Science.gov

Sample records for 2d fast se

  1. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.

    PubMed

    Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios

    2016-09-07

    van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs.

  2. Epitaxial 2D MoSe2 (HfSe2) Semiconductor/2D TaSe2 Metal van der Waals Heterostructures.

    PubMed

    Tsoutsou, Dimitra; Aretouli, Kleopatra E; Tsipas, Polychronis; Marquez-Velasco, Jose; Xenogiannopoulou, Evangelia; Kelaidis, Nikolaos; Aminalragia Giamini, Sigiava; Dimoulas, Athanasios

    2016-01-27

    Molecular beam epitaxy of 2D metal TaSe2/2D MoSe2 (HfSe2) semiconductor heterostructures on epi-AlN(0001)/Si(111) substrates is reported. Electron diffraction reveals an in-plane orientation indicative of van der Waals epitaxy, whereas electronic band imaging supported by first-principles calculations and X-ray photoelectron spectroscopy indicate the presence of a dominant trigonal prismatic 2H-TaSe2 phase and a minor contribution from octahedrally coordinated TaSe2, which is present in TaSe2/AlN and TaSe2/HfSe2/AlN but notably absent in the TaSe2/MoSe2/AlN, indicating superior structural quality of TaSe2 grown on MoSe2. Apart from its structural and chemical compatibility with the selenide semiconductors, TaSe2 has a workfunction of 5.5 eV as measured by ultraviolet photoelectron spectroscopy, which matches very well with the semiconductor workfunctions, implying that epi-TaSe2 can be used for low-resistivity contacts to MoSe2 and HfSe2.

  3. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures

    NASA Astrophysics Data System (ADS)

    Roy, Tania; Tosun, Mahmut; Hettick, Mark; Ahn, Geun Ho; Hu, Chenming; Javey, Ali

    2016-02-01

    Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ˜100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.

  4. Epitaxial Growth of Ternary Topological Insulator Bi2 Te2 Se 2D Crystals on Mica.

    PubMed

    Liu, Yujing; Tang, Min; Meng, Mengmeng; Wang, Mingzhan; Wu, Jinxiong; Yin, Jianbo; Zhou, Yubing; Guo, Yunfan; Tan, Congwei; Dang, Wenhui; Huang, Shaoyun; Xu, H Q; Wang, Yong; Peng, Hailin

    2017-03-06

    Nanostructures of ternary topological insulator (TI) Bi2 Te2 Se are, in principle, advantageous to the manifestation of topologically nontrivial surface states, due to significantly enhanced surface-to-volume ratio compared with its bulk crystals counterparts. Herein, the synthesis of 2D Bi2 Te2 Se crystals on mica via the van der Waals epitaxy method is explored and systematically the growth behaviors during the synthesis process are investigated. Accordingly, 2D Bi2 Te2 Se crystals with domain size up to 50 µm large and thickness down to 2 nm are obtained. A pronounced weak antilocalization effect is clearly observed in the 2D Bi2 Te2 Se crystals at 2 K. The method for epitaxial growth of 2D ternary Bi2 Te2 Se crystals may inspire materials engineering toward enhanced manifestation of the subtle surface states of TIs and thereby facilitate their potential applications in next-generation spintronics.

  5. Development of ultra-fast 2D ion Doppler tomography using image intensified CMOS fast camera

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; Kuwahata, Akihiro; Yamanaka, Haruki; Inomoto, Michiaki; Ono, Yasushi; TS-group Team

    2015-11-01

    The world fastest novel time-resolved 2D ion Doppler tomography diagnostics has been developed using fast camera with high-speed gated image intensifier (frame rate: 200kfps. phosphor decay time: ~ 1 μ s). Time evolution of line-integrated spectra are diffracted from a f=1m, F/8.3 and g=2400L/mm Czerny-Turner polychromator, whose output is intensified and recorded to a high-speed camera with spectral resolution of ~0.005nm/pixel. The system can accommodate up to 36 (9 ×4) spatial points recorded at 5 μs time resolution, tomographic reconstruction is applied for the line-integrated spectra, time-resolved (5 μs/frame) local 2D ion temperature measurement has been achieved without any assumption of shot repeatability. Ion heating during intermittent reconnection event which tends to happen during high guide field merging tokamak was measured around diffusion region in UTST. The measured 2D profile shows ion heating inside the acceleration channel of reconnection outflow jet, stagnation point and downstream region where reconnected field forms thick closed flux surface as in MAST. Achieved maximum ion temperature increases as a function of Brec2 and shows good fit with MAST experiment, demonstrating promising CS-less startup scenario for spherical tokamak. This work is supported by JSPS KAKENHI Grant Number 15H05750 and 15K20921.

  6. Preconditioning 2D Integer Data for Fast Convex Hull Computations.

    PubMed

    Cadenas, José Oswaldo; Megson, Graham M; Luengo Hendriks, Cris L

    2016-01-01

    In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved.

  7. HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy.

    PubMed

    Yue, Ruoyu; Barton, Adam T; Zhu, Hui; Azcatl, Angelica; Pena, Luis F; Wang, Jian; Peng, Xin; Lu, Ning; Cheng, Lanxia; Addou, Rafik; McDonnell, Stephen; Colombo, Luigi; Hsu, Julia W P; Kim, Jiyoung; Kim, Moon J; Wallace, Robert M; Hinkle, Christopher L

    2015-01-27

    In this work, we demonstrate the growth of HfSe2 thin films using molecular beam epitaxy. The relaxed growth criteria have allowed us to demonstrate layered, crystalline growth without misfit dislocations on other 2D substrates such as highly ordered pyrolytic graphite and MoS2. The HfSe2 thin films exhibit an atomically sharp interface with the substrates used, followed by flat, 2D layers with octahedral (1T) coordination. The resulting HfSe2 is slightly n-type with an indirect band gap of ∼ 1.1 eV and a measured energy band alignment significantly different from recent DFT calculations. These results demonstrate the feasibility and significant potential of fabricating 2D material based heterostructures with tunable band alignments for a variety of nanoelectronic and optoelectronic applications.

  8. Arrayed van der Waals Vertical Heterostructures Based on 2D GaSe Grown by Molecular Beam Epitaxy.

    PubMed

    Yuan, Xiang; Tang, Lei; Liu, Shanshan; Wang, Peng; Chen, Zhigang; Zhang, Cheng; Liu, Yanwen; Wang, Weiyi; Zou, Yichao; Liu, Cong; Guo, Nan; Zou, Jin; Zhou, Peng; Hu, Weida; Xiu, Faxian

    2015-05-13

    Vertically stacking two-dimensional (2D) materials can enable the design of novel electronic and optoelectronic devices and realize complex functionality. However, the fabrication of such artificial heterostructures on a wafer scale with an atomically sharp interface poses an unprecedented challenge. Here, we demonstrate a convenient and controllable approach for the production of wafer-scale 2D GaSe thin films by molecular beam epitaxy. In situ reflection high-energy electron diffraction oscillations and Raman spectroscopy reveal a layer-by-layer van der Waals epitaxial growth mode. Highly efficient photodetector arrays were fabricated, based on few-layer GaSe on Si. These photodiodes show steady rectifying characteristics and a high external quantum efficiency of 23.6%. The resultant photoresponse is super-fast and robust, with a response time of 60 μs. Importantly, the device shows no sign of degradation after 1 million cycles of operation. We also carried out numerical simulations to understand the underlying device working principles. Our study establishes a new approach to produce controllable, robust, and large-area 2D heterostructures and presents a crucial step for further practical applications.

  9. Crossover from 3D to 2D quantum transport in Bi2Se3/In2Se3 superlattices.

    PubMed

    Zhao, Yanfei; Liu, Haiwen; Guo, Xin; Jiang, Ying; Sun, Yi; Wang, Huichao; Wang, Yong; Li, Han-Dong; Xie, Mao-Hai; Xie, Xin-Cheng; Wang, Jian

    2014-09-10

    The topological insulator/normal insulator (TI/NI) superlattices (SLs) with multiple Dirac channels are predicted to offer great opportunity to design novel materials and investigate new quantum phenomena. Here, we report first transport studies on the SLs composed of TI Bi2Se3 layers sandwiched by NI In2Se3 layers artificially grown by molecular beam epitaxy (MBE). The transport properties of two kinds of SL samples show convincing evidence that the transport dimensionality changes from three-dimensional (3D) to two-dimensional (2D) when decreasing the thickness of building block Bi2Se3 layers, corresponding to the crossover from coherent TI transport to separated TI channels. Our findings provide the possibility to realizing "3D surface states" in TI/NI SLs.

  10. Crossover from 3D to 2D Quantum Transport in Bi2Se3/In2Se3 Superlattices

    NASA Astrophysics Data System (ADS)

    Yanfei, Zhao; Haiwen, Liu; Xin, Guo; Ying, Jiang; Yi, Sun; Huichao, Wang; Yong, Wang; Handong, Li; Maohai, Xie; Xincheng, Xie; Jian, Wang

    2015-03-01

    The topological insulator/normal insulator (TI/NI) superlattices (SLs) with multiple Dirac channels are predicted to offer great opportunity to design novel materials and investigate new quantum phenomena. Here, we report first transport studies on the SLs composed of TI Bi2Se3 layers sandwiched by NI In2Se3 layers artificially grown by molecular beam epitaxy (MBE). The transport properties of two kinds of SL samples show convincing evidence that the transport dimensionality changes from three-dimensional (3D) to two-dimensional (2D) when decreasing the thickness of building block Bi2Se3 layers, corresponding to the crossover from coherent TI transport to separated TI channels. Our findings provide the possibility to realizing 3D surface states in TI/NI SLs.

  11. Low-Resistance 2D/2D Ohmic Contacts: A Universal Approach to High-Performance WSe2, MoS2, and MoSe2 Transistors.

    PubMed

    Chuang, Hsun-Jen; Chamlagain, Bhim; Koehler, Michael; Perera, Meeghage Madusanka; Yan, Jiaqiang; Mandrus, David; Tománek, David; Zhou, Zhixian

    2016-03-09

    We report a new strategy for fabricating 2D/2D low-resistance ohmic contacts for a variety of transition metal dichalcogenides (TMDs) using van der Waals assembly of substitutionally doped TMDs as drain/source contacts and TMDs with no intentional doping as channel materials. We demonstrate that few-layer WSe2 field-effect transistors (FETs) with 2D/2D contacts exhibit low contact resistances of ∼0.3 kΩ μm, high on/off ratios up to >10(9), and high drive currents exceeding 320 μA μm(-1). These favorable characteristics are combined with a two-terminal field-effect hole mobility μFE ≈ 2 × 10(2) cm(2) V(-1) s(-1) at room temperature, which increases to >2 × 10(3) cm(2) V(-1) s(-1) at cryogenic temperatures. We observe a similar performance also in MoS2 and MoSe2 FETs with 2D/2D drain and source contacts. The 2D/2D low-resistance ohmic contacts presented here represent a new device paradigm that overcomes a significant bottleneck in the performance of TMDs and a wide variety of other 2D materials as the channel materials in postsilicon electronics.

  12. Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors

    DOE PAGES

    Chuang, Hsun -Jen; Chamlagain, Bhim; Koehler, Michael; ...

    2016-02-04

    Here, we report a new strategy for fabricating 2D/2D low-resistance ohmic contacts for a variety of transition metal dichalcogenides (TMDs) using van der Waals assembly of substitutionally doped TMDs as drain/source contacts and TMDs with no intentional doping as channel materials. We demonstrate that few-layer WSe2 field-effect transistors (FETs) with 2D/2D contacts exhibit low contact resistances of ~0.3 kΩ μm, high on/off ratios up to >109, and high drive currents exceeding 320 μA μm–1. These favorable characteristics are combined with a two-terminal field-effect hole mobility μFE ≈ 2 × 102 cm2 V–1 s–1 at room temperature, which increases to >2more » × 103 cm2 V–1 s–1 at cryogenic temperatures. We observe a similar performance also in MoS2 and MoSe2 FETs with 2D/2D drain and source contacts. The 2D/2D low-resistance ohmic contacts presented here represent a new device paradigm that overcomes a significant bottleneck in the performance of TMDs and a wide variety of other 2D materials as the channel materials in postsilicon electronics.« less

  13. A Fast Algorithm for 2D DOA Estimation Using an Omnidirectional Sensor Array.

    PubMed

    Nie, Weike; Xu, Kaijie; Feng, Dazheng; Wu, Chase Qishi; Hou, Aiqin; Yin, Xiaoyan

    2017-03-04

    The traditional 2D MUSIC algorithm fixes the azimuth or the elevation, and searches for the other without considering the directions of sources. A spectrum peak diffusion effect phenomenon is observed and may be utilized to detect the approximate directions of sources. Accordingly, a fast 2D MUSIC algorithm, which performs azimuth and elevation simultaneous searches (henceforth referred to as AESS) based on only three rounds of search is proposed. Firstly, AESS searches along a circle to detect the approximate source directions. Then, a subsequent search is launched along several straight lines based on these approximate directions. Finally, the 2D Direction of Arrival (DOA) of each source is derived by searching on several small concentric circles. Unlike the 2D MUSIC algorithm, AESS does not fix any azimuth and elevation parameters. Instead, the adjacent point of each search possesses different azimuth and elevation, i.e., azimuth and elevation are simultaneously searched to ensure that the search path is minimized, and hence the total spectral search over the angular field of view is avoided. Simulation results demonstrate the performance characters of the proposed AESS over some existing algorithms.

  14. A Fast Algorithm for 2D DOA Estimation Using an Omnidirectional Sensor Array

    PubMed Central

    Nie, Weike; Xu, Kaijie; Feng, Dazheng; Wu, Chase Qishi; Hou, Aiqin; Yin, Xiaoyan

    2017-01-01

    The traditional 2D MUSIC algorithm fixes the azimuth or the elevation, and searches for the other without considering the directions of sources. A spectrum peak diffusion effect phenomenon is observed and may be utilized to detect the approximate directions of sources. Accordingly, a fast 2D MUSIC algorithm, which performs azimuth and elevation simultaneous searches (henceforth referred to as AESS) based on only three rounds of search is proposed. Firstly, AESS searches along a circle to detect the approximate source directions. Then, a subsequent search is launched along several straight lines based on these approximate directions. Finally, the 2D Direction of Arrival (DOA) of each source is derived by searching on several small concentric circles. Unlike the 2D MUSIC algorithm, AESS does not fix any azimuth and elevation parameters. Instead, the adjacent point of each search possesses different azimuth and elevation, i.e., azimuth and elevation are simultaneously searched to ensure that the search path is minimized, and hence the total spectral search over the angular field of view is avoided. Simulation results demonstrate the performance characters of the proposed AESS over some existing algorithms. PMID:28273851

  15. Fast marching over the 2D Gabor magnitude domain for tongue body segmentation

    NASA Astrophysics Data System (ADS)

    Cui, Zhenchao; Zhang, Hongzhi; Zhang, David; Li, Naimin; Zuo, Wangmeng

    2013-12-01

    Tongue body segmentation is a prerequisite to tongue image analysis and has recently received considerable attention. The existing tongue body segmentation methods usually involve two key steps: edge detection and active contour model (ACM)-based segmentation. However, conventional edge detectors cannot faithfully detect the contour of the tongue body, and the initialization of ACM suffers from the edge discontinuity problem. To address these issues, we proposed a novel tongue body segmentation method, GaborFM, which initializes ACM by performing fast marching over the two-dimensional (2D) Gabor magnitude domain of the tongue images. For the enhancement of the contour of the tongue body, we used the 2D Gabor magnitude-based detector. To cope with the edge discontinuity problem, the fast marching method was utilized to connect the discontinuous contour segments, resulting in a closed and continuous tongue body contour for subsequent ACM-based segmentation. Qualitative and quantitative results showed that GaborFM is superior to the other methods for tongue body segmentation.

  16. Atom Probe Tomography Analysis of Ag Doping in 2D Layered Material (PbSe)5(Bi2Se3)3.

    PubMed

    Ren, Xiaochen; Singh, Arunima K; Fang, Lei; Kanatzidis, Mercouri G; Tavazza, Francesca; Davydov, Albert V; Lauhon, Lincoln J

    2016-10-12

    Impurity doping in two-dimensional (2D) materials can provide a route to tuning electronic properties, so it is important to be able to determine the distribution of dopant atoms within and between layers. Here we report the tomographic mapping of dopants in layered 2D materials with atomic sensitivity and subnanometer spatial resolution using atom probe tomography (APT). APT analysis shows that Ag dopes both Bi2Se3 and PbSe layers in (PbSe)5(Bi2Se3)3, and correlations in the position of Ag atoms suggest a pairing across neighboring Bi2Se3 and PbSe layers. Density functional theory (DFT) calculations confirm the favorability of substitutional doping for both Pb and Bi and provide insights into the observed spatial correlations in dopant locations.

  17. Characteristics of spondylotic myelopathy on 3D driven-equilibrium fast spin echo and 2D fast spin echo magnetic resonance imaging: a retrospective cross-sectional study.

    PubMed

    Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P

    2014-01-01

    In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.

  18. Fast acquisition of high-resolution 2D NMR spectroscopy in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Zeng, Qing; Yang, Jian; Lin, Yanqin; Chen, Zhong

    2016-05-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical and biological analyses. In this study, we combine the J-coupling coherence transfer module with the echo-train acquisition technique for fast acquisition of high-resolution 2D NMR spectra in magnetic fields with unknown spatial variations. The proposed method shows satisfactory performance on a 5 mM ethyl 3-bromopropionate sample, under a 5-kHz (10 ppm at 11.7 T) B0 inhomogeneous field, as well as under varying degrees of pulse-flip-angle deviations. Moreover, a simulative ex situ NMR measurement is also conducted to show the effectiveness of the proposed pulse sequence.

  19. A feasibility study using radiochromic films for fast neutron 2D passive dosimetry

    PubMed Central

    Brady, Samuel L; Gunasingha, Rathnayaka; Yoshizumi, Terry T; Howell, Calvin R; Crowell, Alexander S; Fallin, Brent; Tonchev, Anton P; Dewhirst, Mark W

    2013-01-01

    The objective of this paper is threefold: (1) to establish sensitivity of XRQA and EBT radiochromic films to fast neutron exposure; (2) to develop a film response to radiation dose calibration curve and (3) to investigate a two-dimensional (2D) film dosimetry technique for use in establishing an experimental setup for a radiobiological irradiation of mice and to assess the dose to the mice in this setup. The films were exposed to a 10 MeV neutron beam via the 2H(d,n)3He reaction. The XRQA film response was a factor of 1.39 greater than EBT film response to the 10 MeV neutron beam when exposed to a neutron dose of 165 cGy. A film response-to-soft tissue dose calibration function was established over a range of 0–10 Gy and had a goodness of fit of 0.9926 with the calibration data. The 2D film dosimetry technique estimated the neutron dose to the mice by measuring the dose using a mouse phantom and by placing a piece of film on the exterior of the experimental mouse setup. The film results were benchmarked using Monte Carlo and aluminum (Al) foil activation measurements. The radiochromic film, Monte Carlo and Al foil dose measurements were strongly correlated, and the film within the mouse phantom agreed to better than 7% of the externally mounted films. These results demonstrated the potential application of radiochromic films for passive 2D neutron dosimetry. PMID:20693612

  20. Optical contrast of 2D InSe on SiO2/Si and transparent substrates using bandpass filters.

    PubMed

    Brotons-Gisbert, M; Andres-Penares, D; Martínez-Pastor, J P; Cros, A; Sánchez-Royo, J F

    2017-03-17

    The particular optical and electronic properties recently reported for 2D InSe depict this 2D material as being very versatile for future electronic and optoelectronic devices with tunable and optimized functionalities. For its fundamental study and the development of practical applications, rapid and accurate identification methods of atomically thin InSe are essential. Here, we demonstrate an enhancement of the optical contrast between InSe nanosheets and the underlying SiO2/Si substrate by illuminating with a 40 nm wide bandpass filter centered at 500 nm. Moreover, we study the optical contrast of 2D InSe on transparent substrates. Our results suggest that a good optical contrast is achieved for transparent substrates with low real refractive indices such as LiF or a viscoelastic polydimethylsiloxane stamp. In this case, an optimum optical contrast would be achieved by using a bandpass filter centered at 450 nm. These results can be very useful for speeding up the continuously growing research on 2D InSe and its applications.

  1. Optical contrast of 2D InSe on SiO2/Si and transparent substrates using bandpass filters

    NASA Astrophysics Data System (ADS)

    Brotons-Gisbert, M.; Andres-Penares, D.; Martínez-Pastor, J. P.; Cros, A.; Sánchez-Royo, J. F.

