to strongly correlated systems. For this we expand in terms of the optical field, separate out contributions to the time-evolved many-body state due to correlated and uncorrelated multiple optical transitions, and use "Hubbard operator" density matrices to describe the exact dynamics of the individual contributions within a subspace of strongly coupled states, including "pure dephasing". Our purpose is to develop a quantum mechanical tool capable of exploring how, by coherently photoexciting selected modes, one can trigger nonlinear dynamics of strongly coupled degrees of freedom. Such dynamics could lead to photoinduced phase transitions. We apply our theory to the nonlinear response of a two-dimensional electron gas (2DEG) in a magnetic field. We coherently photoexcite the two lowest Landau level (LL) excitations using three time-delayed optical pulses. We identify some striking temporal and spectral features due to dynamical coupling of the two LLs facilitated by inter-Landau-level magnetoplasmon and magnetoroton excitations and compare to three-pulse four-wave-mixing (FWM) experiments. We show that these features depend sensitively on the dynamics of four-particle correlations between an electron-hole pair and a magnetoplasmon/magnetoroton, reminiscent of exciton-exciton correlations in undoped semiconductors. Our results shed light into unexplored coherent dynamics and relaxation of the quantum Hall system (QHS) and can provide new insight into non-equilibrium co-operative phenomena in strongly correlated systems.

  3. High-resolution α and electron spectroscopy of Cf24998

    NASA Astrophysics Data System (ADS)

    Ahmad, I.; Greene, J. P.; Kondev, F. G.; Zhu, S.

    2015-04-01

    α -particle spectra of 249Cf have been measured with a double-focusing magnetic spectrometer and with passivated implanted planar silicon (PIPS) detectors. The conversion-electron spectra of 249Cf have been measured with a cooled Si(Li) detector and with a room-temperature PIPS detector. Precise energies of α groups in the decay of 249Cf have been measured with respect to the known energy of 250Cf. In addition, α -electron, α -γ , and γ -γ coincidence measurements were also performed to determine the spin-parity of the previously known 643.64-keV level. From electron intensities, conversion coefficients of transitions in the daughter 245Cm have been determined. The measured L3 conversion coefficients of the 333.4- and 388.2-keV transitions are found to be in agreement with the theoretical conversion coefficients for pure E 1 multipolarity. On the other hand, the K ,L1+L2 ,M , and N conversion coefficients are approximately twice the theoretical values for pure E 1 transitions. These measurements indicate anomalous E 1 conversion coefficients for the 333.4- and 388.2-keV transitions, as has been pointed out in earlier measurements. The measured conversion coefficient of the 255.5-keV transition gives an M 1 multipolarity for this transition which establishes a spin-parity of 7/2- and the 7/2-[743 ] single-particle assignment to the 643.64-keV level.

  4. A Large-Area Transferable Wide Band Gap 2D Silicon Dioxide Layer.

    PubMed

    Büchner, Christin; Wang, Zhu-Jun; Burson, Kristen M; Willinger, Marc-Georg; Heyde, Markus; Schlögl, Robert; Freund, Hans-Joachim

    2016-08-23

    An atomically smooth silica bilayer is transferred from the growth substrate to a new support via mechanical exfoliation at millimeter scale. The atomic structure and morphology are maintained perfectly throughout the process. A simple heating treatment results in complete removal of the transfer medium. Low-energy electron diffraction, Auger electron spectroscopy, scanning tunneling microscopy, and environmental scanning electron microscopy show the success of the transfer steps. Excellent chemical and thermal stability result from the absence of dangling bonds in the film structure. By adding this wide band gap oxide to the toolbox of 2D materials, possibilities for van der Waals heterostructures will be broadened significantly.

  5. A Large-Area Transferable Wide Band Gap 2D Silicon Dioxide Layer.

    PubMed

    Büchner, Christin; Wang, Zhu-Jun; Burson, Kristen M; Willinger, Marc-Georg; Heyde, Markus; Schlögl, Robert; Freund, Hans-Joachim

    2016-08-23

    An atomically smooth silica bilayer is transferred from the growth substrate to a new support via mechanical exfoliation at millimeter scale. The atomic structure and morphology are maintained perfectly throughout the process. A simple heating treatment results in complete removal of the transfer medium. Low-energy electron diffraction, Auger electron spectroscopy, scanning tunneling microscopy, and environmental scanning electron microscopy show the success of the transfer steps. Excellent chemical and thermal stability result from the absence of dangling bonds in the film structure. By adding this wide band gap oxide to the toolbox of 2D materials, possibilities for van der Waals heterostructures will be broadened significantly. PMID:27421042

  6. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    SciTech Connect

    Hamad, K.S.

