Science.gov

Sample records for 2d electronic structure

  1. Calculation of 2D electronic band structure using matrix mechanics

    NASA Astrophysics Data System (ADS)

    Pavelich, R. L.; Marsiglio, F.

    2016-12-01

    We extend previous work, applying elementary matrix mechanics to one-dimensional periodic arrays (to generate energy bands), to two-dimensional arrays. We generate band structures for the square-lattice "2D Kronig-Penney model" (square wells), the "muffin-tin" potential (circular wells), and Gaussian wells. We then apply the method to periodic arrays of more than one atomic site in a unit cell, specifically to the case of materials with hexagonal lattices like graphene. These straightforward extensions of undergraduate-level calculations allow students to readily determine band structures of current research interest.

  2. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics

    PubMed Central

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-01-01

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics. PMID:27796343

  3. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics.

    PubMed

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-10-31

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics.

  4. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics

    NASA Astrophysics Data System (ADS)

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-10-01

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics.

  5. Electronic structure study on 2D hydrogenated Icosagens nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Marutheeswaran, S.; Ramaclus, Jerald V.; Paul, Dolon Chapa

    2014-12-01

    Metal nitride nanosheets has attracted remarkable importance in surface catalysis due to its characteristic ionic nature. In this paper, using density functional theory, we investigate geometric stability and electronic properties of hydrogenated Icosagen nitride nanosheets. Binding energy of the sheets reveals hydrogenation is providing more stability. Band structure of the hydrogenated sheets is found to be n-type semiconductor. Partial density of states shows metals (B, Al, Ga and In) and its hydrogens dominating in the Fermi region. Mulliken charge analysis indications that hydrogenated nanosheets are partially hydridic surface nature except boron nitride.

  6. Investigating fold structures of 2D materials by quantitative transmission electron microscopy.

    PubMed

    Wang, Zhiwei; Zhang, Zengming; Liu, Wei; Wang, Zhong Lin

    2017-04-01

    We report an approach developed for deriving 3D structural information of 2D membrane folds based on the recently-established quantitative transmission electron microscopy (TEM) in combination with density functional theory (DFT) calculations. Systematic multislice simulations reveal that the membrane folding leads to sufficiently strong electron scattering which enables a precise determination of bending radius. The image contrast depends also on the folding angles of 2D materials due to the variation of projection potentials, which however exerts much smaller effect compared with the bending radii. DFT calculations show that folded edges are typically characteristic of (fractional) nanotubes with the same curvature retained after energy optimization. Owing to the exclusion of Stobbs factor issue, numerical simulations were directly used in comparison with the experimental measurements on an absolute contrast scale, which results in a successful determination of bending radius of folded monolayer MoS2 films. The method should be applicable to characterizing all 2D membranes with 3D folding features.

  7. Reflection high-energy electron diffraction measurements of reciprocal space structure of 2D materials.

    PubMed

    Xiang, Y; Guo, F-W; Lu, T-M; Wang, G-C

    2016-12-02

    Knowledge on the symmetry and perfection of a 2D material deposited or transferred to a surface is very important and valuable. We demonstrate a method to map the reciprocal space structure of 2D materials using reflection high energy diffraction (RHEED). RHEED from a 2D material gives rise to 'streaks' patterns. It is shown that from these streaks patterns at different azimuthal rotation angles that the reciprocal space intensity distribution can be constructed as a function of momentum transfer parallel to the surface. To illustrate the principle, we experimentally constructed the reciprocal space structure of a commercial graphene/SiO2/Si sample in which the graphene layer was transferred to the SiO2/Si substrate after it was deposited on a Cu foil by chemical vapor deposition. The result reveals a 12-fold symmetry of the graphene layer which is a result of two dominant orientation domains with 30° rotation relative to each other. We show that the graphene can serve as a template to grow other materials such as a SnS film that follows the symmetry of graphene.

  8. Compelling experimental evidence of a Dirac cone in the electronic structure of a 2D Silicon layer

    PubMed Central

    Sadeddine, Sana; Enriquez, Hanna; Bendounan, Azzedine; Kumar Das, Pranab; Vobornik, Ivana; Kara, Abdelkader; Mayne, Andrew J.; Sirotti, Fausto; Dujardin, Gérald; Oughaddou, Hamid

    2017-01-01

    The remarkable properties of graphene stem from its two-dimensional (2D) structure, with a linear dispersion of the electronic states at the corners of the Brillouin zone (BZ) forming a Dirac cone. Since then, other 2D materials have been suggested based on boron, silicon, germanium, phosphorus, tin, and metal di-chalcogenides. Here, we present an experimental investigation of a single silicon layer on Au(111) using low energy electron diffraction (LEED), high resolution angle-resolved photoemission spectroscopy (HR-ARPES), and scanning tunneling microscopy (STM). The HR-ARPES data show compelling evidence that the silicon based 2D overlayer is responsible for the observed linear dispersed feature in the valence band, with a Fermi velocity of comparable to that of graphene. The STM images show extended and homogeneous domains, offering a viable route to the fabrication of silicene-based opto-electronic devices. PMID:28281666

  9. Compelling experimental evidence of a Dirac cone in the electronic structure of a 2D Silicon layer

    NASA Astrophysics Data System (ADS)

    Sadeddine, Sana; Enriquez, Hanna; Bendounan, Azzedine; Kumar Das, Pranab; Vobornik, Ivana; Kara, Abdelkader; Mayne, Andrew J.; Sirotti, Fausto; Dujardin, Gérald; Oughaddou, Hamid

    2017-03-01

    The remarkable properties of graphene stem from its two-dimensional (2D) structure, with a linear dispersion of the electronic states at the corners of the Brillouin zone (BZ) forming a Dirac cone. Since then, other 2D materials have been suggested based on boron, silicon, germanium, phosphorus, tin, and metal di-chalcogenides. Here, we present an experimental investigation of a single silicon layer on Au(111) using low energy electron diffraction (LEED), high resolution angle-resolved photoemission spectroscopy (HR-ARPES), and scanning tunneling microscopy (STM). The HR-ARPES data show compelling evidence that the silicon based 2D overlayer is responsible for the observed linear dispersed feature in the valence band, with a Fermi velocity of comparable to that of graphene. The STM images show extended and homogeneous domains, offering a viable route to the fabrication of silicene-based opto-electronic devices.

  10. A Fast Parallel Algorithm for Selected Inversion of Structured Sparse Matrices with Application to 2D Electronic Structure Calculations

    SciTech Connect

    Lin, Lin; Yang, Chao; Lu, Jiangfeng; Ying, Lexing; E, Weinan

    2009-09-25

    We present an efficient parallel algorithm and its implementation for computing the diagonal of $H^-1$ where $H$ is a 2D Kohn-Sham Hamiltonian discretized on a rectangular domain using a standard second order finite difference scheme. This type of calculation can be used to obtain an accurate approximation to the diagonal of a Fermi-Dirac function of $H$ through a recently developed pole-expansion technique \\cite{LinLuYingE2009}. The diagonal elements are needed in electronic structure calculations for quantum mechanical systems \\citeHohenbergKohn1964, KohnSham 1965,DreizlerGross1990. We show how elimination tree is used to organize the parallel computation and how synchronization overhead is reduced by passing data level by level along this tree using the technique of local buffers and relative indices. We analyze the performance of our implementation by examining its load balance and communication overhead. We show that our implementation exhibits an excellent weak scaling on a large-scale high performance distributed parallel machine. When compared with standard approach for evaluating the diagonal a Fermi-Dirac function of a Kohn-Sham Hamiltonian associated a 2D electron quantum dot, the new pole-expansion technique that uses our algorithm to compute the diagonal of $(H-z_i I)^-1$ for a small number of poles $z_i$ is much faster, especially when the quantum dot contains many electrons.

  11. Quantum coherence selective 2D Raman-2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-03-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  12. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    PubMed

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  13. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  14. Electronic and structural properties of 3D, 2D and 1D materials

    NASA Astrophysics Data System (ADS)

    Ribeiro, Filipe Joao

    In this work several applications of the ab initio pseudopotential density functional theory method are presented. With this method it is possible to calculate the electronic ground state properties of many systems like bulk solids, surfaces, nanotubes, and nanowires, and draw conclusions about the systems structural and electronic properties. With modifications of this approach excited states can also be treated. The first chapter of this thesis gives a brief description of the computational techniques employed. The second chapter describes results of calculations on the structural and electronic properties of carbon and germanium. We try to shed some light on a still poorly understood structural phase transition of graphite under pressure at low temperatures, which is different from the high temperature regime. Next, we study the phase transition path of germanium under pressure and predict the existence of a new phase. The following chapter explores the possibility of superconductivity in the graphite-like compound BC3 since there are many similarities between the electronic structure of this material and the 39 K superconductor MgB2. Subsequently, results of calculations on the adsorption of indium atoms on carbon nanotubes and graphite-like surfaces are presented. These studies explain some very interesting experimental results of In migration on nanotubes in an electrical potential. In the following chapters the electronic properties of very thin metallic MoSe nanowires are studied, and the different regimes of stability of metallic monatomic chains of Au, Al, Ag, Pd, Rh, and Ru are investigated and compared. Chapter 7 addresses the possible polymerization of C60 molecules inside carbon and boron nitride nanotubes. Finally, the propagation of a light signal in a medium with gains and losses is investigated, and the possibility of a discontinuity in the index of refraction is discussed.

  15. Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy

    PubMed Central

    Ginsberg, Naomi S.; Davis, Jeffrey A.; Ballottari, Matteo; Cheng, Yuan-Chung; Bassi, Roberto; Fleming, Graham R.

    2011-01-01

    The CP29 light harvesting complex from green plants is a pigment-protein complex believed to collect, conduct, and quench electronic excitation energy in photosynthesis. We have spectroscopically determined the relative angle between electronic transition dipole moments of its chlorophyll excitation energy transfer pairs in their local protein environments without relying on simulations or an X-ray crystal structure. To do so, we measure a basis set of polarized 2D electronic spectra and isolate their absorptive components on account of the tensor relation between the light polarization sequences used to obtain them. This broadly applicable advance further enhances the acuity of polarized 2D electronic spectroscopy and provides a general means to initiate or feed back on the structural modeling of electronically-coupled chromophores in condensed phase systems, tightening the inferred relations between the spatial and electronic landscapes of ultrafast energy flow. We also discuss the pigment composition of CP29 in the context of light harvesting, energy channeling, and photoprotection within photosystem II. PMID:21321222

  16. Stability and electronic properties of SiGe-based 2D layered structures

    NASA Astrophysics Data System (ADS)

    Jamdagni, Pooja; Kumar, Ashok; Thakur, Anil; Pandey, Ravindra; Ahluwalia, P. K.

    2015-01-01

    The structural and electronic properties of the in-plane hybrids consisting of siligene (SiGe), and its derivatives in both mono and bilayer forms are investigated within density functional theory. Among several pristine and hydrogenated configurations, the so-called chair conformation is energetically favorable for monolayers. On the other hand, the bilayer siligane (HSiGeH) prefers AB-stacked chair conformation and bilayer siligone (HSiGe) prefers AA-stacked buckled conformation. In SiGe, the Dirac-cone character is predicted to be retained. HSiGe is a magnetic semiconductor with a band gap of ˜0.6 eV. The electronic properties show tunability under mechanical strain and transverse electric field; (i) the energy gap opens up in the SiGe bilayer, (ii) a direct-to-indirect gap transition is predicted by the applied strain in the HSiGeH bilayer, and (iii) a semiconductor-to-metal transition is predicted for HSiGe and HSiGeH bilayers under the application of strain and electric field, thus suggesting SiGe and its derivatives to be a potential candidate for electronic devices at nanoscale.

  17. Electronic structure of disordered CuPd alloys by positron-annihilation 2D-ACAR

    SciTech Connect

    Smedskjaer, L.C.; Benedek, R.; Siegel, R.W.; Legnini, D.G.; Stahulak, M.D.; Bansil, A.

    1988-01-01

    We report 2D-ACAR experiments and KKR CPA calculations on alpha-phase single-crystal Cu/sub 1-x/Pd/sub x/ in the range x less than or equal to 0.25. The flattening of the Fermi surface near (110) with increasing x predicted by theory is confirmed by our experimental results. 16 refs., 2 figs.

  18. The electronic structure and spin states of 2D graphene/VX2 (X = S, Se) heterostructures.

    PubMed

    Popov, Z I; Mikhaleva, N S; Visotin, M A; Kuzubov, A A; Entani, S; Naramoto, H; Sakai, S; Sorokin, P B; Avramov, P V

    2016-12-07

    The structural, magnetic and electronic properties of 2D VX2 (X = S, Se) monolayers and graphene/VX2 heterostructures were studied using a DFT+U approach. It was found that the stability of the 1T phases of VX2 monolayers is linked to strong electron correlation effects. The study of vertical junctions comprising of graphene and VX2 monolayers demonstrated that interlayer interactions lead to the formation of strong spin polarization of both graphene and VX2 fragments while preserving the linear dispersion of graphene-originated bands. It was found that the insertion of Mo atoms between the layers leads to n-doping of graphene with a selective transformation of graphene bands keeping the spin-down Dirac cone intact.

  19. 2D Tl-Pb compounds on Ge(1 1 1) surface: atomic arrangement and electronic band structure.

    PubMed

    Gruznev, D V; Bondarenko, L V; Tupchaya, A Y; Eremeev, S V; Mihalyuk, A N; Chou, J P; Wei, C M; Zotov, A V; Saranin, A A

    2017-01-25

    Structural transformations and evolution of the electron band structure in the (Tl, Pb)/Ge(1 1 1) system have been studied using low-energy electron diffraction, scanning tunneling microscopy, angle-resolved photoelectron spectroscopy and density functional theory calculations. The two 2D Tl-Pb compounds on Ge(1 1 1), [Formula: see text]-(Tl, Pb) and [Formula: see text]-(Tl, Pb), have been found and their composition, atomic arrangement and electron properties has been characterized. The (Tl, Pb)/Ge(1 1 1)[Formula: see text] compound is almost identical to the alike (Tl, Pb)/Si(1 1 1)[Formula: see text] system from the viewpoint of its atomic structure and electronic properties. They contain 1.0 ML of Tl atoms arranged into a honeycomb network of chained trimers and 1/3 ML of Pb atoms occupying the centers of the honeycomb units. The (Tl, Pb)/Ge(1 1 1)[Formula: see text] compound contains six Tl atoms and seven Pb atoms per [Formula: see text] unit cell (i.e.  ∼0.67 ML Tl and  ∼0.78 ML Pb). Its atomic structure can be visualized as consisting of Pb hexagons surrounded by Tl trimers. The (Tl, Pb)/Ge(1 1 1)[Formula: see text] and (Tl, Pb)/Ge(1 1 1)[Formula: see text] compounds are metallic and their band structures contain spin-split surface-state bands. By analogy with the (Tl, Pb)/Si(1 1 1)[Formula: see text], these (Tl, Pb)/Ge(1 1 1) compounds are believed to be promising objects for prospective studies of superconductivity in one-atom-layer systems.

  20. 2D Tl-Pb compounds on Ge(1 1 1) surface: atomic arrangement and electronic band structure

    NASA Astrophysics Data System (ADS)

    Gruznev, D. V.; Bondarenko, L. V.; Tupchaya, A. Y.; Eremeev, S. V.; Mihalyuk, A. N.; Chou, J. P.; Wei, C. M.; Zotov, A. V.; Saranin, A. A.

    2017-01-01

    Structural transformations and evolution of the electron band structure in the (Tl, Pb)/Ge(1 1 1) system have been studied using low-energy electron diffraction, scanning tunneling microscopy, angle-resolved photoelectron spectroscopy and density functional theory calculations. The two 2D Tl-Pb compounds on Ge(1 1 1), \\sqrt{3}× \\sqrt{3} -(Tl, Pb) and 3× 3 -(Tl, Pb), have been found and their composition, atomic arrangement and electron properties has been characterized. The (Tl, Pb)/Ge(1 1 1)\\sqrt{3}× \\sqrt{3} compound is almost identical to the alike (Tl, Pb)/Si(1 1 1)\\sqrt{3}× \\sqrt{3} system from the viewpoint of its atomic structure and electronic properties. They contain 1.0 ML of Tl atoms arranged into a honeycomb network of chained trimers and 1/3 ML of Pb atoms occupying the centers of the honeycomb units. The (Tl, Pb)/Ge(1 1 1)3× 3 compound contains six Tl atoms and seven Pb atoms per 3× 3 unit cell (i.e.  ˜0.67 ML Tl and  ˜0.78 ML Pb). Its atomic structure can be visualized as consisting of Pb hexagons surrounded by Tl trimers. The (Tl, Pb)/Ge(1 1 1)\\sqrt{3}× \\sqrt{3} and (Tl, Pb)/Ge(1 1 1)3× 3 compounds are metallic and their band structures contain spin-split surface-state bands. By analogy with the (Tl, Pb)/Si(1 1 1)\\sqrt{3}× \\sqrt{3} , these (Tl, Pb)/Ge(1 1 1) compounds are believed to be promising objects for prospective studies of superconductivity in one-atom-layer systems.

  1. Structural, electronic transport and optical properties of functionalized quasi-2D TiC2 from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Berdiyorov, G. R.; Madjet, M. E.

    2016-12-01

    Using the first-principles density functional theory, we study the effect of surface functionalization on the structural and optoelectronic properties of recently proposed quasi-two-dimensional material TiC2 [T. Zhao, S. Zhang, Y. Guo, Q. Wang, Nanoscale 8 (2016) 233]. Hydrogenated, fluorinated, oxidized and hydroxylated surfaces are considered. Significant changes in the lattice parameters and partial charge distributions are found due to the surface termination. Direct contribution of the adatoms to the system density of states near the Fermi level is obtained, which has a major impact on the optoelectronic properties of the material. For example, surface termination results in larger absorption in the visible range of the spectrum. The electronic transport is also affected by the surface functionalization: the current in the system can be reduced by an order of magnitude. These findings indicate the importance of the effects of surface passivation on optoelectronic properties of this quasi-2D material.

  2. Gold-induced nanowires on the Ge(100) surface yield a 2D and not a 1D electronic structure

    NASA Astrophysics Data System (ADS)

    de Jong, N.; Heimbuch, R.; Eliëns, S.; Smit, S.; Frantzeskakis, E.; Caux, J.-S.; Zandvliet, H. J. W.; Golden, M. S.

    2016-06-01

    Atomic nanowires on semiconductor surfaces induced by the adsorption of metallic atoms have attracted a lot of attention as possible hosts of the elusive, one-dimensional Tomonaga-Luttinger liquid. The Au/Ge(100) system in particular is the subject of controversy as to whether the Au-induced nanowires do indeed host exotic, 1D (one-dimensional) metallic states. In light of this debate, we report here a thorough study of the electronic properties of high quality nanowires formed at the Au/Ge(100) surface. The high-resolution ARPES data show the low-lying Au-induced electronic states to possess a dispersion relation that depends on two orthogonal directions in k space. Comparison of the E (kx,ky) surface measured using high-resolution ARPES to tight-binding calculations yields hopping parameters in the two different directions that differ by approximately factor of two. Additionally, by pinpointing the Au-induced surface states in the first, second, and third surface Brillouin zones and analyzing their periodicity in k||, the nanowire propagation direction seen clearly in STM can be imported into the ARPES data. We find that the larger of the two hopping parameters corresponds, in fact, to the direction perpendicular to the nanowires (tperp). This proves that the Au-induced electron pockets possess a two-dimensional, closed Fermi surface, and this firmly places the Au/Ge(100) nanowire system outside potential hosts of a Tomonaga-Luttinger liquid. We combine these ARPES data with scanning tunneling spectroscopic measurements of the spatially resolved electronic structure and find that the spatially straight—wirelike—conduction channels observed up to energies of order one electron volt below the Fermi level do not originate from the Au-induced states seen in the ARPES data. The former are rather more likely to be associated with bulk Ge states that are localized to the subsurface region. Despite our proof of the 2D (two-dimentional) nature of the Au

  3. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  4. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  5. 2D 31P solid state NMR spectroscopy, electronic structure and thermochemistry of PbP7

    NASA Astrophysics Data System (ADS)

    Benndorf, Christopher; Hohmann, Andrea; Schmidt, Peer; Eckert, Hellmut; Johrendt, Dirk; Schäfer, Konrad; Pöttgen, Rainer

    2016-03-01

    Phase pure polycrystalline PbP7 was prepared from the elements via a lead flux. Crystalline pieces with edge-lengths up to 1 mm were obtained. The assignment of the previously published 31P solid state NMR spectrum to the seven distinct crystallographic sites was accomplished by radio-frequency driven dipolar recoupling (RFDR) experiments. As commonly found in other solid polyphosphides there is no obvious correlation between the 31P chemical shift and structural parameters. PbP7 decomposes incongruently under release of phosphorus forming liquid lead as remainder. The thermal decomposition starts at T>550 K with a vapor pressure almost similar to that of red phosphorus. Electronic structure calculations reveal PbP7 as a semiconductor according to the Zintl description and clearly shows the stereo-active Pb-6s2 lone pairs in the electron localization function ELF.

  6. Momentum-resolved view of mixed 2D and nonbulklike 3D electronic structure of the surface state on SrTiO3 (001)

    NASA Astrophysics Data System (ADS)

    Plumb, N. C.; Salluzzo, M.; Razzoli, E.; Mansson, M.; Krempasky, J.; Matt, C. E.; Schmitt, T.; Shi, M.; Mesot, J.; Patthey, L.; Radovic, M.

    2014-03-01

    The recent discovery of a metallic surface state on SrTiO3 may open a route to simplified low-dimensional oxide-based conductors, as well as give new insights into interfacial phenomena in heterostructures such as LaAlO3/SrTiO3. Our recent angle-resolved photoemission spectroscopy (ARPES) study demonstrates that not only quasi-2D but also non-bulklike 3D Fermi surface components make up the surface state. Like their more 2D counterparts, the size and character of the 3D components are fixed with respect to a broad range of sample preparations. As seen in previous studies, the surface state can be ``prepared'' by photon irradiation under UHV conditions. An extremely high fraction of the surface valence states are affected by this process, especially in relation to the stability of oxygen core level intensity during the same exposure, which points to a key role of electronic/structural changes that spread over the surface as the metal emerges.

  7. High-throughput critical dimensions uniformity (CDU) measurement of two-dimensional (2D) structures using scanning electron microscope (SEM) systems

    NASA Astrophysics Data System (ADS)

    Fullam, Jennifer; Boye, Carol; Standaert, Theodorus; Gaudiello, John; Tomlinson, Derek; Xiao, Hong; Fang, Wei; Zhang, Xu; Wang, Fei; Ma, Long; Zhao, Yan; Jau, Jack

    2011-03-01

    In this paper, we tested a novel methodology of measuring critical dimension (CD) uniformity, or CDU, with electron beam (e-beam) hotspot inspection and measurement systems developed by Hermes Microvision, Inc. (HMI). The systems were used to take images of two-dimensional (2D) array patterns and measure CDU values in a custom designated fashion. Because this methodology combined imaging of scanning micro scope (SEM) and CD value averaging over a large array pattern of optical CD, or OCD, it can measure CDU of 2D arrays with high accuracy, high repeatability and high throughput.

  8. Band-structure engineering in conjugated 2D polymers.

    PubMed

    Gutzler, Rico

    2016-10-26

    Conjugated polymers find widespread application in (opto)electronic devices, sensing, and as catalysts. Their common one-dimensional structure can be extended into the second dimension to create conjugated planar sheets of covalently linked molecules. Extending π-conjugation into the second dimension unlocks a new class of semiconductive polymers which as a consequence of their unique electronic properties can find usability in numerous applications. In this article the theoretical band structures of a set of conjugated 2D polymers are compared and information on the important characteristics band gap and valence/conduction band dispersion is extracted. The great variance in these characteristics within the investigated set suggests 2D polymers as exciting materials in which band-structure engineering can be used to tailor sheet-like organic materials with desired electronic properties.

  9. Splashing transients of 2D plasmons launched by swift electrons

    PubMed Central

    Lin, Xiao; Kaminer, Ido; Shi, Xihang; Gao, Fei; Yang, Zhaoju; Gao, Zhen; Buljan, Hrvoje; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng; Zhang, Baile

    2017-01-01

    Launching of plasmons by swift electrons has long been used in electron energy–loss spectroscopy (EELS) to investigate the plasmonic properties of ultrathin, or two-dimensional (2D), electron systems. However, the question of how a swift electron generates plasmons in space and time has never been answered. We address this issue by calculating and demonstrating the spatial-temporal dynamics of 2D plasmon generation in graphene. We predict a jet-like rise of excessive charge concentration that delays the generation of 2D plasmons in EELS, exhibiting an analog to the hydrodynamic Rayleigh jet in a splashing phenomenon before the launching of ripples. The photon radiation, analogous to the splashing sound, accompanies the plasmon emission and can be understood as being shaken off by the Rayleigh jet–like charge concentration. Considering this newly revealed process, we argue that previous estimates on the yields of graphene plasmons in EELS need to be reevaluated. PMID:28138546

  10. Graphene band structure and its 2D Raman mode

    NASA Astrophysics Data System (ADS)

    Narula, Rohit; Reich, Stephanie

    2014-08-01

    High-precision simulations are used to generate the 2D Raman mode of graphene under a range of screening conditions and laser energies EL. We reproduce the decreasing trend of the 2D mode FWHM vs EL and the nearly linearly increasing dispersion ∂ω2D/∂EL seen experimentally in freestanding (unscreened) graphene, and propose relations between these experimentally accessible quantities and the local, two-dimensional gradients |∇ | of the electronic and TO phonon bands. In light of state-of-the-art electronic structure calculations that acutely treat the long-range e-e interactions of isolated graphene and its experimentally observed 2D Raman mode, our calculations determine a 40% greater slope of the TO phonons about K than given by explicit phonon measurements performed in graphite or GW phonon calculations in graphene. We also deduce the variation of the broadening energy γ [EL] for freestanding graphene and find a nominal value γ ˜140 meV, showing a gradually increasing trend for the range of frequencies available experimentally.

  11. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    SciTech Connect

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  12. Quantum Oscillations in an Interfacial 2D Electron Gas.

    SciTech Connect

    Zhang, Bingop; Lu, Ping; Liu, Henan; Lin, Jiao; Ye, Zhenyu; Jaime, Marcelo; Balakirev, Fedor F.; Yuan, Huiqiu; Wu, Huizhen; Pan, Wei; Zhang, Yong

    2016-01-01

    Recently, it has been predicted that topological crystalline insulators (TCIs) may exist in SnTe and Pb1-xSnxTe thin films [1]. To date, most studies on TCIs were carried out either in bulk crystals or thin films, and no research activity has been explored in heterostructures. We present here the results on electronic transport properties of the 2D electron gas (2DEG) realized at the interfaces of PbTe/ CdTe (111) heterostructures. Evidence of topological state in this interfacial 2DEG was observed.

  13. Optimizing sparse sampling for 2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Roeding, Sebastian; Klimovich, Nikita; Brixner, Tobias

    2017-02-01

    We present a new data acquisition concept using optimized non-uniform sampling and compressed sensing reconstruction in order to substantially decrease the acquisition times in action-based multidimensional electronic spectroscopy. For this we acquire a regularly sampled reference data set at a fixed population time and use a genetic algorithm to optimize a reduced non-uniform sampling pattern. We then apply the optimal sampling for data acquisition at all other population times. Furthermore, we show how to transform two-dimensional (2D) spectra into a joint 4D time-frequency von Neumann representation. This leads to increased sparsity compared to the Fourier domain and to improved reconstruction. We demonstrate this approach by recovering transient dynamics in the 2D spectrum of a cresyl violet sample using just 25% of the originally sampled data points.

  14. Femtosecond Dynamics of Electrons in 2-D Dissipative Systems

    NASA Astrophysics Data System (ADS)

    Harris, Charles

    2000-03-01

    Transitions between weakly coupled initial and final states can be treated with a lowest order perturbation theory in the electronic coupling which yields the well-known golden rule in this non-adiabatic limit. In strongly interacting systems, one often resorts to semiclassical treatments, such as the Landau-Zener formula for the transition probability in the adiabatic limit. Recent electron transfer theory by Stuchebrukhov and Song treats the two limit on equal footing by summing over all perturbation orders in electronic coupling[1]. Here we present the application of this theory to model the dynamics of electron self-trapping in 2-D at the n-heptane/Ag(111) and anthracene/Ag(111) interface. Our results revealed an intermediate electronic coupling for the self-trapping process at the n-heptane/Ag(111) interface which can mainly be described by a non-adiabatic process. Results for electron self-trapping at the anthracene/Ag(111) interface revealed a stronger electronic coupling which requires the summing of higher perturbation orders. [1] A.A. Stuchebrukhov and X. song, J. Chem. Phys. 101, 9354, 1994. [2] N.-H. Ge,C.M. Wong, R.L. Lingle, Jr., J.D. McNeill, K.J. Gaffney, and C.B. Harris, Science 279, 202, 1998.

  15. 2D Radiative Transfer in Magnetically Confined Structures

    NASA Astrophysics Data System (ADS)

    Heinzel, P.; Anzer, U.

    2003-01-01

    Magnetically confined structures in the solar atmosphere exhibit a large complexity in their shapes and physical conditions. As an example, we show the case of so-called magnetic dips in prominences which are in magnetohydrostatic equilibria. For such models we solve 2D non-LTE multilevel problem for hydrogen with PRD in Lyman resonance lines. The iterative technique used is based on the MALI approach with simple diagonal ALO and SC formal solver. To compute the hydrogen ionization balance, the preconditioned MALI equations are linearized with respect to atomic level populations and electron density and solved iteratively using the Newton-Raphson scheme. Two additional problems are addressed: (i) an adequate iteration method for cases when the column-mass scale is used in one of the two dimensions but varies along the other dimension (which has a geometrical scaling); and (ii) a possibility of using AMR (Adaptive Mesh Refinement) algorithms to account for steep 2D gradients of selected variables (temperature, density, etc.).

  16. Electron-Phonon Scattering in Atomically Thin 2D Perovskites.

    PubMed

    Guo, Zhi; Wu, Xiaoxi; Zhu, Tong; Zhu, Xiaoyang; Huang, Libai

    2016-11-22

    Two-dimensional (2D) atomically thin perovskites with strongly bound excitons are highly promising for optoelectronic applications. However, the nature of nonradiative processes that limit the photoluminescence (PL) efficiency remains elusive. Here, we present time-resolved and temperature-dependent PL studies to systematically address the intrinsic exciton relaxation pathways in layered (C4H9NH3)2(CH3NH3)n-1PbnI3n+1 (n = 1, 2, 3) structures. Our results show that scatterings via deformation potential by acoustic and homopolar optical phonons are the main scattering mechanisms for excitons in ultrathin single exfoliated flakes, exhibiting a T(γ) (γ = 1.3 to 1.9) temperature dependence for scattering rates. We attribute the absence of polar optical phonon and defect scattering to efficient screening of Coulomb potential, similar to what has been observed in 3D perovskites. These results establish an understanding of the origins of nonradiative pathways and provide guidelines for optimizing PL efficiencies of atomically thin 2D perovskites.

  17. Photocarrier transport in 2D macroporous silicon structures

    NASA Astrophysics Data System (ADS)

    Karachevtseva, L.; Onyshchenko, V.; Sachenko, A.

    2010-12-01

    The mechanisms of photocarrier transport through a barrier in the surface space-charge region (SCR) of 2D macroporous silicon structures have been studied at photon energies comparable to that of the silicon indirect band-to-band transition. It was found that the photoconductivity relaxation time was determined by the light modulation of barrier on the macropore surface; as a result, the relaxation itself obeyed the logarithmic law. The temperature dependence of the photoconductivity relaxation time was determined by the thermionic emission mechanism of the current transport in the SCR at temperatures T > 180 K, and by the tunnel current flow at T < 100 K, with temperature-independent tunnelling probability. The photo-emf was found to become saturated or reverse its sign to negative at temperatures below 130 K because of light absorption due to optical transitions via surface electronic states close to the silicon conduction band. In this case, the surface band bending increases due to the growth of a negative charge of the semiconductor surface. The equilibrium electrons in the bulk and photoexcited holes on the macropore surface recombine through the channel of multistage tunnel recombination between the conduction and valence bands.

  18. Nano-scale electronic and optoelectronic devices based on 2D crystals

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjuan

    In the last few years, the research community has been rapidly growing interests in two-dimensional (2D) crystals and their applications. The properties of these 2D crystals are diverse -- ranging from semi-metal such as graphene, semiconductors such as MoS2, to insulator such as boron nitride. These 2D crystals have many unique properties as compared to their bulk counterparts due to their reduced dimensionality and symmetry. A key difference is the band structures, which lead to distinct electronic and photonic properties. The 2D nature of the material also plays an important role in defining their exceptional properties of mechanical strength, surface sensitivity, thermal conductivity, tunable band-gap and their interaction with light. These unique properties of 2D crystals open up a broad territory of applications in computing, communication, energy, and medicine. In this talk, I will present our work on understanding the electrical properties of graphene and MoS2, in particular current transport and band-gap engineering in graphene, interface between gate dielectrics and graphene, and gap states in MoS2. I will also present our work on the nano-scale electronic devices (RF and logic devices) and photonic devices (plasmonic devices and photo-detectors) based on these 2D crystals.

  19. Synchronization of semiconductor laser arrays with 2D Bragg structures

    NASA Astrophysics Data System (ADS)

    Baryshev, V. R.; Ginzburg, N. S.

    2016-08-01

    A model of a planar semiconductor multi-channel laser is developed. In this model two-dimensional (2D) Bragg mirror structures are used for synchronizing radiation of multiple laser channels. Coupling of longitudinal and transverse waves can be mentioned as the distinguishing feature of these structures. Synchronization of 20 laser channels is demonstrated with a semi-classical approach based on Maxwell-Bloch equations.

  20. Crystal Structure of Human Cytochrome P450 2D6 with Prinomastat Bound*

    PubMed Central

    Wang, An; Savas, Uzen; Hsu, Mei-Hui; Stout, C. David; Johnson, Eric F.

    2012-01-01

    Human cytochrome P450 2D6 contributes to the metabolism of >15% of drugs used in clinical practice. This study determined the structure of P450 2D6 complexed with a substrate and potent inhibitor, prinomastat, to 2.85 Å resolution by x-ray crystallography. Prinomastat binding is well defined by electron density maps with its pyridyl nitrogen bound to the heme iron. The structure of ligand-bound P450 2D6 differs significantly from the ligand-free structure reported for the P450 2D6 Met-374 variant (Protein Data Bank code 2F9Q). Superposition of the structures reveals significant differences for β sheet 1, helices A, F, F′, G″, G, and H as well as the helix B-C loop. The structure of the ligand complex exhibits a closed active site cavity that conforms closely to the shape of prinomastat. The closure of the open cavity seen for the 2F9Q structure reflects a change in the direction and pitch of helix F and introduction of a turn at Gly-218, which is followed by a well defined helix F′ that was not observed in the 2F9Q structure. These differences reflect considerable structural flexibility that is likely to contribute to the catalytic versatility of P450 2D6, and this new structure provides an alternative model for in silico studies of substrate interactions with P450 2D6. PMID:22308038

  1. Structural Complexity and Phonon Physics in 2D Arsenenes.

    PubMed

    Carrete, Jesús; Gallego, Luis J; Mingo, Natalio

    2017-03-15

    In the quest for stable 2D arsenic phases, four different structures have been recently claimed to be stable. We show that, due to phonon contributions, the relative stability of those structures differs from previous reports and depends crucially on temperature. We also show that one of those four phases is in fact mechanically unstable. Furthermore, our results challenge the common assumption of an inverse correlation between structural complexity and thermal conductivity. Instead, a richer picture emerges from our results, showing how harmonic interactions, anharmonicity, and symmetries all play a role in modulating thermal conduction in arsenenes. More generally, our conclusions highlight how vibrational properties are an essential element to be carefully taken into account in theoretical searches for new 2D materials.

  2. Surface effects on electronic transport of 2D chalcogenide thin films and nanostructures.

    PubMed

    Jung, Yeonwoong; Shen, Jie; Cha, Judy J

    2014-01-01

    The renewed interest in two-dimensional materials, particularly transition metal dichalcogenides, has been explosive, evident in a number of review and perspective articles on the topic. Our ability to synthesize and study these 2D materials down to a single layer and to stack them to form van der Waals heterostructures opens up a wide range of possibilities from fundamental studies of nanoscale effects to future electronic and optoelectronic applications. Bottom-up and top-down synthesis and basic electronic properties of 2D chalcogenide materials have been covered in great detail elsewhere. Here, we bring attention to more subtle effects: how the environmental, surface, and crystal defects modify the electronic band structure and transport properties of 2D chalcogenide nanomaterials. Surface effects such as surface oxidation and substrate influence may dominate the overall transport properties, particularly in single layer chalcogenide devices. Thus, understanding such effects is critical for successful applications based on these materials. In this review, we discuss two classes of chalcogenides - Bi-based and Mo-based chalcogenides. The first are topological insulators with unique surface electronic properties and the second are promising for flexible optoelectronic applications as well as hydrogen evolution catalytic reactions.

  3. Micro-structural Fluctuations in 2D Dusty Plasma Liquids

    SciTech Connect

    I Lin; Huang, Y.-H.; Teng, L.-W.

    2007-07-13

    We address structural fluctuations in a cold 2D dusty plasma liquid which is self-organized through the strong Coulomb coupling of the negatively charged micro-meter sized dust particles suspending in weakly ionized discharges. The 2D liquids consist of triangular type ordered domains surrounded by defect clusters, which can be reorganized through avalanche type hopping under the interplay of strong Coulomb coupling and thermal fluctuations. The spatio-temporal evolutions of the local bond-orientational order are directly tracked through digital optical microscopy. The power law scaling of the temporal persistence length of fluctuations is obtained for the cold liquid. The measurement of the conditional probability of the persistence lengths of the successive fluctuating cycles suggests certain types of the persistence length combinations are more preferred. The memory of persistence lasts a few fluctuating cycles.

  4. Meshfree natural vibration analysis of 2D structures

    NASA Astrophysics Data System (ADS)

    Kosta, Tomislav; Tsukanov, Igor

    2014-02-01

    Determination of resonance frequencies and vibration modes of mechanical structures is one of the most important tasks in the product design procedure. The main goal of this paper is to describe a pioneering application of the solution structure method (SSM) to 2D structural natural vibration analysis problems and investigate the numerical properties of the method. SSM is a meshfree method which enables construction of the solutions to the engineering problems that satisfy exactly all prescribed boundary conditions. This method is capable of using spatial meshes that do not conform to the shape of a geometric model. Instead of using the grid nodes to enforce boundary conditions, it employs distance fields to the geometric boundaries and combines them with the basis functions and prescribed boundary conditions at run time. This defines unprecedented geometric flexibility of the SSM as well as the complete automation of the solution procedure. In the paper we will explain the key points of the SSM as well as investigate the accuracy and convergence of the proposed approach by comparing our results with the ones obtained using analytical methods or traditional finite element analysis. Despite in this paper we are dealing with 2D in-plane vibrations, the proposed approach has a straightforward generalization to model vibrations of 3D structures.

  5. 2D electron temperature diagnostic using soft x-ray imaging technique

    SciTech Connect

    Nishimura, K. Sanpei, A. Tanaka, H.; Ishii, G.; Kodera, R.; Ueba, R.; Himura, H.; Masamune, S.; Ohdachi, S.; Mizuguchi, N.

    2014-03-15

    We have developed a two-dimensional (2D) electron temperature (T{sub e}) diagnostic system for thermal structure studies in a low-aspect-ratio reversed field pinch (RFP). The system consists of a soft x-ray (SXR) camera with two pin holes for two-kinds of absorber foils, combined with a high-speed camera. Two SXR images with almost the same viewing area are formed through different absorber foils on a single micro-channel plate (MCP). A 2D T{sub e} image can then be obtained by calculating the intensity ratio for each element of the images. We have succeeded in distinguishing T{sub e} image in quasi-single helicity (QSH) from that in multi-helicity (MH) RFP states, where the former is characterized by concentrated magnetic fluctuation spectrum and the latter, by broad spectrum of edge magnetic fluctuations.

  6. HEXAGONAL ARRAY STRUCTURE FOR 2D NDE APPLICATIONS

    SciTech Connect

    Dziewierz, J.; Ramadas, S. N.; Gachagan, A.; O'Leary, R. L.

    2010-02-22

    This paper describes a combination of simulation and experimentation to evaluate the advantages offered by utilizing a hexagonal shaped array element in a 2D NDE array structure. The active material is a 1-3 connectivity piezoelectric composite structure incorporating triangular shaped pillars--each hexagonal array element comprising six triangular pillars. A combination of PZFlex, COMSOL and Matlab has been used to simulate the behavior of this device microstructure, for operation around 2.25 MHz, with unimodal behavior and low levels of mechanical cross-coupling predicted. Furthermore, the application of hexagonal array elements enables the array aperture to increase by approximately 30%, compared to a conventional orthogonal array matrix and hence will provide enhanced volumetric coverage and SNR. Prototype array configurations demonstrate good corroboration of the theoretically predicted mechanical cross-coupling between adjacent array elements (approx23 dB).

  7. An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm.

    PubMed

    Wang, Yanchao; Miao, Maosheng; Lv, Jian; Zhu, Li; Yin, Ketao; Liu, Hanyu; Ma, Yanming

    2012-12-14

    A structure prediction method for layered materials based on two-dimensional (2D) particle swarm optimization algorithm is developed. The relaxation of atoms in the perpendicular direction within a given range is allowed. Additional techniques including structural similarity determination, symmetry constraint enforcement, and discretization of structure constructions based on space gridding are implemented and demonstrated to significantly improve the global structural search efficiency. Our method is successful in predicting the structures of known 2D materials, including single layer and multi-layer graphene, 2D boron nitride (BN) compounds, and some quasi-2D group 6 metals(VIB) chalcogenides. Furthermore, by use of this method, we predict a new family of mono-layered boron nitride structures with different chemical compositions. The first-principles electronic structure calculations reveal that the band gap of these N-rich BN systems can be tuned from 5.40 eV to 2.20 eV by adjusting the composition.

  8. Lipid-gramicidin interactions: dynamic structure of the boundary lipid by 2D-ELDOR.

    PubMed

    Costa-Filho, Antonio J; Crepeau, Richard H; Borbat, Petr P; Ge, Mingtao; Freed, Jack H

    2003-05-01

    The use of 2D-electron-electron double resonance (2D-ELDOR) for the characterization of the boundary lipid in membrane vesicles of DPPC and gramicidin A' (GA) is reported. We show that 2D-ELDOR, with its enhanced spectral resolution to dynamic structure as compared with continuous-wave electron spin resonance, provides a reliable and useful way of studying lipid-protein interactions. The 2D-ELDOR spectra of the end-chain spin label 16-PC in DPPC/GA vesicles is composed of two components, which are assigned to the bulk lipids (with sharp auto peaks and crosspeaks) and to the boundary lipids (with broad auto peaks). Their distinction is clearest for higher temperatures and higher GA concentrations. The quantitative analysis of these spectra shows relatively faster motions and very low ordering for the end chain of the bulk lipids, whereas the boundary lipids show very high "y-ordering" and slower motions. The y-ordering represents a dynamic bending at the end of the boundary lipid acyl chain, which can then coat the GA molecules. These results are consistent with the previous studies by Ge and Freed (1999) using continuous-wave electron spin resonance, thereby supporting their model for GA aggregation and H(II) phase formation for high GA concentrations. Improved instrumental and simulation methods have been employed.

  9. Ferroelectricity, Antiferroelectricity and Ultrathin 2D Electron/Hole Gas in Multifunctional Monolayer MXene.

    PubMed

    Chandrasekaran, Anand; Mishra, Avanish; Singh, Abhishek Kumar

    2017-04-04

    Presence of ferroelectric polarization in 2D materials is extremely rare due to the effect of the surface depolarizing field. Here, we use first-principles calculations to show the largest out-of-plane polarization observed in a monolayer in functionalized MXenes (Sc2CO2). The switching of polarization in this new class of ferroelectric materials occurs through an previously unknown intermediate antiferroelectric structure thus establishing three states for applications in low-dimensional non-volatile memory. We show that the armchair domain-interface acts as an 1D metallic nanowire separating two insulating domains. In the case of the van-der-Waals bilayer we observe, interestingly, the presence of an ultrathin 2D electron/hole gas (2DEG) on the top/bottom layers, respectively, due to the redistrubution of charge carriers. The 2DEG is non-degenerate due to spin-orbit-coupling, thus paving the way for spin-orbitronic devices. The coexistence of ferroelectricity, antiferroelectricity, 2DEG and spin-orbit splitting in this system suggests that such 2D polar materials possess high potential for device application in a multitude of fields ranging from nanoelectronics to photovoltaics.

  10. Fabrication of 2D and 3D photonic structures using laser lithography

    NASA Astrophysics Data System (ADS)

    Gaso, P.; Jandura, D.; Pudis, D.

    2016-12-01

    In this paper we demonstrate possibilities of three-dimensional (3D) printing technology based on two photon polymerization. We used three-dimensional dip-in direct-laser-writing (DLW) optical lithography to fabricate 2D and 3D optical structures for optoelectronics and for optical sensing applications. DLW lithography allows us use a non conventional way how to couple light into the waveguide structure. We prepared ring resonator and we investigated its transmission spectral characteristic. We present 3D inverse opal structure from its design to printing and scanning electron microscope (SEM) imaging. Finally, SEM images of some prepared photonic crystal structures were performed.

  11. Dual-mode operation of 2D material-base hot electron transistors.

    PubMed

    Lan, Yann-Wen; Torres, Carlos M; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R; Lerner, Mitchell B; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L

    2016-09-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  12. Dual-mode operation of 2D material-base hot electron transistors

    PubMed Central

    Lan, Yann-Wen; Torres, Jr., Carlos M.; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R.; Lerner, Mitchell B.; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L.

    2016-01-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications. PMID:27581550

  13. Dual-mode operation of 2D material-base hot electron transistors

    NASA Astrophysics Data System (ADS)

    Lan, Yann-Wen; Torres, Carlos M., Jr.; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R.; Lerner, Mitchell B.; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L.

    2016-09-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  14. Investigation of fast particle driven instabilities by 2D electron cyclotron emission imaging on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Classen, I. G. J.; Lauber, Ph; Curran, D.; Boom, J. E.; Tobias, B. J.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Garcia Munoz, M.; Geiger, B.; Maraschek, M.; Van Zeeland, M. A.; da Graça, S.; ASDEX Upgrade Team

    2011-12-01

    Detailed measurements of the 2D mode structure of Alfvén instabilities in the current ramp-up phase of neutral beam heated discharges were performed on ASDEX Upgrade, using the electron cyclotron emission imaging (ECEI) diagnostic. This paper focuses on the observation of reversed shear Alfvén eigenmodes (RSAEs) and bursting modes that, with the use of the information from ECEI, have been identified as beta-induced Alfvén eigenmodes (BAEs). Both RSAEs with first and second radial harmonic mode structures were observed. Calculations with the linear gyro-kinetic code LIGKA revealed that the ratio of the damping rates and the frequency difference between the first and second harmonic modes strongly depended on the shape of the q-profile. The bursting character of the BAE type modes, which were radially localized to rational q surfaces, was observed to sensitively depend on the plasma parameters, ranging from strongly bursting to almost steady state.

  15. Enhancement of low-energy electron emission in 2D radioactive films.

    PubMed

    Pronschinske, Alex; Pedevilla, Philipp; Murphy, Colin J; Lewis, Emily A; Lucci, Felicia R; Brown, Garth; Pappas, George; Michaelides, Angelos; Sykes, E Charles H

    2015-09-01

    High-energy radiation has been used for decades; however, the role of low-energy electrons created during irradiation has only recently begun to be appreciated. Low-energy electrons are the most important component of radiation damage in biological environments because they have subcellular ranges, interact destructively with chemical bonds, and are the most abundant product of ionizing particles in tissue. However, methods for generating them locally without external stimulation do not exist. Here, we synthesize one-atom-thick films of the radioactive isotope (125)I on gold that are stable under ambient conditions. Scanning tunnelling microscopy, supported by electronic structure simulations, allows us to directly observe nuclear transmutation of individual (125)I atoms into (125)Te, and explain the surprising stability of the 2D film as it underwent radioactive decay. The metal interface geometry induces a 600% amplification of low-energy electron emission (<10 eV; ref. ) compared with atomic (125)I. This enhancement of biologically active low-energy electrons might offer a new direction for highly targeted nanoparticle therapies.

  16. Enhancement of low-energy electron emission in 2D radioactive films

    NASA Astrophysics Data System (ADS)

    Pronschinske, Alex; Pedevilla, Philipp; Murphy, Colin J.; Lewis, Emily A.; Lucci, Felicia R.; Brown, Garth; Pappas, George; Michaelides, Angelos; Sykes, E. Charles H.

    2015-09-01

    High-energy radiation has been used for decades; however, the role of low-energy electrons created during irradiation has only recently begun to be appreciated. Low-energy electrons are the most important component of radiation damage in biological environments because they have subcellular ranges, interact destructively with chemical bonds, and are the most abundant product of ionizing particles in tissue. However, methods for generating them locally without external stimulation do not exist. Here, we synthesize one-atom-thick films of the radioactive isotope 125I on gold that are stable under ambient conditions. Scanning tunnelling microscopy, supported by electronic structure simulations, allows us to directly observe nuclear transmutation of individual 125I atoms into 125Te, and explain the surprising stability of the 2D film as it underwent radioactive decay. The metal interface geometry induces a 600% amplification of low-energy electron emission (<10 eV; ref. ) compared with atomic 125I. This enhancement of biologically active low-energy electrons might offer a new direction for highly targeted nanoparticle therapies.

  17. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  18. Two-dimensional B-C-O alloys: a promising class of 2D materials for electronic devices.

    PubMed

    Zhou, Si; Zhao, Jijun

    2016-04-28

    Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp2 honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor forming alternate patterns into the chain- or ring-like structures embedded in the pristine graphene regions. These B-C-O hybrid sheets can be either metals or semiconductors depending on the B : O ratio. The semiconducting (B2O)nCm and (B6O3)nCm phases exist under the B- and O-rich conditions, and possess a tunable band gap of 1.0-3.8 eV and high carrier mobility, retaining ∼1000 cm2 V(-1) s(-1) even for half coverage of B and O atoms. These B-C-O alloys form a new class of 2D materials that are promising candidates for high-speed electronic devices.

  19. 2D positive streamer modelling in NTP air under extreme pulse fronts. What about runaway electrons?

    NASA Astrophysics Data System (ADS)

    Marode, E.; Dessante, Ph; Tardiveau, P.

    2016-12-01

    Using a 2D model, an attempt is made to understand the properties and aspects of a diffuse discharge, appearing in a positive point-to-plane gap submitted to very high voltage pulses. After presenting the model, comparisons between the computed low and high pulse heights of 10 kV and 50 kV, respectively, will be shown and analysed. A streamer ionising wave is still formed, but its role in ionising a region of low field is replaced by the role of providing a plasma within which the electrons will benefit from the presence of a high electrical field meant to induce strong electron collision activities. A comparison between the aspect of the computed and experimental discharge carried out in the same conditions at 50 kV will be presented, which seems to be in agreement with the diffuse aspect. Although the difference in order of magnitude of the speed of development and the height of the current must be underlined, similarities between the structures of both situations will, however, be recognised. A high probability of obtaining highly energetic electrons and runaways (RAEs) will also be derived following a simple approach.

  20. Electron-impact dissociative excitation and ionization of N2D+

    SciTech Connect

    FogleJr, Michael R; Bahati Musafiri, Eric; Bannister, Mark E; Deng, Shihu; Vane, C Randy; Thomas, R. D.; Zhaunerchyk, Vitali

    2011-01-01

    Absolute cross sections for electron-impact dissociation of N{sub 2}D{sub +} producing N{sub 2}{sub +}, ND{sub +}, and N{sub +} ion fragments were measured in the 5- to 100-eV range using a crossed electron-ion beams technique. In the 5- to 20-eV region, in which dissociative excitation (DE) is the principal contributing mechanism, N{sub 2}{sub +} production dominates. The N{sub 2}{sub +} + D dissociation channel shows a large resonant-like structure in the DE cross section, as observed previously in electron impact dissociation of triatomic dihydride species [ M. Fogle, E. M. Bahati, M. E. Bannister, S. H. M. Deng, C. R. Vane, R. D. Thomas and V. Zhaunerchyk Phys. Rev. A 82 042720 (2010)]. In the dissociative ionization (DI) region, 20- to 100-eV, N{sub 2}{sub +}, ND{sub +}, and N{sub +} ion fragment production are comparable. The observance of the ND{sub +} and N{sub +} ion fragments indicate breaking of the N - N bond along certain dissociation channels.

  1. Electron-impact dissociative excitation and ionization of N{sub 2}D{sup +}

    SciTech Connect

    Fogle, M.; Bahati, E. M.; Bannister, M. E.; Deng, S. H. M.; Vane, C. R.; Thomas, R. D.; Zhaunerchyk, V.

    2011-09-15

    Absolute cross sections for electron-impact dissociation of N{sub 2}D{sup +} producing N{sub 2}{sup +}, ND{sup +}, and N{sup +} ion fragments were measured in the 5- to 100-eV range using a crossed electron-ion beams technique. In the 5- to 20-eV region, in which dissociative excitation (DE) is the principal contributing mechanism, N{sub 2}{sup +} production dominates. The N{sub 2}{sup +} + D dissociation channel shows a large resonant-like structure in the DE cross section, as observed previously in electron impact dissociation of triatomic dihydride species [M. Fogle, E. M. Bahati, M. E. Bannister, S. H. M. Deng, C. R. Vane, R. D. Thomas, and V. Zhaunerchyk, Phys. Rev. A 82, 042720 (2010)]. In the dissociative ionization (DI) region, 20- to 100-eV, N{sub 2}{sup +}, ND{sup +}, and N{sup +} ion fragment production are comparable. The observance of the ND{sup +} and N{sup +} ion fragments indicate breaking of the N - N bond along certain dissociation channels.

  2. Design of 2D chitosan scaffolds via electrochemical structuring

    PubMed Central

    Altomare, Lina; Guglielmo, Elena; Varoni, Elena Maria; Bertoldi, Serena; Cochis, Andrea; Rimondini, Lia; De Nardo, Luigi

    2014-01-01

    Chitosan (CS) is a versatile biopolymer whose morphological and chemico-physical properties can be designed for a variety of biomedical applications. Taking advantage of its electrolytic nature, cathodic polarization allows CS deposition on electrically conductive substrates, resulting in thin porous structures with tunable morphology. Here we propose an easy method to obtain CS membranes with highly oriented micro-channels for tissue engineering applications, relying on simple control of process parameters and cathodic substrate geometry.   Cathodic deposition was performed on two different aluminum grids in galvanostatic conditions at 6.25 mA cm−2 from CS solution [1g L−1] in acetic acid (pH 3.5). Self-standing thin scaffolds were cross linked either with genipin or epichlorohydrin, weighted, and observed by optical and electron microscopy. Swelling properties at pH 5 and pH 7.4 have been also investigated and tensile tests performed on swollen samples at room temperature. Finally, direct and indirect assays have been performed to evaluate the cytotoxicity at 24 and 72 h. Thin scaffolds with two different oriented porosities (1000µm and 500µm) have been successfully fabricated by electrochemical techniques. Both cross-linking agents did not affected the mechanical properties and cytocompatibility of the resulting structures. Depending on the pH, these structures show interesting swelling properties that can be exploited for drug delivery systems. Moreover, thanks to the possibility of controlling the porosity and the micro-channel orientation, they should be used for the regeneration of tissues requiring a preferential cells orientation, e.g., cardiac patches or ligament regeneration. PMID:25093705

  3. Experiments on 2D Vortex Patterns with a Photoinjected Pure Electron Plasma

    NASA Astrophysics Data System (ADS)

    Durkin, Daniel; Fajans, Joel

    1998-11-01

    The equations governing the evolution of a strongly magnetized pure electron plasma are analogous to those of an ideal 2D fluid; plasma density is analogous to fluid vorticity. Therefore, we can study vortex dynamics with pure electron plasmas. We generate our electron plasma with a photocathode electron source. The photocathode provides greater control over the initial profile than previous thermionic sources and allows us to create complicated initial density distributions, corresponding to complicated vorticity distributions in a fluid. Results on the stability of 2D vortex patterns will be presented: 1) The stability of N vortices arranged in a ring; 2) The stability of N vortices arranged in a ring with a central vortex; 3) The stability of more complicated vortex patterns.(http://socrates.berkeley.edu/ )fajans/

  4. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers

    DOE PAGES

    Anasori, Babak; Shi, Chenyang; Moon, Eun Ju; ...

    2016-02-24

    In this paper, a transition from metallic to semiconducting-like behavior has been demonstrated in two-dimensional (2D) transition metal carbides by replacing titanium with molybdenum in the outer transition metal (M) layers of M3C2 and M4C3 MXenes. The MXene structure consists of n + 1 layers of near-close packed M layers with C or N occupying the octahedral site between them in an [MX]nM arrangement. Recently, two new families of ordered 2D double transition metal carbides MXenes were discovered, M'2M"C2 and M'2M"2C3 – where M' and M" are two different early transition metals, such as Mo, Cr, Ta, Nb, V, andmore » Ti. The M' atoms only occupy the outer layers and the M" atoms fill the middle layers. In other words, M' atomic layers sandwich the middle M"–C layers. Using X-ray atomic pair distribution function (PDF) analysis on Mo2TiC2 and Mo2Ti2C3 MXenes, we present the first quantitative analysis of structures of these novel materials and experimentally confirm that Mo atoms are in the outer layers of the [MC]nM structures. The electronic properties of these Mo-containing MXenes are compared with their Ti3C2 counterparts, and are found to be no longer metallic-like conductors; instead the resistance increases mildly with decreasing temperatures. Density functional theory (DFT) calculations suggest that OH terminated Mo–Ti MXenes are semiconductors with narrow band gaps. Measurements of the temperature dependencies of conductivities and magnetoresistances have confirmed that Mo2TiC2Tx exhibits semiconductor-like transport behavior, while Ti3C2Tx is a metal. Finally, this finding opens new avenues for the control of the electronic and optical applications of MXenes and for exploring new applications, in which semiconducting properties are required.« less

  5. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers

    SciTech Connect

    Anasori, Babak; Shi, Chenyang; Moon, Eun Ju; Xie, Yu; Voigt, Cooper A.; Kent, Paul R. C.; May, Steven J.; Billinge, Simon J. L.; Barsoum, Michel W.; Gogotsi, Yury

    2016-02-24

    In this paper, a transition from metallic to semiconducting-like behavior has been demonstrated in two-dimensional (2D) transition metal carbides by replacing titanium with molybdenum in the outer transition metal (M) layers of M3C2 and M4C3 MXenes. The MXene structure consists of n + 1 layers of near-close packed M layers with C or N occupying the octahedral site between them in an [MX]nM arrangement. Recently, two new families of ordered 2D double transition metal carbides MXenes were discovered, M'2M"C2 and M'2M"2C3 – where M' and M" are two different early transition metals, such as Mo, Cr, Ta, Nb, V, and Ti. The M' atoms only occupy the outer layers and the M" atoms fill the middle layers. In other words, M' atomic layers sandwich the middle M"–C layers. Using X-ray atomic pair distribution function (PDF) analysis on Mo2TiC2 and Mo2Ti2C3 MXenes, we present the first quantitative analysis of structures of these novel materials and experimentally confirm that Mo atoms are in the outer layers of the [MC]nM structures. The electronic properties of these Mo-containing MXenes are compared with their Ti3C2 counterparts, and are found to be no longer metallic-like conductors; instead the resistance increases mildly with decreasing temperatures. Density functional theory (DFT) calculations suggest that OH terminated Mo–Ti MXenes are semiconductors with narrow band gaps. Measurements of the temperature dependencies of conductivities and magnetoresistances have confirmed that Mo2TiC2Tx exhibits semiconductor-like transport behavior, while Ti3C2Tx is a metal. Finally, this finding opens new avenues for the control of the electronic and optical applications of MXenes and for exploring new applications, in

  6. Transverse instability of electron plasma waves study via direct 2 +2D Vlasov simulations

    NASA Astrophysics Data System (ADS)

    Silantyev, Denis; Lushnikov, Pavel; Rose, Harvey

    2016-10-01

    Transverse instability can be viewed as initial stage of electron plasma waves (EPWs) filamentation. We performed direct 2 +2D Vlasov-Poisson simulations of collisionless plasma to systematically study the growth rates of oblique modes of finite-amplitude EPW depending on its amplitude, wavenumber, angle of the oblique mode wavevector relative to the EPW's wavevector and the configuration of the trapped electrons in the EPW. Simulation results are compared to the predictions of theoretical models.

  7. Tight-Binding Approximations in 1D and 2D Coupled-Cavity Photonic Crystal Structures

    NASA Astrophysics Data System (ADS)

    Day, Nicole C. L.

    Light confinement and controlling an optical field has numerous applications in the field of telecommunications for optical signals processing. When the wavelength of the electromagnetic field is on the order of the period of a photonic microstructure, the field undergoes reflection, refraction, and coherent scattering. This produces photonic bandgaps, forbidden frequency regions or spectral stop bands where light cannot exist. Dielectric perturbations that break the perfect periodicity of these structures produce what is analogous to an impurity state in the bandgap of a semiconductor. The defect modes that exist at discrete frequencies within the photonic bandgap are spatially localized about the cavity-defects in the photonic crystal. In this thesis the properties of two tight-binding approximations (TBAs) are investigated in one-dimensional and two-dimensional coupled-cavity photonic crystal structures. We require an efficient and simple approach that ensures the continuity of the electromagnetic field across dielectric interfaces in complex structures. In this thesis we develop E- and D-TBAs to calculate the modes in finite 1D and 2D two-defect coupled-cavity photonic crystal structures. In the E- and D-TBAs we expand the coupled-cavity [vector electron]-modes in terms of the individual [vector electron]- and [vector D meson]-modes, respectively. We investigate the dependence of the defect modes, their frequencies and quality factors on the relative placement of the defects in the photonic crystal structures. We then elucidate the differences between the two TBA formulations, and describe the conditions under which these formulations may be more robust when encountering a dielectric perturbation. Our 1D analysis showed that the 1D modes were sensitive to the structure geometry. The antisymmetric D mode amplitudes show that the D. TBA did not capture the correct (tangential [vector electron]-field) boundary conditions. However, the D-TBA did not yield

  8. Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers

    NASA Astrophysics Data System (ADS)

    Zhang, Cunzhi; Zhang, Shunhong; Wang, Qian

    2016-07-01

    Currently, the available algorithms for unbiased structure searches are primarily atom-based, where atoms are manipulated as the elementary units, and energy is used as the target function without any restrictions on the bonding of atoms. In fact, in many cases such as nanostructure-assembled materials, the structural units are nanoclusters. We report a study of a bonding-restricted structure search method based on the particle swarm optimization (PSO) for finding the stable structures of two-dimensional (2D) materials containing dispersed C2 dimers rather than individual C atoms. The C2 dimer can be considered as a prototype of nanoclusters. Taking Si-C, B-C and Ti-C systems as test cases, our method combined with density functional theory and phonon calculations uncover new ground state geometrical structures for SiC2, Si2C2, BC2, B2C2, TiC2, and Ti2C2 sheets and their low-lying energy allotropes, as well as their electronic structures. Equally important, this method can be applied to other complex systems even containing f elements and other molecular dimers such as S2, N2, B2 and Si2, where the complex orbital orientations require extensive search for finding the optimal orientations to maximize the bonding with the dimers, predicting new 2D materials beyond MXenes (a family of transition metal carbides or nitrides) and dichalcogenide monolayers.

  9. Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers.