    2017-03-01

    The particular optical and electronic properties recently reported for 2D InSe depict this 2D material as being very versatile for future electronic and optoelectronic devices with tunable and optimized functionalities. For its fundamental study and the development of practical applications, rapid and accurate identification methods of atomically thin InSe are essential. Here, we demonstrate an enhancement of the optical contrast between InSe nanosheets and the underlying SiO2/Si substrate by illuminating with a 40 nm wide bandpass filter centered at 500 nm. Moreover, we study the optical contrast of 2D InSe on transparent substrates. Our results suggest that a good optical contrast is achieved for transparent substrates with low real refractive indices such as LiF or a viscoelastic polydimethylsiloxane stamp. In this case, an optimum optical contrast would be achieved by using a bandpass filter centered at 450 nm. These results can be very useful for speeding up the continuously growing research on 2D InSe and its applications.

  2. Multirate-based fast parallel algorithms for 2-D DHT-based real-valued discrete Gabor transform.

    PubMed

    Tao, Liang; Kwan, Hon Keung

    2012-07-01

    Novel algorithms for the multirate and fast parallel implementation of the 2-D discrete Hartley transform (DHT)-based real-valued discrete Gabor transform (RDGT) and its inverse transform are presented in this paper. A 2-D multirate-based analysis convolver bank is designed for the 2-D RDGT, and a 2-D multirate-based synthesis convolver bank is designed for the 2-D inverse RDGT. The parallel channels in each of the two convolver banks have a unified structure and can apply the 2-D fast DHT algorithm to speed up their computations. The computational complexity of each parallel channel is low and is independent of the Gabor oversampling rate. All the 2-D RDGT coefficients of an image are computed in parallel during the analysis process and can be reconstructed in parallel during the synthesis process. The computational complexity and time of the proposed parallel algorithms are analyzed and compared with those of the existing fastest algorithms for 2-D discrete Gabor transforms. The results indicate that the proposed algorithms are the fastest, which make them attractive for real-time image processing.

  3. Electron radiation damage mechanisms in 2D MoSe2

    NASA Astrophysics Data System (ADS)

    Lehnert, T.; Lehtinen, O.; Algara-Siller, G.; Kaiser, U.

    2017-01-01

    The contributions of different damage mechanisms in single-layer MoSe2 were studied by investigating different MoSe2/graphene heterostructures by the aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM) at 80 keV. The damage cross-sections were determined by direct counting of atoms in the AC-HRTEM images. The contributions of damage mechanisms such as knock-on damage or ionization effects were estimated by comparing the damage rates in different heterostructure configurations, similarly to what has been earlier done with MoS2. The behaviour of MoSe2 was found to be nearly identical to that of MoS2, which is an unexpected result, as the knock-on mechanism should be suppressed in MoSe2 due to the high mass of Se, as compared to S.

  4. Preparation and characterization of CdSe colloidal quantum dots by pptical spectroscopy and 2D DOSY NMR

    NASA Astrophysics Data System (ADS)

    Geru, I.; Bordian, O.; Culeac, I.; Turta, C.; Verlan, V.; Barba, A.

    2015-02-01

    We present experimental results on preparation and characterization of colloidal CdSe quantum dots (QD) in organic solvent. CdSe QDs were synthesized following a modified literature method and have been characterized by UV-Vis absorption and photoluminescent (PL) spectroscopy, as well as by 2D Diffusion Ordered Spectroscopy (DOSY) NMR. The average CdSe particles size estimated from the UV-Vis absorption spectra was found to be in the range 2.28 - 2.92 nm, which correlates very well with the results obtained from NMR measurements. The PL spectrum for CdSe nanodots can be characterized by a narrow emission band with the peak maximum shifting from 508 to 566 nm in dependence of the CdSe nanoparticle size. The PL is dominated by a near-band-edge emission, accompanied by a weak broad band in the near IR, related to the surface shallow trap emission.

  5. Optical properties of two-dimensional (2D) CdSe nanostructures

    NASA Astrophysics Data System (ADS)

    Cherevkov, S. A.; Baranov, A. V.; Fedorov, A. V.; Litvin, A. P.; Artemyev, M. V.; Prudnikau, A. V.

    2013-09-01

    The resonant and off-resonant Raman spectra of optical phonons in two-dimensional CdSe nanocrystals of 5, 6, and 7 monolayers are analysed. The spectra are dominated by SO and LO phonon bands of CdSe, whose frequencies are thickness-independent in the off-resonant Raman scattering but demonstrate an evident thickness dependence in the case of the resonant Raman scattering.

  6. Generation and Radiation of Acoustic Waves from a 2-D Shear Layer using the CE/SE Method

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Wang, Xiao Y.; Chang, Sin-Chung; Jorgenson, Philip C. E.

    2000-01-01

    In the present work, the generation and radiation of acoustic waves from a 2-D shear layer problem is considered. An acoustic source inside of a 2-D jet excites an instability wave in the shear layer, resulting in sound Mach radiation. The numerical solution is obtained by solving the Euler equations using the space time conservation element and solution element (CE/SE) method. Linearization is achieved through choosing a small acoustic source amplitude. The Euler equations are nondimensionalized as instructed in the problem statement. All other conditions are the same except that the Crocco's relation has a slightly different form. In the following, after a brief sketch of the CE/SE method, the numerical results for this problem are presented.

  7. Manipulation of photoluminescence of 2D MoSe2 by gold nanoantennas(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Haitao; Yang, Jiong; Rusak, Evgenia; Straubel, Jakob; Guo, Rui; Myint, Ye M.; Pei, JiaJie; Decker, Manuel; Staude, Isabelle; Rockstuhl, Carsten; Lu, Yuerui; Kivshar, Yuri S.; Neshev, Dragomir N.

    2016-10-01

    Two-dimensional transition metal dichalcogenides (TMDCs) show a great potential for optoelectronic applications due to their unique properties. However, the control of their emission through coupling to nanoantennas remains largely unexplored. Importantly, antenna-TMDCs coupling promised to be an effective way for PL control due to the high Purcell enhancement such plasmonic nanostructures can offer. MoSe2, a member of the TMDCs family, is an appealing candidate for coupling to gold plasmonic nanostructures due to its smaller bandgap and higher electron mobility in comparison to the readily used MoS2. Moreover, the PL of MoSe2 occurs in the near-infrared spectral range, where the emissive properties do not suffer from the enhanced dissipation in the gold due to interband transitions. Here we study the interaction between monolayer MoSe2 and plasmonic dipolar antennas demonstrating efficient control of the PL from the TMDC layer. In our experiments, we transfer an exfoliated monolayer MoSe2 onto an array of rectangular gold nanoantenna whose plasmonic resonances overlap with the PL emission of the material. By varying a thickness of the spacer between the MoSe2 layer and the nanoantenna, we demonstrate tuneable PL from threefold enhancement (sample with spacer) to twice quenching (sample without spacer). Furthermore, the observed PL from the TMDC-antenna system demonstrates polarization-dependent properties, thus offering the possibility of polarization-based PL control. Our experimental results are supported by numerical simulations. To the best of our knowledge, this is the first study of Au-MoSe2 plasmonic hybrid structures realizing flexible PL manipulation, which is promising for future optoelectronic applications.

  8. An algorithm for computing the 2D structure of fast rotating stars

    SciTech Connect

    Rieutord, Michel; Espinosa Lara, Francisco; Putigny, Bertrand

    2016-08-01

    Stars may be understood as self-gravitating masses of a compressible fluid whose radiative cooling is compensated by nuclear reactions or gravitational contraction. The understanding of their time evolution requires the use of detailed models that account for a complex microphysics including that of opacities, equation of state and nuclear reactions. The present stellar models are essentially one-dimensional, namely spherically symmetric. However, the interpretation of recent data like the surface abundances of elements or the distribution of internal rotation have reached the limits of validity of one-dimensional models because of their very simplified representation of large-scale fluid flows. In this article, we describe the ESTER code, which is the first code able to compute in a consistent way a two-dimensional model of a fast rotating star including its large-scale flows. Compared to classical 1D stellar evolution codes, many numerical innovations have been introduced to deal with this complex problem. First, the spectral discretization based on spherical harmonics and Chebyshev polynomials is used to represent the 2D axisymmetric fields. A nonlinear mapping maps the spheroidal star and allows a smooth spectral representation of the fields. The properties of Picard and Newton iterations for solving the nonlinear partial differential equations of the problem are discussed. It turns out that the Picard scheme is efficient on the computation of the simple polytropic stars, but Newton algorithm is unsurpassed when stellar models include complex microphysics. Finally, we discuss the numerical efficiency of our solver of Newton iterations. This linear solver combines the iterative Conjugate Gradient Squared algorithm together with an LU-factorization serving as a preconditioner of the Jacobian matrix.

  9. Fast, accurate 2D-MR relaxation exchange spectroscopy (REXSY): Beyond compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Benjamini, Dan; Cheng, Jian; Basser, Peter J.

    2016-10-01

    Previously, we showed that compressive or compressed sensing (CS) can be used to reduce significantly the data required to obtain 2D-NMR relaxation and diffusion spectra when they are sparse or well localized. In some cases, an order of magnitude fewer uniformly sampled data were required to reconstruct 2D-MR spectra of comparable quality. Nonetheless, this acceleration may still not be sufficient to make 2D-MR spectroscopy practicable for many important applications, such as studying time-varying exchange processes in swelling gels or drying paints, in living tissue in response to various biological or biochemical challenges, and particularly for in vivo MRI applications. A recently introduced framework, marginal distributions constrained optimization (MADCO), tremendously accelerates such 2D acquisitions by using a priori obtained 1D marginal distribution as powerful constraints when 2D spectra are reconstructed. Here we exploit one important intrinsic property of the 2D-MR relaxation exchange spectra: the fact that the 1D marginal distributions of each 2D-MR relaxation exchange spectrum in both dimensions are equal and can be rapidly estimated from a single Carr-Purcell-Meiboom-Gill (CPMG) or inversion recovery prepared CPMG measurement. We extend the MADCO framework by further proposing to use the 1D marginal distributions to inform the subsequent 2D data-sampling scheme, concentrating measurements where spectral peaks are present and reducing them where they are not. In this way we achieve compression or acceleration that is an order of magnitude greater than that in our previous CS method while providing data in reconstructed 2D-MR spectral maps of comparable quality, demonstrated using several simulated and real 2D T2 - T2 experimental data. This method, which can be called "informed compressed sensing," is extendable to other 2D- and even ND-MR exchange spectroscopy.

  10. Atomic thin titania nanosheet-coupled reduced graphene oxide 2D heterostructures for enhanced photocatalytic activity and fast lithium storage

    NASA Astrophysics Data System (ADS)

    Li, Dong Jun; Huang, Zhegang; Hwang, Tae Hoon; Narayan, Rekha; Choi, Jang Wook; Kim, Sang Ouk

    2016-03-01

    Realizing practical high performance materials and devices using the properties of 2D materials is of key research interest in the materials science field. In particular, building well-defined heterostructures using more than two different 2D components in a rational way is highly desirable. In this paper, a 2D heterostructure consisting of atomic thin titania nanosheets densely grown on reduced graphene oxide surface is successfully prepared through incorporating polymer functionalized graphene oxide into the novel TiO2 nanosheets synthesis scheme. As a result of the synergistic combination of a highly accessible surface area and abundant interface, which can modulate the physicochemical properties, the resultant heterostructure can be used in high efficiency visible light photocatalysis as well as fast energy storage with a long lifecycle. [Figure not available: see fulltext.

  11. Fast Threshold image segmentation based on 2D Fuzzy Fisher and Random Local Optimized QPSO.

    PubMed

    Zhang, Chunming; Xie, Yongchun; Liu, Da; Wang, Li

    2016-10-26

    In the paper, a real-time segmentation method which separates the target signal from the navigation image is proposed. In the approaching docking stage, the navigation image is composed of target and nontarget signal, which are separately bright spot and space vehicle itself. Since the non-target signals is the main part of the navigation image, the traditional entropy-related criterions and Ostu-related criterions will bring inadequate segmentation, while the mere 2D Fisher criterion will causes over-segmentation, all the methods show their shortages in dealing with this kind of case. To guarantee a precise image segmentation, a revised 2D fuzzy Fisher is proposed in the paper to make a trade-off between positioning target regions and retaining target fuzzy boundaries. Firstly, to reduce redundant computations in finding the threshold pair, a 2D fuzzy Fisher criterion based integral image is established by way of simplifying the corresponding fuzzy domains. And then, to quicken the convergence, a random orthogonal component is added in its quasioptimum particle to enhance its local searching capacity in each iteration. Experimental results show its competence of quick segmentation.

  12. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    PubMed Central

    Swisher, Christine Leon; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-01-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate–lactate, pyruvate–alanine, and pyruvate–hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines. PMID:26117655

  13. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    NASA Astrophysics Data System (ADS)

    Leon Swisher, Christine; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-08-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate-lactate, pyruvate-alanine, and pyruvate-hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines.

  14. The electronic structure and spin states of 2D graphene/VX2 (X = S, Se) heterostructures.

    PubMed

    Popov, Z I; Mikhaleva, N S; Visotin, M A; Kuzubov, A A; Entani, S; Naramoto, H; Sakai, S; Sorokin, P B; Avramov, P V

    2016-12-07

    The structural, magnetic and electronic properties of 2D VX2 (X = S, Se) monolayers and graphene/VX2 heterostructures were studied using a DFT+U approach. It was found that the stability of the 1T phases of VX2 monolayers is linked to strong electron correlation effects. The study of vertical junctions comprising of graphene and VX2 monolayers demonstrated that interlayer interactions lead to the formation of strong spin polarization of both graphene and VX2 fragments while preserving the linear dispersion of graphene-originated bands. It was found that the insertion of Mo atoms between the layers leads to n-doping of graphene with a selective transformation of graphene bands keeping the spin-down Dirac cone intact.

  15. Fast Acceleration of 2D Wave Propagation Simulations Using Modern Computational Accelerators

    PubMed Central

    Wang, Wei; Xu, Lifan; Cavazos, John; Huang, Howie H.; Kay, Matthew

    2014-01-01

    Recent developments in modern computational accelerators like Graphics Processing Units (GPUs) and coprocessors provide great opportunities for making scientific applications run faster than ever before. However, efficient parallelization of scientific code using new programming tools like CUDA requires a high level of expertise that is not available to many scientists. This, plus the fact that parallelized code is usually not portable to different architectures, creates major challenges for exploiting the full capabilities of modern computational accelerators. In this work, we sought to overcome these challenges by studying how to achieve both automated parallelization using OpenACC and enhanced portability using OpenCL. We applied our parallelization schemes using GPUs as well as Intel Many Integrated Core (MIC) coprocessor to reduce the run time of wave propagation simulations. We used a well-established 2D cardiac action potential model as a specific case-study. To the best of our knowledge, we are the first to study auto-parallelization of 2D cardiac wave propagation simulations using OpenACC. Our results identify several approaches that provide substantial speedups. The OpenACC-generated GPU code achieved more than speedup above the sequential implementation and required the addition of only a few OpenACC pragmas to the code. An OpenCL implementation provided speedups on GPUs of at least faster than the sequential implementation and faster than a parallelized OpenMP implementation. An implementation of OpenMP on Intel MIC coprocessor provided speedups of with only a few code changes to the sequential implementation. We highlight that OpenACC provides an automatic, efficient, and portable approach to achieve parallelization of 2D cardiac wave simulations on GPUs. Our approach of using OpenACC, OpenCL, and OpenMP to parallelize this particular model on modern computational accelerators should be applicable to other computational models of wave propagation in

  16. 3D spin-flop transition in enhanced 2D layered structure single crystalline TlCo2Se2

    NASA Astrophysics Data System (ADS)

    Jin, Z.; Xia, Z.-C.; Wei, M.; Yang, J.-H.; Chen, B.; Huang, S.; Shang, C.; Wu, H.; Zhang, X.-X.; Huang, J.-W.; Ouyang, Z.-W.

    2016-10-01

    The enhanced 2D layered structure single crystalline TlCo2Se2 has been successfully fabricated, which exhibits field-induced 3D spin-flop phase transitions. In the case of the magnetic field parallel to the c-axis (B//c), the applied magnetic field induces the evolution of the noncollinear helical magnetic coupling into a ferromagnetic (FM) state with all the magnetization of the Co ion parallel to the c-axis. A striking variation of the field-induced strain within the ab-plane is noticed in the magnetic field region of 20-30 T. In the case of the magnetic field perpendicular to the c-axis (B  ⊥  c), the inter-layer helical antiferromagnetic (AFM) coupling may transform to an initial canted AFM coupling, and then part of it transforms to an intermediate metamagnetic phase with the alignment of two-up-one-down Co magnetic moments and finally to an ultimate FM coupling in higher magnetic fields. The robust noncollinear AFM magnetic coupling is completely destroyed above 30 T. In combination with the measurements of magnetization, magnetoresistance and field-induced strain, a complete magnetic phase diagram of the TlCo2Se2 single crystal has been depicted, demonstrating complex magnetic structures even though the crystal geometry itself gives no indication of the magnetic frustration.

  17. Fast 2D DOA Estimation Algorithm by an Array Manifold Matching Method with Parallel Linear Arrays

    PubMed Central

    Yang, Lisheng; Liu, Sheng; Li, Dong; Jiang, Qingping; Cao, Hailin

    2016-01-01

    In this paper, the problem of two-dimensional (2D) direction-of-arrival (DOA) estimation with parallel linear arrays is addressed. Two array manifold matching (AMM) approaches, in this work, are developed for the incoherent and coherent signals, respectively. The proposed AMM methods estimate the azimuth angle only with the assumption that the elevation angles are known or estimated. The proposed methods are time efficient since they do not require eigenvalue decomposition (EVD) or peak searching. In addition, the complexity analysis shows the proposed AMM approaches have lower computational complexity than many current state-of-the-art algorithms. The estimated azimuth angles produced by the AMM approaches are automatically paired with the elevation angles. More importantly, for estimating the azimuth angles of coherent signals, the aperture loss issue is avoided since a decorrelation procedure is not required for the proposed AMM method. Numerical studies demonstrate the effectiveness of the proposed approaches. PMID:26907301

  18. Investigation of fast particle driven instabilities by 2D electron cyclotron emission imaging on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Classen, I. G. J.; Lauber, Ph; Curran, D.; Boom, J. E.; Tobias, B. J.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Garcia Munoz, M.; Geiger, B.; Maraschek, M.; Van Zeeland, M. A.; da Graça, S.; ASDEX Upgrade Team

    2011-12-01

    Detailed measurements of the 2D mode structure of Alfvén instabilities in the current ramp-up phase of neutral beam heated discharges were performed on ASDEX Upgrade, using the electron cyclotron emission imaging (ECEI) diagnostic. This paper focuses on the observation of reversed shear Alfvén eigenmodes (RSAEs) and bursting modes that, with the use of the information from ECEI, have been identified as beta-induced Alfvén eigenmodes (BAEs). Both RSAEs with first and second radial harmonic mode structures were observed. Calculations with the linear gyro-kinetic code LIGKA revealed that the ratio of the damping rates and the frequency difference between the first and second harmonic modes strongly depended on the shape of the q-profile. The bursting character of the BAE type modes, which were radially localized to rational q surfaces, was observed to sensitively depend on the plasma parameters, ranging from strongly bursting to almost steady state.

  19. Fast 2D FWI on a multi and many-cores workstation.

    NASA Astrophysics Data System (ADS)

    Thierry, Philippe; Donno, Daniela; Noble, Mark

    2014-05-01

    Following the introduction of x86 co-processors (Xeon Phi) and the performance increase of standard 2-socket workstations using the latest 12 cores E5-v2 x86-64 CPU, we present here a MPI + OpenMP implementation of an acoustic 2D FWI (full waveform inversion) code which simultaneously runs on the CPUs and on the co-processors installed in a workstation. The main advantage of running a 2D FWI on a workstation is to be able to quickly evaluate new features such as more complicated wave equations, new cost functions, finite-difference stencils or boundary conditions. Since the co-processor is made of 61 in-order x86 cores, each of them having up to 4 threads, this many-core can be seen as a shared memory SMP (symmetric multiprocessing) machine with its own IP address. Depending on the vendor, a single workstation can handle several co-processors making the workstation as a personal cluster under the desk. The original Fortran 90 CPU version of the 2D FWI code is just recompiled to get a Xeon Phi x86 binary. This multi and many-core configuration uses standard compilers and associated MPI as well as math libraries under Linux; therefore, the cost of code development remains constant, while improving computation time. We choose to implement the code with the so-called symmetric mode to fully use the capacity of the workstation, but we also evaluate the scalability of the code in native mode (i.e running only on the co-processor) thanks to the Linux ssh and NFS capabilities. Usual care of optimization and SIMD vectorization is used to ensure optimal performances, and to analyze the application performances and bottlenecks on both platforms. The 2D FWI implementation uses finite-difference time-domain forward modeling and a quasi-Newton (with L-BFGS algorithm) optimization scheme for the model parameters update. Parallelization is achieved through standard MPI shot gathers distribution and OpenMP for domain decomposition within the co-processor. Taking advantage of the 16

  20. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    NASA Astrophysics Data System (ADS)

    Bijleveld, H. A.; Veldman, A. E. P.