    2000-05-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  7. Imaging photoelectron photoion coincidence spectroscopy with velocity focusing electron optics

    NASA Astrophysics Data System (ADS)

    Bodi, Andras; Johnson, Melanie; Gerber, Thomas; Gengeliczki, Zsolt; Sztáray, Bálint; Baer, Tomas

    2009-03-01

    An imaging photoelectron photoion coincidence spectrometer at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source is presented and a few initial measurements are reported. Monochromatic synchrotron VUV radiation ionizes the cooled or thermal gas-phase sample. Photoelectrons are velocity focused, with better than 1 meV resolution for threshold electrons, and also act as start signal for the ion time-of-flight analysis. The ions are accelerated in a relatively low, 40-80 V cm-1 field, which enables the direct measurement of rate constants in the 103-107 s-1 range. All electron and ion events are recorded in a triggerless multiple-start/multiple-stop setup, which makes it possible to carry out coincidence experiments at >100 kHz event frequencies. As examples, the threshold photoelectron spectrum of the argon dimer and the breakdown diagrams for hydrogen atom loss in room temperature methane and the chlorine atom loss in cold chlorobenzene are shown and discussed.

  8. Applications of time-domain spectroscopy to electron-phonon coupling dynamics at surfaces.

    PubMed

    Matsumoto, Yoshiyasu

    2014-10-01

    Photochemistry is one of the most important branches in chemistry to promote and control chemical reactions. In particular, there has been growing interest in photoinduced processes at solid surfaces and interfaces with liquids such as water for developing efficient solar energy conversion. For example, photoinduced charge transfer between adsorbates and semiconductor substrates at the surfaces of metal oxides induced by photogenerated holes and electrons is a core process in photovoltaics and photocatalysis. In these photoinduced processes, electron-phonon coupling plays a central role. This paper describes how time-domain spectroscopy is applied to elucidate electron-phonon coupling dynamics at metal and semiconductor surfaces. Because nuclear dynamics induced by electronic excitation through electron-phonon coupling take place in the femtosecond time domain, the pump-and-probe method with ultrashort pulses used in time-domain spectroscopy is a natural choice for elucidating the electron-phonon coupling at metal and semiconductor surfaces. Starting with a phenomenological theory of coherent phonons generated by impulsive electronic excitation, this paper describes a couple of illustrative examples of the applications of linear and nonlinear time-domain spectroscopy to a simple adsorption system, alkali metal on Cu(111), and more complex photocatalyst systems. PMID:25139240

  9. Binding of bufuralol, dextromethorphan, and 3,4-methylenedioxymethylamphetamine to wild-type and F120A mutant cytochrome P450 2D6 studied by resonance Raman spectroscopy

    SciTech Connect

    Bonifacio, Alois . E-mail: zwan@few.vu.nl

    2006-05-12

    Cytochrome P450 2D6 (CYP2D6) is one of the most important drug-metabolizing enzymes in humans. Resonance Raman data, reported for First time for CYP2D6, show that the CYP2D6 heme is found to be in a six-coordinated low-spin state in the absence of substrates, and it is perturbed to different extents by bufuralol, dextromethorphan, and 3,4-methylenedioxymethylamphetamine (MDMA). Dextromethorphan and MDMA induce in CYP2D6 a significant amount of five-coordinated high-spin heme species and reduce the polarity of its heme-pocket, whereas bufuralol does not. Spectra of the F120A mutant CYP2D6 suggest that Phe{sup 12} is involved in substrate-binding of dextromethorphan and MDMA, being responsible for the spectral differences observed between these two compounds and bufuralol. These differences could be explained postulating a different substrate mobility for each compound in the CYP2D6 active site, consistently with the role previously suggested for Phe{sup 12} in binding dextromethorphan and MDMA.

  10. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms

    PubMed Central

    Bangert, U.; Pierce, W.; Boothroyd, C.; Pan, C.-T.; Gwilliam, R.

    2016-01-01

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes. PMID:27271352

  11. Microwave polarization angle study of the radiation-induced magnetoresistance oscillations in the GaAs/AlGaAs 2D electron system under dc current bias

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad-Zahir; Liu, Han-Chun; Heimbeck, Martin S.; Everitt, Henry O.; Wegscheider, Werner; Mani, Ramesh G.