    PubMed

    Zhang, Cunzhi; Zhang, Shunhong; Wang, Qian

    2016-07-12

    Currently, the available algorithms for unbiased structure searches are primarily atom-based, where atoms are manipulated as the elementary units, and energy is used as the target function without any restrictions on the bonding of atoms. In fact, in many cases such as nanostructure-assembled materials, the structural units are nanoclusters. We report a study of a bonding-restricted structure search method based on the particle swarm optimization (PSO) for finding the stable structures of two-dimensional (2D) materials containing dispersed C2 dimers rather than individual C atoms. The C2 dimer can be considered as a prototype of nanoclusters. Taking Si-C, B-C and Ti-C systems as test cases, our method combined with density functional theory and phonon calculations uncover new ground state geometrical structures for SiC2, Si2C2, BC2, B2C2, TiC2, and Ti2C2 sheets and their low-lying energy allotropes, as well as their electronic structures. Equally important, this method can be applied to other complex systems even containing f elements and other molecular dimers such as S2, N2, B2 and Si2, where the complex orbital orientations require extensive search for finding the optimal orientations to maximize the bonding with the dimers, predicting new 2D materials beyond MXenes (a family of transition metal carbides or nitrides) and dichalcogenide monolayers.

  10. Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers

    PubMed Central

    Zhang, Cunzhi; Zhang, Shunhong; Wang, Qian

    2016-01-01

    Currently, the available algorithms for unbiased structure searches are primarily atom-based, where atoms are manipulated as the elementary units, and energy is used as the target function without any restrictions on the bonding of atoms. In fact, in many cases such as nanostructure-assembled materials, the structural units are nanoclusters. We report a study of a bonding-restricted structure search method based on the particle swarm optimization (PSO) for finding the stable structures of two-dimensional (2D) materials containing dispersed C2 dimers rather than individual C atoms. The C2 dimer can be considered as a prototype of nanoclusters. Taking Si-C, B-C and Ti-C systems as test cases, our method combined with density functional theory and phonon calculations uncover new ground state geometrical structures for SiC2, Si2C2, BC2, B2C2, TiC2, and Ti2C2 sheets and their low-lying energy allotropes, as well as their electronic structures. Equally important, this method can be applied to other complex systems even containing f elements and other molecular dimers such as S2, N2, B2 and Si2, where the complex orbital orientations require extensive search for finding the optimal orientations to maximize the bonding with the dimers, predicting new 2D materials beyond MXenes (a family of transition metal carbides or nitrides) and dichalcogenide monolayers. PMID:27403589

  11. Dynamic molecular structure and phase diagram of DPPC-cholesterol binary mixtures: a 2D-ELDOR study.

    PubMed

    Chiang, Yun-Wei; Costa-Filho, Antonio J; Freed, Jack H

    2007-09-27

    This paper is an application of 2D electron-electron double resonance (2D-ELDOR) with the "full Sc- method" to study model membranes. We obtain and confirm the phase diagram of 1,2-dipalmitoyl-sn-glycerophosphatidylcholine (DPPC)-cholesterol binary mixtures versus temperature and provide quantitative descriptions for its dynamic molecular structure using 2D-ELDOR at the Ku band. The spectra from the end-chain 16-PC spin label in multilamellar phospholipid vesicles are obtained for cholesterol molar concentrations ranging from 0 to 50% and from 25 to 60 degrees C. This phase diagram consists of liquid-ordered, liquid-disordered, and gel phases and phase coexistence regions. The phase diagram is carefully examined according to the spectroscopic evidence, and the rigorous interpretation for the line shape changes. We show that the 2D-ELDOR spectra differ markedly with variation in the composition. The extensive line shape changes in the 2D-plus-mixing-time representation provide useful information to define and characterize the membrane phases with respect to their dynamic molecular structures and to determine the phase boundaries. The homogeneous T2's are extracted from the pure absorption spectra and are used to further distinguish the membrane phases. These results show 2D-ELDOR to be naturally suitable for probing and reporting the dynamic structures of microdomains in model membrane systems and, moreover, providing a very detailed picture of their molecular dynamic structure, especially with the aid of the "full Sc- method".

  12. 2-D simulation of a waveguide free electron laser having a helical undulator

    SciTech Connect

    Kim, S.K.; Lee, B.C.; Jeong, Y.U.

    1995-12-31

    We have developed a 2-D simulation code for the calculation of output power from an FEL oscillator having a helical undulator and a cylindrical waveguide. In the simulation, the current and the energy of the electron beam is 2 A and 400 keV, respectively. The parameters of the permanent-magnet helical undulator are : period = 32 mm, number of periods = 20, magnetic field = 1.3 kG. The gain per pass is 10 and the output power is calculated to be higher than 10 kW The results of the 2-D simulation are compared with those of 1-D simulation.

  13. Spin relaxations in 2D electron gas determined by the memory in the carrier dynamics.

    NASA Astrophysics Data System (ADS)

    Sherman, Eugene; Glazov, Mikhail

    2007-03-01

    The effects of long memory, in carrier dynamics in a magnetic field, on spin polarization evolution in 2D electron gas are investigated qualitatively and quantitatively. As examples we consider (i) systems with random Rashba-type SO coupling and (ii) quantum wells with rigid short-range scatterers (antidotes) and regular Dresselhaus SO coupling. In both cases the spin dynamics is strongly non-Markovian. In the system with the random SO coupling the time dependence of the spin polarization shows Gaussian rather than exponential behavior with the cusps corresponding to the electron revolutions. The relaxation speeds up with the increase of the magnetic field. In the system with antidotes scattering, the spin polarization shows a long-tail behavior with the relaxation rate determined by inelastic electron-phonon and electron-electron collisions and demonstrates unusual field dependence.

  14. Metal Decoration Effects on the Gas-Sensing Properties of 2D Hybrid-Structures on Flexible Substrates

    PubMed Central

    Cho, Byungjin; Yoon, Jongwon; Lim, Sung Kwan; Kim, Ah Ra; Choi, Sun-Young; Kim, Dong-Ho; Lee, Kyu Hwan; Lee, Byoung Hun; Ko, Heung Cho; Hahm, Myung Gwan

    2015-01-01

    We have investigated the effects of metal decoration on the gas-sensing properties of a device with two-dimensional (2D) molybdenum disulfide (MoS2) flake channels and graphene electrodes. The 2D hybrid-structure device sensitively detected NO2 gas molecules (>1.2 ppm) as well as NH3 (>10 ppm). Metal nanoparticles (NPs) could tune the electronic properties of the 2D graphene/MoS2 device, increasing sensitivity to a specific gas molecule. For instance, palladium NPs accumulate hole carriers of graphene/MoS2, electronically sensitizing NH3 gas molecules. Contrarily, aluminum NPs deplete hole carriers, enhancing NO2 sensitivity. The synergistic combination of metal NPs and 2D hybrid layers could be also applied to a flexible gas sensor. There was no serious degradation in the sensing performance of metal-decorated MoS2 flexible devices before/after 5000 bending cycles. Thus, highly sensitive and endurable gas sensor could be achieved through the metal-decorated 2D hybrid-structure, offering a useful route to wearable electronic sensing platforms. PMID:26404279

  15. Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures

    PubMed Central

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2015-01-01

    Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices. PMID:26679513

  16. Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures.

    PubMed

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2015-12-18

    Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices.

  17. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene)

    NASA Astrophysics Data System (ADS)

    Mashtalir, O.; Lukatskaya, M. R.; Kolesnikov, A. I.; Raymundo-Piñero, E.; Naguib, M.; Barsoum, M. W.; Gogotsi, Y.

    2016-04-01

    Herein we show that hydrazine intercalation into 2D titanium carbide (Ti3C2-based MXene) results in changes in its surface chemistry by decreasing the amounts of fluorine, OH surface groups and intercalated water. It also creates a pillaring effect between Ti3C2Tx layers pre-opening the structure and improving the accessability to active sites. The hydrazine treated material has demonstrated a greatly improved capacitance of 250 F g-1 in acidic electrolytes with an excellent cycling ability for electrodes as thick as 75 μm.Herein we show that hydrazine intercalation into 2D titanium carbide (Ti3C2-based MXene) results in changes in its surface chemistry by decreasing the amounts of fluorine, OH surface groups and intercalated water. It also creates a pillaring effect between Ti3C2Tx layers pre-opening the structure and improving the accessability to active sites. The hydrazine treated material has demonstrated a greatly improved capacitance of 250 F g-1 in acidic electrolytes with an excellent cycling ability for electrodes as thick as 75 μm. Electronic supplementary information (ESI) available: Characterization methods, additional XRD patterns (Fig. S1) and INS spectra (Fig. S2-S4). See DOI: 10.1039/c6nr01462c

  18. Structure of the novel ternary hydrides Li4Tt2D (Tt=Si and Ge).

    PubMed

    Wu, Hui; Hartman, Michael R; Udovic, Terrence J; Rush, John J; Zhou, Wei; Bowman, Robert C; Vajo, John J

    2007-02-01

    The crystal structures of newly discovered Li4Ge2D and Li4Si2D ternary phases were solved by direct methods using neutron powder diffraction data. Both structures can be described using a Cmmm orthorhombic cell with all hydrogen atoms occupying Li6-octahedral interstices. The overall crystal structure and the geometry of these interstices are compared with those of other related phases, and the stabilization of this novel class of ternary hydrides is discussed.

  19. Electron Microscopy: From 2D to 3D Images with Special Reference to Muscle

    PubMed Central

    2015-01-01

    This is a brief and necessarily very sketchy presentation of the evolution in electron microscopy (EM) imaging that was driven by the necessity of extracting 3-D views from the essentially 2-D images produced by the electron beam. The lens design of standard transmission electron microscope has not been greatly altered since its inception. However, technical advances in specimen preparation, image collection and analysis gradually induced an astounding progression over a period of about 50 years. From the early images that redefined tissues, cell and cell organelles at the sub-micron level, to the current nano-resolution reconstructions of organelles and proteins the step is very large. The review is written by an investigator who has followed the field for many years, but often from the sidelines, and with great wonder. Her interest in muscle ultrastructure colors the writing. More specific detailed reviews are presented in this issue. PMID:26913146

  20. Topologic connection between 2-D layered structures and 3-D diamond structures for conventional semiconductors

    PubMed Central

    Wang, Jianwei; Zhang, Yong

    2016-01-01

    When coming to identify new 2D materials, our intuition would suggest us to look from layered instead of 3D materials. However, since graphite can be hypothetically derived from diamond by stretching it along its [111] axis, many 3D materials can also potentially be explored as new candidates for 2D materials. Using a density functional theory, we perform a systematic study over the common Group IV, III–V, and II–VI semiconductors along different deformation paths to reveal new structures that are topologically connected to but distinctly different from the 3D parent structure. Specifically, we explore two major phase transition paths, originating respectively from wurtzite and NiAs structure, by applying compressive and tensile strain along the symmetry axis, and calculating the total energy changes to search for potential metastable states, as well as phonon spectra to examine the structural stability. Each path is found to further split into two branches under tensile strain–low buckled and high buckled structures, which respectively lead to a low and high buckled monolayer structure. Most promising new layered or planar structures identified include BeO, GaN, and ZnO on the tensile strain side, Ge, Si, and GaP on the compressive strain side. PMID:27090430

  1. Optical and Electronic Properties of 2D Graphitic Carbon-Nitride and Carbon Enriched Alloys

    NASA Astrophysics Data System (ADS)

    Therrien, Joel; Li, Yancen; Schmidt, Daniel; Masaki, Michael; Syed, Abdulmannan

    The two-dimensional form of graphitic carbon-nitride (gCN) has been successfully synthesized using a simple CVD process. In it's pure form, the carbon to nitrogen ratio is 0.75. By adding a carbon bearing gas to the growth environment, the C/N ratio can be increased, ultimately reaching the pure carbon form: graphene. Unlike attempts at making a 2D alloy system out of BCN, the CN system does not suffer from phase segregation and thus forms a homogeneous alloy. The synthesis approach and electronic and optical properties will be presented for the pure gCN and a selection of alloy compositions.

  2. The separation of overlapping transitions in β-carotene with broadband 2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Calhoun, Tessa R.; Davis, Jeffrey A.; Graham, Matthew W.; Fleming, Graham R.

    2012-01-01

    Broadband 2D electronic spectroscopy is applied to β-carotene, revealing new insight into the excited state dynamics of carotenoids by exploring the full energetic range encompassing the S0→S2 and S1→S1n transitions at 77 K. Multiple signals are observed in the regime associated with the proposed S∗ state and isolated through separate analysis of rephasing and nonrephasing contributions. Peaks in rephasing pathways display dynamic lineshapes characteristic of coupling to high energy vibrational modes, and simulation with a simple model supports their assignment to impulsive stimulated Raman scattering. A signal persisting beyond 10 ps in the nonrephasing spectra is still under investigation.

  3. Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.

    2009-01-01

    A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.

  4. Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array.

    PubMed

    Yoganathan, S A; Das, K J Maria; Raj, D Gowtham; Kumar, Shaleen

    2015-01-01

    The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams.

  5. Insulating Behavior of Strongly Interacting 2D Electrons in Si MOSFETs

    NASA Astrophysics Data System (ADS)

    Li, Shiqi; Sarachik, M. P.; Kravchenko, S. V.

    Experiments on low disorder strongly-interacting 2D electron systems have shown that in the absence of a magnetic field, the temperature dependence of the resistivity changes from metallic-like to insulating behavior as the electron density ns is reduced below a critical density nc. It has been shown that a metal to insulator transition also occurs in these systems for fixed electron density ns at a critical (density-dependent) in-plane magnetic field which results in complete spin polarization of the electrons. Here we report measurements of the temperature dependence of the resistivity in a high mobility Si-MOSFET sample, where in one case the insulating state is reached by reducing the electron density in zero field, and in the other case it is reached by ''quenching'' the metallic behavior with an in-plane field of 5 T. We find that the resistivity of the insulating state behaves in very similar ways for both cases, exhibiting Efros-Shklovskii variable range hopping regardless of the degree of polarization of the electron spins Work at CCNY is supported by NSF Grant DMR-1309008 and BSF Grant 2012210; for S. K. by NSF Grant DMR-1309337 and BSF Grant 2012210.

  6. Optical Signatures from Magnetic 2-D Electron Gases in High Magnetic Fields to 60 Tesla

    SciTech Connect

    Crooker, S.A.; Kikkawa, J.M.; Awschalom, D.D.; Smorchikova, I.P.; Samarth, N.

    1998-11-08

    We present experiments in the 60 Tesla Long-Pulse magnet at the Los Alamos National High Magnetic Field Lab (NHMFL) focusing on the high-field, low temperature photoluminescence (PL) from modulation-doped ZnSe/Zn(Cd,Mn)Se single quantum wells. High-speed charge-coupled array detectors and the long (2 second) duration of the magnet pulse permit continuous acquisition of optical spectra throughout a single magnet shot. High-field PL studies of the magnetic 2D electron gases at temperatures down to 350mK reveal clear intensity oscillations corresponding to integer quantum Hall filling factors, from which we determine the density of the electron gas. At very high magnetic fields, steps in the PL energy are observed which correspond to the partial unlocking of antiferromagnetically bound pairs of Mn2+ spins.

  7. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Pan, X. M.; Yang, Z. J.; Ma, X. D.; Zhu, Y. L.; Luhmann, N. C.; Domier, C. W.; Ruan, B. W.; Zhuang, G.

    2016-11-01

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  8. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak.

    PubMed

    Pan, X M; Yang, Z J; Ma, X D; Zhu, Y L; Luhmann, N C; Domier, C W; Ruan, B W; Zhuang, G

    2016-11-01

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  9. A series of 2D metal-quinolone complexes: Syntheses, structures, and physical properties

    NASA Astrophysics Data System (ADS)

    He, Jiang-Hong; Xiao, Dong-Rong; Chen, Hai-Yan; Sun, Dian-Zhen; Yan, Shi-Wei; Wang, Xin; Ye, Zhong-Li; Luo, Qun-Li; Wang, En-Bo

    2013-02-01

    Six novel 2D metal-quinolone complexes, namely [Cd(cfH)(bpdc)]rad H2O (1), [M(norfH)(bpdc)]rad H2O (M=Cd (2) and Mn (3)), [Mn2(cfH)(odpa)(H2O)3]rad 0.5H2O (4), [Co2(norfH)(bpta)(μ2-H2O)(H2O)2]rad H2O (5) and [Co3(saraH)2(Hbpta)2(H2O)4]rad 9H2O (6) (cfH=ciprofloxacin, norfH=norfloxacin, saraH=sarafloxacin, bpdc=4,4'-biphenyldicarboxylate, odpa=4,4'-oxydiphthalate, bpta=3,3',4,4'-biphenyltetracarboxylate) have been synthesized and characterized. Compounds 1-3 consist of 2D arm-shaped layers based on the 1D {M(COO)}nn+ chains. Compounds 4 and 5 display 2D structures based on tetranuclear manganese or cobalt clusters with (3,6)-connected kgd topology. Compound 6 exhibits a 2D bilayer structure, which represents the first example of metal-quinolone complexes with 2D bilayer structure. By inspection of the structures of 1-6, it is believed that the long aromatic polycarboxylate ligands are important for the formation of 2D metal-quinolone complexes. The magnetic properties of compounds 3-6 was studied, indicating the existence of antiferromagnetic interactions. Furthermore, the luminescent properties of compounds 1-2 are discussed.

  10. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays.

    PubMed

    Kuznetsov, A I; Kiyan, R; Chichkov, B N

    2010-09-27

    A novel method for fabrication of 2D and 3D metal nanoparticle structures and arrays is proposed. This technique is based on laser-induced transfer of molten metal nanodroplets from thin metal films. Metal nanoparticles are produced by solidification of these nanodroplets. The size of the transferred nanoparticles can be controllably changed in the range from 180 nm to 1500 nm. Several examples of complex 2D and 3D microstructures generated form gold nanoparticles are demonstrated.

  11. Photo-and Electro-Switchable 1/2D Diffractive Structures Exploiting Soft-Matter

    DTIC Science & Technology

    2013-05-01

    again, a linear red-shift is observed, which clearly confirms that the behavior reported in Figure 4a is due to a photo - thermal mechanism; furthermore...AFRL-AFOSR-UK-TR-2013-0022 Photo -and Electro-Switchable 1/2D Diffractive Structures Exploiting Soft-Matter Luciano De Sio...TYPE Final Report 3. DATES COVERED (From – To) 14 November 2011 – 13 November 2012 4. TITLE AND SUBTITLE Photo -and Electro-Switchable 1/2D

  12. A series of 2D metal-quinolone complexes: Syntheses, structures, and physical properties

    SciTech Connect

    He, Jiang-Hong; Xiao, Dong-Rong; Chen, Hai-Yan; Sun, Dian-Zhen; Yan, Shi-Wei; Wang, Xin; Ye, Zhong-Li; Luo, Qun-Li; Wang, En-Bo

    2013-02-15

    Six novel 2D metal-quinolone complexes, namely [Cd(cfH)(bpdc)]{center_dot}H{sub 2}O (1), [M(norfH)(bpdc)]{center_dot}H{sub 2}O (M=Cd (2) and Mn (3)), [Mn{sub 2}(cfH)(odpa)(H{sub 2}O){sub 3}]{center_dot}0.5H{sub 2}O (4), [Co{sub 2}(norfH)(bpta)({mu}{sub 2}-H{sub 2}O)(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O (5) and [Co{sub 3}(saraH){sub 2}(Hbpta){sub 2}(H{sub 2}O){sub 4}]{center_dot}9H{sub 2}O (6) (cfH=ciprofloxacin, norfH=norfloxacin, saraH=sarafloxacin, bpdc=4,4 Prime -biphenyldicarboxylate, odpa=4,4 Prime -oxydiphthalate, bpta=3,3 Prime ,4,4 Prime -biphenyltetracarboxylate) have been synthesized and characterized. Compounds 1-3 consist of 2D arm-shaped layers based on the 1D {l_brace}M(COO){r_brace}{sub n}{sup n+} chains. Compounds 4 and 5 display 2D structures based on tetranuclear manganese or cobalt clusters with (3,6)-connected kgd topology. Compound 6 exhibits a 2D bilayer structure, which represents the first example of metal-quinolone complexes with 2D bilayer structure. By inspection of the structures of 1-6, it is believed that the long aromatic polycarboxylate ligands are important for the formation of 2D metal-quinolone complexes. The magnetic properties of compounds 3-6 was studied, indicating the existence of antiferromagnetic interactions. Furthermore, the luminescent properties of compounds 1-2 are discussed. - Graphical abstract: Six novel 2D metal-quinolone complexes have been prepared by self-assemblies of the quinolones and metal salts in the presence of long aromatic polycarboxylates. Highlights: Black-Right-Pointing-Pointer Compounds 1-3 consist of novel 2D arm-shaped layers based on the 1D {l_brace}M(COO){r_brace}{sub n}{sup n+} chains. Black-Right-Pointing-Pointer Compounds 4 and 5 are two novel 2D layers based on tetranuclear Mn or Co clusters with kgd topology. Black-Right-Pointing-Pointer Compound 6 is the first example of metal-quinolone complexes with 2D bilayer structure. Black-Right-Pointing-Pointer Compounds 1-6 represent six unusual

  13. 2D array of cold-electron nanobolometers with double polarised cross-dipole antennas

    PubMed Central

    2012-01-01

    A novel concept of the two-dimensional (2D) array of cold-electron nanobolometers (CEB) with double polarised cross-dipole antennas is proposed for ultrasensitive multimode measurements. This concept provides a unique opportunity to simultaneously measure both components of an RF signal and to avoid complicated combinations of two schemes for each polarisation. The optimal concept of the CEB includes a superconductor-insulator-normal tunnel junction and an SN Andreev contact, which provides better performance. This concept allows for better matching with the junction gate field-effect transistor (JFET) readout, suppresses charging noise related to the Coulomb blockade due to the small area of tunnel junctions and decreases the volume of a normal absorber for further improvement of the noise performance. The reliability of a 2D array is considerably increased due to the parallel and series connections of many CEBs. Estimations of the CEB noise with JFET readout give an opportunity to realise a noise equivalent power (NEP) that is less than photon noise, specifically, NEP = 4 10−19 W/Hz1/2 at 7 THz for an optical power load of 0.02 fW. PMID:22512950

  14. ICF target 2D modeling using Monte Carlo SNB electron thermal transport in DRACO

    NASA Astrophysics Data System (ADS)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2016-10-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup diffusion electron thermal transport method is adapted into a Monte Carlo (MC) transport method to better model angular and long mean free path non-local effects. The MC model was first implemented in the 1D LILAC code to verify consistency with the iSNB model. Implementation of the MC SNB model in the 2D DRACO code enables higher fidelity non-local thermal transport modeling in 2D implosions such as polar drive experiments on NIF. The final step is to optimize the MC model by hybridizing it with a MC version of the iSNB diffusion method. The hybrid method will combine the efficiency of a diffusion method in intermediate mean free path regions with the accuracy of a transport method in long mean free path regions allowing for improved computational efficiency while maintaining accuracy. Work to date on the method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  15. Structure-From-Motion in 3D Space Using 2D Lidars

    PubMed Central

    Choi, Dong-Geol; Bok, Yunsu; Kim, Jun-Sik; Shim, Inwook; Kweon, In So

    2017-01-01

    This paper presents a novel structure-from-motion methodology using 2D lidars (Light Detection And Ranging). In 3D space, 2D lidars do not provide sufficient information for pose estimation. For this reason, additional sensors have been used along with the lidar measurement. In this paper, we use a sensor system that consists of only 2D lidars, without any additional sensors. We propose a new method of estimating both the 6D pose of the system and the surrounding 3D structures. We compute the pose of the system using line segments of scan data and their corresponding planes. After discarding the outliers, both the pose and the 3D structures are refined via nonlinear optimization. Experiments with both synthetic and real data show the accuracy and robustness of the proposed method. PMID:28165372

  16. Deep structure of Eastern part of Bandung Basin based on 2D resistivity structure

    NASA Astrophysics Data System (ADS)

    Harja, Asep

    2013-09-01

    Bandung basin is an intramontane basin located in West Java, extending from west to east along 35 km and north to south along 15 km distance, with elevation of 660-680 m. The plain in the eastern part is the basin center with lake deposit as primary sediment filling the basin. Investigation of the subsurface structure and thickness of the basin is the main topic in this research. Beside the deeper structure of the basin, the shallow structure is also very important to be revealed since human activities are concentrated in this part. The latter is supposed to explain phenomenon related to the flood and drought that frequently occur in the area. Controlled-source audio-frequency magneto telluric (CSAMT) is a highly effective electromagnetic (EM) method to deploy in this area. Its robustness toward electromagnetic noises related to human and industrial activities particularly in the eastern part of the basin is the strong point of this method. It uses a grounded horizontal electric dipole as artificial source of electromagnetic signal that ensures data with a high signal to noise (S/N) ratio. This method is capable to map subsurface resistivity structure with high sensitivity to resistivity contras and deeper penetration. 1D inversion scheme was used to the far-field component of CSAMT data (plane wave assumption) in order to obtain resistivity cross-sections that are more suitable with the basin's structure complexity. The results show that until the depth of more than 200 m, no high resistivity structure is found. This unlikely indicated the presence of volcanic rocks beneath the area. The subsurface resistivity distribution is dominated by tens of Om, indicating that the basement comprises deep marine sediment. In addition, clay lens are also indicated in the resulting resistivity structure. Based on 2D view of resistivity cross-sections based 1D inverted and 2D inversion, it is found that a low resistivity elongation extends in southeast-northwest direction at

  17. Beyond Graphene: Electronic and Mechanical Properties of Defective 2-D Materials

    NASA Astrophysics Data System (ADS)

    Terrones, Humberto

    One of the challenges in the production of 2-D materials is the synthesis of defect free systems which can achieve the desired properties for novel applications. However, the reality so far indicates that we need to deal with defective systems and understand their main features in order to perform defect engineering in such a way that we can engineer a new material. In this talk I discuss first, the introduction of defects in a hierarchic way starting from 2-D graphene to form giant Schwarzites or graphene foams, which also can exhibit further defects, thus we can have several levels of defectiveness. In this context, it will be shown that giant Schwarzites, depending on their symmetry, can exhibit Dirac-Fermion behavior and further, possess protected topological states as shown by other authors. Regarding the mechanical properties of these systems, it is possible to tune the Poisson Ratio by the addition of defects, thus shedding light to the explanation of the almost zero Poisson ratios in experimentally obtained graphene foams. Second, the idea of Haeckelites, a planar sp2 graphene-like structure with heptagons and pentagons, can be extended to transition metal dichalcogenides (TMDs) with square and octagonal-like defects, finding semi-metallic behaviors with Dirac-Fermions, and even topological insulating properties. National Science Foundation (EFRI-1433311).

  18. Hartree-Fock Solutions of 2d Interacting Tight-Binding Electrons: Mott Properties and Room Temperature Superconductivity Indications

    NASA Astrophysics Data System (ADS)

    Cabo Montes de Oca, A.; March, N. H.; Cabo-Bizet, A.

    2014-12-01

    Former results for a tight-binding (TB) model of CuO planes in La2CuO4 are reinterpreted here to underline their wider implications. It is noted that physical systems being appropriately described by the TB model can exhibit the main strongly correlated electron system (SCES) properties, when they are solved in the HF approximation, by also allowing crystal symmetry breaking effects and noncollinear spin orientations of the HF orbitals. It is argued how a simple 2D square lattice system of Coulomb interacting electrons can exhibit insulator gaps and pseudogap states, and quantum phase transitions as illustrated by the mentioned former works. A discussion is also presented here indicating the possibility of attaining room temperature superconductivity, by means of a surface coating with water molecules of cleaved planes of graphite, being orthogonal to its c-axis. The possibility that 2D arrays of quantum dots can give rise to the same effect is also proposed to consideration. The analysis also furnishes theoretical insight to solve the Mott-Slater debate, at least for the La2CuO4 and TMO band structures. The idea is to apply a properly noncollinear GW scheme to the electronic structure calculation of these materials. The fact is that the GW approach can be viewed as a HF procedure in which the screening polarization is also determined. This directly indicates the possibility of predicting the assumed dielectric constant in the previous works. Thus, the results seem to identify that the main correlation properties in these materials are determined by screening. Finally, the conclusions also seem to be of help for the description of the experimental observations of metal-insulator transitions and Mott properties in atoms trapped in planar photonic lattices.

  19. 2D Optical Streaking for Ultra-Short Electron Beam Diagnostics

    SciTech Connect

    Ding, Y.T.; Huang, Z.; Wang, L.; /SLAC

    2011-12-14

    field ionization, which occurs in plasma case, gases species with high field ionization threshold should be considered. For a linear polarized laser, the kick to the ionized electrons depends on the phase of the laser when the electrons are born and the unknown timing jitter between the electron beam and laser beam makes the data analysis very difficult. Here we propose to use a circular polarized laser to do a 2-dimensional (2D) streaking (both x and y) and measure the bunch length from the angular distribution on the screen, where the phase jitter causes only a rotation of the image on the screen without changing of the relative angular distribution. Also we only need to know the laser wavelength for calibration. A similar circular RF deflecting mode was used to measure long bunches. We developed a numerical particle-in-Cell (PIC) code to study the dynamics of ionization electrons with the high energy beam and the laser beam.

  20. Tunneling Between 2D Electrons and Holes in an In-plane Magnetic Field

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Mendez, E. E.; Magno, R.; Bennett, B. R.

    2002-03-01

    We have studied the vertical transport properties of GaSb/AlSb/InAs/AlSb/GaSb (system A) and InAs/AlSb/GaSb/AlSb/InAs (system B) heterostructures in a magnetic field (B<20T) parallel to the interfaces. In these systems, electrons and holes accumulate in the InAs and GaSb regions, respectively, and tunneling between the two gases gives rise to a current-voltage (I-V) characteristic that exhibits negative differential conductance even at T=300K. In both cases, the zero-bias, low-T (1.7K) magnetoconductance showed the signature of tunneling between 2D gases with different carrier densities even though in system A, the holes are barely confined. In contrast, the dependence of the I-V characteristics on magnetic field was quite different. In system A, the observed shift of the peak voltage with field is explained by simple ground-state dispersion curves for electrons and holes. However, this picture cannot explain the appearance (above 5.5T) and field dependence of a secondary peak in system B, or of additional, weaker field-induced features. Their origin may lie in the complexities of highly confined hole states in the central GaSb quantum well.

  1. Tunable electron heating induced giant magnetoresistance in the high mobility GaAs/AlGaAs 2D electron system

    PubMed Central

    Wang, Zhuo; Samaraweera, R. L.; Reichl, C.; Wegscheider, W.; Mani, R. G.

    2016-01-01

    Electron-heating induced by a tunable, supplementary dc-current (Idc) helps to vary the observed magnetoresistance in the high mobility GaAs/AlGaAs 2D electron system. The magnetoresistance at B = 0.3 T is shown to progressively change from positive to negative with increasing Idc, yielding negative giant-magnetoresistance at the lowest temperature and highest Idc. A two-term Drude model successfully fits the data at all Idc and T. The results indicate that carrier heating modifies a conductivity correction σ1, which undergoes sign reversal from positive to negative with increasing Idc, and this is responsible for the observed crossover from positive- to negative- magnetoresistance, respectively, at the highest B. PMID:27924953

  2. Probing the 2-D Kinematic Structure of Early-Type Galaxies Out to 3 Effective Radii

    NASA Astrophysics Data System (ADS)

    Proctor, Robert N.; Forbes, Duncan A.; Romanowsky, Aaron J.; Brodie, Jean P.; Strader, Jay; Spolaor, Max; Trevor Mendel, J.; Spitler, Lee

    2010-06-01

    We detail an innovative new technique for measuring the 2-D velocity moments (rotation velocity, velocity dispersion and Gauss-Hermite coefficients h3 and h4) using spectra from Keck DEIMOS multi-object spectroscopic observations. The data are used to reconstruct 2-D rotation velocity maps. Here we present data for one of five early-type galaxies whose kinematics we have measured out to ~3 effective radii (see [1]). From these data 2D kinematic maps are constructed. We show such analyses can provide significant insights into the global kinematic structure of galaxies, and, in some cases, challenge the accepted morphological classification. Our results are of particular importance to studies which attempt to classify galaxies by their kinematic structure within one effective radius, such as the recent definition of fast- and slow- rotator classes by the SAURON project.

  3. Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: Electronic versus vibrational coherence

    SciTech Connect

    Plenio, M. B.; Almeida, J.; Huelga, S. F.

    2013-12-21

    We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.

  4. Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: electronic versus vibrational coherence.

    PubMed

    Plenio, M B; Almeida, J; Huelga, S F

    2013-12-21

    We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.

  5. Interferometric 2D Sum Frequency Generation Spectroscopy Reveals Structural Heterogeneity of Catalytic Monolayers on Transparent Materials.

    PubMed

    Vanselous, Heather; Stingel, Ashley M; Petersen, Poul B

    2017-02-16

    Molecular monolayers exhibit structural and dynamical properties that are different from their bulk counterparts due to their interaction with the substrate. Extracting these distinct properties is crucial for a better understanding of processes such as heterogeneous catalysis and interfacial charge transfer. Ultrafast nonlinear spectroscopic techniques such as 2D infrared (2D IR) spectroscopy are powerful tools for understanding molecular dynamics in complex bulk systems. Here, we build on technical advancements in 2D IR and heterodyne-detected sum frequency generation (SFG) spectroscopy to study a CO2 reduction catalyst on nanostructured TiO2 with interferometric 2D SFG spectroscopy. Our method combines phase-stable heterodyne detection employing an external local oscillator with a broad-band pump pulse pair to provide the first high spectral and temporal resolution 2D SFG spectra of a transparent material. We determine the overall molecular orientation of the catalyst and find that there is a static structural heterogeneity reflective of different local environments at the surface.

  6. Oxide 2D electron gases as a route for high carrier densities on (001) Si

    SciTech Connect

    Kornblum, Lior; Jin, Eric N.; Kumah, Divine P.; Walker, Fred J.; Ernst, Alexis T.; Broadbridge, Christine C.; Ahn, Charles H.

    2015-05-18

    Two dimensional electron gases (2DEGs) formed at the interfaces of oxide heterostructures draw considerable interest owing to their unique physics and potential applications. Growing such heterostructures on conventional semiconductors has the potential to integrate their functionality with semiconductor device technology. We demonstrate 2DEGs on a conventional semiconductor by growing GdTiO{sub 3}-SrTiO{sub 3} on silicon. Structural analysis confirms the epitaxial growth of heterostructures with abrupt interfaces and a high degree of crystallinity. Transport measurements show the conduction to be an interface effect, ∼9 × 10{sup 13} cm{sup −2} electrons per interface. Good agreement is demonstrated between the electronic behavior of structures grown on Si and on an oxide substrate, validating the robustness of this approach to bridge between lab-scale samples to a scalable, technologically relevant materials system.

  7. Strongly Metallic Electron and Hole 2D Transport in an Ambipolar Si-Vacuum Field Effect Transistor.

    PubMed

    Hu, Binhui; Yazdanpanah, M M; Kane, B E; Hwang, E H; Das Sarma, S

    2015-07-17

    We report experiment and theory on an ambipolar gate-controlled Si(111)-vacuum field effect transistor where we study electron and hole (low-temperature 2D) transport in the same device simply by changing the external gate voltage to tune the system from being a 2D electron system at positive gate voltage to a 2D hole system at negative gate voltage. The electron (hole) conductivity manifests strong (moderate) metallic temperature dependence with the conductivity decreasing by a factor of 8 (2) between 0.3 K and 4.2 K with the peak electron mobility (∼18  m2/V s) being roughly 20 times larger than the peak hole mobility (in the same sample). Our theory explains the data well using random phase approximation screening of background Coulomb disorder, establishing that the observed metallicity is a direct consequence of the strong temperature dependence of the effective screened disorder.

  8. Destabilization of 2D magnetic current sheets by resonance with bouncing electron - a new theory

    NASA Astrophysics Data System (ADS)

    Fruit, Gabriel; Louarn, Philippe; Tur, Anatoly

    2016-07-01

    In the general context of understanding the possible destabilization of the magnetotail before a substorm, we propose a kinetic model for electromagnetic instabilities in resonant interaction with trapped bouncing electrons. The geometry is clearly 2D and uses Harris sheet profile. Fruit et al. 2013 already used this model to investigate the possibilities of electrostatic instabilities. Tur et al. 2014 generalizes the model for full electromagnetic perturbations. Starting with a modified Harris sheet as equilibrium state, the linearized gyrokinetic Vlasov equation is solved for electromagnetic fluctuations with period of the order of the electron bounce period (a few seconds). The particle motion is restricted to its first Fourier component along the magnetic field and this allows the complete time integration of the non local perturbed distribution functions. The dispersion relation for electromagnetic modes is finally obtained through the quasi neutrality condition and the Ampere's law for the current density. The present talk will focus on the main results of this theory. The electrostatic version of the model may be applied to the near-Earth environment (8-12 R_{E}) where beta is rather low. It is showed that inclusion of bouncing electron motion may enhance strongly the growth rate of the classical drift wave instability. This model could thus explain the generation of strong parallel electric fields in the ionosphere and the formation of aurora beads with wavelength of a few hundreds of km. In the electromagnetic version, it is found that for mildly stretched current sheet (B_{z} > 0.1 B _{lobes}) undamped modes oscillate at typical electron bounce frequency with wavelength of the order of the plasma sheet thickness. As the stretching of the plasma sheet becomes more intense, the frequency of these normal modes decreases and beyond a certain threshold in B_{z}/B _{lobes}, the mode becomes explosive (pure imaginary frequency) with typical growing rate of a few

  9. Quantitative nanoscale visualization of heterogeneous electron transfer rates in 2D carbon nanotube networks

    PubMed Central

    Güell, Aleix G.; Ebejer, Neil; Snowden, Michael E.; McKelvey, Kim; Macpherson, Julie V.; Unwin, Patrick R.

    2012-01-01

    Carbon nanotubes have attracted considerable interest for electrochemical, electrocatalytic, and sensing applications, yet there remains uncertainty concerning the intrinsic electrochemical (EC) activity. In this study, we use scanning electrochemical cell microscopy (SECCM) to determine local heterogeneous electron transfer (HET) kinetics in a random 2D network of single-walled carbon nanotubes (SWNTs) on an Si/SiO2 substrate. The high spatial resolution of SECCM, which employs a mobile nanoscale EC cell as a probe for imaging, enables us to sample the responses of individual portions of a wide range of SWNTs within this complex arrangement. Using two redox processes, the oxidation of ferrocenylmethyl trimethylammonium and the reduction of ruthenium (III) hexaamine, we have obtained conclusive evidence for the high intrinsic EC activity of the sidewalls of the large majority of SWNTs in networks. Moreover, we show that the ends of SWNTs and the points where two SWNTs cross do not show appreciably different HET kinetics relative to the sidewall. Using finite element method modeling, we deduce standard rate constants for the two redox couples and demonstrate that HET based solely on characteristic defects in the SWNT side wall is highly unlikely. This is further confirmed by the analysis of individual line profiles taken as the SECCM probe scans over an SWNT. More generally, the studies herein demonstrate SECCM to be a powerful and versatile method for activity mapping of complex electrode materials under conditions of high mass transport, where kinetic assignments can be made with confidence. PMID:22635266

  10. Mercury (I) nitroprusside: A 2D structure supported on homometallic interactions

    SciTech Connect

    Osiry, H.; Cano, A.; Reguera, L.; Lemus-Santana, A.A.; Reguera, E.

    2015-01-15

    The pentacyanonitrosylferrate complex anion, [Fe(CN){sub 5}NO]{sup 2−}, forms an insoluble solid with Hg(I) ion, of formula unit Hg{sub 2}[Fe(CN){sub 5}NO]·2H{sub 2}O, whose crystal structure and related properties are unknown. This contribution reports the preparation of that compound by the precipitation method and its structural study from X-ray powder patterns complemented with spectroscopic information from IR, Raman, and UV–vis techniques. The crystal structure was solved ab initio and then refined using the Rietveld method. The solid crystallizes with a triclinic unit cell, in the P−1 space group, with cell parameters a=10.1202(12), b=10.1000(13), c=7.4704(11) Å; α=110.664(10), β=110.114(10), γ=104.724(8) °. Within the unit cell, two formula units are accommodated (Z=2). It adopts a layered structure related with the coordination of the equatorial CN groups at their N end to the Hg atoms while the axial CN ligand remains unlinked. Within the layers neighboring Hg{sub 2}[Fe(CN){sub 5}NO] building units remain linked through four relatively strong Hg–Hg interactions, with an interatomic distance of 2.549(3) Å. The charge donation from the equatorial CN groups through their 5σ orbitals results into an increase for the electron density on the Hg atoms, which strengths the Hg–Hg bond. In the Raman spectrum, that metal–metal bond is detected as a stretching vibration band at 167 cm{sup −1}. The available free volume between neighboring layers accommodates two water molecules, which are stabilized within the framework through hydrogen bonds with the N end of the unlinked axial CN group. The removal of these weakly bonded water molecules results in structural disorder for the material 3D framework. - Graphical abstract: Assembling of Hg{sub 2}[Fe(CN){sub 5}NO] units through Hg–Hg interactions. - Highlights: • Homometallic Hg–Hg interactions in metal nitroprusside. • 2D structure supported on metal–metal interactions. • Crystal

  11. Unveiling Dimensionality Dependence of Glassy Dynamics: 2D Infinite Fluctuation Eclipses Inherent Structural Relaxation.

    PubMed

    Shiba, Hayato; Yamada, Yasunori; Kawasaki, Takeshi; Kim, Kang

    2016-12-09

    By using large-scale molecular dynamics simulations, the dynamics of two-dimensional (2D) supercooled liquids turns out to be dependent on the system size, while the size dependence is not pronounced in three-dimensional (3D) systems. It is demonstrated that the strong system-size effect in 2D amorphous systems originates from the enhanced fluctuations at long wavelengths which are similar to those of 2D crystal phonons. This observation is further supported by the frequency dependence of the vibrational density of states, consisting of the Debye approximation in the low-wave-number limit. However, the system-size effect in the intermediate scattering function becomes negligible when the length scale is larger than the vibrational amplitude. This suggests that the finite-size effect in a 2D system is transient and also that the structural relaxation itself is not fundamentally different from that in a 3D system. In fact, the dynamic correlation lengths estimated from the bond-breakage function, which do not suffer from those enhanced fluctuations, are not size dependent in either 2D or 3D systems.

  12. Unveiling Dimensionality Dependence of Glassy Dynamics: 2D Infinite Fluctuation Eclipses Inherent Structural Relaxation

    NASA Astrophysics Data System (ADS)

    Shiba, Hayato; Yamada, Yasunori; Kawasaki, Takeshi; Kim, Kang

    2016-12-01

    By using large-scale molecular dynamics simulations, the dynamics of two-dimensional (2D) supercooled liquids turns out to be dependent on the system size, while the size dependence is not pronounced in three-dimensional (3D) systems. It is demonstrated that the strong system-size effect in 2D amorphous systems originates from the enhanced fluctuations at long wavelengths which are similar to those of 2D crystal phonons. This observation is further supported by the frequency dependence of the vibrational density of states, consisting of the Debye approximation in the low-wave-number limit. However, the system-size effect in the intermediate scattering function becomes negligible when the length scale is larger than the vibrational amplitude. This suggests that the finite-size effect in a 2D system is transient and also that the structural relaxation itself is not fundamentally different from that in a 3D system. In fact, the dynamic correlation lengths estimated from the bond-breakage function, which do not suffer from those enhanced fluctuations, are not size dependent in either 2D or 3D systems.

  13. Multiple triangulation analysis: application to determine the velocity of 2-D structures

    NASA Astrophysics Data System (ADS)

    Zhou, X.-Z.; Zong, Q.-G.; Wang, J.; Pu, Z. Y.; Zhang, X. G.; Shi, Q. Q.; Cao, J. B.

    2006-11-01

    In order to avoid the ambiguity of the application of the Triangulation Method (multi-spacecraft timing method) to two-dimensional structures, another version of this method, the Multiple Triangulation Analysis (MTA) is used, to calculate the velocities of these structures based on 4-point measurements. We describe the principle of MTA and apply this approach to a real event observed by the Cluster constellation on 2 October 2003. The resulting velocity of the 2-D structure agrees with the ones obtained by some other methods fairly well. So we believe that MTA is a reliable version of the Triangulation Method for 2-D structures, and thus provides us a new way to describe their motion.

  14. Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures

    NASA Astrophysics Data System (ADS)

    Aly, Arafa H.; Mehaney, Ahmed

    2016-11-01

    This study reports on the propagation of elastic waves in 1D and 2D mass spring structures. An analytical and computation model is presented for the 1D and 2D mass spring systems with different examples. An enhancement in the band gap values was obtained by modeling the structures to obtain low frequency band gaps at small dimensions. Additionally, the evolution of the band gap as a function of mass value is discussed. Special attention is devoted to the local resonance property in frequency ranges within the gaps in the band structure for the corresponding infinite periodic lattice in the 1D and 2D mass spring system. A linear defect formed of a row of specific masses produces an elastic waveguide that transmits at the narrow pass band frequency. The frequency of the waveguides can be selected by adjusting the mass and stiffness coefficients of the materials constituting the waveguide. Moreover, we pay more attention to analyze the wave multiplexer and DE-multiplexer in the 2D mass spring system. We show that two of these tunable waveguides with alternating materials can be employed to filter and separate specific frequencies from a broad band input signal. The presented simulation data is validated through comparison with the published research, and can be extended in the development of resonators and MEMS verification.

  15. Multi-field electron emission pattern of 2D emitter: Illustrated with graphene

    NASA Astrophysics Data System (ADS)

    Luo, Ma; Li, Zhibing

    2016-11-01

    The mechanism of laser-assisted multi-field electron emission of two-dimensional emitters is investigated theoretically. The process is basically a cold field electron emission but having more controllable components: a uniform electric field controls the emission potential barrier, a magnetic field controls the quantum states of the emitter, while an optical field controls electron populations of specified quantum states. It provides a highly orientational vacuum electron line source whose divergence angle over the beam plane is inversely proportional to square root of the emitter height. Calculations are carried out for graphene with the armchair emission edge, as a concrete example. The rate equation incorporating the optical excitation, phonon scattering, and thermal relaxation is solved in the quasi-equilibrium approximation for electron population in the bands. The far-field emission patterns, that inherit the features of the Landau bands, are obtained. It is found that the optical field generates a characteristic structure at one wing of the emission pattern.

  16. Fabrication of high efficiency compact 90° bend waveguide by using a dielectric 2D-PC structure

    NASA Astrophysics Data System (ADS)

    Stomeo, Tiziana; Bergamo, Roberto; Martiradonna, Luigi; Cingolani, Roberto; De Vittorio, Massimo; D'Orazio, Antonella; Marrocco, Valeria

    2005-07-01

    In this paper we propose the design and the fabrication of 90° bend ridge waveguide (WG) assisted by a two-dimensional photonic crystal (2D-PC). 2D-PCs act as efficient mirrors along the boundaries of the bend ridge thus reducing the in-plane losses. The ridge waveguide consists of a 3 μm x 0.75 μm titanium dioxide core on a silica bottom cladding. The 2D-PC structure surrounding the bend waveguide is composed of a triangular array of circular dielectric pillars having a height of 0.75 μm. The titanium dioxide waveguiding core layer is covered with PMMA in order to create a quasi-symmetric structure. A photonic band gap centered around 1.3 μm is obtained by a PC radius r = 0.33a and lattice period a = 0.450 μm. The design of the whole structure is subsequently optimized by using a 3D Finite Difference Time Domain based computer code. The ridge waveguide assisted by a 2D-PC has been fabricated by using electron beam lithography and reactive ion etching. For the pattern transfer we have used about 50 nm thin layer Cr metal etch mask obtained by means of a lift-off technique based on the use of bi-layer resist (PMMA/MMA). The presence of the 2D-PC around the bend waveguide leads to a sharp increase of the transmission efficiency around 1.3 μm for curvature radius of 2.5 μm. The bend transmission results to be in the range between 0.76 and 0.85 when the thickness of the ridge WG and of the 2D-PC pillars is between 0.75 and 1.3 μm. This value is more than twice with respect to the bend waveguide without 2D-PC.

  17. Metal-organic extended 2D structures: Fe-PTCDA on Au(111).

    PubMed

    Alvarez, Lucía; Peláez, Samuel; Caillard, Renaud; Serena, Pedro A; Martín-Gago, José A; Méndez, Javier

    2010-07-30

    In this work we combine organic molecules of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) with iron atoms on an Au (111) substrate in ultra-high vacuum conditions at different temperatures. By means of scanning tunnelling microscopy (STM) we study the formation of stable 2D metal-organic structures. We show that at certain growth conditions (temperature, time and coverage) stable 'ladder-like' nanostructures are obtained. These are the result of connecting together two metal-organic chains through PTCDA molecules placed perpendicularly, as rungs of a ladder. These structures, stable up to 450 K, can be extended in a 2D layer covering the entire surface and presenting different rotation domains. STM images at both polarities show a contrast reversal between the two molecules at the unit cell. By means of density functional theory (DFT) calculations, we confirm the stability of these structures and that their molecular orbitals are placed separately at the different molecules.

  18. Residual resistance of 2D and 3D structures and Joule heat release.

    PubMed

    Gurevich, V L; Kozub, V I

    2011-06-22

    We consider a residual resistance and Joule heat release in 2D nanostructures as well as in ordinary 3D conductors. We assume that elastic scattering of conduction electrons by lattice defects is predominant. Within a rather intricate situation in such systems we discuss in detail two cases. (1) The elastic scattering alone (i.e. without regard of inelastic mechanisms of scattering) leads to a transition of the mechanical energy (stored by the electrons under the action of an electric field) into heat in a traditional way. This process can be described by the Boltzmann equation where it is possible to do the configuration averaging over defect positions in the electron-impurity collision term. The corresponding conditions are usually met in metals. (2) The elastic scattering can be considered with the help of the standard electron-impurity collision integral only in combination with some additional averaging procedure (possibly including inelastic scattering or some mechanisms of electron wavefunction phase destruction). This situation is typical for degenerate semiconductors with a high concentration of dopants and conduction electrons. Quite often, heat release can be observed via transfer of heat to the lattice, i.e. via inelastic processes of electron-phonon collisions and can take place at distances much larger than the size of the device. However, a direct heating of the electron system can be registered too by, for instance, local measurements of the current noise or direct measurement of an electron distribution function.

  19. Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2D fluorescence spectroscopy.

    PubMed

    Perdomo-Ortiz, Alejandro; Widom, Julia R; Lott, Geoffrey A; Aspuru-Guzik, Alán; Marcus, Andrew H

    2012-09-06

    Two-dimensional fluorescence spectroscopy (2D FS) is applied to determine the conformation and femtosecond electronic population transfer in a dimer of magnesium meso tetraphenylporphyrin. The dimers are prepared by self-assembly of the monomer within the amphiphilic regions of 1,2-distearoyl-sn-glycero-3-phosphocholine liposomes. A theoretical framework to describe 2D FS experiments is presented, and a direct comparison is made between the observables of this measurement and those of 2D electronic spectroscopy (2D ES). The sensitivity of the method to varying dimer conformation is explored. A global multivariable fitting analysis of linear and 2D FS data indicates that the dimer adopts a "bent T-shaped" conformation. Moreover, the manifold of singly excited excitons undergoes rapid electronic dephasing and downhill population transfer on the time scale of ∼95 fs. The open conformation of the dimer suggests that its self-assembly is favored by an increase in entropy of the local membrane environment.

  20. Amide I'-II' 2D IR spectroscopy provides enhanced protein secondary structural sensitivity.

    PubMed

    Deflores, Lauren P; Ganim, Ziad; Nicodemus, Rebecca A; Tokmakoff, Andrei

    2009-03-11

    We demonstrate how multimode 2D IR spectroscopy of the protein amide I' and II' vibrations can be used to distinguish protein secondary structure. Polarization-dependent amide I'-II' 2D IR experiments on poly-l-lysine in the beta-sheet, alpha-helix, and random coil conformations show that a combination of amide I' and II' diagonal and cross peaks can effectively distinguish between secondary structural content, where amide I' infrared spectroscopy alone cannot. The enhanced sensitivity arises from frequency and amplitude correlations between amide II' and amide I' spectra that reflect the symmetry of secondary structures. 2D IR surfaces are used to parametrize an excitonic model for the amide I'-II' manifold suitable to predict protein amide I'-II' spectra. This model reveals that the dominant vibrational interaction contributing to this sensitivity is a combination of negative amide II'-II' through-bond coupling and amide I'-II' coupling within the peptide unit. The empirically determined amide II'-II' couplings do not significantly vary with secondary structure: -8.5 cm(-1) for the beta sheet, -8.7 cm(-1) for the alpha helix, and -5 cm(-1) for the coil.

  1. A Deformed Shape Monitoring Model for Building Structures Based on a 2D Laser Scanner

    PubMed Central

    Choi, Se Woon; Kim, Bub Ryur; Lee, Hong Min; Kim, Yousok; Park, Hyo Seon

    2013-01-01

    High-rise buildings subjected to lateral loads such as wind and earthquake loads must be checked not to exceed the limits on the maximum lateral displacement or the maximum inter-story drift ratios. In this paper, a sensing model for deformed shapes of a building structure in motion is presented. The deformed shape sensing model based on a 2D scanner consists of five modules: (1) module for acquiring coordinate information of a point in a building; (2) module for coordinate transformation and data arrangement for generation of time history of the point; (3) module for smoothing by adjacent averaging technique; (4) module for generation of the displacement history for each story and deformed shape of a building, and (5) module for evaluation of the serviceability of a building. The feasibility of the sensing model based on a 2D laser scanner is tested through free vibration tests of a three-story steel frame structure with a relatively high slenderness ratio of 5.0. Free vibration responses measured from both laser displacement sensors and a 2D laser scanner are compared. In the experimentation, the deformed shapes were obtained from three different methods: the model based on the 2D laser scanner, the direct measurement based on laser displacement sensors, and the numerical method using acceleration data and the displacements from GPS. As a result, it is confirmed that the deformed shape measurement model based on a 2D laser scanner can be a promising alternative for high-rise buildings where installation of laser displacement sensors is impossible. PMID:23698269

  2. Kohn-Sham Band Structure Benchmark Including Spin-Orbit Coupling for 2D and 3D Solids

    NASA Astrophysics Data System (ADS)

    Huhn, William; Blum, Volker

    2015-03-01

    Accurate electronic band structures serve as a primary indicator of the suitability of a material for a given application, e.g., as electronic or catalytic materials. Computed band structures, however, are subject to a host of approximations, some of which are more obvious (e.g., the treatment of the exchange-correlation of self-energy) and others less obvious (e.g., the treatment of core, semicore, or valence electrons, handling of relativistic effects, or the accuracy of the underlying basis set used). We here provide a set of accurate Kohn-Sham band structure benchmarks, using the numeric atom-centered all-electron electronic structure code FHI-aims combined with the ``traditional'' PBE functional and the hybrid HSE functional, to calculate core, valence, and low-lying conduction bands of a set of 2D and 3D materials. Benchmarks are provided with and without effects of spin-orbit coupling, using quasi-degenerate perturbation theory to predict spin-orbit splittings. This work is funded by Fritz-Haber-Institut der Max-Planck-Gesellschaft.

  3. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    NASA Astrophysics Data System (ADS)

    Fujihashi, Yuta; Fleming, Graham R.; Ishizaki, Akihito

    2015-06-01

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  4. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    SciTech Connect

    Fujihashi, Yuta; Ishizaki, Akihito; Fleming, Graham R.

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  5. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra.

    PubMed

    Fujihashi, Yuta; Fleming, Graham R; Ishizaki, Akihito

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  6. The influence of pressure on the structure of a 2D uranium(VI) carboxyphosphonoate compound

    SciTech Connect

    Spencer, Elinor C.; Ross, Nancy L.; Surbella, Robert G.; Cahill, Christopher L.

    2014-10-15

    We report the first quantitative analysis of the structural evolution of a uranyl bearing coordination polymer in response to pressure. The material that is central to this study, (UO{sub 2})(O{sub 3}PCH{sub 2}CO{sub 2}H) (1), is constructed from rigid 2D inorganic layers comprising edge sharing UO{sub 7} pentagonal bipyramids cross-linked by [PO{sub 3}(COOH)]{sup 2−} anions. Strong hydrogen bonding interactions exist between the pendent carboxylic acid groups on adjacent layers. Under pressure, 1 exhibits compressional behaviour primarily in the direction perpendicular to the inorganic layers, which is aided by a reduction in the interlayer distance and shifting of the layers with respect to each other. The bulk modulus for the 2D compound 1 is unexpectedly high [18.1(1) GPa] and is within the range reported for 3D CPs assembled from Zn{sup II} cations and inflexible imidazolate anions, and is at the lower end of the range of moduli observed for aluminosilicate zeolites (19–59 GPa). - Graphical Abstract: The compression mechanism and elastic constants for a 2D Uranium(VI) carboxyphosphonoate compound are reported. - Highlights: • The response to pressure of a uranium carboxyphosphonoate compound has been studied. • High-pressure single-crystal XRD data for this 2D uranium compound were collected. • Elastic constants for this material have been determined. • The compression mechanism for the compound has been elucidated.

  7. Hydrogen-bond-assisted "gold cold fusion" for fabrication of 2D web structures.

    PubMed

    Mandal, Saikat; Shundo, Atsuomi; Acharya, Somobrata; Hill, Jonathan P; Ji, Qingmin; Ariga, Katsuhiko

    2009-07-06

    Keeping their cool: Fabrication of a 2D weblike nanonetwork of gold was successfully demonstrated through a two-step procedure including complexation of gold precursors to a weblike supramolecular assembly of surfactant followed by in situ reduction of the precursors to gold. Molecular assemblies stabilized by hydrogen bonding provided a sound template, leading to the highly integrated structure of gold through room-temperature (cold) nanostructure fusion.

  8. Well-defined azazirconacyclopropane complexes supported on silica structurally determined by 2D NMR comparative elucidation.

    PubMed

    El Eter, Mohamad; Hamzaoui, Bilel; Abou-Hamad, Edy; Pelletier, Jérémie D A; Basset, Jean-Marie

    2013-05-21

    Grafting of Zr(NMe2)4 on mesoporous silica SBA-15 afforded selectively well-defined surface species [triple bond, length as m-dash]SiOZr(NMe2)(η2NMeCH2). 2D solid-state NMR ((1)H-(13)C HETCOR, Multiple Quantum) experiments have shown a unique structural rearrangement occurring on the immobilised zirconium bis methylamido ligand.

  9. Spin-Orbit Interaction in High-κ Dielectric Gated Rashba-2D Electron Gas and Mesoscopic Rings

    NASA Astrophysics Data System (ADS)

    Dai, Yanhua; Yuan, Zhuoquan; Stone, Kristjan; Du, Rui-Rui; Xu, Min; Ye, Peide

    2008-03-01

    There is increasing current interest in the quantum interference effect in mesoscopic devices fabricated on a Rashba-2D electron gas (2DEG), where the spin-orbit interaction parameters can be tuned by a potential gate. We explore ring structures that use a gate consisting of thin (5nm-50nm) high-κ dielectric Al2O3 or HfO2 layer and nano-patterned metals. The 2DEG is provided by lattice-matched In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As quantum wells that have a typical electron density n of 1.5x10^12/cm^2 and mobility μ>=2x10^4cm^2/Vs. The dielectric material was grown by atomic layer deposition. We will present the gate characteristics of Hall bars as well as magnetic transport data from gated mesoscopic rings. The work at Rice is funded by NSF DMR-0706634. Reference: M. Konig et al, Phys. Rev. Lett. 96, 076804 (2006); T. Bergsten et al, Phys. Rev. Lett. 97, 196803 (2006); B. Grbic et al, Phys. Rev. Lett. 99, 176803 (2007).

  10. Effects of in-plane magnetic field on the transport of 2D electron vortices in non-uniform plasmas

    NASA Astrophysics Data System (ADS)

    Angus, Justin; Richardson, Andrew; Schumer, Joseph; Pulsed Power Team

    2015-11-01

    The formation of electron vortices in current-carrying plasmas is observed in 2D particle-in-cell (PIC) simulations of the plasma-opening switch. In the presence of a background density gradient in Cartesian systems, vortices drift in the direction found by crossing the magnetic field with the background density gradient as a result of the Hall effect. However, most of the 2D simulations where electron vortices are seen and studied only allow for in-plane currents and thus only an out-of-plane magnetic field. Here we present results of numerical simulations of 2D, seeded electron vortices in an inhomogeneous background using the generalized 2D electron-magneto-hydrodynamic model that additionally allows for in-plane components of the magnetic field. By seeding vortices with a varying axial component of the velocity field, so that the vortex becomes a corkscrew, it is found that a pitch angle of around 20 degrees is sufficient to completely prevent the vortex from propagating due to the Hall effect for typical plasma parameters. This work is supported by the NRL Base Program.

  11. Final LDRD report : the physics of 1D and 2D electron gases in III-nitride heterostructure NWs.

    SciTech Connect

    Armstrong, Andrew M.; Arslan, Ilke; Upadhya, Prashanth C.; Morales, Eugenia T.; Leonard, Francois Leonard; Li, Qiming; Wang, George T.; Talin, Albert Alec; Prasankumar, Rohit P.; Lin, Yong

    2009-09-01

    The proposed work seeks to demonstrate and understand new phenomena in novel, freestanding III-nitride core-shell nanowires, including 1D and 2D electron gas formation and properties, and to investigate the role of surfaces and heterointerfaces on the transport and optical properties of nanowires, using a combined experimental and theoretical approach. Obtaining an understanding of these phenomena will be a critical step that will allow development of novel, ultrafast and ultraefficient nanowire-based electronic and photonic devices.

  12. Locally adaptive 2D-3D registration using vascular structure model for liver catheterization.

    PubMed

    Kim, Jihye; Lee, Jeongjin; Chung, Jin Wook; Shin, Yeong-Gil

    2016-03-01

    Two-dimensional-three-dimensional (2D-3D) registration between intra-operative 2D digital subtraction angiography (DSA) and pre-operative 3D computed tomography angiography (CTA) can be used for roadmapping purposes. However, through the projection of 3D vessels, incorrect intersections and overlaps between vessels are produced because of the complex vascular structure, which makes it difficult to obtain the correct solution of 2D-3D registration. To overcome these problems, we propose a registration method that selects a suitable part of a 3D vascular structure for a given DSA image and finds the optimized solution to the partial 3D structure. The proposed algorithm can reduce the registration errors because it restricts the range of the 3D vascular structure for the registration by using only the relevant 3D vessels with the given DSA. To search for the appropriate 3D partial structure, we first construct a tree model of the 3D vascular structure and divide it into several subtrees in accordance with the connectivity. Then, the best matched subtree with the given DSA image is selected using the results from the coarse registration between each subtree and the vessels in the DSA image. Finally, a fine registration is conducted to minimize the difference between the selected subtree and the vessels of the DSA image. In experimental results obtained using 10 clinical datasets, the average distance errors in the case of the proposed method were 2.34±1.94mm. The proposed algorithm converges faster and produces more correct results than the conventional method in evaluations on patient datasets.

  13. 1d, 2d, and 3d periodic structures: Electromagnetic characterization, design, and measurement

    NASA Astrophysics Data System (ADS)

    Brockett, Timothy John

    Periodic structures have many useful applications in electromagnetics including phased arrays, frequency selective surfaces, and absorbing interfaces. Their unique properties can be used to provide increased performance in antenna gain, electromagnetic propagation, and electromagnetic absorption. In antenna arrays, repeating elements create a larger eective aperture, increasing the gain of the antenna and the ability to scan the direction of the main beam. Three-dimensional periodic structures, such as an array of shaped pillars such as columns, cones, or prisms have the potential of improving electromagnetic absorption, improving performance in applications such as solar cell eciency and absorbing interfaces. Furthermore, research into periodic structures is a continuing endeavor where novel approaches and analysis in appropriate applications can be sought. This dissertation will address the analysis, diagnostics, and enhancement of 1D, 2D, and 3D periodic structures for antenna array applications and solar cell technology. In particular, a unique approach to array design will be introduced to prevent the appearance of undesirable grating lobes in large antenna arrays that employ subarrays. This approach, named the distortion diagnostic procedure, can apply directly to 1D and 2D periodic structures in the form of planar antenna arrays. Interesting corollaries included here are developments in millimeter-wave antenna measurements including spiral planar scanning, phaseless measurements, and addressing antennas that feature an internal source. Finally, analysis and enhancement of 3D periodic structures in nanostructure photovoltaic arrays and absorbing interfaces will be examined for their behavior and basic operation in regards to improved absorption of electromagnetic waves.