    2014-12-01

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.

  1. A Complete 2D Stability Analysis of Fast MHD Shocks in an Ideal Gas

    NASA Astrophysics Data System (ADS)

    Trakhinin, Yuri

    An algorithm of numerical testing of the uniform Lopatinski condition for linearized stability problems for 1-shocks is suggested. The algorithm is used for finding the domains of uniform stability, neutral stability, and instability of planar fast MHD shocks. A complete stability analysis of fast MHD shock waves is first carried out in two space dimensions for the case of an ideal gas. Main results are given for the adiabatic constant γ=5/3 (mono-atomic gas), that is most natural for the MHD model. The cases γ=7/5 (two-atomic gas) and γ>5/3 are briefly discussed. Not only the domains of instability and linear (in the usual sense) stability, but also the domains of uniform stability, for which a corresponding linearized stability problem satisfies the uniform Lopatinski condition, are numerically found for different given angles of inclination of the magnetic field behind the shock to the planar shock front. As is known, uniform linearized stability implies the nonlinear stability, that is local existence of discontinuous shock front solutions of a quasilinear system of hyperbolic conservation laws.

  2. 2D Rotational Angiography for Fast and Standardized Evaluation of Peripheral and Visceral Artery Stenoses

    SciTech Connect

    Katoh, Marcus Opitz, Armin; Minko, Peter; Massmann, Alexander; Berlich, Joachim; Buecker, Arno

    2011-06-15

    Purpose: To investigate the value of rotational digital subtraction angiography (rDSA) for evaluation of peripheral and visceral artery stenoses compared to conventional digital subtraction angiography (cDSA). Methods: A phantom study was performed comparing the radiation dose of cDSA with two projections and rDSA by means of the 2D Dynavision technique (Siemens Medical Solutions, Forchheim, Germany). Subsequently, 33 consecutive patients (18 women, 15 men; mean {+-} SD age 67 {+-} 15 years) were examined by both techniques. In total, 63 vessel segments were analyzed by two observers with respect to stenoses, image contrast, and vessel sharpness. Results: Radiation dose was significantly lower with rDSA. cDSA and rDSA revealed 21 and 24 flow-relevant stenotic lesions and vessel occlusions (70-100%), respectively. The same stenosis grade was assessed in 45 segments. By means of rDSA, 10 lesions were judged to have a higher and 8 lesions a lower stenosis grade compared to cDSA. rDSA yielded additive information regarding the vessel anatomy and pathology in 29 segments. However, a tendency toward better image quality and sharper vessel visualization was seen with cDSA. Conclusion: rDSA allows for multiprojection assessment of peripheral and visceral arteries and provides additional clinically relevant information after a single bolus of contrast medium. At the same time, radiation dose can be significantly reduced compared to cDSA.

  3. Fast evaluation of enantioselective drug metabolism by electrophoretically mediated microanalysis: application to fluoxetine metabolism by CYP2D6.

    PubMed

    Asensi-Bernardi, Lucía; Martín-Biosca, Yolanda; Escuder-Gilabert, Laura; Sagrado, Salvador; Medina-Hernández, María José

    2013-12-01

    In this work, a capillary electrophoretic methodology for the enantioselective in vitro evaluation of drugs metabolism is applied to the evaluation of fluoxetine (FLX) metabolism by cytochrome 2D6 (CYP2D6). This methodology comprises the in-capillary enzymatic reaction and the chiral separation of FLX and its major metabolite, norfluoxetine enantiomers employing highly sulfated β-CD and the partial filling technique. The methodology employed in this work is a fast way to obtain a first approach of the enantioselective in vitro metabolism of racemic drugs, with the additional advantage of an extremely low consumption of enzymes, CDs and all the reagents involved in the process. Michaelis-Menten kinetic parameters (Km and Vmax ) for the metabolism of FLX enantiomers by CYP2D6 have been estimated by nonlinear fitting of experimental data to the Michaelis-Menten equation. Km values have been found to be 30 ± 3 μM for S-FLX and 39 ± 5 μM for R-FLX. Vmax estimations were 28.6 ± 1.2 and 34 ± 2 pmol·min(-1) ·(pmol CYP)(-1) for S- and R-FLX, respectively. Similar results were obtained using a single enantiomer (R-FLX), indicating that the use of the racemate is a good option for obtaining enantioselective estimations. The results obtained show a slight enantioselectivity in favor of R-FLX.

  4. Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors

    SciTech Connect

    Chuang, Hsun -Jen; Chamlagain, Bhim; Koehler, Michael; Perera, Meeghage Madusanka; Yan, Jiaqiang; Mandrus, David; Tomanek, David; Zhou, Zhixian

    2016-02-04

    Here, we report a new strategy for fabricating 2D/2D low-resistance ohmic contacts for a variety of transition metal dichalcogenides (TMDs) using van der Waals assembly of substitutionally doped TMDs as drain/source contacts and TMDs with no intentional doping as channel materials. We demonstrate that few-layer WSe2 field-effect transistors (FETs) with 2D/2D contacts exhibit low contact resistances of ~0.3 kΩ μm, high on/off ratios up to >109, and high drive currents exceeding 320 μA μm–1. These favorable characteristics are combined with a two-terminal field-effect hole mobility μFE ≈ 2 × 102 cm2 V–1 s–1 at room temperature, which increases to >2 × 103 cm2 V–1 s–1 at cryogenic temperatures. We observe a similar performance also in MoS2 and MoSe2 FETs with 2D/2D drain and source contacts. The 2D/2D low-resistance ohmic contacts presented here represent a new device paradigm that overcomes a significant bottleneck in the performance of TMDs and a wide variety of other 2D materials as the channel materials in postsilicon electronics.

  5. Fast DRR generation for 2D to 3D registration on GPUs

    SciTech Connect

    Tornai, Gabor Janos; Cserey, Gyoergy

    2012-08-15

    Purpose: The generation of digitally reconstructed radiographs (DRRs) is the most time consuming step on the CPU in intensity based two-dimensional x-ray to three-dimensional (CT or 3D rotational x-ray) medical image registration, which has application in several image guided interventions. This work presents optimized DRR rendering on graphical processor units (GPUs) and compares performance achievable on four commercially available devices. Methods: A ray-cast based DRR rendering was implemented for a 512 Multiplication-Sign 512 Multiplication-Sign 72 CT volume. The block size parameter was optimized for four different GPUs for a region of interest (ROI) of 400 Multiplication-Sign 225 pixels with different sampling ratios (1.1%-9.1% and 100%). Performance was statistically evaluated and compared for the four GPUs. The method and the block size dependence were validated on the latest GPU for several parameter settings with a public gold standard dataset (512 Multiplication-Sign 512 Multiplication-Sign 825 CT) for registration purposes. Results: Depending on the GPU, the full ROI is rendered in 2.7-5.2 ms. If sampling ratio of 1.1%-9.1% is applied, execution time is in the range of 0.3-7.3 ms. On all GPUs, the mean of the execution time increased linearly with respect to the number of pixels if sampling was used. Conclusions: The presented results outperform other results from the literature. This indicates that automatic 2D to 3D registration, which typically requires a couple of hundred DRR renderings to converge, can be performed quasi on-line, in less than a second or depending on the application and hardware in less than a couple of seconds. Accordingly, a whole new field of applications is opened for image guided interventions, where the registration is continuously performed to match the real-time x-ray.

  6. Real-time 2D floating-point fast Fourier transforms for seeker simulation

    NASA Astrophysics Data System (ADS)

    Chamberlain, Richard; Lord, Eric; Shand, David J.

    2002-07-01

    The floating point Fast Fourier Transform (FFT) is one of the most useful basic functions available to the image and signal processing engineer allowing many complex and detailed special functions to be implemented more simply in the frequency domain. In the Hardware-in-the-Loop field an image transformed using FFT would allow the designer to think about accurate frequency based simulation of seeker lens effects, motion blur, detector transfer functions and much more. Unfortunately, the transform requires many hundreds of thousands or millions of floating point operations on a single modest sized image making it impractical for realtime Hardware-in-the-Loop systems. .until now. This paper outlines the development, by Nallatech, of an FPGA based IEEE floating point core. It traces the subsequent use of this core to develop a full 256 X 256 FFT and filter process implemented on COTS hardware at frame rates up to 150Hz. This transform can be demonstrated to model optical transfer functions at a far greater accuracy than the current spatial models. Other applications and extensions of this technique will be discussed such as filtering for image tracking algorithms and in the simulation of radar processing in the frequency domain.

  7. Directional 2D functions as models for fast layout pattern transfer verification

    NASA Astrophysics Data System (ADS)

    Torres, J. Andres; Hofmann, Mark; Otto, Oberdan

    2009-03-01

    As advanced manufacturing processes become more stable, the need to adapt new designs to fully utilize the available manufacturing technology becomes a key technologic differentiator. However, many times such gains can only be realized and evaluated during full chip analysis. It has been demonstrated that the most accurate layout verification methods require application of the actual OPC recipes along with most of the mask data preparation that defines the pattern transfer characteristics of the process. Still, this method in many instances is not sufficiently fast to be used in a layout creation environment which undergoes constant updates. By doing an analysis of typical mask data processing, it is possible to determine that the most CPUintensive computations are the OPC and contour simulation steps needed to perform layout printability checks. Several researchers have tried to reduce the time it takes to compute the OPC mask by introducing matrix convolutions of the layout with empirically calibrated two-dimensional functions. However, most of these approaches do not provide a sufficient speed-up since they only replace the OPC computation and still require a full contour computation. Another alternative is to try to find effective ways of pattern matching those topologies that will exhibit transfer difficulties4, but such methods lack the ability to be predictive beyond their calibration data. In this paper we present a methodology that includes common resolution enhancement techniques, such as retargeting and sub-resolution assist feature insertion, and which replaces the OPC computation and subsequent contour calculation with an edge bias function based on an empirically-calibrated, directional, two-dimensional function. Because the edge bias function does not provide adequate control over the corner locations, a spline-based smoothing process is applied. The outcome is a piecewise-linear curve similar to those obtained by full lithographic simulations. Our

  8. The study of flexible emission and photoconductivity in 2D layered InSe toward an applicable 1000-nm light emitter and absorber

    NASA Astrophysics Data System (ADS)

    Chuang, Ching-An; Lin, Min-Han; Yeh, Bo-Xian; Chu, Yun-Ju; Ho, Ching-Hwa

    2017-03-01

    Multilayer InSe with a thickness above 20 nm is a direct semiconductor proposed for solar-energy conversion and to use in flexible optoelectronics. We demonstrate herein a superior 1000-nm light emission and absorption capability of two-dimensional (2D) multilayer InSe studied by photoluminescence (PL) and photoconductivity (PC) experiments. Layered crystals of InSe have been grown by chemical vapor transport method using ICl3 as a transport agent. Polarized Raman measurement confirmed 2 H ɛ crystalline phase of the as-grown crystals. For 2D flexible applications, the bending photoluminescence (BPL) result of InSe ( t ≈ 30 nm) showed an enhancement in light intensity with respect to that of the flat PL condition. It might be because the cylinder surface area under bending (convex) is larger than that of the flat surface under the same laser excitation condition. Besides, the luminescence efficiency of BPL is also enhanced owing to the widening of emission solid angle of each Se-In-In-Se unit in the InSe as compared to that of the flat PL condition. The emission wavelength is about 1000 nm at room temperature. Furthermore, for the PC study, photoresponsivity spectrum of a Ag-InSe-Ag multilayer photoconductor demonstrates a prominent peak absorption at 1.1 1.3 eV, matching well with the direct-free-exciton energy of the multilayer InSe. All the experimental results demonstrate that 2D multilayer InSe is a promising 1000 nm light emitter and absorber available for potential optoelectronics applications.

  9. Weakly Bound and Strongly Interacting: NbSe2 and 1T-TaS2 in the 2D Limit

    NASA Astrophysics Data System (ADS)

    Tsen, Adam

    The layered metallic dichalcogenides are known to exhibit rich collective electron phases such as charge density waves, spin density waves, and superconductivity. In the past, studies on graphene and various semiconducting dichalcogenides have shown that taking layered materials to their physical two-dimensional (2D) limit leads to fundamental changes in band structure, allowing for a powerful experimental knob to tune for electronic functionality. In contrast, due to their instability in the ambient environment, the effect of thickness control over such collective electron phases has been largely unexplored in metallic systems. We have recently demonstrated a new experimental platform for the isolation and assembly of environmentally sensitive 2D materials in inert atmosphere. I will discuss our recent studies of the charge density wave material 1T-TaS2 and superconducting NbSe2 in the atomically thin limit, made possible using this technique. For 1T-TaS2, we find that the lock-in transition to commensurate charge ordering becomes increasingly metastable for reduced thickness, allowing for all-electrical control over this phase transition in the 2D state. In NbSe2, a small magnetic field induces a transition to a quantum metallic phase, the resistivity of which obeys a unique field-scaling property. These methods and experiments open new doors for the study of other correlated 2D materials in the immediate future.

  10. Very Fast Algorithms and Detection Performance of Multi-Channel and 2-D Parametric Adaptive Matched Filters for Airborne Radar

    DTIC Science & Technology

    2007-06-05

    tive to the AMF, [1] and [5] discovered that multi-channel and two-dimensional parametric estimation approaches could (1) reduce the computational...dimensional (2-D) parametric estimation using the 2-D least-squares-based lattice algorithm [4]. The specifics of the inverse are found in the next...non- parametric estimation techniques • Least square error (LSE) vs mean square error (MSE) • Primarily multi-channel (M-C) structures; also try 2-D

  11. Fast electron transfer from PbSe quantum dots to TiO{sub 2}

    SciTech Connect

    Masumoto, Yasuaki; Takagi, Hayato; Umino, Hikaru; Suzumura, Eri

    2013-12-04

    Fast electron transfer from PbSe quantum dots (QDs) to the porous anatase TiO{sub 2} film was observed in transient absorption, when the lowest unoccupied molecular orbital level of PbSe QDs is higher than that of TiO{sub 2}. In PbSe QDs 2.7nm in diameter linked to the TiO{sub 2} film the bleaching recovery decay shortened to 1ps from 650ps observed in the non-linked PbSe QDs. The electron transfer from the quantum state in small PbSe QDs to TiO{sub 2} takes place fast and efficiently.

  12. Ultra-Fast Synthesis for Ag2Se and CuAgSe Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    DUAN, H. Z.; LI, Y. L.; ZHAO, K. P.; QIU, P. F.; SHI, X.; CHEN, L. D.

    2016-10-01

    Ag2Se and CuAgSe have been recently reported as promising thermoelectric materials at room temperature. The traditional melting-annealing-sintering processes are used to grow Ag2Se and CuAgSe materials with the disadvantages of high costs of energy and time. In this work, phase-pure polycrystalline Ag2Se and CuAgSe compounds were synthesized from raw elemental powders directly by manual mixing followed by spark plasma sintering (MM-SPS) in a few minutes. The influence of SPS heating rate on the phase composition, microstructure, and thermoelectric properties, including Seebeck coefficient, electrical conductivity, and thermal conductivity, were investigated. The zTs of 0.8 at 390 K and 0.6 at 450 K are obtained for Ag2Se and CuAgSe, respectively, which is comparable with the values in the materials prepared by the traditional method. Furthermore, this ultrafast sample synthesis can significantly save material synthesis time and thus has the obvious advantage for large-scale production.

  13. Sub-millimeter T2 weighted fMRI at 7 T: comparison of 3D-GRASE and 2D SE-EPI.

    PubMed

    Kemper, Valentin G; De Martino, Federico; Vu, An T; Poser, Benedikt A; Feinberg, David A; Goebel, Rainer; Yacoub, Essa

    2015-01-01

    Functional magnetic resonance imaging (fMRI) allows studying human brain function non-invasively up to the spatial resolution of cortical columns and layers. Most fMRI acquisitions rely on the blood oxygenation level dependent (BOLD) contrast employing T(*) 2 weighted 2D multi-slice echo-planar imaging (EPI). At ultra-high magnetic field (i.e., 7 T and above), it has been shown experimentally and by simulation, that T2 weighted acquisitions yield a signal that is spatially more specific to the site of neuronal activity at the cost of functional sensitivity. This study compared two T2 weighted imaging sequences, inner-volume 3D Gradient-and-Spin-Echo (3D-GRASE) and 2D Spin-Echo EPI (SE-EPI), with evaluation of their imaging point-spread function (PSF), functional specificity, and functional sensitivity at sub-millimeter resolution. Simulations and measurements of the imaging PSF revealed that the strongest anisotropic blurring in 3D-GRASE (along the second phase-encoding direction) was about 60% higher than the strongest anisotropic blurring in 2D SE-EPI (along the phase-encoding direction). In a visual paradigm, the BOLD sensitivity of 3D-GRASE was found to be superior due to its higher temporal signal-to-noise ratio (tSNR). High resolution cortical depth profiles suggested that the contrast mechanisms are similar between the two sequences, however, 2D SE-EPI had a higher surface bias owing to the higher T(*) 2 contribution of the longer in-plane EPI echo-train for full field of view compared to the reduced field of view of zoomed 3D-GRASE.

  14. HIFI-C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections.

    PubMed

    Cornilescu, Gabriel; Bahrami, Arash; Tonelli, Marco; Markley, John L; Eghbalnia, Hamid R

    2007-08-01

    We describe a novel method for the robust, rapid, and reliable determination of J couplings in multi-dimensional NMR coupling data, including small couplings from larger proteins. The method, "High-resolution Iterative Frequency Identification of Couplings" (HIFI-C) is an extension of the adaptive and intelligent data collection approach introduced earlier in HIFI-NMR. HIFI-C collects one or more optimally tilted two-dimensional (2D) planes of a 3D experiment, identifies peaks, and determines couplings with high resolution and precision. The HIFI-C approach, demonstrated here for the 3D quantitative J method, offers vital features that advance the goal of rapid and robust collection of NMR coupling data. (1) Tilted plane residual dipolar couplings (RDC) data are collected adaptively in order to offer an intelligent trade off between data collection time and accuracy. (2) Data from independent planes can provide a statistical measure of reliability for each measured coupling. (3) Fast data collection enables measurements in cases where sample stability is a limiting factor (for example in the presence of an orienting medium required for residual dipolar coupling measurements). (4) For samples that are stable, or in experiments involving relatively stronger couplings, robust data collection enables more reliable determinations of couplings in shorter time, particularly for larger biomolecules. As a proof of principle, we have applied the HIFI-C approach to the 3D quantitative J experiment to determine N-C' RDC values for three proteins ranging from 56 to 159 residues (including a homodimer with 111 residues in each subunit). A number of factors influence the robustness and speed of data collection. These factors include the size of the protein, the experimental set up, and the coupling being measured, among others. To exhibit a lower bound on robustness and the potential for time saving, the measurement of dipolar couplings for the N-C' vector represents a realistic

  15. Synthesis, properties and applications of 2D layered M(III)X(VI) (M = Ga, In; X = S, Se, Te) materials.

    PubMed

    Xu, Kai; Yin, Lei; Huang, Yun; Shifa, Tofik Ahmed; Chu, Junwei; Wang, Feng; Cheng, Ruiqing; Wang, Zhenxing; He, Jun

    2016-09-29

    Group III-VI compounds M(III)X(VI) (M = Ga, In; X = S, Se, Te) are one class of important 2D layered materials and are currently attracting increasing interest due to their unique electronic and optoelectronic properties and their great potential applications in various other fields. Similar to 2D layered transition metal dichalcogenides (TMDs), M(III)X(VI) also have the significant merits of ultrathin thickness, ultrahigh surface-to-volume ratio, and high compatibility with flexible devices. More impressively, in contrast with TMDCs, M(III)X(VI) demonstrate many superior properties, such as direct band gap electronic structure, high carrier mobility, rare p-type electronic behaviors, high charge density, and so on. These unique characteristics cause high-performance device applications in electronics, optoelectronics, and optics. In this review, we aim to provide a summary of the state-of-the-art of research activities in 2D layered M(III)X(VI) materials. The scope of the review covers the synthesis and properties of 2D layered M(III)X(VI) materials and their van der Waals heterostructures. We especially focus on the applications in electronics and optoelectronics. Moreover, the review concludes with some perspectives on future developments in this field.