    Microwave-induced magnetoresistance oscillations followed by the vanishing resistance states are a prime representation of non-equilibrium transport phenomena in two-dimensional electron systems (2DES). The effect of a dc current bias on the nonlinear response of 2DES with microwave polarization angle under magnetic field is a subject of interest. Here, we have studied the effect of various dc current bias on microwave radiation-induced magnetoresistance oscillations in a high mobility 2DES. Further, we systematically investigate the effect of the microwave polarization angle on the magneto-resistance oscillations at two different frequencies 152.78 GHz and 185.76 GHz. This study aims to better understand the effects of both dc current and microwave polarization angle in the GaAs/AlGaAs system, both of which modify the observed magneto-transport properties DOE-BES, Mat'l. Sci. & Eng. Div., DE-SC0001762; ARO W911NF-14-2-0076; ARO W911NF-15-1-0433.

  12. Study of microwave reflection in the regime of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs 2D electron system

    NASA Astrophysics Data System (ADS)

    Kriisa, Annika; Liu, H.-C.; Samaraweera, R. L.; Heimbeck, M. S.; Everitt, H. O.; Wegscheider, W.; Mani, R. G.

    Microwave-induced zero-resistance-states in the photo-excited GaAs/AlGaAs system evolve from the minima of microwave photo-excited ``quarter-cycle shifted'' magnetoresistance oscillations. Such magnetoresistance oscillations are known to exhibit nodes at cyclotron resonance (hf = ℏωc) and cyclotron resonance harmonics (hf = nℏωc). Further, the effective mass extracted from the radiation-induced magnetoresistance oscillations is known to differ from the canonical effective mass ratio for electrons in the GaAs/AlGaAs system. In an effort to reconcile this difference, we have looked for cyclotron resonance in the microwave reflection from the high mobility 2DES and attempted to correlate the observations with observed oscillatory magnetoresistance over the 30 <= f <= 330 GHz band. The results of such a study will be reported here. DOE-BES, Mat'l. Sci. & Eng. Div., DE-SC0001762; ARO W911NF-14-2-0076; ARO W911NF-15-1-0433.

  13. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms

    NASA Astrophysics Data System (ADS)

    Bangert, U.; Pierce, W.; Boothroyd, C.; Pan, C.-T.; Gwilliam, R.

    2016-06-01

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes.

  14. Engineering the Electronic Structure of 2D WS2 Nanosheets Using Co Incorporation as Cox W(1- x ) S2 for Conspicuously Enhanced Hydrogen Generation.

    PubMed

    Shifa, Tofik Ahmed; Wang, Fengmei; Liu, Kaili; Xu, Kai; Wang, Zhenxing; Zhan, Xueying; Jiang, Chao; He, Jun

    2016-07-01

    Transition metal dichalcogenides (TMDs), as one of potential electrocatalysts for hydrogen evolution reaction (HER), have been extensively studied. Such TMD-based ternary materials are believed to engender optimization of hydrogen adsorption free energy to thermoneutral value. Theoretically, cobalt is predicted to actively promote the catalytic activity of WS2 . However, experimentally it requires systematic approach to form Cox W(1- x ) S2 without any concomitant side phases that are detrimental for the intended purpose. This study reports a rational method to synthesize pure ternary Cox W(1- x ) S2 nanosheets for efficiently catalyzing HER. Benefiting from the modification in the electronic structure, the resultant material requires overpotential of 121 mV versus reversible hydrogen electrode (RHE) to achieve current density of 10 mA cm(-2) and shows Tafel slope of 67 mV dec(-1) . Furthermore, negligible loss of activity is observed over continues electrolysis of up to 2 h demonstrating its fair stability. The finding provides noticeable experimental support for other computational reports and paves the way for further works in the area of HER catalysis based on ternary materials. PMID:27322598

  15. Spectroscopy of Two Dimensional Electron Systems Comprising Exotic Quasiparticles

    NASA Astrophysics Data System (ADS)

    Rhone, Trevor David Nathaniel

    In this dissertation I present inelastic and elastic light scattering studies of collective states emerging from interactions in electron systems confined to two dimensions. These studies span the first, second and third Landau levels. I report for the first time, high energy excitations of composite fermions in the quantum fluid at nu = 1/3. The high energies discovered represent excitations across multiple composite fermion energy levels, demonstrating the topological robustness of the fractional quantum Hall state at nu = 1/3. This study sets the ground work for similar measurements of states in the second Landau level, such as those at nu = 5/2. I present the first light scattering studies of low energy excitations of quantum fluids in the second Landau level. The study of low energy excitations of the quantum fluid at 3 ≥ nu ≥ 5/2 reveals a rapid loss of spin polarization for nu ≲ 3, as monitored by the intensity of the spin wave excitation at the Zeeman energy. The emergence of a continuum of low-lying excitations for nu ≲ 3 reveals competing quantum phases in the second Landau level with intriguing roles of spin degrees of freedom and phase inhomogeneity. The first light scattering studies of the electron systems in the third Landau level are reported here. Measurements of low energy excitations and their spin degrees of freedom reveal contrasting behavior of states in the second and third Landau levels. I discuss these measurements in the context of the charge density wave phases, that are believed, by some, to dominate the third Landau level, and suggest ways of verifying this belief using light scattering. Distinct behavior in the dispersion of the spin wave at nu = 3 is measured for the first time. The study may highlight differences in the first and second Landau levels that are manifested through the electron wavefunctions. In addition to intra-Landau level measurements, inter- Landau level studies are also reported. The results of which reveal