  14. Structural transformation in monolayer materials: a 2D to 1D transformation.

    PubMed

    Momeni, Kasra; Attariani, Hamed; LeSar, Richard A

    2016-07-20

    Reducing the dimensions of materials to atomic scales results in a large portion of atoms being at or near the surface, with lower bond order and thus higher energy. At such scales, reduction of the surface energy and surface stresses can be the driving force for the formation of new low-dimensional nanostructures, and may be exhibited through surface relaxation and/or surface reconstruction, which can be utilized for tailoring the properties and phase transformation of nanomaterials without applying any external load. Here we used atomistic simulations and revealed an intrinsic structural transformation in monolayer materials that lowers their dimension from 2D nanosheets to 1D nanostructures to reduce their surface and elastic energies. Experimental evidence of such transformation has also been revealed for one of the predicted nanostructures. Such transformation plays an important role in bi-/multi-layer 2D materials.

  15. 2D-CELL: image processing software for extraction and analysis of 2-dimensional cellular structures

    NASA Astrophysics Data System (ADS)

    Righetti, F.; Telley, H.; Leibling, Th. M.; Mocellin, A.

    1992-01-01

    2D-CELL is a software package for the processing and analyzing of photographic images of cellular structures in a largely interactive way. Starting from a binary digitized image, the programs extract the line network (skeleton) of the structure and determine the graph representation that best models it. Provision is made for manually correcting defects such as incorrect node positions or dangling bonds. Then a suitable algorithm retrieves polygonal contours which define individual cells — local boundary curvatures are neglected for simplicity. Using elementary analytical geometry relations, a range of metric and topological parameters describing the population are then computed, organized into statistical distributions and graphically displayed.

  16. Detection and assessment of damage in 2D structures using measured modal response

    NASA Astrophysics Data System (ADS)

    Banan, Mohammad Reza; Mehdi-pour, Yousef

    2007-10-01

    Motivated by one of the concepts in the field of health monitoring for structural systems, a damage detection procedure is developed. In order to perform the system health monitoring, structural health along with sensor and actuator malfunction must be continuously checked. As a step toward developing a system health-monitoring scheme, this paper investigated structural damage detection, using a constrained eigenstructure assignment. The proposed damage detection method is constructed based on a concept of control theory and subspace rotation for two-dimensional (2D)-structural systems. To demonstrate the capabilities of the developed damage detection algorithm, the behavior of a simulated degraded braced-frame structure is studied. Using Monte Carlo simulation, the performance of the approach is evaluated. It shows that the proposed algorithm is potentially promising for application to real cases.

  17. Robust 2D principal component analysis: a structured sparsity regularized approach.

    PubMed

    Yipeng Sun; Xiaoming Tao; Yang Li; Jianhua Lu

    2015-08-01

    Principal component analysis (PCA) is widely used to extract features and reduce dimensionality in various computer vision and image/video processing tasks. Conventional approaches either lack robustness to outliers and corrupted data or are designed for one-dimensional signals. To address this problem, we propose a robust PCA model for two-dimensional images incorporating structured sparse priors, referred to as structured sparse 2D-PCA. This robust model considers the prior of structured and grouped pixel values in two dimensions. As the proposed formulation is jointly nonconvex and nonsmooth, which is difficult to tackle by joint optimization, we develop a two-stage alternating minimization approach to solve the problem. This approach iteratively learns the projection matrices by bidirectional decomposition and utilizes the proximal method to obtain the structured sparse outliers. By considering the structured sparsity prior, the proposed model becomes less sensitive to noisy data and outliers in two dimensions. Moreover, the computational cost indicates that the robust two-dimensional model is capable of processing quarter common intermediate format video in real time, as well as handling large-size images and videos, which is often intractable with other robust PCA approaches that involve image-to-vector conversion. Experimental results on robust face reconstruction, video background subtraction data set, and real-world videos show the effectiveness of the proposed model compared with conventional 2D-PCA and other robust PCA algorithms.

  18. 2D-ordered dielectric sub-micron bowls on a metal surface: a useful hybrid plasmonic-photonic structure

    NASA Astrophysics Data System (ADS)

    Lan, Yue; Wang, Shiqiang; Yin, Xianpeng; Liang, Yun; Dong, Hao; Gao, Ning; Li, Jian; Wang, Hui; Li, Guangtao

    2016-07-01

    -micron bowls on a flat gold surface was proposed, prepared, and theoretically and experimentally characterized. This hybrid structure supports two types of modes: surface plasmon polaritons bound at the metallic surface and waveguided mode of light confined in the cavity of bowls. Optical responses of this hybrid structure as well as the spatial electric field distribution of each mode are found to be strongly dependent on the structural parameters of this system, and thus could be widely modified on demand. Importantly, compared to the widely studied hybrid systems, namely the flat metallic surface coated with a monolayer array of latex spheres, the waveguided mode with strong field enhancement appearing in the cavities of bowls is more facilely accessible and thus suitable for practical use. For demonstration, a 2D-ordered silica sub-micron bowl array deposited on a flat gold surface was fabricated and used as a regenerable platform for fluorescence enhancement by simply accommodating emitters in bowls. All the simulation and experiment results indicate that the 2D-ordered dielectric sub-micron bowls on a metal surface should be a useful hybrid plasmonic-photonic system with great potential for applications such as sensors or tunable emitting devices if appropriate periods and materials are employed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02898e

  19. Iterative Stable Alignment and Clustering of 2D Transmission Electron Microscope Images

    PubMed Central

    Yang, Zhengfan; Fang, Jia; Chittuluru, Johnathan; Asturias, Francisco J.; Penczek, Pawel A.

    2012-01-01

    SUMMARY Identification of homogeneous subsets of images in a macromolecular electron microscopy (EM) image data set is a critical step in single-particle analysis. The task is handled by iterative algorithms, whose performance is compromised by the compounded limitations of image alignment and K-means clustering. Here we describe an approach, iterative stable alignment and clustering (ISAC) that, relying on a new clustering method and on the concepts of stability and reproducibility, can extract validated, homogeneous subsets of images. ISAC requires only a small number of simple parameters and, with minimal human intervention, can eliminate bias from two-dimensional image clustering and maximize the quality of group averages that can be used for ab initio three-dimensional structural determination and analysis of macromolecular conformational variability. Repeated testing of the stability and reproducibility of a solution within ISAC eliminates heterogeneous or incorrect classes and introduces critical validation to the process of EM image clustering. PMID:22325773

  20. 2D coordination polymers of macrocyclic oxamide with polycarboxylates: syntheses, crystal structures and magnetic properties.

    PubMed

    Sun, Ya-Qiu; Xu, Yan-Yan; Gao, Dong-Zhao; Zhang, Guo-Ying; Liu, Yiao-Xu; Wang, Jing; Liao, Dai-Zheng

    2012-05-14

    Five new 2D coordination polymers, [Co(nip)(CuL)(H(2)O)]·CH(3)OH (1), [Mn(ip)(NiL)]·0.63H(2)O (2), [Cu(ip)(CuL)] (3), [Mn(6)(CuL)(6)(btc)(4)(H(2)O)(4)]·7H(2)O (4), and [Cu(CuL)(Hbtc)(H(2)O)] (5)(ML, H(2)L = 2,3-dioxo-5,6,14,15-dibenzo-1,4,8,12-tetraazacyclo-pentadeca-7,13-diene; H(2)nip = 5-nitroisophthalic acid; H(2)ip = m-isophthalic acid; H(3)btc = 1,3,5-benzenetricarboxylic acid) have been synthesized by a solvothermal method and characterized by single-crystal X-ray diffraction. Complexes 1-5 exhibit different 2D layered structures formed by Co(2)Cu(2) (1), Mn(2)Ni(2) (2), Cu(4) (3), Mn(3)Ni(3) (4), Cu(4) (5) units, respectively, via the oxamide and diverse carboxylic acid bridges. Compounds 1, 2, 3 and 5 are uninodal 4-connected (4, 4)-grids topology, while complex 4 possesses a 2D network with (3, 4)-connected (4(2).8)(4)(4(3).6(2).8)(3) topology. The results of magnetic determination show pronounced antiferromagnetic interactions in 1-4.

  1. Layer-by-Layer Assembled 2D Montmorillonite Dielectrics for Solution-Processed Electronics.

    PubMed

    Zhu, Jian; Liu, Xiaolong; Geier, Michael L; McMorrow, Julian J; Jariwala, Deep; Beck, Megan E; Huang, Wei; Marks, Tobin J; Hersam, Mark C

    2016-01-06

    Layer-by-layer assembled 2D montmorillonite nanosheets are shown to be high-performance, solution-processed dielectrics. These scalable and spatially uniform sub-10 nm thick dielectrics yield high areal capacitances of ≈600 nF cm(-2) and low leakage currents down to 6 × 10(-9) A cm(-2) that enable low voltage operation of p-type semiconducting single-walled carbon nanotube and n-type indium gallium zinc oxide field-effect transistors.

  2. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene)

    DOE PAGES

    Mashtalir, O.; Lukatskaya, Maria R.; Kolesnikov, Alexander I.; ...

    2016-03-25

    Herein we show that hydrazine intercalation into 2D titanium carbide (Ti3C2-based MXene) results in changes in its surface chemistry by decreasing the amounts of fluorine, OH surface groups and intercalated water. It also creates a pillaring effect between Ti3C2Tx layers pre-opening the structure and improving the accessability to active sites. Furthermore, the hydrazine treated material has demonstrated a greatly improved capacitance of 250 F g–1 in acidic electrolytes with an excellent cycling ability for electrodes as thick as 75 μm.

  3. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene).

    PubMed

    Mashtalir, O; Lukatskaya, M R; Kolesnikov, A I; Raymundo-Piñero, E; Naguib, M; Barsoum, M W; Gogotsi, Y

    2016-04-28

    Herein we show that hydrazine intercalation into 2D titanium carbide (Ti3C2-based MXene) results in changes in its surface chemistry by decreasing the amounts of fluorine, OH surface groups and intercalated water. It also creates a pillaring effect between Ti3C2Tx layers pre-opening the structure and improving the accessability to active sites. The hydrazine treated material has demonstrated a greatly improved capacitance of 250 F g(-1) in acidic electrolytes with an excellent cycling ability for electrodes as thick as 75 μm.

  4. Nonlinear soil-structure interaction calculations simulating the SIMQUAKE experiment using STEALTH 2D

    NASA Technical Reports Server (NTRS)

    Tang, H. T.; Hofmann, R.; Yee, G.; Vaughan, D. K.

    1980-01-01

    Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences.

  5. Crystal and electronic characterization of Nd{sub x}Ti{sub 1−x}BO{sub 2+d} semiconductors

    SciTech Connect

    Ozkendir, Osman Murat

    2016-02-15

    Highlights: • Crystal and electronic structure properties of Nd{sub x}Ti{sub 1−x}BO{sub 2+d} structure were investigated. • New crystal structures for Nd–Ti complexes are determined. • Distortions in the crystal structure were observed as a result of Boron shortage. • Prominent change in electronic properties of the samples with the increasing Nd amount. - Abstract: Neodymium substituted TiBO{sub 3} samples were investigated according to their crystal, electric and electronic properties. Studies were conducted by X-ray absorption fine structure spectroscopy (XAFS) technique for the samples with different substitutions in the preparation processes. To achieve better crystal structure results during the study, XRD pattern results were supported by extended-XAFS (EXAFS) analysis. The electronic structure analysis were studied by X-ray absorption near-edge structure spectroscopy (XANES) measurements at the room temperatures. Due to the substituted Nd atoms, prominent changes in crystal structure, new crystal geometries for Nd-Ti complexes, phase transitions in the crystals structure were detected according to the increasing Nd substitutions in the samples. In the entire stages of the substitutions, Nd atoms were observed as governing the whole phenomena due to their dominant characteristics in Ti geometries. Besides, electrical resistivity decay was determined in the materials with the increasing amount of Nd substitution.

  6. Effects of Strike on Automatic Depth Estimation for 2D Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Bastani, M.; Kero, L.; Pedersen, L. B.; Johansson, R.

    2006-12-01

    Many analysis methods have been developed to process densely sampled magnetic and/or gravity data to estimate source parameters. Werner deconvolution (Werner, 1953), analytic signal (Nabighian, 1972) and Euler deconvolution(Thompson, 1983) are among the most popular methods. They work either on profile data (Bastani and Pedersen, 2001) or on a regular grid (Thurston et al., 2002). All methods developed to estimate source parameters of the 2D magnetic structures work in the strike co-ordinate system. Werner deconvolution makes use of profile data to locate and compute the depth to the top and dip of thin sheets (dikes) with infinite strike and depth extent. Nabighian (1972) introduced the analytic signal to calculate the dip and depth to a set of 2D magnetic sources. The strike angle is assumed to be the same for all the magnetic anomalies along the profile. These methods use the horizontal and vertical derivatives of the total magnetic field to estimate the source parameters. While the vertical derivative is independent of strike direction the horizontal derivative is proportional to the sine of the angle between the profile and strike directions: the profile angle. Bastani and Pedersen (2001) used the analytic signal of the total magnetic field anomaly along a profile to estimate the dip, depth, width and strike of dikes. They introduced a method to estimate the strike of various anomalies at selected points along profiles by searching for coherent signals in neighboring profiles. Here we have used the same method to estimate strike of 2D anomalies. In order to illustrate the importance of strike angle on the estimated source parameters we have constructed synthetic data from a model that comprises a set of thin dikes with the same physical characteristics but with different strikes. We then applied 2D Werner deconvolution, 2D analytic signal (by Bastani and Pedersen), 2D and 3D Euler deconvolution to the data set. As expected the depth estimates are highly biased

  7. Structural and magnetic properties of DyMn(2)D(6) synthesized under high deuterium pressure.

    PubMed

    Paul-Boncour, V; Filipek, S M; Wierzbicki, R; André, G; Bourée, F; Guillot, M

    2009-01-07

    DyMn(2)D(6) has been prepared by applying high gaseous deuterium pressure on DyMn(2). This phase is isostructural with other RMn(2)D(6) (R = Y, Er) compounds and crystallizes with a K(2)PtCl(6) type structure having an ordered anion and a partially disordered cation arrangement because Dy and half the Mn atoms are randomly substituted in the same 8c site. The reverse susceptibility follows a Curie-Weiss law with an effective moment of 10 μ(B) similar to that of DyMn(2). Short range magnetic order, corresponding to ferromagnetic correlations, is observed in the neutron patterns up to 10 K and can be attributed to Dy-Dy interactions. The decomposition of the deuteride into Mn and DyD(2), studied by thermal gravimetric analysis, occurs between 470 and 650 K. A further deuterium desorption takes place above 920 K.

  8. Reorientation of the Stripe Phase of 2D Electrons by a Minute Density Modulation

    NASA Astrophysics Data System (ADS)

    Mueed, M. A.; Hossain, Md. Shafayat; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.

    2016-08-01

    Interacting two-dimensional electrons confined in a GaAs quantum well exhibit isotropic transport when the Fermi level resides in the first excited (N =1 ) Landau level. Adding an in-plane magnetic field (B||) typically leads to an anisotropic, stripelike (nematic) phase of electrons with the stripes oriented perpendicular to the B|| direction. Our experimental data reveal how a periodic density modulation, induced by a surface strain grating from strips of negative electron-beam resist, competes against the B||-induced orientational order of the stripe phase. Even a minute (<0.25 %) density modulation is sufficient to reorient the stripes along the direction of the surface grating.

  9. Structure and interaction in 2D assemblies of tobacco mosaic viruses

    SciTech Connect

    Yang, L.; Wang. S.; Masafumi, F.; Checco, A.; Zhongwei, N.; Wang, Q.

    2009-08-27

    We created two-dimensional (2D) assemblies of tobacco mosaic viruses (TMVs) and characterized their structures using Atomic Force Microscopy (AFM) and X-ray scattering. The TMVs were adsorbed on an oppositely charged, fluid lipid monolayer supported by a solid substrate and submerged in a buffer solution. The lipid monolayer confined the viral particles within a plane, while providing them with lateral mobility so that overall the TMV assembly behaved like a 2D liquid. We controlled the inter-particle interaction by adjusting the chemical condition in the buffer to induce ordered TMV assemblies. We found that the presence of the lipid layer was essential for forming ordered TMV assemblies. Packed TMV assemblies formed on the lipid layer, with an average inter-particle spacing of 42 nm. By introducing Ca2+ ions into the buffer solution, we were able to improve the in-plane order within the TMV assemblies and reduce the average inter-particle spacing to 20 nm, compared to the TMV diameter of 18 nm. Quantitative analysis of the X-ray scattering data shows that the structural order within the TMV assemblies prepared under a Ca{sup 2+}-free buffer solution is consistent with purely repulsive, electrostatic inter-particle interaction. In contrast, the structural order within Ca{sup 2+}-induced TMV assemblies is consistent with the behavior of a fluid of sticky rods, implying the presence of a strong attraction between TMVs. In addition to the screening of Coulomb repulsion, this behavior is likely the result of counterion-induced as well as membrane-mediated attractions.

  10. Structure and Interaction in 2D Assemblies of Tobacco Mosaic Viruses

    SciTech Connect

    Fukuto, M.; Yang, L.; Wang, S.; Fukuto, M.; Checco, A.; Niu, Z.; Wang, Q.

    2009-12-07

    We created two-dimensional (2D) assemblies of tobacco mosaic viruses (TMVs) and characterized their structures using Atomic Force Microscopy (AFM) and X-ray scattering. The TMVs were adsorbed on an oppositely charged, fluid lipid monolayer supported by a solid substrate and submerged in a buffer solution. The lipid monolayer confined the viral particles within a plane, while providing them with lateral mobility so that overall the TMV assembly behaved like a 2D liquid. We controlled the inter-particle interaction by adjusting the chemical condition in the buffer to induce ordered TMV assemblies. We found that the presence of the lipid layer was essential for forming ordered TMV assemblies. Packed TMV assemblies formed on the lipid layer, with an average inter-particle spacing of 42 nm. By introducing Ca{sup 2+} ions into the buffer solution, we were able to improve the in-plane order within the TMV assemblies and reduce the average inter-particle spacing to 20 nm, compared to the TMV diameter of 18 nm. Quantitative analysis of the X-ray scattering data shows that the structural order within the TMV assemblies prepared under a Ca{sup 2+}-free buffer solution is consistent with purely repulsive, electrostatic inter-particle interaction. In contrast, the structural order within Ca{sup 2+}-induced TMV assemblies is consistent with the behavior of a fluid of sticky rods, implying the presence of a strong attraction between TMVs. In addition to the screening of Coulomb repulsion, this behavior is likely the result of counterion-induced as well as membrane-mediated attractions.

  11. 2D-ELDOR study of heterogeneity and domain structure changes in plasma membrane vesicles upon cross-linking of receptors.

    PubMed

    Chiang, Yun-Wei; Costa-Filho, Antonio J; Baird, Barbara; Freed, Jack H

    2011-09-08

    2D electron-electron double resonance (2D-ELDOR) with the "full Sc-" method of analysis is applied to the study of plasma membrane vesicles. Membrane structural changes upon antigen cross-linking of IgE receptors (IgE-FcεRI) in plasma membrane vesicles (PMVs) isolated from RBL-2H3 mast cells are investigated, for the first time, by means of these 2D-ELDOR techniques. Spectra of 1-palmitoyl-2-(16-doxyl stearoyl) phosphatidylcholine (16-PC) from PMVs before and after this stimulation at several temperatures are reported. The results demonstrate a coexistence of liquid-ordered (L(o)) and liquid-disordered (L(d)) components. We find that upon cross-linking, the membrane environment is remodeled to become more disordered, as shown by a moderate increase in the population of the L(d) component. This change in the relative amount of the L(o) versus L(d) components upon cross-linking is consistent with a model wherein the IgE receptors, which when clustered by antigen to cause cell stimulation, lead to more disordered lipids, and their dynamic and structural properties are slightly altered. This study demonstrates that 2D-ELDOR, analyzed by the full Sc- method, is a powerful approach for capturing the molecular dynamics in biological membranes. This is a particular case showing how 2D-ELDOR can be applied to study physical processes in complex systems that yield subtle changes.

  12. Electron capture and excitation in collisions of O+ ( 4S , 2D , 2P ) with H2 molecules

    NASA Astrophysics Data System (ADS)

    Pichl, Lukáš; Li, Yan; Liebermann, Heinz-Peter; Buenker, Robert J.; Kimura, Mineo

    2004-06-01

    Using an electronic-state close-coupling method, we treated the electron capture and excitation processes of O+ ions both in ground state O+ ( 4S ) and metastable states O+* ( 2D ) and O+* ( 2P ) in collisions with the H2 molecule. In the ground-state projectile energy region considered (from 50 eV/amu to 10 keV/amu ), the experimental data vary by orders of magnitude: our results smoothly connect to the data by FleschNg, J. Chem. Phys.9419912372 and Xuet al., J. Phys. B2319901235 at low energy and agree with Phaneufet al., Phys. Rev. A171978534 in the high-energy region. The present values differ from Sieglaffet al., Phys. Rev. A5919993538 and Nuttet al., J. Phys. B121979L157, especially in the energy region below 1 keV/amu . We provide the first calculated state-resolved cross sections of electron capture and target-projectile electronic excitations for the O+ ( 4S , 2D , 2P )- H2 collision system.

  13. Ternary recombination of H3+, H2D+, HD2+, and D3+ with electrons in He/Ar/H2/D2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Kalosi, Abel; Dohnal, Petr; Plasil, Radek; Johnsen, Rainer; Glosik, Juraj

    2016-09-01

    The temperature dependence of the ternary recombination rate coefficients of H2D+ and HD2+ ions has been studied in the temperature range of 80-150 K at pressures from 500 to 1700 Pa in a stationary afterglow apparatus equipped with a cavity ring-down spectrometer. Neutral gas mixtures consisting of He/Ar/H2/D2 (with typical number densities 1017 /1014 /1014 /1014 cm-3) were employed to produce the desired ionic species and their fractional abundances were monitored as a function of helium pressure and the [D2]/[H2] ratio of the neutral gas. In addition, the translational and the rotational temperature and the ortho to para ratio were monitored for both H2D+ and HD2+ ions. A fairly strong pressure dependence of the effective recombination rate coefficient was observed for both ion species, leading to ternary recombination rate coefficients close to those previously found for (helium assisted) ternary recombination of H3+ and D3+. Work supported by: Czech Science Foundation projects GACR 14-14649P, GACR 15-15077S, GACR P209/12/0233, and by Charles University in Prague Project Nr. GAUK 692214.

  14. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene)

    SciTech Connect

    Mashtalir, O.; Lukatskaya, Maria R.; Kolesnikov, Alexander I.; Raymundo-Pinero, E.; Naguib, Michael; Barsoum, M. W.; Gogotsi, Yury G.

    2016-03-25

    Herein we show that hydrazine intercalation into 2D titanium carbide (Ti3C2-based MXene) results in changes in its surface chemistry by decreasing the amounts of fluorine, OH surface groups and intercalated water. It also creates a pillaring effect between Ti3C2Tx layers pre-opening the structure and improving the accessability to active sites. Furthermore, the hydrazine treated material has demonstrated a greatly improved capacitance of 250 F g–1 in acidic electrolytes with an excellent cycling ability for electrodes as thick as 75 μm.

  15. Angle-resolved 2D imaging of electron emission processes in atoms and molecules

    SciTech Connect

    Kukk, E.; Wills, A.A.; Langer, B.; Bozek, J.D.; Berrah, N.

    2004-09-02

    A variety of electron emission processes have been studied in detail for both atomic and molecular systems, using a highly efficient experimental system comprising two time-of-flight (TOF) rotatable electron energy analyzers and a 3rd generation synchrotron light source. Two examples are used here to illustrate the obtained results. Firstly, electron emissions in the HCL molecule have been mapped over a 14 eV wide photon energy range over the Cl 2p ionization threshold. Particular attention is paid to the dissociative core-excited states, for which the Auger electron emission shows photon energy dependent features. Also, the evolution of resonant Auger to the normal Auger decay distorted by post-collision interaction has been observed and the resonating behavior of the valence photoelectron lines studied. Secondly, an atomic system, neon, in which excitation of doubly excited states and their subsequent decay to various accessible ionic states has been studied. Since these processes only occurs via inter-electron correlations, the many body dynamics of an atom can be probed, revealing relativistic effects, surprising in such a light atom. Angular distribution of the decay of the resonances to the parity unfavored continuum exhibits significant deviation from the LS coupling predictions.

  16. Electronic Transport Properties of New 2-D Materials GeH and NaSn2As2

    NASA Astrophysics Data System (ADS)

    He, Bin; Cultrara, Nicholas; Arguilla, Maxx; Goldberger, Joshua; Heremans, Joseph

    2-D materials potentially have superior thermoelectric properties compared to traditional 3-D materials due to their layered structure. Here we present electrical and thermoelectric transport properties of 2 types of 2-D materials, GeH and NaSn2As2. GeH is a graphane analog which is prepared using chemical exfoliation of CaGe2 crystals. Intrinsic GeH is proven to be a highly resistive material at room temperature. Resistance and Seebeck coefficient of Ga doped GeH are measured in a cryostat with a gating voltage varying from -100V to 100V. NaSn2As2 is another 2-D system, with Na atom embedded between nearly-2D Sn-As layers. Unlike GeH, NaSn2As2 is a metal based of Hall measurements, with p-type behavior, and with van der Pauw resistances on the order of 5m Ω/square. Thermoelectric transport properties of NaSn2As2 will be reported. This work is support by the NSF EFRI-2DARE project EFRI-1433467.

  17. A novel simple procedure to consider seismic soil structure interaction effects in 2D models

    NASA Astrophysics Data System (ADS)

    Jaramillo, Juan Diego; Gómez, Juan David; Restrepo, Doriam; Rivera, Santiago

    2014-09-01

    A method is proposed to estimate the seismic soil-structure-interaction (SSI) effects for use in engineering practice. It is applicable to 2D structures subjected to vertically incident shear waves supported by homogenous half-spaces. The method is attractive since it keeps the simplicity of the spectral approach, overcomes some of the difficulties and inaccuracies of existing classical techniques and yet it considers a physically consistent excitation. This level of simplicity is achieved through a response spectra modification factor that can be applied to the free-field 5%-damped response spectra to yield design spectral ordinates that take into account the scattered motions introduced by the interaction effects. The modification factor is representative of the Transfer Function (TF) between the structural relative displacements and the free-field motion, which is described in terms of its maximum amplitude and associated frequency. Expressions to compute the modification factor by practicing engineers are proposed based upon a parametric study using 576 cases representative of actual structures. The method is tested in 10 cases spanning a wide range of common fundamental vibration periods.

  18. Single crystal diamond boron 'delta doped' nanometric layers for 2D electronic devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Butler, James

    2016-10-01

    Use of diamond as a semiconductor material suffers from the high activation energy of all known impurity dopants (0.37 eV for Boron, 0.6 eV for Phosphorous). To achieve the simultaneous carrier concentration and mobility desired for devices operating at room temperature, growth of a nanometric thick `delta' layer doped to above the metal insulator transition adjacent to high mobility intrinsic material can provide a 2D high mobility conduction layer. Critical to obtaining the enhanced mobility of the carriers in the layer next to the `delta' doped layer is the abruptness of the doping interface. Single and multiple nanometer thick epitaxial layers of heavily boron `delta' doped diamond have been grown on high quality, intrinsic lab grown diamond single crystals. These layers were grown in a custom microwave plasma activated chemical vapor deposition reactor based on a rapid reactant switching technique. Characterization of the `delta' layers by various analytical techniques will be presented. Electrical measurements demonstrating enhanced hole mobility (100 to 800 cm2/V sec) as well as other electrical characterizations will be presented.

  19. Structure Integral Transform Versus Radon Transform: A 2D Mathematical Tool for Invariant Shape Recognition.

    PubMed

    Wang, Bin; Gao, Yongsheng

    2016-12-01

    In this paper, we present a novel mathematical tool, Structure Integral Transform (SIT), for invariant shape description and recognition. Different from the Radon Transform (RT), which integrates the shape image function over a 1D line in the image plane, the proposed SIT builds upon two orthogonal integrals over a 2D K -cross dissecting structure spanning across all rotation angles by which the shape regions are bisected in each integral. The proposed SIT brings the following advantages over the RT: 1) it has the extra function of describing the interior structural relationship within the shape which provides a more powerful discriminative ability for shape recognition; 2) the shape regions are dissected by the K -cross in a coarse to fine hierarchical order that can characterize the shape in a better spatial organization scanning from the center to the periphery; and 3) it is easier to build a completely invariant shape descriptor. The experimental results of applying SIT to shape recognition demonstrate its superior performance over the well-known Radon transform, and the well-known shape contexts and the polar harmonic transforms.

  20. Methods to determine the Orientation and Velocity of 2-D structures based on multi- spacecraft data

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Pu, Z.; Zhou, X.; Wang, J.; Zong, Q.; Shi, Q.

    2006-12-01

    Many techniques have been developed to study the axial orientation and/or velocity of 2-D structures (flux ropes), by analyzing in situ data from single or multiple spacecraft. To obtain the axial orientation, there are magnetic based MVA (BMVA), current based MVA (CMVA), Minimum Direction Derivative (MDD) and Multiple Triangulation Analysis (MTA) as a modified version of timing method. To further calculate the velocity, we have DeHoffmann-Teller analysis, Spatio-Temporal Difference (STD) and several version of timing method including MTA. After a brief introduction on the principle of these methods, we theoretically estimate their error ranges based on modeled structures to examine the validity of these techniques. Because of their different principles, their error bars are shown to be distinct, depending on the parameters (such as radius, model selected and even the satellite crossing path) of the certain structure. The error estimation thus provides us some clue on the selection of methods under different conditions. Some real events are further analyzed using these techniques as the example.

  1. Fringe structures and tunable bandgap width of 2D boron nitride nanosheets.

    PubMed

    Feng, Peter; Sajjad, Muhammad; Li, Eric Yiming; Zhang, Hongxin; Chu, Jin; Aldalbahi, Ali; Morell, Gerardo

    2014-01-01

    We report studies of the surface fringe structures and tunable bandgap width of atomic-thin boron nitride nanosheets (BNNSs). BNNSs are synthesized by using digitally controlled pulse deposition techniques. The nanoscale morphologies of BNNSs are characterized by using scanning electron microscope (SEM), and transmission electron microscopy (TEM). In general, the BNNSs appear microscopically flat in the case of low temperature synthesis, whereas at high temperature conditions, it yields various curved structures. Experimental data reveal the evolutions of fringe structures. Functionalization of the BNNSs is completed with hydrogen plasma beam source in order to efficiently control bandgap width. The characterizations are based on Raman scattering spectroscopy, X-ray diffraction (XRD), and FTIR transmittance spectra. Red shifts of spectral lines are clearly visible after the functionalization, indicating the bandgap width of the BNNSs has been changed. However, simple treatments with hydrogen gas do not affect the bandgap width of the BNNSs.

  2. Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals

    SciTech Connect

    Maskaly, Karlene Rosera

    2005-06-01

    increasing RMS roughness. Again, the homogenization approximation is able to predict these results. The problem of surface scratches on 1D photonic crystals is also addressed. Although the reflectivity decreases are lower in this study, up to a 15% change in reflectivity is observed in certain scratched photonic crystal structures. However, this reflectivity change can be significantly decreased by adding a low index protective coating to the surface of the photonic crystal. Again, application of homogenization theory to these structures confirms its predictive power for this type of imperfection as well. Additionally, the problem of a circular pores in 2D photonic crystals is investigated, showing that almost a 50% change in reflectivity can occur for some structures. Furthermore, this study reveals trends that are consistent with the 1D simulations: parameter changes that increase the absolute reflectivity of the photonic crystal will also increase its tolerance to structural imperfections. Finally, experimental reflectance spectra from roughened 1D photonic crystals are compared to the results predicted computationally in this thesis. Both the computed and experimental spectra correlate favorably, validating the findings presented herein.

  3. Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal

    NASA Astrophysics Data System (ADS)

    Jiang, B.-Y.; Ni, G. X.; Pan, C.; Fei, Z.; Cheng, B.; Lau, C. N.; Bockrath, M.; Basov, D. N.; Fogler, M. M.

    2016-08-01

    We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept.

  4. Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal.

    PubMed

    Jiang, B-Y; Ni, G X; Pan, C; Fei, Z; Cheng, B; Lau, C N; Bockrath, M; Basov, D N; Fogler, M M

    2016-08-19

    We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept.

  5. Electron dose distributions in experimental phantoms: a comparison with 2D pencil beam calculations.

    PubMed

    Cygler, J; Battista, J J; Scrimger, J W; Mah, E; Antolak, J

    1987-09-01

    Dose distributions were measured and computed within inhomogeneous phantoms irradiated with beams of electrons having initial energies of 10 and 18 MeV. The measurements were made with a small p-type silicon diode and the calculations were performed using the pencil beam algorithm developed originally at the M D Anderson Hospital (MDAH). This algorithm, which is available commercially on many radiotherapy planning computers, is based on the Fermi-Eyges theory of electron transport. The phantoms used in this work were composed of water into which two- and three-dimensional inhomogeneities of aluminum and air (embedded in wax) were introduced. This was done in order to simulate the small bones and the air cavities encountered clinically in radiation therapy of the chest wall or neck. Our intent was to test the adequacy of the two-dimensional implementation of the pencil beam approach. The agreement between measured and computed doses is very good for inhomogeneities which are essentially two-dimensional but discrepancies as large as 40% were observed for more complex three-dimensional inhomogeneities. We can only trace the discrepancies to the complex interplay of numerous approximations in the Fermi-Eyges theory of multiple scattering and its adaptation for practical computer-aided radiotherapy planning.

  6. Optimization of hybrid organic-inorganic interdigitated photovoltaic device structure using a 2D diffusion model.

    PubMed

    Krali, Emiljana; Curry, Richard J

    2011-04-26

    To improve the efficiency of organic photovoltaic devices the inclusion of semiconducting nanoparticles such as PbS has been used to enhance near-infrared absorption. Additionally the use of interdigitated heterojunctions has been explored as a means of improving charge extraction. In this paper we provide a two-dimensional model taking into account these approaches with the aim of predicting an optimized device geometry to maximize the efficiency. The steady-state exciton population has been calculated in each of the active regions taking into account the full optical response based on using a finite difference approach to obtain approximate numerical solutions to the 2D exciton diffusion equation. On the basis of this we calculate the contribution of each active material to the device short circuit current and power conversion efficiency. We show that optimized structures can lead to power conversions efficiencies of ∼50% compared to a maximum of ∼17% for planar heterojunction devices. To achieve this the interdigitated region thickness should be ∼800 nm with PbS and C(60) widths of ∼60 and 20 nm, respectively. Even modest nanopatterning using much thinner active regions provides improvements in efficiency and may be approached using a variety of methods including nanoimprinting lithography, nanotemplating, or the incorporation of presynthesized nanorod structures.

  7. Quantitative 2D HSQC NMR determination of polymer structures by selecting suitable internal standard references.

    PubMed

    Zhang, Liming; Gellerstedt, Göran

    2007-01-01

    A new analytical method based on the 2D HSQC NMR sequence is presented, which can be applied for quantitative structural determination of complicated polymers. The influence of T1 and T2 relaxations, off-resonance effects, coupling constants and homonuclear couplings are discussed. It was found that the T2 values measured on polymeric samples with the conventional HSQC-CPMG sequence could not be used to correct the errors caused by T2 relaxations during the polarization transfer delay. A unique way of selecting the proper internal standard reference signal(s) is therefore proposed to eliminate the major errors caused by T2 relaxations, resonance offsets, coupling constant deviations and homonuclear couplings. Two polymer samples, a cellulose triacetate and an acetylated lignin, have been used to illustrate the principles. The methodology developed in this work is robust to instrument miss-setting and it can find wide-spread applications in areas where a quantitative analysis of structurally complicated polymers is necessary.

  8. Electron Structure of Francium

    NASA Astrophysics Data System (ADS)

    Koufos, Alexander

    2012-02-01

    This talk presents the first calculations of the electronic structure of francium for the bcc, fcc and hcp structures, using the Augmented Plane Wave (APW) method in its muffin-tin and linearized general potential forms. Both the Local Density Approximation (LDA) and Generalized Gradient Approximation (GGA), were used to calculate the electronic structure and total energy of francium (Fr). The GGA and LDA both found the total energy of the hcp structure slightly below that of the fcc and bcc structure, respectively. This is in agreement with similar results for the other alkali metals using the same methodology. The equilibrium lattice constant, bulk modulus and superconductivity parameters were calculated. We found that under pressures, in the range of 1-5 GPa, Fr could be a superconductor at a critical temperature of about 4K.

  9. 2D FT-IR Study of Compositional and Structural Change in Developing Cotton Fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two-dimensional (2D) correlation analysis was applied to characterize the ATR spectral intensity fluctuations of immature and mature cotton fibers. Prior to 2D analysis, the spectra were leveled to zero at the peak intensity of 1800 cm-1 and then were normalized at the peak intensity of 660 cm-1 to ...

  10. Parallel Finite Element Electron-Photon Transport Analysis on 2-D Unstructured Mesh

    SciTech Connect

    Drumm, C.R.

    1999-01-01

    A computer code has been developed to solve the linear Boltzmann transport equation on an unstructured mesh of triangles, from a Pro/E model. An arbitriwy arrangement of distinct material regions is allowed. Energy dependence is handled by solving over an arbitrary number of discrete energy groups. Angular de- pendence is treated by Legendre-polynomial expansion of the particle cross sections and a discrete ordinates treatment of the particle fluence. The resulting linear system is solved in parallel with a preconditioned conjugate-gradients method. The solution method is unique, in that the space-angle dependence is solved si- multaneously, eliminating the need for the usual inner iterations. Electron cross sections are obtained from a Goudsrnit-Saunderson modifed version of the CEPXS code. A one-dimensional version of the code has also been develop@ for testing and development purposes.

  11. Quantum magnetotransport in 2D electron gas in InGaAs/InP heterostructures

    NASA Astrophysics Data System (ADS)

    Podor, Balint; Savel'ev, I. G.; Kovacs, Gy.; Remenyi, G.; Gombos, G.; Kreshchuk, A. M.; Novikov, S. V.

    1997-08-01

    Quantum magnetotransport measurements were performed on liquid phase epitaxially grown In0.35Ga0.47As/InP heterostructures at 4.2 K temperature in magnetic fields up to 22 Tesla. Measurements in tilted magnetic field, in conjunction with the analysis of the derivatives with respect to the magnetic field of the magnetoresistance curves, allowed the resolution of spin-splitting of the Landau levels up to N equals 3. The spin-splitting energy ESPIN was deduced for the half-filled Landau levels 0ARDN, 1ARUP, 1ARDN, 2ARUP, and 2$ARDN. The magnetic field dependence of the spin-splitting energy was interpreted using a simple model based on the exchange interaction of the electrons in the spin-splitted Landau levels, incorporating the disorder induced broadening of the Landau levels.

  12. Electron radiation damage mechanisms in 2D MoSe2

    NASA Astrophysics Data System (ADS)

    Lehnert, T.; Lehtinen, O.; Algara-Siller, G.; Kaiser, U.

    2017-01-01

    The contributions of different damage mechanisms in single-layer MoSe2 were studied by investigating different MoSe2/graphene heterostructures by the aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM) at 80 keV. The damage cross-sections were determined by direct counting of atoms in the AC-HRTEM images. The contributions of damage mechanisms such as knock-on damage or ionization effects were estimated by comparing the damage rates in different heterostructure configurations, similarly to what has been earlier done with MoS2. The behaviour of MoSe2 was found to be nearly identical to that of MoS2, which is an unexpected result, as the knock-on mechanism should be suppressed in MoSe2 due to the high mass of Se, as compared to S.

  13. The development and testing of a 2D laboratory seismic modelling system for heterogeneous structure investigations

    NASA Astrophysics Data System (ADS)

    Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki

    2015-05-01

    Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The

  14. Coherent phenomena in terahertz 2D plasmonic structures: strong coupling, plasmonic crystals, and induced transparency by coupling of localized modes

    NASA Astrophysics Data System (ADS)

    Dyer, Gregory C.; Aizin, Gregory R.; Allen, S. James; Grine, Albert D.; Bethke, Don; Reno, John L.; Shaner, Eric A.

    2014-05-01

    The device applications of plasmonic systems such as graphene and two dimensional electron gases (2DEGs) in III-V heterostructures include terahertz detectors, mixers, oscillators and modulators. These two dimensional (2D) plasmonic systems are not only well-suited for device integration, but also enable the broad tunability of underdamped plasma excitations via an applied electric field. We present demonstrations of the coherent coupling of multiple voltage tuned GaAs/AlGaAs 2D plasmonic resonators under terahertz irradiation. By utilizing a plasmonic homodyne mixing mechanism to downconvert the near field of plasma waves to a DC signal, we directly detect the spectrum of coupled plasmonic micro-resonator structures at cryogenic temperatures. The 2DEG in the studied devices can be interpreted as a plasmonic waveguide where multiple gate terminals control the 2DEG kinetic inductance. When the gate tuning of the 2DEG is spatially periodic, a one-dimensional finite plasmonic crystal forms. This results in a subwavelength structure, much like a metamaterial element, that nonetheless Bragg scatters plasma waves from a repeated crystal unit cell. A 50% in situ tuning of the plasmonic crystal band edges is observed. By introducing gate-controlled defects or simply terminating the lattice, localized states arise in the plasmonic crystal. Inherent asymmetries at the finite crystal boundaries produce an induced transparency-like phenomenon due to the coupling of defect modes and crystal surface states known as Tamm states. The demonstrated active control of coupled plasmonic resonators opens previously unexplored avenues for sensitive direct and heterodyne THz detection, planar metamaterials, and slow-light devices.

  15. Model-based segmentation and quantification of subcellular structures in 2D and 3D fluorescent microscopy images

    NASA Astrophysics Data System (ADS)

    Wörz, Stefan; Heinzer, Stephan; Weiss, Matthias; Rohr, Karl

    2008-03-01

    We introduce a model-based approach for segmenting and quantifying GFP-tagged subcellular structures of the Golgi apparatus in 2D and 3D microscopy images. The approach is based on 2D and 3D intensity models, which are directly fitted to an image within 2D circular or 3D spherical regions-of-interest (ROIs). We also propose automatic approaches for the detection of candidates, for the initialization of the model parameters, and for adapting the size of the ROI used for model fitting. Based on the fitting results, we determine statistical information about the spatial distribution and the total amount of intensity (fluorescence) of the subcellular structures. We demonstrate the applicability of our new approach based on 2D and 3D microscopy images.

  16. Influence of weak vibrational-electronic couplings on 2D electronic spectra and inter-site coherence in weakly coupled photosynthetic complexes

    NASA Astrophysics Data System (ADS)

    Monahan, Daniele M.; Whaley-Mayda, Lukas; Ishizaki, Akihito; Fleming, Graham R.

    2015-08-01

    Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the "site-probe response." By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.

  17. Influence of weak vibrational-electronic couplings on 2D electronic spectra and inter-site coherence in weakly coupled photosynthetic complexes

    SciTech Connect

    Monahan, Daniele M.; Whaley-Mayda, Lukas; Fleming, Graham R.; Ishizaki, Akihito

    2015-08-14

    Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the “site-probe response.” By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.

  18. Guided Lamb wave based 2-D spiral phased array for structural health monitoring of thin panel structures

    NASA Astrophysics Data System (ADS)

    Yoo, Byungseok

    2011-12-01

    In almost all industries of mechanical, aerospace, and civil engineering fields, structural health monitoring (SHM) technology is essentially required for providing the reliable information of structural integrity of safety-critical structures, which can help reduce the risk of unexpected and sometimes catastrophic failures, and also offer cost-effective inspection and maintenance of the structures. State of the art SHM research on structural damage diagnosis is focused on developing global and real-time technologies to identify the existence, location, extent, and type of damage. In order to detect and monitor the structural damage in plate-like structures, SHM technology based on guided Lamb wave (GLW) interrogation is becoming more attractive due to its potential benefits such as large inspection area coverage in short time, simple inspection mechanism, and sensitivity to small damage. However, the GLW method has a few critical issues such as dispersion nature, mode conversion and separation, and multiple-mode existence. Phased array technique widely used in all aspects of civil, military, science, and medical industry fields may be employed to resolve the drawbacks of the GLW method. The GLW-based phased array approach is able to effectively examine and analyze complicated structural vibration responses in thin plate structures. Because the phased sensor array operates as a spatial filter for the GLW signals, the array signal processing method can enhance a desired signal component at a specific direction while eliminating other signal components from other directions. This dissertation presents the development, the experimental validation, and the damage detection applications of an innovative signal processing algorithm based on two-dimensional (2-D) spiral phased array in conjunction with the GLW interrogation technique. It starts with general backgrounds of SHM and the associated technology including the GLW interrogation method. Then, it is focused on the

  19. Monolignol acylation and lignin structure in some nonwoody plants: a 2D NMR study.

    PubMed

    Martínez, Angel T; Rencoret, Jorge; Marques, Gisela; Gutiérrez, Ana; Ibarra, David; Jiménez-Barbero, Jesús; del Río, José C

    2008-11-01

    Lignins from three nonwoody angiosperms were analyzed by 2D NMR revealing important differences in their molecular structures. The Musa textilis milled-wood-lignin (MWL), with a syringyl-to-guaiacyl (S/G) ratio of 9, was strongly acylated (near 85% of side-chains) at the gamma-carbon by both acetates and p-coumarates, as estimated from (1)H-(13)C correlations in C(gamma)-esterified and C(gamma)-OH units. The p-coumarate H(3,5)-C(3,5) correlation signal was completely displaced by acetylation, and disappeared after alkali treatment, indicating that p-coumaric acid was esterified maintaining its free phenolic group. By contrast, the Cannabis sativa MWL (S/G approximately 0.8) was free of acylating groups, and the Agave sisalana MWL (S/G approximately 4) showed high acylation degree (near 80%) but exclusively with acetates. Extensive C(gamma)-acylation results in the absence (in M. textilis lignin) or low abundance (4% in A. sisalana lignin) of beta-beta' resinol linkages, which require free C(gamma)-OH to form the double tetrahydrofuran ring. However, minor signals revealed unusual acylated beta-beta' structures confirming that acylation is produced at the monolignol level, in agreement with chromatographic identification of gamma-acetylated sinapyl alcohol among the plant extractives. In contrast, resinol substructures involved 22% side-chains in the C.sativa MWL. The ratio between beta-beta' and beta-O-4' side-chains in these and other MWL varied from 0.32 in C.sativa MWL to 0.02 in M. textilis MWL, and was inversely correlated with the degree of acylation. The opposite was observed for the S/G ratio that was directly correlated with the acylation degree. Monolignol acylation is discussed as a mechanism potentially involved in the control of lignin structure.

  20. Prestack depth migration for complex 2D structure using phase-screen propagators

    SciTech Connect

    Roberts, P.; Huang, Lian-Jie; Burch, C.; Fehler, M.; Hildebrand, S.

    1997-11-01

    We present results for the phase-screen propagator method applied to prestack depth migration of the Marmousi synthetic data set. The data were migrated as individual common-shot records and the resulting partial images were superposed to obtain the final complete Image. Tests were performed to determine the minimum number of frequency components required to achieve the best quality image and this in turn provided estimates of the minimum computing time. Running on a single processor SUN SPARC Ultra I, high quality images were obtained in as little as 8.7 CPU hours and adequate images were obtained in as little as 4.4 CPU hours. Different methods were tested for choosing the reference velocity used for the background phase-shift operation and for defining the slowness perturbation screens. Although the depths of some of the steeply dipping, high-contrast features were shifted slightly the overall image quality was fairly insensitive to the choice of the reference velocity. Our jests show the phase-screen method to be a reliable and fast algorithm for imaging complex geologic structures, at least for complex 2D synthetic data where the velocity model is known.

  1. Application of conformal map theory for design of 2-D ultrasonic array structure for NDT imaging application: a feasibility study.

    PubMed

    Ramadas, Sivaram N; Jackson, Joseph C; Dziewierz, Jerzy; O'Leary, Richard; Gachagan, Anthony

    2014-03-01

    Two-dimensional ultrasonic phased arrays are becoming increasingly popular in nondestructive evaluation (NDE). Sparse array element configurations are required to fully exploit the potential benefits of 2-D phased arrays. This paper applies the conformal mapping technique as a means of designing sparse 2-D array layouts for NDE applications. Modeling using both Huygens' field prediction theory and 2-D fast Fourier transformation is employed to study the resulting new structure. A conformal power map was used that, for fixed beam width, was shown in simulations to have a greater contrast than rectangular or random arrays. A prototype aperiodic 2-D array configuration for direct contact operation in steel, with operational frequency ~3 MHz, was designed using the array design principle described in this paper. Experimental results demonstrate a working sparse-array transducer capable of performing volumetric imaging.

  2. 2D and 3D GPR imaging of structural ceilings in historic and existing constructions

    NASA Astrophysics Data System (ADS)

    Colla, Camilla

    2014-05-01

    GPR applications in civil engineering are to date quite diversified. With respect to civil constructions and monumental buildings, detection of voids, cavities, layering in structural elements, variation of geometry, of moisture content, of materials, areas of decay, defects, cracks have been reported in timber, concrete and masonry elements. Nonetheless, many more fields of investigation remain unexplored. This contribution gives an account of a variety of examples of structural ceilings investigation by GPR radar in reflection mode, either as 2D or 3D data acquisition and visualisation. Ceilings have a pre-eminent role in buildings as they contribute to a good structural behaviour of the construction. Primarily, the following functions can be listed for ceilings: a) they carry vertical dead and live loads on floors and distribute such loads to the vertical walls; b) they oppose to external horizontal forces such as wind loads and earthquakes helping to transfer such forces from the loaded element to the other walls; c) they contribute to create the box skeleton and behaviour of a building, connecting the different load bearing walls and reducing the slenderness and flexural instability of such walls. Therefore, knowing how ceilings are made in specific buildings is of paramount importance for architects and structural engineers. According to the type of building and age of construction, ceilings may present very different solutions and materials. Moreover, in existing constructions, ceilings may have been substituted, modified or strengthened due to material decay or to change of use of the building. These alterations may often go unrecorded in technical documentation or technical drawings may be unavailable. In many cases, the position, orientation and number of the load carrying elements in ceilings may be hidden or not be in sight, due for example to the presence of false ceilings or to technical plants. GPR radar can constitute a very useful tool for

  3. A Stochastic Hill Climbing Approach for Simultaneous 2D Alignment and Clustering of Cryogenic Electron Microscopy Images.

    PubMed

    Reboul, Cyril F; Bonnet, Frederic; Elmlund, Dominika; Elmlund, Hans

    2016-06-07

    A critical step in the analysis of novel cryogenic electron microscopy (cryo-EM) single-particle datasets is the identification of homogeneous subsets of images. Methods for solving this problem are important for data quality assessment, ab initio 3D reconstruction, and analysis of population diversity due to the heterogeneous nature of macromolecules. Here we formulate a stochastic algorithm for identification of homogeneous subsets of images. The purpose of the method is to generate improved 2D class averages that can be used to produce a reliable 3D starting model in a rapid and unbiased fashion. We show that our method overcomes inherent limitations of widely used clustering approaches and proceed to test the approach on six publicly available experimental cryo-EM datasets. We conclude that, in each instance, ab initio 3D reconstructions of quality suitable for initialization of high-resolution refinement are produced from the cluster centers.

  4. Electronic absorption spectra of C60+ -L (L = He, Ne, Ar, Kr, H2, D2, N2) complexes

    NASA Astrophysics Data System (ADS)

    Holz, Mathias; Campbell, Ewen Kyle; Rice, Corey Allen; Maier, John Paul

    2017-02-01

    Electronic spectra in the near infrared of C60+ with He, Ne, Ar, Kr, H2, D2 and N2 attached have been recorded below 10 K in a cryogenic radio frequency ion trap. Additional absorption bands are observed compared to the spectrum of C60+ -He. In the case of C60+ -N2, the strongest one of these shifts to lower energies by 21.3 cm-1 compared to the origin band of C60+ -He at 10378.5 cm-1. The pattern in the spectrum is dependent on the attached ligand. The gas-phase observations on C60+ -Ne allow a rationalization of the relative intensities of the absorptions of C60+ in a neon matrix.

  5. Photogalvanic effects originating from the violation of the Einstein relation in a 2D electron gas in high Landau levels

    NASA Astrophysics Data System (ADS)

    Dmitriev, Ivan

    2010-03-01

    This talk will present a quantum kinetic theory [1] of the microwave-induced photocurrent and photovoltage magnetooscillations emerging in a spatially nonuniform 2D electron system in the absence of external dc driving [2]. It will show that in an irradiated sample the Landau quantization leads to violation of the Einstein relation between the dc conductivity and diffusion coefficient. Then, in the presence of a built-in electric field in a sample, the microwave illumination causes photo-galvanic signals which oscillate as a function of magnetic field as observed in the experiment. The discussed effects should also play an essential role for the transport in the zero resistance states where the system breaks into current domains and peculiarities of the transport properties of the inhomogeneous system become of central importance.[1] I. A. Dmitriev, S. I. Dorozhkin, and A. D. Mirlin, ``Theory of microwave-induced photocurrent and photovoltage magneto-oscillations in a spatially nonuniform two-dimensional electron gas '', Phys. Rev. B 80, 125418 (2009).[2] S. I. Dorozhkin, I. V. Pechenezhskiy, L. N. Pfeiffer, K. W. West, V. Umansky, K. von Klitzing, and J. H. Smet, ``Photocurrent and Photovoltage Oscillations in the Two-Dimensional Electron System: Enhancement and Suppression of Built-In Electric Fields'', Phys. Rev.Lett. 102, 036602 (2009).

  6. The Role of the Impedivity in the Magnetotelluric Response of 1D and 2D Structures

    NASA Astrophysics Data System (ADS)

    Esposito, Roberta; Giulia Di Giuseppe, Maria; Troiano, Antonio; Patella, Domenico; Mariano Castelo Branco, Raimundo

    2014-05-01

    ambiguous. Successively, a 2D case is considered, consisting in a magma chamber at a depth of 1 km, buried into a soil. The synthetic responses were performed considering both the non-dispersive and the dispersive case and the differences of the modelled MT curves are compared. As for the 1D case, the dispersion alters the resistivity values, particularly at the boundary of the buried body, leading to an ambiguous interpretation. MT data alone are not sufficient to distinguish polarization effects or can induce to see dispersion where is not present. An approach to solve this problem consists of the combined interpretation of DC geoelectrical and MT data collected at the same site. Review of real cases is also shown.

  7. The conflicting role of buckled structure in phonon transport of 2D group-IV and group-V materials.

    PubMed

    Peng, Bo; Zhang, Dequan; Zhang, Hao; Shao, Hezhu; Ni, Gang; Zhu, Yongyuan; Zhu, Heyuan

    2017-03-20

    Controlling heat transport through material design is one important step toward thermal management in 2D materials. To control heat transport, a comprehensive understanding of how structure influences heat transport is required. It has been argued that a buckled structure is able to suppress heat transport by increasing the flexural phonon scattering. Using a first principles approach, we calculate the lattice thermal conductivity of 2D mono-elemental materials with a buckled structure. Somewhat counterintuitively, we find that although 2D group-V materials have a larger mass and higher buckling height than their group-IV counterparts, the calculated κ of blue phosphorene (106.6 W mK(-1)) is nearly four times higher than that of silicene (28.3 W mK(-1)), while arsenene (37.8 W mK(-1)) is more than fifteen times higher than germanene (2.4 W mK(-1)). We report for the first time that a buckled structure has three conflicting effects: (i) increasing the Debye temperature by increasing the overlap of the pz orbitals, (ii) suppressing the acoustic-optical scattering by forming an acoustic-optical gap, and (iii) increasing the flexural phonon scattering. The former two, corresponding to the harmonic phonon part, tend to enhance κ, while the last one, corresponding to the anharmonic part, suppresses it. This relationship between the buckled structure and phonon behaviour provides insight into how to control heat transport in 2D materials.

  8. 2D-RNA-coupling numbers: a new computational chemistry approach to link secondary structure topology with biological function.

    PubMed

    González-Díaz, Humberto; Agüero-Chapin, Guillermín; Varona, Javier; Molina, Reinaldo; Delogu, Giovanna; Santana, Lourdes; Uriarte, Eugenio; Podda, Gianni

    2007-04-30

    Methods for prediction of proteins, DNA, or RNA function and mapping it onto sequence often rely on bioinformatics alignment approach instead of chemical structure. Consequently, it is interesting to develop computational chemistry approaches based on molecular descriptors. In this sense, many researchers used sequence-coupling numbers and our group extended them to 2D proteins representations. However, no coupling numbers have been reported for 2D-RNA topology graphs, which are highly branched and contain useful information. Here, we use a computational chemistry scheme: (a) transforming sequences into RNA secondary structures, (b) defining and calculating new 2D-RNA-coupling numbers, (c) seek a structure-function model, and (d) map biological function onto the folded RNA. We studied as example 1-aminocyclopropane-1-carboxylic acid (ACC) oxidases known as ACO, which control fruit ripening having importance for biotechnology industry. First, we calculated tau(k)(2D-RNA) values to a set of 90-folded RNAs, including 28 transcripts of ACO and control sequences. Afterwards, we compared the classification performance of 10 different classifiers implemented in the software WEKA. In particular, the logistic equation ACO = 23.8 . tau(1)(2D-RNA) + 41.4 predicts ACOs with 98.9%, 98.0%, and 97.8% of accuracy in training, leave-one-out and 10-fold cross-validation, respectively. Afterwards, with this equation we predict ACO function to a sequence isolated in this work from Coffea arabica (GenBank accession DQ218452). The tau(1)(2D-RNA) also favorably compare with other descriptors. This equation allows us to map the codification of ACO activity on different mRNA topology features. The present computational-chemistry approach is general and could be extended to connect RNA secondary structure topology to other functions.

  9. A Static and Dynamic Investigation of Quantum Nonlinear Transport in Highly Dense and Mobile 2D Electron Systems

    NASA Astrophysics Data System (ADS)

    Dietrich, Scott

    Heterostructures made of semiconductor materials may be one of most versatile environments for the study of the physics of electron transport in two dimensions. These systems are highly customizable and demonstrate a wide range of interesting physical phenomena. In response to both microwave radiation and DC excitations, strongly nonlinear transport that gives rise to non-equilibrium electron states has been reported and investigated. We have studied GaAs quantum wells with a high density of high mobility two-dimensional electrons placed in a quantizing magnetic field. This study presents the observation of several nonlinear transport mechanisms produced by the quantum nature of these materials. The quantum scattering rate, 1tau/q, is an important parameter in these systems, defining the width of the quantized energy levels. Traditional methods of extracting 1tau/q involve studying the amplitude of Shubnikov-de Haas oscillations. We analyze the quantum positive magnetoresistance due to the cyclotron motion of electrons in a magnetic field. This method gives 1tau/q and has the additional benefit of providing access to the strength of electron-electron interactions, which is not possible by conventional techniques. The temperature dependence of the quantum scattering rate is found to be proportional to the square of the temperature and is in very good agreement with theory that considers electron-electron interactions in 2D systems. In quantum wells with a small scattering rate - which corresponds to well-defined Landau levels - quantum oscillations of nonlinear resistance that are independent of magnetic field strength have been observed. These oscillations are periodic in applied bias current and are connected to quantum oscillations of resistance at zero bias: either Shubnikov-de Haas oscillations for single subband systems or magnetointersubband oscillations for two subband systems. The bias-induced oscillations can be explained by a spatial variation of electron

  10. Bcs-Bose Crossover Picture for a 2d Electron Gas with a Finite-Range Attractive Interfermion Interaction

    NASA Astrophysics Data System (ADS)

    Solís, Miguel A.; Sevilla, Francisco J.; Fortes, Mauricio; de Llano, Manuel

    2002-03-01

    Cooper pair formation is studied in a 2D electron gas interacting pairwise through a finite-range, separable interfermion potential in wavevector space V_ kk^' =-(v_0/L^2)g_kg_k^' , where L^2 is the system area, v0 >= 0 the interaction strength, g_k≡ (1+k^2/k_0^2)-1/2 with k0 the inverse interaction range. The interaction strength v0 is eliminated [1] in favor of the (positive) binding energy B2 of an electron pair in vacuum under the same interfermion interaction. For finite range, i.e., 1/k_0>0, we report numerical calculations of the gap, the critical temperature and the chemical potential as functions of B2 and 1/k_0. For k_0= ∞ or zero-range (viz., a delta potential well) we recover at T=0 the well-known Miyake [2] results. Finally, the gap-to-Tc ratio is exhibited as a function of B2 and compared with other calculations as well as with empirical values for cuprate superconductors. [1] S.K. Adhikari, M. Casas, A. Puente, A. Rigo, M. Fortes, M.A. Solís, M. de Llano, A.A. Valladares and O. Rojo, Phys. Rev. B 62, 8671 (2000). [2] K. Miyake, Prog. Theor. Phys. 69, 1794 (1983). We thank UNAM-DGAPA-PAPIIT # IN102198 and CONACyT # 27828E for partial support.

  11. Structure and properties of phosphorene-like IV-VI 2D materials.

    PubMed

    Ma, Zhinan; Wang, Bo; Ou, Liangkai; Zhang, Yan; Zhang, Xu; Zhou, Zhen

    2016-10-14

    Because of the excellent physical and chemical properties of phosphorene, phosphorene and phosphorene-like materials have attracted extensive attention. Since phosphorus belongs to group V, some group IV-VI compounds could also form phosphorene-like configurations. In this work, GeO, SnO, GeS, and SnS monolayers were constructed to investigate the structural and electronic properties by employing first-principles computations. Phonon spectra suggest that these monolayers are dynamically stable and could be realized in experiments. These monolayers are all semiconductors with the band gaps of 2.26 ∼ 4.13 eV. Based on the monolayers, GeO, SnO, GeS, and SnS bilayers were also constructed. The band gaps of these bilayers are smaller than those of the corresponding monolayers. Moreover, the optical properties of these monolayers and bilayers were calculated, and the results indicate that the SnO, GeS and SnS bilayers exhibit obvious optical absorption in the visible spectrum. All the results suggest that phosphorene-like IV-VI materials are promising candidates for electronic and optical devices.

  12. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy

    SciTech Connect

    Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang; Akhtar, Parveen; Garab, Győző; Lambrev, Petar H.

    2015-06-07

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  13. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy.

    PubMed

    Enriquez, Miriam M; Akhtar, Parveen; Zhang, Cheng; Garab, Győző; Lambrev, Petar H; Tan, Howe-Siang

    2015-06-07

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Qy band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240-270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet-singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  14. Fast ion induced shearing of 2D Alfvén eigenmodes measured by electron cyclotron emission imaging.

    PubMed

    Tobias, B J; Classen, I G J; Domier, C W; Heidbrink, W W; Luhmann, N C; Nazikian, R; Park, H K; Spong, D A; Van Zeeland, M A

    2011-02-18

    Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfvén eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.

  15. Fast Ion Induced Shearing of 2D Alfvén Eigenmodes Measured by Electron Cyclotron Emission Imaging

    NASA Astrophysics Data System (ADS)

    Tobias, B. J.; Classen, I. G. J.; Domier, C. W.; Heidbrink, W. W.; Luhmann, N. C., Jr.; Nazikian, R.; Park, H. K.; Spong, D. A.; van Zeeland, M. A.

    2011-02-01

    Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfvén eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.