  16. 2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes

    PubMed Central

    Chiatti, Olivio; Riha, Christian; Lawrenz, Dominic; Busch, Marco; Dusari, Srujana; Sánchez-Barriga, Jaime; Mogilatenko, Anna; Yashina, Lada V.; Valencia, Sergio; Ünal, Akin A.; Rader, Oliver; Fischer, Saskia F.

    2016-01-01

    Low-field magnetotransport measurements of topological insulators such as Bi2Se3 are important for revealing the nature of topological surface states by quantum corrections to the conductivity, such as weak-antilocalization. Recently, a rich variety of high-field magnetotransport properties in the regime of high electron densities (∼1019 cm−3) were reported, which can be related to additional two-dimensional layered conductivity, hampering the identification of the topological surface states. Here, we report that quantum corrections to the electronic conduction are dominated by the surface states for a semiconducting case, which can be analyzed by the Hikami-Larkin-Nagaoka model for two coupled surfaces in the case of strong spin-orbit interaction. However, in the metallic-like case this analysis fails and additional two-dimensional contributions need to be accounted for. Shubnikov-de Haas oscillations and quantized Hall resistance prove as strong indications for the two-dimensional layered metallic behavior. Temperature-dependent magnetotransport properties of high-quality Bi2Se3 single crystalline exfoliated macro and micro flakes are combined with high resolution transmission electron microscopy and energy-dispersive x-ray spectroscopy, confirming the structure and stoichiometry. Angle-resolved photoemission spectroscopy proves a single-Dirac-cone surface state and a well-defined bulk band gap in topological insulating state. Spatially resolved core-level photoelectron microscopy demonstrates the surface stability. PMID:27270569

  17. Simple synthesis of PbSe nanocrystals and their self-assembly into 2D ‘flakes’ and 1D ‘ribbons’ structures

    SciTech Connect

    Díaz-Torres, E.; Ortega-López, M.; Matsumoto, Y.; Santoyo-Salazar, J.

    2016-08-15

    Highlights: • PbSe is obtained in a simple way by the co-precipitation method at low-temperature. • The structural, morphological and optical properties of PbSe were studied. • Adding NH{sub 4}OH to the precursor solutions influences on the morphology. • 2D- and 1D-PbSe structures assemble by oriented attachment. • PbSe can be a potential candidate for thermoelectric applications. - Abstract: This work presents a simple and low-temperature method to prepare a variety of Lead selenide (PbSe) nanostructures, using aqueous solutions of Pb(NO{sub 3}){sub 2} and NaHSe. Nanostructures with different morphology were obtained by varying the Pb:Se molar ratio, as well as the mixing sequence of NH{sub 4}OH with either Pb(NO{sub 3}){sub 2} or NaHSe. Nanoparticles with different shapes (spherical and octahedral), and self-assembled structures (flakes and ribbons) were observed by Transmission Electron Microscopy. X-ray results confirmed that the PbSe rock-salt crystalline structure was obtained for all of the prepared samples. The crystal size is in the order of 7.3 to 8.9 nm for single nanocrystals. The absorption spectra of the samples show exciton absorption bands at 1395 nm and 1660 nm. This material could be used to develop more advanced structures for thermoelectric generators.

  18. Converting 2D inorganic-organic ZnSe-DETA hybrid nanosheets into 3D hierarchical nanosheet-based ZnSe microspheres with enhanced visible-light-driven photocatalytic performances

    NASA Astrophysics Data System (ADS)

    Wu, Xuan; Xu, Rui; Zhu, Rongjiao; Wu, Rui; Zhang, Bin

    2015-05-01

    Engineering two-dimensional (2D) nanosheets into three-dimensional (3D) hierarchical structures is one of the great challenges in nanochemistry and materials science. We report a facile and simple chemical conversion route to fabricate 3D hierarchical nanosheet-based ZnSe microspheres by using 2D inorganic-organic hybrid ZnSe-DETA (DETA = diethylenetriamine) nanosheets as the starting precursors. The conversion mechanism involves the controlled depletion of the organic-component (DETA) from the hybrid precursors and the subsequent self-assembly of the remnant inorganic-component (ZnSe). The transformation reaction of ZnSe-DETA nanosheets is mainly influenced by the concentration of DETA in the reaction solution. We demonstrated that this organic-component depletion method could be extended to the synthesis of other hierarchical structures of metal sulfides. In addition, the obtained hierarchical nanosheet-based ZnSe microspheres exhibited outstanding performance in visible light photocatalytic degradation of methyl orange and were highly active for photocatalytic H2 production.Engineering two-dimensional (2D) nanosheets into three-dimensional (3D) hierarchical structures is one of the great challenges in nanochemistry and materials science. We report a facile and simple chemical conversion route to fabricate 3D hierarchical nanosheet-based ZnSe microspheres by using 2D inorganic-organic hybrid ZnSe-DETA (DETA = diethylenetriamine) nanosheets as the starting precursors. The conversion mechanism involves the controlled depletion of the organic-component (DETA) from the hybrid precursors and the subsequent self-assembly of the remnant inorganic-component (ZnSe). The transformation reaction of ZnSe-DETA nanosheets is mainly influenced by the concentration of DETA in the reaction solution. We demonstrated that this organic-component depletion method could be extended to the synthesis of other hierarchical structures of metal sulfides. In addition, the obtained

  19. How to face the low intrinsic sensitivity of 2D heteronuclear NMR with fast repetition techniques: go faster to go higher !

    PubMed

    Farjon, Jonathan

    2017-04-13

    Nuclear Magnetic Resonance (NMR) is one of the most widely used analytical techniques in numerous domains where molecules are objects of investigation. However, major limitations of multidimensional NMR experiments come from their low sensitivity and from the long times needed for their acquisition. In order to overcome such limitations, fast repetition NMR techniques allowed for the reduction of 2D experimental time and for the conversion of the gained time into a higher number of scans leading to a better sensitivity. Thus, fast repetition 2D heteronuclear NMR techniques have allowed new advances in NMR, especially to access infomation on low abundant nuclei, to enhance the detection of low concentrated compounds and to probe weak interactions like hydrogen bonds at natural abundance.

  20. Converting 2D inorganic-organic ZnSe-DETA hybrid nanosheets into 3D hierarchical nanosheet-based ZnSe microspheres with enhanced visible-light-driven photocatalytic performances.

    PubMed

    Wu, Xuan; Xu, Rui; Zhu, Rongjiao; Wu, Rui; Zhang, Bin

    2015-06-07

    Engineering two-dimensional (2D) nanosheets into three-dimensional (3D) hierarchical structures is one of the great challenges in nanochemistry and materials science. We report a facile and simple chemical conversion route to fabricate 3D hierarchical nanosheet-based ZnSe microspheres by using 2D inorganic-organic hybrid ZnSe-DETA (DETA = diethylenetriamine) nanosheets as the starting precursors. The conversion mechanism involves the controlled depletion of the organic-component (DETA) from the hybrid precursors and the subsequent self-assembly of the remnant inorganic-component (ZnSe). The transformation reaction of ZnSe-DETA nanosheets is mainly influenced by the concentration of DETA in the reaction solution. We demonstrated that this organic-component depletion method could be extended to the synthesis of other hierarchical structures of metal sulfides. In addition, the obtained hierarchical nanosheet-based ZnSe microspheres exhibited outstanding performance in visible light photocatalytic degradation of methyl orange and were highly active for photocatalytic H2 production.

  1. Surface origin of quasi-2D Shubnikov–de Haas oscillations in Bi{sub 2}Te{sub 2}Se

    SciTech Connect

    Kapustin, A. A. Stolyarov, V. S.; Bozhko, S. I.; Borisenko, D. N.; Kolesnikov, N. N.

    2015-08-15

    Transport measurements at liquid helium temperatures were done on a number of Bi{sub 2}Te{sub 2}Se samples with thicknesses ranging from 30 to 200 μm in order to detect surface states. In each sample we observed Shubnikov–de Haas (SdH) oscillations and sublinear dependence of off-diagonal component of magnetoresistance tensor on magnetic field. The periods of SdH oscillations in inverse magnetic field were found to be the same within 15%. The positions of SdH oscillations are determined by the normal to surface component of magnetic field. We found that the measured conductivity can be well described by a model with two groups of electrons, 2D and 3D. The conductivity of 2D electrons was found to be relatively weakly varying from sample to sample and not depending on thickness in a systematic manner. This behavior can be explained only by their localization on the surface. Comparison of the results of magnetotransport measurements with our scanning tunneling spectroscopy results on atomically smooth Bi{sub 2}Te{sub 2}Se surface in ultrahigh vacuum led us to conclude that the surface electrons are separated from the bulk electrons by a depletion layer approximately 100 nm thick. This effect could provide the dominant contribution of surface electrons to conductivity in samples with thicknesses less than 200 nm.

  2. A Fast Parallel Algorithm for Selected Inversion of Structured Sparse Matrices with Application to 2D Electronic Structure Calculations

    SciTech Connect

    Lin, Lin; Yang, Chao; Lu, Jiangfeng; Ying, Lexing; E, Weinan

    2009-09-25

    We present an efficient parallel algorithm and its implementation for computing the diagonal of $H^-1$ where $H$ is a 2D Kohn-Sham Hamiltonian discretized on a rectangular domain using a standard second order finite difference scheme. This type of calculation can be used to obtain an accurate approximation to the diagonal of a Fermi-Dirac function of $H$ through a recently developed pole-expansion technique \\cite{LinLuYingE2009}. The diagonal elements are needed in electronic structure calculations for quantum mechanical systems \\citeHohenbergKohn1964, KohnSham 1965,DreizlerGross1990. We show how elimination tree is used to organize the parallel computation and how synchronization overhead is reduced by passing data level by level along this tree using the technique of local buffers and relative indices. We analyze the performance of our implementation by examining its load balance and communication overhead. We show that our implementation exhibits an excellent weak scaling on a large-scale high performance distributed parallel machine. When compared with standard approach for evaluating the diagonal a Fermi-Dirac function of a Kohn-Sham Hamiltonian associated a 2D electron quantum dot, the new pole-expansion technique that uses our algorithm to compute the diagonal of $(H-z_i I)^-1$ for a small number of poles $z_i$ is much faster, especially when the quantum dot contains many electrons.

  3. Development of fast patient position verification software using 2D-3D image registration and its clinical experience

    PubMed Central

    Mori, Shinichiro; Kumagai, Motoki; Miki, Kentaro; Fukuhara, Riki; Haneishi, Hideaki

    2015-01-01

    To improve treatment workflow, we developed a graphic processing unit (GPU)-based patient positional verification software application and integrated it into carbon-ion scanning beam treatment. Here, we evaluated the basic performance of the software. The algorithm provides 2D/3D registration matching using CT and orthogonal X-ray flat panel detector (FPD) images. The participants were 53 patients with tumors of the head and neck, prostate or lung receiving carbon-ion beam treatment. 2D/3D-ITchi-Gime (ITG) calculation accuracy was evaluated in terms of computation time and registration accuracy. Registration calculation was determined using the similarity measurement metrics gradient difference (GD), normalized mutual information (NMI), zero-mean normalized cross-correlation (ZNCC), and their combination. Registration accuracy was dependent on the particular metric used. Representative examples were determined to have target registration error (TRE) = 0.45 ± 0.23 mm and angular error (AE) = 0.35 ± 0.18° with ZNCC + GD for a head and neck tumor; TRE = 0.12 ± 0.07 mm and AE = 0.16 ± 0.07° with ZNCC for a pelvic tumor; and TRE = 1.19 ± 0.78 mm and AE = 0.83 ± 0.61° with ZNCC for lung tumor. Calculation time was less than 7.26 s.The new registration software has been successfully installed and implemented in our treatment process. We expect that it will improve both treatment workflow and treatment accuracy. PMID:26081313

  4. Development of fast patient position verification software using 2D-3D image registration and its clinical experience.

    PubMed

    Mori, Shinichiro; Kumagai, Motoki; Miki, Kentaro; Fukuhara, Riki; Haneishi, Hideaki

    2015-09-01

    To improve treatment workflow, we developed a graphic processing unit (GPU)-based patient positional verification software application and integrated it into carbon-ion scanning beam treatment. Here, we evaluated the basic performance of the software. The algorithm provides 2D/3D registration matching using CT and orthogonal X-ray flat panel detector (FPD) images. The participants were 53 patients with tumors of the head and neck, prostate or lung receiving carbon-ion beam treatment. 2D/3D-ITchi-Gime (ITG) calculation accuracy was evaluated in terms of computation time and registration accuracy. Registration calculation was determined using the similarity measurement metrics gradient difference (GD), normalized mutual information (NMI), zero-mean normalized cross-correlation (ZNCC), and their combination. Registration accuracy was dependent on the particular metric used. Representative examples were determined to have target registration error (TRE) = 0.45 ± 0.23 mm and angular error (AE) = 0.35 ± 0.18° with ZNCC + GD for a head and neck tumor; TRE = 0.12 ± 0.07 mm and AE = 0.16 ± 0.07° with ZNCC for a pelvic tumor; and TRE = 1.19 ± 0.78 mm and AE = 0.83 ± 0.61° with ZNCC for lung tumor. Calculation time was less than 7.26 s.The new registration software has been successfully installed and implemented in our treatment process. We expect that it will improve both treatment workflow and treatment accuracy.

  5. Fast ion induced shearing of 2D Alfvén eigenmodes measured by electron cyclotron emission imaging.

    PubMed

    Tobias, B J; Classen, I G J; Domier, C W; Heidbrink, W W; Luhmann, N C; Nazikian, R; Park, H K; Spong, D A; Van Zeeland, M A

    2011-02-18

    Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfvén eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.

  6. Fast Ion Induced Shearing of 2D Alfvén Eigenmodes Measured by Electron Cyclotron Emission Imaging

    NASA Astrophysics Data System (ADS)

    Tobias, B. J.; Classen, I. G. J.; Domier, C. W.; Heidbrink, W. W.; Luhmann, N. C., Jr.; Nazikian, R.; Park, H. K.; Spong, D. A.; van Zeeland, M. A.

    2011-02-01

    Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfvén eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.

  7. Automatic localization of target vertebrae in spine surgery using fast CT-to-fluoroscopy (3D-2D) image registration

    NASA Astrophysics Data System (ADS)

    Otake, Y.; Schafer, S.; Stayman, J. W.; Zbijewski, W.; Kleinszig, G.; Graumann, R.; Khanna, A. J.; Siewerdsen, J. H.

    2012-02-01

    Localization of target vertebrae is an essential step in minimally invasive spine surgery, with conventional methods relying on "level counting" - i.e., manual counting of vertebrae under fluoroscopy starting from readily identifiable anatomy (e.g., the sacrum). The approach requires an undesirable level of radiation, time, and is prone to counting errors due to the similar appearance of vertebrae in projection images; wrong-level surgery occurs in 1 of every ~3000 cases. This paper proposes a method to automatically localize target vertebrae in x-ray projections using 3D-2D registration between preoperative CT (in which vertebrae are preoperatively labeled) and intraoperative fluoroscopy. The registration uses an intensity-based approach with a gradient-based similarity metric and the CMA-ES algorithm for optimization. Digitally reconstructed radiographs (DRRs) and a robust similarity metric are computed on GPU to accelerate the process. Evaluation in clinical CT data included 5,000 PA and LAT projections randomly perturbed to simulate human variability in setup of mobile intraoperative C-arm. The method demonstrated 100% success for PA view (projection error: 0.42mm) and 99.8% success for LAT view (projection error: 0.37mm). Initial implementation on GPU provided automatic target localization within about 3 sec, with further improvement underway via multi-GPU. The ability to automatically label vertebrae in fluoroscopy promises to streamline surgical workflow, improve patient safety, and reduce wrong-site surgeries, especially in large patients for whom manual methods are time consuming and error prone.

  8. Robust, spatially scanning, open-path TDLAS hygrometer using retro-reflective foils for fast tomographic 2-D water vapor concentration field measurements

    NASA Astrophysics Data System (ADS)

    Seidel, A.; Wagner, S.; Dreizler, A.; Ebert, V.

    2015-05-01

    We have developed a fast, spatially scanning direct tunable diode laser absorption spectrometer (dTDLAS) that combines four polygon-mirror based scanning units with low-cost retro-reflective foils. With this instrument, tomographic measurements of absolute 2-D water vapor concentration profiles are possible without any calibration using a reference gas. A spatial area of 0.8 m x 0.8 m was covered, which allows for application in soil physics, where greenhouse gas emission from certain soil structures shall be monitored. The whole concentration field was measured with up to 2.5 Hz. In this paper, we present the setup and spectroscopic performance of the instrument regarding the influence of the polygon rotation speed and mode on the absorption signal. Homogeneous H2O distributions were measured and compared to a single channel, bi-static reference TDLAS spectrometer for validation of the instrument. Good accuracy and precision with errors of less than 6% of the absolute concentration and length and bandwidth normalized detection limits of up to 1.1 ppmv . m (Hz)-0.5 were achieved. The spectrometer is a robust and easy to set up instrument for tomographic reconstructions of 2-D-concentration fields that can be considered as a good basis for future field measurements in environmental research.

  9. Robust, spatially scanning, open-path TDLAS hygrometer using retro-reflective foils for fast tomographic 2-D water vapour concentration field measurements

    NASA Astrophysics Data System (ADS)

    Seidel, A.; Wagner, S.; Dreizler, A.; Ebert, V.

    2014-12-01

    We have developed a fast, spatially direct scanning tunable diode laser absorption spectrometer (dTDLAS) that combines four polygon-mirror based scanning units with low-cost retro-reflective foils. With this instrument, tomographic measurements of absolute 2-D water vapour concentration profiles are possible without any calibration using a reference gas. A spatial area of 0.8 m × 0.8 m was covered, which allows for application in soil physics, where greenhouse gas emission from certain soil structures shall be monitored. The whole concentration field was measured with up to 2.5 Hz. In this paper, we present the setup and spectroscopic performance of the instrument regarding the influence of the polygon rotation speed and mode on the absorption signal. Homogeneous H2O distributions were measured and compared to a single channel, bi-static reference TDLAS spectrometer for validation of the instrument. Good accuracy and precision with errors of less than 6% of the absolute concentration and length and bandwidth normalized detection limits of up to 1.1 ppmv · m · √Hz-1 were achieved. The spectrometer is a robust and easy to set up instrument for tomographic reconstructions of 2-D-concentration fields that can be considered a good basis for future field measurements in environmental research.

  10. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    SciTech Connect

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  11. Highly Crystalline CVD-grown Multilayer MoSe2 Thin Film Transistor for Fast Photodetector

    PubMed Central

    Jung, Chulseung; Kim, Seung Min; Moon, Hyunseong; Han, Gyuchull; Kwon, Junyeon; Hong, Young Ki; Omkaram, Inturu; Yoon, Youngki; Kim, Sunkook; Park, Jozeph

    2015-01-01

    Hexagonal molybdenum diselenide (MoSe2) multilayers were grown by chemical vapor deposition (CVD). A relatively high pressure (>760 Torr) was used during the CVD growth to achieve multilayers by creating multiple nuclei based on the two-dimensional crystal growth model. Our CVD-grown multilayer MoSe2 thin-film transistors (TFTs) show p-type-dominant ambipolar behaviors, which are attributed to the formation of Se vacancies generated at the decomposition temperature (650 °C) after the CVD growth for 10 min. Our MoSe2 TFT with a reasonably high field-effect mobility (10 cm2/V · s) exhibits a high photoresponsivity (93.7 A/W) and a fast photoresponse time (τrise ~ 0.4 s) under the illumination of light, which demonstrates the practical feasibility of multilayer MoSe2 TFTs for photodetector applications. PMID:26477744

  12. Implementation of a fast analytic ground state potential energy surface for the N({sup 2}D)+H{sub 2} reaction.

    SciTech Connect

    Ho, T.-S.; Rabitz, H.; Aoiz, F. J.; Banares, L.; Vazquez, S. A.; Harding, L. B.; Chemistry; Princeton Univ.; Univ. Complutense

    2003-08-08

    A new implementation is presented for the potential energy surface (PES) of the 1{sup 2}A' state of the N({sup 2}D)+H{sub 2} system based on a set of 2715 ab initio points resulting from the multireference configuration interaction (MRCI) calculations. The implementation is carried out using the reproducing Kernel Hilbert Space interpolation method. Range parameters, via bond-order-like coordinates, are properly chosen to render a sufficiently short-range three-body interaction and a regularization procedure is invoked to yield a globally smooth PES. A fast algorithm, with the help of low-order spline reproducing kernels, is implemented for the computation of the PES and, particularly, its gradients, whose fast evaluation is essential for large scale quasi-classical trajectory calculations. It is found that the new PES can be evaluated more than ten times faster than that of an existing (old) PES based on a smaller number (1141) of data points resulting from the same MRCI calculations and a similar interpolation procedure. Although there is a general good correspondence between the two surfaces, the new PES is in much better agreement with the ab initio calculations, especially in key stationary point regions including the C{sub 2v} minimum, the C{sub 2v} transition state, and the N-H-H linear barrier. Moreover, the new PES is free of spurious small scale features. Analytic gradients are made available in the new PES code to further facilitate quasiclassical trajectory calculations, which have been performed and compared with the results based on the old surface.