  16. Alpha and conversion electron spectroscopy of 238,239Pu and 241Am and alpha-conversion electron coincidence measurements

    NASA Astrophysics Data System (ADS)

    Dion, Michael P.; Miller, Brian W.; Warren, Glen A.

    2016-09-01

    A technique to determine the isotopic constituents of a mixed actinide sample has been proposed by a coincident alpha-conversion electron measurement. This presents a unique signature to allow the unfolding of isotopes that possess overlapping alpha particle energy and reduce backgrounds of an unseparated sample. The work presented here are results of conversion electron spectroscopy of 241Am, 238Pu and 239Pu using a dual-stage peltier-cooled 25 mm2 silicon drift detector and alpha spectroscopy with a passivated ion implanted planar silicon detector. The conversion electron spectra were evaluated from 20-55 keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information and calibration to aid in the coincident measurement approach. Furthermore, an alpha-conversion electron spectrometer was assembled using the silicon based detectors described and results of a coincident spectrum analysis is reported for 241Am.

  17. 48-Channel electron detector for photoemission spectroscopy and microscopy

    NASA Astrophysics Data System (ADS)

    Gregoratti, L.; Barinov, A.; Benfatto, E.; Cautero, G.; Fava, C.; Lacovig, P.; Lonza, D.; Kiskinova, M.; Tommasini, R.; Mähl, S.; Heichler, W.

    2004-01-01

    We show that it is possible to use a multichannel electron detector in a zone plate based photoemission spectromicroscopy in a snap shot mode to reduce the total acquisition time for a given counting time by 50% relative to the standard scanning mode while preserving the feature of the spectra. We describe the result of tests performed at Elettra using its microbeam (150 nm) together with a 48-channel detector designed for the PHOIBOS 100 analyzer optimized for extremely small x-ray sources. We also give a short summary of the technical features of the detector and describe one possible calibration procedure for its use in the snap shot mode. We show initial results from using this device to perform chemical maps of surfaces at a resolution of 150 nm.

  18. Ultrafast magnetization dynamics: Microscopic electronic configurations and ultrafast spectroscopy

    NASA Astrophysics Data System (ADS)

    Locht, I. L. M.; Di Marco, I.; Garnerone, S.; Delin, A.; Battiato, M.

    2015-08-01

    We provide an approach for the identification of the electronic and magnetic configurations of ferromagnetic Fe after an ultrafast decrease or increase of the magnetization. The model is based on the well-grounded assumption that, after an ultrafast variation of the magnetization, the system achieves a partial thermal equilibrium. With statistical arguments we show that the magnetic configurations are qualitatively different in the case of reduced or increased magnetization. The predicted magnetic configurations are then used to compute the dielectric response at the 3 p (M ) absorption edge, which is directly related to the changes observed in the experimental T-MOKE data. The good qualitative agreement between theory and experiment offers a substantial support for the validity of the model, and to the very existence of an ultrafast increase of the magnetization.

  19. Novel multisample dielectric resonators for electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Golovina, Iryna S.; Kolesnik, Sergiy P.; Geifman, Ilia N.; Belous, Anatoliy G.

    2010-04-01

    We have developed and tested two types of novel dielectric resonators for simultaneous recording of electron paramagnetic resonance (EPR) spectra from two to four samples. The resonator of the first type contains two holes, and the other resonator contains four holes for introduction of the samples. Also, the resonator structure includes a pair of gradient coils. Dielectric resonators made of materials with high dielectric constant with low losses can be inserted into the standard EPR cavity or waveguide in the maximum microwave magnetic field. Gradient coils are located outside the cavity (or waveguide) so that their axes are parallel to the static magnetic field. Computer simulations were made to obtain microwave characteristics of the resonators such as resonant frequency, sizes, and distribution of the fields. Spacing of the point samples and optimum value of the magnetic-field gradient have been chosen correctly. The designed resonators can be applied in express analysis using EPR technique, for instance.