  16. Watching Silica's Dance: Imaging the Structure and Dynamics of the Atomic (Re-) Arrangements in 2D Glass

    NASA Astrophysics Data System (ADS)

    Muller, David

    2014-03-01

    Even though glasses are almost ubiquitous--in our windows, on our iPhones, even on our faces--they are also mysterious. Because glasses are notoriously difficult to study, basic questions like: ``How are the atoms arranged? Where and how do glasses break?'' are still under contention. We use aberration corrected transmission electron microscopy (TEM) to image the atoms in a new two-dimensional phase of silica glass - freestanding it becomes the world's thinnest pane of glass at only 3-atoms thick, and take a unique look into these questions. Using atom-by-atom imaging and spectroscopy, we are able to reconstruct the full structure and bonding of this 2D glass and identify it as a bi-tetrahedral layer of SiO2. Our images also strikingly resemble Zachariasen's original cartoon models of glasses, drawn in 1932. As such, our work realizes an 80-year-old vision for easily understandable glassy systems and introduces promising methods to test theoretical predictions against experimental data. We image atoms in the disordered solid and track their motions in response to local strain. We directly obtain ring statistics and pair distribution functions that span short-, medium-, and long-range order, and test these against long-standing theoretical predictions of glass structure and dynamics. We use the electron beam to excite atomic rearrangements, producing surprisingly rich and beautiful videos of how a glass bends and breaks, as well as the exchange of atoms at a solid/liquid interface. Detailed analyses of these videos reveal a complex dance of elastic and plastic deformations, phase transitions, and their interplay. These examples illustrate the wide-ranging and fundamental materials physics that can now be studied at atomic-resolution via transmission electron microscopy of two-dimensional glasses. Work in collaboration with: S. Kurasch, U. Kaiser, R. Hovden, Q. Mao, J. Kotakoski, J. S. Alden, A. Shekhawat, A. A. Alemi, J. P. Sethna, P. L. McEuen, A.V. Krasheninnikov

  17. A 2D simulation study of Langmuir, whistler, and cyclotron maser instabilities induced by an electron ring-beam distribution

    SciTech Connect

    Lee, K. H.; Lee, L. C.; Omura, Y.

    2011-09-15

    We carried out a series of 2D simulations to study the beam instability and cyclotron maser instability (CMI) with the initial condition that a population of tenuous energetic electrons with a ring-beam distribution is present in a magnetized background plasma. In this paper, weakly relativistic cases are discussed with the ring-beam kinetic energy ranging from 25 to 100 keV. The beam component leads to the two-stream or beam instability at an earlier stage, and the beam mode is coupled with Langmuir or whistler mode, leading to excitation of beam-Langmuir or beam-whistler waves. When the beam velocity is large with a strong beam instability, the initial ring-beam distribution is diffused in the parallel direction rapidly. The diffused distribution may still support CMI to amplify the X1 mode (the fundamental X mode). On the contrary, when the beam velocity is small and the beam instability is weak, CMI can amplify the Z1 (the fundamental Z mode) effectively while the O1 (the fundamental O mode) and X2 (the second harmonic X mode) modes are very weak and the X1 mode is not excited. In this report, different cases with various parameters are presented and discussed for a comprehensive understanding of ring-beam instabilities.

  18. A novel 2-D transition metal cyanide membrane: Modeling, structural, magnetic, and functional characterization

    NASA Astrophysics Data System (ADS)

    Goss, Marcus

    A novel 2-dimensional crystalline material composed of cyanide-bridged metal nanosheets with a square planar framework has been prepared. This material, similar to Hofmann clathrates, has a variety of interesting properties. The material is crystalline and possesses characteristics that include magnetic properties, electronic properties and useful structural features. They have recently been exfoliated into individual crystalline sheets. These sheets show a strong potential for use as ion selective membranes. Performance improvements in water purification and desalination by reverse osmosis methods owing to their single atom thickness is possible. A series of dynamic molecular simulations has provided an understanding of the mechanism for water permeability and salt rejection. Energy profiles for the passage of water and ionic species through the porous areas of these nanosheets have been built and reported. Performance estimates of the efficacy of this novel material for use as an ion selective membrane such as an improved desalination RO membrane are presented. Experiments in synthesis and exfoliation of this class of cyanide-bridged transition metal complex were conducted and the results are presented. A preliminary investigation into the magnetic properties of these materials is included.

  19. Influence of electron-neutral elastic collisions on the instability of an ion-contaminated cylindrical electron cloud: 2D3V PIC-with-MCC simulations

    NASA Astrophysics Data System (ADS)

    Sengupta, M.; Ganesh, R.

    2016-10-01

    This paper is a simulation based investigation of the effect of elastic collisions and effectively elastic-like excitation collisions between electrons and background neutrals on the dynamics of a cylindrically trapped electron cloud that also has an ion contaminant mixed in it. A cross section of the trapped non neutral cloud composed of electrons mixed uniformly with a fractional population of ions is loaded on a 2D PIC grid with the plasma in a state of unstable equilibrium due to differential rotation between the electron and the ion component. The electrons are also loaded with an axial velocity component, vz, that mimics their bouncing motion between the electrostatic end plugs of a Penning-Malmberg trap. This vz loading facilitates 3D elastic and excitation collisions of the electrons with background neutrals under a MCC scheme. In the present set of numerical experiments, the electrons do not ionize the neutrals. This helps in separating out only the effect of non-ionizing collisions of electrons on the dynamics of the cloud. Simulations reveal that these non-ionizing collisions indirectly influence the ensuing collisionless ion resonance instability of the contaminated electron cloud by a feedback process. The collisional relaxation reduces the average density of the electron cloud and thereby increases the fractional density of the ions mixed in it. The dynamically changing electron density and fractional density of ions feed back on the ongoing ion-resonance (two-stream) instability between the two components of the nonneutral cloud and produce deviations in the paths of progression of the instability that are uncorrelated at different background gas pressures. Effects of the collisions on the instability are evident from alteration in the growth rate and energetics of the instability caused by the presence of background neutrals as compared to a vacuum background. Further in order to understand if the non-ionizing collisions can independently be a cause

  20. 2D particle-in-cell simulations of the electron drift instability and associated anomalous electron transport in Hall-effect thrusters

    NASA Astrophysics Data System (ADS)

    Croes, Vivien; Lafleur, Trevor; Bonaventura, Zdeněk; Bourdon, Anne; Chabert, Pascal

    2017-03-01

    In this work we study the electron drift instability in Hall-effect thrusters (HETs) using a 2D electrostatic particle-in-cell (PIC) simulation. The simulation is configured with a Cartesian coordinate system modeling the radial-azimuthal (r{--}θ ) plane for large radius thrusters. A magnetic field, {{B}}0, is aligned along the Oy axis (r direction), a constant applied electric field, {{E}}0, along the Oz axis (perpendicular to the simulation plane), and the {{E}}0× {{B}}0 direction is along the Ox axis (θ direction). Although electron transport can be well described by electron–neutral collisions for low plasma densities, at high densities (similar to those in typical HETs), a strong instability is observed that enhances the electron cross-field mobility; even in the absence of electron–neutral collisions. The instability generates high frequency (of the order of MHz) and short wavelength (of the order of mm) fluctuations in both the azimuthal electric field and charged particle densities, and propagates in the {{E}}0× {{B}}0 direction with a velocity close to the ion sound speed. The correlation between the electric field and density fluctuations (which leads to an enhanced electron–ion friction force) is investigated and shown to be directly responsible for the increased electron transport. Results are compared with a recent kinetic theory, showing good agreement with the instability properties and electron transport.

  1. Charge balancing in GaN-based 2-D electron gas devices employing an additional 2-D hole gas and its influence on dynamic behaviour of GaN-based heterostructure field effect transistors

    SciTech Connect

    Hahn, Herwig Reuters, Benjamin; Geipel, Sascha; Schauerte, Meike; Kalisch, Holger; Vescan, Andrei; Benkhelifa, Fouad; Ambacher, Oliver

    2015-03-14

    GaN-based heterostructure FETs (HFETs) featuring a 2-D electron gas (2DEG) can offer very attractive device performance for power-switching applications. This performance can be assessed by evaluation of the dynamic on-resistance R{sub on,dyn} vs. the breakdown voltage V{sub bd}. In literature, it has been shown that with a high V{sub bd}, R{sub on,dyn} is deteriorated. The impairment of R{sub on,dyn} is mainly driven by electron injection into surface, barrier, and buffer traps. Electron injection itself depends on the electric field which typically peaks at the gate edge towards the drain. A concept suitable to circumvent this issue is the charge-balancing concept which employs a 2-D hole gas (2DHG) on top of the 2DEG allowing for the electric field peak to be suppressed. Furthermore, the 2DEG concentration in the active channel cannot decrease by a change of the surface potential. Hence, beside an improvement in breakdown voltage, also an improvement in dynamic behaviour can be expected. Whereas the first aspect has already been demonstrated, the second one has not been under investigation so far. Hence, in this report, the effect of charge-balancing is discussed and its impact on the dynamic characteristics of HFETs is evaluated. It will be shown that with appropriate device design, the dynamic behaviour of HFETs can be improved by inserting an additional 2DHG.

  2. Postretinal Structure and Function in Severe Congenital Photoreceptor Blindness Caused by Mutations in the GUCY2D Gene

    PubMed Central

    Aguirre, Geoffrey K.; Butt, Omar H.; Datta, Ritobrato; Roman, Alejandro J.; Sumaroka, Alexander; Schwartz, Sharon B.; Cideciyan, Artur V.; Jacobson, Samuel G.

    2017-01-01

    Purpose To examine how severe congenital blindness resulting from mutations of the GUCY2D gene alters brain structure and function, and to relate these findings to the notable preservation of retinal architecture in this form of Leber congenital amaurosis (LCA). Methods Six GUCY2D-LCA patients (ages 20–46) were studied with optical coherence tomography of the retina and multimodal magnetic resonance imaging (MRI) of the brain. Measurements from this group were compared to those obtained from populations of normally sighted controls and people with congenital blindness of a variety of causes. Results Patients with GUCY2D-LCA had preservation of the photoreceptors, ganglion cells, and nerve fiber layer. Despite this, visual function in these patients ranged from 20/160 acuity to no light perception, and functional MRI responses to light stimulation were attenuated and restricted. This severe visual impairment was reflected in substantial thickening of the gray matter layer of area V1, accompanied by an alteration of resting-state correlations within the occipital lobe, similar to a comparison group of congenitally blind people with structural damage to the retina. In contrast to the comparison blind population, however, the GUCY2D-LCA group had preservation of the size of the optic chiasm, and the fractional anisotropy of the optic radiations as measured with diffusion tensor imaging was also normal. Conclusions These results identify dissociable effects of blindness upon the visual pathway. Further, the relatively intact postgeniculate white matter pathway in GUCY2D-LCA is encouraging for the prospect of recovery of visual function with gene augmentation therapy.

  3. Study on molecular structure and hydration mechanism of Domyoji-ko starch by IR and NIR hetero 2D analysis

    NASA Astrophysics Data System (ADS)

    Katayama, Norihisa; Kondo, Miyuki; Miyazawa, Mitsuhiro

    2010-06-01

    The hydration structure of starch molecule in Domyoji-ko, which is made from gluey rice, was investigated by hetero 2D correlation analysis of IR and NIR spectroscopy. The feature near 1020 cm -1 in the IR spectra of Domyoji-ko is changed by rehydration process, indicating that the molecular structure of amylopectin in the starch has been varied by the hydration without heating. The intensity of a band at 4770 cm -1 in NIR spectra is decreasing with the increasing of either the heating time with water or rehydration time without heating. These results suggest that the hydration of Domyoji-ko has proceeded in similar mechanisms on these processes. The generalized hetero 2D IR-NIR correlation analysis for rehydration of Domyoji-ko has supported the assignments for NIR bands concerning the gelatinization of starch.

  4. 2-D modelling of the anticlinal structures and structural development of the eastern fold belt of the Bengal Basin, Bangladesh

    NASA Astrophysics Data System (ADS)

    Sikder, Arif Mohiuddin; Alam, M. Mustafa

    2003-02-01

    Structural architecture of the Bengal Basin has been strongly controlled by the collision pattern of the Indian plate with the Burma and Tibetan plates. The eastern fold belt (EFB) of the basin, comprising a series of north-south-trending curvilinear anticlines and synclines, represents a fold-and-thrust belt that constitutes the westward continuation of Arakan-Chin fold system of the Indo-Burman Ranges. The present study is mainly concerned with the 2-D modelling of the anticlinal structures in order to develop an understanding about the process-response relationships between the structural style and tectonic evolution of the eastern fold belt. The dominant fold-generating mechanism is believed to be the east-west-directed compressional force arising from oblique subduction of the Indian plate beneath the Burma plate that resulted in the growth of fault-propagation folds above a detachment or decollement at depth, giving rise to the Neogene accretionary prism complex development. A prominent feature of the region is the major east-dipping thrusts separating successive accretionary wedges. In seismic sections, evidence for several phases of compressional deformation suggests that multiphase stress conditions were responsible for the structural expression of the fold belt. Deep seismic sections reveal that the base of folding is characterized by a low-interval velocity horizon that represents a detachment separating the upper folded zone from the lower, seismically coherent, nearly unfolded zone. This detachment coincides with the undercompacted pressured shale unit, which is thought to have played an important role in the structural development of the eastern fold belt. Clay mineralogical analysis reveals the presence of a low-density shale horizon within the dense and thick shale sequence that is thought to be an undercompacted pressured shale during the geological past, and was responsible for the initiation of decollement and incipient diapirism involving thin

  5. Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties

    NASA Astrophysics Data System (ADS)

    Island, Joshua O.; Biele, Robert; Barawi, Mariam; Clamagirand, José M.; Ares, José R.; Sánchez, Carlos; van der Zant, Herre S. J.; Ferrer, Isabel J.; D’Agosta, Roberto; Castellanos-Gomez, Andres

    2016-03-01

    We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance.

  6. Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties

    PubMed Central

    Island, Joshua O.; Biele, Robert; Barawi, Mariam; Clamagirand, José M.; Ares, José R.; Sánchez, Carlos; van der Zant, Herre S. J.; Ferrer, Isabel J.; D’Agosta, Roberto; Castellanos-Gomez, Andres

    2016-01-01

    We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance. PMID:26931161

  7. Positron 2D-ACAR experiments and electron-positron momentum density in YBa{sub 2}Cu{sub 3}O{sub 7-x}

    SciTech Connect

    Smedskjaer, L.C.; Welp, U.; Fang, Y.; Bailey, K.G.; Bansil, A.

    1991-12-01

    We discuss positron annihilation (2D-ACAR) measurements in the C- projection on an untwinned metallic single crystal of YBa{sub 2}Cu{sub 3}O{sub 7-x} as a function of temperature, for five temperatures ranging from 30K to 300K. The measured 2D-ACAR intensities are interpreted in terms of the electron-positron momentum density obtained within the KKR-band theory framework. The temperature dependence of the 2D-ACAR spectra is used to extract a ``background corrected`` experimental spectrum which is in remarkable accord with the corresponding band theory predictions, and displays in particular clear signatures of the electron ridge Fermi surface.

  8. Positron 2D-ACAR experiments and electron-positron momentum density in YBa sub 2 Cu sub 3 O sub 7-x

    SciTech Connect

    Smedskjaer, L.C.; Welp, U.; Fang, Y.; Bailey, K.G. ); Bansil, A. . Dept. of Physics)

    1991-12-01

    We discuss positron annihilation (2D-ACAR) measurements in the C- projection on an untwinned metallic single crystal of YBa{sub 2}Cu{sub 3}O{sub 7-x} as a function of temperature, for five temperatures ranging from 30K to 300K. The measured 2D-ACAR intensities are interpreted in terms of the electron-positron momentum density obtained within the KKR-band theory framework. The temperature dependence of the 2D-ACAR spectra is used to extract a background corrected'' experimental spectrum which is in remarkable accord with the corresponding band theory predictions, and displays in particular clear signatures of the electron ridge Fermi surface.

  9. Micro PIV measurements of turbulent flow over 2D structured roughness

    NASA Astrophysics Data System (ADS)

    Hartenberger, Joel; Perlin, Marc

    2015-11-01

    We investigate the turbulent boundary layer over surfaces with 2D spanwise square and triangular protrusions having nominal heights of 100 - 300 microns for Reynolds numbers ranging from Reτ ~ 1500 through Reτ ~ 4500 using a high speed, high magnification imaging system. Micro PIV analysis gives finely resolved velocity fields of the flow (on the order of 10 microns between vectors) enabling a detailed look at the inner region as well as the flow in the immediate vicinity of the roughness elements. Additionally, planar PIV with lower resolution is performed to capture the remainder of the boundary layer to the freestream flow. Varying the streamwise distance between individual roughness elements from one to ten times the nominal heights allows investigation of k-type and d-type roughness in both the transitionally rough and fully rough regimes. Preliminary results show a shift in the mean velocity profile similar to the results of previous studies. Turbulent statistics will be presented also. The authors would like to acknowledge the support of NAVSEA which funded this project through the Naval Engineering Education Center (NEEC).

  10. A Comparison of the Performance of 2D Square and Rectangular Dielectric Vein Structures

    DTIC Science & Technology

    2012-09-27

    dielectric vein structure to approximate these photonic crystals. In this case, the numerical model is improved. A rectangular vein structure is...square dielectric vein structure to approximate these photonic crystals. In this case, the numerical model is improved. A rectangular vein...34 REFERENCES 1. Kawano, K. and Kitoh, T., Introduction to Optical Waveguide Analysis : Solving Maxwell’s Equations and the Schrödinger

  11. Structure and Dynamics of Asymmetric Poly(styrene-b-1,4-isoprene) Diblock Copolymer under 1D and 2D Nanoconfinement.

    PubMed

    Kipnusu, Wycliffe K; Elmahdy, Mahdy M; Mapesa, Emmanuel U; Zhang, Jianqi; Böhlmann, Winfried; Smilgies, Detlef-M; Papadakis, Christine M; Kremer, Friedrich

    2015-06-17

    The impact of 1- and 2-dimensional (2D) confinement on the structure and dynamics of poly(styrene-b-1,4-isoprene) P(S-b-I) diblock copolymer is investigated by a combination of Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Grazing-Incidence Small-Angle X-ray Scattering (GISAXS), and Broadband Dielectric Spectroscopy (BDS). 1D confinement is achieved by spin coating the P(S-b-I) to form nanometric thin films on silicon substrates, while in the 2D confinement, the copolymer is infiltrated into cylindrical anodized aluminum oxide (AAO) nanopores. After dissolving the AAO matrix having mean pore diameter of 150 nm, the SEM images of the exposed P(S-b-I) show straight nanorods. For the thin films, GISAXS and AFM reveal hexagonally packed cylinders of PS in a PI matrix. Three dielectrically active relaxation modes assigned to the two segmental modes of the styrene and isoprene blocks and the normal mode of the latter are studied selectively by BDS. The dynamic glass transition, related to the segmental modes of the styrene and isoprene blocks, is independent of the dimensionality and the finite sizes (down to 18 nm) of confinement, but the normal mode is influenced by both factors with 2D geometrical constraints exerting greater impact. This reflects the considerable difference in the length scales on which the two kinds of fluctuations take place.

  12. An algorithm for computing the 2D structure of fast rotating stars

    SciTech Connect

    Rieutord, Michel; Espinosa Lara, Francisco; Putigny, Bertrand

    2016-08-01

    Stars may be understood as self-gravitating masses of a compressible fluid whose radiative cooling is compensated by nuclear reactions or gravitational contraction. The understanding of their time evolution requires the use of detailed models that account for a complex microphysics including that of opacities, equation of state and nuclear reactions. The present stellar models are essentially one-dimensional, namely spherically symmetric. However, the interpretation of recent data like the surface abundances of elements or the distribution of internal rotation have reached the limits of validity of one-dimensional models because of their very simplified representation of large-scale fluid flows. In this article, we describe the ESTER code, which is the first code able to compute in a consistent way a two-dimensional model of a fast rotating star including its large-scale flows. Compared to classical 1D stellar evolution codes, many numerical innovations have been introduced to deal with this complex problem. First, the spectral discretization based on spherical harmonics and Chebyshev polynomials is used to represent the 2D axisymmetric fields. A nonlinear mapping maps the spheroidal star and allows a smooth spectral representation of the fields. The properties of Picard and Newton iterations for solving the nonlinear partial differential equations of the problem are discussed. It turns out that the Picard scheme is efficient on the computation of the simple polytropic stars, but Newton algorithm is unsurpassed when stellar models include complex microphysics. Finally, we discuss the numerical efficiency of our solver of Newton iterations. This linear solver combines the iterative Conjugate Gradient Squared algorithm together with an LU-factorization serving as a preconditioner of the Jacobian matrix.

  13. Analysis of simple 2-D and 3-D metal structures subjected to fragment impact

    NASA Technical Reports Server (NTRS)

    Witmer, E. A.; Stagliano, T. R.; Spilker, R. L.; Rodal, J. J. A.

    1977-01-01

    Theoretical methods were developed for predicting the large-deflection elastic-plastic transient structural responses of metal containment or deflector (C/D) structures to cope with rotor burst fragment impact attack. For two-dimensional C/D structures both, finite element and finite difference analysis methods were employed to analyze structural response produced by either prescribed transient loads or fragment impact. For the latter category, two time-wise step-by-step analysis procedures were devised to predict the structural responses resulting from a succession of fragment impacts: the collision force method (CFM) which utilizes an approximate prediction of the force applied to the attacked structure during fragment impact, and the collision imparted velocity method (CIVM) in which the impact-induced velocity increment acquired by a region of the impacted structure near the impact point is computed. The merits and limitations of these approaches are discussed. For the analysis of 3-d responses of C/D structures, only the CIVM approach was investigated.

  14. Self-assembly of 2D sandwich-structured MnFe{sub 2}O{sub 4}/graphene composites for high-performance lithium storage

    SciTech Connect

    Li, Songmei Wang, Bo; Li, Bin; Liu, Jianhua; Yu, Mei; Wu, Xiaoyu

    2015-01-15

    Highlights: • MFO/GN composites were synthesized by a facile in situ solvothermal approach. • The MFO microspheres are sandwiched between the graphene layers. • Each MFO microsphere is an interstitial cluster of nanoparticles. • The MFO/GN electrode exhibits an enhanced cyclability for Li-ion batteries anodes. - Abstract: In this study, two-dimensional (2D) sandwich-structured MnFe{sub 2}O{sub 4}/graphene (MFO/GN) composites are synthesized by a facile in situ solvothermal approach, using cetyltrimethylammonium bromide (CTAB) as cationic surfactant. As a consequence, the nanocomposites of MFO/GN self-assembled into a 2D sandwich structure, in which the interstitial cluster structure of microsphere-type MnFe{sub 2}O{sub 4} is sandwiched between the graphene layers. This special structure of the MFO/GN composites used as anodes for lithium-ion batteries will be favorable for the maximum accessible surface of electroactive materials, fast diffusion of lithium ions and migration of electron, and elastomeric space to accommodate volume changes during the discharge–charge processes. The as-synthesized MFO/GN composites deliver a high specific reversible capacity of 987.95 mA h g{sup −1} at a current density of 200 mA g{sup −1}, a good capacity retention of 69.27% after 80 cycles and excellent rate performance for lithium storage.

  15. Controlling quantum-beating signals in 2D electronic spectra by packing synthetic heterodimers on single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Griffin, Graham B.; Zhang, Alice; Zhai, Feng; Williams, Nicholas E.; Jordan, Richard F.; Engel, Gregory S.

    2017-02-01

    In multidimensional spectroscopy, dynamics of coherences between excited states report on the interactions between electronic states and their environment. The prolonged coherence lifetimes revealed through beating signals in the spectra of some systems may result from vibronic coupling between nearly degenerate excited states, and recent observations confirm the existence of such coupling in both model systems and photosynthetic complexes. Understanding the origin of beating signals in the spectra of photosynthetic complexes has been given considerable attention; however, strategies to generate them in artificial systems that would allow us to test the hypotheses in detail are still lacking. Here we demonstrate control over the presence of quantum-beating signals by packing structurally flexible synthetic heterodimers on single-walled carbon nanotubes, and thereby restrict the motions of chromophores. Using two-dimensional electronic spectroscopy, we find that both limiting the relative rotation of chromophores and tuning the energy difference between the two electronic transitions in the dimer to match a vibrational mode of the lower-energy monomer are necessary to enhance the observed quantum-beating signals.

  16. Exploring group 14 structures: 1D to 2D to 3D.

    PubMed

    Wen, Xiao-Dong; Cahill, Thomas J; Hoffmann, Roald

    2010-06-11

    Various one-, two- and three-dimensional Group 14 (C, Si, Ge, Sn, and Pb) element structures at P = 1 atm are studied in this work. As expected, coordination number (CN)--not an unambiguous concept for extended structures--plays an important part in the stability of structures. Carbon not only favors four-coordination, but also is quite happy with pi-bonding, allowing three- and even two-coordination to compete. Highly coordinated (CN > 4) discrete carbon molecules are rare; that "saturation of valence" is reflected in the instability of C extended structures with CN > 4. Si and Ge are quite similar to each other in their preferences. They are less biased in their coordination than C, allowing (as their molecular structures do) CN = 5 and 6, but tending towards four-coordination. Sn and Pb 3D structures are very flexible in their bonding, so that in these elements four- to twelve-coordinate structures are close in energy. This lack of discrimination among ordered structures also points to an approach to the liquid state, consistent with the low melting point of Sn and Pb. The Group 14 liquid structures we simulate in molecular dynamics calculations show the expected, effective, first coordination number increase from 5.1 for Si to 10.4 for Pb. A special point of interest emerging from our study is the instability of potential multilayer graphene structures down Group 14. Only for C will these be stable; for all the other Group 14 elements pristine, unprotected, bi- and multilayer graphenes should collapse, forming "vertical" bonds as short as the in-plane ones.

  17. Anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework

    SciTech Connect

    Lee, Li-Wei; Luo, Tzuoo-Tsair; Wang, Chih-Min; Lee, Gene-Hsiang; Peng, Shie-Ming; Liu, Yen-Hsiang; Lee, Sheng-Long; Lu, Kuang-Lieh

    2016-07-15

    A Cd(II)–organic framework {[Cd_2(tpim)_4(SO_4)(H_2O)_2]·(SO_4)·21H_2O}{sub n} (1) was synthesized by reacting CdSO{sub 4}·8/3H{sub 2}O and 2,4,5-tri(4-pyridyl)imidazole (tpim) under hydrothermal conditions. A structural analysis showed that compound 1 adopts a layered structure in which the [Cd(tpim){sub 2}]{sub n} chains are linked by sulfate anions. These 2D layers are further packed into a 3D supramolecular framework via π–π interactions. The structure contains two types of SO{sub 4}{sup 2−} anions, i.e., bridging SO{sub 4}{sup 2−} and free SO{sub 4}{sup 2−} anions, the latter of which are included in the large channels of the framework. Compound 1 exhibits interesting anion exchange behavior. In the presence of SCN{sup −} anions, both the bridging and free SO{sub 4}{sup 2−} anions in 1 were completely exchanged by SCN{sup −} ligands to form a 1D species [Cd(tpim){sub 2}(SCN){sub 2}] (1A), in which the SCN{sup –} moieties function as a monodentate ligand. On the other hand, when compound 1 was ion exchanged with N{sub 3}{sup −} anions in aqueous solution, the bridging SO{sub 4}{sup 2−} moieties remained intact, and only the free guest SO{sub 4}{sup 2−} were replaced by N{sub 3}{sup −} anions. The gas adsorption behavior of the activated compound 1 was also investigated. - Highlights: • An interesting anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework is reported. • The sulfate-incorporated 2D layer compound exhibits very different anion exchange behavior with respect to SCN{sup −} and N{sub 3}{sup −}. • Both the bridging and free SO{sub 4}{sup 2−} anions in the 2D structure were completely exchanged by SCN{sup −} ligands, resulting in the formation of a 1D species. However, in the case of N{sub 3}{sup −} anions, only the free guest SO{sub 4}{sup 2−} in the structure was replaced.

  18. 2-D Joint Structural Inversion of Cross-hole Electrical Resistance and Ground Penetrating Radar Data

    NASA Astrophysics Data System (ADS)

    Bouchedda, Abderrezak; Chouteau, Michel; Giroux, Bernard

    2010-05-01

    We present a joint structural inversion algorithm for cross-hole electrical resistance tomography (ERT) and cross-hole radar travel time tomography (RTT). The algorithm proceeds by combining the exchange of structural information and a regularization method that consists of imposing an L1-norm penalty in the wavelet domain. The minimization of the L1-norm penalty is carried out using an iterative soft-thresholding algorithm. The thresholds are estimated by maximizing a structural similarity criterion, which is a function of the two (ERT and RTT) inverted models. To solve this optimization subproblem, we used the simultaneous perturbation stochastic approach. Besides, the regularization in the wavelet basis allows for the possibility of sharp discontinuities superimposed on a smoothly varying background. Hence the structural information is extracted from each model using a Canny edge detector. The detected edge is used to construct a weighting matrix that is applied to alter the smoothness matrix constraint. To validate our methodology and its implementation, responses from two models were modelled. Experiments demonstrate that the proposed approach improves the spatial resolution and quantitative estimation of physical parameters. In addition, in comparison with joint structural inversion with only the exchange of structural information, our method avoids undesirable bias introduced by the exchange of structural information when the boundaries are near each other. Finally, the proposed algorithm will be applied to real data in the near future to evaluate its performance.

  19. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals

    NASA Astrophysics Data System (ADS)

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.

    2016-06-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit.

  20. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals.

    PubMed

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M

    2016-06-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit.

  1. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals

    PubMed Central

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.

    2016-01-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit. PMID:27245646

  2. Modeling and characterization of 2-D and 3-D textile structural composites

    SciTech Connect

    Yang, J.M.

    1986-01-01

    This dissertation studies the analytical modeling and experimental characterization of various two-dimensional and three-dimensional textile structure composites. In the analytical approach, various theoretical models were established to predict the stiffness, strength, nonlinear deformation, and failure behavior of triaxial woven-fabric composites, 3-D braided composites, and multilayer multidirectional warp knit fabric composites in polymer and metal matrices. The structure performance maps of various textile structural composites were also established, based upon these analytical methods. In the experimental approach, extensive mechanical testing and microstructural characterization were performed to investigate the thermomechanical properties and failure behavior of 3-D braided FP/Al composites. Results of this research will serve as the basis for assessing the potential of textile composites for structural applications.

  3. 2D and 3D reconstruction and geomechanical characterization of kilometre-scale complex folded structures

    NASA Astrophysics Data System (ADS)

    Zanchi, Andrea; Agliardi, Federico; Crosta, Giovanni B.; Villa, Alberto; Bistacchi, Andrea; Iudica, Gaetano

    2015-04-01

    The geometrical, structural and geomechanical characterization of large-scale folded structures in sedimentary rocks is an important issue for different geological and geo-hazard applications (e.g. hydrocarbon and geothermal reservoir exploitation, natural rock slope stability, mining, and tunnelling). Fold geometry controls topography and the spatial distribution of rock types with different strength and permeability. Fold-related fracture systems condition the fracture intensity, degree of freedom, and overall strength of rock masses. Nevertheless, scale issues and limited accessibility or partial exposure of structures often hamper a complete characterization of these complex structures. During the last years, advances in remote survey techniques as terrestrial Lidar (TLS) allowed significant improvements in the geometrical and geological characterization of large or inaccessible outcrops. However, sound methods relating structures to rock mass geomechanical properties are yet to be developed. Here we present results obtained by integrating remote survey and field assessment techniques to characterize a folded sedimentary succession exposed in unreachable vertical rock walls. The study area is located in the frontal part of the Southern Alps near Bergamo, Italy. We analysed large-scale detachment folds developed in the Upper Triassic sedimentary cover in the Zu Limestone. Folds are parallel and disharmonic, with regular wavelengths and amplitudes of about 200-250 m. We used a Riegl VZ-1000 long-range laser scanner to obtain points clouds with nominal spacings between 5 cm and 20 cm from 9 scan positions characterized by range between 350 m and 1300 m. We fixed shadowing and occlusion effects related to fold structure exposure by filling point clouds with data collected by terrestrial digital photogrammetry (TDP). In addition, we carried out field surveys of fold-related brittle structures and their geomechanical attributes at key locations. We classified cloud

  4. Three 2D Ag(I)-framework isomers with helical structures controlled by the chirality of camphor-10-sulfonic acid.

    PubMed

    Guo, Peng

    2011-02-28

    Three 2D Ag(I)-framework isomers were constructed from enantiopure camphor-10-sulfonic acids or racemic camphor-10-sulfonic acids, together with achiral 4-aminobenzoic acids. In complex 1, (+)-camphor-10-sulfonic acids bridge the single left-handed helices that are made up of Ag ions and 4-aminobenzoic acids, generating a homochiral 2D layer. In such a structure, the interweaving of triple left-handed homohelices was also found. It is worth noting that the helicity of complex 2 could be controlled by the handedness of the camphor-10-sulfonic acid. In complex 2, there are right-handed helical structures, including single right-handed and triple right-handed helical structures connected by (-)-camphor-10-sulfonic acids. For a comparative study, (±)-camphor-10-sulfonic acids were utilized to synthesize complex 3, in which equal numbers of right-handed or left-handed double-helical chains are created. All the complexes were characterized by single-crystal X-ray structure determination, powder X-ray diffraction, IR, TGA and element analysis. Circular dichroism spectra of complexes 1 and 2 were been studied to confirm the fact that enantiopure bridging ligands do not racemize.

  5. Learning the 3-D structure of objects from 2-D views depends on shape, not format

    PubMed Central

    Tian, Moqian; Yamins, Daniel; Grill-Spector, Kalanit

    2016-01-01

    Humans can learn to recognize new objects just from observing example views. However, it is unknown what structural information enables this learning. To address this question, we manipulated the amount of structural information given to subjects during unsupervised learning by varying the format of the trained views. We then tested how format affected participants' ability to discriminate similar objects across views that were rotated 90° apart. We found that, after training, participants' performance increased and generalized to new views in the same format. Surprisingly, the improvement was similar across line drawings, shape from shading, and shape from shading + stereo even though the latter two formats provide richer depth information compared to line drawings. In contrast, participants' improvement was significantly lower when training used silhouettes, suggesting that silhouettes do not have enough information to generate a robust 3-D structure. To test whether the learned object representations were format-specific or format-invariant, we examined if learning novel objects from example views transfers across formats. We found that learning objects from example line drawings transferred to shape from shading and vice versa. These results have important implications for theories of object recognition because they suggest that (a) learning the 3-D structure of objects does not require rich structural cues during training as long as shape information of internal and external features is provided and (b) learning generates shape-based object representations independent of the training format. PMID:27153196

  6. Structural study of synthetic mica montmorillonite by means of 2D MAS NMR experiments

    NASA Astrophysics Data System (ADS)

    Alba, M. D.; Castro, M. A.; Chain, P.; Naranjo, M.; Perdigón, A. C.

    2005-07-01

    Syn-1, is a synthetic mica montmorillonite interstratified mineral that forms one of the standard clay samples in the Clay Minerals Society Source Clays Project. However, there are still controversies regarding some structural aspects such as the interlayer composition or the location of the extra-aluminium determined by chemical analysis. The main objective of this paper is to shed light on those structural aspects that affect the reactivity of the interstratified minerals. For this purpose, we have used 1 H 29 Si and 1 H 27Al HETCOR MAS NMR to show that it is likely that the interlayer space of the beidellite part is composed of ammonium ions whereas ammonium and aluminium ions are responsible for the charge balance in the mica type layer.

  7. Tuning the Structural Color of a 2D Photonic Crystal Using a Bowl-like Nanostructure.

    PubMed

    Umh, Ha Nee; Yu, Sungju; Kim, Yong Hwa; Lee, Su Young; Yi, Jongheop

    2016-06-22

    Structural colors of the ordered photonic nanostructures are widely used as an effective platform for manipulating the propagation of light. Although several approaches have been explored in attempts to mimic the structural colors, improving the reproducibility, mechanical stability, and the economic feasibility of sophisticated photonic crystals prepared by complicated processes continues to pose a challenge. In this study, we report on an alternative, simple method for fabricating a tunable photonic crystal at room temperature. A bowl-like nanostructure of TiO2 was periodically arranged on a thin Ti sheet through a two-step anodization process where its diameters were systemically controlled by changing the applied voltage. Consequently, they displayed a broad color distribution, ranging from red to indigo, and the principal reason for color generation followed the Bragg diffraction theory. This noncolorant method was capable of reproducing a Mondrian painting on a centimeter scale without the need to employ complex architectures, where the generated structural colors were highly stable under mechanical or chemical influence. Such a color printing technique represents a potentially promising platform for practical applications for anticounterfeit trademarks, wearable sensors, and displays.

  8. Protein folding simulations of 2D HP model by the genetic algorithm based on optimal secondary structures.

    PubMed

    Huang, Chenhua; Yang, Xiangbo; He, Zhihong

    2010-06-01

    In this paper, based on the evolutionary Monte Carlo (EMC) algorithm, we have made four points of ameliorations and propose a so-called genetic algorithm based on optimal secondary structure (GAOSS) method to predict efficiently the protein folding conformations in the two-dimensional hydrophobic-hydrophilic (2D HP) model. Nine benchmarks are tested to verify the effectiveness of the proposed approach and the results show that for the listed benchmarks GAOSS can find the best solutions so far. It means that reasonable, effective and compact secondary structures (SSs) can avoid blind searches and can reduce time consuming significantly. On the other hand, as examples, we discuss the diversity of protein GSC for the 24-mer and 85-mer sequences. Several GSCs have been found by GAOSS and some of the conformations are quite different from each other. It would be useful for the designing of protein molecules. GAOSS would be an efficient tool for the protein structure predictions (PSP).

  9. Surviving structure in colloidal suspensions squeezed from 3D to 2D.

    PubMed

    Klapp, Sabine H L; Zeng, Yan; Qu, Dan; von Klitzing, Regine

    2008-03-21

    Combining colloidal-probe experiments and computer simulations, we analyze the solvation forces F of charged silica colloids confined in films of various thicknesses h. We show that the oscillations characterizing F(h), for sufficiently large h, are determined by the dominant wavelength of the bulk radial distribution function. As a consequence, both quantities display the same power-law density dependence. This is the first direct evidence, in a system treatable both by experiment and by simulation, that the structural wavelength in bulk and confinement coincide, in agreement with predictions from density functional theory. Moreover, theoretical and experimental data are in excellent quantitative agreement.

  10. 2-D Hierarchical Structure of a Block Copolymer and Bio-nanoparticle Composites

    NASA Astrophysics Data System (ADS)

    Shin, Dongseok; Lin, Yao; Wang, Qian; Russell, Thomas

    2007-03-01

    2-dimensional hierarchical structures were generated by combining two different self assembling systems; block copolymer and bio-nanoparticle. For this study, a block copolymer having a positively charged component, i.e. poly (styrene-b-N-methyl-4-vinylpyridinium iodide), was used. Thin film composites of this block copolymer and bio-nanoparticles were fabricated by adsorbing bio-particles on the polymer film and subsequently annealing the sample under the presence of solvent vapor. 2-dimensional hierarchical structures, where block copolymer chains microphase separated inside of discrete grains surrounded by bio-nanoparticles, were obtained with rod- like bio-particles (tobacco mosaic virus and M13 phage) as well as with spherical one (ferritin). The pH effect on the assembly of rod-like bio-particles and the morphology of composites was investigated. When the pH of the solution used for the adsorption of bio-particles was low, the bio-molecules aggregated and formed large bundles, while they were dispersed well at high pH. This difference was reflected in the morphology of the resultant complexes.

  11. Two novel 2D lanthanide sulfate frameworks: Syntheses, structures, and luminescence properties

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Yi; Zhang, Chi; Zhang, Fu-Li; Zhang, Fu-Qiang; Zhang, Xiang-Fei; Li, Su-Zhi; Cao, Guang-Xiu; Zhai, Bin

    2016-03-01

    Two novel lanthanide-sulfate compounds, [Ln2(SO4)3(H2O)8] (Ln = Tb (1) and Dy (2)), have been synthesized under hydrothermal reactions. X-ray crystal structure analyses reveal that 1 and 2 are isomorphous and crystallize in monoclinic C2/c pace group, showing a layered structure. The layers bear a rare quasi-honeycomb metal arrangement, which is fastened by μ3 = η1:η1:η1 and μ2 = η1:η1 sulfates. If assigning the μ3 = η1:η1:η1 sulfate as a 3-connected node and the Ln3+ ion as a 4-connected node, the network can be rationalized as a binodal (3,4)-connected V2O5 topology with a Schäfli symbol of (42·63·8) (42·6). In addition, the infrared, thermogravimetric analysis and luminescent properties were also studied. Complexes 1 and 2 exhibit outstanding thermal stability and characteristic terbium and dysprosium luminescence.

  12. Ellipse fitting of short light stripe for structured-light-based 2D vision inspection

    NASA Astrophysics Data System (ADS)

    Zhang, Guangjun; Wei, Zhenzhong

    2003-09-01

    Structured light based 3D vision has wide applications in inspecting the form and position errors like straightness and coaxiality of cylindrical workpieces. But for these applications, the light stripe on the workpiece's surface is much too short, and contains inadequate data information, even with some noise. Under such circumstances, the ellipse fitting to the scattered data of the light stripe is not efficient enough, and its fitting accuracy is usually poor. To address this problem, a new least-square fitting method based on the constraint of ellipse minor axis (called CEMA method) is proposed in detail in this paper. Simulations are given for the proposed method and for five other popular methods described in the literature. The results show that the proposed method can efficiently improve the accuracy and the robustness of ellipse fitting to the scattered data of short light stripe.

  13. Algorithms for the automatic generation of 2-D structured multi-block grids

    NASA Technical Reports Server (NTRS)

    Schoenfeld, Thilo; Weinerfelt, Per; Jenssen, Carl B.

    1995-01-01

    Two different approaches to the fully automatic generation of structured multi-block grids in two dimensions are presented. The work aims to simplify the user interactivity necessary for the definition of a multiple block grid topology. The first approach is based on an advancing front method commonly used for the generation of unstructured grids. The original algorithm has been modified toward the generation of large quadrilateral elements. The second method is based on the divide-and-conquer paradigm with the global domain recursively partitioned into sub-domains. For either method each of the resulting blocks is then meshed using transfinite interpolation and elliptic smoothing. The applicability of these methods to practical problems is demonstrated for typical geometries of fluid dynamics.

  14. TUNABLE Band Structures of 2d Multi-Atom Archimedean-Like Phononic Crystals

    NASA Astrophysics Data System (ADS)

    Xu, Y. L.; Chen, C. Q.; Tian, X. G.

    2012-06-01

    Two dimensional multi-atom Archimedean-like phononic crystals (MAPCs) can be obtained by adding "atoms" at suitable positions in primitive cells of traditional simple lattices. Band structures of solid-solid and solid-air MAPCs are computed by the finite element method in conjunction with the Bloch theory. For the solid-solid system, our results show that the MAPCs can be suitably designed to split and shift band gaps of the corresponding traditional simple phononic crystal (i.e., with only one scatterer inside a primitive cell). For the solid-air system, the MAPCs have more and wider band gaps than the corresponding traditional simple phononic crystal. Numerical calculations for both solid-solid and solid-air MAPCs show that the band gap of traditional simple phononic crystal can be tuned by appropriately adding "atoms" into its primitive cell.

  15. Structure elucidation of organic compounds from natural sources using 1D and 2D NMR techniques

    NASA Astrophysics Data System (ADS)

    Topcu, Gulacti; Ulubelen, Ayhan

    2007-05-01

    In our continuing studies on Lamiaceae family plants including Salvia, Teucrium, Ajuga, Sideritis, Nepeta and Lavandula growing in Anatolia, many terpenoids, consisting of over 50 distinct triterpenoids and steroids, and over 200 diterpenoids, several sesterterpenoids and sesquiterpenoids along with many flavonoids and other phenolic compounds have been isolated. For Salvia species abietanes, for Teucrium and Ajuga species neo-clerodanes for Sideritis species ent-kaurane diterpenes are characteristic while nepetalactones are specific for Nepeta species. In this review article, only some interesting and different type of skeleton having constituents, namely rearranged, nor- or rare diterpenes, isolated from these species will be presented. For structure elucidation of these natural diterpenoids intensive one- and two-dimensional NMR techniques ( 1H, 13C, APT, DEPT, NOE/NOESY, 1H- 1H COSY, HETCOR, COLOC, HMQC/HSQC, HMBC, SINEPT) were used besides mass and some other spectroscopic methods.

  16. 2D IR spectroscopy of histidine: probing side-chain structure and dynamics via backbone amide vibrations.

    PubMed

    Ghosh, Ayanjeet; Tucker, Matthew J; Gai, Feng

    2014-07-17

    It is well known that histidine is involved in many biological functions due to the structural versatility of its side chain. However, probing the conformational transitions of histidine in proteins, especially those occurring on an ultrafast time scale, is difficult. Herein we show, using a histidine dipeptide as a model, that it is possible to probe the tautomer and protonation status of a histidine residue by measuring the two-dimensional infrared (2D IR) spectrum of its amide I vibrational transition. Specifically, for the histidine dipeptide studied, the amide unit of the histidine gives rise to three spectrally resolvable amide I features at approximately 1630, 1644, and 1656 cm(-1), respectively, which, based on measurements at different pH values and frequency calculations, are assigned to a τ tautomer (1630 cm(-1) component) and a π tautomer with a hydrated (1644 cm(-1) component) or dehydrated (1656 cm(-1) component) amide. Because of the intrinsic ultrafast time resolution of 2D IR spectroscopy, we believe that the current approach, when combined with the isotope editing techniques, will be useful in revealing the structural dynamics of key histidine residues in proteins that are important for function.

  17. From 2D graphene to 1D graphene nanoribbons: dimensional crossover signals in the structural thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Dobry, Ariel; Costamagna, Sebastián

    2011-03-01

    I this work, by analyzing the thermal excited rippling in the graphene honeycomb lattice, we find clear signals of an existing dimensional crossover from 2D to 1D while reducing one of the dimensions of the graphene layer. Trough a joint study, using montecarlo atomistic simulations and analytical calculation based, we find that the normal-normal correlation function G (q) does not change the power law behavior valid on the long wavelength limit, however the system size dependency of the quadratic out of plane displacement h2 shows a breakdown of its corresponding scaling law. In this case we show that a new scaling law appear which correspond to a truly 1D system. On the basis of these results, and having explored a wide number of realistic systems size, we conclude that narrow nanoribbons presents strongest corrugations than the square graphene sheets. This result could have important consequences on the electron transport properties of freestanding graphene systems.

  18. An unambiguous identification of 2D electron gas features in the photoluminescence spectrum of AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Jana, Dipankar; Sharma, T. K.

    2016-07-01

    A fast and non-destructive method for probing the true signatures of 2D electron gas (2DEG) states in AlGaN/GaN heterostructures is presented. Two broad features superimposed with interference oscillations are observed in the low temperature photoluminescence (PL) spectrum. The two features are identified as the ground and excited 2DEG states which are confirmed by comparing the PL spectra of as-grown and top barrier layer etched samples. Broad PL features disappear at a certain temperature along with the associated interference oscillations. Furthermore, the two broad PL features depicts specific temperature and excitation intensity dependencies which make them easily distinguishable from the bandedge excitonic or defect related PL features. The presence of strong interference oscillations associated with the 2DEG PL features is explained by considering the localized generation of PL signal at the AlGaN/GaN heterointerface. Finally, a large value of the polarization induced electric field of ~1.01 MV cm-1 is reported from PL measurements for AlGaN/GaN HEMT structures. It became possible only when the true identification of 2DEG features was made possible by the proposed method.

  19. Acentric 2-D Ensembles of D-br-A Electron-Transfer Chromophores via Vectorial Orientation within Amphiphilic n-Helix Bundle Peptides for Photovoltaic Device Applications

    PubMed Central

    Koo, Jaseung; Park, Jaehong; Tronin, Andrey; Zhang, Ruili; Krishnan, Venkata; Strzalka, Joseph; Kuzmenko, Ivan; Fry, H. Christopher; Therien, Michael J.; Blasie, J. Kent

    2012-01-01

    We show that simply designed amphiphilic 4-helix bundle peptides can be utilized to vectorially-orient a linearly-extended Donor-bridge-Acceptor (D-br-A) electron transfer (ET) chromophore within its core. The bundle’s interior is shown to provide a unique solvation environment for the D-br-A assembly not accessible in conventional solvents, and thereby control the magnitudes of both light-induced ET and thermal charge recombination rate constants. The amphiphilicity of the bundle’s exterior was employed to vectorially-orient the peptide-chromophore complex at a liquid-gas interface, and its ends tailored for subsequent covalent attachment to an inorganic surface, via a “directed assembly” approach. Structural data, combined with evaluation of the excited state dynamics exhibited by these peptide-chromophore complexes, demonstrates that densely-packed, acentrically ordered 2-D monolayer ensembles of such complexes at high in-plane chromophore densities approaching 1/200Å2 offer unique potential as active layers in binary heterojucntion photovoltaic devices. PMID:22242787

  20. Four divalent transition metal carboxyarylphosphonate compounds: Hydrothermal synthesis, structural chemistry and generalized 2D FTIR correlation spectroscopy studies

    SciTech Connect

    Lei Ran; Chai Xiaochuan; Mei Hongxin; Zhang Hanhui; Chen Yiping; Sun Yanqiong

    2010-07-15

    Four divalent transition metal carboxyarylphosphonates, [Ni(4,4'-bipy)H{sub 2}L{sup 1}(HL{sup 1}){sub 2}(H{sub 2}O){sub 2}].2H{sub 2}O 1, [Ni{sub 2}(4,4'-bipy)(L{sup 2})(OH)(H{sub 2}O){sub 2}].3H{sub 2}O 2, Mn(phen){sub 2}(H{sub 2}L{sup 1}){sub 2}3 and Mn(phen)(HL{sup 2}) 4 (H{sub 3}L{sup 1}=p-H{sub 2}O{sub 3}PCH{sub 2}-C{sub 6}H{sub 4}-COOH, H{sub 3}L{sup 2}=m-H{sub 2}O{sub 3}PCH{sub 2}-C{sub 6}H{sub 4}-COOH, 4,4'-bipy=4,4'-bipyridine, phen=1,10-phenanthroline) were synthesized under hydrothermal conditions. 1 features 1D linear chains built from Ni(II) ions bridging 4,4'-bipy. In 2, neighboring Ni{sub 4} cluster units are connected by pairs of H{sub 3}L{sup 2} ligands to form 1D double-crankshaft chains, which are interconnected by pairs of 4,4'-bipy into 2D sheets. 3 exhibits 2D supramolecular layers via the R{sub 2}{sup 2}(8) ringed hydrogen bonding units. 4 has 1D ladderlike chains, in which the 4-membered rings are cross-linked by the organic moieties of the H{sub 3}L{sup 2} ligands. Additionally, 2D FTIR correlation analysis is applied with thermal and magnetic perturbation to clarify the structural changes of functional groups from H{sub 3}L{sup 1} and H{sub 3}L{sup 2} ligands in the compounds more efficiently. - Graphical abstract: A series of divalent transition metal carboxyarylphosphonate compounds were synthesized under hydrothermal conditions. The figure displays 2D sheet structure with large windows in compound 2.

  1. The Structure and Stability of Selected, 2-D Self-Gravitating Systems

    NASA Astrophysics Data System (ADS)

    Andalib, Saied W.

    1998-12-01

    Models of radially and vertically extended self-gravitating disks orbiting around a central point mass are relevant to the dynamics of astrophysical systems and are thought to be common in many galaxies. The gravity driven instabilities in these accretion disks are now believed to be a possible mechanism for star formation via disk fragmentation (Shu, Adams, & Lizano 1987, Adams, Rudin & Shu 1989; Christodoulou 1995). We quantify these regions of instability using a simple toroidal model of an accretion disk. We choose the two-dimensional axisymmetric, incompressible slender disks to examine and map out these principal modes of gravity driven instabilities. Through stability analyses and numerical simulations we have found that only the gravity driven 'intermediate' modes (see Goodman and Narayan 1988) are important in all self-gravitating accretion disks with small or moderate axis ratios. The P-mode instability found by Papalaizou and Pringle (1983) is unlikely to play a role in the dynamics of realistic disk systems. Next, we extend the existing numerical methods for constructing equilibrium structures to include nonaxisymmetric systems. We have developed a new computational technique to obtain two-dimensional, nonaxisymmetric, compressible systems with nontrivial internal motions. We have constructed two types of two-dimensional configurations: infinite cylinders and infinitesimally thin disks. The infinite cylinders have been primarily restricted to elliptic-like boundaries but the disks have exhibited much more flexibility in their geometries. At smaller axis ratios, they become dumbbells or loosely coupled binaries. The topology and dynamics of the flow is governed by the presence of vortices and stagnation points. In our simulation it is shown that there are equilibrium configurations that can only exist in the presence of internal differential motions and not in uniformly rotating models. This indicates that in general, the equilibrium structures of these

  2. Characterization of Unsteady Flow Structures Near Landing-Edge Slat. Part 2; 2D Computations

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi; Choudhari, Meelan M.; Jenkins, Luther N.

    2004-01-01

    In our previous computational studies of a generic high-lift configuration, quasi-laminar (as opposed to fully turbulent) treatment of the slat cove region proved to be an effective approach for capturing the unsteady dynamics of the cove flow field. Combined with acoustic propagation via Ffowes Williams and Hawkings formulation, the quasi-laminar simulations captured some important features of the slat cove noise measured with microphone array techniques. However. a direct assessment of the computed cove flow field was not feasible due to the unavailability of off-surface flow measurements. To remedy this shortcoming, we have undertaken a combined experiment and computational study aimed at characterizing the flow structures and fluid mechanical processes within the slat cove region. Part I of this paper outlines the experimental aspects of this investigation focused on the 30P30N high-lift configuration; the present paper describes the accompanying computational results including a comparison between computation and experiment at various angles of attack. Even through predictions of the time-averaged flow field agree well with the measured data, the study indicates the need for further refinement of the zonal turbulence approach in order to capture the full dynamics of the cove's fluctuating flow field.

  3. Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 2D Simulation Study

    PubMed Central

    Gomez, Juan F.; Cardona, Karen; Martinez, Laura; Saiz, Javier; Trenor, Beatriz

    2014-01-01

    Background Heart failure is operationally defined as the inability of the heart to maintain blood flow to meet the needs of the body and it is the final common pathway of various cardiac pathologies. Electrophysiological remodeling, intercellular uncoupling and a pro-fibrotic response have been identified as major arrhythmogenic factors in heart failure. Objective In this study we investigate vulnerability to reentry under heart failure conditions by incorporating established electrophysiological and anatomical remodeling using computer simulations. Methods The electrical activity of human transmural ventricular tissue (5 cm×5 cm) was simulated using the human ventricular action potential model Grandi et al. under control and heart failure conditions. The MacCannell et al. model was used to model fibroblast electrical activity, and their electrotonic interactions with myocytes. Selected degrees of diffuse fibrosis and variations in intercellular coupling were considered and the vulnerable window (VW) for reentry was evaluated following cross-field stimulation. Results No reentry was observed in normal conditions or in the presence of HF ionic remodeling. However, defined amount of fibrosis and/or cellular uncoupling were sufficient to elicit reentrant activity. Under conditions where reentry was generated, HF electrophysiological remodeling did not alter the width of the VW. However, intermediate fibrosis and cellular uncoupling significantly widened the VW. In addition, biphasic behavior was observed, as very high fibrotic content or very low tissue conductivity hampered the development of reentry. Detailed phase analysis of reentry dynamics revealed an increase of phase singularities with progressive fibrotic components. Conclusion Structural remodeling is a key factor in the genesis of vulnerability to reentry. A range of intermediate levels of fibrosis and intercellular uncoupling can combine to favor reentrant activity. PMID:25054335

  4. Unusual Domain Structure and Filamentary Superfluidity for 2D Hard-Core Bosons in Insulating Charge-Ordered Phase

    NASA Astrophysics Data System (ADS)

    Panov, Yu. D.; Moskvin, A. S.; Rybakov, F. N.; Borisov, A. B.

    2016-12-01

    We made use of a special algorithm for compute unified device architecture for NVIDIA graphics cards, a nonlinear conjugate-gradient method to minimize energy functional, and Monte-Carlo technique to directly observe the forming of the ground state configuration for the 2D hard-core bosons by lowering the temperature and its evolution with deviation away from half-filling. The novel technique allowed us to examine earlier implications and uncover novel features of the phase transitions, in particular, look upon the nucleation of the odd domain structure, emergence of filamentary superfluidity nucleated at the antiphase domain walls of the charge-ordered phase, and nucleation and evolution of different topological structures.

  5. Bifurcations of edge states—topologically protected and non-protected—in continuous 2D honeycomb structures

    NASA Astrophysics Data System (ADS)

    Fefferman, C. L.; Lee-Thorp, J. P.; Weinstein, M. I.

    2016-03-01

    Edge states are time-harmonic solutions to energy-conserving wave equations, which are propagating parallel to a line-defect or ‘edge’ and are localized transverse to it. This paper summarizes and extends the authors’ work on the bifurcation of topologically protected edge states in continuous two-dimensional (2D) honeycomb structures. We consider a family of Schrödinger Hamiltonians consisting of a bulk honeycomb potential and a perturbing edge potential. The edge potential interpolates between two different periodic structures via a domain wall. We begin by reviewing our recent bifurcation theory of edge states for continuous 2D honeycomb structures (http://arxiv.org/abs/1506.06111). The topologically protected edge state bifurcation is seeded by the zero-energy eigenstate of a one-dimensional Dirac operator. We contrast these protected bifurcations with (more common) non-protected bifurcations from spectral band edges, which are induced by bound states of an effective Schrödinger operator. Numerical simulations for honeycomb structures of varying contrasts and ‘rational edges’ (zigzag, armchair and others), support the following scenario: (a) for low contrast, under a sign condition on a distinguished Fourier coefficient of the bulk honeycomb potential, there exist topologically protected edge states localized transverse to zigzag edges. Otherwise, and for general edges, we expect long lived edge quasi-modes which slowly leak energy into the bulk. (b) For an arbitrary rational edge, there is a threshold in the medium-contrast (depending on the choice of edge) above which there exist topologically protected edge states. In the special case of the armchair edge, there are two families of protected edge states; for each parallel quasimomentum (the quantum number associated with translation invariance) there are edge states which propagate in opposite directions along the armchair edge.

  6. Self-assembly and morphology change of four organic-polyoxometalate hybrids with different solid structures from 2D lamellar to 3D hexagonal forms

    NASA Astrophysics Data System (ADS)

    TAN, Chunxia

    2017-02-01

    A series of organic-polyoxometalate hybrids L-EuW11, L-EuW10, L-EuW22 and L-Mo132 were fabricated by the same organic cations with different polyoxometalate anions from K5[Eu(SiW11O39)(H2O)2], K13[Eu(SiW11O39)2]·15H2O, Na9[EuW10O36]·36H2O to "Keplerate" -type (NH4)72[Mo132O372(SO4)30(H2O)72]. The structures of hybrids were characterized by elemental analysis, thermogravimetric analysis (TGA), infrared spectra (IR) and small-angle X-ray scattering (SAXS). Self-assembly behaviors and aggregates morphology of these hybrids in mixed solution of chloroform-methanol are obtained by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). L-EuW11, L-EuW10 and L-EuW22 have different aggregation morphology but the similarly layered structures. Micron-sized vesicular structures of L-Mo132 rupture in solvent and eventually turn into approximate hexagon. SAXS analysis of L-EuW11, L-EuW10 and L-EuW22 shows that these hybrids aggregates change from two-dimensional (2D) lamellar to three-dimensional (3D) hexagonal structure in solid state.

  7. Reversible Formation of 2D Electron Gas at the LaFeO3 /SrTiO3 Interface via Control of Oxygen Vacancies.

    PubMed

    Xu, Pengfa; Han, Wei; Rice, Philip M; Jeong, Jaewoo; Samant, Mahesh G; Mohseni, Katayoon; Meyerheim, Holger L; Ostanin, Sergey; Maznichenko, Igor V; Mertig, Ingrid; Gross, Eberhard K U; Ernst, Arthur; Parkin, Stuart S P

    2017-03-01

    A conducting 2D electron gas (2DEG) is formed at the interface between epitaxial LaFeO3 layers >3 unit cells thick and the surface of SrTiO3 single crystals. The 2DEG is exquisitely sensitive to cation intermixing and oxygen nonstoichiometry. It is shown that the latter thus allows the controllable formation of the 2DEG via ionic liquid gating, thereby forming a nonvolatile switch.

  8. Destabilization of a cylindrically confined electron cloud by impact ionization of background neutrals: 2D3v PIC simulation with Monte-Carlo-collisions

    NASA Astrophysics Data System (ADS)

    Sengupta, M.; Ganesh, R.

    2017-03-01

    In this paper, we have investigated, through simulation, the process of destabilization of a cylindrically confined electron cloud due to the presence of a single species of neutral atoms, Ar in the background of the trap at a pressure relevant to experiments. The destabilization occurs because of a gradual accumulation of Ar+ in the cloud by the electron-impact ionization of the background neutrals. The trapped ions gradually collectively form a sizeable ion cloud which engages in a rotational two-stream instability (the ion resonance instability) with the electron cloud. The instability excites a growing fundamental diocotron mode on both components of the mixed non-neutral cloud. With the help of a set of numerical diagnostics, we have investigated the nonlinear evolution of the excited fundamental mode under the combined influence of two ongoing processes viz, (i) the changing electron and ion populations caused by electron impact ionization of the background Ar, and also by the radial loss of both charged species to the grounded trap wall at later stages and (ii) the elastic scattering of electrons and ions that make non-ionizing collisions with the background neutrals. The 2D collisionless dynamics of the instability has been simulated using a 2D Particle-in-Cell code operating on a Cartesian grid laid out on the cylindrical trap's cross-section, and the 3D ionizing and non-ionizing collisions between charged particles and background neutrals have been simulated using the technique of Monte-Carlo-Collisions.

  9. Ab Initio Based 2D Continuum Mechanics - Sensitivity Prediction for Contact Resonance Atomic Force Microscopy Based Structure Fingerprints

    NASA Astrophysics Data System (ADS)

    Tu, Qing; Lange, Björn; Lopes, J. Marcelo J.; Zauscher, Stefan; Blum, Volker

    Contact resonance AFM is demonstrated as a powerful tool for mapping differences in the mechanical properties of 2D materials and heterostructures, permitting to resolve surface and subsurface structural differences of different domains. Measured contact resonance frequencies are related to the contact stiffness of the combined tip-sample system. Based on first principles predicted elastic properties and a continuum approach to model the mechanical impedance, we find contact stiffness ratios between different domains of few-layer graphene on 3C-SiC(111) in excellent agreement with experiment. We next demonstrate that the approach is able to quantitatively resolve differences between other 2D materials domains, e.g., for h-BN, MoS2 and MoO3 on graphene on SiC. We show that the combined effect of several materials parameters, especially the in-plane elastic properties and the layer thickness, determines the contact stiffness, therefore boosting the sensitivity even if the out-of-plane elastic properties are similar.

  10. 2D Particle-In-Cell simulations of the electron-cyclotron instability and associated anomalous transport in Hall-Effect Thrusters

    NASA Astrophysics Data System (ADS)

    Croes, Vivien; Lafleur, Trevor; Bonaventura, Zdenek; Péchereau, François; Bourdon, Anne; Chabert, Pascal

    2016-09-01

    This work studies the electron-cyclotron instability in Hall-Effect Thrusters (HETs) using a 2D Particle-In-Cell (PIC) simulation. The simulation is configured with a Cartesian coordinate system where a magnetic field, B0, is aligned along the X-axis (radial direction, including absorbing walls), a constant electric field, E0, along the Z-axis (axial direction, perpendicular to simulation plane), and the E0xB0 direction along the Y-axis (O direction, with periodic boundaries). Although for low plasma densities classical electron-neutral collisions theory describes well electron transport, at sufficiently high densities (as measured in HETs) a strong instability can be observed that enhances the electron mobility, even in the absence of collisions. The instability generates high frequency ( MHz) and short wavelength ( mm) fluctuations in both the electric field and charged particle densities. We investigate the correlation between these fluctuations and their role with anomalous electron transport; complementing previous 1D simulations. Plasma is self-consistently heated by the instability, but since the latter does not reach saturation in an infinitely long 2D system, saturation is achieved through implementation of a finite axial length that models convection in E0 direction. With support of Safran Aircraft Engines.