  13. Atom pair 2D-fingerprints perceive 3D-molecular shape and pharmacophores for very fast virtual screening of ZINC and GDB-17.

    PubMed

    Awale, Mahendra; Reymond, Jean-Louis

    2014-07-28

    Three-dimensional (3D) molecular shape and pharmacophores are important determinants of the biological activity of organic molecules; however, a precise computation of 3D-shape is generally too slow for virtual screening of very large databases. A reinvestigation of the concept of atom pairs initially reported by Carhart et al. and extended by Schneider et al. showed that a simple atom pair fingerprint (APfp) counting atom pairs at increasing topological distances in 2D-structures without atom property assignment correlates with various representations of molecular shape extracted from the 3D-structures. A related 55-dimensional atom pair fingerprint extended with atom properties (Xfp) provided an efficient pharmacophore fingerprint with good performance for ligand-based virtual screening such as the recovery of active compounds from decoys in DUD, and overlap with the ROCS 3D-pharmacophore scoring function. The APfp and Xfp data were organized for web-based extremely fast nearest-neighbor searching in ZINC (13.5 M compounds) and GDB-17 (50 M random subset) freely accessible at www.gdb.unibe.ch .

  14. pySeismicFMM: Python based travel time calculation in regular 2D and 3D grids in Cartesian and geographic coordinates using Fast Marching Method

    NASA Astrophysics Data System (ADS)

    Polkowski, Marcin

    2016-04-01

    Seismic wave travel time calculation is the most common numerical operation in seismology. The most efficient is travel time calculation in 1D velocity model - for given source, receiver depths and angular distance time is calculated within fraction of a second. Unfortunately, in most cases 1D is not enough to encounter differentiating local and regional structures. Whenever possible travel time through 3D velocity model has to be calculated. It can be achieved using ray calculation or time propagation in space. While single ray path calculation is quick it is complicated to find the ray path that connects source with the receiver. Time propagation in space using Fast Marching Method seems more efficient in most cases, especially when there are multiple receivers. In this presentation a Python module pySeismicFMM is presented - simple and very efficient tool for calculating travel time from sources to receivers. Calculation requires regular 2D or 3D velocity grid either in Cartesian or geographic coordinates. On desktop class computer calculation speed is 200k grid cells per second. Calculation has to be performed once for every source location and provides travel time to all receivers. pySeismicFMM is free and open source. Development of this tool is a part of authors PhD thesis. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.

  15. Detrimental influence of catalyst seeding on the device properties of CVD-grown 2D layered materials: A case study on MoSe{sub 2}

    SciTech Connect

    Utama, M. Iqbal Bakti; Lu, Xin; Yuan, Yanwen; Xiong, Qihua

    2014-12-22

    Seed catalyst such as perylene-3,4,9,10-tetracarboxylic acid tetrapotassium (PTAS) salt has been used for promoting the growth of atomically thin layered materials in chemical vapor deposition (CVD) synthesis. However, the ramifications from the usage of such catalyst are not known comprehensively. Here, we report the influence of PTAS seeding on the transistor device performance from few-layered CVD-grown molybdenum diselenide (MoSe{sub 2}) flakes. While better repeatability and higher yield can be obtained with the use of PTAS seeds in synthesis, we observed that PTAS-seeded flakes contain particle impurities. Moreover, devices from PTAS-seeded MoSe{sub 2} flakes consistently displayed poorer field-effect mobility, current on-off ratio, and subthreshold swing as compared to unseeded flakes.

  16. Design of a new family of inorganic compounds Ae2F2SnX3 (Ae = Sr, Ba; X = S, Se) using rock salt and fluorite 2D building blocks.

    PubMed

    Kabbour, Houria; Cario, Laurent; Danot, Michel; Meerschaut, Alain

    2006-01-23

    We could predict the structure of a new family of compounds Ae(2)F(2)SnX(3) (Ae = Sr, Ba; X = S, Se) from the stacking of known 2D building blocks of the rock salt and fluorite types. With a high-temperature ceramic method we have then succeeded to synthesize the four compounds Ba(2)F(2)SnS(3), Ba(2)F(2)SnSe(3), Sr(2)F(2)SnS(3), and Sr(2)F(2)SnSe(3). The structure refinements from X-ray powder diffraction patterns have confirmed the structure predictions and showed their good accuracy. The structure of the four compounds results from the alternated stacking of fluorite [Ae(2)F(2)] (Ae = Sr, Ba) and distorted rock salt [SnX(3)] (X = S, Se) 2D building blocks. As shown by band structure calculations, these blocks behave as a charge reservoir and a charge acceptor, respectively. Sr(2)F(2)SnS(3) and Ba(2)F(2)SnS(3) are transparent with optical gaps of 3.06 and 3.21 eV, respectively. However, an attempt to obtain a transparent conductor by substituting Ba per La in Ba(2)F(2)SnS(3) was unsuccessful.

  17. Synchrotron X-ray 2D and 3D Elemental Imaging of CdSe/ZnS Quantum dot Nanoparticles in Daphnia Magna

    SciTech Connect

    Jackson, B.; Pace, H; Lanzirotti, A; Smith, R; Ranville, J

    2009-01-01

    The potential toxicity of nanoparticles to aquatic organisms is of interest given that increased commercialization will inevitably lead to some instances of inadvertent environmental exposures. Cadmium selenide quantum dots (QDs) capped with zinc sulfide are used in the semiconductor industry and in cellular imaging. Their small size (<10 nm) suggests that they may be readily assimilated by exposed organisms. We exposed Daphnia magna to both red and green QDs and used synchrotron X-ray fluorescence to study the distribution of Zn and Se in the organism over a time period of 36 h. The QDs appeared to be confined to the gut, and there was no evidence of further assimilation into the organism. Zinc and Se fluorescence signals were highly correlated, suggesting that the QDs had not dissolved to any extent. There was no apparent difference between red or green QDs, i.e., there was no effect of QD size. 3D tomography confirmed that the QDs were exclusively in the gut area of the organism. It is possible that the QDs aggregated and were therefore too large to cross the gut wall.

  18. van der Waals epitaxy and photoresponse of two-dimensional CdSe plates

    NASA Astrophysics Data System (ADS)

    Zhu, Dan-Dan; Xia, Jing; Wang, Lei; Li, Xuan-Ze; Tian, Li-Feng; Meng, Xiang-Min

    2016-06-01

    Here we demonstrate the first growth of two-dimensional (2D) single-crystalline CdSe plates on mica substrates via van der Waals epitaxy. The as-synthesized 2D plates exhibit hexagonal, truncated triangular and triangular shapes with the lateral size around several microns. Photodetectors based on 2D CdSe plates present a fast response time of 24 ms, revealing that 2D CdSe is a promising building block for ultrathin optoelectronic devices.

  19. Regional subsidence modelling in Murcia city (SE Spain) using 1-D vertical finite element analysis and 2-D interpolation of ground surface displacements

    NASA Astrophysics Data System (ADS)

    Tessitore, S.; Fernández-Merodo, J. A.; Herrera, G.; Tomás, R.; Ramondini, M.; Sanabria, M.; Duro, J.; Mulas, J.; Calcaterra, D.

    2015-11-01

    Subsidence is a hazard that may have natural or anthropogenic origin causing important economic losses. The area of Murcia city (SE Spain) has been affected by subsidence due to groundwater overexploitation since the year 1992. The main observed historical piezometric level declines occurred in the periods 1982-1984, 1992-1995 and 2004-2008 and showed a close correlation with the temporal evolution of ground displacements. Since 2008, the pressure recovery in the aquifer has led to an uplift of the ground surface that has been detected by the extensometers. In the present work an elastic hydro-mechanical finite element code has been used to compute the subsidence time series for 24 geotechnical boreholes, prescribing the measured groundwater table evolution. The achieved results have been compared with the displacements estimated through an advanced DInSAR technique and measured by the extensometers. These spatio-temporal comparisons have showed that, in spite of the limited geomechanical data available, the model has turned out to satisfactorily reproduce the subsidence phenomenon affecting Murcia City. The model will allow the prediction of future induced deformations and the consequences of any piezometric level variation in the study area.

  20. Fast doping of Cu into ZnSe NCs by hydrazine promoted cation exchange in aqueous solution at room temperature.

    PubMed

    Shao, Haibao; Wang, Chunlei; Xu, Shuhong; Wang, Zhuyuan; Yin, Haihong; Cui, Yiping

    2015-03-01

    Controllable doping is an effective way of tuning the properties of semiconductor nanocrystals (NCs). In this work, a simple strategy of fast doping Cu ions into ZnSe NCs under ambient conditions was proposed. The principle of doping is based on hydrazine (N2H4) promoted cation exchange reaction. By direct addition of Cu ion stock solution into the preformed ZnSe NCs, Cu doped ZnSe NCs can be obtained. Furthermore, the emission of doped NCs can be tuned by changing the amount of impurity ion addition. The cation exchange reaction is facilitated by three factors: 1) N2H4 addition, 2) fast impurity ions, and 3) partial stabilizer removal. The proposed cation exchange reaction in aqueous solution could be an alternate route for NC doping as well as synthesis of ionic NCs.

  1. Pilot Study on the Detection of Simulated Lesions Using a 2D and 3D Digital Full-Field Mammography System with a Newly Developed High Resolution Detector Based on Two Shifts of a-Se.

    PubMed

    Schulz-Wendtland, R; Bani, M; Lux, M P; Schwab, S; Loehberg, C R; Jud, S M; Rauh, C; Bayer, C M; Beckmann, M W; Uder, M; Fasching, P A; Adamietz, B; Meier-Meitinger, M

    2012-05-01

    Purpose: Experimental study of a new system for digital 2D and 3D full-field mammography (FFDM) using a high resolution detector based on two shifts of a-Se. Material and Methods: Images were acquired using the new FFDM system Amulet® (FujiFilm, Tokio, Japan), an a-Se detector (receptor 24 × 30 cm(2), pixel size 50 µm, memory depth 12 bit, spatial resolution 10 lp/mm, DQE > 0.50). Integrated in the detector is a new method for data transfer, based on optical switch technology. The object of investigation was the Wisconsin Mammographic Random Phantom, Model 152A (Radiation Measurement Inc., Middleton, WI, USA) and the same parameters and exposure data (Tungsten, 100 mAs, 30 kV) were consistently used. We acquired 3 different pairs of images in the c-c and ml planes (2D) and in the c-c and c-c planes with an angle of 4 degrees (3D). Five radiologists experienced in mammography (experience ranging from 3 months to more than 5 years) analyzed the images (monitoring) which had been randomly encoded (random generator) with regard to the recognition of details such as specks of aluminum oxide (200-740 µm), nylon fibers (0.4-1.6 mm) and round lesions/masses (diameters 5-14 mm), using special linear glasses for 3D visualization, and compared the results. Results: A total of 225 correct positive decisions could be detected: we found 222 (98.7 %) correct positive results for 2D and 3D visualization in each case. Conclusion: The results of this phantom study showed the same detection rates for both 2D and 3D imaging using full field digital mammography. Our results must be confirmed in further clinical trials.

  2. Fast Assembly of Gold Nanoparticles in Large-Area 2D Nanogrids Using a One-Step, Near-Infrared Radiation-Assisted Evaporation Process.

    PubMed

    Utgenannt, André; Maspero, Ross; Fortini, Andrea; Turner, Rebecca; Florescu, Marian; Jeynes, Christopher; Kanaras, Antonios G; Muskens, Otto L; Sear, Richard P; Keddie, Joseph L

    2016-02-23

    When fabricating photonic crystals from suspensions in volatile liquids using the horizontal deposition method, the conventional approach is to evaporate slowly to increase the time for particles to settle in an ordered, periodic close-packed structure. Here, we show that the greatest ordering of 10 nm aqueous gold nanoparticles (AuNPs) in a template of larger spherical polymer particles (mean diameter of 338 nm) is achieved with very fast water evaporation rates obtained with near-infrared radiative heating. Fabrication of arrays over areas of a few cm(2) takes only 7 min. The assembly process requires that the evaporation rate is fast relative to the particles' Brownian diffusion. Then a two-dimensional colloidal crystal forms at the falling surface, which acts as a sieve through which the AuNPs pass, according to our Langevin dynamics computer simulations. With sufficiently fast evaporation rates, we create a hybrid structure consisting of a two-dimensional AuNP nanoarray (or "nanogrid") on top of a three-dimensional polymer opal. The process is simple, fast, and one-step. The interplay between the optical response of the plasmonic Au nanoarray and the microstructuring of the photonic opal results in unusual optical spectra with two extinction peaks, which are analyzed via finite-difference time-domain method simulations. Comparison between experimental and modeling results reveals a strong interplay of plasmonic modes and collective photonic effects, including the formation of a high-order stopband and slow-light-enhanced plasmonic absorption. The structures, and hence their optical signatures, are tuned by adjusting the evaporation rate via the infrared power density.

  3. Conceptual design and optimization of a plastic scintillator array for 2D tomography using a compact D-D fast neutron generator.

    PubMed

    Adams, Robert; Zboray, Robert; Cortesi, Marco; Prasser, Horst-Michael

    2014-04-01

    A conceptual design optimization of a fast neutron tomography system was performed. The system is based on a compact deuterium-deuterium fast neutron generator and an arc-shaped array of individual neutron detectors. The array functions as a position sensitive one-dimensional detector allowing tomographic reconstruction of a two-dimensional cross section of an object up to 10 cm across. Each individual detector is to be optically isolated and consists of a plastic scintillator and a Silicon Photomultiplier for measuring light produced by recoil protons. A deterministic geometry-based model and a series of Monte Carlo simulations were used to optimize the design geometry parameters affecting the reconstructed image resolution. From this, it is expected that with an array of 100 detectors a reconstructed image resolution of ~1.5mm can be obtained. Other simulations were performed in order to optimize the scintillator depth (length along the neutron path) such that the best ratio of direct to scattered neutron counts is achieved. This resulted in a depth of 6-8 cm and an expected detection efficiency of 33-37%. Based on current operational capabilities of a prototype neutron generator being developed at the Paul Scherrer Institute, planned implementation of this detector array design should allow reconstructed tomograms to be obtained with exposure times on the order of a few hours.

  4. Guided CdSe Nanowires Parallelly Integrated into Fast Visible-Range Photodetectors

    PubMed Central

    2016-01-01

    One-dimensional semiconductor nanostructures, such as nanowires (NWs), have attracted tremendous attention due to their unique properties and potential applications in nanoelectronics, nano-optoelectronics, and sensors. One of the challenges toward their integration into practical devices is their large-scale controlled assembly. Here, we report the guided growth of horizontal CdSe nanowires on five different planes of sapphire. The growth direction and crystallographic orientation are controlled by the epitaxial relationship with the substrate as well as by a graphoepitaxial effect of surface nanosteps and grooves. CdSe is a promising direct-bandgap II–VI semiconductor active in the visible range, with potential applications in optoelectronics. The guided CdSe nanowires were found to have a wurtzite single-crystal structure. Field-effect transistors and photodetectors were fabricated to examine the nanowire electronic and optoelectronic properties, respectively. The latter exhibited the fastest rise and fall times ever reported for CdSe nanostructures as well as a relatively high gain, both features being essential for optoelectronic applications. PMID:28032987

  5. Guided CdSe Nanowires Parallelly Integrated into Fast Visible-Range Photodetectors.

    PubMed

    Shalev, Erga; Oksenberg, Eitan; Rechav, Katya; Popovitz-Biro, Ronit; Joselevich, Ernesto

    2017-01-24

    One-dimensional semiconductor nanostructures, such as nanowires (NWs), have attracted tremendous attention due to their unique properties and potential applications in nanoelectronics, nano-optoelectronics, and sensors. One of the challenges toward their integration into practical devices is their large-scale controlled assembly. Here, we report the guided growth of horizontal CdSe nanowires on five different planes of sapphire. The growth direction and crystallographic orientation are controlled by the epitaxial relationship with the substrate as well as by a graphoepitaxial effect of surface nanosteps and grooves. CdSe is a promising direct-bandgap II-VI semiconductor active in the visible range, with potential applications in optoelectronics. The guided CdSe nanowires were found to have a wurtzite single-crystal structure. Field-effect transistors and photodetectors were fabricated to examine the nanowire electronic and optoelectronic properties, respectively. The latter exhibited the fastest rise and fall times ever reported for CdSe nanostructures as well as a relatively high gain, both features being essential for optoelectronic applications.

  6. Fast monolayer adsorption and slow energy transfer in CdSe quantum dot sensitized ZnO nanowires.

    PubMed

    Zheng, Kaibo; Žídek, Karel; Abdellah, Mohamed; Torbjörnsson, Magne; Chábera, Pavel; Shao, Shuyan; Zhang, Fengling; Pullerits, Tõnu

    2013-07-25

    A method for CdSe quantum dot (QD) sensitization of ZnO nanowires (NW) with fast adsorption rate is applied. Photoinduced excited state dynamics of the quantum dots in the case of more than monolayer coverage of the nanowires is studied. Transient absorption kinetics reveals an excitation depopulation process of indirectly attached quantum dots with a lifetime of ~4 ns. Photoluminescence and incident photon-to-electron conversion efficiency show that this process consists of both radiative e-h recombination and nonradiative excitation-to-charge conversion. We argue that the latter occurs via interdot energy transfer from the indirectly attached QDs to the dots with direct contact to the nanowires. From the latter, fast electron injection into ZnO occurs. The energy transfer time constant is found to be around 5 ns.

  7. Analysis of local molecular motions of aromatic sidechains in proteins by 2D and 3D fast MAS NMR spectroscopy and quantum mechanical calculations.

    PubMed

    Paluch, Piotr; Pawlak, Tomasz; Jeziorna, Agata; Trébosc, Julien; Hou, Guangjin; Vega, Alexander J; Amoureux, Jean-Paul; Dracinsky, Martin; Polenova, Tatyana; Potrzebowski, Marek J

    2015-11-21

    We report a new multidimensional magic angle spinning NMR methodology, which provides an accurate and detailed probe of molecular motions occurring on timescales of nano- to microseconds, in sidechains of proteins. The approach is based on a 3D CPVC-RFDR correlation experiment recorded under fast MAS conditions (ν(R) = 62 kHz), where (13)C-(1)H CPVC dipolar lineshapes are recorded in a chemical shift resolved manner. The power of the technique is demonstrated in model tripeptide Tyr-(d)Ala-Phe and two nanocrystalline proteins, GB1 and LC8. We demonstrate that, through numerical simulations of dipolar lineshapes of aromatic sidechains, their detailed dynamic profile, i.e., the motional modes, is obtained. In GB1 and LC8 the results unequivocally indicate that a number of aromatic residues are dynamic, and using quantum mechanical calculations, we correlate the molecular motions of aromatic groups to their local environment in the crystal lattice. The approach presented here is general and can be readily extended to other biological systems.

  8. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  9. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  10. 2D semiconductor optoelectronics

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  11. A fast synthesis of near-infrared emitting CdTe/CdSe quantum dots with small hydrodynamic diameter for in vivo imaging probes.