  20. Kondo effect and STM spectroscopy of Dirac electrons in graphene

    NASA Astrophysics Data System (ADS)

    Sengupta, Krishnendu

    2011-03-01

    We show that graphene, whose low-energy quasiparticles display Dirac like behavior, may exhibit a two-channel Kondo effect in the presence of magnetic impurities. We present a large N analysis for a generic spin S local moment coupled to Dirac electrons in graphene and demonstrate that the corresponding Kondo temperature can be tuned by an experimentally controllable applied gate voltage. We also study the STM spectra of these Dirac electrons in the presence of such impurities and demonstrate that such spectra depend qualitatively on the position of the impurity atom in the graphene matrix. More specifically, for impurity atoms atop the hexagon center, the zero-bias tunneling conductance, as measured by a STM, shows a peak; for those atop a graphene site, it shows a dip. We provide a qualitative theoretical explanation of this phenomenon and show that this unconventional behavior is a consequence of conservation/breaking of pseudospin symmetry of the Dirac quasiparticles by the impurity. We also predict that tuning the Fermi energy to zero by a gate voltage would not lead to qualitative change in the shape of the conductance spectra when the impurity is atop the hexagon center. A similar tuning of the Fermi energy for the impurity atop a site, however, would lead to a change in the tunneling conductance from a dip to a peak via an antiresonance. We discuss some recent experiments on a doped graphene sample that seem to have qualitative agreement with our theory and suggest further experiments to test our predictions. DST, India.

  1. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    PubMed

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam. PMID:27587179

  2. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    PubMed

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  3. A Study of Electron and Phonon Dynamics by Broadband Two-Dimensional THz Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fu, Zhengping

    Terahertz (THz) wave interacts with semiconductors in many ways, such as resonant excitation of lattice vibration, intraband transition and polaron formation. Different from the optical waves, THz wave has lower photon energy (1 THz = 4.14 meV) and is suitable for studying dynamics of low-energy excitations. Recently the studies of the interaction of THz wave and semiconductors have been extending from the linear regime to the nonlinear regime, owing to the advance of the high-intensity THz generation and detection methods. Two-dimensional (2D) spectroscopy, as a useful tool to unravel the nonlinearity of materials, has been well developed in nuclear magnetic resonance and infrared region. However, the counterpart in THz region has not been well developed and was only demonstrated at frequency around 20 THz due to the lack of intense broadband THz sources. Using laser-induced plasma as the THz source, we developed collinear broadband 2D THz time-domain spectroscopy covering from 0.5 THz to 20 THz. Broadband intense THz pulses emitted from laser-induced plasma provide access to a variety of nonlinear properties of materials. Ultrafast optical and THz pulses make it possible to resolve the transient change of the material properties with temporal resolution of tens of femtoseconds. This thesis focuses on the linear and nonlinear interaction of the THz wave with semiconductors. Since a great many physical processes, including vibrational motion of lattice and plasma oscillation, has resonant frequency in the THz range, rich physics can be studies in our experiment. The thesis starts from the linear interaction of the THz wave with semiconductors. In the narrow band gap semiconductor InSb, the plasma absorption edge, Restrahlen band and dispersion of polaritons are observed. The nonlinear response of InSb in high THz field is verified in the frequency-resolved THz Z-scan experiment. The third harmonic generations due to the anharmonicity of plasma oscillation and the

  4. Using Electron Paramagnetic Resonance Spectroscopy To Facilitate Problem Solving in Pharmaceutical Research and Development.

    PubMed

    Mangion, Ian; Liu, Yizhou; Reibarkh, Mikhail; Williamson, R Thomas; Welch, Christopher J

    2016-08-19

    As new chemical methodologies driven by single-electron chemistry emerge, process and analytical chemists must develop approaches to rapidly solve problems in this nontraditional arena. Electron paramagnetic resonance spectroscopy has been long known as a preferred technique for the study of paramagnetic species. However, it is only recently finding application in contemporary pharmaceutical development, both to study reactions and to track the presence of undesired impurities. Several case studies are presented here to illustrate its utility in modern pharmaceutical development efforts.

  5. {HIGH Resolution Electronic Spectroscopy of 2,6-DIAMINOPYRIDINE in the Gas PHASE}

    NASA Astrophysics Data System (ADS)

    Clements, Casey L.; Fleisher, Adam J.; Young, Justin W.; Thomas, Jessica A.; Pratt, David W.