  11. Controlled Self-Assembly of Cyclophane Amphiphiles: From 1D Nanofibers to Ultrathin 2D Topological Structures

    SciTech Connect

    Cai, Zhengxu; Li, Lianwei; Lo, Wai-Yip; Zhao, Donglin; Wu, Qinghe; Zhang, Na; Su, Yu-An; Chen, Wei; Yu, Luping

    2016-07-05

    A novel series of amphiphilic TC-PEG molecules were designed and synthesized based on the orthogonal cyclophane unit. These molecules were able to self-assemble from 1D nanofibers and nanobelts to 2D ultrathin nanosheets (3 nm thick) in a controlled way by tuning the length of PEG side chains. The special structure of the cyclophane moiety allowed control in construction of nanostructures through programmed noncovalent interactions (hydrophobic hydrophilic interaction and pi-pi interaction). The self-assembled nanostructures were characterized by combining real space imaging (TEM, SEM, and AFM) and reciprocal space scattering (GIWAXS) techniques. This unique supramolecular system may provide a new strategy for the design of materials with tunable nanomorphology and functionality.

  12. An analysis of electrochemical energy storage using electrodes fabricated from atomically thin 2D structures of MoS2, graphene and MoS2/graphene composites

    NASA Astrophysics Data System (ADS)

    Huffstutler, Jacob D.

    The behavior of 2D materials has become of great interest in the wake of development of electrochemical double-layer capacitors (EDLCs) and the discovery of monolayer graphene by Geim and Novoselov. This study aims to analyze the response variance of 2D electrode materials for EDLCs prepared through the liquid-phase exfoliation method when subjected to differing conditions. Once exfoliated, samples are tested with a series of structural characterization methods, including tunneling electron microscopy, atomic force microscopy, Raman spectroscopy, and x-ray photoelectron spectroscopy. A new ionic liquid for EDLC use, 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate is compared in performance to 6M potassium hydroxide aqueous electrolyte. Devices composed of liquid-phase exfoliated graphene / MoS2 composites are analyzed by concentration for ideal performance. Device performance under cold extreme temperatures for the ionic fluid is presented as well. A brief overview of by-layer analysis of graphene electrode materials is presented as-is. All samples were tested with cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy, with good capacitive results. The evolution of electrochemical behavior through the altered parameters is tracked as well.

  13. Simple synthesis of PbSe nanocrystals and their self-assembly into 2D ‘flakes’ and 1D ‘ribbons’ structures

    SciTech Connect

    Díaz-Torres, E.; Ortega-López, M.; Matsumoto, Y.; Santoyo-Salazar, J.

    2016-08-15

    Highlights: • PbSe is obtained in a simple way by the co-precipitation method at low-temperature. • The structural, morphological and optical properties of PbSe were studied. • Adding NH{sub 4}OH to the precursor solutions influences on the morphology. • 2D- and 1D-PbSe structures assemble by oriented attachment. • PbSe can be a potential candidate for thermoelectric applications. - Abstract: This work presents a simple and low-temperature method to prepare a variety of Lead selenide (PbSe) nanostructures, using aqueous solutions of Pb(NO{sub 3}){sub 2} and NaHSe. Nanostructures with different morphology were obtained by varying the Pb:Se molar ratio, as well as the mixing sequence of NH{sub 4}OH with either Pb(NO{sub 3}){sub 2} or NaHSe. Nanoparticles with different shapes (spherical and octahedral), and self-assembled structures (flakes and ribbons) were observed by Transmission Electron Microscopy. X-ray results confirmed that the PbSe rock-salt crystalline structure was obtained for all of the prepared samples. The crystal size is in the order of 7.3 to 8.9 nm for single nanocrystals. The absorption spectra of the samples show exciton absorption bands at 1395 nm and 1660 nm. This material could be used to develop more advanced structures for thermoelectric generators.

  14. Atomic structures and electronic properties of phosphorene grain boundaries

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Zhou, Si; Zhang, Junfeng; Bai, Yizhen; Zhao, Jijun

    2016-06-01

    Grain boundary (GB) is one main type of defects in two-dimensional (2D) crystals, and has significant impact on the physical properties of 2D materials. Phosphorene, a recently synthesized 2D semiconductor, possesses a puckered honeycomb lattice and outstanding electronic properties. It is very interesting to know the possible GBs present in this novel material, and how their properties differ from those in the other 2D materials. Based on first-principles calculations, we explore the atomic structure, thermodynamic stability, and electronic properties of phosphorene GBs. A total of 19 GBs are predicted and found to be energetically stable with formation energies much lower than those in graphene. These GBs do not severely affect the electronic properties of phosphorene: the band gap of perfect phosphorene is preserved, and the electron mobilities are only moderately reduced in these defective systems. Our theoretical results provide vital guidance for experimental tailoring the electronic properties of phosphorene as well as the device applications using phosphorene materials.

  15. Anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)-organic framework

    NASA Astrophysics Data System (ADS)

    Lee, Li-Wei; Luo, Tzuoo-Tsair; Wang, Chih-Min; Lee, Gene-Hsiang; Peng, Shie-Ming; Liu, Yen-Hsiang; Lee, Sheng-Long; Lu, Kuang-Lieh

    2016-07-01

    A Cd(II)-organic framework {[Cd2(tpim)4(SO4)(H2O)2]·(SO4)·21H2O}n (1) was synthesized by reacting CdSO4·8/3H2O and 2,4,5-tri(4-pyridyl)imidazole (tpim) under hydrothermal conditions. A structural analysis showed that compound 1 adopts a layered structure in which the [Cd(tpim)2]n chains are linked by sulfate anions. These 2D layers are further packed into a 3D supramolecular framework via π-π interactions. The structure contains two types of SO42- anions, i.e., bridging SO42- and free SO42- anions, the latter of which are included in the large channels of the framework. Compound 1 exhibits interesting anion exchange behavior. In the presence of SCN- anions, both the bridging and free SO42- anions in 1 were completely exchanged by SCN- ligands to form a 1D species [Cd(tpim)2(SCN)2] (1A), in which the SCN- moieties function as a monodentate ligand. On the other hand, when compound 1 was ion exchanged with N3- anions in aqueous solution, the bridging SO42- moieties remained intact, and only the free guest SO42- were replaced by N3- anions. The gas adsorption behavior of the activated compound 1 was also investigated.

  16. Electron capture and excitation in collisions of O{sup +}({sup 4}S,{sup 2}D,{sup 2}P) with H{sub 2} molecules

    SciTech Connect

    Pichl, Lukas; Li Yan; Liebermann, Heinz-Peter; Buenker, Robert J.; Kimura, Mineo

    2004-06-01

    Using an electronic-state close-coupling method, we treated the electron capture and excitation processes of O{sup +} ions both in ground state O{sup +}({sup 4}S) and metastable states O{sup +*}({sup 2}D) and O{sup +*}({sup 2}P) in collisions with the H{sub 2} molecule. In the ground-state projectile energy region considered (from 50 eV/amu to 10 keV/amu), the experimental data vary by orders of magnitude: our results smoothly connect to the data by Flesch and Ng [J. Chem. Phys. 94, 2372 (1991)] and Xu et al. [J. Phys. B 23, 1235 (1990)] at low energy and agree with Phaneuf et al. [Phys. Rev. A 17, 534 (1978)] in the high-energy region. The present values differ from Sieglaff et al. [Phys. Rev. A 59, 3538 (1999)] and Nutt et al. [J. Phys. B 12, L157 (1979)], especially in the energy region below 1 keV/amu. We provide the first calculated state-resolved cross sections of electron capture and target-projectile electronic excitations for the O{sup +}({sup 4}S,{sup 2}D,{sup 2}P)-H{sub 2} collision system.

  17. Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz.

    PubMed

    Kearns, Nicholas M; Mehlenbacher, Randy D; Jones, Andrew C; Zanni, Martin T

    2017-04-03

    We have developed a broad bandwidth two-dimensional electronic spectrometer that operates shot-to-shot at repetition rates up to 100 kHz using an acousto-optic pulse shaper. It is called a two-dimensional white-light (2D-WL) spectrometer because the input is white-light supercontinuum. Methods for 100 kHz data collection are studied to understand how laser noise is incorporated into 2D spectra during measurement. At 100 kHz, shot-to-shot scanning of the delays and phases of the pulses in the pulse sequence produces a 2D spectrum 13-times faster and with the same signal-to-noise as using mechanical stages and a chopper. Comparing 100 to 1 kHz repetition rates, data acquisition time is decreased by a factor of 200, which is beyond the improvement expected by the repetition rates alone due to reduction in 1/f noise. These improvements arise because shot-to-shot readout and modulation of the pulse train at 100 kHz enables the electronic coherences to be measured faster than the decay in correlation between laser intensities. Using white light supercontinuum for the pump and probe pulses produces high signal-to-noise spectra on samples with optical densities <0.1 within a few minutes of averaging and an instrument response time of <46 fs thereby demonstrating that that simple broadband continuum sources, although weak, are sufficient to create high quality 2D spectra with >200 nm bandwidth.

  18. Terahertz-Induced Magnetoresistance Oscillations in High-Mobility 2D Electron Systems Under Bichromatic and Multichromatic Excitation

    NASA Astrophysics Data System (ADS)

    Iñarrea, Jesus

    2017-01-01

    In this work, we investigated the magnetotransport under terahertz radiation in high-mobility two-dimensional electron systems, focusing on irradiation by bichromatic and multichromatic terahertz sources. We observed strong modulation of the Shubnikov-de Haas oscillations at sufficient terahertz radiation power. We determined that the origin of the modulation was the interference between the average distance advanced by the scattered electrons between irradiated Landau states and the available initial density of states at a certain magnetic field. In the case of multifrequency illumination, we found that with the appropriate frequencies, the irradiated magnetoresistance could reach an almost zero-resistance state regime even at moderate radiation power.

  19. Orbital dependent Rashba splitting and electron-phonon coupling of 2D Bi phase on Cu(100) surface

    SciTech Connect

    Gargiani, Pierluigi; Lisi, Simone; Betti, Maria Grazia; Ibrahimi, Amina Taleb; Bertran, François; Le Fèvre, Patrick; Chiodo, Letizia

    2013-11-14

    A monolayer of bismuth deposited on the Cu(100) surface forms a highly ordered c(2×2) reconstructed phase. The low energy single particle excitations of the c(2×2) Bi/Cu(100) present Bi-induced states with a parabolic dispersion in the energy region close to the Fermi level, as observed by angle-resolved photoemission spectroscopy. The electronic state dispersion, the charge density localization, and the spin-orbit coupling have been investigated combining photoemission spectroscopy and density functional theory, unraveling a two-dimensional Bi phase with charge density well localized at the interface. The Bi-induced states present a Rashba splitting, when the charge density is strongly localized in the Bi plane. Furthermore, the temperature dependence of the spectral density close to the Fermi level has been evaluated. Dispersive electronic states offer a large number of decay channels for transitions coupled to phonons and the strength of the electron-phonon coupling for the Bi/Cu(100) system is shown to be stronger than for Bi surfaces and to depend on the electronic state symmetry and localization.

  20. 3D spin-flop transition in enhanced 2D layered structure single crystalline TlCo2Se2

    NASA Astrophysics Data System (ADS)

    Jin, Z.; Xia, Z.-C.; Wei, M.; Yang, J.-H.; Chen, B.; Huang, S.; Shang, C.; Wu, H.; Zhang, X.-X.; Huang, J.-W.; Ouyang, Z.-W.

    2016-10-01

    The enhanced 2D layered structure single crystalline TlCo2Se2 has been successfully fabricated, which exhibits field-induced 3D spin-flop phase transitions. In the case of the magnetic field parallel to the c-axis (B//c), the applied magnetic field induces the evolution of the noncollinear helical magnetic coupling into a ferromagnetic (FM) state with all the magnetization of the Co ion parallel to the c-axis. A striking variation of the field-induced strain within the ab-plane is noticed in the magnetic field region of 20-30 T. In the case of the magnetic field perpendicular to the c-axis (B  ⊥  c), the inter-layer helical antiferromagnetic (AFM) coupling may transform to an initial canted AFM coupling, and then part of it transforms to an intermediate metamagnetic phase with the alignment of two-up-one-down Co magnetic moments and finally to an ultimate FM coupling in higher magnetic fields. The robust noncollinear AFM magnetic coupling is completely destroyed above 30 T. In combination with the measurements of magnetization, magnetoresistance and field-induced strain, a complete magnetic phase diagram of the TlCo2Se2 single crystal has been depicted, demonstrating complex magnetic structures even though the crystal geometry itself gives no indication of the magnetic frustration.

  1. Improved structural quality of AlN grown on sapphire by 3D/2D alternation growth

    NASA Astrophysics Data System (ADS)

    Guo, Yanmin; Fang, Yulong; Yin, Jiayun; Zhang, Zhirong; Wang, Bo; Li, Jia; Lu, Weili; Feng, Zhihong

    2017-04-01

    Three dimensional (3D) and two dimensional (2D) alternation growth was used to grow AlN epitaxial layers on sapphire substrates. AlN samples grown using this technique have higher crystalline quality and lower dislocation density than samples grown using only 3D or 2D growth modes as witnessed by the high-resolution X-ray diffraction. Smooth atomic terraces with root mean square roughness of 0.107 nm were observed using atomic force microscopy (AFM) when the 3D and 2D AlN were 75 nm and 425 nm, respectively. This sample possesses single crystallographic orientation along the c-axis identified by Raman spectroscopy. Furthermore, the 3D/2D alternating growth mode modulates internal stress in AlN epitaxial layer by adjusting 2D AlN thickness, and the mechanism was studied in detail.

  2. Engineering the electronic and magnetic properties of d(0) 2D dichalcogenide materials through vacancy doping and lattice strains.

    PubMed

    Ao, L; Pham, A; Xiao, H Y; Zu, X T; Li, S

    2016-03-14

    We have systematically investigated the effects of different vacancy defects in 2D d(0) materials SnS2 and ZrS2 using first principles calculations. The theoretical results show that the single cation vacancy and the vacancy complex like V-SnS6 can induce large magnetic moments (3-4 μB) in these single layer materials. Other defects, such as V-SnS3, V-S, V-ZrS3 and V-ZrS6, can result in n-type conductivity. In addition, the ab initio studies also reveal that the magnetic and conductive properties from the cation vacancy and the defect complex V-SnS6 can be modified using the compressive/tensile strain of the in-plane lattices. Specifically, the V-Zr doped ZrS2 monolayer can be tuned from a ferromagnetic semiconductor to a metallic/half-metallic material with decreasing/increasing magnetic moments depending on the external compressive/tensile strains. On the other hand, the semiconducting and magnetic properties of V-Sn doped SnS2 is preserved under different lattice compression and tension. For the defect complex like V-SnS6, only the lattice compression can tune the magnetic moments in SnS2. As a result, by manipulating the fabrication parameters, the magnetic and conductive properties of SnS2 and ZrS2 can be tuned without the need for chemical doping.

  3. Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy.

    PubMed

    Bakulin, Artem A; Morgan, Sarah E; Kehoe, Tom B; Wilson, Mark W B; Chin, Alex W; Zigmantas, Donatas; Egorova, Dassia; Rao, Akshay

    2016-01-01

    Singlet fission is the spin-allowed conversion of a spin-singlet exciton into a pair of spin-triplet excitons residing on neighbouring molecules. To rationalize this phenomenon, a multiexcitonic spin-zero triplet-pair state has been hypothesized as an intermediate in singlet fission. However, the nature of the intermediate states and the underlying mechanism of ultrafast fission have not been elucidated experimentally. Here, we study a series of pentacene derivatives using ultrafast two-dimensional electronic spectroscopy and unravel the origin of the states involved in fission. Our data reveal the crucial role of vibrational degrees of freedom coupled to electronic excitations that facilitate the mixing of multiexcitonic states with singlet excitons. The resulting manifold of vibronic states drives sub-100 fs fission with unity efficiency. Our results provide a framework for understanding singlet fission and show how the formation of vibronic manifolds with a high density of states facilitates fast and efficient electronic processes in molecular systems.

  4. Theoretical electronic structure of structurally modified graphene

    NASA Astrophysics Data System (ADS)

    Dvorak, Marc David

    Graphene has emerged as a promising replacement for silicon in next-generation electronics and optoelectronic devices. If graphene is to be used in semiconductor devices, however, it must acquire an electronic band gap. Numerous approaches have been proposed to control the band gap of graphene, including the periodic patterning of defects. However, the mechanism for band gap opening and the associated physics in graphene patterned with defects remain unclear. Using both analytic theory and first-principles calculations, we show that periodic patterning of defects on graphene can open a large and tunable band gap, induce strong absorption peaks at optical wavelengths, and host a giant band gap quantum spin Hall phase. First, a geometric rule is analytically derived for the arrangements of defects that open a band gap in graphene, with one ninth of all possible patterns opening a band gap. Next, we perform ab-initio density functional calculations to compare the effects of structural vacancies, hexagonal BN dopants, and passivants on the electronic structure of graphene. Qualitatively, these three types of structural defects behave the same, with only slight differences in their resulting band structures. By adjusting the shape of structural defects, we show how to move the Dirac cones in reciprocal space in accordance with the tight-binding model for the anisotropic honeycomb lattice, while the fundamental mechanism for band gap opening remains the same. To quantitatively predict the band gap and optical properties of these materials, we employ many-body perturbation theory with Green's functions (GW/Bethe-Salpeter equation) to directly include electron-electron and electron-hole interactions. Structurally modified graphene shows a strong renormalization of the fundamental band gap over single particle descriptions, and a strong electron-hole interaction as indicated by strong exciton binding energies (> 0.5 eV). Finally, we show that structurally modified graphene

  5. Structure of the HCMV UL16-MICB Complex Elucidates Select Binding of a Viral Immunoevasin to Diverse NKG2D Ligands

    PubMed Central

    Müller, Steffen; Zocher, Georg; Steinle, Alexander; Stehle, Thilo

    2010-01-01

    The activating immunoreceptor NKG2D promotes elimination of infected or malignant cells by cytotoxic lymphocytes through engagement of stress-induced MHC class I-related ligands. The human cytomegalovirus (HCMV)-encoded immunoevasin UL16 subverts NKG2D-mediated immune responses by retaining a select group of diverse NKG2D ligands inside the cell. We report here the crystal structure of UL16 in complex with the NKG2D ligand MICB at 1.8 Å resolution, revealing the molecular basis for the promiscuous, but highly selective, binding of UL16 to unrelated NKG2D ligands. The immunoglobulin-like UL16 protein utilizes a three-stranded β-sheet to engage the α-helical surface of the MHC class I-like MICB platform domain. Intriguingly, residues at the center of this β-sheet mimic a central binding motif employed by the structurally unrelated C-type lectin-like NKG2D to facilitate engagement of diverse NKG2D ligands. Using surface plasmon resonance, we find that UL16 binds MICB, ULBP1, and ULBP2 with similar affinities that lie in the nanomolar range (12–66 nM). The ability of UL16 to bind its ligands depends critically on the presence of a glutamine (MICB) or closely related glutamate (ULBP1 and ULBP2) at position 169. An arginine residue at this position however, as found for example in MICA or ULBP3, would cause steric clashes with UL16 residues. The inability of UL16 to bind MICA and ULBP3 can therefore be attributed to single substitutions at key NKG2D ligand locations. This indicates that selective pressure exerted by viral immunoevasins such as UL16 contributed to the diversification of NKG2D ligands. PMID:20090832

  6. Terrace Zone Structure in the Chicxulub Impact Crater Based on 2-D Seismic Reflection Profiles: Preliminary Results From EW#0501

    NASA Astrophysics Data System (ADS)

    McDonald, M. A.; Gulick, S. P.; Gorney, D. L.; Christeson, G. L.; Barton, P. J.; Morgan, J. V.; Warner, M. R.; Urrutia-Fucugauchi, J.; Melosh, H. J.; Vermeesch, P. M.; Surendra, A. T.; Goldin, T.; Mendoza, K.

    2005-05-01

    Terrace zones, central peaks, and flat floors characterize complex craters like the Chicxulub impact crater located near the northeast coast of the Yucatan Peninsula. The subsurface crater structure was studied using seismic reflection surveying in Jan/Feb 2005 by the R/V Maurice Ewing. We present 2-D seismic profiles including constant radius, regional, and grid profiles encompassing the 195 km width of the crater. These diversely oriented lines clearly show the terrace zones and aid in the search for crater ejecta as we investigate the formation of the crater including the incidence angle and direction of the extraterrestrial object that struck the Yucatan Peninsula 65 million years ago (K-T boundary). Terrace zones form in complex craters after the modification stage as a result of the gravitational collapse of overextended sediment back into the crater cavity. The terrace zone is clearly imaged on seismic profiles confirming the complex structure of the Chixculub crater. Recent work on reprocessed 1996 profiles found different sizes and spacing of the terraces and concluded that the variations in radial structure are a result of an oblique impact. A SW-NE profile from this study was the only line to show a concentration of deformation near the crater rim hinting that the northeast was the downrange direction of impact. We confirm this narrowing in terrace spacing using a profile with a similar orientation in the 2005 images. Through integration of the new dense grid of profiles and radial lines from the 1996 and 2005 surveys we map the 3-D variability of the terrace zones to further constrain impact direction and examine the formative processes of the Chixculub and other large impact craters.

  7. Assessment of a 2D electronic portal imaging devices-based dosimetry algorithm for pretreatment and in-vivo midplane dose verification

    PubMed Central

    Jomehzadeh, Ali; Shokrani, Parvaneh; Mohammadi, Mohammad; Amouheidari, Alireza

    2016-01-01

    Background: The use of electronic portal imaging devices (EPIDs) is a method for the dosimetric verification of radiotherapy plans, both pretreatment and in vivo. The aim of this study is to test a 2D EPID-based dosimetry algorithm for dose verification of some plans inside a homogenous and anthropomorphic phantom and in vivo as well. Materials and Methods: Dose distributions were reconstructed from EPID images using a 2D EPID dosimetry algorithm inside a homogenous slab phantom for a simple 10 × 10 cm2 box technique, 3D conformal (prostate, head-and-neck, and lung), and intensity-modulated radiation therapy (IMRT) prostate plans inside an anthropomorphic (Alderson) phantom and in the patients (one fraction in vivo) for 3D conformal plans (prostate, head-and-neck and lung). Results: The planned and EPID dose difference at the isocenter, on an average, was 1.7% for pretreatment verification and less than 3% for all in vivo plans, except for head-and-neck, which was 3.6%. The mean γ values for a seven-field prostate IMRT plan delivered to the Alderson phantom varied from 0.28 to 0.65. For 3D conformal plans applied for the Alderson phantom, all γ1% values were within the tolerance level for all plans and in both anteroposterior and posteroanterior (AP-PA) beams. Conclusion: The 2D EPID-based dosimetry algorithm provides an accurate method to verify the dose of a simple 10 × 10 cm2 field, in two dimensions, inside a homogenous slab phantom and an IMRT prostate plan, as well as in 3D conformal plans (prostate, head-and-neck, and lung plans) applied using an anthropomorphic phantom and in vivo. However, further investigation to improve the 2D EPID dosimetry algorithm for a head-and-neck case, is necessary. PMID:28028511

  8. Electronic Structure Principles and Aromaticity

    ERIC Educational Resources Information Center

    Chattaraj, P. K.; Sarkar, U.; Roy, D. R.

    2007-01-01

    The relationship between aromaticity and stability in molecules on the basis of quantities such as hardness and electrophilicity is explored. The findings reveal that aromatic molecules are less energetic, harder, less polarizable, and less electrophilic as compared to antiaromatic molecules, as expected from the electronic structure principles.

  9. Electron Scattering and Nuclear Structure

    ERIC Educational Resources Information Center

    Trower, W. P.; Ficenec, J. R.

    1971-01-01

    Presents information about the nucleus gained by studies of electron scattering. Discusses what can be implied about the shape of the charge distribution, the nucleus positions, the vibrational modes of the nucleus, the momentum of the nucleus, and the granularity and core structures of the nucleus. (DS)

  10. Inhomogeneous 2D linear intergrowth structures among novel Y-Cu-Mg ternary compounds with yttrium/copper equiatomic ratio

    NASA Astrophysics Data System (ADS)

    Solokha, Pavlo; De Negri, Serena; Pavlyuk, Volodymyr; Saccone, Adriana

    2009-04-01

    Single crystals of the Y 5Cu 5Mg 8, Y 5Cu 5Mg 13, Y 5Cu 5Mg 16 and YCuMg 4 compounds were synthesized by heating in a resistance furnace evacuated quartz vials containing Ta-crucibles with element pieces. SEM-EDXS analyses were performed to check phases composition. The structures were refined from X-ray single crystal diffraction data. Y 5Cu 5Mg 8, Y 5Cu 5Mg 13 and Y 5Cu 5Mg 16 represent new structure types: Y 5Cu 5Mg 8 - orthorhombic, Pmma, oP36, a = 2.63723(15), b = 0.40066(2), c = 0.74115(6) nm, Z = 2, wR2 = 0.0597, 939 F2 values, 60 variables; Y 5Cu 5Mg 13 - orthorhombic, Cmcm, oS92, a = 0.40973(2), b = 1.92794(8), c = 2.57907(11) nm, Z = 4, wR2 = 0.1134, 1208 F2 values, 75 variables; Y 5Cu 5Mg 16 - orthorhombic, Cmcm, oS104, a = 0.41360(8), b = 1.9239(4), c = 2.9086(6) nm, Z = 4, wR2 = 0.0760, 1383 F2 values, 84 variables. YCuMg 4 crystallizes in the TbCuMg 4 structure type ( Cmmm, oS48, a = 1.35754(4), b = 2.03153(6), c = 0.39060(1) nm, Z = 8, wR2 = 0.0401, 661 F2 values, 45 variables). The crystal chemistry of these two-layer structures is comparatively discussed. Majority of novel compounds were characterized as members of inhomogeneous 2D intergrowth structure series of R 5M 5X 5, X 4 (Mg 4) and empty Mg octahedra building blocks of general formula R 5 kM 5 kX 5 k + 4 l + m. The common pentagonal prism derivative structural fragments around the most electropositive yttrium atoms were outlined in all these intermetallics.

  11. Syntheses, structures, photoluminescence and photocatalysis of 2D layered lanthanide-carboxylates with 2, 2‧-dithiodibenzoic acid

    NASA Astrophysics Data System (ADS)

    Ding, Ling; Zhong, Jie-Cen; Qiu, Xing-Tai; Sun, Yan-Qiong; Chen, Yi-Ping

    2017-02-01

    Two series of lanthanide-carboxylates, [Ln(2,2‧-dtba)(2,2‧-Hdtba)(EtOH)]n (I:Ln=Eu(1a), Dy(1b)) and [Ln(2,2‧-dtba)(2,2‧-Hdtba)(4,4‧-bpy)0.5]n (II:Ln=Eu(2a), Dy(2b), Tb(2c) 2,2‧-H2dtba=2,2‧-dithiodibenzoic acid, 4,4‧-bpy=4,4‧-bipyridine) have been synthesized under hydrothermal conditions. Interestingly, the H2dtba organic ligand was generated by in situ S-S reaction of 2-mercaptobenzoic acid. Compounds I and II possess different 2D layered structures based on similar 1D [Ln(2,2‧-dtba)]+ chains. Photoluminescence studies reveal that compounds I and II exhibit strong lanthanide characteristic emission bands. Remarkably, Compounds 1b and 2a both exhibit good photocatalytic activity for degradation of Rhodamine-B (Rh-B) under the simulated sunlight irradiation.

  12. 2D/3D electron temperature fluctuations near explosive MHD instabilities accompanied by minor and major disruptions

    NASA Astrophysics Data System (ADS)

    Choi, M. J.; Park, H. K.; Yun, G. S.; Lee, W.; Luhmann, N. C., Jr.; Lee, K. D.; Ko, W.-H.; Park, Y.-S.; Park, B. H.; In, Y.

    2016-06-01

    Minor and major disruptions by explosive MHD instabilities were observed with the novel quasi 3D electron cyclotron emission imaging (ECEI) system in the KSTAR plasma. The fine electron temperature (T e) fluctuation images revealed two types of minor disruptions: a small minor disruption is a q∼ 2 localized fast transport event due to a single m/n  =  2/1 magnetic island growth, while a large minor disruption is partial collapse of the q≤slant 2 region with two successive fast heat transport events by the correlated m/n  =  2/1 and m/n  =  1/1 instabilities. The m/n  =  2/1 magnetic island growth during the minor disruption is normally limited below the saturation width. However, as the additional interchange-like perturbation grows near the inner separatrix of the 2/1 island, the 2/1 island can expand beyond the limit through coupling with the cold bubble formed by the interchange-like perturbation.

  13. Non-linear transport in microwave-irradiated 2D electron systems at the cyclotron resonance subharmonics

    NASA Astrophysics Data System (ADS)

    Chiang, Hung-Sheng; Hatke, Anthony; Zudov, Michael; Pfeiffer, Loren; West, Ken

    2009-03-01

    We study microwave photoresistivity oscillations in a high mobility two-dimensional electron system subject to strong dc electric fields. We find [1] that near the second subharmonic of the cyclotron resonance the frequency of the resistivity oscillations with dc electric field is twice the frequency of the oscillations at the cyclotron resonance, its harmonics, or in the absence of microwave radiation. This observation is discussed in terms of the microwave-induced sidebands in the density of states and the interplay between different scattering processes in the separated Landau level regime. [1] A. T. Hatke, H.-S. Chiang, M. A. Zudov, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. accepted for publication.

  14. Numerical simulations - Some results for the 2- and 3-D Hubbard models and a 2-D electron phonon model

    NASA Technical Reports Server (NTRS)

    Scalapino, D. J.; Sugar, R. L.; White, S. R.; Bickers, N. E.; Scalettar, R. T.

    1989-01-01

    Numerical simulations on the half-filled three-dimensional Hubbard model clearly show the onset of Neel order. Simulations of the two-dimensional electron-phonon Holstein model show the competition between the formation of a Peierls-CDW state and a superconducting state. However, the behavior of the partly filled two-dimensional Hubbard model is more difficult to determine. At half-filling, the antiferromagnetic correlations grow as T is reduced. Doping away from half-filling suppresses these correlations, and it is found that there is a weak attractive pairing interaction in the d-wave channel. However, the strength of the pair field susceptibility is weak at the temperatures and lattice sizes that have been simulated, and the nature of the low-temperature state of the nearly half-filled Hubbard model remains open.

  15. Spectral and structural properties of 2D network complex [Ni(4,4'-bipyridine) 2(NCS) 2] n

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Jianmin, L.; Nishiura, M.; Imamoto, T.

    2000-02-01

    The complex [Ni(4,4'-bipyridine) 2(NCS) 2] n, in which nickel atoms are linked by two different Ni-4,4'-bpy-Ni assemblies to form two-dimensional distorted square net structure and the most effective packing of layers, has been isolated and structurally characterized. It represents the first example of Ni(II)-4,4'-bpy complex possesses 2D network. Crystal data for I: Fw=487.23, a=12.156(3), b=11.38(2), c=16.646(8) Å, β=100.43(3), V=2265(1) Å3, Z=4, space group=C2/c, T=298 K, λ((Mo-K α)=0.71070 Å, ρ calc=1.429 g cm -3, μ=10.62 cm-1, F(000)=1000, R=0.054, Rw=0.086, GOF=3.98. The UV-VIS absorption spectrum of the title complex is also reported and explained perfectly by the scaling radial theory which proposed by us. The strong and broad absorption bands occurred at 10433, 16830, 26556 cm -1, and they are assigned as d-d transitions of Ni(II) ion in octahedral field: 3A2g→ 3T2ga,b+ 3T2gc; 3A2g→ 3T1gz+ 3T1gy,x; 3A2g→ 3T1gz+ 3T1gy,x. The calculated results of the d-d transition energy levels agree well with the experimental values.

  16. Electron momentum distribution and singlet-singlet annihilation in the organic anthracene molecular crystals using positron 2D-ACAR and fluorescence spectroscopy.

    PubMed

    Selvakumar, Sellaiyan; Sivaji, Krishnan; Arulchakkaravarthi, Arjunan; Sankar, Sambasivam

    2014-08-14

    We present the mapping of electron momentum distribution (EMD) in a single crystal of anthracene by two-dimensional angular correlation of positron annihilation radiation (2D-ACAR). The projected EMD is explained on the basis of the crystallographic features of the material. The EMD spectra provide information about the positron states and their behavior and also about the hindrance of the positronium (Ps) formation in this material. The EMD has exhibited evidence for the absence of free volume defects. The characteristic EMD features regarding the delocalized electronic states are explained. Further, scintillation characteristics such as fluorescence and time-correlated single photon counting have also been studied. The emission peaks are attributed to vibrational bands of fluorescence emission from the singlet excitons and lifetime components are observed to be due to singlet fission and the singlet-singlet excitons annihilation.

  17. LOW-Tg Bismuth Phosphate Glasses for Glass-Imprinting and Fabrication of 2d Sub-Wavelength Structure

    NASA Astrophysics Data System (ADS)

    Kitamura, Naoyuki; Fukumi, Kohei; Nakamura, Junichi; Hidaka, Tatsuo; Ikeda, Takurou; Hashima, Hidekazu; Nishii, Junji

    We have developed zinc-bismuth-phosphate glasses, which have deformation temperatures under 450°C and refractive indices higher than 1.7, in order to produce an antireflection structure on the surface by a glass-imprinting process. Two-dimensionally arrayed conical cavities of sub-wavelength size were fabricated on a SiC mold by electron lithography and dry etching techniques. The sub-wavelength periodic structure was transferred onto the glass surface by a glass-imprinting process using the mold. The sub-wavelength structure suppressed the reflectance by approximately 90%. A weak maximum was observed in the reflection spectra around 400-500 nm, which decreased in intensity and shifted toward shorter wavelengths with decreasing pitch.

  18. Upper Crustal Structure of the Cleft Segment of the Juan de Fuca Ridge using 2D Streamer travel time tomography

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Canales, J.; Carbotte, S. M.; Nedimovic, M. R.

    2009-12-01

    We use long off-set (6 km) multichannel seismic reflection data to obtain the P-wave seismic structure of the upper ~2 km of the crust along the southern part of the intermediate-spreading Juan de Fuca Ridge (Cleft segment). Along this segment, the top of the Axial Magma Chamber (AMC) deepens from south to north from about 2.0 km at the southern end of the segment to about 2.3 km at the northern end. Both segment ends are characterized by high-temperature hydrothermal venting. Our objective is to study the effects of high temperature hydrothermal circulation on the seismic structure of the shallow crust. We jointly inverted refracted and reflected travel times (from the top of the AMC) to obtain the 2 dimensional velocity structure of the earth along ~60 km of the ridge axis. Prior to tomographic inversion, processing of marine seismic data included trace editing, trapezoidal band pass filtering (3-5-15-30 Hz), formation of partial off-set stacks of 5 shots (i.e, supershots) to increase the signal to noise ratio and downward continuation of the wavefield to a datum just above the sea floor (i.e, phase shift in the frequency-wave number domain of both source and receiver gathers to extract travel time information from refracted arrivals at near offset. Traveltime picking of the arrivals was done using a semi automated first break routine. The picked travel times of the first refracted arrivals and the reflected arrivals from the AMC are then input into a tomography inversion algorithm to build a 2D velocity model. Our results do not show detectable velocity variations associated with the presence of active high-temperature hydrothermal discharge, probably because the length scale of hydrothermal alteration is smaller than the resolving power of traveltime tomography. However our results are a first step towards higher-resolution seismic imaging models using waveform inversion. We will also present results from off-axis data to understand the early evolution of the

  19. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen

    NASA Astrophysics Data System (ADS)

    Voiry, Damien; Fullon, Raymond; Yang, Jieun; de Carvalho Castro E Silva, Cecilia; Kappera, Rajesh; Bozkurt, Ibrahim; Kaplan, Daniel; Lagos, Maureen J.; Batson, Philip E.; Gupta, Gautam; Mohite, Aditya D.; Dong, Liang; Er, Dequan; Shenoy, Vivek B.; Asefa, Tewodros; Chhowalla, Manish

    2016-09-01

    The excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution reaction (HER) has led to substantial efforts towards increasing the edge concentration. The 2H basal plane is less active for the HER because it is less conducting and therefore possesses less efficient charge transfer kinetics. Here we show that the activity of the 2H basal planes of monolayer MoS2 nanosheets can be made comparable to state-of-the-art catalytic properties of metallic edges and the 1T phase by improving the electrical coupling between the substrate and the catalyst so that electron injection from the electrode and transport to the catalyst active site is facilitated. Phase-engineered low-resistance contacts on monolayer 2H-phase MoS2 basal plane lead to higher efficiency of charge injection in the nanosheets so that its intrinsic activity towards the HER can be measured. We demonstrate that onset potentials and Tafel slopes of ~-0.1 V and ~50 mV per decade can be achieved from 2H-phase catalysts where only the basal plane is exposed. We show that efficient charge injection and the presence of naturally occurring sulfur vacancies are responsible for the observed increase in catalytic activity of the 2H basal plane. Our results provide new insights into the role of contact resistance and charge transport on the performance of two-dimensional MoS2 nanosheet catalysts for the HER.

  20. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen.

    PubMed

    Voiry, Damien; Fullon, Raymond; Yang, Jieun; de Carvalho Castro E Silva, Cecilia; Kappera, Rajesh; Bozkurt, Ibrahim; Kaplan, Daniel; Lagos, Maureen J; Batson, Philip E; Gupta, Gautam; Mohite, Aditya D; Dong, Liang; Er, Dequan; Shenoy, Vivek B; Asefa, Tewodros; Chhowalla, Manish

    2016-09-01

    The excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution reaction (HER) has led to substantial efforts towards increasing the edge concentration. The 2H basal plane is less active for the HER because it is less conducting and therefore possesses less efficient charge transfer kinetics. Here we show that the activity of the 2H basal planes of monolayer MoS2 nanosheets can be made comparable to state-of-the-art catalytic properties of metallic edges and the 1T phase by improving the electrical coupling between the substrate and the catalyst so that electron injection from the electrode and transport to the catalyst active site is facilitated. Phase-engineered low-resistance contacts on monolayer 2H-phase MoS2 basal plane lead to higher efficiency of charge injection in the nanosheets so that its intrinsic activity towards the HER can be measured. We demonstrate that onset potentials and Tafel slopes of ∼-0.1 V and ∼50 mV per decade can be achieved from 2H-phase catalysts where only the basal plane is exposed. We show that efficient charge injection and the presence of naturally occurring sulfur vacancies are responsible for the observed increase in catalytic activity of the 2H basal plane. Our results provide new insights into the role of contact resistance and charge transport on the performance of two-dimensional MoS2 nanosheet catalysts for the HER.

  1. Electronic and magnetic properties of TM atoms adsorption on 2D silicon carbide by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Luo, M.; Shen, Y. H.; Yin, T. L.

    2017-02-01

    The magnetic properties of different transition-metal (TM) atoms (TM=Co, Cu, Mn, Fe, and Ni) adsorption on SiC monolayer are investigated using density functional theory (DFT). Magnetism appears in the cases of Co, Cu, Mn, and Fe. Among all the magnetic cases, the Co-adsorbed system has the most stable structure. Therefore, we further study the interaction in the two-Co-adsorbed system. Our results show that the interaction between two Co atoms is always FM and the p-d hybridization mechanism results in such ferromagnetic states. However, the FM interaction is obviously depressed by the increasing Co-Co distance, which could be well explained by the Zener-RKKY theory. Moreover, different magnetic behavior is observed in the two-Mn-adsorbed system and a long-range AFM state is showing. Such multiple magnetic properties may suggest promising applications of TM-adsorbed SiC monolayer in the future.

  2. Electronic band structure of surface-doped black phosphorus

    NASA Astrophysics Data System (ADS)

    Kim, Jimin; Ryu, Sae Hee; Sohn, Yeongsup; Kim, Keun Su

    2015-03-01

    There are rapidly growing interests in the study of few-layer black phosphorus owing to its promising device characteristics that may impact our future electronics technology. The low-energy band structure of black phosphorus has been widely predicted to be controllable by external perturbations, such as strain and doping. In this work, we attempt to control the electronic band structure of black phosphorous by in-situ surface deposition of alkali-metal atoms. We found that surface doping induces steep band bending towards the bulk, leading to the emergence of new 2D electronic states that are confined within only few phosphorene layers of black phosphorus. Using angle-resolved photoemission spectroscopy, we directly measured the electronic band structure and its evolution as a function of dopant density. Supported by IBS.

  3. Prediction of P53 Mutants (Multiple Sites) Transcriptional Activity Based on Structural (2D&3D) Properties

    PubMed Central

    Geetha Ramani, R.; Jacob, Shomona Gracia

    2013-01-01

    Prediction of secondary site mutations that reinstate mutated p53 to normalcy has been the focus of intense research in the recent past owing to the fact that p53 mutants have been implicated in more than half of all human cancers and restoration of p53 causes tumor regression. However laboratory investigations are more often laborious and resource intensive but computational techniques could well surmount these drawbacks. In view of this, we formulated a novel approach utilizing computational techniques to predict the transcriptional activity of multiple site (one-site to five-site) p53 mutants. The optimal MCC obtained by the proposed approach on prediction of one-site, two-site, three-site, four-site and five-site mutants were 0.775,0.341,0.784,0.916 and 0.655 respectively, the highest reported thus far in literature. We have also demonstrated that 2D and 3D features generate higher prediction accuracy of p53 activity and our findings revealed the optimal results for prediction of p53 status, reported till date. We believe detection of the secondary site mutations that suppress tumor growth may facilitate better understanding of the relationship between p53 structure and function and further knowledge on the molecular mechanisms and biological activity of p53, a targeted source for cancer therapy. We expect that our prediction methods and reported results may provide useful insights on p53 functional mechanisms and generate more avenues for utilizing computational techniques in biological data analysis. PMID:23468845

  4. Modeling and Analysis of Granite Matrix Pore Structure and Hydraulic Characteristics in 2D and 3D Networks

    NASA Astrophysics Data System (ADS)

    Gvozdik, L.; Polak, M.; Zaruba, J.; Vanecek, M.

    2010-12-01

    A geological environment labeled as a Granite massif represents in terms of groundwater flow and transport a distinct hydrogeological environment from that of sedimentary basins, the characterisation of which is generally more complex and uncertain. Massifs are composed of hard crystalline rocks with the very low effective porosity. Due to their rheological properties such rocks are predisposed to brittle deformation resulting from changes in stress conditions. Our specific research project (Research on the influence of intergrangular porosity on deep geological disposal: geological formations, methodology and the development of measurement apparatus) is focussed on the problem of permeable zones within apparently undisturbed granitic rock matrix. The project including the both laboratory and in-situ tracer tests study migration along and through mineral grains in fresh and altered granite. The objective of the project is to assess whether intergranular porosity is a general characteristic of the granitic rock matrix or subject to significant evolution resulting from geochemical and/or hydrogeochemical processes, geotechnical and/or mechanical processes. Moreover, the research is focussed on evaluating methods quantifying intergranular porosity by both physical testing and mathematical modelling using verified standard hydrological software tools. Groundwater flow in microfractures and intergranular pores in granite rock matrix were simulated in three standard hydrogeological modeling programs with completely different conceptual approaches: MODFLOW (Equivalent Continuum concept), FEFLOW (Discrete Fracture and Equivalent Continuum concepts) and NAPSAC (Discrete Fracture Network concept). Specialized random fracture generators were used for creation of several 2D and 3D models in each of the chosen program. Percolation characteristics of these models were tested and analyzed. Several scenarios of laboratory tests of the rock samples permeability made in triaxial

  5. Quasiparticle interference in unconventional 2D systems

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-01

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  6. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  7. Structural Dynamics of Electronic Systems

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2013-03-01

    The published work on analytical ("mathematical") and computer-aided, primarily finite-element-analysis (FEA) based, predictive modeling of the dynamic response of electronic systems to shocks and vibrations is reviewed. While understanding the physics of and the ability to predict the response of an electronic structure to dynamic loading has been always of significant importance in military, avionic, aeronautic, automotive and maritime electronics, during the last decade this problem has become especially important also in commercial, and, particularly, in portable electronics in connection with accelerated testing of various surface mount technology (SMT) systems on the board level. The emphasis of the review is on the nonlinear shock-excited vibrations of flexible printed circuit boards (PCBs) experiencing shock loading applied to their support contours during drop tests. At the end of the review we provide, as a suitable and useful illustration, the exact solution to a highly nonlinear problem of the dynamic response of a "flexible-and-heavy" PCB to an impact load applied to its support contour during drop testing.

  8. Giant piezoresistance of p-type nano-thick silicon induced by interface electron trapping instead of 2D quantum confinement.

    PubMed

    Yang, Yongliang; Li, Xinxin

    2011-01-07

    The p-type silicon giant piezoresistive coefficient is measured in top-down fabricated nano-thickness single-crystalline-silicon strain-gauge resistors with a macro-cantilever bending experiment. For relatively thicker samples, the variation of piezoresistive coefficient in terms of silicon thickness obeys the reported 2D quantum confinement effect. For ultra-thin samples, however, the variation deviates from the quantum-effect prediction but increases the value by at least one order of magnitude (compared to the conventional piezoresistance of bulk silicon) and the value can change its sign (e.g. from positive to negative). A stress-enhanced Si/SiO(2) interface electron-trapping effect model is proposed to explain the 'abnormal' giant piezoresistance that should be originated from the carrier-concentration change effect instead of the conventional equivalent mobility change effect for bulk silicon piezoresistors. An interface state modification experiment gives preliminary proof of our analysis.

  9. Electronic structure investigations of quasicrystals

    NASA Astrophysics Data System (ADS)

    Rotenberg, E.; Theis, W.; Horn, K.

    2004-08-01

    We present a review of the determination of density of states (DOS) of quasicrystals using valence band photoemission spectroscopy. The absence of fine or spiky structure in the angle-integrated DOS of quasicrystals suggests the possibility of delocalized electronic states. These were confirmed with angle-resolved photoemission studies, which clearly establish the presence of dispersing features attributed to momentum-dependent bandstructure. Such dispersing states are observed not only for deeper-lying sp states, but also for d-derived bands near the Fermi level. Data from three different high symmetry surfaces of decagonal Al-Ni-Co, an ideal model system, are presented. We find that only a few dominant reciprocal lattice vectors are sufficient to describe the quasiperiodic potential, and the implications for electronic properties are discussed.

  10. Quantification of transition dipole strengths using 1D and 2D spectroscopy for the identification of molecular structures via exciton delocalization: Application to α-helices

    PubMed Central

    Grechko, Maksim; Zanni, Martin T.

    2012-01-01

    Vibrational and electronic transition dipole strengths are often good probes of molecular structures, especially in excitonically coupled systems of chromophores. One cannot determine transition dipole strengths using linear spectroscopy unless the concentration is known, which in many cases it is not. In this paper, we report a simple method for measuring transition dipole moments from linear absorption and 2D IR spectra that does not require knowledge of concentrations. Our method is tested on several model compounds and applied to the amide I′ band of a polypeptide in its random coil and α-helical conformation as modulated by the solution temperature. It is often difficult to confidently assign polypeptide and protein secondary structures to random coil or α-helix by linear spectroscopy alone, because they absorb in the same frequency range. We find that the transition dipole strength of the random coil state is 0.12 ± 0.013 D2, which is similar to a single peptide unit, indicating that the vibrational mode of random coil is localized on a single peptide unit. In an α-helix, the lower bound of transition dipole strength is 0.26 ± 0.03 D2. When taking into account the angle of the amide I′ transition dipole vector with respect to the helix axis, our measurements indicate that the amide I′ vibrational mode is delocalized across a minimum of 3.5 residues in an α-helix. Thus, one can confidently assign secondary structure based on exciton delocalization through its effect on the transition dipole strength. Our method will be especially useful for kinetically evolving systems, systems with overlapping molecular conformations, and other situations in which concentrations are difficult to determine. PMID:23163364

  11. Electronic instrumentation for smart structures

    NASA Astrophysics Data System (ADS)

    Blanar, George J.

    1995-04-01

    The requirements of electronic instrumentation for smart structures are similar to those of data acquisition systems at our national particle physics laboratories. Modern high energy and heavy ion physics experiments may have tens of thousands of channels of data sources producing data that must be converted to digital form, compacted, stored and interpreted. In parallel, multiple sensors distributed in and around smart structures generate either binary or analog signals that are voltage, charge, or time like in their information content. In all cases, they must be transmitted, converted and preserved into a unified digital format for real-time processing. This paper will review the current status of practical large scale electronic measurement systems with special attention to architectures and physical organization. Brief surveys of the current state of the art will include preamplifiers and amplifiers, comparators and discriminators, voltage or charge analog-to-digital converters, time internal meters or time-to-digital converters, and finally, counting or scalar systems. The paper will conclude by integrating all of these ideas in a concept for an all-digital readout of a smart structure using the latest techniques used in physics research today.

  12. Wannier-Stark electro-optical effect, quasi-guided and photonic modes in 2D macroporous silicon structures with SiO2 coatings

    NASA Astrophysics Data System (ADS)

    Karachevtseva, L.; Goltviansky, Yu.; Sapelnikova, O.; Lytvynenko, O.; Stronska, O.; Bo, Wang; Kartel, M.

    2016-12-01

    Opportunities to enhance the properties of structured surfaces were demonstrated on 2D macroporous silicon structures with SiO2 coatings. We investigated the IR light absorption oscillations in macroporous silicon structures with SiO2 coatings 0-800 nm thick. The Wannier-Stark electro-optical effect due to strong electric field on Si-SiO2boundary and an additional electric field of quasi-guided optical modes were taken into account. The photonic modes and band gaps were also considered as peculiarities in absorbance spectra of macroporous silicon structures with a thick SiO2 coating. The photonic modes do not coincide with the quasi-guided modes in the silicon matrix and do not appear in absorption spectra of 2D macroporous silicon structures with surface nanocrystals.

  13. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    SciTech Connect

    Krishtopenko, S. S.

    2015-02-15

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.

  14. The electronic structure of Lu

    NASA Astrophysics Data System (ADS)

    Tibbetts, T. A.; Harmon, B. N.

    1982-12-01

    The electronic structure of hcp Lu has been calculated using a linearized augmented plane wave (LAPW) method and the Hedin-Lundqvist local density approximation for exchange and correlation. Although complete self-consistency was hindered by the proximity of the 4f levels to the Fermi energy, the valence bands were converged and the calculation yielded a Fermi surface remarkably similar to that calculated by Keeton and Loucks. Comparison is made with recent de Haas-van Alphen and neutron magnetic form factor experiments.

  15. Residue-Specific Structural Kinetics of Proteins through the Union of Isotope Labeling, Mid-IR Pulse Shaping, and Coherent 2D IR Spectroscopy

    PubMed Central

    Middleton, Chris T.; Woys, Ann Marie; Mukherjee, Sudipta S.; Zanni, Martin T.

    2010-01-01

    We describe a methodology for studying protein kinetics using a rapid-scan technology for collecting 2D IR spectra. In conjunction with isotope labeling, 2D IR spectroscopy is able to probe the secondary structure and environment of individual residues in polypeptides and proteins. It is particularly useful for membrane and aggregate proteins. Our rapid-scan technology relies on a mid-IR pulse shaper that computer generates the pulse shapes, much like in an NMR spectrometer. With this device, data collection is faster, easier, and more accurate. We describe our 2D IR spectrometer, as well as protocols for 13C=18O isotope labeling, and then illustrate the technique with an application to the aggregation of the human islet amyloid polypeptide form type 2 diabetes. PMID:20472067

  16. Discrimination of adulterated milk based on two-dimensional correlation spectroscopy (2D-COS) combined with kernel orthogonal projection to latent structure (K-OPLS).

    PubMed

    Yang, Renjie; Liu, Rong; Xu, Kexin; Yang, Yanrong

    2013-12-01

    A new method for discrimination analysis of adulterated milk and pure milk is proposed by combining two-dimensional correlation spectroscopy (2D-COS) with kernel orthogonal projection to latent structure (K-OPLS). Three adulteration types of milk with urea, melamine, and glucose were prepared, respectively. The synchronous 2D spectra of adulterated milk and pure milk samples were calculated. Based on the characteristics of 2D correlation spectra of adulterated milk and pure milk, a discriminant model of urea-tainted milk, melamine-tainted milk, glucose-tainted milk, and pure milk was built by K-OPLS. The classification accuracy rates of unknown samples were 85.7, 92.3, 100, and 87.5%, respectively. The results show that this method has great potential in the rapid discrimination analysis of adulterated milk and pure milk.

  17. 2D modeling of DC potential structures induced by RF sheaths with transverse currents in front of ICRF antenna

    SciTech Connect

    Faudot, E.; Heuraux, S.; Colas, L.

    2005-09-26

    Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a 'test map' having initially a Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude {phi}0 (normalized to a characteristic length for transverse transport and to the local temperature). A 'peaking factor' is built from the DC peak potential normalized to {phi}0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the 'peaking factor' for ITER will be presented for a given configuration.

  18. Automated screening of 2D crystallization trials using transmission electron microscopy: a high-throughput tool-chain for sample preparation and microscopic analysis.

    PubMed

    Coudray, Nicolas; Hermann, Gilles; Caujolle-Bert, Daniel; Karathanou, Argyro; Erne-Brand, Françoise; Buessler, Jean-Luc; Daum, Pamela; Plitzko, Juergen M; Chami, Mohamed; Mueller, Urs; Kihl, Hubert; Urban, Jean-Philippe; Engel, Andreas; Rémigy, Hervé-W

    2011-02-01

    We have built and extensively tested a tool-chain to prepare and screen two-dimensional crystals of membrane proteins by transmission electron microscopy (TEM) at room temperature. This automated process is an extension of a new procedure described recently that allows membrane protein 2D crystallization in parallel (Iacovache et al., 2010). The system includes a gantry robot that transfers and prepares the crystalline solutions on grids suitable for TEM analysis and an entirely automated microscope that can analyze 96 grids at once without human interference. The operation of the system at the user level is solely controlled within the MATLAB environment: the commands to perform sample handling (loading/unloading in the microscope), microscope steering (magnification, focus, image acquisition, etc.) as well as automatic crystal detection have been implemented. Different types of thin samples can efficiently be screened provided that the particular detection algorithm is adapted to the specific task. Hence, operating time can be shared between multiple users. This is a major step towards the integration of transmission electron microscopy into a high throughput work-flow.

  19. Characterization of the growth of 2D protein crystals on a lipid monolayer by ellipsometry and rigidity measurements coupled to electron microscopy.

    PubMed Central

    Vénien-Bryan, C; Lenne, P F; Zakri, C; Renault, A; Brisson, A; Legrand, J F; Berge, B

    1998-01-01

    We present here some sensitive optical and mechanical experiments for monitoring the process of formation and growth of two-dimensional (2D) crystals of proteins on a lipid monolayer at an air-water interface. The adsorption of proteins on the lipid monolayer was monitored by ellipsometry measurements. An instrument was developed to measure the shear elastic constant (in plane rigidity) of the monolayer. These experiments have been done using cholera toxin B subunit (CTB) and annexin V as model proteins interacting with a monosialoganglioside (GM1) and dioleoylphosphatidylserine (DOPS), respectively. Electron microscopy observations of the protein-lipid layer transferred to grids were systematically used as a control. We found a good correlation between the measured in-plane rigidity of the monolayer and the presence of large crystalline domains observed by electron microscopy grids. Our interpretation of these data is that the crystallization process of proteins on a lipid monolayer passes through at least three successive stages: 1) molecular recognition between protein and lipid-ligand, i.e., adsorption of the protein on the lipid layer; 2) nucleation and growth of crystalline patches whose percolation is detected by the appearance of a non-zero in-plane rigidity; and 3) annealing of the layer producing a slower increase of the lateral or in-plane rigidity. PMID:9591688

  20. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  1. Electronic structure quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Bajdich, Michal; Mitas, Lubos

    2009-04-01

    Quantum Monte Carlo (QMC) is an advanced simulation methodology for studies of manybody quantum systems. The QMC approaches combine analytical insights with stochastic computational techniques for efficient solution of several classes of important many-body problems such as the stationary Schrödinger equation. QMC methods of various flavors have been applied to a great variety of systems spanning continuous and lattice quantum models, molecular and condensed systems, BEC-BCS ultracold condensates, nuclei, etc. In this review, we focus on the electronic structure QMC, i.e., methods relevant for systems described by the electron-ion Hamiltonians. Some of the key QMC achievements include direct treatment of electron correlation, accuracy in predicting energy differences and favorable scaling in the system size. Calculations of atoms, molecules, clusters and solids have demonstrated QMC applicability to real systems with hundreds of electrons while providing 90-95% of the correlation energy and energy differences typically within a few percent of experiments. Advances in accuracy beyond these limits are hampered by the so-called fixed-node approximation which is used to circumvent the notorious fermion sign problem. Many-body nodes of fermion states and their properties have therefore become one of the important topics for further progress in predictive power and efficiency of QMC calculations. Some of our recent results on the wave function nodes and related nodal domain topologies will be briefly reviewed. This includes analysis of few-electron systems and descriptions of exact and approximate nodes using transformations and projections of the highly-dimensional nodal hypersurfaces into the 3D space. Studies of fermion nodes offer new insights into topological properties of eigenstates such as explicit demonstrations that generic fermionic ground states exhibit the minimal number of two nodal domains. Recently proposed trial wave functions based on Pfaffians with

  2. The structure of salt bridges between Arg(+) and Glu(-) in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries.

    PubMed

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander

    2015-06-07

    Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu(-)) and arginine (Arg(+)) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu(-) and Arg(+), which provide a sensitive structural probe of Glu(-)⋯Arg(+) salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.

  3. The structure of salt bridges between Arg+ and Glu- in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries

    NASA Astrophysics Data System (ADS)

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R.; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander

    2015-06-01

    Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu-) and arginine (Arg+) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu- and Arg+, which provide a sensitive structural probe of Glu-⋯Arg+ salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.

  4. Two 2D Cd(II) coordination polymers based on asymmetrical Schiff-base ligand: synthesis, crystal structures and luminescent properties.

    PubMed

    Dang, Dong-Bin; Li, Meng-Meng; Bai, Yan; Zhou, Rui-Min

    2013-02-15

    Two new two-dimensional coordination polymers [Cd(3)L(2)(SCN)(6)](n) (1) and [CdLI(2)](n) (2) have been synthesized and characterized by IR spectroscopy, elemental analysis, TG technique, XRPD and complete single crystal structure analysis, where L is 4-(pyridine-2-yl)methyleneamino-1,2,4-trizaole. Asymmetrical Schiff-base ligand L with five- and six-membered N-containing heterocyclic rings acts as a tridentate bridging ligand to bind two Cd(II) centers through one terminal N(triazolyl) and one pyridylimine chelate unit in 1 and 2. For polymer 1, tridentate bridging ligands link Cd-(1,3-μ-SCN(-)) 1D inorganic chains to form a 2D layer network. The existence of C-H···π and π-π stacking interactions between 2D hybrid layers further gives rise to a 3D supramolecular network. In comparison with 1, polymer 2 shows a 2D layer network containing hexanuclear macrometallacyclic units. The 2D layers are staggered together through the combination of C-H···π and π-π stacking interactions and forming a 3D supramolecular structure. The luminescent properties of the polymers 1 and 2 were investigated in the solid state at room temperature.

  5. Isolation and structural and pharmacological characterization of α-elapitoxin-Dpp2d, an amidated three finger toxin from black mamba venom.

    PubMed

    Wang, Ching-I Anderson; Reeks, Timothy; Vetter, Irina; Vergara, Irene; Kovtun, Oleksiy; Lewis, Richard J; Alewood, Paul F; Durek, Thomas

    2014-06-17

    We isolated a novel, atypical long-chain three-finger toxin (TFT), α-elapitoxin-Dpp2d (α-EPTX-Dpp2d), from black mamba (Dendroaspis polylepis polylepis) venom. Proteolytic digestion with trypsin and V8 protease, together with MS/MS de novo sequencing, indicated that the mature toxin has an amidated C-terminal arginine, a posttranslational modification rarely observed for snake TFTs. α-EPTX-Dpp2d was found to potently inhibit α7 neuronal nicotinic acetylcholine receptors (nAChR; IC₅₀, 58 ± 24 nM) and muscle-type nAChR (IC₅₀, 114 ± 37 nM) but did not affect α3β2 and α3β4 nAChR isoforms at 1 μM concentrations. Competitive radioligand binding assays demonstrated that α-EPTX-Dpp2d competes with epibatidine binding to the Lymnea stagnalis acetylcholine-binding protein (Ls-AChBP; IC₅₀, 4.9 ± 2.3 nM). The activity profile and binding data are reminiscent of classical long-chain TFTs with a free carboxyl termini, suggesting that amidation does not significantly affect toxin selectivity. The crystal structure of α-EPTX-Dpp2d was determined at 1.7 Å resolution and displayed a dimeric toxin assembly with each monomer positioned in an antiparallel orientation. The dimeric structure is stabilized by extensive intermolecular hydrogen bonds and electrostatic interactions, which raised the possibility that the toxin may exist as a noncovalent homodimer in solution. However, chemical cross-linking and size-exclusion chromatography coupled with multiangle laser light scattering (MALLS) data indicated that the toxin is predominantly monomeric under physiological conditions. Because of its high potency and selectivity, we expect this toxin to be a valuable pharmacological tool for studying the structure and function of nAChRs.

  6. revealing H{sub 2}D{sup +} depletion and compact structure in starless and protostellar cores with ALMA

    SciTech Connect

    Friesen, R. K.; Di Francesco, J.; Bourke, T. L.; Caselli, P.; Jørgensen, J. K.; Pineda, J. E.; Wong, M.

    2014-12-10

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the submillimeter dust continuum and H{sub 2}D{sup +} 1{sub 10}-1{sub 11} emission toward two evolved, potentially protostellar cores within the Ophiuchus molecular cloud, Oph A SM1 and SM1N. The data reveal small-scale condensations within both cores, with mass upper limits of M ≲ 0.02 M {sub ☉} (∼20 M {sub Jup}). The SM1 condensation is consistent with a nearly symmetric Gaussian source with a width of only 37 AU. The SM1N condensation is elongated and extends 500 AU along its major axis. No evidence for substructure is seen in either source. A Jeans analysis indicates that these sources are unlikely to fragment, suggesting that both will form single stars. H{sub 2}D{sup +} is only detected toward SM1N, offset from the continuum peak by ∼150-200 AU. This offset may be due to either heating from an undetected, young, low-luminosity protostellar source or first hydrostatic core, or HD (and consequently H{sub 2}D{sup +}) depletion in the cold center of the condensation. We propose that SM1 is protostellar and that the condensation detected by ALMA is a warm (T ∼ 30-50 K) accretion disk. The less concentrated emission of the SM1N condensation suggests that it is still starless, but we cannot rule out the presence of a low-luminosity source, perhaps surrounded by a pseudodisk. These data observationally reveal the earliest stages of the formation of circumstellar accretion regions and agree with theoretical predictions that disk formation can occur very early in the star formation process, coeval with or just after the formation of a first hydrostatic core or protostar.

  7. Tailoring the nature and strength of electron-phonon interactions in the SrTiO3(001) 2D electron liquid

    NASA Astrophysics Data System (ADS)

    Wang, Z.; McKeown Walker, S.; Tamai, A.; Wang, Y.; Ristic, Z.; Bruno, F. Y.; de la Torre, A.; Riccò, S.; Plumb, N. C.; Shi, M.; Hlawenka, P.; Sánchez-Barriga, J.; Varykhalov, A.; Kim, T. K.; Hoesch, M.; King, P. D. C.; Meevasana, W.; Diebold, U.; Mesot, J.; Moritz, B.; Devereaux, T. P.; Radovic, M.; Baumberger, F.

    2016-08-01

    Surfaces and interfaces offer new possibilities for tailoring the many-body interactions that dominate the electrical and thermal properties of transition metal oxides. Here, we use the prototypical two-dimensional electron liquid (2DEL) at the SrTiO3(001) surface to reveal a remarkably complex evolution of electron-phonon coupling with the tunable carrier density of this system. At low density, where superconductivity is found in the analogous 2DEL at the LaAlO3/SrTiO3 interface, our angle-resolved photoemission data show replica bands separated by 100 meV from the main bands. This is a hallmark of a coherent polaronic liquid and implies long-range coupling to a single longitudinal optical phonon branch. In the overdoped regime the preferential coupling to this branch decreases and the 2DEL undergoes a crossover to a more conventional metallic state with weaker short-range electron-phonon interaction. These results place constraints on the theoretical description of superconductivity and allow a unified understanding of the transport properties in SrTiO3-based 2DELs.