    PubMed

    Hu, Dehong; Zhang, Pengfei; Gong, Ping; Lian, Shuhong; Lu, Yangyang; Gao, Duyang; Cai, Lintao

    2011-11-01

    Highly luminescent near-infrared (NIR) emitting CdTe/CdSe quantum dots (QDs) were prepared through a fast and convenient method, and a new type of multivalent polymer ligands was used as the surface substituents to prepare highly stable hydrophilic QDs with small sizes. The well-defined CdTe/CdSe QDs were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy and photoluminescence (PL) spectroscopy, respectively. The as-prepared CdTe/CdSe QDs were photostable with high PL quantum yields (QYs) (up to 66% at room temperature), low toxicity to cells at experimental dosages, and the QDs' fluorescence emissions were tunable between 700 and 820 nm. Furthermore, fluorescence imaging using CdTe/CdSe QDs conjugated with the AS1411 aptamer (targeting nucleolin) probe in cancer cells was reported, and the CdTe/CdSe QDs were also successfully applied for the fluorescence imaging of living animals. Our preliminary results illustrated that the CdTe/CdSe NIR-QDs with small sizes would be an alternative probe for ultrasensitive, multicolor, and multiplex applications, especially for in vivo imaging applications.

  12. 2D discrete Fourier transform on sliding windows.

    PubMed

    Park, Chun-Su

    2015-03-01

    Discrete Fourier transform (DFT) is the most widely used method for determining the frequency spectra of digital signals. In this paper, a 2D sliding DFT (2D SDFT) algorithm is proposed for fast implementation of the DFT on 2D sliding windows. The proposed 2D SDFT algorithm directly computes the DFT bins of the current window using the precalculated bins of the previous window. Since the proposed algorithm is designed to accelerate the sliding transform process of a 2D input signal, it can be directly applied to computer vision and image processing applications. The theoretical analysis shows that the computational requirement of the proposed 2D SDFT algorithm is the lowest among existing 2D DFT algorithms. Moreover, the output of the 2D SDFT is mathematically equivalent to that of the traditional DFT at all pixel positions.

  13. THE RELIABILITY OF MAGNETIC RESONANCE ELASTOGRAPHY USING MULTISLICE 2D SPIN-ECHO ECHO-PLANAR IMAGING (SE-EPI) AND 3D INVERSION RECONSTRUCTION FOR ASSESSING RENAL STIFFNESS

    PubMed Central

    Low, Gavin; Owen, Nicola E.; Joubert, Ilse; Patterson, Andrew J.; Graves, Martin J.; Glaser, Kevin J.; Alexander, Graeme J.M.; Lomas, David J.

    2015-01-01

    PURPOSE To evaluate the reliability of MRE using a spin-echo echo-planar imaging (SE-EPI) renal MRE technique in healthy volunteers MATERIALS AND METHODS Institutional review board approved prospective study in which all participants provided written informed consent. Sixteen healthy volunteers comprising seven males and nine females with a median age of 35 years (age range: 23 to 59 years) were included. Coronal 90-Hz and 60-Hz MRE acquisitions were performed twice within a 30-minute interval between examinations. Renal MRE reliability was assessed by i) test-retest repeatability, and ii) inter-rater agreement between two independent readers. The MRE-measured averaged renal stiffness values were evaluated using: intraclass correlation coefficient (ICC), Bland-Altman and the within-subject coefficient of variation (COV). RESULTS For test-retest repeatability, Bland-Altman showed a mean stiffness difference between examinations of 0.07 kPa (95% limits of agreement: −1.41, 1.54) at 90-Hz and 0.01 kPa (95% limits of agreement: −0.51, 0.53) at 60-Hz. Coefficient of repeatability was 1.47 kPa and 0.52 kPa at 90-Hz and 60-Hz, respectively. The within-subject COV was 13.6% and 7.7% at 90-Hz and 60-Hz, respectively. ICC values were 0.922 and 0.907 for test-retest repeatability and 0.998 and 0.989 for inter-rater agreement, respectively (p < 0.001). CONCLUSION SE-EPI renal MRE is a reliable technique PMID:25537823

  14. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined

  15. A high-sensitive and fast-fabricated glucose biosensor based on Prussian blue/topological insulator Bi2Se3 hybrid film.

    PubMed

    Wu, Shouguo; Liu, Gang; Li, Ping; Liu, Hao; Xu, Haihong

    2012-01-01

    A novel and fast-fabricated Prussian blue (PB)/topological insulator Bi(2)Se(3) hybrid film has been prepared by coelectrodeposition technique. Taking advantages of topological insulator in possessing exotic metallic surface states with bulk insulating gap, Prussian blue nanoparticles in the hybrid film have smaller size as well as more compact structure, showing excellent pH stability even in the alkalescent solution of pH 8.0. Based on the Laviron theory, the electron transfer rate constant of PB/Bi(2)Se(3) hybrid film modified electrode was calculated to be 4.05 ± 0.49 s(-1), a relatively big value which may be in favor of establishing a high-sensitive biosensor. An amperometric glucose biosensor was then fabricated by immobilizing glucose oxidase (GOD) on the hybrid film. Under the optimal conditions, a wide linear range extending over 3 orders of magnitude of glucose concentrations (1.0 × 10(-5)-1.1 × 10(-2)M) was obtained with a high sensitivity of 24.55 μA mM(-1) cm(-2). The detection limit was estimated for 3.8 μM defined from a signal/noise of 3. Furthermore, the resulting biosensor was applied to detect the blood sugar in human serum samples without any pretreatment, and the results were comparatively in agreement with the clinical assay.

  16. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  17. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  18. Highly crystalline 2D superconductors

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-12-01

    Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.

  19. Extensions of 2D gravity

    SciTech Connect

    Sevrin, A.

    1993-06-01

    After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.

  20. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-09

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

  1. 2D superconductivity by ionic gating

    NASA Astrophysics Data System (ADS)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  2. SEM signal emulation for 2D patterns

    NASA Astrophysics Data System (ADS)

    Sukhov, Evgenii; Muelders, Thomas; Klostermann, Ulrich; Gao, Weimin; Braylovska, Mariya

    2016-03-01

    The application of accurate and predictive physical resist simulation is seen as one important use model for fast and efficient exploration of new patterning technology options, especially if fully qualified OPC models are not yet available at an early pre-production stage. The methodology of using a top-down CD-SEM metrology to extract the 3D resist profile information, such as the critical dimension (CD) at various resist heights, has to be associated with a series of presumptions which may introduce such small, but systematic CD errors. Ideally, the metrology effects should be carefully minimized during measurement process, or if possible be taken into account through proper metrology modeling. In this paper we discuss the application of a fast SEM signal emulation describing the SEM image formation. The algorithm is applied to simulated resist 3D profiles and produces emulated SEM image results for 1D and 2D patterns. It allows estimating resist simulation quality by comparing CDs which were extracted from the emulated and from the measured SEM images. Moreover, SEM emulation is applied for resist model calibration to capture subtle error signatures through dose and defocus. Finally, it should be noted that our SEM emulation methodology is based on the approximation of physical phenomena which are taking place in real SEM image formation. This approximation allows achieving better speed performance compared to a fully physical model.

  3. 2D quasiperiodic plasmonic crystals

    PubMed Central

    Bauer, Christina; Kobiela, Georg; Giessen, Harald

    2012-01-01

    Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871

  4. Valleytronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Schaibley, John R.; Yu, Hongyi; Clark, Genevieve; Rivera, Pasqual; Ross, Jason S.; Seyler, Kyle L.; Yao, Wang; Xu, Xiaodong

    2016-11-01

    Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.

  5. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  6. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  7. Quantum coherence selective 2D Raman-2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-03-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  8. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    PubMed

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  9. 2D Hybrid Nanostructured Dirac Materials for Broadband Transparent Electrodes.

    PubMed

    Guo, Yunfan; Lin, Li; Zhao, Shuli; Deng, Bing; Chen, Hongliang; Ma, Bangjun; Wu, Jinxiong; Yin, Jianbo; Liu, Zhongfan; Peng, Hailin

    2015-08-05

    Broadband transparent electrodes based on 2D hybrid nanostructured Dirac materials between Bi2 Se3 and graphene are synthesized using a chemical vapor deposition (CVD) method. Bi2 Se3 nanoplates are preferentially grown along graphene grain boundaries as "smart" conductive patches to bridge the graphene boundary. These hybrid films increase by one- to threefold in conductivity while remaining highly transparent over broadband wavelength. They also display outstanding chemical stability and mechanical flexibility.

  10. RNA folding pathways and kinetics using 2D energy landscapes.

    PubMed

    Senter, Evan; Dotu, Ivan; Clote, Peter

    2015-01-01

    RNA folding pathways play an important role in various biological processes, such as (i) the hok/sok (host-killing/suppression of killing) system in E. coli to check for sufficient plasmid copy number, (ii) the conformational switch in spliced leader (SL) RNA from Leptomonas collosoma, which controls trans splicing of a portion of the '5 exon, and (iii) riboswitches--portions of the 5' untranslated region of messenger RNA that regulate genes by allostery. Since RNA folding pathways are determined by the energy landscape, we describe a novel algorithm, FFTbor2D, which computes the 2D projection of the energy landscape for a given RNA sequence. Given two metastable secondary structures A, B for a given RNA sequence, FFTbor2D computes the Boltzmann probability p(x, y) = Z(x,y)/Z that a secondary structure has base pair distance x from A and distance y from B. Using polynomial interpolationwith the fast Fourier transform,we compute p(x, y) in O(n(5)) time and O(n(2)) space, which is an improvement over an earlier method, which runs in O(n(7)) time and O(n(4)) space. FFTbor2D has potential applications in synthetic biology, where one might wish to design bistable switches having target metastable structures A, B with favorable pathway kinetics. By inverting the transition probability matrix determined from FFTbor2D output, we show that L. collosoma spliced leader RNA has larger mean first passage time from A to B on the 2D energy landscape, than 97.145% of 20,000 sequences, each having metastable structures A, B. Source code and binaries are freely available for download at http://bioinformatics.bc.edu/clotelab/FFTbor2D. The program FFTbor2D is implemented in C++, with optional OpenMP parallelization primitives.

  11. Optoelectronics based on 2D TMDs and heterostructures

    NASA Astrophysics Data System (ADS)

    Huo, Nengjie; Yang, Yujue; Li, Jingbo

    2017-03-01

    2D materials including graphene and TMDs have proven interesting physical properties and promising optoelectronic applications. We reviewed the growth, characterization and optoelectronics based on 2D TMDs and their heterostructures, and demonstrated their unique and high quality of performances. For example, we observed the large mobility, fast response and high photo-responsivity in MoS2, WS2 and WSe2 phototransistors, as well as the novel performances in vdW heterostructures such as the strong interlayer coupling, am-bipolar and rectifying behaviour, and the obvious photovoltaic effect. It is being possible that 2D family materials could play an increasingly important role in the future nano- and opto-electronics, more even than traditional semiconductors such as silicon.

  12. Rotation invariance principles in 2D/3D registration

    NASA Astrophysics Data System (ADS)

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels C.; Jacob, Augustinus L.; Regazzoni, Pietro; Messmer, Peter

    2003-05-01

    2D/3D patient-to-computed tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 2D/3D registration is the fast that finding a registration includes sovling a minimization problem in six degrees-of-freedom in motion. This results in considerable time expenses since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations aroudn a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of its original value. The method was implemented and extensively tested on simulated x-ray images of a pelvis. We conclude that this hardware-indepenent optimization of 2D/3D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.

  13. 2D Materials for Optical Modulation: Challenges and Opportunities.

    PubMed

    Yu, Shaoliang; Wu, Xiaoqin; Wang, Yipei; Guo, Xin; Tong, Limin

    2017-02-21

    Owing to their atomic layer thickness, strong light-material interaction, high nonlinearity, broadband optical response, fast relaxation, controllable optoelectronic properties, and high compatibility with other photonic structures, 2D materials, including graphene, transition metal dichalcogenides and black phosphorus, have been attracting increasing attention for photonic applications. By tuning the carrier density via electrical or optical means that modifies their physical properties (e.g., Fermi level or nonlinear absorption), optical response of the 2D materials can be instantly changed, making them versatile nanostructures for optical modulation. Here, up-to-date 2D material-based optical modulation in three categories is reviewed: free-space, fiber-based, and on-chip configurations. By analysing cons and pros of different modulation approaches from material and mechanism aspects, the challenges faced by using these materials for device applications are presented. In addition, thermal effects (e.g., laser induced damage) in 2D materials, which are critical to practical applications, are also discussed. Finally, the outlook for future opportunities of these 2D materials for optical modulation is given.

  14. 2-D Clinostat for Simulated Microgravity Experiments with Arabidopsis Seedlings

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Xugang; Krause, Lars; Görög, Mark; Schüler, Oliver; Hauslage, Jens; Hemmersbach, Ruth; Kircher, Stefan; Lasok, Hanna; Haser, Thomas; Rapp, Katja; Schmidt, Jürgen; Yu, Xin; Pasternak, Taras; Aubry-Hivet, Dorothée; Tietz, Olaf; Dovzhenko, Alexander; Palme, Klaus; Ditengou, Franck Anicet

    2016-04-01

    Ground-based simulators of microgravity such as fast rotating 2-D clinostats are valuable tools to study gravity related processes. We describe here a versatile g-value-adjustable 2-D clinostat that is suitable for plant analysis. To avoid seedling adaptation to 1 g after clinorotation, we designed chambers that allow rapid fixation. A detailed protocol for fixation, RNA isolation and the analysis of selected genes is described. Using this clinostat we show that mRNA levels of LONG HYPOCOTYL 5 (HY5), MIZU-KUSSEI 1 (MIZ1) and microRNA MIR163 are down-regulated in 5-day-old Arabidopsis thaliana roots after 3 min and 6 min of clinorotation using a maximal reduced g-force of 0.02 g, hence demonstrating that this 2-D clinostat enables the characterization of early transcriptomic events during root response to microgravity. We further show that this 2-D clinostat is able to compensate the action of gravitational force as both gravitropic-dependent statolith sedimentation and subsequent auxin redistribution (monitoring D R5 r e v :: G F P reporter) are abolished when plants are clinorotated. Our results demonstrate that 2-D clinostats equipped with interchangeable growth chambers and tunable rotation velocity are suitable for studying how plants perceive and respond to simulated microgravity.

  15. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  16. Fast emulsion-based method for simultaneous determination of Co, Cu, Pb and Se in crude oil, gasoline and diesel by graphite furnace atomic absorption spectrometry.

    PubMed

    Luz, Maciel S; Nascimento, Angerson N; Oliveira, Pedro V

    2013-10-15

    A method for the simultaneous determination of Co, Cu, Pb and Se in crude oil, gasoline and diesel samples using emulsion-based sampling and GF AAS is proposed. 400mg of sample was weighted in volumetric flask following the sequential addition of 125 µL of hexane and 7.5 mL of Triton X-100(®) (20% mv(-1)). Subsequently, the mixture was stirred in ultrasonic bath, during 30 min, before dilution to 25 mL with deionized water. Aliquots of 20 μL of reference solution or sample emulsion were co-injected into the graphite tube with 10 μL of 2 g L(-1) Pd(NO3)2. The pyrolysis and atomization temperatures were 1300°C and 2250°C, respectively. The limits of detection (n=10, 3σ) and characteristic masses were 0.02 μg g(-1) (0.32 μg L(-1)) and 18 pg for Co, 0.03 μg g(-1) (0.48 μg L(-1)) and 15 pg for Cu, 0.04 μg g(-1) (0.64 μg L(-1)) and 48 pg for Pb, and 0.11 μg g(-1) (1.76 μg L(-1)) and 47 pg for Se. The reliabilities of the proposed method for Co and Se were checked by SRM(®) 1634c Residual Oil analysis. The found values are in accordance to the SRM at 95% confidence level (Student's t-test). Each sample was spiked with 0.18 μg g(-1) of Co, Cu, Pb and Se and the recoveries varied from 92% to 116% for Co, 83% to 117% for Cu, 72% to 117% for Pb, and 82% to 122% for Se.

  17. MR imaging features of idiopathic thoracic spinal cord herniations using combined 3D-fiesta and 2D-PC Cine techniques.

    PubMed

    Ferré, J C; Carsin-Nicol, B; Hamlat, A; Carsin, M; Morandi, X

    2005-03-01

    Idiopathic thoracic spinal cord herniation (TISCH) is a rare cause of surgically treatable progressive myelopathy. The authors report 3 cases of TISCH diagnosed based on conventional T1- and T2-weighted Spin-Echo (SE) MR images in one case, and T1- and T2-weighted SE images combined with 3D-FIESTA (Fast Imaging Employing Steady state Acquisition) and 2D-Phase-Contrast Cine MR imaging in 2 cases. Conventional MRI findings usually provided the diagnosis. 3D-FIESTA images confirmed it, showing the herniated cord in the ventral epidural space. Moreover, in combination with 2D-Phase Contrast cine technique, it was a sensitive method to for the detection of associated pre- or postoperative cerebrospinal fluid spaces abnormalities.

  18. Fast switching and low power of superlattice-like SnSe2/Sb thin films for phase change memory application

    NASA Astrophysics Data System (ADS)

    Wu, Weihua; He, Zifang; Chen, Shiyu; Zhai, Jiwei; Liu, Xinyi; Lai, Tianshu; Song, Sannian; Song, Zhitang

    2016-10-01

    Two non-promising phase change materials (SnSe2 and Sb) were prepared through the superlattice-like (SLL) method to explore the suitable phase change layer for phase change memory (PCM) application. The crystallization temperature, activation energy, and 10-year data retention of the SLL [SnSe2(10 nm)/Sb(2 nm)]4 ([SS(10)/S(2)]4) thin film are 185 °C, 3.03 eV, and 116 °C, respectively. The volume change of the SLL [SS(10)/S(2)]4 thin film during the crystallization is as small as 3.5%. The phase transition speed of the SLL [SS(10)/S(2)]4 thin film for crystallization is only about 11.9 ns. PCM cell based on the SLL [SS(10)/S(2)]4 thin film shows high operation speed (20 ns for SET/RESET) and lower power consumption (2.75 × 10-11 J for RESET operation).

  19. Novel UV-Visible Photodetector in Photovoltaic Mode with Fast Response and Ultrahigh Photosensitivity Employing Se/TiO2 Nanotubes Heterojunction.

    PubMed

    Zheng, Lingxia; Hu, Kai; Teng, Feng; Fang, Xiaosheng

    2017-02-01

    A feasible strategy for hybrid photodetector by integrating an array of self-ordered TiO2 nanotubes (NTs) and selenium is demonstrated to break the compromise between the responsivity and response speed. Novel heterojunction between the TiO2 NTs and Se in combination with the surface trap states at TiO2 help regulate the electron transport and facilitate the separation of photogenerated electron-hole pairs under photovoltaic mode (at zero bias), leading to a high responsivity of ≈100 mA W(-1) at 620 nm light illumination and the ultrashort rise/decay time (1.4/7.8 ms). The implanting of intrinsic p-type Se into TiO2 NTs broadens the detection range to UV-visible (280-700 nm) with a large detectivity of over 10(12) Jones and a high linear dynamic range of over 80 dB. In addition, a maximum photocurrent of ≈10(7) A is achieved at 450 nm light illumination and an ultrahigh photosensitivity (on/off ratio up to 10(4) ) under zero bias upon UV and visible light illumination is readily achieved. The concept of employing novel heterojunction geometry holds great potential to pave a new way to realize high performance and energy-efficient optoelectronic devices for practical applications.

  20. Few-layer III-VI and IV-VI 2D semiconductor transistors

    NASA Astrophysics Data System (ADS)

    Sucharitakul, Sukrit; Liu, Mei; Kumar, Rajesh; Sankar, Raman; Chou, Fang C.; Chen, Yit-Tsong; Gao, Xuan

    Since the discovery of atomically thin graphene, a large variety of exfoliable 2D materials have been thoroughly explored for their exotic transport behavior and promises in technological breakthroughs. While most attention on 2D materials beyond graphene is focused on transition metal-dichalcogenides, relatively less attention is paid to layered III-VI and IV-VI semiconductors such as InSe, SnSe etc which bear stronger potential as 2D materials with high electron mobility or thermoelectric figure of merit. We will discuss our recent work on few-layer InSe 2D field effect transistors which exhibit carrier mobility approaching 1000 cm2/Vs and ON-OFF ratio exceeding 107 at room temperature. In addition, the fabrication and device performance of transistors made of mechanically exfoliated multilayer IV-VI semiconductor SnSe and SnSe2 will be discussed.