    2009-06-01

    Ab initio calculations suggest that 2,6-diaminopyridine (26DAP) has several interesting low-frequency vibrations arising from motion of its amino groups. For this reason, 26DAP has been studied in the gas phase using both low resolution and high resolution electronic spectroscopy techniques. Presented here are the results of this study, which provide information about the structural and dynamical properties of 26DAP in both the ground and excited electronic states. The results will be discussed. footnote

  6. Two-Dimensional Electronic Spectroscopy of the Photosystem II D1D2-cyt.b559 Reaction Center Complex

    NASA Astrophysics Data System (ADS)

    Myers, Jeffrey Allen

    Two-dimensional electronic spectroscopy (2DES) is a powerful new technique for examining the electronic and vibronic couplings and dynamics of chemical, semiconductor, and biological samples. We present several technical innovations in the implementation of 2DES. We have performed two-color 2DES experiments, extending the technique's ability to study energy transfer to states at frequencies far from the initial absorption. We have demonstrated 2DES in the pump-probe geometry using a pulse-shaper. This method eliminates many technical challenges inherent to previous implementations of 2DES, making it a more widely accessible technique. To broaden the available frequency information, we have demonstrated 2DES with a continuum probe pulse. We have utilized this method to observe vibrational wavepacket dynamics in a laser dye, demonstrating that these dynamics modulate 2D lineshapes and must be accounted for in modelling 2DES data. We perform 2DES studies on the Qy band of the D1D2-cyt.b559 reaction center of plant photosystem II. This reaction center is the core oxygen-evolving complex in plant photosynthesis, taking in light energy and forming a charge separated state capable of splitting water. Understanding the relationship between the structure and function has both fundamental importance and applications to improving artificial light-harvesting. Traditional spectroscopy methods have been unable to completely resolve the time-ordering of energy and charge transfer events or the degree of electronic coupling between chromophores due to severe spectral congestion in the Q y band. 2DES extends previous methods by frequency-resolving an additional dimension to reveal the degree of static disorder and electronic coupling, as well as a detailed picture of energy and charge transfer dynamics that will allow tests of excitonic models of the reaction center. Our data show direct evidence of electronic coupling and rapid sub-ps energy transfer between "blue" and "red

  7. The role of X-ray spectroscopy in understanding the geometric and electronic structure of nitrogenase.

    PubMed

    Kowalska, Joanna; DeBeer, Serena

    2015-06-01

    X-ray absorption (XAS) and X-ray emission spectroscopy (XES) provide element specific probes of the geometric and electronic structures of metalloprotein active sites. As such, these methods have played an integral role in nitrogenase research beginning with the first EXAFS studies on nitrogenase in the late 1970s. Herein, we briefly explain the information that can be extracted from XAS and XES. We then highlight the recent applications of these methods in nitrogenase research. The influence of X-ray spectroscopy on our current understanding of the atomic structure and electronic structure of iron molybdenum cofactor (FeMoco) is emphasized. Contributions of X-ray spectroscopy to understanding substrate interactions and cluster biosynthesis are also discussed. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.

  8. High Resolution Electron Spectroscopy with Time-of-Flight Spectrometers

    NASA Astrophysics Data System (ADS)

    Krässig, Bertold; Kanter, Elliot P.

    2015-05-01

    We have developed a parametrization based on ray-tracing calculations to convert electron time-of-flight (eTOF) to kinetic energy for the spectrometers of the LCLS-AMO end station at SLAC National Accelerator Laboratory. During the experiments the eTOF detector signals are recorded as digitized waveforms for every shot of the accelerator. With our parameterization we can analyze the waveforms on-line and convert detector hit times to kinetic energies. In this way we accumulate histograms with equally spaced bins in energy directly, rather than a posteriori converting an accumulated histogram of equally spaced flight times into a histogram of kinetic energies with unequal bin sizes. The parametrization is, of course, not a perfect replica of the ray tracing results, and the ray tracing is based on nominal dimensions, perfect alignment, detector response, and knowledge of time zero for the time-of-flight. In this presentation we will discuss causes, effects, and remedies for the observed deviations. We will present high-resolution results for the Ne KLL Auger spectrum that has been well studied and serves as a benchmark for our analysis algorithm. This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division by the Office of Basic Energy Sciences, Office of Science, US Department of Energy, under Contract No. DE-AC02-06CH11357.