  8. Tailoring the nature and strength of electron-phonon interactions in the SrTiO3(001) 2D electron liquid.

    PubMed

    Wang, Z; McKeown Walker, S; Tamai, A; Wang, Y; Ristic, Z; Bruno, F Y; de la Torre, A; Riccò, S; Plumb, N C; Shi, M; Hlawenka, P; Sánchez-Barriga, J; Varykhalov, A; Kim, T K; Hoesch, M; King, P D C; Meevasana, W; Diebold, U; Mesot, J; Moritz, B; Devereaux, T P; Radovic, M; Baumberger, F

    2016-08-01

    Surfaces and interfaces offer new possibilities for tailoring the many-body interactions that dominate the electrical and thermal properties of transition metal oxides. Here, we use the prototypical two-dimensional electron liquid (2DEL) at the SrTiO3(001) surface to reveal a remarkably complex evolution of electron-phonon coupling with the tunable carrier density of this system. At low density, where superconductivity is found in the analogous 2DEL at the LaAlO3/SrTiO3 interface, our angle-resolved photoemission data show replica bands separated by 100 meV from the main bands. This is a hallmark of a coherent polaronic liquid and implies long-range coupling to a single longitudinal optical phonon branch. In the overdoped regime the preferential coupling to this branch decreases and the 2DEL undergoes a crossover to a more conventional metallic state with weaker short-range electron-phonon interaction. These results place constraints on the theoretical description of superconductivity and allow a unified understanding of the transport properties in SrTiO3-based 2DELs.

  9. Hamiltonian structure of Dubrovin{close_quote}s equation of associativity in 2-d topological field theory

    SciTech Connect

    Galvao, C.A.; Nutku, Y.

    1996-12-01

    mA third order Monge-Amp{grave e}re type equation of associativity that Dubrovin has obtained in 2-d topological field theory is formulated in terms of a variational principle subject to second class constraints. Using Dirac{close_quote}s theory of constraints this degenerate Lagrangian system is cast into Hamiltonian form and the Hamiltonian operator is obtained from the Dirac bracket. There is a new type of Kac-Moody algebra that corresponds to this Hamiltonian operator. In particular, it is not a W-algebra. {copyright} {ital 1996 American Institute of Physics.}

  10. Synthesis and structure of a 2D → 3D framework with coexistence of hydrogen bonds and polythreading character

    SciTech Connect

    Zhang, Ming-Dao Zhuang, Qi-Fan; Xu, Jing; Cao, Hui

    2015-12-15

    The title complex, ([Co(BPPA)(5-OH-bdc)] · (H{sub 2}O)){sub n} was prepared under hydrothermal conditions based on two ligands, namely, bis(4-(pyridin-4-yl)phenyl)amine (BPPA) and 5-hydroxyisophthalic acid (5-OH-H{sub 2}bdc). 5-OH-bdc{sup 2–} anions coordinated to Co atoms to give layers in crystal. BPPA ligands coordinate to Co atoms and thread into the adjacent layers. There are hydrogen bonds between adjacent layers, giving rise to a 2D → 3D framework.

  11. Electronic transport in nanoscale structures

    NASA Astrophysics Data System (ADS)

    Lagerqvist, Johan

    In this dissertation electronic transport in nanoscale structures is discussed. An expression for the shot noise, a fluctuation in current due to the discreteness of charge, is derived directly from the wave functions of a nanoscale system. Investigation of shot noise is of particular interest due to the rich fundamental physics involved. For example, the study of shot noise can provide fundamental insight on the nature of electron transport in a nanoscale junction. We report calculations of the shot noise properties of parallel wires in the regime in which the interwire distance is much smaller than the inelastic mean free path. The validity of quantized transverse momenta in a nanoscale structure and its effect on shot noise is also discussed. We theoretically propose and show the feasibility of a novel protocol for DNA sequencing based on the electronic signature of single-stranded DNA while it translocates through a nanopore. We find that the currents for the bases are sufficiently different to allow for efficient sequencing. Our estimates reveal that sequencing of an entire human genome could be done with very high accuracy in a matter of hours, e.g., orders of magnitude faster than present techniques. We also find that although the overall magnitude of the current may change dramatically with different detection conditions, the intrinsic distinguishability of the bases is not significantly affected by pore size and transverse field strength. Finally, we study the ability of water to screen charges in nanopores by using all-atom molecular dynamics simulations coupled to electrostatic calculations. Due to the short length scales of the nanopore geometry and the large local field gradient of a single ion, the energetics of transporting an ion through the pore is strongly dependent on the microscopic details of the electric field. We show that as long as the pore allows the first hydration shell to stay intact, e.g., ˜6 nearby water molecules, the electric field

  12. Two dimensional electron spin resonance: Structure and dynamics of biomolecules

    NASA Astrophysics Data System (ADS)

    Saxena, Sunil; Freed, Jack H.

    1998-03-01

    The potential of two dimensional (2D) electron spin resonance (ESR) for measuring the structural properties and slow dynamics of labeled biomolecules will be presented. Specifically, it will be shown how the recently developed method of double quantum (DQ) 2D ESR (S. Saxena and J. H. Freed, J. Chem. Phys. 107), 1317, (1997) can be used to measure large interelectron distances in bilabeled peptides. The need for DQ ESR spectroscopy, as well as the challenges and advantages of this method will be discussed. The elucidation of the slow reorientational dynamics of this peptide (S. Saxena and J. H. Freed, J. Phys. Chem. A, 101) 7998 (1997) in a glassy medium using COSY and 2D ELDOR ESR spectroscopy will be demonstrated. The contributions to the homogeneous relaxation time, T_2, from the overall and/or internal rotations of the nitroxide can be distinguished from the COSY spectrum. The growth of spectral diffusion cross-peaks^2 with mixing time in the 2D ELDOR spectra can be used to directly determine a correlation time from the experiment which can be related to the rotational correlation time.

  13. Synthesizing 2D and 3D Selenidostannates in Ionic Liquids: The Synergistic Structure-Directing Effects of Ionic Liquids and Metal-Amine Complexes.

    PubMed

    Du, Cheng-Feng; Shen, Nan-Nan; Li, Jian-Rong; Hao, Min-Ting; Wang, Zi; Huang, Xiao-Ying

    2016-05-20

    Presented are the ionothermal syntheses, characterizations, and properties of a series of two- and three-dimensional selenidostannate compounds synergistically directed by metal-amine complex (MAC) cations and ionic liquids (ILs) of [Bmmim]Cl (Bmmim=1-butyl-2,3-dimethylimidazolium). Four selenidostannates, namely, 2D-(Bmmim)3 [Ni(en)3 ]2 [Sn9 Se21 ]Cl (1, en=ethylenediamine), 2D-(Bmmim)8 [Ni2 (teta)2 (μ-teta)]Sn18 Se42 (2, teta=triethylenetetramine), 2D-(Bmmim)4 [Ni(tepa)Cl]2 [Ni(tepa)Sn12 Se28 ] (3, tepa=tetraethylenepentamine), and 3D-(Bmmim)2 [Ni(1,2-pda)3 ]Sn8 Se18 (4, 1,2-pda=1,2-diaminopropane), were obtained. Single-crystal X-ray diffraction analyses revealed that compounds 1 and 2 possess a lamellar anionic [Sn3 Se7 ]n (2n-) structure comprising distinct eight-membered ring units, whereas 3 features a MAC-decorated anionic [Ni(tepa)Sn12 Se28 ]n (6n-) layered structure. In contrast to 1-3, compound 4 exhibits a 3D open framework of anionic [Sn4 Se9 ]n (2n-) . The structural variation from 1 to 4 clearly indicates that on the basis of the synergistic structure-directing ability of the MACs and ILs, variation of the organic polyamine ligand has a significant impact on the formation of selenidostannates.

  14. Two-dimensional (2D) infrared correlation study of the structural characterization of a surface immobilized polypeptide film stimulated by pH

    NASA Astrophysics Data System (ADS)

    Chae, Boknam; Son, Seok Ho; Kwak, Young Jun; Jung, Young Mee; Lee, Seung Woo

    2016-11-01

    The pH-induced structural changes to surface immobilized poly (L-glutamic acid) (PLGA) films were examined by Fourier transform infrared (FTIR) spectroscopy and two-dimensional (2D) correlation analysis. Significant spectral changes were observed in the FTIR spectra of the surface immobilized PLGA film between pH 6 and 7. The 2D correlation spectra constructed from the pH-dependent FTIR spectra of the surface immobilized PLGA films revealed the spectral changes induced by the alternations of the protonation state of the carboxylic acid group in the PLGA side chain. When the pH was increased from 6 to 8, weak spectral changes in the secondary structure of the PLGA main chain were induced by deprotonation of the carboxylic acid side group.

  15. Unraveling the dynamics and structure of functionalized self-assembled monolayers on gold using 2D IR spectroscopy and MD simulations

    PubMed Central

    Yan, Chang; Yuan, Rongfeng; Pfalzgraff, William C.; Nishida, Jun; Wang, Lu; Markland, Thomas E.; Fayer, Michael D.

    2016-01-01

    Functionalized self-assembled monolayers (SAMs) are the focus of ongoing investigations because they can be chemically tuned to control their structure and dynamics for a wide variety of applications, including electrochemistry, catalysis, and as models of biological interfaces. Here we combine reflection 2D infrared vibrational echo spectroscopy (R-2D IR) and molecular dynamics simulations to determine the relationship between the structures of functionalized alkanethiol SAMs on gold surfaces and their underlying molecular motions on timescales of tens to hundreds of picoseconds. We find that at higher head group density, the monolayers have more disorder in the alkyl chain packing and faster dynamics. The dynamics of alkanethiol SAMs on gold are much slower than the dynamics of alkylsiloxane SAMs on silica. Using the simulations, we assess how the different molecular motions of the alkyl chain monolayers give rise to the dynamics observed in the experiments. PMID:27044113

  16. 2D-3D transition of gold cluster anions resolved

    NASA Astrophysics Data System (ADS)

    Johansson, Mikael P.; Lechtken, Anne; Schooss, Detlef; Kappes, Manfred M.; Furche, Filipp

    2008-05-01

    Small gold cluster anions Aun- are known for their unusual two-dimensional (2D) structures, giving rise to properties very different from those of bulk gold. Previous experiments and calculations disagree about the number of gold atoms nc where the transition to 3D structures occurs. We combine trapped ion electron diffraction and state of the art electronic structure calculations to resolve this puzzle and establish nc=12 . It is shown that theoretical studies using traditional generalized gradient functionals are heavily biased towards 2D structures. For a correct prediction of the 2D-3D crossover point it is crucial to use density functionals yielding accurate jellium surface energies, such as the Tao-Perdew-Staroverov-Scuseria (TPSS) functional or the Perdew-Burke-Ernzerhof functional modified for solids (PBEsol). Further, spin-orbit effects have to be included, and large, flexible basis sets employed. This combined theoretical-experimental approach is promising for larger gold and other metal clusters.

  17. Structures and Luminescent Properties of Two 2D Coordination Polymers Containing Tb(III) or Dy(III) Ions.

    PubMed

    An, Xiaoping; Wang, Hongsheng; Li, Gongchun

    2014-03-01

    Two 2D rare earth terbium and dysprosium coordination polymers with 2,4-pyridinedicarboxylate and oxalate anions have been synthesized by hydrothermal method, the formula is {[RE(pda)(ox)0.5(H2O)4]·2H2O}n (RE = Tb (1) and Dy (2); H2pda = 2,4-pyridinedicarboxylic acid; ox = oxalate anion). The two complexes are isomorphic and crystallized in monoclinic system, P21/c space group. Each pda anion connects two rare earth ions with 2- carboxyl group and the nitrogen atom but the 4- carboxyl group does not coordinate with rare earth ions. Each ox anion connects two rare earth ions by μ 2-bridge way. Both the complexes exhibit intense characteristic luminescence of Tb(III) or Dy(III) ion with excitation of UV-rays.

  18. Bulk anisotropic excitons in type-II semiconductors built with 1D and 2D low-dimensional structures

    NASA Astrophysics Data System (ADS)

    Coyotecatl, H. A.; Del Castillo-Mussot, M.; Reyes, J. A.; Vazquez, G. J.; Montemayor-Aldrete, J. A.; Reyes-Esqueda, J. A.; Cocoletzi, G. H.

    2005-08-01

    We used a simple variational approach to account for the difference in the electron and hole effective masses in Wannier-Mott excitons in type-II semiconducting heterostructures in which the electron is constrained in an one-dimensional quantum wire (1DQW) and the hole is in a two-dimensional quantum layer (2DQL) perpendicular to the wire or viceversa. The resulting Schrodinger equation is similar to that of a 3D bulk exciton because the number of free (nonconfined) variables is three; two coming from the 2DQL and one from the 1DQW. In this system the effective electron-hole interaction depends on the confinement potentials.

  19. Electronic structure and relaxation dynamics in a superconducting topological material

    PubMed Central

    Neupane, Madhab; Ishida, Yukiaki; Sankar, Raman; Zhu, Jian-Xin; Sanchez, Daniel S.; Belopolski, Ilya; Xu, Su-Yang; Alidoust, Nasser; Hosen, M. Mofazzel; Shin, Shik; Chou, Fangcheng; Hasan, M. Zahid; Durakiewicz, Tomasz

    2016-01-01

    Topological superconductors host new states of quantum matter which show a pairing gap in the bulk and gapless surface states providing a platform to realize Majorana fermions. Recently, alkaline-earth metal Sr intercalated Bi2Se3 has been reported to show superconductivity with a Tc ~ 3 K and a large shielding fraction. Here we report systematic normal state electronic structure studies of Sr0.06Bi2Se3 (Tc ~ 2.5 K) by performing photoemission spectroscopy. Using angle-resolved photoemission spectroscopy (ARPES), we observe a quantum well confined two-dimensional (2D) state coexisting with a topological surface state in Sr0.06Bi2Se3. Furthermore, our time-resolved ARPES reveals the relaxation dynamics showing different decay mechanism between the excited topological surface states and the two-dimensional states. Our experimental observation is understood by considering the intra-band scattering for topological surface states and an additional electron phonon scattering for the 2D states, which is responsible for the superconductivity. Our first-principles calculations agree with the more effective scattering and a shorter lifetime of the 2D states. Our results will be helpful in understanding low temperature superconducting states of these topological materials. PMID:26936229

  20. Electronic structure and relaxation dynamics in a superconducting topological material

    SciTech Connect

    Neupane, Madhab; Ishida, Yukiaki; Sankar, Raman; Zhu, Jian-Xin; Sanchez, Daniel S.; Belopolski, Ilya; Xu, Su-Yang; Alidoust, Nasser; Hosen, M. Mofazzel; Shin, Shik; Chou, Fangcheng; Hasan, M. Zahid; Durakiewicz, Tomasz

    2016-03-03

    Topological superconductors host new states of quantum matter which show a pairing gap in the bulk and gapless surface states providing a platform to realize Majorana fermions. Recently, alkaline-earth metal Sr intercalated Bi2Se3 has been reported to show superconductivity with a Tc~3K and a large shielding fraction. Here we report systematic normal state electronic structure studies of Sr0.06Bi2Se3 (Tc~2.5K) by performing photoemission spectroscopy. Using angle-resolved photoemission spectroscopy (ARPES), we observe a quantum well confined two-dimensional (2D) state coexisting with a topological surface state in Sr0.06Bi2Se3. Furthermore, our time-resolved ARPES reveals the relaxation dynamics showing different decay mechanism between the excited topological surface states and the two-dimensional states. Our experimental observation is understood by considering the intra-band scattering for topological surface states and an additional electron phonon scattering for the 2D states, which is responsible for the superconductivity. Our first-principles calculations agree with the more effective scattering and a shorter lifetime of the 2D states. In conclusion, our results will be helpful in understanding low temperature superconducting states of these topological materials.

  1. Electronic structure and relaxation dynamics in a superconducting topological material

    DOE PAGES

    Neupane, Madhab; Ishida, Yukiaki; Sankar, Raman; ...

    2016-03-03

    Topological superconductors host new states of quantum matter which show a pairing gap in the bulk and gapless surface states providing a platform to realize Majorana fermions. Recently, alkaline-earth metal Sr intercalated Bi2Se3 has been reported to show superconductivity with a Tc~3K and a large shielding fraction. Here we report systematic normal state electronic structure studies of Sr0.06Bi2Se3 (Tc~2.5K) by performing photoemission spectroscopy. Using angle-resolved photoemission spectroscopy (ARPES), we observe a quantum well confined two-dimensional (2D) state coexisting with a topological surface state in Sr0.06Bi2Se3. Furthermore, our time-resolved ARPES reveals the relaxation dynamics showing different decay mechanism between the excitedmore » topological surface states and the two-dimensional states. Our experimental observation is understood by considering the intra-band scattering for topological surface states and an additional electron phonon scattering for the 2D states, which is responsible for the superconductivity. Our first-principles calculations agree with the more effective scattering and a shorter lifetime of the 2D states. In conclusion, our results will be helpful in understanding low temperature superconducting states of these topological materials.« less

  2. A Structure-Activity Relationship Study of Imidazole-5-Carboxylic Acid Derivatives as Angiotensin II Receptor Antagonists Combining 2D and 3D QSAR Methods.

    PubMed

    Sharma, Mukesh C

    2016-03-01

    Two-dimensional (2D) and three-dimensional (3D) quantitative structure-activity relationship (QSAR) studies were performed for correlating the chemical composition of imidazole-5-carboxylic acid analogs and their angiotensin II [Formula: see text] receptor antagonist activity using partial least squares and k-nearest neighbor, respectively. For comparing the three different feature selection methods of 2D-QSAR, k-nearest neighbor models were used in conjunction with simulated annealing (SA), genetic algorithm and stepwise coupled with partial least square (PLS) showed variation in biological activity. The statistically significant best 2D-QSAR model having good predictive ability with statistical values of [Formula: see text] and [Formula: see text] was developed by SA-partial least square with the descriptors like [Formula: see text]count, 5Chain count, SdsCHE-index, and H-acceptor count, showing that increase in the values of these descriptors is beneficial to the activity. The 3D-QSAR studies were performed using the SA-PLS. A leave-one-out cross-validated correlation coefficient [Formula: see text] and predicate activity [Formula: see text] = 0.7226 were obtained. The information rendered by QSAR models may lead to a better understanding of structural requirements of substituted imidazole-5-carboxylic acid derivatives and also aid in designing novel potent antihypertensive molecules.

  3. Monitoring guanidinium-induced structural changes in ribonuclease proteins using Raman spectroscopy and 2D correlation analysis.

    PubMed

    Brewster, Victoria L; Ashton, Lorna; Goodacre, Royston

    2013-04-02

    Assessing the stability of proteins by comparing their unfolding profiles is a very important characterization and quality control step for any biopharmaceutical, and this is usually measured by fluorescence spectroscopy. In this paper we propose Raman spectroscopy as a rapid, noninvasive alternative analytical method and we shall show this has enhanced sensitivity and can therefore reveal very subtle protein conformational changes that are not observed with fluorescence measurements. Raman spectroscopy is a powerful nondestructive method that has a strong history of applications in protein characterization. In this work we describe how Raman microscopy can be used as a fast and reliable method of tracking protein unfolding in the presence of a chemical denaturant. We have compared Raman spectroscopic data to the equivalent samples analyzed using fluorescence spectroscopy in order to validate the Raman approach. Calculations from both Raman and fluorescence unfolding curves of [D]50 values and Gibbs free energy correlate well with each other and more importantly agree with the values found in the literature for these proteins. In addition, 2D correlation analysis has been performed on both Raman and fluorescence data sets in order to allow further comparisons of the unfolding behavior indicated by each method. As many biopharmaceuticals are glycosylated in order to be functional, we compare the unfolding profiles of a protein (RNase A) and a glycoprotein (RNase B) as measured by Raman spectroscopy and discuss the implications that glycosylation has on the stability of the protein.

  4. Electronic processes in multilayer memory structures

    NASA Astrophysics Data System (ADS)

    Plotnikov, A. F.

    The papers presented in this volume contain results of recent theoretical and experimental research related to electron processes in optoelectronic memory media based on structures consisting of a metal, an amorphous insulating layer, and a semiconductor. Topics discussed include photostimulated electron processes in metal-insulator-semiconductor structures, electron transfer phenomena in amorphous dielectric layers, degradation phenomena in MNOS memory elements under prolonged charge injection into the dielectric layer, and characteristics of charge relaxation in MNOS structures following multiple reprogramming.

  5. Self-assembly of alternating left- and right-handed infinite Cd(II) helicates into a 2D open framework structure

    NASA Astrophysics Data System (ADS)

    Ghosh, Sujit K.; Bharadwaj, Parimal K.

    2006-08-01

    Pyrazine-2,3,5,6-tetracarboxylic acid (ptcH 4) reacts with Cd(NO 3) 2·6H 2O at room temperature in the presence of pyridine to form a 2D open framework built from alternating left- and right-handed helicates with the empirical formula, {[Cd 2(ptc)·(py) 5·H 2O]·5H 2O·py} n, 1. Lattice water and pyridine molecules form an intricate array of H-bonding with the 2D sheets leading to a 3D structure. This compound crystallizes in the monoclinic space group C2/ c with the following lattice parameters— a=24.103(2), b=13.480(5), c=29.176(4) Å, β=109.427(3)°, V=8940(4) Å 3, Z=8, R1=0.0513, wR2=0.1552, S=1.085.

  6. New dicyano cyclometalated compounds containing Pd(II)-Tl(I) bonds as building blocks in 2D extended structures: synthesis, structure, and luminescence studies.

    PubMed

    Sicilia, Violeta; Forniés, Juan; Fuertes, Sara; Martín, Antonio

    2012-10-15

    New mixed metal complexes [PdTl(C^N)(CN)(2)] [C^N = 7,8-benzoquinolinate (bzq, 3); 2-phenylpyridinate (ppy, 4)] have been synthesized by reaction of their corresponding precursors (NBu(4))[Pd(C^N)(CN)(2)] [C^N = bzq (1), ppy (2)] with TlPF(6). Compounds 3 and 4 were studied by X-ray diffraction, showing the not-so-common Pd(II)-Tl(I) bonds. Both crystal structures exhibit 2-D extended networks fashioned by organometallic "PdTl(C^N)(CN)(2)" units, each one containing a donor-acceptor Pd(II)-Tl(I) bond, which are connected through additional Tl···N≡C contacts and weak Tl···π (bzq) contacts in the case of 3. Solid state emissions are red-shifted compared with those of the precursors and have been assigned to metal-metal'-to-ligand charge transfer (MM'LCT [d/s σ*(Pd,Tl) → π*(C^N)]) mixed with some intraligand ((3)IL[π(C^N) → π*(C^N)]) character. In diluted solution either at room temperature or 77 K, the Pd-Tl bond is no longer retained as confirmed by mass spectrometry, NMR, and UV-vis spectroscopic techniques.

  7. Temperature-driven disorder-order transitions in 2D copper-intercalated MoO3 revealed using dynamic transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Reed, Bryan W.; Chung, Frank R.; Wang, Mengjing; LaGrange, Thomas; Koski, Kristie J.

    2014-12-01

    We demonstrate two different classes of disorder-order phase transitions in two-dimensional layered nanomaterial MoO3 intercalated with ˜9-15 atomic percent zero-valent copper using conventional in situ electron diffraction and dynamic transmission electron microscopy. Heating to ˜325 °C on a time scale of minutes produces a superlattice consistent with the formation of a charge density wave stabilized by nanometer-scale ordering of the copper intercalant. Unlike conventional purely electronic charge-density-wave states which form, reform, and disappear on picosecond scales as the temperature is changed, once it forms the observed structure in Cu-MoO3 is stable indefinitely over a very large temperature range (30 °C to the decomposition temperature of 450 °C). Nanosecond-scale heating to ˜380-400 °C produced a completely different structure, replacing the disordered as-fabricated Cu-MoO3 with a much more crystallographically ordered metastable state that, according to a precession electron diffraction reconstruction, resembles the original MoO3 lattice apart from an asymmetric distortion that appears to expand parts of the van der Waals gaps to accommodate the copper intercalant. Control experiments in Cu-free material exhibited neither transformation, thus it appears the copper is a necessary part of the phase dynamics. This work shows how the combination of high-density metal atom intercalation and heat treatment over a wide range of time scales can produce nanomaterials of high crystalline quality in unique structural states that cannot be accessed through other methods.

  8. Geometric Bioinspired Networks for Recognition of 2-D and 3-D Low-Level Structures and Transformations.

    PubMed

    Bayro-Corrochano, Eduardo; Vazquez-Santacruz, Eduardo; Moya-Sanchez, Eduardo; Castillo-Munis, Efrain

    2016-10-01

    This paper presents the design of radial basis function geometric bioinspired networks and their applications. Until now, the design of neural networks has been inspired by the biological models of neural networks but mostly using vector calculus and linear algebra. However, these designs have never shown the role of geometric computing. The question is how biological neural networks handle complex geometric representations involving Lie group operations like rotations. Even though the actual artificial neural networks are biologically inspired, they are just models which cannot reproduce a plausible biological process. Until now researchers have not shown how, using these models, one can incorporate them into the processing of geometric computing. Here, for the first time in the artificial neural networks domain, we address this issue by designing a kind of geometric RBF using the geometric algebra framework. As a result, using our artificial networks, we show how geometric computing can be carried out by the artificial neural networks. Such geometric neural networks have a great potential in robot vision. This is the most important aspect of this contribution to propose artificial geometric neural networks for challenging tasks in perception and action. In our experimental analysis, we show the applicability of our geometric designs, and present interesting experiments using 2-D data of real images and 3-D screw axis data. In general, our models should be used to process different types of inputs, such as visual cues, touch (texture, elasticity, temperature), taste, and sound. One important task of a perception-action system is to fuse a variety of cues coming from the environment and relate them via a sensor-motor manifold with motor modules to carry out diverse reasoned actions.

  9. Closed-shell and open-shell 2D nanographenes.

    PubMed

    Sun, Zhe; Wu, Jishan

    2014-01-01

    This chapter describes a series of two-dimensional (2D) expanded arene networks, also known as nanographenes, with either closed-shell or open-shell electronic structure in the ground state. These systems are further categorized into three classes on a basis of different edge structures: those with zigzag edges only, those with armchair edges only, and those possessing both. Distinctive physical properties of these 2D aromatic systems are closely related to their structural characteristics and provide great potential for them as materials for different applications.

  10. Velocity-space structure of runaway electrons

    SciTech Connect

    Fuchs, V.; Cairns, R.A.; Lashmore-Davies, C.N.; Shoucri, M.M.

    1986-09-01

    The region of velocity space is determined in which electron runaway occurs because of a dc electric field. Phase-space analysis of the relaxation equations describing test electrons, corroborated by two-dimensional (2-D) numerical integration of the Fokker--Planck equation, reveals that the Dreicer condition for runaway v-italic/sup 2//sub parallel/> or =(2+Z-italic/sub i-italic/)E-italic/sub c-italic//E-italic is only sufficient. A weaker condition v-italic/sup 2//sub parallel/> or =(2+Z-italic/sub i-italic/)/sup 1//sup ///sup 2/E-italic/sub c-italic//E-italic is established, and it is shown, in general, that runaway in velocity space only occurs for those electrons that are outside one of the separatrices of the relaxation equations. The scaling with v-italic/sub parallel/ of the parallel distribution function and of the perpendicular temperature is also derived.

  11. Electronic correlation contributions to structural energies

    NASA Astrophysics Data System (ADS)

    Haydock, Roger

    2015-03-01

    The recursion method is used to calculate electronic excitation spectra including electron-electron interactions within the Hubbard model. The effects of correlation on structural energies are then obtained from these spectra and applied to stacking faults. http://arxiv.org/abs/1405.2288 Supported by the Richmond F. Snyder Fund and Gifts.

  12. Structure-Activity Relationships and Pharmacophore Model of a Non-Competitive Pyrazoline Containing Class of GluN2C/GluN2D Selective Antagonists

    PubMed Central

    Acker, Timothy M.; Khatri, Alpa; Vance, Katie M.; Slabber, Cathryn; Bacsa, John; Snyder, James P.; Traynelis, Stephen F.; Liotta, Dennis C.

    2013-01-01

    Here we describe the synthesis and structure-activity relationship for a class of pyrazoline-containing dihydroquinolone negative allosteric modulators of the NMDA receptor that show strong subunit-selectivity for GluN2C- and GluN2D-containing receptors over GluN2A-and GluN2B-containing receptors. Several members of this class inhibit NMDA receptor responses in the nanomolar range, and are more than 50-fold selective over GluN1/GluN2A and GluN1/GluN2B NMDA receptors, as well as AMPA, kainate, GABA, glycine, nicotinic, serotonin, and purinergic receptors. Analysis of the purified enantiomers of one of the more potent and selective compounds shows that the S-enantiomer is both more potent and more selective than the R-enantiomer. The S-enantiomer had an IC50 value of 0.17–0.22 µM at GluN2D- and GluN2C-containing receptors, respectively, and showed over 70-fold selectivity over other NMDA receptor subunits. The subunit-selectivity of this class of compounds should be useful in defining the role of GluN2C- and GluN2D-containing receptors in specific brain circuits in both physiological and patho-physiological conditions. PMID:23909910

  13. A novel 2D and 3D method for automated insulin granule measurement and its application in assessing accepted preparation methods for electron microscopy

    NASA Astrophysics Data System (ADS)

    Mantell, J.; Nam, D.; Bull, D.; Achim, A.; Verkade, P.

    2014-06-01

    Transmission electron microscopy images of insulin-producing beta cells in the islets of Langerhans contain many complex structures, making it difficult to accurately segment insulin granules. Furthermore the appearance of the granules and surrounding halo and limiting membrane can vary enormously depending on the methods used for sample preparation. An automated method has been developed using active contours to segment the insulin core initially and then expand to segment the halos [1]. The method has been validated against manual measurements and also yields higher accuracy than other automated methods [2]. It has then been extended to three dimensions to analyse a tomographic reconstruction from a thick section of the same material. The final step has been to produce a GUI and use the automated process to compare a number of different electron microscopy preparation protocols including chemical fixation (where many of halos are often distended) and to explore the many subtleties of high pressure freezing (where the halos are often minimal, [3]).

  14. Booming Development of Group IV-VI Semiconductors: Fresh Blood of 2D Family.

    PubMed

    Zhou, Xing; Zhang, Qi; Gan, Lin; Li, Huiqiao; Xiong, Jie; Zhai, Tianyou

    2016-12-01

    As an important component of 2D layered materials (2DLMs), the 2D group IV metal chalcogenides (GIVMCs) have drawn much attention recently due to their earth-abundant, low-cost, and environmentally friendly characteristics, thus catering well to the sustainable electronics and optoelectronics applications. In this instructive review, the booming research advancements of 2D GIVMCs in the last few years have been presented. First, the unique crystal and electronic structures are introduced, suggesting novel physical properties. Then the various methods adopted for synthesis of 2D GIVMCs are summarized such as mechanical exfoliation, solvothermal method, and vapor deposition. Furthermore, the review focuses on the applications in field effect transistors and photodetectors based on 2D GIVMCs, and extends to flexible devices. Additionally, the 2D GIVMCs based ternary alloys and heterostructures have also been presented, as well as the applications in electronics and optoelectronics. Finally, the conclusion and outlook have also been presented in the end of the review.

  15. Molecular phylogenetics in 2D: ITS2 rRNA evolution and sequence-structure barcode from Veneridae to Bivalvia.

    PubMed

    Salvi, Daniele; Mariottini, Paolo

    2012-11-01

    In this study, we analyzed the nuclear ITS2 rRNA primary sequence and secondary structure in Veneridae and comparatively with 20 Bivalvia taxa to test the phylogenetic resolution of this marker and its suitability for molecular diagnosis at different taxonomic levels. Maximum likelihood and Bayesian trees based on primary sequences were congruent with (profile-) neighbor-joining trees based on a combined model of sequence-structure evolution. ITS2 showed higher resolution below the subfamily level, providing a phylogenetic signal comparable to (mitochondrial/nuclear) gene fragments 2-5 times longer. Structural elements of the ITS2 folding, such as specific mismatch pairing and compensatory base changes, provided further support for the monophyly of some groups and for their phylogenetic relationships. Veneridae ITS2 folding is structured in six domains (DI-VI) and shows five striking sequence-structure features. Two of them, the Basal and Apical STEMs, are common to Bivalvia, while the presence of both the Branched STEM and the Y/R stretches occurs in five superfamilies of the two Heterodonta orders Myoida and Veneroida, thus questioning their reciprocal monophyly. Our results validated the ITS2 as a suitable marker for venerids phylogenetics and taxonomy, and underlined the significance of including secondary structure information for both applications at several systematic levels within bivalves.

  16. Band structure of a 2D photonic crystal based on ferrofluids of Co(1-x)Znx Fe2O4 nanoparticles under perpendicular applied magnetic field

    NASA Astrophysics Data System (ADS)

    Lopez, Javier; Gonzalez, Luz Esther; Quinonez, Mario; Porras, Nelson; Zambrano, Gustavo; Gomez, Maria Elena

    2014-03-01

    Using a ferrfluid of cobalt-zinc ferrite nanoparticles Co(1 - x)ZnxFe2O4 coated with oleic acid and suspended in ethanol, we have fabricated a 2D photonic crystal (PC) by the application of an external magnetic field perpendicular to the plane of the ferrofluid. The 2D PC is made by rods of nanoparticles organized in a hexagonal structure. By means of the plane-wave expansion method, we study its photonic band structure (PBS) which depends on the effective permittivity and on the area ratio of the liquid phase. Additionaly, taking into account the Maxwell-Garnett theory we calculated the effective permittivity of the rods. We have found that the effective refractive index of the ferrofluid increases with its magnetization. Using these results we calculate the band structure of the photonic crystal at different applied magnetic fields, finding that the increase of the applied magnetic field shifts the band structure to lower frequencies with the appearance of more band gaps. Departamento de Física, Universidad del Valle, A.A. 25360, Cali, Colombia

  17. Electronic structure of lithium tetraborate

    NASA Astrophysics Data System (ADS)

    Wooten, David J.

    Due to many of its attributes, Li2B4O7 provides a possible material for incorporation as either a primary or companion material in future solid state neutron detectors. There is however a lack of fundamental characterization information regarding this useful material, particularly its electronic configuration. To address this, an investigation of Li2B4O7(110) and Li2B 4O7(100) was undertaken, utilizing photoemission and inverse photoemission spectroscopic techniques. The measured band gap depended on crystallographic direction with the band gaps ranging from 8.9+/-0.5 eV to 10.1+/-0.5 eV. The measurement yielded a density of states that qualitatively agreed with the theoretical results from model bulk band structure calculations for Li2B4O7; albeit with a larger band gap than predicted, but consistent with the known deficiencies of Local Density Approximation and Density Functional Theory calculations. The occupied states of both surfaces were extremely flat; to the degree that resolving periodic dispersion of the occupied states was inconclusive, within the resolution of the system. However, both surfaces demonstrated clear periodic dispersion within the empty states very close to theoretical Brillouin zone values. These attributes also translated to a lighter charge carrier effective mass in the unoccupied states. Of the two surfaces, Li2B4O 7(110) yielded the more consistent values in orthogonal directions for energy states. The presence of a bulk band gap surface state and image potential state in Li2B4O7(110) was indicative of a defect-free surface. The absence of both in the more polar, more dielectric Li2B4O7(100) was attributed to the presence of defects determined to be O vacancies. The results from Li2B 4O7(110) were indicative of a more stable surface than Li 2B4O7(100). In addition, Li 1s bulk and surface core level components were determined at the binding energies of -56.5+0.4 and -53.7+0.5 eV. Resonance features were observed along the [001

  18. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  19. Hydrophobic cluster analysis: procedures to derive structural and functional information from 2-D-representation of protein sequences.

    PubMed

    Lemesle-Varloot, L; Henrissat, B; Gaboriaud, C; Bissery, V; Morgat, A; Mornon, J P

    1990-08-01

    Hydrophobic cluster analysis (HCA) [15] is a very efficient method to analyse and compare protein sequences. Despite its effectiveness, this method is not widely used because it relies in part on the experience and training of the user. In this article, detailed guidelines as to the use of HCA are presented and include discussions on: the definition of the hydrophobic clusters and their relationships with secondary and tertiary structures; the length of the clusters; the amino acid classification used for HCA; the HCA plot programs; and the working strategies. Various procedures for the analysis of a single sequence are presented: structural segmentation, structural domains and secondary structure evaluation. Like most sequence analysis methods, HCA is more efficient when several homologous sequences are compared. Procedures for the detection and alignment of distantly related proteins by HCA are described through several published examples along with 2 previously unreported cases: the beta-glucosidase from Ruminococcus albus is clearly related to the beta-glucosidases from Clostridum thermocellum and Hansenula anomala although they display a reverse organization of their constitutive domains; the alignment of the sequence of human GTPase activating protein with that of the Crk oncogene is presented. Finally, the pertinence of HCA in the identification of important residues for structure/function as well as in the preparation of homology modelling is discussed.

  20. Self-assembly of polydimethylsiloxane structures from 2D to 3D for bio-hybrid actuation.

    PubMed

    Vannozzi, L; Ricotti, L; Cianchetti, M; Bearzi, C; Gargioli, C; Rizzi, R; Dario, P; Menciassi, A

    2015-08-20

    This work aims to demonstrate the feasibility of a novel approach for the development of 3D self-assembled polydimethylsiloxane structures, to be used as engineered flexible matrices for bio-hybrid actuation. We described the fabrication of engineered bilayers, organized in a 3D architecture by means of a stress-induced rolling membrane technique. Such structures were provided with ad hoc surface topographies, for both cell alignment and cell survival after membrane rolling. We reported the results of advanced finite element model simulations, predicting the system behavior in terms of overall contraction, induced by the contractile activity of muscle cells seeded on the membrane. Then, we tested in vitro the structure with primary cardiomyocytes to evaluate the real bio-actuator contraction, thus validating the simulation results. At a later stage, we provided the samples with a stable fibronectin coating, by covalently binding the protein on the polymer surface, thus enabling long-term cultures with C2C12 skeletal muscle cells, a more controllable cell type. These tests revealed cell viability and alignment on the rolled structures, but also the ability of cells to differentiate and to form multinucleated and oriented myotubes on the polymer surface, also supported by a fibroblast feeder layer. Our results highlighted the possibility of developing 3D rolled PDMS structures, characterized by different mechanical properties, as novel bio-hybrid actuators.

  1. Direct observation of the layer-dependent electronic structure in phosphorene

    NASA Astrophysics Data System (ADS)

    Li, Likai; Kim, Jonghwan; Jin, Chenhao; Ye, Guo Jun; Qiu, Diana Y.; da Jornada, Felipe H.; Shi, Zhiwen; Chen, Long; Zhang, Zuocheng; Yang, Fangyuan; Watanabe, Kenji; Taniguchi, Takashi; Ren, Wencai; Louie, Steven G.; Chen, Xian Hui; Zhang, Yuanbo; Wang, Feng

    2017-01-01

    Phosphorene, a single atomic layer of black phosphorus, has recently emerged as a new two-dimensional (2D) material that holds promise for electronic and photonic technologies. Here we experimentally demonstrate that the electronic structure of few-layer phosphorene varies significantly with the number of layers, in good agreement with theoretical predictions. The interband optical transitions cover a wide, technologically important spectral range from the visible to the mid-infrared. In addition, we observe strong photoluminescence in few-layer phosphorene at energies that closely match the absorption edge, indicating that they are direct bandgap semiconductors. The strongly layer-dependent electronic structure of phosphorene, in combination with its high electrical mobility, gives it distinct advantages over other 2D materials in electronic and opto-electronic applications.

  2. Investigation of mechanical strength of 2D nanoscale structures using a molecular dynamics based computational intelligence approach

    NASA Astrophysics Data System (ADS)

    Garg, A.; Vijayaraghavan, V.; Wong, C. H.; Tai, K.; Singru, Pravin M.; Mahapatra, S. S.; Sangwan, K. S.

    2015-09-01

    A molecular dynamics (MD) based computational intelligence (CI) approach is proposed to investigate the Young modulus of two graphene sheets: Armchair and Zigzag. In this approach, the effect of aspect ratio, the temperature, the number of atomic planes and the vacancy defects on the Young modulus of two graphene sheets are first analyzed using the MD simulation. The data obtained using the MD simulation is then fed into the paradigm of a CI cluster comprising of genetic programming, which was specifically designed to formulate the explicit relationship of Young modulus of two graphene structures. We find that the MD-based-CI model is able to model the Young modulus of two graphene structures very well, which compiles in good agreement with that of experimental results obtained from the literature. Additionally, we also conducted sensitivity and parametric analysis and found that the number of defects has the most dominating influence on the Young modulus of two graphene structures.

  3. Temporal changes of the structure of a loamy soil tilled layers as described by 2D Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Besson, Arlène; Seger, Maud; Richard, Guy; Nicoullaud, Bernard; Giot, Guillaume; Cousin, Isabelle

    2010-05-01

    The soil structure is complex, heterogeneous, space and time scale dependent, submitted to the climate, biological activity and human practices. For instance, in agricultural context, when soil management practices aim at developing desirable soil conditions for a seedbed and establishing specific surface configuration for planting, drainage or harvesting operations, they can also induce soil structural disturbances, as compaction resulting on in-field wheel traffic. These intense soil degradations have a drastic impact on soil functioning and plant growth but are not absolutely irreversible. Indeed, earthworm's activity, root growth and climate improve the soil structure by cracking, by developing voids, channels, by a progressive fragmentation and disaggregation of the initial dense matrix. Despite this natural structural resilience process of soils is well known, its empirical evidence at the macroscopic scale remains challenging. This requires a well detailed characterization of structural components in space and time. The objective of this study was to monitor the structural changes of a loamy tilled layer initially compacted locally by wheel traffic. In the field, two zones were analysed: (1) a bare soil in view of describing mainly the impact of the climate on the soil structure and (2) a cultivated soil in view of describing the cumulative effect of the climate and root growth on the soil structure. For both, the non destructive and exhaustive method of Electrical Resistivity Tomography (ERT) has been used to monitor the structural changes from April to August, i.e. during the complete growing season. In addition, the interpretation of ERT was comforted by several visual descriptions of soil structure, realized on soil pits dug at the same location than the ERT profiles and by bulk density measurements from soil samples. Due to their high impact on electrical resistivity, water content and soil temperature were also monitored during the experiment. The

  4. Controls on the Flow Regime and Thermal Structure of the Subduction Zone Mantle Wedge: A Systematic 2-D and 3-D Investigation

    NASA Astrophysics Data System (ADS)

    Le Voci, Giuseppe; Davies, Rhodri; Goes, Saskia; Kramer, Stephan; Wilson, Cian

    2014-05-01

    Arc volcanism at subduction zones is likely regulated by the mantle wedge's flow regime and thermal structure and, hence, numerous studies have attempted to quantify the principal controls on mantle wedge conditions. Here, we build on these previous studies by undertaking the first systematic 2-D and 3-D numerical investigation, across a wide parameter-space, into how hydration and thermal buoyancy influence the wedge's flow regime and associated thermal structure, above a kinematically driven subducting plate. We find that small-scale convection (SSC), resulting from Rayleigh-Taylor instabilities, or drips, off the base of the overriding lithosphere, is a typical occurrence, if: (i) viscosities are < 5×1018 Pa s; and (ii) hydrous weakening of wedge rheology extends at least 100-150 km from the trench. In 2-D models, instabilities generally take the form of 'drips'. Although along-strike averages of wedge velocities and temperature in 3-D structure are consistent with those in 2-D, fluctuations are larger in 3-D. Furthermore, in 3-D, two separate, but interacting, longitudinal Richter roll systems form (with their axes aligned perpendicular to the trench), the first below the arc region and the second below the back-arc region. These instabilities result in transient and spatial temperature fluctuations of 100-150K, which are sufficient to influence melting, the stability of hydrous minerals and the dehydration of crustal material. Furthermore, they are efficient at eroding the overriding lithosphere, particularly in 3-D and, thus, provide a means to explain observations of high heat flow and thin back-arc lithosphere at many subduction zones, if back-arc mantle is hydrated.

  5. Deep crustal structure of magma-rich passive margin as revealed by the Northeast GreenlandSPAN 2D seismic survey and airborne Full Tensor Gradiometry

    NASA Astrophysics Data System (ADS)

    Mazur, Stanislaw; Rippington, Stephen; Silva, Mercia; Houghton, Phill; Helwig, Jim

    2014-05-01

    The objective of our project was to integrate the results from the Northeast GreenlandSPAN™ 2D seismic survey with newly acquired airborne Full Tensor Gradiometry (FTG) and Magnetic potential field data over the Danmarkshaven Ridge area, NE Greenland. The potential field data were constrained by 32 long offset pre stack depth migrated seismic profiles selected from the Northeast GreenlandSPAN™ survey. The results provide a new insight in the deep crustal architecture of the Greenland passive margin. They also shed a new light on crustal-scale deformation and igneous activity in a magma-rich continental margin. The structural data set is based on the integrated interpretation of 2D seismic data and FTG data, which was further supplemented by the airborne magnetic data plus the gravity and magnetic shipborne data. 2D gravity and magnetic forward modelling was used for testing geological/seismic models against the potential field data. A regional Moho grid derived from 3D gravity inversion was as a starting point and reference for the 2D modelling. The resultant horizons from the 2D potential fields models were subsequently gridded to help create a 3D structural model. The computed residual signal from the 3D model, the difference between the observed gravity and the forward calculated model response, allowed the accuracy of the structural interpretation to be tested. The area is dominated by three structural trends: (1) N-S to NNE-SSW, (2) WNW-ESE, and (3) NW-SE. The first trend is represented by Early Cretaceous normal faults defining the Danmarkshaven Ridge whereas the second set of structures corresponds to the WNW-ESE oriented right-lateral strike slip faults. The third structural trend is delineated by the NW-SE oriented Greenland Fracture Zone (GFZ). Importantly, a distinct step in the COB suggests post-break-up reactivation of the GFZ with left-lateral kinematics. There is a good match between the modelled Moho and the GFZ suggesting its continuation

  6. Highly crystalline 2D superconductors

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-12-01

    Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.

  7. Sparsity-based Ankylography for Recovering 3D molecular structures from single-shot 2D scattered light intensity

    PubMed Central

    Mutzafi, Maor; Shechtman, Yoav; Eldar, Yonina C.; Cohen, Oren; Segev, Mordechai

    2015-01-01

    Deciphering the three-dimensional (3D) structure of complex molecules is of major importance, typically accomplished with X-ray crystallography. Unfortunately, many important molecules cannot be crystallized, hence their 3D structure is unknown. Ankylography presents an alternative, relying on scattering an ultrashort X-ray pulse off a single molecule before it disintegrates, measuring the far-field intensity on a two-dimensional surface, followed by computation. However, significant information is absent due to lower dimensionality of the measurements and the inability to measure the phase. Recent Ankylography experiments attracted much interest, but it was counter-argued that Ankylography is valid only for objects containing a small number of volume pixels. Here, we propose a sparsity-based approach to reconstruct the 3D structure of molecules. Sparsity is natural for Ankylography, because molecules can be represented compactly in stoichiometric basis. Utilizing sparsity, we surpass current limits on recoverable information by orders of magnitude, paving the way for deciphering the 3D structure of macromolecules. PMID:26289358

  8. Effects of complex internal structures on rheology of multiple emulsions particles in 2D from a boundary integral method.

    PubMed

    Wang, Jingtao; Liu, Jinxia; Han, Junjie; Guan, Jing

    2013-02-08

    A boundary integral method is developed to investigate the effects of inner droplets and asymmetry of internal structures on rheology of two-dimensional multiple emulsion particles with arbitrary numbers of layers and droplets within each layer. Under a modest extensional flow, the number increment of layers and inner droplets, and the collision among inner droplets subject the particle to stronger shears. In addition, the coalescence or release of inner droplets changes the internal structure of the multiple emulsion particles. Since the rheology of such particles is sensitive to internal structures and their change, modeling them as the core-shell particles to obtain the viscosity equation of a single particle should be modified by introducing the time-dependable volume fraction Φ(t) of the core instead of the fixed Φ. An asymmetric internal structure induces an oriented contact and merging of the outer and inner interface. The start time of the interface merging is controlled by adjusting the viscosity ratio and enhancing the asymmetry, which is promising in the controlled release of inner droplets through hydrodynamics for targeted drug delivery.

  9. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers

    PubMed Central

    Zhang, Chendong; Chuu, Chih-Piao; Ren, Xibiao; Li, Ming-Yang; Li, Lain-Jong; Jin, Chuanhong; Chou, Mei-Yin; Shih, Chih-Kang

    2017-01-01

    By using direct growth, we create a rotationally aligned MoS2/WSe2 hetero-bilayer as a designer van der Waals heterostructure. With rotational alignment, the lattice mismatch leads to a periodic variation of atomic registry between individual van der Waals layers, exhibiting a Moiré pattern with a well-defined periodicity. By combining scanning tunneling microscopy/spectroscopy, transmission electron microscopy, and first-principles calculations, we investigate interlayer coupling as a function of atomic registry. We quantitatively determine the influence of interlayer coupling on the electronic structure of the hetero-bilayer at different critical points. We show that the direct gap semiconductor concept is retained in the bilayer although the valence and conduction band edges are located at different layers. We further show that the local bandgap is periodically modulated in the X-Y direction with an amplitude of ~0.15 eV, leading to the formation of a two-dimensional electronic superlattice. PMID:28070558

  10. Electronic Structure of Lithium Tetraborate

    DTIC Science & Technology

    2010-06-01

    binding energies of -56.5+0.4 and -53.7+0.5 eV. Resonance features were observed along the [001] direction and were attributed to a Coster- Kronig ...could be theoretically explained as an Auger electron [12] or Coster- Kronig process [13] of a Li 1s electron photoexcitation to an unoccupied 2p...Coster Kronig , which requires only one Li atom. Such a Coster Kronig mechanism is pictorially displayed below in Figure 7.9. 128 Figure 7.9

  11. Electron tomography of dislocation structures

    SciTech Connect

    Liu, G.S.; House, S.D.; Kacher, J.; Tanaka, M.; Higashida, K.; Robertson, I.M.

    2014-01-15

    Recent developments in the application of electron tomography for characterizing microstructures in crystalline solids are described. The underlying principles for electron tomography are presented in the context of typical challenges in adapting the technique to crystalline systems and in using diffraction contrast imaging conditions. Methods for overcoming the limitations associated with the angular range, the number of acquired images, and uniformity of image contrast are introduced. In addition, a method for incorporating the real space coordinate system into the tomogram is presented. As the approach emphasizes development of experimental solutions to the challenges, the solutions developed and implemented are presented in the form of examples.

  12. 3D and 2D structural characterization of 1D Al/Al2 O3 biphasic nanostructures.

    PubMed

    Miró, M Martinez; Veith, M; Lee, J; Soldera, F; Mücklich, F; Bennewitz, R; Aktas, C

    2015-05-01

    1D Al/Al2 O3 nanostructures have been synthesized by chemical vapour deposition (CVD) of the molecular precursor [(t) BuOAlH2 ]2 . The deposited nanostructures grow chaotically on the substrate forming a layer with a high porosity (80%). Depending on the deposition time, diverse nanostructured surfaces with different distribution densities were achieved. A three-dimensional (3D) reconstruction has been evaluated for every nanostructure density using the Focus Ion Beam (FIB) tomography technique and reconstruction software tools. Several structural parameters such as porosity, Euler number, geometrical tortuosity and aspect ratio have been quantified through the analysis with specified software of the reconstructions. Additionally roughness of the prepared surfaces has been characterized at micro- and nanoscale using profilometry and AFM techniques, respectively. While high aspects ratio around 20-30 indicates a strong anisotropy in the structure, high porosity values (around 80%) is observed as a consequence of highly tangled geometry of such 1D nanostructures.

  13. Elucidating structural characteristics of biomass using solution-state 2 D NMR with a mixture of deuterated dimethylsulfoxide and hexamethylphosphoramide

    DOE PAGES

    Pu, Yunqiao; Ragauskas, Arthur J.; Yoo, Chang Geun; ...

    2016-04-26

    In recent developments of NMR methods for characterization of lignocellulosic biomass allow improved understanding of plant cell-wall structures with minimal deconstruction and modification of biomass. This study introduces a new NMR solvent system composed of dimethylsulfoxide (DMSO-d6) and hexamethylphosphoramide (HMPA-d18). HMPA as a co-solvent enhanced swelling and mobility of the biomass samples; thereby it allowed enhancing signals of NMR spectra. Moreover, the structural information of biomass was successfully analyzed by the proposed NMR solvent system (DMSO-d6/HMPA-d18; 4:1, v/v) with different biomass. The proposed bi-solvent system does not require derivatization or isolation of biomass, facilitating a facile sample preparation and involvingmore » with no signals overlapping with biomass peaks. Furthermore, it also allows analyzing biomass with a room-temperature NMR probe instead of cryo-probes, which are traditionally used for enhancing signal intensities.« less

  14. Identifying residual structure in intrinsically disordered systems: a 2D IR spectroscopic study of the GVGXPGVG peptide.

    PubMed

    Lessing, Joshua; Roy, Santanu; Reppert, Mike; Baer, Marcel; Marx, Dominik; Jansen, Thomas La Cour; Knoester, Jasper; Tokmakoff, Andrei

    2012-03-21

    The peptide amide-I vibration of a proline turn encodes information on the turn structure. In this study, FTIR, two-dimensional IR spectroscopy and molecular dynamics simulations were employed to characterize the varying turn conformations that exist in the GVGX(L)PGVG family of disordered peptides. This analysis revealed that changing the size of the side chain at the X amino acid site from Gly to Ala to Val substantially alters the conformation of the peptide. To quantify this effect, proline peak shifts and intensity changes were compared to a structure-based spectroscopic model. These simulated spectra were used to assign the population of type-II β turns, bulged turns, and irregular β turns for each peptide. Of particular interest was the Val variant commonly found in the protein elastin, which contained a 25% population of irregular β turns containing two peptide hydrogen bonds to the proline C═O.

  15. From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties.

    PubMed

    Alenezi, Mohammad R; Henley, Simon J; Emerson, Neil G; Silva, S Ravi P

    2014-01-07

    Facile and low cost hydrothermal routes are developed to fabricate three-dimensional (3D) hierarchical ZnO structures with high surface-to-volume ratios and an increased fraction of (0001) polar surfaces. Hierarchical ZnO nanowires (ZNWs) and nanodisks (ZNDs) assembled from initial ZnO nanostructures are prepared from sequential nucleation and growth following a hydrothermal process. These hierarchical ZnO structures display an enhancement of gas sensing performance and exhibit significantly improved sensitivity and fast response to acetone in comparison to other mono-morphological ZnO, such as nanoparticles, NWs, or NDs. In addition to the high surface-to-volume ratio due to its small size, the nanowire building blocks show the enhanced gas sensing properties mainly ascribed to the increased proportion of exposed active (0001) planes, and the formation of many nanojunctions at the interface between the initial ZnO nanostructure and secondary NWs. This work provides the route for structure induced enhancement of gas sensing performance by designing a desirable nanostructure, which could also be extended to synthesize other metal oxide nanostructures with superior gas sensing performance.

  16. Quantitative Subsurface Atomic Structure Fingerprint for 2D Materials and Heterostructures by First-Principles-Calibrated Contact-Resonance Atomic Force Microscopy.

    PubMed

    Tu, Qing; Lange, Björn; Parlak, Zehra; Lopes, Joao Marcelo J; Blum, Volker; Zauscher, Stefan

    2016-07-26

    Interfaces and subsurface layers are critical for the performance of devices made of 2D materials and heterostructures. Facile, nondestructive, and quantitative ways to characterize the structure of atomically thin, layered materials are thus essential to ensure control of the resultant properties. Here, we show that contact-resonance atomic force microscopy-which is exquisitely sensitive to stiffness changes that arise from even a single atomic layer of a van der Waals-adhered material-is a powerful experimental tool to address this challenge. A combined density functional theory and continuum modeling approach is introduced that yields sub-surface-sensitive, nanomechanical fingerprints associated with specific, well-defined structure models of individual surface domains. Where such models are known, this information can be correlated with experimentally obtained contact-resonance frequency maps to reveal the (sub)surface structure of different domains on the sample.

  17. Thermopower enhancement by fractional layer control in 2D oxide superlattices.

    PubMed

    Choi, Woo Seok; Ohta, Hiromichi; Lee, Ho Nyung

    2014-10-22

    Precise tuning of the 2D carrier density by using fractional δ-doping of d electrons improves the thermoelectric properties of oxide heterostructures. This promising result can be attributed to the anisotropic band structure in the 2D system, indicating that δ-doped oxide superlattices are good candidates for advanced thermoelectrics.

  18. Electron gun controlled smart structure

    DOEpatents

    Martin, Jeffrey W.; Main, John Alan; Redmond, James M.; Henson, Tammy D.; Watson, Robert D.

    2001-01-01

    Disclosed is a method and system for actively controlling the shape of a sheet of electroactive material; the system comprising: one or more electrodes attached to the frontside of the electroactive sheet; a charged particle generator, disposed so as to direct a beam of charged particles (e.g. electrons) onto the electrode; a conductive substrate attached to the backside of the sheet; and a power supply electrically connected to the conductive substrate; whereby the sheet changes its shape in response to an electric field created across the sheet by an accumulation of electric charge within the electrode(s), relative to a potential applied to the conductive substrate. Use of multiple electrodes distributed across on the frontside ensures a uniform distribution of the charge with a single point of e-beam incidence, thereby greatly simplifying the beam scanning algorithm and raster control electronics, and reducing the problems associated with "blooming". By placing a distribution of electrodes over the front surface of a piezoelectric film (or other electroactive material), this arrangement enables improved control over the distribution of surface electric charges (e.g. electrons) by creating uniform (and possibly different) charge distributions within each individual electrode. Removal or deposition of net electric charge can be affected by controlling the secondary electron yield through manipulation of the backside electric potential with the power supply. The system can be used for actively controlling the shape of space-based deployable optics, such as adaptive mirrors and inflatable antennae.

  19. Sensitivity analysis of the non-linear dynamic viscoplastic response of 2-d structures with respect to material parameters

    NASA Technical Reports Server (NTRS)

    Kulkarni, Makarand; Noor, Ahmed K.

    1995-01-01

    A computational procedure is presented for evaluating the sensitivity coefficients of the viscoplastic response of structures subjected to dynamic loading. A state of plane stress is assumed to exist in the structure, a velocity strain-Cauchy stress formulation is used, and the geometric non-linearities arising from large strains are incorporated. The Jaumann rate is used as a frame indifferent stress rate. The material model is chosen to be isothermal viscoplasticity, and an associated flow rule is used with a von Mises effective stress. The equations of motion emanating from a finite element semi-discretization are integrated using an explicit central difference scheme with an implicit stress update. The sensitivity coefficients are evaluated using a direct differentiation approach. Since the domain of integration is the current configuration, the sensitivity coefficients of the spatial derivatives of the shape functions must be included. Numerical results are presented for a thin plate with a central cutout subjected to an in-plane compressive loading. The sensitivity coefficients are generated by evaluating the derivatives of the response quantities with respect to Young's modulus, and two of the material parameters characterizing the viscoplastic response. Time histories of the response and sensitivity coefficients, and spatial distributions at selected times are presented.

  20. Crystal structures and fluorescence properties of two 2D MnII/CdII trimellitic complexes containing terpyridine

    NASA Astrophysics Data System (ADS)

    Ren, Yixia; Chai, Hongmei; Hou, Xiangyang; Wang, Jijiang; Fu, Feng

    2015-12-01

    Hydrothermal reactions of manganese (II)/cadmium(II) salts with 1,2,4-trimellitic acid (H3tma) and 2,2‧:6‧,2-terpyridine (tpy) result in two novel complexes formulated with [M(Htma)(tpy)]·H2O (M = Mn(1) and Cd(2)). X-ray diffraction structural analyses of two complexes reveal they are isomorphic except for the different center metal ions and crystallize in the monoclinic crystal system of P(2)/n space group. The metal ion lies in a six-coordinated distorted octahedral environment coordinated with three Htma2- anions and one tpy ligand. There is an infinite two-dimensional rhombic network based on the metallic dimmers and Htma2- anions with the tpy ligands in void. Furthermore, the tpy ligands from the adjacent network weakly interact each other by π⋯π packing interactions into 3D supramolecular structure. The fluorescence properties could be assigned to the π - π* transition of organic ligands.

  1. Elucidating structural characteristics of biomass using solution-state 2 D NMR with a mixture of deuterated dimethylsulfoxide and hexamethylphosphoramide

    SciTech Connect

    Pu, Yunqiao; Ragauskas, Arthur J.; Yoo, Chang Geun; Li, Mi

    2016-04-26

    In recent developments of NMR methods for characterization of lignocellulosic biomass allow improved understanding of plant cell-wall structures with minimal deconstruction and modification of biomass. This study introduces a new NMR solvent system composed of dimethylsulfoxide (DMSO-d6) and hexamethylphosphoramide (HMPA-d18). HMPA as a co-solvent enhanced swelling and mobility of the biomass samples; thereby it allowed enhancing signals of NMR spectra. Moreover, the structural information of biomass was successfully analyzed by the proposed NMR solvent system (DMSO-d6/HMPA-d18; 4:1, v/v) with different biomass. The proposed bi-solvent system does not require derivatization or isolation of biomass, facilitating a facile sample preparation and involving with no signals overlapping with biomass peaks. Furthermore, it also allows analyzing biomass with a room-temperature NMR probe instead of cryo-probes, which are traditionally used for enhancing signal intensities.

  2. Facile synthesis of 2-D Cu doped WO3 nanoplates with structural, optical and differential anti cancer characteristics

    NASA Astrophysics Data System (ADS)

    Mehmood, Faisal; Iqbal, Javed; Gul, Asma; Ahmed, Waqqar; Ismail, M.

    2017-04-01

    Simple chemical co-precipitation method has been employed to synthesize two dimensional copper (Cu) doped tungsten oxide (WO3) nanoplates. A numbers of characterization techniques have been used to investigate their structural, optical and biocompatible anti cancer properties. The XRD results have confirmed the monoclinic crystal structure of WO3 nanoplates, and also successful doping of Cu ions into the WO3 crystal lattice. The presence of functional groups and chemical bonding have been verified through FTIR and Raman spectroscopy. The SEM images demonstrate that both undoped and Cu doped WO3 samples have squares plate like morphology. The EDX spectra confirm the presence of Cu, W and O ions. Diffuse reflectance spectroscopy (DRS) analysis has revealed a substantial red-shift in the absorption edge and a decrease in the band gap energy of nanoplates with Cu doping. Photoluminescence spectroscopy has been used to study the presence of defects like oxygen vacancies. Furthermore, the differential cytotoxic properties of Cu doped WO3 samples have been evaluated against human breast (MCF-7) and liver (Hep-2) cancer cells with ectocervical epithelial (HECE) healthy cells. The present findings confirm that the Cu doped WO3 nanoplates can be used as an efficient biocompatible anti cancer agent.

  3. Complex structures of dense lithium: Electronic origin

    NASA Astrophysics Data System (ADS)

    Degtyareva, V. F.

    2016-11-01

    Lithium—the lightest alkali metal exhibits unexpected structures and electronic behavior at high pressures. Like the heavier alkali metals, Li is bcc at ambient pressure and transforms first to fcc (at 7.5 GPa). The post-fcc high-pressure form Li-cI 16 (at 40-60 GPa) is similar to Na-cI 16 and related to more complex structures of heavy alkalis Rb-oC52 and Cs- oC84. The other high pressure phases for Li (oC88, oC40, oC24) observed at pressures up to 130 GPa are found only in Li. The different route of Li high-pressure structures correlates with its special electronic configuration containing the only 3 electrons (at 1s and 2s levels). Crystal structures for Li are analyzed within the model of Fermi sphere-Brillouin zone interactions. Stability of post-fcc structures for Li are supported by the Hume-Rothery arguments when new diffraction plains appear close to the Fermi level producing pseudogaps near the Fermi level and decreasing the crystal energy. The filling of Brillouin-Jones zones by electron states for a given structure defines the physical properties as optical reflectivity, electrical resistivity and superconductivity. To understand the complexity of structural and physical properties of Li above 60 GPa it is necessary to assume the valence electron band overlap with the core electrons and increase the valence electron count under compression.