  1. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  2. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  3. Ultrafast Charge Transfer and Hybrid Exciton Formation in 2D/0D Heterostructures

    SciTech Connect

    Boulesbaa, Abdelaziz; Wang, Kai; Mahjouri-Samani, Masoud; Tian, Mengkun; Puretzky, Alexander A.; Ivanov, Ilia; Rouleau, Christopher M.; Xiao, Kai; Sumpter, Bobby G.; Geohegan, David B.

    2016-10-18

    We report that photoinduced interfacial charge transfer is at the heart of many applications, including photovoltaics, photocatalysis, and photodetection. With the emergence of a new class of semiconductors such as monolayer two-dimensional transition metal dichalcogenides (2D-TMDs), charge transfer at the 2D/2D heterojunctions attracted several efforts due to the remarkable optical and electrical properties of 2D-TMDs. Unfortunately, in 2D/2D heterojunctions, for a given combination of two materials, the relative energy band alignment and the charge transfer efficiency are locked. Due to their large variety and broad size tunability, semiconductor quantum dots (0D-QDs) interfaced with 2D-TMDs may become an attractive heterostructure for optoelectronic applications. Here, we incorporate femtosecond pump-probe spectroscopy to reveal the sub-45 fs charge transfer at a 2D/0D heterostructure composed of tungsten disulfide monolayers (2D-WS2) and a single layer of cadmium selenide (CdSe)/zinc sulfide (ZnS) core/shell 0D-QDs. Furthermore, ultrafast dynamics and steady-state measurements suggested that following electron transfer from the 2D to the 0D, hybrid excitons (HXs), wherein the electron resides in the 0D and hole resides in the 2D-TMD monolayer, are formed with a binding energy on the order of ~140 meV, which is several times lower than that of tightly bound excitons in 2D-TMDs.

  4. Ultrafast Charge Transfer and Hybrid Exciton Formation in 2D/0D Heterostructures

    DOE PAGES

    Boulesbaa, Abdelaziz; Wang, Kai; Mahjouri-Samani, Masoud; ...

    2016-10-18

    We report that photoinduced interfacial charge transfer is at the heart of many applications, including photovoltaics, photocatalysis, and photodetection. With the emergence of a new class of semiconductors such as monolayer two-dimensional transition metal dichalcogenides (2D-TMDs), charge transfer at the 2D/2D heterojunctions attracted several efforts due to the remarkable optical and electrical properties of 2D-TMDs. Unfortunately, in 2D/2D heterojunctions, for a given combination of two materials, the relative energy band alignment and the charge transfer efficiency are locked. Due to their large variety and broad size tunability, semiconductor quantum dots (0D-QDs) interfaced with 2D-TMDs may become an attractive heterostructure formore » optoelectronic applications. Here, we incorporate femtosecond pump-probe spectroscopy to reveal the sub-45 fs charge transfer at a 2D/0D heterostructure composed of tungsten disulfide monolayers (2D-WS2) and a single layer of cadmium selenide (CdSe)/zinc sulfide (ZnS) core/shell 0D-QDs. Furthermore, ultrafast dynamics and steady-state measurements suggested that following electron transfer from the 2D to the 0D, hybrid excitons (HXs), wherein the electron resides in the 0D and hole resides in the 2D-TMD monolayer, are formed with a binding energy on the order of ~140 meV, which is several times lower than that of tightly bound excitons in 2D-TMDs.« less

  5. NGMIX: Gaussian mixture models for 2D images

    NASA Astrophysics Data System (ADS)

    Sheldon, Erin

    2015-08-01

    NGMIX implements Gaussian mixture models for 2D images. Both the PSF profile and the galaxy are modeled using mixtures of Gaussians. Convolutions are thus performed analytically, resulting in fast model generation as compared to methods that perform the convolution in Fourier space. For the galaxy model, NGMIX supports exponential disks and de Vaucouleurs and Sérsic profiles; these are implemented approximately as a sum of Gaussians using the fits from Hogg & Lang (2013). Additionally, any number of Gaussians can be fit, either completely free or constrained to be cocentric and co-elliptical.

  6. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  7. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  8. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  9. 2D/3D switchable displays

    NASA Astrophysics Data System (ADS)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  10. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L. A.; Hallquist, J. O.

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  11. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  12. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  13. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  14. Orthotropic Piezoelectricity in 2D Nanocellulose.

    PubMed

    García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M

    2016-10-06

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V(-1), ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  15. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  16. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  17. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  18. Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.

    PubMed

    Fang, Yuan; Yushmanov, Pavel V; Furó, István

    2016-12-08

    Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  19. Colloidal synthesis and optical properties of type-II CdSe-CdTe and inverted CdTe-CdSe core-wing heteronanoplatelets

    NASA Astrophysics Data System (ADS)

    Antanovich, A. V.; Prudnikau, A. V.; Melnikau, D.; Rakovich, Y. P.; Chuvilin, A.; Woggon, U.; Achtstein, A. W.; Artemyev, M. V.

    2015-04-01

    We developed colloidal synthesis to investigate the structural and electronic properties of CdSe-CdTe and inverted CdTe-CdSe heteronanoplatelets and experimentally demonstrate that the overgrowth of cadmium selenide or cadmium telluride core nanoplatelets with counterpartner chalcogenide wings leads to type-II heteronanoplatelets with emission energies defined by the bandgaps of the CdSe and CdTe platelets and the characteristic band offsets. The observed conduction and valence band offsets of 0.36 eV and 0.56 eV are in line with theoretical predictions. The presented type-II heteronanoplatelets exhibit efficient spatially indirect radiative exciton recombination with a quantum yield as high as 23%. While the exciton lifetime is strongly prolonged in the investigated type-II 2D systems with respect to 2D type-I systems, the occurring 2D giant oscillator strength (GOST) effect still leads to a fast and efficient exciton recombination. This makes type-II heteronanoplatelets interesting candidates for low threshold lasing applications and photovoltaics.We developed colloidal synthesis to investigate the structural and electronic properties of CdSe-CdTe and inverted CdTe-CdSe heteronanoplatelets and experimentally demonstrate that the overgrowth of cadmium selenide or cadmium telluride core nanoplatelets with counterpartner chalcogenide wings leads to type-II heteronanoplatelets with emission energies defined by the bandgaps of the CdSe and CdTe platelets and the characteristic band offsets. The observed conduction and valence band offsets of 0.36 eV and 0.56 eV are in line with theoretical predictions. The presented type-II heteronanoplatelets exhibit efficient spatially indirect radiative exciton recombination with a quantum yield as high as 23%. While the exciton lifetime is strongly prolonged in the investigated type-II 2D systems with respect to 2D type-I systems, the occurring 2D giant oscillator strength (GOST) effect still leads to a fast and efficient exciton

  20. 2D Distributed Sensing Via TDR

    DTIC Science & Technology

    2007-11-02

    plate VEGF CompositeSensor Experimental Setup Air 279 mm 61 78 VARTM profile: slope RTM profile: rectangle 22 1 Jul 2003© 2003 University of Delaware...2003 University of Delaware All rights reserved Vision: Non-contact 2D sensing ü VARTM setup constructed within TL can be sensed by its EM field: 2D...300.0 mm/ns. 1 2 1 Jul 2003© 2003 University of Delaware All rights reserved Model Validation “ RTM Flow” TDR Response to 139 mm VEGC

  1. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  2. Surface Tension Components Based Selection of Cosolvents for Efficient Liquid Phase Exfoliation of 2D Materials.

    PubMed

    Shen, Jianfeng; Wu, Jingjie; Wang, Man; Dong, Pei; Xu, Jingxuan; Li, Xiaoguang; Zhang, Xiang; Yuan, Junhua; Wang, Xifan; Ye, Mingxin; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M

    2016-05-01

    A proper design of direct liquid phase exfoliation (LPE) for 2D materials as graphene, MoS2 , WS2 , h-BN, Bi2 Se3 , MoSe2 , SnS2 , and TaS2 with common cosolvents is carried out based on considering the polar and dispersive components of surface tensions of various cosolvents and 2D materials. It has been found that the exfoliation efficiency is enhanced by matching the ratio of surface tension components of cosolvents to that of the targeted 2D materials, based on which common cosolvents composed of IPA/water, THF/water, and acetone/water can be designed for sufficient LPE process. In this context, the library of low-toxic and low-cost solvents with low boiling points for LPE is infinitely enlarged when extending to common cosolvents. Polymer-based composites reinforced with a series of different 2D materials are compared with each other. It is demonstrated that the incorporation of cosolvents-exfoliated 2D materials can substantially improve the mechanical and thermal properties of polymer matrices. Typically, with the addition of 0.5 wt% of such 2D material as MoS2 nanosheets, the tensile strength and Young's modulus increased up to 74.85% and 136.97%, respectively. The different enhancement effect of 2D materials is corresponded to the intrinsic properties and LPE capacity of 2D materials.

  3. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  4. The basics of 2D DIGE.

    PubMed

    Beckett, Phil

    2012-01-01

    The technique of two-dimensional (2D) gel electrophoresis is a powerful tool for separating complex mixtures of proteins, but since its inception in the mid 1970s, it acquired the stigma of being a very difficult application to master and was generally used to its best effect by experts. The introduction of commercially available immobilized pH gradients in the early 1990s provided enhanced reproducibility and easier protocols, leading to a pronounced increase in popularity of the technique. However gel-to-gel variation was still difficult to control without the use of technical replicates. In the mid 1990s (at the same time as the birth of "proteomics"), the concept of multiplexing fluorescently labeled proteins for 2D gel separation was realized by Jon Minden's group and has led to the ability to design experiments to virtually eliminate gel-to-gel variation, resulting in biological replicates being used for statistical analysis with the ability to detect very small changes in relative protein abundance. This technology is referred to as 2D difference gel electrophoresis (2D DIGE).

  5. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; ...

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  6. VIEWNET: a neural architecture for learning to recognize 3D objects from multiple 2D views

    NASA Astrophysics Data System (ADS)

    Grossberg, Stephen; Bradski, Gary

    1994-10-01

    A self-organizing neural network is developed for recognition of 3-D objects from sequences of their 2-D views. Called VIEWNET because it uses view information encoded with networks, the model processes 2-D views of 3-D objects using the CORT-X 2 filter, which discounts the illuminant, regularizes and completes figural boundaries, and removes noise from the images. A log-polar transform is taken with respect to the centroid of the resulting figure and then re-centered to achieve 2-D scale and rotation invariance. The invariant images are coarse coded to further reduce noise, reduce foreshortening effects, and increase generalization. These compressed codes are input into a supervised learning system based on the Fuzzy ARTMAP algorithm which learns 2-D view categories. Evidence from sequences of 2-D view categories is stored in a working memory. Voting based on the unordered set of stored categories determines object recognition. Recognition is studied with noisy and clean images using slow and fast learning. VIEWNET is demonstrated on an MIT Lincoln Laboratory database of 2-D views of aircraft with and without additive noise. A recognition rate of up to 90% is achieved with one 2-D view category and of up to 98.5% correct with three 2-D view categories.

  7. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  8. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  9. Compatible embedding for 2D shape animation.

    PubMed

    Baxter, William V; Barla, Pascal; Anjyo, Ken-Ichi

    2009-01-01

    We present new algorithms for the compatible embedding of 2D shapes. Such embeddings offer a convenient way to interpolate shapes having complex, detailed features. Compared to existing techniques, our approach requires less user input, and is faster, more robust, and simpler to implement, making it ideal for interactive use in practical applications. Our new approach consists of three parts. First, our boundary matching algorithm locates salient features using the perceptually motivated principles of scale-space and uses these as automatic correspondences to guide an elastic curve matching algorithm. Second, we simplify boundaries while maintaining their parametric correspondence and the embedding of the original shapes. Finally, we extend the mapping to shapes' interiors via a new compatible triangulation algorithm. The combination of our algorithms allows us to demonstrate 2D shape interpolation with instant feedback. The proposed algorithms exhibit a combination of simplicity, speed, and accuracy that has not been achieved in previous work.

  10. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  11. Extrinsic Cation Selectivity of 2D Membranes

    PubMed Central

    2017-01-01

    From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333

  12. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  13. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  14. Quasiparticle interference in unconventional 2D systems

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-01

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  15. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  16. 2D Metals by Repeated Size Reduction.

    PubMed

    Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui

    2016-10-01

    A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers.

  17. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  18. Interpretive 2-D treatment of scrape-off-layer plasmas

    SciTech Connect

    Umansky, M.; Allen, A.; Daughton, W.

    1996-12-31

    The width of the scrape-off-layer in a tokamak is determined by cross field transport. In Alcator C-mod the plasma parameters in the scrape-off-layer are measured at upstream and divertor plate locations. We solve a 2-D scrape-off-layer heat conduction equation in the flux geometry (as determined by EFIT) of the C-mod experiment. Bolometric measurements are utilized for the radiative loss term. We use the end wall probe measurements of electron temperature as a boundary condition and the fast scanning probe measurements of upstream temperature are treated as constraints to determine the cross field transport and thermal conductivity. Results are compared with 1-D onion-skin-model predictions.

  19. The Anatomy of High-Performance 2D Similarity Calculations

    PubMed Central

    Haque, Imran S.; Pande, Vijay S.

    2011-01-01

    Similarity measures based on the comparison of dense bit-vectors of two-dimensional chemical features are a dominant method in chemical informatics. For large-scale problems, including compound selection and machine learning, computing the intersection between two dense bit-vectors is the overwhelming bottleneck. We describe efficient implementations of this primitive, as well as example applications, using features of modern CPUs that allow 20-40x performance increases relative to typical code. Specifically, we describe fast methods for population count on modern x86 processors and cache-efficient matrix traversal and leader clustering algorithms that alleviate memory bandwidth bottlenecks in similarity matrix construction and clustering. The speed of our 2D comparison primitives is within a small factor of that obtained on GPUs, and does not require specialized hardware. PMID:21854053

  20. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  1. Irreversibility-inversions in 2D turbulence

    NASA Astrophysics Data System (ADS)

    Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido

    2016-11-01

    We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.

  2. Selenium-Doped Black Phosphorus for High-Responsivity 2D Photodetectors.

    PubMed

    Xu, Yijun; Yuan, Jian; Fei, Linfeng; Wang, Xinliang; Bao, Qiaoliang; Wang, Yu; Zhang, Kai; Zhang, Yuegang

    2016-09-01

    Se-doped black phosphorus (BP) crystal, in centimeter scale, is synthesized by a scalable gas-phase growth method under mild conditions. The Se-doped BP exhibits high quality with excellent electrical properties. The Se dope induces over 20-fold enhancement of responsivity (R) for BP-based 2D photodetectors, resulting in a high R and external quantum efficiency of 15.33 A W(-1) and 2993%, respectively.

  3. 2D Time-lapse Seismic Tomography Using An Active Time Constraint (ATC) Approach

    EPA Science Inventory

    We propose a 2D seismic time-lapse inversion approach to image the evolution of seismic velocities over time and space. The forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wave-paths are represented by Fresnel volumes rathe...

  4. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  5. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  6. Codon Constraints on Closed 2D Shapes,

    DTIC Science & Technology

    2014-09-26

    19843$ CODON CONSTRAINTS ON CLOSED 2D SHAPES Go Whitman Richards "I Donald D. Hoffman’ D T 18 Abstract: Codons are simple primitives for describing plane...RSONAL AUT"ORtIS) Richards, Whitman & Hoffman, Donald D. 13&. TYPE OF REPORT 13b. TIME COVERED N/A P8 AT F RRrT t~r. Ago..D,) is, PlE COUNT Reprint...outlines, if figure and ground are ignored. Later, we will address the problem of indexing identical codon descriptors that have different figure

  7. Remarks on thermalization in 2D CFT

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Engelhardt, Dalit

    2016-12-01

    We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.

  8. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  9. Spin splitting in 2D monochalcogenide semiconductors.

    PubMed

    Do, Dat T; Mahanti, Subhendra D; Lai, Chih Wei

    2015-11-24

    We report ab initio calculations of the spin splitting of the uppermost valence band (UVB) and the lowermost conduction band (LCB) in bulk and atomically thin GaS, GaSe, GaTe, and InSe. These layered monochalcogenides appear in four major polytypes depending on the stacking order, except for the monoclinic GaTe. Bulk and few-layer ε-and γ -type, and odd-number β-type GaS, GaSe, and InSe crystals are noncentrosymmetric. The spin splittings of the UVB and the LCB near the Γ-point in the Brillouin zone are finite, but still smaller than those in a zinc-blende semiconductor such as GaAs. On the other hand, the spin splitting is zero in centrosymmetric bulk and even-number few-layer β-type GaS, GaSe, and InSe, owing to the constraint of spatial inversion symmetry. By contrast, GaTe exhibits zero spin splitting because it is centrosymmetric down to a single layer. In these monochalcogenide semiconductors, the separation of the non-degenerate conduction and valence bands from adjacent bands results in the suppression of Elliot-Yafet spin relaxation mechanism. Therefore, the electron- and hole-spin relaxation times in these systems with zero or minimal spin splittings are expected to exceed those in GaAs when the D'yakonov-Perel' spin relaxation mechanism is also suppressed.

  10. Spin splitting in 2D monochalcogenide semiconductors

    PubMed Central

    Do, Dat T.; Mahanti, Subhendra D.; Lai, Chih Wei

    2015-01-01

    We report ab initio calculations of the spin splitting of the uppermost valence band (UVB) and the lowermost conduction band (LCB) in bulk and atomically thin GaS, GaSe, GaTe, and InSe. These layered monochalcogenides appear in four major polytypes depending on the stacking order, except for the monoclinic GaTe. Bulk and few-layer ε-and γ -type, and odd-number β-type GaS, GaSe, and InSe crystals are noncentrosymmetric. The spin splittings of the UVB and the LCB near the Γ-point in the Brillouin zone are finite, but still smaller than those in a zinc-blende semiconductor such as GaAs. On the other hand, the spin splitting is zero in centrosymmetric bulk and even-number few-layer β-type GaS, GaSe, and InSe, owing to the constraint of spatial inversion symmetry. By contrast, GaTe exhibits zero spin splitting because it is centrosymmetric down to a single layer. In these monochalcogenide semiconductors, the separation of the non-degenerate conduction and valence bands from adjacent bands results in the suppression of Elliot-Yafet spin relaxation mechanism. Therefore, the electron- and hole-spin relaxation times in these systems with zero or minimal spin splittings are expected to exceed those in GaAs when the D’yakonov-Perel’ spin relaxation mechanism is also suppressed. PMID:26596907

  11. Spin splitting in 2D monochalcogenide semiconductors

    NASA Astrophysics Data System (ADS)

    Do, Dat T.; Mahanti, Subhendra D.; Lai, Chih Wei

    2015-11-01

    We report ab initio calculations of the spin splitting of the uppermost valence band (UVB) and the lowermost conduction band (LCB) in bulk and atomically thin GaS, GaSe, GaTe, and InSe. These layered monochalcogenides appear in four major polytypes depending on the stacking order, except for the monoclinic GaTe. Bulk and few-layer ε-and γ -type, and odd-number β-type GaS, GaSe, and InSe crystals are noncentrosymmetric. The spin splittings of the UVB and the LCB near the Γ-point in the Brillouin zone are finite, but still smaller than those in a zinc-blende semiconductor such as GaAs. On the other hand, the spin splitting is zero in centrosymmetric bulk and even-number few-layer β-type GaS, GaSe, and InSe, owing to the constraint of spatial inversion symmetry. By contrast, GaTe exhibits zero spin splitting because it is centrosymmetric down to a single layer. In these monochalcogenide semiconductors, the separation of the non-degenerate conduction and valence bands from adjacent bands results in the suppression of Elliot-Yafet spin relaxation mechanism. Therefore, the electron- and hole-spin relaxation times in these systems with zero or minimal spin splittings are expected to exceed those in GaAs when the D’yakonov-Perel’ spin relaxation mechanism is also suppressed.

  12. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  13. Transition to turbulence: 2D directed percolation

    NASA Astrophysics Data System (ADS)

    Chantry, Matthew; Tuckerman, Laurette; Barkley, Dwight

    2016-11-01

    The transition to turbulence in simple shear flows has been studied for well over a century, yet in the last few years has seen major leaps forward. In pipe flow, this transition shows the hallmarks of (1 + 1) D directed percolation, a universality class of continuous phase transitions. In spanwisely confined Taylor-Couette flow the same class is found, suggesting the phenomenon is generic to shear flows. However in plane Couette flow the largest simulations and experiments to-date find evidence for a discrete transition. Here we study a planar shear flow, called Waleffe flow, devoid of walls yet showing the fundamentals of planar transition to turbulence. Working with a quasi-2D yet Navier-Stokes derived model of this flow we are able to attack the (2 + 1) D transition problem. Going beyond the system sizes previously possible we find all of the required scalings of directed percolation and thus establish planar shears flow in this class.