  9. Identification of irradiated cashew nut by electron paramagnetic resonance spectroscopy.

    PubMed

    Sanyal, Bhaskar; Sajilata, M G; Chatterjee, Suchandra; Singhal, Rekha S; Variyar, Prasad S; Kamat, M Y; Sharma, Arun

    2008-10-01

    Cashew nut samples were irradiated at gamma-radiation doses of 0.25, 0.5, 0.75, and 1 kGy, the permissible dose range for insect disinfestation of food commodities. A weak and short-lived triplet (g = 2.004 and hfcc = 30 G) along with an anisotropic signal (g perpendicular = 2.0069 and g parallel = 2.000) were produced immediately after irradiation. These signals were assigned to that of cellulose and CO 2 (-) radicals. However, the irradiated samples showed a dose-dependent increase of the central line (g = 2.0045 +/- 0.0002). The nature of the free radicals formed during conventional processing such as thermal treatment was investigated and showed an increase in intensity of the central line (g = 2.0045) similar to that of irradiation. Characteristics of the free radicals were studied by their relaxation and thermal behaviors. The present work explores the possibility to identify irradiated cashew nuts from nonirradiated ones by the thermal behaviors of the radicals beyond the period, when the characteristic electron paramagnetic resonance spectral lines of the cellulose free radicals have essentially disappeared. In addition, this study for the first time reports that relaxation behavior of the radicals could be a useful tool to distinguish between roasted and irradiated cashew nuts.

  10. Electron-ion collision spectroscopy: Lithium-like xenon ions

    NASA Astrophysics Data System (ADS)

    Bernhardt, D.; Brandau, C.; Harman, Z.; Kozhuharov, C.; Böhm, S.; Bosch, F.; Fritzsche, S.; Jacobi, J.; Kieslich, S.; Knopp, H.; Nolden, F.; Shi, W.; Stachura, Z.; Steck, M.; Stöhlker, Th.; Schippers, S.; Müller, A.

    2015-01-01

    The resonant process of dielectronic recombination (DR) has been applied as a spectroscopic tool to investigate intra-L -shell excitations 2 s -2 pj in Li-like 136Xe51+ . The experiments were carried out at the electron cooler of the Experimental Storage Ring of the GSI-Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. The observed center-of-mass energy range (0-505 eV) covers all resonances associated with the 2 s +e-→(2p1/2n lj) J and (2p3/2n lj) J DR processes. Energies and strengths of isolated 2 p1 /2n and 2 p3 /2n DR-resonance groups were obtained for principal quantum numbers n up to 43 and 36, respectively. The 2 s -2 p1 /2 and 2 s -2 p3 /2 excitation energies were deduced to be 119.816(42) eV and 492.174(52) eV. The excitation energies are compared with previous measurements of other groups and with recent QED calculations. In addition, the experimental spectra and extracted resonance strengths are compared with multiconfiguration Dirac-Fock calculations. Measurements and theory are found to be in good agreement with each other.

  11. Low Energy Electron-Impact Spectroscopy of C(sup 60) Buckminsterfullerene Molecule

    NASA Technical Reports Server (NTRS)

    Trajmar, S.; Wang, S.

    1993-01-01

    The methods of electron-impact spectroscopy were utilized to obtain the first low-energy, high-resolution energy-loss spectra of gas phase pure C(sub 60) and C(sub 60) + C(sub 70) mixture buckminsterfullerene molecules.

  12. Understanding electronegative effects in core-level electron spectroscopies; application to the high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Ramaker, David E.

    1989-12-01

    The nature of the core level reflected in x ray photoelectron spectroscopy, Auger electron spectrosocopy, and x ray absorption near edge structure is considered. An understanding of the effects of anion and cation electronegativity on spectra for the transition metal halides is obtained. This knowledge is applied to understand similar spectra for the high temperature superconductors.

  13. Local tunneling spectroscopy and infrared spectroscopy of the electron-doped cuprate Sm2-xCexCuO4

    NASA Astrophysics Data System (ADS)

    Zimmers, A.; Noat, Y.; Cren, T.; Sacks, W.; Roditchev, D.; Liang, B.; Greene, R. L.; Lobo, R. P. S. M.; Bontemps, N.

    2008-03-01

    We present infrared and local tunneling spectroscopy of the electron-doped cuprate Sm2-xCexCuO4. In STM, at optimal doping x=0.15, a clear signature of the superconducting gap is observed with an amplitude ranging from place to place and from sample to sample (δ˜ 3.5-6meV). Another spectroscopic feature is simultaneously observed at high energy above ±50meV. Its energy scale and temperature evolution is found to be compatible with previous photoemission and optical experiments. If interpreted as the signature of antiferromagnetic order in the samples, these results could suggest the coexistence on the local scale of antiferromagnetism and superconductivity on the electron-doped side of cuprate superconductors. Using optical spectroscopy, we analyzed the effects of the normal state gap opening (the higher energy gap seen in STM) and phonon structure as a function of temperature and doping from the underdoped to the metallic composition.