  4. Electronic Structure of Small Lanthanide Containing Molecules

    NASA Astrophysics Data System (ADS)

    Kafader, Jared O.; Ray, Manisha; Topolski, Josey E.; Chick Jarrold, Caroline

    2016-06-01

    Lanthanide-based materials have unusual electronic properties because of the high number of electronic degrees of freedom arising from partial occupation of 4f orbitals, which make these materials optimal for their utilization in many applications including electronics and catalysis. Electronic spectroscopy of small lanthanide molecules helps us understand the role of these 4f electrons, which are generally considered core-like because of orbital contraction, but are energetically similar to valence electrons. The spectroscopy of small lanthanide-containing molecules is relatively unexplored and to broaden this understanding we have completed the characterization of small cerium, praseodymium, and europium molecules using photoelectron spectroscopy coupled with DFT calculations. The characterization of PrO, EuH, EuO/EuOH, and CexOy molecules have allowed for the determination of their electron affinity, the assignment of numerous anion to neutral state transitions, modeling of anion/neutral structures and electron orbital occupation.

  5. Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist

    SciTech Connect

    Chien, Ellen Y.T.; Liu, Wei; Zhao, Qiang; Katritch, Vsevolod; Han, Gye Won; Hanson, Michael A.; Shi, Lei; Newman, Amy Hauck; Javitch, Jonathan A.; Cherezov, Vadim; Stevens, Raymond C.

    2010-11-30

    Dopamine modulates movement, cognition, and emotion through activation of dopamine G protein-coupled receptors in the brain. The crystal structure of the human dopamine D3 receptor (D3R) in complex with the small molecule D2R/D3R-specific antagonist eticlopride reveals important features of the ligand binding pocket and extracellular loops. On the intracellular side of the receptor, a locked conformation of the ionic lock and two distinctly different conformations of intracellular loop 2 are observed. Docking of R-22, a D3R-selective antagonist, reveals an extracellular extension of the eticlopride binding site that comprises a second binding pocket for the aryl amide of R-22, which differs between the highly homologous D2R and D3R. This difference provides direction to the design of D3R-selective agents for treating drug abuse and other neuropsychiatric indications.

  6. Probing the 2D temperature structure of protoplanetary disks with Herschel observations of high-J CO lines

    NASA Astrophysics Data System (ADS)

    Fedele, D.; van Dishoeck, E. F.; Kama, M.; Bruderer, S.; Hogerheijde, M. R.

    2016-06-01

    The gas temperature structure of protoplanetary disks is a key ingredient for interpreting various disk observations and for quantifying the subsequent evolution of these systems. The comparison of low- and mid-J CO rotational lines is a powerful tool for assessing the temperature gradient in the warm molecular layer of disks. Spectrally resolved high-J (Ju> 14) CO lines probe intermediate distances and heights from the star that are not sampled by (sub-)millimeter CO spectroscopy. This paper presents new Herschel/HIFI and archival PACS observations of 12CO, 13CO, and [C ii] emission in four Herbig AeBe disks (HD 100546, HD 97048, IRS 48, HD 163296) and three T Tauri disks (AS 205, S CrA, TW Hya). In the case of the T Tauri systems AS 205 and S CrA, the CO emission has a single-peaked profile, likely due to a slow wind. For all the other systems, the Herschel CO spectra are consistent with pure disk emission and the spectrally resolved lines (HIFI) and the CO rotational ladder (PACS) are analyzed simultaneously assuming power-law temperature and column density profiles, using the velocity profile to locate the emission in the disk. The temperature profile varies substantially from disk to disk. In particular, Tgas in the disk surface layers can differ by up to an order of magnitude among the four Herbig AeBe systems; HD 100546 is the hottest and HD 163296 the coldest disk in the sample. Clear evidence of a warm disk layer where Tgas>Tdust is found in all the Herbig Ae disks. The observed CO fluxes and line profiles are compared to predictions of physical-chemical models. The primary parameters affecting the disk temperature structure are the flaring angle, the gas-to-dust mass ratio, the scale height, and the dust settling.

  7. Structural physiology based on electron crystallography

    PubMed Central

    Fujiyoshi, Yoshinori

    2011-01-01

    There are many questions in brain science, which are extremely interesting but very difficult to answer. For example, how do education and other experiences during human development influence the ability and personality of the adult? The molecular mechanisms underlying such phenomena are still totally unclear. However, technological and instrumental advancements of electron microscopy have facilitated comprehension of the structures of biological components, cells, and organelles. Electron crystallography is especially good for studying the structure and function of membrane proteins, which are key molecules of signal transduction in neural and other cells. Electron crystallography is now an established technique to analyze the structures of membrane proteins in lipid bilayers, which are close to their natural biological environment. By utilizing cryo-electron microscopes with helium cooled specimen stages, which were developed through a personal motivation to understand functions of neural systems from a structural point of view, structures of membrane proteins were analyzed at a resolution higher than 3 Å. This review has four objectives. First, it is intended to introduce the new research field of structural physiology. Second, it introduces some of the personal struggles, which were involved in developing the cryo-electron microscope. Third, it discusses some of the technology for the structural analysis of membrane proteins based on cryo-electron microscopy. Finally, it reviews structural and functional analyses of membrane proteins. PMID:21416541

  8. Two Keggin-type heteropolytungstates with transition metal as a central atom: Crystal structure and magnetic study with 2D-IR correlation spectroscopy

    SciTech Connect

    Chai, Feng; Chen, YiPing; You, ZhuChai; Xia, ZeMin; Ge, SuZhi; Sun, YanQiong; Huang, BiHua

    2013-06-01

    Two Keggin-type heteropolytungstates, [Co(phen)₃]₃[CoW₁₂O₄₀]·9H₂O 1 (phen=1,10-phenanthroline) and [Fe(phen)₃]₂[FeW₁₂O₄₀]·H₃O·H₂O 2, have been synthesized via the hydrothermal technique and characterized by single crystal X-ray diffraction analyses, IR, XPS, TG analysis, UV–DRS, XRD, thermal-dependent and magnetic-dependent 2D-COS IR (two-dimensional infrared correlation spectroscopy). Crystal structure analysis reveals that the polyanions in compound 1 are linked into 3D supramolecule through hydrogen bonding interactions between lattice water molecules and terminal oxygen atoms of polyanion units, and [Co(phen)₃]²⁺ cations distributed in the polyanion framework with many hydrogen bonding interactions. The XPS spectra indicate that all the Co atoms in 1 are +2 oxidation state, the Fe atoms in 2 existing with +2 and +3 mixed oxidation states. - Graphical abstract: The magnetic-dependent synchronous 2D correlation IR spectra of 1 (a), 2 (b) over 0–50 mT in the range of 600–1000 cm⁻¹, the obvious response indicate two Keggin polyanions skeleton susceptible to applied magnetic field. Highlights: • Two Keggin-type heteropolytungstates with transition metal as a central atom has been obtained. • Compound 1 forms into 3D supramolecular architecture through hydrogen bonding between water molecules and polyanions. • Magnetic-dependent 2D-IR correlation spectroscopy was introduced to discuss the magnetism of polyoxometalate.

  9. Electronic structure of dense Pb overlayers on Si(111) investigated using angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Choi, W. H.; Koh, H.; Rotenberg, E.; Yeom, H. W.

    2007-02-01

    Dense Pb overlayers on Si(111) are important as the wetting layer for anomalous Pb island growth as well as for their own complex “devil’s-staircase” phases. The electronic structures of dense Pb overlayers on Si(111) were investigated in detail by angle-resolved photoemission. Among the series of ordered phases found recently above one monolayer, the low-coverage 7×3 and the high-coverage 14×3 phases are studied; they are well ordered and form reproducibly in large areas. The band dispersions and Fermi surfaces of the two-dimensional (2D) electronic states of these overlayers are mapped out. A number of metallic surface-state bands are identified for both phases with complex Fermi contours. The basic features of the observed Fermi contours can be explained by overlapping 2D free-electron-like Fermi circles. This analysis reveals that the 2D electrons near the Fermi level of the 7×3 and 14×3 phases are mainly governed by strong 1×1 and 3×3 potentials, respectively. The origins of the 2D electronic states and their apparent Fermi surface shapes are discussed based on recent structure models.

  10. Observation of ferromagnetic and antiferromagnetic coupling in 1-D and 2-D extended structures of copper(II) terephthalates

    SciTech Connect

    Deakin, L.; Arif, A.M.; Miller, J.S.

    1999-11-01

    The reaction between CuCl{sub 2}{center{underscore}dot}2H{sub 2}O and disodium terephthalate, Na{sub 2}tp, in aqueous solution simultaneously produces chain, bis(aqua)[{mu}-(terephthalato-{kappa}O:{kappa}O{prime})]copper(II), monohydrate, Cutp(OH{sub 2}){sub 2}{center{underscore}dot}H{sub 2}O (1), and layered, bis(aqua)[{mu}-(terephthalato-{kappa}O)]copper(II), Cutp(OH{sub 2}){sub 2} (2), structured materials. 1 (C{sub 8}H{sub 10}CuO{sub 7}) belongs to the orthorhombic P2{sub 1}2{sub 1}2 space group [a = 6.3015(4) {angstrom}, b = 6.8743(4) {angstrom}, c = 22.9972(14) {angstrom}, and Z = 4] and incorporates tp in a bridging bis-monodentate binding mode and Cu(II) in a tetragonally elongated octahedron. 2 (C{sub 8}H{sub 10}CuO{sub 6}) which belongs to the orthorhombic Pmc2{sub 1} space group [a = 10.7421(8) {angstrom}, b = 7.2339(10) {angstrom}, c = 5.7143(13) {angstrom}, and Z = 2] incorporates tp in a mono-bidentate binding mode and Cu(II) in a distorted square pyramid. 1 and 2 exhibit axial X-band powder EPR spectra with G{sub {perpendicular}} = 2.08, g{sub {parallel}} = 2.29 (1) and g{sub {perpendicular}} = 2.07, g{sub {parallel}} = 2.29 (2) at 300 K. 1 obeys the Curie-Weiss law at high temperatures ({theta} = {minus}7.2 K) and at low temperatures behaves as 1-D magnetic chains with an exchange-coupling constant of J/k{sub B} = {minus}9.15 K (H = {minus}2JS{sub 1}{center{underscore}dot}S{sub 2}). This material displays a spontaneous moment below 2 K under small applied magnetic fields, consistent with the presence of spin canting. 2 exhibits ferromagnetic interactions with {theta} = +0.8 K. Along the 1-D chain where coordinated water forms the bridge between metal centers, the coupling between Cu(II) is J/k{sub B} = +0.6 K. The fit of the magnetic susceptibility for 2 using a molecular field correction, which takes into consideration antiferromagnetic interactions between chains via the tp ligand, yields J{prime}/k{sub B} = {minus}0.13 K.

  11. Instructional Approach to Molecular Electronic Structure Theory

    ERIC Educational Resources Information Center

    Dykstra, Clifford E.; Schaefer, Henry F.

    1977-01-01

    Describes a graduate quantum mechanics projects in which students write a computer program that performs ab initio calculations on the electronic structure of a simple molecule. Theoretical potential energy curves are produced. (MLH)

  12. Computational Chemistry Using Modern Electronic Structure Methods

    ERIC Educational Resources Information Center

    Bell, Stephen; Dines, Trevor J.; Chowdhry, Babur Z.; Withnall, Robert

    2007-01-01

    Various modern electronic structure methods are now days used to teach computational chemistry to undergraduate students. Such quantum calculations can now be easily used even for large size molecules.

  13. Connecting Dopant Bond Type with Electronic Structure in N-Doped Graphene

    DTIC Science & Technology

    2012-06-29

    spectroscopy The two dimensional ( 2D ) nature of graphene endows itwith a number of unique properties that make it a promising electronic contact material...Kashtanov, S.; Nordgren, J.; Ågren, H.; Sundgren, J.-E. Electronic structure of carbon nitride thin films studied by X-ray spectroscopy techniques...Spectroscopy of π bonding in hard graphitic carbon nitride films: Superstructure of basal planes and hardening mechanisms. Phys. Rev. B 2000, 62 (7

  14. Valleytronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Schaibley, John R.; Yu, Hongyi; Clark, Genevieve; Rivera, Pasqual; Ross, Jason S.; Seyler, Kyle L.; Yao, Wang; Xu, Xiaodong

    2016-11-01

    Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.

  15. Controlling the Electronic Structure of Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Ohta, Taisuke; Bostwick, Aaron; Seyller, Thomas; Horn, Karsten; Rotenberg, Eli

    2006-08-01

    We describe the synthesis of bilayer graphene thin films deposited on insulating silicon carbide and report the characterization of their electronic band structure using angle-resolved photoemission. By selectively adjusting the carrier concentration in each layer, changes in the Coulomb potential led to control of the gap between valence and conduction bands. This control over the band structure suggests the potential application of bilayer graphene to switching functions in atomic-scale electronic devices.

  16. Crystal structure and antiferromagnetic ordering of quasi-2D [Cu(HF{sub 2})(pyz){sub 2}]TaF{sub 6} (pyz = pyrazine).

    SciTech Connect

    Manson, J. L.; Schlueter, J. A.; McDonald, R. D.; Singleton, J.; Materials Science Division; Eastern Washington Univ.; LANL

    2010-04-01

    The crystal structure of the title compound was determined by X-ray diffraction at 90 and 295 K. Copper(II) ions are coordinated to four bridging pyz ligands to form square layers in the ab-plane. Bridging HF{sub 2}{sup -} ligands join the layers together along the c-axis to afford a tetragonal, three-dimensional (3D) framework that contains Taf{sub 6}{sup -} anions in every cavity. At 295 K, the pyz rings lie exactly perpendicular to the layers and cooling to 90 K induces a canting of those rings. Magnetically, the compound exhibits 2D antiferromagnetic correlations within the 2D layers with an exchange interaction of -13.1(1) K. Weak interlayer interactions, as mediated by Cu-F-H-F-Cu, leads to long-range magnetic order below 4.2 K. Pulsed-field magnetization data at 0.5 K show a concave curvature with increasing B and reveal a saturation magnetization at 35.4 T.

  17. Phosphorene Nanoribbons: Electronic Structure and Electric Field Modulation

    NASA Astrophysics Data System (ADS)

    Soleimanikahnoj, Sina; Knezevic, Irena

    Phosphorene, a newcomer among the 2D van der Waals materials, has attracted the attention of many scientists due to its promising electronic properties. Monolayer phosphorene has a direct band gap of 2 eV located at the Gamma point of the Brillouin zone. Increasing the number of layers reduces the bandgap due to the van der Waals interaction. The direct nature of the bandgap makes phosphorene particularly favorable for electronic transport and optoelectronic applications. While multilayer phosphorene sheets have been studied, the electronic properties of their 1D counterparts are still unexplored. An accurate tight-binding model was recently proposed for multilayer phosphorene nanoribbons. Employing this model along with the non-equilibrium Green's function method, we calculate the band structure and electronic properties of phosphorene nanoribbons. We show that, depending on the edge termination, phosphorene nanoribbons can be metallic or semiconducting. Our analysis also shows that the electronic properties of phosphorene nanoribbons are highly tunable by in-plane and out-of-plane electric fields. In metallic ribbons, the conductance can be switched off by a threshold electric field, similar to field effect devices. Support by the NSF through the University of Wisconsin MRSEC Seed (NSF Award DMR-1121288).

  18. Transformation from a 2D stacked layer to 3D interpenetrated framework by changing the spacer functionality: synthesis, structure, adsorption, and magnetic properties.

    PubMed

    Maji, Tapas Kumar; Ohba, Masaaki; Kitagawa, Susumu

    2005-12-12

    Two novel coordination polymers of Cu(II), viz. [Cu(bipy)(1,4-napdc)(H2O)2]n and {[Cu(bpe)1.5(1,4-napdc)](H2O)}n (bipy=4,4'-bipyridine; bpe=1,2-bis(4-pyridyl)ethane; 1,4-napdc2-=1,4-naphthalenedicarboxylate), have been synthesized and structurally characterized by changing only the pillar motifs. Both the compounds crystallize by slow evaporation from the ammoniacal solution of the as-synthesized solid. Framework 1 crystallizes in monoclinic crystal system, space group P2/n (No. 13), with a=11.028(19) A, b=11.16(3) A, c=7.678(13) A, beta=103.30(5) degrees, and Z=2. Framework 2 crystallizes in triclinic system, space group, P (No. 2), a=10.613(4) A, b=10.828(10) A, c=13.333(9) A, alpha=85.25(9) degrees, beta=82.59(6) degrees, gamma=60.37(5) degrees, and Z=2. The structure determination reveals that has a 2D network based on rectangular grids, where each Cu(II) is in 4+2 coordination mode. The 2D networks stacked in a staggered manner through the pi-pi interaction to form a 3D supramolecular network. In the case of, a {Cu(bpe)1.5}n ladder connected by 1,4-napdc2- results a 2D cuboidal bilayer network and each bilayer network is interlocked by two adjacent identical network (upper and lower) forming 3-fold interpenetrated 3D framework with small channel along the c-axis, which accommodates two water molecules. The TGA and XRPD measurements reveal that both the frameworks are stable after dehydration. Adsorption measurements (N2, CO2, and different solvents, like H2O, MeOH, etc.) were carried out for both frameworks. Framework shows type-II sorption profile with N2 in contrast to H2O and MeOH, which are chemisorbed in the framework. In case of, only H2O molecules can diffuse into the micropore, whereas N2, CO2, and MeOH cannot be adsorbed, as corroborated by the smaller channel aperture. The low-temperature (300-2 K) magnetic measurement of and reveals that both are weakly antiferromagnetically coupled (J=-1.85 cm-1, g=2.02; J=-0.153 cm-1, g=2.07), which is correlated

  19. Transmission electron microscopy in molecular structural biology: A historical survey.

    PubMed

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented.

  20. Foil support structure for large electron guns

    SciTech Connect

    Brucker, J.P.; Rose, E.A.

    1993-08-01

    This paper describes a novel support structure for a vacuum diode used to pump a gaseous laser with an electron beam. Conventional support structures are designed to hold a foil flat and rigid. This new structure takes advantage of the significantly greater strength of metals in pure tension, utilizing curved shapes for both foil and support structure. The shape of the foil is comparable to the skin of a balloon, and the shape of the support structures is comparable to the cables of a suspension bridge. This design allows a significant reduction in foil thickness and support structure mass, resulting in a lower electron-beam loss between diode and laser gas. In addition, the foil is pre-formed in the support structure at pressures higher than operating pressure. Therefore, the foil is operated far from the yield point. Increased reliability is anticipated.

  1. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.

    PubMed

    Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei

    2016-06-13

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of

  2. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations

    PubMed Central

    Wang, Tuo; Yang, Hui; Kubicki, James D.; Hong, Mei

    2017-01-01

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D 13C-13C correlation spectra of uniformly 13C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose 13C chemical shifts differ significantly from the 13C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing and hydrogen bonding from celluloses of other organisms. 2D 13C-13C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Cellulose f and g are well mixed chains on the microfibril surface, cellulose a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of bacterial, algal

  3. Structural requirements of 3-carboxyl-4(1H)-quinolones as potential antimalarials from 2D and 3D QSAR analysis.

    PubMed

    Li, Jiazhong; Li, Shuyan; Bai, Chongliang; Liu, Huanxiang; Gramatica, Paola

    2013-07-01

    Malaria is a fatal tropical and subtropical disease caused by the protozoal species Plasmodium. Many commonly available antimalarial drugs and therapies are becoming ineffective because of the emergence of multidrug resistant Plasmodium falciparum, which drives the need for the development of new antimalarial drugs. Recently, a series of 3-carboxyl-4(1H)-quinolone analogs, derived from the famous compound endochin, were reported as promising candidates for orally efficacious antimalarials. In this study, to analyze the structure-activity relationships (SAR) of these quinolones and investigate the structural requirements for antimalarial activity, the 2D multiple linear regressions (MLR) method and 3D comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods are employed to evolve different QSAR models. All these models give satisfactory results with highly accurate fitting and strong external predictive abilities for chemicals not used in model development. Furthermore, the contour maps from 3D models can provide an intuitive understanding of the key structure features responsible for the antimalarial activities. In conclusion, we summarize the detailed position-specific structural requirements of these derivatives accordingly. All these results are helpful for the rational design of new compounds with higher antimalarial bioactivities.

  4. One-atom-thick 2D copper oxide clusters on graphene.

    PubMed

    Kano, Emi; Kvashnin, Dmitry G; Sakai, Seiji; Chernozatonskii, Leonid A; Sorokin, Pavel B; Hashimoto, Ayako; Takeguchi, Masaki

    2017-03-17

    The successful isolation and remarkable properties of graphene have recently triggered investigation of two-dimensional (2D) materials from layered compounds; however, one-atom-thick 2D materials without bulk layered counterparts are scarcely reported. Here we report the structure and properties of novel 2D copper oxide studied by experimental and theoretical methods. Electron microscopy observations reveal that copper oxide can form monoatomic layers with an unusual square lattice on graphene. Density functional theory calculations suggest that oxygen atoms at the centre of the square lattice stabilizes the 2D Cu structure, and that the 2D copper oxide sheets have unusual electronic and magnetic properties different from 3D bulk copper oxide.

  5. Quantum Monte Carlo finite temperature electronic structure of quantum dots

    NASA Astrophysics Data System (ADS)

    Leino, Markku; Rantala, Tapio T.

    2002-08-01

    Quantum Monte Carlo methods allow a straightforward procedure for evaluation of electronic structures with a proper treatment of electronic correlations. This can be done even at finite temperatures [1]. We test the Path Integral Monte Carlo (PIMC) simulation method [2] for one and two electrons in one and three dimensional harmonic oscillator potentials and apply it in evaluation of finite temperature effects of single and coupled quantum dots. Our simulations show the correct finite temperature excited state populations including degeneracy in cases of one and three dimensional harmonic oscillators. The simulated one and two electron distributions of a single and coupled quantum dots are compared to those from experiments and other theoretical (0 K) methods [3]. Distributions are shown to agree and the finite temperature effects are discussed. Computational capacity is found to become the limiting factor in simulations with increasing accuracy. Other essential aspects of PIMC and its capability in this type of calculations are also discussed. [1] R.P. Feynman: Statistical Mechanics, Addison Wesley, 1972. [2] D.M. Ceperley, Rev.Mod.Phys. 67, 279 (1995). [3] M. Pi, A. Emperador and M. Barranco, Phys.Rev.B 63, 115316 (2001).

  6. A molecular dynamics study on the structural and electronic properties of two-dimensional icosahedral B12 cluster based structures

    NASA Astrophysics Data System (ADS)

    Kah, Cherno Baba; Yu, M.; Jayanthi, C. S.; Wu, S. Y.

    2014-03-01

    Our previous study on one-dimensional icosahedral B12 cluster (α-B12) based chain [Bulletin of APS Annual Meeting, p265 (2013)] and ring structures has prompted us to study the two-dimensional (2D) α-B12 based structures. Recently, we have carried out a systematic molecular dynamics study on the structural stabilities and electronic properties of the 2D α-B12 based structures using the SCED-LCAO method [PRB 74, 15540 (2006)]. We have considered several types of symmetry for these 2D structures such as δ3, δ4, δ6 (flat triangular), and α' types. We have found that the optimized structures are energetically in the order of δ6 < α' < δ3 < δ4 which is different from the energy order of α'< δ6 < δ4 < δ3 found in the 2D boron monolayer sheets [ACS Nano 6, 7443 (2012)]. A detailed discussion of this study will be presented. The first author acknowledges the McSweeny Fellowship for supporting his research in this work.

  7. Evaluating the structural identifiability of the parameters of the EBPR sub-model in ASM2d by the differential algebra method.

    PubMed

    Zhang, Tian; Zhang, Daijun; Li, Zhenliang; Cai, Qing

    2010-05-01

    The calibration of ASMs is a prerequisite for their application to simulation of a wastewater treatment plant. This work should be made based on the evaluation of structural identifiability of model parameters. An EBPR sub-model including denitrification phosphorus removal has been incorporated in ASM2d. Yet no report is presented on the structural identifiability of the parameters in the EBPR sub-model. In this paper, the differential algebra approach was used to address this issue. The results showed that the structural identifiability of parameters in the EBPR sub-model could be improved by increasing the measured variables. The reduction factor eta(NO)(3) was identifiable when combined data of aerobic process and anoxic process were assumed. For K(PP), X(PAO) and q(PHA) of the anaerobic process to be uniquely identifiable, one of them is needed to be determined by other ways. Likewise, if prior information on one of the parameters, K(PHA), X(PAO) and q(PP) of the aerobic process, is known, all the parameters are identifiable. The above results could be of interest to the parameter estimation of the EBPR sub-model. The algorithm proposed in the paper is also suitable for other sub-models of ASMs.

  8. Alternating zinc fingers in the human male associated protein ZFY: 2D NMR structure of an even finger and implications for jumping-linker DNA recognition

    SciTech Connect

    Kochoyan, M.; Havel, T.F.; Dahl, C.E. ); Nguyen, D.T.; Keutmann, H.T. ); Weiss, M.A. Massachusetts General Hospital, Boston )

    1991-04-09

    ZFY, a sex-related Zn-finger protein encoded by the human Y chromosome, is distinguished from the general class of Zn-finger proteins by the presence of a two-finger repeat. Whereas odd-numbered domains and linkers fit a general consensus, even-numbered domains and linkers exhibit systematic differences. Because this alternation may have fundamental implications for the mechanism of protein-DNA recognition, the authors have undertaken biochemical and structural studies of fragments of ZFY. They describe here the solution structure of a representative nonconsensus (even-numbered) Zn finger based on 2D NMR studies of a 30-residue peptide. Structural modeling by distance geometry and simulated annealing (DG/SA) demonstrates that this peptide folds as a miniglobular domain containing a C-terminal {beta}-hairpin and N-terminal {alpha}-helix ({beta}{beta}{alpha} motif). These features are similar to (but not identical with) those previously described in consensus-type Zn fingers (derived from ADR1 and Xfin); the similarities suggest that even and odd ZFY domains bind DNA by a common mechanism. A model of the protein-DNA complex (designated the jumping-linker model) is presented and discussed in terms of the ZFY two-finger repeat. In this model every other linker is proposed to cross the minor groove by means of a putative finger/linker submotif HX{sub 4}HX{sub 3}-hydrophobic residue-X{sub 3}.

  9. 2D magnetotelluric imaging of the Anqing-Guichi ore district, Yangtze metallogenic belt, eastern China: An insight into the crustal structure and tectonic units

    NASA Astrophysics Data System (ADS)

    Chen, Xiangbin; Yan, Jiayong

    2016-08-01

    Two parallel NW-trending magnetotelluric (MT) profiles were placed perpendicularly to the main structures of the Anqing-Guichi ore district, one of the seven ore districts in the middle-lower Yangtze River metallogenic belt of eastern China. In October-December 2013, the MT data acquisition was carried out at 117 sites with 0.5-1 km site spacing. The MT data has a good quality in the frequency range between 320 and 0.01 Hz. The dimensionality analysis and 2D resistivity inversion results indicate that: (1) the deep of the ore district with three-dimensional structural characteristics, but two-dimensional structural characteristics for shallow; (2) there is a clear correlation between resistivity and the main geological units of the ore district, as well as correlation with mapped surface faults; (3) the Gandan deep fault (GDF) and Jiangnan deep fault (JNF) extend from the surface to 10 km deep, with dip of NW45°, and dip angles larger than 60°. A series of NE-trending acidic intrusive rocks were controlled by the GDF.

  10. Removal of Vesicle Structures From Transmission Electron Microscope Images

    PubMed Central

    Jensen, Katrine Hommelhoff; Sigworth, Fred J.; Brandt, Sami Sebastian

    2016-01-01

    In this paper, we address the problem of imaging membrane proteins for single-particle cryo-electron microscopy reconstruction of the isolated protein structure. More precisely, we propose a method for learning and removing the interfering vesicle signals from the micrograph, prior to reconstruction. In our approach, we estimate the subspace of the vesicle structures and project the micrographs onto the orthogonal complement of this subspace. We construct a 2d statistical model of the vesicle structure, based on higher order singular value decomposition (HOSVD), by considering the structural symmetries of the vesicles in the polar coordinate plane. We then propose to lift the HOSVD model to a novel hierarchical model by summarizing the multidimensional HOSVD coefficients by their principal components. Along with the model, a solid vesicle normalization scheme and model selection criterion are proposed to make a compact and general model. The results show that the vesicle structures are accurately separated from the background by the HOSVD model that is also able to adapt to the asymmetries of the vesicles. This is a promising result and suggests even wider applicability of the proposed approach in learning and removal of statistical structures. PMID:26642456

  11. Electronic structure and polarizability of metallic nanoshells

    NASA Astrophysics Data System (ADS)

    Prodan, E.; Nordlander, P.

    2002-01-01

    An efficient method for the calculation of the electronic structure of metallic nanoshells is developed. The method is applied to a large nanoshell (of 10 nm in diameter) containing more than 2.5×10 4 conduction electrons. The calculations show that the density of states of the nanoshell is relatively bulk-like. The frequency dependent polarizability is calculated and shown to display strong confinement effects and features similar to what is predicted by semi-classical electrodynamic theory.

  12. Structural and electronic properties for atomic clusters

    NASA Astrophysics Data System (ADS)

    Sun, Yan

    We have studied the structural and electronic properties for different groups of atomic clusters by doing a global search on the potential energy surface using the Taboo Search in Descriptors Space (TSDS) method and calculating the energies with Kohn-Sham Density Functional Theory (KS-DFT). Our goal was to find the structural and electronic principles for predicting the structure and stability of clusters. For Ben (n = 3--20), we have found that the evolution of geometric and electronic properties with size reflects a change in the nature of the bonding from van der Waals to metallic and then bulk-like. The cluster sizes with extra stability agree well with the predictions of the jellium model. In the 4d series of transition metal (TM) clusters, as the d-type bonding becomes more important, the preferred geometric structure changes from icosahedral (Y, Zr), to distorted compact structures (Nb, Mo), and FCC or simple cubic crystal fragments (Tc, Ru, Rh) due to the localized nature of the d-type orbital. Analysis of relative isomer energies and their electronic density of states suggest that these clusters tend to follow a maximum hardness principle (MHP). For A4B12 clusters (A is divalent, B is monovalent), we found unusually large (on average 1.95 eV) HOMO-LUMO gap values. This shows the extra stability at an electronic closed shell (20 electrons) predicted by the jellium model. The importance of symmetry, closed electronic and ionic shells in stability is shown by the relative stability of homotops of Mg4Ag12 which also provides support for the hypothesis that clusters that satisfy more than one stability criterion ("double magic") should be particularly stable.

  13. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  14. Electronic structure and optical properties of the single crystal and two-dimensional structure of CdWO4 from first principles

    NASA Astrophysics Data System (ADS)

    Babamoradi, Mohsen; Liyai, Mohammad Reza; Azimirad, Rouhollah; Salehi, Hamdollah

    2017-04-01

    In this paper, we have investigated the electronic structure and optical properties of the single crystal and two-dimensional (2D) structure of cadmium tungstate (CdWO4). This investigation includes calculation of the density of states (DOS), dielectric tensor elements and reflectivity. All the calculations have been done by full potential augmented plane waves plus local orbitals (FP-APW+lo) with Wien2k code. The calculated band gaps for the single crystal and 2D structure along [010] direction are 4.2 and 5.02 eV, respectively. The results show that in the 2D structure of CdWO4, the electron density of the surface oxygen atoms is much more than the electron density of the inside oxygen atoms. This difference in the density has the main role in the optical properties. The results of the dielectric tensor elements and reflectivity for the single crystal are in good agreement with the experimental values. The results of the dielectric tensor elements and reflectivity for the 2D structure in comparison with the single crystal have shown that the intensity and place of the calculated peaks reduced and shifted, respectively. These results can be related to the surface oxygen atoms and thickness of the 2D structure.

  15. Defect Induced Electronic Structure of Uranofullerene

    PubMed Central

    Dai, Xing; Cheng, Cheng; Zhang, Wei; Xin, Minsi; Huai, Ping; Zhang, Ruiqin; Wang, Zhigang

    2013-01-01

    The interaction between the inner atoms/cluster and the outer fullerene cage is the source of various novel properties of endohedral metallofullerenes. Herein, we introduce an adatom-type spin polarization defect on the surface of a typical endohedral stable U2@C60 to predict the associated structure and electronic properties of U2@C61 based on the density functional theory method. We found that defect induces obvious changes in the electronic structure of this metallofullerene. More interestingly, the ground state of U2@C61 is nonet spin in contrast to the septet of U2@C60. Electronic structure analysis shows that the inner U atoms and the C ad-atom on the surface of the cage contribute together to this spin state, which is brought about by a ferromagnetic coupling between the spin of the unpaired electrons of the U atoms and the C ad-atom. This discovery may provide a possible approach to adapt the electronic structure properties of endohedral metallofullerenes. PMID:23439318

  16. Boron Fullerenes: An Electronic Structure Study

    NASA Astrophysics Data System (ADS)

    Sadrzadeh, Arta; Pupysheva, Olga; Boustani, Ihsan; Yakobson, Boris

    2008-03-01

    Using ab initio calculations, we study electronic structure and frequency modes of B80, a member of boron fullerene family made from boron isomorphs of carbon fullerenes with additional atoms in the centers of hexagons. We also investigate geometrical and electronic structural properties of double-rings with various diameters, which are important as building blocks of boron nanotubes, and as the most stable clusters among the studied isomers with no more than 36 atoms. Double-rings also appear as building blocks of B80. Furthermore, we investigate the possibility of further stabilizing some of fullerenes by depleting them.

  17. The Electronic Structure of Heavy Element Complexes

    SciTech Connect

    Bursten, Bruce E.

    2000-07-25

    The area of study is the bonding in heavy element complexes, and the application of more sophisticated electronic structure theories. Progress is recounted in several areas: (a) technological advances and current methodologies - Relativistic effects are extremely important in gaining an understanding of the electronic structure of compounds of the actinides, transactinides, and other heavy elements. Therefore, a major part of the continual benchmarking was the proper inclusion of the appropriate relativistic effects for the properties under study. (b) specific applications - These include organoactinide sandwich complexes, CO activation by actinide atoms, and theoretical studies of molecules of the transactinide elements. Finally, specific directions in proposed research are described.

  18. Evaluation of super-resolution performance of the K2 electron-counting camera using 2D crystals of aquaporin-0

    PubMed Central

    Chiu, Po-Lin; Li, Xueming; Li, Zongli; Beckett, Brian; Brilot, Axel F.; Grigorieff, Nikolaus; Agard, David A.; Cheng, Yifan; Walz, Thomas

    2015-01-01

    The K2 Summit camera was initially the only commercially available direct electron detection camera that was optimized for high-speed counting of primary electrons and was also the only one that implemented centroiding so that the resolution of the camera can be extended beyond the Nyquist limit set by the physical pixel size. In this study, we used well-characterized two-dimensional crystals of the membrane protein aquaporin-0 to characterize the performance of the camera below and beyond the physical Nyquist limit and to measure the influence of electron dose rate on image amplitudes and phases. PMID:26318383

  19. Evaluation of super-resolution performance of the K2 electron-counting camera using 2D crystals of aquaporin-0.

    PubMed

    Chiu, Po-Lin; Li, Xueming; Li, Zongli; Beckett, Brian; Brilot, Axel F; Grigorieff, Nikolaus; Agard, David A; Cheng, Yifan; Walz, Thomas

    2015-11-01

    The K2 Summit camera was initially the only commercially available direct electron detection camera that was optimized for high-speed counting of primary electrons and was also the only one that implemented centroiding so that the resolution of the camera can be extended beyond the Nyquist limit set by the physical pixel size. In this study, we used well-characterized two-dimensional crystals of the membrane protein aquaporin-0 to characterize the performance of the camera below and beyond the physical Nyquist limit and to measure the influence of electron dose rate on image amplitudes and phases.

  20. Fourier Transform Microwave Spectrum of Propene-3-d1 (CH2=CHCH2D), Quadrupole Coupling Constants of Deuterium and a Semiexperimental Equilibrium Structure of Propene.

    PubMed

    Demaison, Jean; Craig, Norman C; Gurusinghe, Ranil Malaka; Tubergen, Michael John; Rudolph, Heinz Dieter; Coudert, Laurent H; Szalay, Peter G; Császár, Attila G

    2017-04-03

    The ground state rotational spectrum of propene-3-d1, CH2=CHCH2D, was measured by Fourier transform microwave spectroscopy. Transitions were assigned for the two conformers, one with the D atom in the symmetry plane (S) and the other with the D atom out of plane (A). The energy difference between the two conformers was calculated to be 6.5 cm-1, the S conformer having lower energy. The quadrupole hyperfine structure due to deuterium was resolved and analyzed for the two conformers. The experimental quadrupole coupling and the centrifugal distortion constants compared favorably to their ab initio counterparts. Ground state rotational constants for the S conformer are 40582.157(9), 9067.024(1), and 7766.0165(12) MHz. Ground state rotational constants for the A conformer are 43403.75(3), 8658.961(2), and 7718.247(2) MHz. For the A conformer, a small tunneling splitting (19 MHz) due to internal rotation was observed and analyzed. Using the new rotational constants of this work as well as those previously determined for the 13C species and for some deuterium-substituted species from the literature, a new semiexperimental equilibrium structure was determined and its high accuracy was confirmed. The difficulty in obtaining accurate coordinates for the out-of-plane hydrogen atom is discussed.

  1. Synthesis, crystal structure and electronic structure of the binary phase Rh2Cd5

    NASA Astrophysics Data System (ADS)

    Koley, Biplab; Chatterjee, S.; Jana, Partha P.

    2017-02-01

    A new phase in the Rh-Cd binary system - Rh2Cd5 has been identified and characterized by single crystal X-ray diffraction and Energy dispersive X-ray analysis. The stoichiometric compound Rh2Cd5 crystallizes with a unit cell containing 14 atoms, in the orthorhombic space group Pbam (55). The crystal structure of Rh2Cd5 can be described as a defect form of the In3Pd5 structure with ordered vacancies, formed of two 2D atomic layers with the stacking sequence: ABAB. The A type layers consist of (3.6.3.6)-Kagomé nets of Cd atoms while the B type layers consist of (35) (37)- nets of both Cd and Rh atoms. The stability of this line phase is investigated by first principle electronic structure calculations on the model of ordered Rh2Cd5.

  2. WN4 longitudinal structure in the O (5S - 3P) and O+ (2P - 2D) ionospheric emissions as simulated by the C-IAM

    NASA Astrophysics Data System (ADS)

    Martynenko, Oleg; Ward, William E.; Shepherd, Gordon; Cho, Young-Min; Namgaladze, Alexander; Fomichev, Victor; McConnell, John; Semeniuk, Kirill; Beagley, Stephen

    A newly developed Canadian Ionosphere and Atmosphere Model (C-IAM) is introduced. It is being developed on the basis of two existing first principle models: the extended Canadian Middle Atmosphere Model (CMAM) and the ionospheric part of the Upper Atmosphere Model (UAM). The model extends from the surface to the inner magnetosphere and hence, is able to describe in a self-consistent way how lower atmosphere dynamical variability propagates into and affects the upper atmosphere and ionosphere. The C-IAM was applied to model the spatial structure of two different ionospheric emissions: the nighttime 135.6 nm O ( (5) S - (3) P) and daytime 732 nm O (+) ( (2) P - (2) D) emissions. The IMAGE satellite observations showed a wave number 4 (WN4) longitudinal structure in the 135.6 nm ionospheric emission emanating from the equatorial ionization anomaly at 350-400 km near 20:00 local time at each longitude. C-IAM simulations are in a good agreement with the observations. Model result analysis reveals that the main mechanism for generating the WN4 structure in the 135.6 nm emission is a modification of the ionospheric dynamo field caused by longitudinal variation of the zonal wind due to waves penetrating from the lower atmosphere. It was also shown, that during geomagnetic storms and substorms the high-latitudinal electric field fully suppresses the dynamo, so that the emission intensity dramatically decreases and the WN4 structure does not appear. The 732 nm emission simulated with the C-IAM also reveals the WN4 structure. Similar to the 135.6 nm emission, this structure is caused by waves penetrating from the lower atmosphere. However, the mechanism of excitation is quite different. The 732 nm emission is produced by the instant local ionization and excitation, and, hence, its variation is caused by the neutral density variability in the F2 region (above 200 km) without any involvement of the electric field effects. Correspondingly, latitudinal distribution of this

  3. Transverse instability and the structure of two-dimensional electron holes: particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Lu, Q.; Wu, M.; Huang, C.; Wang, S.

    2011-12-01

    A multi-dimensional electron phase-space hole (electron hole) is considered to be unstable to the transverse instability. We perform two-dimensional (2D) particle-in-cell (PIC) simulations to study the evolution of electron holes at different plasma conditions; we find that the evolution is determined by combined actions between the transverse instability and the stabilization by the ackground magnetic field. In very weakly magnetized plasma, the transverse instability dominates the evolution of the electron holes. The parallel cut of the perpendicular electric field has bipolar structures, accompanied by the kinking of the electron holes. Such structures last for only tens of electron plasma periods. With the increase of the background magnetic field, the evolution of the electron holes becomes slower. The bipolar structures of the parallel cut of the perpendicular electric field in the electron holes can evolve into unipolar structures. In very strongly magnetized plasma, the unipolar structures of the parallel cut of the perpendicular electric field can last for thousands of electron plasma periods. At the same time, the perpendicular electric field in the electron holes can also influence electron trajectories passing through the electron holes, which results in variations of charge density along the direction perpendicular to the background magnetic field outside of the electron holes. When the amplitude of the electron hole is sufficiently strong, streaked structures of the perpendicular electric field can be formed outside of the electron holes, which then emit electrostatic whistler waves because of the interactions between the streaked structures of the perpendicular electric field and vibrations of the kinked electron holes.

  4. 2D semiconductor optoelectronics

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  5. Electronic and structural properties of functional nanostructures

    NASA Astrophysics Data System (ADS)

    Yang, Teng

    In this Thesis, I present a study of electronic and structural properties of functional nanostructures such as MoSxIy nanowires, self-assembled monolayer on top of metallic surfaces and structural changes induced in graphite by photo excitations. MoSxI y nanowires, which can be easily synthesized in one step, show many advantages over conventional carbon nanotubes in molecular electronics and many other applications. But how to self-assemble them into desired pattern for practical electronic network? Self-assembled monolayers of polymers on metallic surfaces may help to guide pattern formation of some nanomaterials such as MoSxIy nanowires. I have investigated the physical properties of these nanoscale wires and microscopic self-assembly mechanisms of patterns by total energy calculations combined with molecular dynamics simulations and structure optimization. First, I studied the stability of novel Molybdenum chaicohalide nanowires, a candidate for molecular electronics applications. Next, I investigated the self-assembly of nanoparticles into ordered arrays with the aid of a template. Such templates, I showed, can be formed by polymer adsorption on surfaces such as highly ordered pyrolytic graphite and Ag(111). Finally, I studied the physical origin of of structural changes induced in graphite by light in form of a femtosecond laser pulse.

  6. Structure refinement from precession electron diffraction data.

    PubMed

    Palatinus, Lukáš; Jacob, Damien; Cuvillier, Priscille; Klementová, Mariana; Sinkler, Wharton; Marks, Laurence D

    2013-03-01

    Electron diffraction is a unique tool for analysing the crystal structures of very small crystals. In particular, precession electron diffraction has been shown to be a useful method for ab initio structure solution. In this work it is demonstrated that precession electron diffraction data can also be successfully used for structure refinement, if the dynamical theory of diffraction is used for the calculation of diffracted intensities. The method is demonstrated on data from three materials - silicon, orthopyroxene (Mg,Fe)(2)Si(2)O(6) and gallium-indium tin oxide (Ga,In)(4)Sn(2)O(10). In particular, it is shown that atomic occupancies of mixed crystallographic sites can be refined to an accuracy approaching X-ray or neutron diffraction methods. In comparison with conventional electron diffraction data, the refinement against precession diffraction data yields significantly lower figures of merit, higher accuracy of refined parameters, much broader radii of convergence, especially for the thickness and orientation of the sample, and significantly reduced correlations between the structure parameters. The full dynamical refinement is compared with refinement using kinematical and two-beam approximations, and is shown to be superior to the latter two.

  7. Towards functional assembly of 3D and 2D nanomaterials

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher B.; Wang, Kai; Ievlev, Anton V.; Muckley, Eric S.; Ivanov, Ilia N.

    2016-09-01

    Functional assemblies of materials can be realized by tuning the work function and band gap of nanomaterials by rational material selection and design. Here we demonstrate the structural assembly of 2D and 3D nanomaterials and show that layering a 2D material monolayer on a 3D metal oxide leads to substantial alteration of both the surface potential and optical properties of the 3D material. A 40 nm thick film of polycrystalline NiO was produced by room temperature rf-sputtering, resulting in a 3D nanoparticle assembly. Chemical vapor deposition (CVD) grown 10-30 μm WS2 flakes (2D material) were placed on the NiO surface using a PDMS stamp transfer technique. The 2D/3D WS2/NiO assembly was characterized using confocal micro Raman spectroscopy to evaluate the vibrational properties and using Kelvin probe force microscopy (KPFM) to evaluate the surface potential. Raman maps of the 2D/3D assembly show spatial non-uniformity of the A1g mode ( 418 cm-1) and the disorder-enhanced longitudinal acoustic mode, 2LA(M) ( 350 cm-1), suggesting that the WS2 exists in a strained condition on when transferred onto 3D polycrystalline NiO. KPFM measurements show that single layer WS2 on SiO2 has a surface potential 75 mV lower than that of SiO2, whereas the surface potential of WS2 on NiO is 15 mV higher than NiO, indicating that WS2 could act as electron donor or acceptor depending on the 3D material it is interfaced with. Thus 2D and 3D materials can be organized into functional assemblies with electron flow controlled by the WS2 either as the electron donor or acceptor.

  8. Syntheses, crystal structures, and characterization of three 1D, 2D and 3D complexes based on mixed multidentate N- and O-donor ligands

    SciTech Connect

    Yang, Huai-Xia; Liang, Zhen; Hao, Bao-Lian; Meng, Xiang-Ru

    2014-10-15

    Three new 1D to 3D complexes, namely, ([Ni(btec)(Himb){sub 2}(H{sub 2}O){sub 2}]·6H{sub 2}O){sub n} (1), ([Cd(btec){sub 0.5}(imb)(H{sub 2}O)]·1.5H{sub 2}O){sub n} (2), and ([Zn(btec){sub 0.5}(imb)]·H{sub 2}O){sub n} (3) (H{sub 4}btec=1,2,4,5-benzenetetracarboxylic acid, imb=2-(1H-imidazol-1-methyl)-1H-benzimidazole) have been synthesized by adjusting the central metal ions. Single-crystal X-ray diffraction analyses reveal that complex 1 possesses a 1D chain structure which is further extended into the 3D supramolecular architecture via hydrogen bonds. Complex 2 features a 2D network with Schla¨fli symbol (5{sup 3}·6{sup 2}·7)(5{sup 2}·6{sup 4}). Complex 3 presents a 3D framework with a point symbol of (4·6{sup 4}·8)(4{sup 2}·6{sup 2}·8{sup 2}). Moreover, their IR spectra, PXRD patterns, thermogravimetric curves, and luminescent emissions were studied at room temperature. - Graphical abstract: Three new 1D to 3D complexes with different structural and topological motifs have been obtained by modifying the central metal ions. Additionally, their IR, TG analyses and fluorescent properties are also investigated. - Highlights: • Three complexes based on mixed multidentate N- and O-donor ligands. • The complexes are characterized by IR, luminescence and TGA techniques. • Benzenetetracarboxylates display different coordination modes in complexes 1–3. • Changing the metal ions can result in complexes with completely different structures.

  9. The structure and stratigraphy of the sedimentary succession in the Swedish sector of the Baltic Basin: New insights from vintage 2D marine seismic data

    NASA Astrophysics Data System (ADS)

    Sopher, Daniel; Erlström, Mikael; Bell, Nicholas; Juhlin, Christopher

    2016-04-01

    We present five interpreted regional seismic profiles, describing the full sedimentary sequence across the Swedish sector of the Baltic Sea. The data for the study are part of an extensive and largely unpublished 2D seismic dataset acquired between 1970 and 1990 by the Swedish Oil Prospecting Company (OPAB). The Baltic Basin is an intracratonic basin located in northern Europe. Most of the Swedish sector of the basin constitutes the NW flank of a broad synclinal depression, the Baltic Basin. In the SW of the Swedish sector lies the Hanö Bay Basin, formed by subsidence associated with inversion of the Tornquist Zone during the Late Cretaceous. The geological history presented here is broadly consistent with previously published works. We observe an area between the Hanö Bay and the Baltic Basin where the Palaeozoic strata has been affected by transpression and subsequent inversion, associated with the Tornquist Zone during the late Carboniferous-Early Permian and Late Cretaceous, respectively. We propose that the Christiansø High was a structural low during the Late Jurassic, which was later inverted in the Late Cretaceous. We suggest that a fan shaped feature in the seismic data, adjacent to the Christiansø Fault within the Hanö Bay Basin, represents rapidly deposited, coarse-grained sediments eroded from the inverted Christiansø High during the Late Cretaceous. We identify a number of faults within the deeper part of the Baltic Basin, which we also interpret to be transpressional in nature, formed during the Caledonian Orogeny in the Late Silurian-Early Devonian. East of Gotland a number of sedimentary structures consisting of Silurian carbonate reefs and Ordovician carbonate mounds, as well as a large Quaternary glacial feature are observed. Finally, we use the seismic interpretation to infer the structural and stratigraphic history of the Baltic and Hanö Bay basins within the Swedish sector.

  10. Electronic structures and optical properties of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Li, Jun; Freeman, Arthur

    2006-03-01

    Recent optical spectroscopic and theoretical/computational studies challenge the previous consensus on the nature of the optical properties of Si nanowires (SiNW). Here, we present results of precise theoretical FLAPW determinations of the electronic structures and optical properties of (001) and (111) one nm SiNW. The electronic states at the gaps demonstrate a strong orientation dependent parabolic character in the Brillouin zone and a clear entanglement in real space between 1D and 2D dimensions of the wire. The local symmetry imposed by quantum confinement quenches the transitions around the gap, yielding an optically inactive direct gap. The observed (001) photoluminescence is attributed to a transition rooted in an Si8 ring. The optical structure in the experimental range is well reproduced by our first-principles calculations that include the screened exchange-LDA correction to the well-known failure of the LDA. Our predictions about the anisotropy and orientation dependent optical absorption are easily verified experimentally. Work supported by DARPA B529527//W-7405-Eng-48. Holmes, Johnston, Doty, and Korgel, Science 287, 1471 (2000) Zhao, Wei, Yang, and Chou, Phys. Rev. Lett. 92, 236805 (2004) Wimmer, Krakauer, Weinert, and Freeman, PRB 24, 864 (1981)

  11. 2D Modelling of the Gorkha earthquake through the joint exploitation of Sentinel 1-A DInSAR measurements and geological, structural and seismological information

    NASA Astrophysics Data System (ADS)

    De Novellis, Vincenzo; Castaldo, Raffaele; Solaro, Giuseppe; De Luca, Claudio; Pepe, Susi; Bonano, Manuela; Casu, Francesco; Zinno, Ivana; Manunta, Michele; Lanari, Riccardo; Tizzani, Pietro

    2016-04-01

    A Mw 7.8 earthquake struck Nepal on 25 April 2015 at 06:11:26 UTC, killing more than 9,000 people, injuring more than 23,000 and producing extensive damages. The main seismic event, known as the Gorkha earthquake, had its epicenter localized at ~82 km NW of the Kathmandu city and the hypocenter at a depth of approximately 15 km. After the main shock event, about 100 aftershocks occurred during the following months, propagating toward the south-east direction; in particular, the most energetic shocks were the Mw 6.7 and Mw 7.3 occurred on 26 April and 12 May, respectively. In this study, we model the causative fault of the earthquake by jointly exploiting surface deformation retrieved by the DInSAR measurements collected through the Sentinel 1-A (S1A) space-borne sensor and the available geological, structural and seismological information. We first exploit the analytical solution performing a back-analysis of the ground deformation detected by the first co-seismic S1A interferogram, computed by exploiting the 17/04/2015 and 29/04/2015 SAR acquisitions and encompassing the main earthquake and some aftershocks, to search for the location and geometry of the fault plane. Starting from these findings and by benefiting from the available geological, structural and seismological data, we carry out a Finite Element (FE)-based 2D modelling of the causative fault, in order to evaluate the impact of the geological structures activated during the seismic event on the distribution of the ground deformation field. The obtained results show that the causative fault has a rather complex compressive structure, dipping northward, formed by segments with different dip angles: 6° the deep segment and 60° the shallower one. Therefore, although the hypocenters of the main shock and most of the more energetic aftershocks are located along the deeper plane, corresponding to a segment of the Main Himalayan Thrust (MHT), the FE solution also indicates the contribution of the shallower

  12. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity.

    PubMed

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-07-03

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach.

  13. 3D assembly based on 2D structure of Cellulose Nanofibril/Graphene Oxide Hybrid Aerogel for Adsorptive Removal of Antibiotics in Water

    PubMed Central

    Yao, Qiufang; Fan, Bitao; Xiong, Ye; Jin, Chunde; Sun, Qingfeng; Sheng, Chengmin

    2017-01-01

    Cellulose nanofibril/graphene oxide hybrid (CNF/GO) aerogel was fabricated via a one-step ultrasonication method for adsorptive removal of 21 kinds of antibiotics in water. The as-prepared CNF/GO aerogel possesses interconnected 3D network microstructure, in which GO nanosheets with 2D structure were intimately grown along CNF through hydrogen bonds. The aerogel exhibited superior adsorption capacity toward the antibiotics. The removal percentages (R%) of the antibiotics were more than 69% and the sequence of six categories antibiotics according to the adsorption efficiency was as follows: Tetracyclines > Quinolones > Sulfonamides > Chloramphenicols > β-Lactams > Macrolides. The adsorption mechanism was proposed to be electrostatic attraction, p-π interaction, π-π interaction and hydrogen bonds. In detail, the adsorption capacities of CNF/GO aerogel were 418.7 mg·g−1 for chloramphenicol, 291.8 mg·g−1 for macrolides, 128.3 mg·g−1 for quinolones, 230.7 mg·g−1 for β-Lactams, 227.3 mg·g−1 for sulfonamides, and 454.6 mg·g−1 for tetracyclines calculated by the Langmuir isotherm models. Furthermore, the regenerated aerogels still could be repeatedly used after ten cycles without obvious degradation of adsorption performance. PMID:28368045

  14. Synthesis and structural characterization of homochiral 2D coordination polymers of zinc and copper with conformationally flexible ditopic imidazolium-based dicarboxylate ligands.

    PubMed

    Nicasio, Antonio I; Montilla, Francisco; Álvarez, Eleuterio; Colodrero, Rosario P; Galindo, Agustín

    2017-01-03

    Different novel coordination polymers containing zinc, 1-4, and copper, 5-8, metals, connected via chiral imidazolium-based dicarboxylate ligands, [L(R)](-), were isolated by reaction between zinc acetate or copper acetate and enantiomerically pure HL(R) compounds. They were characterised and structurally identified by X-ray diffraction methods (single crystal and powder). These compounds are two-dimensional homochiral coordination polymers, [M(L(R))2]n, in which the metal ions are coordinated by the two carboxylate groups of [L(R)](-) anions in a general bridging monodentate μ(2)-κ(1)-O(1),κ(1)-O(3) fashion that afforded tetrahedral metal coordination environments for zinc, 1-4, and square planar for copper, 5-8, complexes. In all the compounds the 3D supramolecular architecture is constructed by non-covalent interactions between the hydrophobic parts (R groups) of the homochiral 2D coordination polymers and, in some cases, by weak C-HO non-classical hydrogen bonds that provided, in general, a dense crystal packing. DFT calculations on the [L(R)](-) anions confirmed their conformational flexibility as ditopic linkers and this fact makes possible the formation of different coordination polymers for four-coordinated metal centers. Preliminary studies on the Zn-catalyzed synthesis of chiral α-aminophosphonates were carried out and, unfortunately, no enantioselectivity was observed in these reactions.

  15. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity

    PubMed Central

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-01-01

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach. PMID:26151203

  16. 3D assembly based on 2D structure of Cellulose Nanofibril/Graphene Oxide Hybrid Aerogel for Adsorptive Removal of Antibiotics in Water.

    PubMed

    Yao, Qiufang; Fan, Bitao; Xiong, Ye; Jin, Chunde; Sun, Qingfeng; Sheng, Chengmin

    2017-04-03

    Cellulose nanofibril/graphene oxide hybrid (CNF/GO) aerogel was fabricated via a one-step ultrasonication method for adsorptive removal of 21 kinds of antibiotics in water. The as-prepared CNF/GO aerogel possesses interconnected 3D network microstructure, in which GO nanosheets with 2D structure were intimately grown along CNF through hydrogen bonds. The aerogel exhibited superior adsorption capacity toward the antibiotics. The removal percentages (R%) of the antibiotics were more than 69% and the sequence of six categories antibiotics according to the adsorption efficiency was as follows: Tetracyclines > Quinolones > Sulfonamides > Chloramphenicols > β-Lactams > Macrolides. The adsorption mechanism was proposed to be electrostatic attraction, p-π interaction, π-π interaction and hydrogen bonds. In detail, the adsorption capacities of CNF/GO aerogel were 418.7 mg·g(-1) for chloramphenicol, 291.8 mg·g(-1) for macrolides, 128.3 mg·g(-1) for quinolones, 230.7 mg·g(-1) for β-Lactams, 227.3 mg·g(-1) for sulfonamides, and 454.6 mg·g(-1) for tetracyclines calculated by the Langmuir isotherm models. Furthermore, the regenerated aerogels still could be repeatedly used after ten cycles without obvious degradation of adsorption performance.

  17. Modeling the uniform transport in thin film SOI MOSFETs with a Monte-Carlo simulator for the 2D electron gas

    NASA Astrophysics Data System (ADS)

    Lucci, Luca; Palestri, Pierpaolo; Esseni, David; Selmi, Luca

    2005-09-01

    In this paper, we present simulations of some of the most relevant transport properties of the inversion layer of ultra-thin film SOI devices with a self-consistent Monte-Carlo transport code for a confined electron gas. We show that size induced quantization not only decreases the low-field mobility (as experimentally found in [Uchida K, Koga J, Ohba R, Numata T, Takagi S. Experimental eidences of quantum-mechanical effects on low-field mobility, gate-channel capacitance and threshold voltage of ultrathin body SOI MOSFETs, IEEE IEDM Tech Dig 2001;633-6; Esseni D, Mastrapasqua M, Celler GK, Fiegna C, Selmi L, Sangiorgi E. Low field electron and hole mobility of SOI transistors fabricated on ultra-thin silicon films for deep sub-micron technology application. IEEE Trans Electron Dev 2001;48(12):2842-50; Esseni D, Mastrapasqua M, Celler GK, Fiegna C, Selmi L, Sangiorgi E, An experimental study of mobility enhancement in ultra-thin SOI transistors operated in double-gate mode, IEEE Trans Electron Dev 2003;50(3):802-8. [1-3

  18. A frequency-based approach to locate common structure for 2D-3D intensity-based registration of setup images in prostate radiotherapy

    SciTech Connect

    Munbodh, Reshma; Chen Zhe; Jaffray, David A.; Moseley, Douglas J.; Knisely, Jonathan P. S.; Duncan, James S.

    2007-07-15

    In many radiotherapy clinics, geometric uncertainties in the delivery of 3D conformal radiation therapy and intensity modulated radiation therapy of the prostate are reduced by aligning the patient's bony anatomy in the planning 3D CT to corresponding bony anatomy in 2D portal images acquired before every treatment fraction. In this paper, we seek to determine if there is a frequency band within the portal images and the digitally reconstructed radiographs (DRRs) of the planning CT in which bony anatomy predominates over non-bony anatomy such that portal images and DRRs can be suitably filtered to achieve high registration accuracy in an automated 2D-3D single portal intensity-based registration framework. Two similarity measures, mutual information and the Pearson correlation coefficient were tested on carefully collected gold-standard data consisting of a kilovoltage cone-beam CT (CBCT) and megavoltage portal images in the anterior-posterior (AP) view of an anthropomorphic phantom acquired under clinical conditions at known poses, and on patient data. It was found that filtering the portal images and DRRs during the registration considerably improved registration performance. Without filtering, the registration did not always converge while with filtering it always converged to an accurate solution. For the pose-determination experiments conducted on the anthropomorphic phantom with the correlation coefficient, the mean (and standard deviation) of the absolute errors in recovering each of the six transformation parameters were {theta}{sub x}:0.18(0.19) deg., {theta}{sub y}:0.04(0.04) deg., {theta}{sub z}:0.04(0.02) deg., t{sub x}:0.14(0.15) mm, t{sub y}:0.09(0.05) mm, and t{sub z}:0.49(0.40) mm. The mutual information-based registration with filtered images also resulted in similarly small errors. For the patient data, visual inspection of the superimposed registered images showed that they were correctly aligned in all instances. The results presented in this

  19. Electronic structure of Mn and Fe oxides

    NASA Astrophysics Data System (ADS)

    Harrison, Walter

    2008-03-01

    We present a clear, simple tight-binding representation of the electronic structure and cohesive energy (energy of atomization) of MnO, Mn2O3, and MnO2, in which the formal charge states Mn^2+, Mn^3+, and Mn^4+, respectively, occur. It is based upon localized cluster orbitals for each Mn and its six oxygen neighbors. This approach is fundamentally different from local-density theory (or LDA+U), and perhaps diametrically opposite to Dynamical Mean Field Theory. Electronic states were calculated self-consistently using existing parameters [1], but it is found that the charge density is quite insensitive to charge state, so that the starting parameters are adequate. The cohesive energy per Mn is dominated by the transfer of two s electrons to oxygen p states, the same for all three compounds. The differing transfer of majority d electrons to oxygen p states, and the coupling between them, accounts for the observed variation in cohesion in the series. The same description applies to the perovskites, such as LaxSr1-xMnO3, and can be used for FeO, Fe2O3 (and FeO2), Because the formulation is local, it is equally applicable to impurities, defects and surfaces. [1] Walter A. Harrison, Elementary Electronic Structure, World Scientific (Singapore, 1999), revised edition (2004).

  20. Positron annihilation studies of the electronic structure and fermiology of the high-{Tc} superconductors

    SciTech Connect

    Smedskjaer, L.C.; Bansil, A.

    1992-09-01

    We discuss the application of the positron annihilation angular correlation (ACAR) spectroscopy for investigating the electronic structure and Fermiology of the high-T{sub c} superconductors, with focus on the YBa{sub 2}Cu{sub 3}O{sub 7} system where most of the experimental and theoretical work has to date been concentrated. Comparisons between measured 2D-ACAR positron spectra and band theory predictions show a remarkable agreement (for the normal state), indicating that the electronic structure and Fermi surface of this material is described reasonably by the conventional picture.

  1. Positron annihilation studies of the electronic structure and fermiology of the high-[Tc] superconductors

    SciTech Connect

    Smedskjaer, L.C. ); Bansil, A. . Dept. of Physics)

    1992-09-01

    We discuss the application of the positron annihilation angular correlation (ACAR) spectroscopy for investigating the electronic structure and Fermiology of the high-T[sub c] superconductors, with focus on the YBa[sub 2]Cu[sub 3]O[sub 7] system where most of the experimental and theoretical work has to date been concentrated. Comparisons between measured 2D-ACAR positron spectra and band theory predictions show a remarkable agreement (for the normal state), indicating that the electronic structure and Fermi surface of this material is described reasonably by the conventional picture.