  14. Watching adsorption and electron beam induced decomposition on the model system Mo(CO)6/Cu(1 1 1) by X-ray absorption and photoemission spectroscopies

    NASA Astrophysics Data System (ADS)

    Paufert, Pierre; Fonda, Emiliano; Li, Zheshen; Domenichini, Bruno; Bourgeois, Sylvie

    2013-11-01

    An in-depth study of the first steps of electron beam assisted growth of Mo from molybdenum hexacarbonyl on Cu(1 1 1) has been carried out exploiting the complementarity of X-ray photoemission and X-ray absorption spectroscopies. Frank van der Merwe (2D) growth mode has been observed for the completion of the two first monolayers of adsorbed molecules through a simple physisorption process. Irradiation of the Mo(CO)6 deposit by 1 keV electron beam induces a modification of molybdenum coordination, the average number of C-neighbors decreasing from 6 to 3. Decomposed molecules remain on the surface after annealing at 520 K and organize themselves, the molybdenum atoms moving in Cu(1 1 1) surface fcc hollow sites. After annealing at 670 K, metallic molybdenum growth begins, if the total amount of adsorbed Mo atoms exceeds 1.2 monolayers.

  15. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  16. Study of irradiated Hadfield steel using transmission Mössbauer spectroscopy with high velocity resolution and conversion electron Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Semionkin, V. A.; Neshev, F. G.; Tsurin, V. A.; Milder, O. B.; Oshtrakh, M. I.

    2010-03-01

    Proton irradiated Hadfield steel foil was studied using transmission Mössbauer spectroscopy with high velocity resolution and conversion electron Mössbauer spectroscopy. It was shown that proton irradiation leads to structural changes in the foil as well as to surface oxidation with ferric hydrous oxide formation (ferrihydrite). Moreover, oxidation on the foil underside was higher than on the foil right side.

  17. The Electronic Structure of Metals Studied by Auger Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fowles, Paul Stephen

    Available from UMI in association with The British Library. In recent years there has been much study of Auger processes that involve one or more valence electrons. In particular, the degree to which the Auger lineshape reflects the local density of states (DOS) has proved to be of considerable interest and it is often assumed that the Auger profile may be simply obtained by a weighting of the angular components of the local DOS. By using the embedding technique to carry out first principles, self-consistent calculations of the KLV Auger profiles of simple metals, it is possible to investigate the relationship between the Auger profile and the local DOS. Additionally, it is shown that useful approximations can be made which allow the spatial region probed by the Auger process in Mg to be determined. The alloying of Mg with other simple metals causes the Mg KLV spectra to become distorted. The Mg KLV spectra of a LiMg alloy are presented which show considerable modification from the pure metal. Using the embedding technique, these spectra are simulated and the presence of a virtual bound state is predicted around a core-ionized Mg site. High resolution spectra of the KL_ {2,3}-L_{2,3} L_{2,3}V Auger satellite transitions of Mg and Al, which lie to high kinetic energy of the KL_{2,3}V Auger transition, are shown and an attempt made to simulate the profiles of these satellites. This is achieved by determining the intensity and shape of each component by the use of atomic transition rate calculations and lineshapes obtained using the embedding technique. The satellite profile of Al may be explained in this way, however, one feature remains unexplained in the spectrum of Mg. The N_{6,7}O _{4,5}O_ {4,5} and N_{7} O_{4,5}O _{4,5} Auger profiles of Au are presented and the N_{6}O _{4,5}O_ {4,5} profile found by subtraction. By the removal of a background it will be possible to compare these transitions with theoretical calculations. The requirements for subtracting a

  18. Electronic structure of Ce2RhIn8: A two-dimensional heavy-fermion system studied by angle-resolved photoemission spectroscopy

    DOE PAGES

    Jiang, Rui; Mou, Daixing; Liu, Chang; Zhao, Xin; Yao, Yongxin; Ryu, Hyejin; Petrovic, C.; Ho, Kai -Ming; Kaminski, Adam

    2015-04-01

    We use angle-resolved photoemission spectroscopy (ARPES) to study the 2D heavy fermion superconductor, Ce₂RhIn₈. The Fermi surface is rather complicated and consists of several hole and electron pockets with one of the sheets displaying strong nesting properties with a q-vector of (0.32, 0.32) π/a. We do not observe kz dispersion of the Fermi sheets, which is consistent with the expected 2D character of the electronic structure. Comparison of the ARPES data to band structure calculations suggests that a localized picture of the f-electrons works best. While there is some agreement in the overall band dispersion and location of the Fermimore » sheets, the model does not reproduce all observed bands and is not completely accurate for those it does. As a result, our data paves the way for improving the band structure calculations and the general understanding of the transport and thermodynamical properties of this material.« less

  19. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938

  20. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.