  2. Electronic structure engineering of various structural phases of phosphorene.

    PubMed

    Kaur, Sumandeep; Kumar, Ashok; Srivastava, Sunita; Tankeshwar, K

    2016-07-21

    We report the tailoring of the electronic structures of various structural phases of phosphorene (α-P, β-P, γ-P and δ-P) based homo- and hetero-bilayers through in-plane mechanical strains, vertical pressure and transverse electric field by employing density functional theory. In-plane biaxial strains have considerably modified the electronic bandgap of both homo- and hetero-bilayers while vertical pressure induces metallization in the considered structures. The γ-P homo-bilayer structure showed the highest ultimate tensile strength (UTS ∼ 6.21 GPa) upon in-plane stretching. Upon application of a transverse electric field, the variation in the bandgap of hetero-bilayers was found to be strongly dependent on the polarity of the applied field which is attributed to the counterbalance between the external electric field and the internal field induced by different structural phases and heterogeneity in the arrangements of atoms of each surface of the hetero-bilayer system. Our results demonstrate that the electronic structures of the considered hetero- and homo-bilayers of phosphorene could be modified by biaxial strain, pressure and electric field to achieve the desired properties for future nano-electronic devices.

  3. Phase diagram of electronic systems with quadratic Fermi nodes in 2 <d <4 : 2 +ɛ expansion, 4 -ɛ expansion, and functional renormalization group

    NASA Astrophysics Data System (ADS)

    Janssen, Lukas; Herbut, Igor F.

    2017-02-01

    Several materials in the regime of strong spin-orbit interaction such as HgTe, the pyrochlore iridate Pr2Ir2O7 , and the half-Heusler compound LaPtBi, as well as various systems related to these three prototype materials, are believed to host a quadratic band touching point at the Fermi level. Recently, it has been proposed that such a three-dimensional gapless state is unstable to a Mott-insulating ground state at low temperatures when the number of band touching points N at the Fermi level is smaller than a certain critical number Nc. We further substantiate and quantify this scenario by various approaches. Using ɛ expansion near two spatial dimensions, we show that Nc=64 /(25 ɛ2) +O (1 /ɛ ) and demonstrate that the instability for N 2 <d <4 . Directly in d =3 we therewith find Nc=1.86 , and thus again above the physical N =1 . All these results are consistent with the prediction that the interacting ground state of pure, unstrained HgTe, and possibly also Pr2Ir2O7 , is a strong topological insulator with a dynamically generated gap—a topological Mott insulator.

  4. [Structured electronic consultation letter for shoulder disorders].

    PubMed

    Paloneva, Juha; Oikari, Marjo; Ylinen, Jari; Ingalsuo, Minna; Ilkka, Kunnamo; Ilkka, Kiviranta

    2012-01-01

    Referral to a specialist has a significant influence on management of the patient and costs associated with the treatments. However, development and research of the process by which patients are referred has been almost neglected. Expectations considering the purpose, contents, and timing of the referral of the consulting physician and the consultant do not always meet. A structured, electronic consultation letter was developed to respond this need. Functionality and interactivity are the key elements of the referral, including (1) an electronic referral letter to a specialist, (2) interactive education in clinical examination and management of shoulder disorders, and (3) an instrument of clinical examination and documentation of shoulder disorders.

  5. The electronic structure of nonpolyhex carbon nanotubes.

    PubMed

    László, István

    2004-01-01

    Generalizing the folding method to any periodic two-dimensional planar carbon structures we have calculated the corresponding electronic structures in the framework of the one orbital one site tight-binding (Bloch-Hückel) method by solving the eigenvalue problems in a numerical way. We discussed the metallic or the nonmetallic behavior of the nanotubes by applying the folding vectors of parameters (m, n). We extended the topological coordinate method to two-dimensional periodic planar structures as well. Nearly regular hexagonal, pentagonal, and heptagonal polygons were obtained. The curvatures of the final relaxed structures can be read from the sizes of the polygons. Thus relying only on the topological information we could describe the shape of the tubular structures and their conductivity behaviors.

  6. Probing Structural and Electronic Dynamics with Ultrafast Electron Microscopy

    SciTech Connect

    Plemmons, DA; Suri, PK; Flannigan, DJ

    2015-05-12

    In this Perspective, we provide an overview,of the field of ultrafast electron microscopy (UEM). We begin by briefly discussing the emergence of methods for probing ultrafast structural dynamics and the information that can be obtained. Distinctions are drawn between the two main types a probes for femtosecond (fs) dynamics fast electrons and X-ray photons and emphasis is placed on hour the nature of charged particles is exploited in ultrafast electron-based' experiments:. Following this, we describe the versatility enabled by the ease with which electron trajectories and velocities can be manipulated with transmission electron microscopy (TEM): hardware configurations, and we emphasize how this is translated to the ability to measure scattering intensities in real, reciprocal, and energy space from presurveyed and selected rianoscale volumes. Owing to decades of ongoing research and development into TEM instrumentation combined with advances in specimen holder technology, comprehensive experiments can be conducted on a wide range of materials in various phases via in situ methods. Next, we describe the basic operating concepts, of UEM, and we emphasize that its development has led to extension of several of the formidable capabilities of TEM into the fs domain, dins increasing the accessible temporal parameter spade by several orders of magnitude. We then divide UEM studies into those conducted in real (imaging), reciprocal (diffraction), and energy (spectroscopy) spate. We begin each of these sections by providing a brief description of the basic operating principles and the types of information that can be gathered followed by descriptions of how these approaches are applied in UM, the type of specimen parameter space that can be probed, and an example of the types of dynamics that can be resolved. We conclude with an Outlook section, wherein we share our perspective on some future directions of the field pertaining to continued instrument development and

  7. Determination of the neutron electric formfactor in quasielastic collisions of polarized electrons with 3He and 2D. Collaboration A3 at MAMI

    NASA Astrophysics Data System (ADS)

    Andresen, H. G.; Annand, J. R. M.; Aulenbacher, K.; Becker, J.; Blume-Werry, J.; Dombo, Th.; Drescher, P.; Ducret, J. E.; Eyl, D.; Fischer, H.; Frey, A.; Grabmayr, P.; Hall, S.; Hartmann, P.; Hehl, T.; Heil, W.; Hoffmann, J.; Kellie, J. D.; Klein, F.; Leduc, M.; Meierhoff, M.; Möller, H.; Nachtigall, Ch.; Ostrick, M.; Otten, E. W.; Owens, R. O.; Plützer, S.; Reichert, E.; Rohe, D.; Schäfer, M.; Schearer, L. D.; Schmieden, H.; Steffens, K.; Surkau, R.; Walcher, Th.

    1995-07-01

    The determination of the neutron electric formfactor from quasielastic reactions 3H↘e(e↘,e'n) and D(e↘,e',n↘) respectively is one of the present goals of experiments with polarized electrons at the Mainz race track microtron MAMI. A GaAsP-photoelectron source is used at MAMI to get an 855 MeV electron beam spinpolarized to a degree of 35% at a current of 10 μA. Polarized 3He-nuclei are produced by optical pumping metastable 3He. Scattered electrons are detected in coincidence with the recoil neutrons, the transverse spinpolarization of the neutrons may be analyzed by neutron-proton scattering in a double wall plastic scintillator detector. A subset of the final detector set-up has been tested successfully now by investigating the polarization transfer to the proton in reactions H(e↘,e'p↘) and D(e↘,e'p↘) and to the neutron in D(e↘,e'n↘) at a 4-momentum transfer with -Q2=8fm-2. First data from the exclusive quasielastic collision 3H↘e(e↘,e'n) indicate a value of the neutron electric formfactor of GnE=0.035±0.015 at -Q2=8fm-2.

  8. An ab initio study on atomic and electronic structures of two-dimensional Al3Ti at Al/TiB2 interface

    NASA Astrophysics Data System (ADS)

    Men, H.

    2016-09-01

    The atomic and electronic structures of a two-dimentional (2D) Al3Ti layer at Al/TiB2 interface has been investigated using first-principle calculations. The result reveals the 2D-Al3Ti adopts the structure of bulk Al3Ti. There exists a strong Ti(3d)-Al(3p) hybridization between Ti and Al atoms of the 2D-Al3Ti, as well as between surface Ti atoms of TiB2 and Al atoms of 2D-Al3Ti. It leads to a stronger covalent Ti-Al bonding at the Al/2D-Al3Ti/TiB2 interface than at the Al/TiB2 interface, which is responsible for the stability of 2D-Al3Ti.

  9. Electronic structure of worm-eaten graphene

    NASA Astrophysics Data System (ADS)

    Negishi, Hayato; Takeda, Kyozaburo

    2017-02-01

    We theoretically study the electronic structure of graphenes having several kinds of imperfections such as atomic vacancies and heteroatom replacements. We consider 12 different configurations of vacancies and 39 different geometries of heteroatom replacements in order to approximately take into account the random conformations of imperfections. To systematically provide a perspective understanding of the defect π and σ states caused by atomistic voids and/or vacancies and heteroatom replacements, we have carried out a tight-binding (TB) calculation. We study the orbital hybridization to clarify the origin and formation of π and σ defect states arising from such imperfections. We also discuss the electronic structure around the Fermi level through the TB band calculation.

  10. Spin Polarization of 2D Electrons in GaAs Quantum Wells at ν=1/2 from Gallium NMR Measurements

    NASA Astrophysics Data System (ADS)

    Freytag, N.; Horvatić, M.; Berthier, C.; Lévy, L.-P.; Melinte, S.; Bayot, V.; Shayegan, M.

    2000-03-01

    The spin polarization (\\cal P) of a two-dimensional electron gas (2DEG) in two GaAs/AlGaAs multiple-quantum-well heterostructures was probed by measurements of magnetic hyperfine shifts of gallium nuclei located in the quantum wells. The low temperature (50 mK <= T<= 10 K) nuclear magnetic resonance spectra were observed using a standard spin-echo technique(S. Melinte et al.), Phys. Rev. Lett. in press (cond-mat/9908098).. Here we report on the temperature and magnetic field-orientation dependence of \\cal P at Landau level filling factor ν =1/2. Our interpretation of the data relies on the concept of polarization mass (m_p) for composite fermions (CFs) introduced by Park and Jain(K. Park and J.K. Jain, Phys. Rev. Lett. 80), 4237 (1998).. The results in perpendicular magnetic fields (θ = 0) compare well to the simplest model for \\cal P, derived by assuming non-interacting CFs of mass m^*_p, carrying a spin, and with a g-factor the same as electrons. An unexpected behavior is observed when the 2DEG is tilted in the magnetic field; these θ neq 0 data do not agree with predictions by the non-interacting CF model by Park and Jain or the Hamiltonian model by Shankar(R. Shankar, cond-mat/9911288.).

  11. Electronic structure investigation of biphenylene films

    NASA Astrophysics Data System (ADS)

    Totani, R.; Grazioli, C.; Zhang, T.; Bidermane, I.; Lüder, J.; de Simone, M.; Coreno, M.; Brena, B.; Lozzi, L.; Puglia, C.

    2017-02-01

    Photoelectron Spectroscopy (PS) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy have been used to investigate the occupied and empty density of states of biphenylene films of different thicknesses, deposited onto a Cu(111) crystal. The obtained results have been compared to previous gas phase spectra and single molecule Density Functional Theory (DFT) calculations to get insights into the possible modification of the molecular electronic structure in the film induced by the adsorption on a surface. Furthermore, NEXAFS measurements allowed characterizing the variation of the molecular arrangement with the film thickness and helped to clarify the substrate-molecule interaction.

  12. Atomic and Electronic Structure of Solids

    NASA Astrophysics Data System (ADS)

    Kaxiras, Efthimios

    2003-01-01

    Preface; Acknowledgements; Part I. Crystalline Solids: 1. Atomic structure of crystals; 2. The single-particle approximation; 3. Electrons in crystal potential; 4. Band structure of crystals; 5. Applications of band theory; 6. Lattice vibrations; 7. Magnetic behaviour of solids; 8. Superconductivity; Part II. Defects, Non-Crystalline Solids and Finite Structures: 9. Defects I: point defects; 10. Defects II: line defects; 11. Defects III: surfaces and interfaces; 12. Non-crystalline solids; 13. Finite structures; Part III. Appendices: A. Elements of classical electrodynamics; B. Elements of quantum mechanics; C. Elements of thermodynamics; D. Elements of statistical mechanics; E. Elements of elasticity theory; F. The Madelung energy; G. Mathematical tools; H. Nobel Prize citations; I. Units and symbols; References; Index.

  13. HOTCFGM-2D: A Coupled Higher-Order Theory for Cylindrical Structural Components with Bi-Directionally Components with Bi-Directionally Graded Microstructures

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Aboudi, Jacob

    2000-01-01

    The objective of this two-year project was to develop and deliver to the NASA-Glenn Research Center a two-dimensional higher-order theory, and related computer codes, for the analysis and design of cylindrical functionally graded materials/structural components for use in advanced aircraft engines (e.g., combustor linings, rotor disks, heat shields, brisk blades). To satisfy this objective, two-dimensional version of the higher-order theory, HOTCFGM-2D, and four computer codes based on this theory, for the analysis and design of structural components functionally graded in the radial and circumferential directions were developed in the cylindrical coordinate system r-Theta-z. This version of the higher-order theory is a significant generalization of the one-dimensional theory, HOTCFGM-1D, developed during the FY97 for the analysis and design of cylindrical structural components with radially graded microstructures. The generalized theory is applicable to thin multi-phased composite shells/cylinders subjected to steady-state thermomechanical, transient thermal and inertial loading applied uniformly along the axial direction such that the overall deformation is characterized by a constant average axial strain. The reinforcement phases are uniformly distributed in the axial direction, and arbitrarily distributed in the radial and circumferential direction, thereby allowing functional grading of the internal reinforcement in the r-Theta plane. The four computer codes fgmc3dq.cylindrical.f, fgmp3dq.cylindrical.f, fgmgvips3dq.cylindrical.f, and fgmc3dq.cylindrical.transient.f are research-oriented codes for investigating the effect of functionally graded architectures, as well as the properties of the multi-phase reinforcement, in thin shells subjected to thermomechanical and inertial loading, on the internal temperature, stress and (inelastic) strain fields. The reinforcement distribution in the radial and circumferential directions is specified by the user. The thermal

  14. Controlling the Electronic Structure of Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Ohta, Taisuke; Bostwick, Aaron; McChesney, Jessica; Seyller, Thomas; Horn, Karsten; Rotenberg, Eli

    2007-03-01

    Carbon-based materials such as carbon nanotubes, graphite intercalation compounds, fullerenes, and ultrathin graphite films exhibit many exotic phenomena such as superconductivity and an anomalous quantum Hall effect. These findings have caused renewed interest in the electronic structure of ultrathin layers of graphene: a single honeycomb carbon layer that is the building block for these materials. There is a strong motivation to incorporate graphene multilayers into atomic-scale devices, spurred on by rapid progress in their fabrication and manipulation. We have synthesized bilayer graphene thin films deposited on insulating silicon carbide and characterized their electronic band structure using angle-resolved photoemission. By selectively adjusting the carrier concentration in each layer, changes in the Coulomb potential led to control of the gap between valence and conduction bands [1]. This control over the band structure suggests the potential application of bilayer graphene to switching functions in atomic scale electronic devices. [1] T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science, 313, 951 (2006).

  15. Fine-scale thermohaline ocean structure retrieved with 2-D prestack full-waveform inversion of multichannel seismic data: Application to the Gulf of Cadiz (SW Iberia)

    NASA Astrophysics Data System (ADS)

    Dagnino, D.; Sallarès, V.; Biescas, B.; Ranero, C. R.

    2016-08-01

    This work demonstrates the feasibility of 2-D time-domain, adjoint-state acoustic full-waveform inversion (FWI) to retrieve high-resolution models of ocean physical parameters such as sound speed, temperature and salinity. The proposed method is first described and then applied to prestack multichannel seismic (MCS) data acquired in the Gulf of Cadiz (SW Iberia) in 2007 in the framework of the Geophysical Oceanography project. The inversion strategy flow includes specifically designed data preconditioning for acoustic noise reduction, followed by the inversion of sound speed in the shotgather domain. We show that the final sound speed model has a horizontal resolution of ˜ 70 m, which is two orders of magnitude better than that of the initial model constructed with coincident eXpendable Bathy Thermograph (XBT) data, and close to the theoretical resolution of O(λ). Temperature (T) and salinity (S) are retrieved with the same lateral resolution as sound speed by combining the inverted sound speed model with the thermodynamic equation of seawater and a local, depth-dependent T-S relation derived from regional conductivity-temperature-depth (CTD) measurements of the National Oceanic and Atmospheric Administration (NOAA) database. The comparison of the inverted T and S models with XBT and CTD casts deployed simultaneously to the MCS acquisition shows that the thermohaline contrasts are resolved with an accuracy of 0.18oC for temperature and 0.08 PSU for salinity. The combination of oceanographic and MCS data into a common, pseudo-automatic inversion scheme allows to quantitatively resolve submeso-scale features that ought to be incorporated into larger-scale ocean models of oceans structure and circulation.

  16. Positron annihilation study for cadmium (electronic structure and enhancement effect)

    NASA Astrophysics Data System (ADS)

    Hamid, A.

    2003-12-01

    The three dimensional electron density in momentum space ρ(p) and in wave vector space n(k) was reconstructed for cadmium (Cd). The measurements were performed using the two dimensional angular correlation of annihilation radiation (2D-ACAR) technique. Enhanced contributions in the spectra were observed around 5.5 mrad, discussed in terms of a Kahana-like enhancement effect. From another viewpoint, Fermi radii were analyzed in the (λM K), (ALM) and (AHK) planes, and they showed a maximum deviation of about 4% from the free electron Fermi radius. Moreover, comparisons to a radio-frequency size effect (RFSE) experiment and theoretical band structure calculations (using augmented plane wave (APW), linear combination of atomic orbital (LCAO) and linear muffin tin orbital (LMTO) methods) were examined. The results showed a qualitative agreement with both APW and LCAO calculations. However, a favorable agreement with the APW method was determined via Fermi surface dimensions. The differences of bands' occupation of n(k) between the current work and the APW method were argued in view of positron wave function in Cd.

  17. Hard and Soft Physics with 2D Materials

    NASA Astrophysics Data System (ADS)

    McEuen, Paul

    With their remarkable structural, thermal, mechanical, optical, chemical, and electronic properties, 2D materials are truly special. For example, a graphene sheet can be made into a high-performance transistor, but it is also the ultimate realization of a thin mechanical sheet. Such sheets, first studied in detail by August Föppl over a hundred years ago, are notoriously complex, since they can bend, buckle, and crumple in a variety of ways. In this talk, I will discuss a number of experiments to probe these unusual materials, from the effects of ripples on the mechanical properties of a graphene sheet, to folding with atomically thin bimorphs, to the electronic properties of bilayer graphene solitons. Finally, I discuss how the Japanese paper art of kirigami (kiru = `to cut', kami = `paper') applied to 2D materials offers a route to mechanical metamaterials and the construction of nanoscale machines.

  18. Synthesis, X-ray crystal structure, optical properties and DFT studies of a new 2D layered iodide bridged Pb(II) coordination polymer with 2,3-bis(2-pyridyl)pyrazine

    SciTech Connect

    Saghatforoush, Lotfali Bakhtiari, Akbar; Gheleji, Hojjat

    2015-01-15

    The synthesis of two dimensional (2D) coordination polymer [Pb{sub 2}(µ-I){sub 2}(µ-dpp-N,N,N,N)(µ-dpp-N,N)I{sub 2}]{sub n} (dpp=2,3-bis(2-pyridyl)pyrazine) is reported. As determined by X-ray diffraction of a twinned crystal, the dpp ligand simultaneously adopts a bis–bidentate and bis–monodentate coordination mode in the crystal structure of compound. The electronic band structure along with density of states (DOS) calculated by the DFT method indicates that the compound is an indirect band gap semiconductor. According to the DFT calculations, the observed emission of the compound at 600 nm in solid phase could be attributed to arise from an excited LLCT state (dpp-π{sup ⁎} [C-2p and N-2p states, CBs] to I-6p state [VBs]). The linear optical properties of the compound are also calculated by DFT method. The structure of the compound in solution phase is discussed based on the measured {sup 1}H NMR and fluorescence spectra in DMSO. TGA studies indicate that the compound is thermally stable up to 210 °C. - Graphical abstract: The synthesis, crystal structure and emission spectra of [Pb{sub 2}(µ-I){sub 2}(µ-dpp-N,N,N,N)(µ-dpp-N,N)I{sub 2}]{sub n} is presented. The electronic band structure and linear optical properties of the compound are calculated by the DFT method. - Highlights: • Two dimensional [Pb{sub 2}(µ-I){sub 2}(µ-dpp-N,N,N,N)(µ-dpp-N,N)I{sub 2}]{sub n} has been prepared. • The structure of the compound is determined by XRD of a twinned crystal. • DFT calculations indicate that the compound is an indirect band gap semiconductor. • As shown by DFT calculations, the emission band of the compound is LLCT. • Solution phase structure of compound is explored by {sup 1}H NMR and emission spectra.

  19. A quantum dynamical comparison of the electronic couplings derived from quantum electrodynamics and Förster theory: application to 2D molecular aggregates

    NASA Astrophysics Data System (ADS)

    Frost, James E.; Jones, Garth A.

    2014-11-01

    The objective of this study is to investigate under what circumstances Förster theory of electronic (resonance) energy transfer breaks down in molecular aggregates. This is achieved by simulating the dynamics of exciton diffusion, on the femtosecond timescale, in molecular aggregates using the Liouville-von Neumann equation of motion. Specifically the focus of this work is the investigation of both spatial and temporal deviations between exciton dynamics driven by electronic couplings calculated from Förster theory and those calculated from quantum electrodynamics. The quantum electrodynamics (QED) derived couplings contain medium- and far-zone terms that do not exist in Förster theory. The results of the simulations indicate that Förster coupling is valid when the dipole centres are within a few nanometres of one another. However, as the distance between the dipole centres increases from 2 nm to 10 nm, the intermediate- and far-zone coupling terms play non-negligible roles and Förster theory begins to break down. Interestingly, the simulations illustrate how contributions to the exciton dynamics from the intermediate- and far-zone coupling terms of QED are quickly washed-out by the near-zone mechanism of Förster theory for lattices comprising closely packed molecules. On the other hand, in the case of sparsely packed arrays, the exciton dynamics resulting from the different theories diverge within the 100 fs lifetime of the trajectories. These results could have implications for the application of spectroscopic ruler techniques as well as design principles relating to energy harvesting materials.

  20. Energy of the quasi-free electron in H{sub 2}, D{sub 2}, and O{sub 2}: Probing intermolecular potentials within the local Wigner-Seitz model

    SciTech Connect

    Evans, C. M. Krynski, Kamil; Streeter, Zachary; Findley, G. L.

    2015-12-14

    We present for the first time the quasi-free electron energy V{sub 0}(ρ) for H{sub 2}, D{sub 2}, and O{sub 2} from gas to liquid densities, on noncritical isotherms and on a near critical isotherm in each fluid. These data illustrate the ability of field enhanced photoemission (FEP) to determine V{sub 0}(ρ) accurately in strongly absorbing fluids (e.g., O{sub 2}) and fluids with extremely low critical temperatures (e.g., H{sub 2} and D{sub 2}). We also show that the isotropic local Wigner-Seitz model for V{sub 0}(ρ) — when coupled with thermodynamic data for the fluid — can yield optimized parameters for intermolecular potentials, as well as zero kinetic energy electron scattering lengths.

  1. Electronic structure theory of the superheavy elements

    NASA Astrophysics Data System (ADS)

    Eliav, Ephraim; Fritzsche, Stephan; Kaldor, Uzi

    2015-12-01

    High-accuracy calculations of atomic properties of the superheavy elements (SHE) up to element 122 are reviewed. The properties discussed include ionization potentials, electron affinities and excitation energies, which are associated with the spectroscopic and chemical behavior of these elements, and are therefore of considerable interest. Accurate predictions of these quantities require high-order inclusion of relativity and electron correlation, as well as large, converged basis sets. The Dirac-Coulomb-Breit Hamiltonian, which includes all terms up to second order in the fine-structure constant α, serves as the framework for the treatment; higher-order Lamb shift terms are considered in some selected cases. Electron correlation is treated by either the multiconfiguration self-consistent-field approach or by Fock-space coupled cluster theory. The latter is enhanced by the intermediate Hamiltonian scheme, allowing the use of larger model (P) spaces. The quality of the calculations is assessed by applying the same methods to lighter homologs of the SHEs and comparing with available experimental information. Very good agreement is obtained, within a few hundredths of an eV, and similar accuracy is expected for the SHEs. Many of the properties predicted for the SHEs differ significantly from what may be expected by straightforward extrapolation of lighter homologs, demonstrating that the structure and chemistry of SHEs are strongly affected by relativity. The major scientific challenge of the calculations is to find the electronic structure and basic atomic properties of the SHE and assign its proper place in the periodic table. Significant recent developments include joint experimental-computational studies of the excitation spectrum of Fm and the ionization energy of Lr, with excellent agreement of experiment and theory, auguring well for the future of research in the field.

  2. Multi-Scale Modeling, Design Strategies and Physical Properties of 2D Composite Sheets

    DTIC Science & Technology

    2015-01-15

    of Pennsylvania. The breakthrough results obtained are 1) prediction and subsequent experimental observation of strain induced changes in electronic...structure of TMD materials 2) Prediction and experimental observation of using defects in 2D materials to enhance charge storage capacity and 3...221 Philadelphia , PA 19104 -6205 4-Mar-2014 ABSTRACT Final Report: 9.4: Multi-scale modeling, design strategies and physical properties of 2D

  3. Actinide electronic structure and atomic forces

    NASA Astrophysics Data System (ADS)

    Albers, R. C.; Rudin, Sven P.; Trinkle, Dallas R.; Jones, M. D.

    2000-07-01

    We have developed a new method[1] of fitting tight-binding parameterizations based on functional forms developed at the Naval Research Laboratory.[2] We have applied these methods to actinide metals and report our success using them (see below). The fitting procedure uses first-principles local-density-approximation (LDA) linear augmented plane-wave (LAPW) band structure techniques[3] to first calculate an electronic-structure band structure and total energy for fcc, bcc, and simple cubic crystal structures for the actinide of interest. The tight-binding parameterization is then chosen to fit the detailed energy eigenvalues of the bands along symmetry directions, and the symmetry of the parameterization is constrained to agree with the correct symmetry of the LDA band structure at each eigenvalue and k-vector that is fit to. By fitting to a range of different volumes and the three different crystal structures, we find that the resulting parameterization is robust and appears to accurately calculate other crystal structures and properties of interest.

  4. Active-site structure, binding and redox activity of the heme–thiolate enzyme CYP2D6 immobilized on coated Ag electrodes: a surface-enhanced resonance Raman scattering study

    PubMed Central

    Bonifacio, Alois; Millo, Diego; Keizers, Peter H. J.; Boegschoten, Roald; Commandeur, Jan N. M.; Vermeulen, Nico P. E.; Gooijer, Cees

    2007-01-01

    Surface-enhance resonance Raman scattering spectra of the heme–thiolate enzyme cytochrome P450 2D6 (CYP2D6) adsorbed on Ag electrodes coated with 11-mercaptoundecanoic acid (MUA) were obtained in various experimental conditions. An analysis of these spectra, and a comparison between them and the RR spectra of CYP2D6 in solution, indicated that the enzyme’s active site retained its nature of six-coordinated low-spin heme upon immobilization. Moreover, the spectral changes detected in the presence of dextromethorphan (a CYP2D6 substrate) and imidazole (an exogenous heme axial ligand) indicated that the immobilized enzyme also preserved its ability to reversibly bind a substrate and form a heme–imidazole complex. The reversibility of these processes could be easily verified by flowing alternately solutions of the various compounds and the buffer through a home-built spectroelectrochemical flow cell which contained a sample of immobilized protein, without the need to disassemble the cell between consecutive spectral data acquisitions. Despite immobilized CYP2D6 being effectively reduced by a sodium dithionite solution, electrochemical reduction via the Ag electrode was not able to completely reduce the enzyme, and led to its extensive inactivation. This behavior indicated that although the enzyme’s ability to exchange electrons is not altered by immobilization per se, MUA-coated electrodes are not suited to perform direct electrochemistry of CYP2D6. Electronic supplementary material The online version of this article (doi:10.1007/s00775-007-0303-1) contains supplementary material, which is available to authorized users. PMID:17899220

  5. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms

    NASA Astrophysics Data System (ADS)

    Bangert, U.; Pierce, W.; Boothroyd, C.; Pan, C.-T.; Gwilliam, R.

    2016-06-01

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes.

  6. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms

    PubMed Central

    Bangert, U.; Pierce, W.; Boothroyd, C.; Pan, C.-T.; Gwilliam, R.

    2016-01-01

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes. PMID:27271352

  7. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms.

    PubMed

    Bangert, U; Pierce, W; Boothroyd, C; Pan, C-T; Gwilliam, R

    2016-06-07

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes.

  8. Ultra-broadband 2D electronic spectroscopy of carotenoid-bacteriochlorophyll interactions in the LH1 complex of a purple bacterium

    SciTech Connect

    Maiuri, Margherita; Réhault, Julien; Polli, Dario; Cerullo, Giulio; Carey, Anne-Marie; Hacking, Kirsty; Cogdell, Richard J.; Garavelli, Marco; Lüer, Larry

    2015-06-07

    We investigate the excitation energy transfer (EET) pathways in the photosynthetic light harvesting 1 (LH1) complex of purple bacterium Rhodospirillum rubrum with ultra-broadband two-dimensional electronic spectroscopy (2DES). We employ a 2DES apparatus in the partially collinear geometry, using a passive birefringent interferometer to generate the phase-locked pump pulse pair. This scheme easily lends itself to two-color operation, by coupling a sub-10 fs visible pulse with a sub-15-fs near-infrared pulse. This unique pulse combination allows us to simultaneously track with extremely high temporal resolution both the dynamics of the photoexcited carotenoid spirilloxanthin (Spx) in the visible range and the EET between the Spx and the B890 bacterio-chlorophyll (BChl), whose Q{sub x} and Q{sub y} transitions peak at 585 and 881 nm, respectively, in the near-infrared. Global analysis of the one-color and two-color 2DES maps unravels different relaxation mechanisms in the LH1 complex: (i) the initial events of the internal conversion process within the Spx, (ii) the parallel EET from the first bright state S{sub 2} of the Spx towards the Q{sub x} state of the B890, and (iii) the internal conversion from Q{sub x} to Q{sub y} within the B890.

  9. Ultra-broadband 2D electronic spectroscopy of carotenoid-bacteriochlorophyll interactions in the LH1 complex of a purple bacterium

    NASA Astrophysics Data System (ADS)

    Maiuri, Margherita; Réhault, Julien; Carey, Anne-Marie; Hacking, Kirsty; Garavelli, Marco; Lüer, Larry; Polli, Dario; Cogdell, Richard J.; Cerullo, Giulio

    2015-06-01

    We investigate the excitation energy transfer (EET) pathways in the photosynthetic light harvesting 1 (LH1) complex of purple bacterium Rhodospirillum rubrum with ultra-broadband two-dimensional electronic spectroscopy (2DES). We employ a 2DES apparatus in the partially collinear geometry, using a passive birefringent interferometer to generate the phase-locked pump pulse pair. This scheme easily lends itself to two-color operation, by coupling a sub-10 fs visible pulse with a sub-15-fs near-infrared pulse. This unique pulse combination allows us to simultaneously track with extremely high temporal resolution both the dynamics of the photoexcited carotenoid spirilloxanthin (Spx) in the visible range and the EET between the Spx and the B890 bacterio-chlorophyll (BChl), whose Qx and Qy transitions peak at 585 and 881 nm, respectively, in the near-infrared. Global analysis of the one-color and two-color 2DES maps unravels different relaxation mechanisms in the LH1 complex: (i) the initial events of the internal conversion process within the Spx, (ii) the parallel EET from the first bright state S2 of the Spx towards the Qx state of the B890, and (iii) the internal conversion from Qx to Qy within the B890.

  10. Electronic bandstructure of semiconductor dilute bismide structures

    NASA Astrophysics Data System (ADS)

    Erucar, T.; Nutku, F.; Donmez, O.; Erol, A.

    2017-02-01

    In this work electronic band structure of dilute bismide GaAs/GaAs1-xBix quantum well structures with 1.8% and 3.75% bismuth compositions have been investigated both experimentally and theoretically. Photoluminescence (PL) measurements reveal that effective bandgap of the samples decreases approximately 65 meV per bismuth concentration. Temperature dependence of the effective bandgap is obtained to be higher for the sample with higher bismuth concentration. Moreover, both asymmetric characteristic at the low energy tail of the PL and full width at half maximum (FWHM) of PL peak increase with increasing bismuth composition as a result of increased Bi related defects located above valence band (VB). In order to explain composition dependence of the effective bandgap quantitatively, valence band anti-crossing (VBAC) model is used. Bismuth composition and temperature dependence of effective bandgap in a quantum well structure is modeled by solving Schrödinger equation and compared with experimental PL data.

  11. Electronic structure interpolation via atomic orbitals.

    PubMed

    Chen, Mohan; Guo, G-C; He, Lixin

    2011-08-17

    We present an efficient scheme for accurate electronic structure interpolation based on systematically improvable optimized atomic orbitals. The atomic orbitals are generated by minimizing the spillage value between the atomic basis calculations and the converged plane wave basis calculations on some coarse k-point grid. They are then used to calculate the band structure of the full Brillouin zone using the linear combination of atomic orbitals algorithms. We find that usually 16-25 orbitals per atom can give an accuracy of about 10 meV compared to the full ab initio calculations, and the accuracy can be systematically improved by using more atomic orbitals. The scheme is easy to implement and robust, and works equally well for metallic systems and systems with complicated band structures. Furthermore, the atomic orbitals have much better transferability than Shirley's basis and Wannier functions, which is very useful for perturbation calculations.

  12. Thermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)

    DOEpatents

    David, Milnes P; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Parida, Pritish R; Schmidt, Roger R

    2014-12-16

    Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.

  13. Current switching of electronic structures in two-dimensional 1 T -Ta S2 crystals

    NASA Astrophysics Data System (ADS)

    Yoshida, Masaro; Gokuden, Takashi; Suzuki, Ryuji; Nakano, Masaki; Iwasa, Yoshihiro

    2017-03-01

    We report that a high electric field and current triggers the switching of multiple states in two-dimensional (2D) crystals of 1 T -Ta S2 , accompanying a metamorphosis of the electronic structure. We fabricated four-terminal devices of nanometer-thick crystals of 1 T -Ta S2 with charge-density-wave (CDW) phases. By applying in-plane electric fields and concomitantly injecting currents, we realized nonvolatile switching among normal metals, Mott insulators, and thermally inaccessible semimetals. The field and current not only interact with the CDW but also generate Joule heat, and both effects contribute to the switching. The results indicate the potential existence of multiple electronic states accessible only in 2D crystals.

  14. Extraordinary electronic properties in uncommon structure types

    NASA Astrophysics Data System (ADS)

    Ali, Mazhar Nawaz

    In this thesis I present the results of explorations into several uncommon structure types. In Chapter 1 I go through the underlying idea of how we search for new compounds with exotic properties in solid state chemistry. The ideas of exploring uncommon structure types, building up from the simple to the complex, using chemical intuition and thinking by analogy are discussed. Also, the history and basic concepts of superconductivity, Dirac semimetals, and magnetoresistance are briefly reviewed. In chapter 2, the 1s-InTaS2 structural family is introduced along with the discovery of a new member of the family, Ag0:79VS2; the synthesis, structure, and physical properties of two different polymorphs of the material are detailed. Also in this chapter, we report the observation of superconductivity in another 1s structure, PbTaSe2. This material is especially interesting due to it being very heavy (resulting in very strong spin orbit coulping (SOC)), layered, and noncentrosymmetric. Electronic structure calculations reveal the presence of a bulk 3D Dirac cone (very similar to graphene) that is gapped by SOC originating from the hexagonal Pb layer. In Chapter 3 we show the re-investigation of the crystal structure of the 3D Dirac semimetal, Cd3As2. It is found to be centrosymmetric, rather than noncentrosymmetric, and as such all bands are spin degenerate and there is a 4-fold degenerate bulk Dirac point at the Fermi level, making Cd3As2 a 3D electronic analog to graphene. Also, for the first time, scanning tunneling microscopy experiments identify a 2x2 surface reconstruction in what we identify as the (112) cleavage plane of single crystals; needle crystals grow with a [110] long axis direction. Lastly, in chapter 4 we report the discovery of "titanic" (sadly dubbed ⪉rge, nonsaturating" by Nature editors and given the acronym XMR) magnetoresistance (MR) in the non-magnetic, noncentrosymmetric, layered transition metal dichalcogenide WTe2; over 13 million% at 0.53 K in

  15. Pu electronic structure and photoelectron spectroscopy

    SciTech Connect

    Joyce, John J; Durakiewicz, Tomasz; Graham, Kevin S; Bauer, Eric D; Moore, David P; Mitchell, Jeremy N; Kennison, John A; Martin, Richard L; Roy, Lindsay E; Scuseria, G. E.

    2010-01-01

    The electronic structure of PuCoGa{sub 5}, Pu metal, and PuO{sub 2} is explored using photoelectron spectroscopy. Ground state electronic properties are inferred from temperature dependent photoemission near the Fermi energy for Pu metal. Angle-resolved photoemission details the energy vs. crystaJ momentum landscape near the Fermi energy for PuCoGa{sub 5} which shows significant dispersion in the quasiparticle peak near the Fermi energy. For the Mott insulators AnO{sub 2}(An = U, Pu) the photoemission results are compared against hybrid functional calculations and the model prediction of a cross over from ionic to covalent bonding is found to be reasonable.

  16. Structural and electronic properties of fluorographene.

    PubMed

    Samarakoon, Duminda K; Chen, Zhifan; Nicolas, Chantel; Wang, Xiao-Qian

    2011-04-04

    The structural and electronic characteristics of fluorinated graphene are investigated based on first-principles density-functional calculations. A detailed analysis of the energy order for stoichiometric fluorographene membranes indicates that there exists prominent chair and stirrup conformations, which correlate with the experimentally observed in-plane lattice expansion contrary to a contraction in graphane. The optical response of fluorographene is investigated using the GW-Bethe-Salpeter equation approach. The results are in good conformity with the experimentally observed optical gap and reveal predominant charge-transfer excitations arising from strong electron-hole interactions. The appearance of bounded excitons in the ultraviolet region can result in an excitonic Bose-Einstein condensate in fluorographene.

  17. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  18. Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle

    NASA Astrophysics Data System (ADS)

    Carr, Stephen; Massatt, Daniel; Fang, Shiang; Cazeaux, Paul; Luskin, Mitchell; Kaxiras, Efthimios

    2017-02-01

    The ability in experiments to control the relative twist angle between successive layers in two-dimensional (2D) materials offers an approach to manipulating their electronic properties; we refer to this approach as "twistronics." A major challenge to theory is that, for arbitrary twist angles, the resulting structure involves incommensurate (aperiodic) 2D lattices. Here, we present a general method for the calculation of the electronic density of states of aperiodic 2D layered materials, using parameter-free Hamiltonians derived from ab initio density-functional theory. We use graphene, a semimetal, and MoS2, a representative of the transition-metal dichalcogenide family of 2D semiconductors, to illustrate the application of our method, which enables fast and efficient simulation of multilayered stacks in the presence of local disorder and external fields. We comment on the interesting features of their density of states as a function of twist angle and local configuration and on how these features can be experimentally observed.

  19. Pulsed laser deposition of two-dimensional ZnO nanocrystals on Au(111): growth, surface structure and electronic properties

    NASA Astrophysics Data System (ADS)

    Tumino, F.; Casari, C. S.; Passoni, M.; Bottani, C. E.; Li Bassi, A.

    2016-11-01

    Two-dimensional (2D) ZnO structures have been deposited on the Au(111) surface by means of the pulsed laser deposition technique. In situ scanning tunneling microscopy and scanning tunneling spectroscopy measurements have been performed to characterize morphological, structural and electronic properties of 2D ZnO at the nanoscale. Starting from a sub-monolayer coverage, we investigated the growth of ZnO, identifying different atomic layers (up to the fifth). At low coverage, we observed single- and bi-layer nanocrystals, characterized by a surface moiré pattern that is associated to a graphene-like ZnO structure. By increasing the coverage, we revealed a morphological change starting from the fourth layer, which was attributed to a transition toward a bulk-like structure. Investigation of the electronic properties revealed the semiconducting character of 2D ZnO. We observed a dependence of the density of states (DOS) and, in particular, of the conduction band (CB) on the ZnO thickness, with a decreasing of the CB onset energy for increasing thickness. The CB DOS of 2D ZnO shows a step-like behaviour which may be interpreted as due to a 2D quantum confinement effect in ZnO atomic layers.

  20. Electronic Structure of Buried Interfaces - Oral Presentation

    SciTech Connect

    Porter, Zachary

    2015-08-25

    In the electronics behind computer memory storage, the speed and size are dictated by the performance of permanent magnets inside devices called read heads. Complicated magnets made of stacked layers of thin films can be engineered to have properties that yield more energy storage and faster switching times compared to conventional iron or cobalt magnets. The reason is that magnetism is a result of subtle interactions amongst electrons; just how neurons come together on large scales to make cat brains and dog brains, ensembles of electrons interact and become ferromagnets and paramagnets. These interactions make magnets too difficult to study in their entirety, so I focus on the interfaces between layers, which are responsible for the coupling materials physicists hope to exploit to produce next-generation magnets. This project, I study a transition metal oxide material called LSCO, Lanthanum Cobaltite, which can be a paramagnet or a ferromagnet depending on how you tweak the electronic structure. It exhibits an exciting behavior: its sum is greater than the sum of its parts. When another similar material called a LSMO, Lanthanum Manganite, is grown on top of it, their interface has a different type of magnetism from the LSCO or the LSMO! I hope to explain this by demonstrating differently charged ions in the interface. The typical method for quantifying this is x-ray absorption, but all conventional techniques look at every layer simultaneously, averaging the interfaces and the LSCO layers that we want to characterize separately. Instead, I must use a new reflectivity technique, which tracks the intensity of reflected x-rays at different angles, at energies near the absorption peaks of certain elements, to track changes in the electronic structure of the material. The samples were grown by collaborators at the Takamura group at U.C. Davis and probed with this “resonant reflectivity” technique on Beamline 2-1 at the Stanford Synchrotron Radiation Lightsource

  1. Surface structure and electronic properties of materials

    NASA Technical Reports Server (NTRS)

    Siekhaus, W. J.; Somorjai, G. A.

    1975-01-01

    A surface potential model is developed to explain dopant effects on chemical vapor deposition. Auger analysis of the interaction between allotropic forms of carbon and silicon films has shown Si-C formation for all forms by glassy carbon. LEED intensity measurements have been used to determine the mean square displacement of surface atoms of silicon single crystals, and electron loss spectroscopy has shown the effect of structure and impurities on surface states located within the band gap. A thin film of Al has been used to enhance film crystallinity at low temperature.

  2. Structural, electronic and optical properties of carbonnitride

    SciTech Connect

    Cohen, Marvin L.

    1996-01-31

    Carbon nitride was proposed as a superhard material and a structural prototype, Beta-C3N4, was examined using several theoretical models. Some reports claiming experimental verifications have been made recently. The current status of the theory and experiment is reviewed, and a detailed discussion is presented of calculations of the electronic and optical properties of this material. These calculations predict that Beta-C3N4 will have a minimum gap which is indirect at 6.4 plus or minus 0.5 eV. A discussion of the possibility of carbon nitride nanotubes is also presented.

  3. Building Proteins in a Day: Efficient 3D Molecular Structure Estimation with Electron Cryomicroscopy.

    PubMed

    Punjani, Ali; Brubaker, Marcus A; Fleet, David J

    2017-04-01

    Discovering the 3D atomic-resolution structure of molecules such as proteins and viruses is one of the foremost research problems in biology and medicine. Electron Cryomicroscopy (cryo-EM) is a promising vision-based technique for structure estimation which attempts to reconstruct 3D atomic structures from a large set of 2D transmission electron microscope images. This paper presents a new Bayesian framework for cryo-EM structure estimation that builds on modern stochastic optimization techniques to allow one to scale to very large datasets. We also introduce a novel Monte-Carlo technique that reduces the cost of evaluating the objective function during optimization by over five orders of magnitude. The net result is an approach capable of estimating 3D molecular structure from large-scale datasets in about a day on a single CPU workstation.

  4. Tuning the electronic structures and magnetism of two-dimensional porous C2N via transition metal embedding.

    PubMed

    Du, Juan; Xia, Congxin; Xiong, Wenqi; Zhao, Xu; Wang, Tianxing; Jia, Yu

    2016-08-10

    Based on first-principles calculations, the electronic structures and magnetism are investigated in 3d transition metal (TM)-embedded porous two-dimensional (2D) C2N monolayers. Numerical results indicate that except Mn and Co atoms, other TM atoms can be embedded stably in the 2D C2N monolayer. Moreover, the magnetic moments of the TM-embedded C2N monolayer depend highly on the atomic number of the TM atoms. The Sc, Ti, V, Cr, Mn, Fe, Co and Ni atom-embedded C2N monolayers possess a ferromagnetic ground state, while embedding Cu can induce paramagnetic characteristics in the 2D C2N monolayer. Meanwhile, the Zn-embedded C2N monolayer exhibits a nonmagnetic ground state. These results indicate that the magnetism of 2D C2N monolayers can be tuned via embedding TM atoms.

  5. Structural, electronic, and magnetic characteristics of Np2Co17

    NASA Astrophysics Data System (ADS)

    Halevy, I.; Hen, A.; Orion, I.; Colineau, E.; Eloirdi, R.; Griveau, J.-C.; Gaczyński, P.; Wilhelm, F.; Rogalev, A.; Sanchez, J.-P.; Winterrose, M. L.; Magnani, N.; Shick, A. B.; Caciuffo, R.

    2012-01-01

    A previously unknown neptunium-transition-metal binary compound Np2Co17 has been synthesized and characterized by means of powder x-ray diffraction, 237Np Mössbauer spectroscopy, superconducting-quantum-interference-device magnetometry, and x-ray magnetic circular dichroism (XMCD). The compound crystallizes in a Th2Ni17-type hexagonal structure with room-temperature lattice parameters a=8.3107(1) Å and c=8.1058(1) Å. Magnetization curves indicate the occurrence of ferromagnetic order below TC>350 K. Mössbauer spectra suggest a Np3+ oxidation state and give an ordered moment of μNp=1.57(4) μB and μNp=1.63(4) μB for the Np atoms located, respectively, at the 2b and 2d crystallographic positions of the P63/mmc space group. Combining these values with a sum-rule analysis of the XMCD spectra measured at the neptunium M4,5 absorption edges, one obtains the spin and orbital contributions to the site-averaged Np moment [μS=-1.88(9) μB, μL=3.48(9) μB]. The ratio between the expectation value of the magnetic-dipole moment and the spin magnetic moment (mmd/μS=+1.36) is positive as predicted for localized 5f electrons and lies between the values calculated in intermediate-coupling (IC) and jj approximations. The expectation value of the angular part of the spin-orbit-interaction operator is in excellent agreement with the IC estimate. The ordered moment averaged over the four inequivalent Co sites, as obtained from the saturation value of the magnetization, is μCo≃1.6 μB. The experimental results are discussed against the predictions of first-principles electronic-structure calculations based on the spin-polarized local-spin-density approximation plus the Hubbard interaction.

  6. 2D quasiperiodic plasmonic crystals

    PubMed Central

    Bauer, Christina; Kobiela, Georg; Giessen, Harald

    2012-01-01

    Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871

  7. The CECAM Electronic Structure Library: community-driven development of software libraries for electronic structure simulations

    NASA Astrophysics Data System (ADS)

    Oliveira, Micael

    The CECAM Electronic Structure Library (ESL) is a community-driven effort to segregate shared pieces of software as libraries that could be contributed and used by the community. Besides allowing to share the burden of developing and maintaining complex pieces of software, these can also become a target for re-coding by software engineers as hardware evolves, ensuring that electronic structure codes remain at the forefront of HPC trends. In a series of workshops hosted at the CECAM HQ in Lausanne, the tools and infrastructure for the project were prepared, and the first contributions were included and made available online (http://esl.cecam.org). In this talk I will present the different aspects and aims of the ESL and how these can be useful for the electronic structure community.

  8. Electronic-structural dynamics in graphene.

    PubMed

    Gierz, Isabella; Cavalleri, Andrea

    2016-09-01

    We review our recent time- and angle-resolved photoemission spectroscopy experiments, which measure the transient electronic structure of optically driven graphene. For pump photon energies in the near infrared ([Formula: see text]), we have discovered the formation of a population-inverted state near the Dirac point, which may be of interest for the design of THz lasing devices and optical amplifiers. At lower pump photon energies ([Formula: see text]), for which interband absorption is not possible in doped samples, we find evidence for free carrier absorption. In addition, when mid-infrared pulses are made resonant with an infrared-active in-plane phonon of bilayer graphene ([Formula: see text]), a transient enhancement of the electron-phonon coupling constant is observed, providing interesting perspective for experiments that report light-enhanced superconductivity in doped fullerites in which a similar lattice mode was excited. All the studies reviewed here have important implications for applications of graphene in optoelectronic devices and for the dynamical engineering of electronic properties with light.

  9. Electronic-structural dynamics in graphene

    PubMed Central

    Gierz, Isabella; Cavalleri, Andrea

    2016-01-01

    We review our recent time- and angle-resolved photoemission spectroscopy experiments, which measure the transient electronic structure of optically driven graphene. For pump photon energies in the near infrared (ℏωpump=950 meV), we have discovered the formation of a population-inverted state near the Dirac point, which may be of interest for the design of THz lasing devices and optical amplifiers. At lower pump photon energies (ℏωpump<400 meV), for which interband absorption is not possible in doped samples, we find evidence for free carrier absorption. In addition, when mid-infrared pulses are made resonant with an infrared-active in-plane phonon of bilayer graphene (ℏωpump=200 meV), a transient enhancement of the electron-phonon coupling constant is observed, providing interesting perspective for experiments that report light-enhanced superconductivity in doped fullerites in which a similar lattice mode was excited. All the studies reviewed here have important implications for applications of graphene in optoelectronic devices and for the dynamical engineering of electronic properties with light. PMID:27822486

  10. Electron beam coupling to a metamaterial structure

    SciTech Connect

    French, David M.; Shiffler, Don; Cartwright, Keith

    2013-08-15

    Microwave metamaterials have shown promise in numerous applications, ranging from strip lines and antennas to metamaterial-based electron beam driven devices. In general, metamaterials allow microwave designers to obtain electromagnetic characteristics not typically available in nature. High Power Microwave (HPM) sources have in the past drawn inspiration from work done in the conventional microwave source community. In this article, the use of metamaterials in an HPM application is considered by using an effective medium model to determine the coupling of an electron beam to a metamaterial structure in a geometry similar to that of a dielectric Cerenkov maser. Use of the effective medium model allows for the analysis of a wide range of parameter space, including the “mu-negative,”“epsilon-negative,” and “double negative” regimes of the metamaterial. The physics of such a system are modeled analytically and by utilizing the particle-in-cell code ICEPIC. For this geometry and effective medium representation, optimum coupling of the electron beam to the metamaterial, and thus the optimum microwave or RF production, occurs in the epsilon negative regime of the metamaterial. Given that HPM tubes have been proposed that utilize a metamaterial, this model provides a rapid method of characterizing a source geometry that can be used to quickly understand the basic physics of such an HPM device.

  11. Analysis of boron carbides' electronic structure

    NASA Technical Reports Server (NTRS)

    Howard, Iris A.; Beckel, Charles L.

    1986-01-01

    The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.

  12. Experimental Benchmarking of Pu Electronic Structure

    SciTech Connect

    Tobin, J.G.; Moore, K.T.; Chung, B.W.; Wall, M.A.; Schwartz, A.J.; Ebbinghaus, B.B.; Butterfield, M.T.; Teslich, Jr., N.E.; Bliss, R.A.; Morton, S.A.; Yu, S.W.; Komesu, T.; Waddill, G.D.; van der Laan, G.; Kutepov, A.L.

    2008-10-30

    The standard method to determine the band structure of a condensed phase material is to (1) obtain a single crystal with a well defined surface and (2) map the bands with angle resolved photoelectron spectroscopy (occupied or valence bands) and inverse photoelectron spectroscopy (unoccupied or conduction bands). Unfortunately, in the case of Pu, the single crystals of Pu are either nonexistent, very small and/or having poorly defined surfaces. Furthermore, effects such as electron correlation and a large spin-orbit splitting in the 5f states have further complicated the situation. Thus, we have embarked upon the utilization of unorthodox electron spectroscopies, to circumvent the problems caused by the absence of large single crystals of Pu with well-defined surfaces. Our approach includes the techniques of resonant photoelectron spectroscopy, x-ray absorption spectroscopy, electron energy loss spectroscopy, Fano Effect measurements, and Bremstrahlung Isochromat Spectroscopy, including the utilization of micro-focused beams to probe single-crystallite regions of polycrystalline Pu samples.

  13. Experimental Benchmarking of Pu Electronic Structure

    SciTech Connect

    Tobin, J G; Moore, K T; Chung, B W; Wall, M A; Schwartz, A J; Ebbinghaus, B B; Butterfield, M T; Teslich, Jr., N E; Bliss, R A; Morton, S A; Yu, S W; Komesu, T; Waddill, G D; der Laan, G v; Kutepov, A L

    2005-10-13

    The standard method to determine the band structure of a condensed phase material is to (1) obtain a single crystal with a well defined surface and (2) map the bands with angle resolved photoelectron spectroscopy (occupied or valence bands) and inverse photoelectron spectroscopy (unoccupied or conduction bands). Unfortunately, in the case of Pu, the single crystals of Pu are either nonexistent, very small and/or having poorly defined surfaces. Furthermore, effects such as electron correlation and a large spin-orbit splitting in the 5f states have further complicated the situation. Thus, we have embarked upon the utilization of unorthodox electron spectroscopies, to circumvent the problems caused by the absence of large single crystals of Pu with well-defined surfaces. Our approach includes the techniques of resonant photoelectron spectroscopy [1], x-ray absorption spectroscopy [1,2,3,4], electron energy loss spectroscopy [2,3,4], Fano Effect measurements [5], and Bremstrahlung Isochromat Spectroscopy [6], including the utilization of micro-focused beams to probe single-crystallite regions of polycrystalline Pu samples. [2,3,6

  14. Probing the band structure and local electronic properties of low-dimensional semiconductor structures

    NASA Astrophysics Data System (ADS)

    Walrath, Jenna Cherie

    Low-dimensional semiconductor structures are important for a wide variety of applications, and recent advances in nanoscale fabrication are paving the way for increasingly precise nano-engineering of a wide range of materials. It is therefore essential that the physics of materials at the nanoscale are thoroughly understood to unleash the full potential of nanotechnology, requiring the development of increasingly sophisticated instrumentation and modeling. Of particular interest is the relationship between the local density of states (LDOS) of low-dimensional structures and the band structure and local electronic properties. This dissertation presents the investigation of the band structure, LDOS, and local electronic properties of nanostructures ranging from zero-dimensional (0D) quantum dots (QDs) to two-dimensional (2D) thin films, synthesizing computational and experimental approaches including Poisson-Schrodinger band structure calculations, scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and scanning thermoelectric microscopy (SThEM). A method is presented for quantifying the local Seebeck coefficient (S) with SThEM, using a quasi-3D conversion matrix approach to directly convert temperature gradient-induced voltages S. For a GaAs p-n junction, the resulting S-profile is consistent with that computed using the free carrier concentration profile. This combined computational-experimental approach is expected to enable nanoscale measurements of S across a wide variety of heterostructure interfaces. The local carrier concentration, n, is profiled across epitaxial InAs/GaAs QDs, where SThEM is used to profile the temperature gradient-induced voltage, which is converted to a profile of the local S and finally to an n profile. The S profile is converted to a conduction band-edge profile and compared with Poisson-Schrodinger band-edge simulations. The combined computational-experimental approach suggests a reduced n in the QD center in

  15. Exact e-e (exchange) correlations of 2-D quantum dots in magnetic field: Size extensive N = 3 , 4 , … , ‧ n ‧ -electron systems via multi-pole expansion

    NASA Astrophysics Data System (ADS)

    Aggarwal, Priyanka; Sharma, Shivalika; Singh, Sunny; Kaur, Harsimran; Hazra, Ram Kuntal

    2017-04-01

    Inclusion of coulomb interaction emerges with the complexity of either convergence of integrals or separation of variables of Schrödinger equations. For an N-electron system, interaction terms grow by N(N-1)/2 factors. Therefore, 2-e system stands as fundamental basic unit for generalized N-e systems. For the first time, we have evaluated e-e correlations in very simple and absolutely terminating finite summed hypergeometric series for 2-D double carrier parabolic quantum dot in both zero and arbitrary non-zero magnetic field (symmetric gauge) and have appraised these integrals in variational methods. The competitive role among confinement strength, magnetic field, mass of the carrier and dielectric constant of the medium on energy level diagram, level-spacing statistics, heat capacities (Cv at 1 K) and magnetization (T ∼ (0-1)K) is studied on systems spanning over wide range of materials (GaAs,Ge,CdS,SiO2 and He, etc). We have also constructed an exact theory for generalized correlated N-e 2-D quantum dots via multi-pole expansion but for the sake of compactness of the article we refrain from data.

  16. Effects of 5f-elements on electronic structures and spectroscopic properties of gold superatom model

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Wang, Zhigang

    2016-08-01

    5f-elements encaged in a gold superatomic cluster are capable of giving rise to unique optical properties due to their hyperactive valence electrons and great radial components of 5f/6d orbitals. Herein, we review our first-principles studies on electronic structures and spectroscopic properties of a series of actinide-embedded gold superatomic clusters with different dimensions. The three-dimensional (3D) and two-dimensional (2D) superatom clusters possess the 18-electron configuration of 1S21P61D10 and 10-electron configuration of 1S21P41D4, respectively. Importantly, their electronic absorption spectra can also be effectively explained by the superatom orbitals. Specifically, the charge transfer (CT) transitions involved in surface-enhance Raman spectroscopy (SERS) spectra for 3D and 2D structures are both from the filled 1D orbitals, providing the enhancement factors of the order of ˜ 104 at 488 nm and ˜ 105 at 456 nm, respectively. This work implies that the superatomic orbital transitions involved in 5f-elements can not only lead to a remarkable spectroscopic performance, but also a new direction for optical design in the future. Project supported by the National Natural Science Foundation of China (Grant No. 11374004), the Science and Technology Development Program of Jilin Province, China (Grant No. 20150519021JH), the Fok Ying Tung Education Foundation, China (Grant No. 142001), and the Support from the High Performance Computing Center (HPCC) of Jilin University, China.

  17. Structure and navigation for electronic publishing

    NASA Astrophysics Data System (ADS)

    Tillinghast, John; Beretta, Giordano B.

    1998-01-01

    The sudden explosion of the World Wide Web as a new publication medium has given a dramatic boost to the electronic publishing industry, which previously was a limited market centered around CD-ROMs and on-line databases. While the phenomenon has parallels to the advent of the tabloid press in the middle of last century, the electronic nature of the medium brings with it the typical characteristic of 4th wave media, namely the acceleration in its propagation speed and the volume of information. Consequently, e-publications are even flatter than print media; Shakespeare's Romeo and Juliet share the same computer screen with a home-made plagiarized copy of Deep Throat. The most touted tool for locating useful information on the World Wide Web is the search engine. However, due to the medium's flatness, sought information is drowned in a sea of useless information. A better solution is to build tools that allow authors to structure information so that it can easily be navigated. We experimented with the use of ontologies as a tool to formulate structures for information about a specific topic, so that related concepts are placed in adjacent locations and can easily be navigated using simple and ergonomic user models. We describe our effort in building a World Wide Web based photo album that is shared among a small network of people.

  18. Multigrid Methods in Electronic Structure Calculations

    NASA Astrophysics Data System (ADS)

    Briggs, Emil

    1996-03-01

    Multigrid techniques have become the method of choice for a broad range of computational problems. Their use in electronic structure calculations introduces a new set of issues when compared to traditional plane wave approaches. We have developed a set of techniques that address these issues and permit multigrid algorithms to be applied to the electronic structure problem in an efficient manner. In our approach the Kohn-Sham equations are discretized on a real-space mesh using a compact representation of the Hamiltonian. The resulting equations are solved directly on the mesh using multigrid iterations. This produces rapid convergence rates even for ill-conditioned systems with large length and/or energy scales. The method has been applied to both periodic and non-periodic systems containing over 400 atoms and the results are in very good agreement with both theory and experiment. Example applications include a vacancy in diamond, an isolated C60 molecule, and a 64-atom cell of GaN with the Ga d-electrons in valence which required a 250 Ry cutoff. A particular strength of a real-space multigrid approach is its ready adaptability to massively parallel computer architectures. The compact representation of the Hamiltonian is especially well suited to such machines. Tests on the Cray-T3D have shown nearly linear scaling of the execution time up to the maximum number of processors (512). The MPP implementation has been used for studies of a large Amyloid Beta Peptide (C_146O_45N_42H_210) found in the brains of Alzheimers disease patients. Further applications of the multigrid method will also be described. (in collaboration D. J. Sullivan and J. Bernholc)

  19. Electronic Structure and Bonding in Complex Biomolecule

    NASA Astrophysics Data System (ADS)

    Ouyang, Lizhi

    2005-03-01

    For over a century vitamin B12 and its enzyme cofactor derivates have persistently attracted research efforts for their vital biological role, unique Co-C bonding, rich red-ox chemistry, and recently their candidacies as drug delivery vehicles etc. However, our understanding of this complex metalorganic molecule's efficient enzyme activated catalytic power is still controversial. We have for the first time calculated the electronic structure, Mulliken effective charge and bonding of a whole Vitamin B12 molecule without any structural simplification by first- principles approaches based on density functional theory using structures determined by high resolution X-ray diffraction. A partial density of states analysis shows excellent agreement with X-ray absorption data and has been used successfully to interpret measured optical absorption spectra. Mulliken bonding analysis of B12 and its derivatives reveal noticeable correlations between the two axial ligands which could be exploited by the enzyme to control the catalytic process. Our calculated X-ray near edge structure of B12 and its derivates using Slater's transition state theory are also in good agreement with experiments. The same approach has been applied to other B12 derivatives, ferrocene peptides, and recently DNA molecules.

  20. Doped penta-graphene and hydrogenation of its related structures: a structural and electronic DFT-D study.

    PubMed

    Quijano-Briones, J J; Fernández-Escamilla, H N; Tlahuice-Flores, A

    2016-06-21

    The structure of penta-graphene (penta-C), an irregular pentagonal two-dimensional (2D) structure, has been predicted recently. In this communication we carried out a dispersion-corrected density functional theory (DFT-D) study of the penta-C doped with Si, Ge and Sn atoms and its related hydrogenated penta-C structures (H-penta-C-X). We predict various new structures as thermally stable based on Born-Oppenheimer molecular dynamics (BOMD) calculations. Moreover, their dynamical stability is attested by phonon dispersions spectra. In general, we found that the bandgap value of doped structures reduces, while H-penta-C-X show large bandgap values. This feature can be exploited for potential uses of hydrogenated doped-penta-C structures as dielectric layers in electronic devices.

  1. Electronic structure of Ca, Sr, and Ba under pressure.

    NASA Technical Reports Server (NTRS)

    Animalu, A. O. E.; Heine, V.; Vasvari, B.

    1967-01-01

    Electronic band structure calculations phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure

  2. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L. A.; Hallquist, J. O.

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  3. Orbital-dependent Electron-Hole Interaction in Graphene and Associated Multi-Layer Structures

    PubMed Central

    Deng, Tianqi; Su, Haibin

    2015-01-01

    We develop an orbital-dependent potential to describe electron-hole interaction in materials with structural 2D character, i.e. quasi-2D materials. The modulated orbital-dependent potentials are also constructed with non-local screening, multi-layer screening, and finite gap due to the coupling with substrates. We apply the excitonic Hamiltonian in coordinate-space with developed effective electron-hole interacting potentials to compute excitons’ binding strength at M (π band) and Γ (σ band) points in graphene and i