  14. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  15. Simulation of Yeast Cooperation in 2D.

    PubMed

    Wang, M; Huang, Y; Wu, Z

    2016-03-01

    Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse.

  16. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  17. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  18. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  19. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  20. Molecular beam epitaxy of 2D-layered gallium selenide on GaN substrates

    NASA Astrophysics Data System (ADS)

    Lee, Choong Hee; Krishnamoorthy, Sriram; O'Hara, Dante J.; Brenner, Mark R.; Johnson, Jared M.; Jamison, John S.; Myers, Roberto C.; Kawakami, Roland K.; Hwang, Jinwoo; Rajan, Siddharth

    2017-03-01

    Large area epitaxy of two-dimensional (2D) layered materials with high material quality is a crucial step in realizing novel device applications based on 2D materials. In this work, we report high-quality, crystalline, large-area gallium selenide (GaSe) films grown on bulk substrates such as c-plane sapphire and gallium nitride (GaN) using a valved cracker source for Se. (002)-Oriented GaSe with random in-plane orientation of domains was grown on sapphire and GaN substrates at a substrate temperature of 350-450 °C with complete surface coverage. Higher growth temperature (575 °C) resulted in the formation of single-crystalline ɛ-GaSe triangular domains with six-fold symmetry confirmed by in-situ reflection high electron energy diffraction and off-axis x-ray diffraction. A two-step growth method involving high temperature nucleation of single crystalline domains and low temperature growth to enhance coalescence was adopted to obtain continuous (002)-oriented GaSe with an epitaxial relationship with the substrate. While six-fold symmetry was maintained in the two step growth, β-GaSe phase was observed in addition to the dominant ɛ-GaSe in cross-sectional scanning transmission electron microscopy images. This work demonstrates the potential of growing high quality 2D-layered materials using molecular beam epitaxy and can be extended to the growth of other transition metal chalcogenides.

  1. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  2. How Fast Is Fast?

    ERIC Educational Resources Information Center

    Korn, Abe

    1994-01-01

    Presents an activity that enables students to answer for themselves the question of how fast a body must travel before the nonrelativistic expression must be replaced with the correct relativistic expression by deciding on the accuracy required in describing the kinetic energy of a body. (ZWH)

  3. Methods for 2-D and 3-D Endobronchial Ultrasound Image Segmentation.

    PubMed

    Zang, Xiaonan; Bascom, Rebecca; Gilbert, Christopher; Toth, Jennifer; Higgins, William

    2016-07-01

    Endobronchial ultrasound (EBUS) is now commonly used for cancer-staging bronchoscopy. Unfortunately, EBUS is challenging to use and interpreting EBUS video sequences is difficult. Other ultrasound imaging domains, hampered by related difficulties, have benefited from computer-based image-segmentation methods. Yet, so far, no such methods have been proposed for EBUS. We propose image-segmentation methods for 2-D EBUS frames and 3-D EBUS sequences. Our 2-D method adapts the fast-marching level-set process, anisotropic diffusion, and region growing to the problem of segmenting 2-D EBUS frames. Our 3-D method builds upon the 2-D method while also incorporating the geodesic level-set process for segmenting EBUS sequences. Tests with lung-cancer patient data showed that the methods ran fully automatically for nearly 80% of test cases. For the remaining cases, the only user-interaction required was the selection of a seed point. When compared to ground-truth segmentations, the 2-D method achieved an overall Dice index = 90.0% ±4.9%, while the 3-D method achieved an overall Dice index = 83.9 ± 6.0%. In addition, the computation time (2-D, 0.070 s/frame; 3-D, 0.088 s/frame) was two orders of magnitude faster than interactive contour definition. Finally, we demonstrate the potential of the methods for EBUS localization in a multimodal image-guided bronchoscopy system.

  4. Comparative studies on gravisensitive protists on ground (2D and 3D clinostats) and in microgravity

    NASA Astrophysics Data System (ADS)

    Hemmersbach, Ruth; Strauch, Sebastian M.; Seibt, Dieter; Schuber, Marianne

    2006-09-01

    In order to prepare and support space experiments, 2D and 3D clinostats are widely applied to study the influence of simulated weightlessness on biological systems. In order to evaluate the results a comparison between the data obtained in simulation experiments and in real microgravity is necessary. We are currently analyzing the gravity-dependent behavior of the protists Paramecium biaurelia (ciliate) and Euglena gracilis (photosynthetic flagellate) on these different experimental platforms. So far, first results are presented concerning the behaviour of Euglena on a 2D fast rotating clinostat and a 3D clinostat as well as under real microgravity conditions (TEXUS sounding rocket flight), of Paramecium on a 2D clinostat and in microgravity. Our data show similar results during 2D and 3D clinorotation compared to real microgravity with respect to loss of orientation (gravitaxis) of Paramecium and Euglena and a decrease of linearity of the cell tracks of Euglena. However, the increase of the mean swimming velocities, especially during 3D clinorotation (Euglena) and 2D clinorotation of Paramecium might indicate a persisting mechanostimulation of the cells. Further studies including long-term 2D and 3D clinostat exposition will enable us to demonstrate the qualification of the applied simulation methods.

  5. Determination of the 1s2{\\ell }2{{\\ell }}^{\\prime } state production ratios {{}^{4}P}^{o}/{}^{2}P, {}^{2}D/{}^{2}P and {{}^{2}P}_{+}/{{}^{2}P}_{-} from fast (1{s}^{2},1s2s\\,{}^{3}S) mixed-state He-like ion beams in collisions with H2 targets

    NASA Astrophysics Data System (ADS)

    Benis, E. P.; Zouros, T. J. M.

    2016-12-01

    New results are presented on the ratio {R}m={σ }{T2p}( {}4P)/{σ }{T2p}({}2P) concerning the production cross sections of Li-like 1s2s2p quartet and doublet P states formed in energetic ion-atom collisions by single 2p electron transfer to the metastable 1s2s {}3S component of the He-like ion beam. Spin statistics predict a value of R m = 2 independent of the collision system in disagreement with most reported measurements of {R}m≃ 1{--}9. A new experimental approach is presented for the evaluation of R m having some practical advantages over earlier approaches. It also allows for the determination of the separate contributions of ground- and metastable-state beam components to the measured spectra. Applying our technique to zero-degree Auger projectile spectra from 4.5 MeV {{{B}}}3+ (Benis et al 2002 Phys. Rev. A 65 064701) and 25.3 MeV {{{F}}}7+ (Zamkov et al 2002 Phys. Rev. A 65 062706) mixed state (1{s}2 {}1S,1s2s {}3S) He-like ion collisions with H2 targets, we report new values of {R}m=3.5+/- 0.4 for boron and {R}m=1.8+/- 0.3 for fluorine. In addition, the ratios of {}2D/{}2P and {{}2P}+/{{}2P}- populations from either the metastable and/or ground state beam component, also relevant to this analysis, are evaluated and compared to previously reported results for carbon collisions on helium (Strohschein et al 2008 Phys. Rev. A 77 022706) including a critical comparison to theory.

  6. Persistence Measures for 2d Soap Froth

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Ruskin, H. J.; Zhu, B.

    Soap froths as typical disordered cellular structures, exhibiting spatial and temporal evolution, have been studied through their distributions and topological properties. Recently, persistence measures, which permit representation of the froth as a two-phase system, have been introduced to study froth dynamics at different length scales. Several aspects of the dynamics may be considered and cluster persistence has been observed through froth experiment. Using a direct simulation method, we have investigated persistent properties in 2D froth both by monitoring the persistence of survivor cells, a topologically independent measure, and in terms of cluster persistence. It appears that the area fraction behavior for both survivor and cluster persistence is similar for Voronoi froth and uniform froth (with defects). Survivor and cluster persistent fractions are also similar for a uniform froth, particularly when geometries are constrained, but differences observed for the Voronoi case appear to be attributable to the strong topological dependency inherent in cluster persistence. Survivor persistence, on the other hand, depends on the number rather than size and position of remaining bubbles and does not exhibit the characteristic decay to zero.

  7. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  8. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  9. Bioinspired 2D-Carbon Flakes and Fe3O4 Nanoparticles Composite for Arsenite Removal.

    PubMed

    Venkateswarlu, Sada; Lee, Daeho; Yoon, Minyoung

    2016-09-14

    Development of carbon-based materials has received tremendous attention owing to their multifunctional properties. Biomaterials often serve as an inspiration for the preparation of new carbon materials. Herein, we present a facile synthesis of a new bioinspired graphene oxide-like 2D-carbon flake (CF) using a natural resource, waste onion sheathing (Allium cepa). The 2D-CF was further decorated with crystalline Fe3O4 nanoparticles for applications. Superparamagnetic Fe3O4 nanoparticles (7 nm) were well-dispersed on the surface of the 2D-CF, which was characterized by X-ray diffractometry, X-ray photoelectron spectroscopy, Raman spectrometry, and transmission electron microscopy. Batch As(III) adsorption experiments showed that aqueous arsenic ions strongly adsorbed to the Fe3O4@2D-CF composite. The adsorption capacity of the Fe3O4@2D-CF composite for As(III) was 57.47 mg g(-1). The synergetic effect of both graphene oxide-like 2D-CF and Fe3O4 nanoparticles aided in excellent As(III) adsorption. An As(III) ion adsorption kinetics study showed that adsorption was very fast at the initial stage, and equilibrium was reached within 60 min following a pseudo-second-order rate model. Owing to the excellent superparamagnetic properties (52.6 emu g(-1)), the Fe3O4@2D-CF composite exhibited superb reusability with the shortest recovery time (28 s) among reported materials. This study indicated that Fe3O4@2D-CF composites can be used for practical applications as a global economic material for future generations.

  10. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  11. Large Area Synthesis of 1D-MoSe2 Using Molecular Beam Epitaxy.

    PubMed

    Poh, Sock Mui; Tan, Sherman J R; Zhao, Xiaoxu; Chen, Zhongxin; Abdelwahab, Ibrahim; Fu, Deyi; Xu, Hai; Bao, Yang; Zhou, Wu; Loh, Kian Ping

    2017-01-23

    Large area synthesis of 1D-MoSe2 nanoribbons on both insulating and conducting substrates via molecular beam epitaxy is presented. Dimensional controlled growth of 2D, 1D-MoSe2 , and 1D-2D-MoSe2 hybrid heterostructure is achieved by tuning the growth temperature or Mo:Se precursor ratio.

  12. Probing the 2-D Kinematic Structure of Early-Type Galaxies Out to 3 Effective Radii

    NASA Astrophysics Data System (ADS)

    Proctor, Robert N.; Forbes, Duncan A.; Romanowsky, Aaron J.; Brodie, Jean P.; Strader, Jay; Spolaor, Max; Trevor Mendel, J.; Spitler, Lee

    2010-06-01

    We detail an innovative new technique for measuring the 2-D velocity moments (rotation velocity, velocity dispersion and Gauss-Hermite coefficients h3 and h4) using spectra from Keck DEIMOS multi-object spectroscopic observations. The data are used to reconstruct 2-D rotation velocity maps. Here we present data for one of five early-type galaxies whose kinematics we have measured out to ~3 effective radii (see [1]). From these data 2D kinematic maps are constructed. We show such analyses can provide significant insights into the global kinematic structure of galaxies, and, in some cases, challenge the accepted morphological classification. Our results are of particular importance to studies which attempt to classify galaxies by their kinematic structure within one effective radius, such as the recent definition of fast- and slow- rotator classes by the SAURON project.

  13. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1989-03-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  14. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1988-08-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculation assumes local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  15. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  16. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  17. NIKE2D96. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Raboin, P.; Engelmann, B.; Halquist, J.O.

    1992-01-24

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  18. 2-D Model for Normal and Sickle Cell Blood Microcirculation

    NASA Astrophysics Data System (ADS)

    Tekleab, Yonatan; Harris, Wesley

    2011-11-01

    Sickle cell disease (SCD) is a genetic disorder that alters the red blood cell (RBC) structure and function such that hemoglobin (Hb) cannot effectively bind and release oxygen. Previous computational models have been designed to study the microcirculation for insight into blood disorders such as SCD. Our novel 2-D computational model represents a fast, time efficient method developed to analyze flow dynamics, O2 diffusion, and cell deformation in the microcirculation. The model uses a finite difference, Crank-Nicholson scheme to compute the flow and O2 concentration, and the level set computational method to advect the RBC membrane on a staggered grid. Several sets of initial and boundary conditions were tested. Simulation data indicate a few parameters to be significant in the perturbation of the blood flow and O2 concentration profiles. Specifically, the Hill coefficient, arterial O2 partial pressure, O2 partial pressure at 50% Hb saturation, and cell membrane stiffness are significant factors. Results were found to be consistent with those of Le Floch [2010] and Secomb [2006].

  19. 2D modeling of electromagnetic waves in cold plasmas

    SciTech Connect

    Crombé, K.; Van Eester, D.; Koch, R.; Kyrytsya, V.

    2014-02-12

    The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was felt as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.

  20. Photorealistic image synthesis and camera validation from 2D images

    NASA Astrophysics Data System (ADS)

    Santos Ferrer, Juan C.; González Chévere, David; Manian, Vidya

    2014-06-01

    This paper presents a new 3D scene reconstruction technique using the Unity 3D game engine. The method presented here allow us to reconstruct the shape of simple objects and more complex ones from multiple 2D images, including infrared and digital images from indoor scenes and only digital images from outdoor scenes and then add the reconstructed object to the simulated scene created in Unity 3D, these scenes are then validated with real world scenes. The method used different cameras settings and explores different properties in the reconstructions of the scenes including light, color, texture, shapes and different views. To achieve the highest possible resolution, it was necessary the extraction of partial textures from visible surfaces. To recover the 3D shapes and the depth of simple objects that can be represented by the geometric bodies, there geometric characteristics were used. To estimate the depth of more complex objects the triangulation method was used, for this the intrinsic and extrinsic parameters were calculated using geometric camera calibration. To implement the methods mentioned above the Matlab tool was used. The technique presented here also let's us to simulate small simple videos, by reconstructing a sequence of multiple scenes of the video separated by small margins of time. To measure the quality of the reconstructed images and video scenes the Fast Low Band Model (FLBM) metric from the Video Quality Measurement (VQM) software was used. Low bandwidth perception based features include edges and motion.

  1. Polymeric-lens-embedded 2D/3D switchable display with dramatically reduced crosstalk.

    PubMed

    Zhu, Ruidong; Xu, Su; Hong, Qi; Wu, Shin-Tson; Lee, Chiayu; Yang, Chih-Ming; Lo, Chang-Cheng; Lien, Alan

    2014-03-01

    A two-dimensional/three-dimensional (2D/3D) display system is presented based on a twisted-nematic cell integrated polymeric microlens array. This device structure has the advantages of fast response time and low operation voltage. The crosstalk of the system is analyzed in detail and two approaches are proposed to reduce the crosstalk: a double lens system and the prism approach. Illuminance distribution analysis proves these two approaches can dramatically reduce crosstalk, thus improving image quality.

  2. Atomic scale microstructure and properties of Se-deficient two-dimensional MoSe2.

    PubMed

    Lehtinen, Ossi; Komsa, Hannu-Pekka; Pulkin, Artem; Whitwick, Michael Brian; Chen, Ming-Wei; Lehnert, Tibor; Mohn, Michael J; Yazyev, Oleg V; Kis, Andras; Kaiser, Ute; Krasheninnikov, Arkady V

    2015-03-24

    We study the atomic scale microstructure of nonstoichiometric two-dimensional (2D) transition metal dichalcogenide MoSe2-x by employing aberration-corrected high-resolution transmission electron microscopy. We show that a Se-deficit in single layers of MoSe2 grown by molecular beam epitaxy gives rise to a dense network of mirror-twin-boundaries (MTBs) decorating the 2D-grains. With the use of density functional theory calculations, we further demonstrate that MTBs are thermodynamically stable structures in Se-deficient sheets. These line defects host spatially localized states with energies close to the valence band minimum, thus giving rise to enhanced conductance along straight MTBs. However, electronic transport calculations show that the transmission of hole charge carriers across MTBs is strongly suppressed due to band bending effects. We further observe formation of MTBs during in situ removal of Se atoms by the electron beam of the microscope, thus confirming that MTBs appear due to Se-deficit, and not coalescence of individual grains during growth. At a very high local Se-deficit, the 2D sheet becomes unstable and transforms to a nanowire. Our results on Se-deficient MoSe2 suggest routes toward engineering the properties of 2D transition metal dichalcogenides by deviations from the stoichiometric composition.

  3. Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model

    PubMed Central

    Balakrishnan, Minimol; Chakravarthy, V. Srinivasa; Guhathakurta, Soma

    2015-01-01

    Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias. PMID:26733873

  4. Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model.

    PubMed

    Balakrishnan, Minimol; Chakravarthy, V Srinivasa; Guhathakurta, Soma

    2015-01-01

    Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias.

  5. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  6. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  7. Residual lens effects in 2D mode of auto-stereoscopic lenticular-based switchable 2D/3D displays

    NASA Astrophysics Data System (ADS)

    Sluijter, M.; IJzerman, W. L.; de Boer, D. K. G.; de Zwart, S. T.

    2006-04-01

    We discuss residual lens effects in multi-view switchable auto-stereoscopic lenticular-based 2D/3D displays. With the introduction of a switchable lenticular, it is possible to switch between a 2D mode and a 3D mode. The 2D mode displays conventional content, whereas the 3D mode provides the sensation of depth to the viewer. The uniformity of a display in the 2D mode is quantified by the quality parameter modulation depth. In order to reduce the modulation depth in the 2D mode, birefringent lens plates are investigated analytically and numerically, by ray tracing. We can conclude that the modulation depth in the 2D mode can be substantially decreased by using birefringent lens plates with a perfect index match between lens material and lens plate. Birefringent lens plates do not disturb the 3D performance of a switchable 2D/3D display.

  8. Differential CYP 2D6 metabolism alters primaquine pharmacokinetics.

    PubMed

    Potter, Brittney M J; Xie, Lisa H; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T; Bandara Herath, H M T; Dhammika Nanayakkara, N P; Tekwani, Babu L; Walker, Larry A; Nolan, Christina K; Sciotti, Richard J; Zottig, Victor E; Smith, Philip L; Paris, Robert M; Read, Lisa T; Li, Qigui; Pybus, Brandon S; Sousa, Jason C; Reichard, Gregory A; Marcsisin, Sean R

    2015-04-01

    Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity.

  9. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  10. Probing interband coulomb interactions in semiconductor nanostructures with 2D double-quantum coherence spectroscopy.

    PubMed

    Velizhanin, Kirill A; Piryatinski, Andrei

    2011-05-12

    Employing the interband exciton scattering model, we have derived a closed set of equations determining the 2D double-quantum coherence signal sensitive to the interband Coulomb interactions (i.e., many-body Coulomb interactions leading to the couplings between exciton and biexciton bands) in semiconductor nanostructures such as nanocrystals, quantum wires, wells, and carbon nanotubes. Our general analysis of 2D double-quantum coherence resonances has demonstrated that the interband Coulomb interactions lead to new cross-peaks whose appearance can be interpreted as a result of exciton and biexciton state mixing. The presence of the strongly coupled resonant states and weakly coupled background of off-resonant states can significantly simplify cross-peak analysis by eliminating the congested background spectrum. Our simulations of the 2D double-quantum coherence signal in PbSe NCs have validated this approach.

  11. Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation

    SciTech Connect

    Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; Puretzky, Alexander A.; McGuire, Michael A.; Srijanto, Bernadeta R.; Xiao, Kai; Eres, Gyula; Duscher, Gerd; Geohegan, David B.

    2014-10-19

    Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substrate by pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.

  12. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  13. A large 2D PSD for thermal neutron detection

    SciTech Connect

    Knott, R.B.; Watt, G.; Boldeman, J.W.; Smith, G.C.

    1996-12-31

    A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 x 640 mm{sup 2}. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimize parallax, the gas mixture was 190 kPa {sup 3}He plus 100 kPa CF{sub 4} and the active volume had a thickness of 30 mm. The design maximum neutron count-rate of the detector was 10{sup 5} events per second. The (calculated) neutron detection efficiency was 60% for 2{angstrom} neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 x 5 mm{sup 2}) was thereby defined by the wire geometry. A 16 channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise linewidth of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display.

  14. A large 2D PSD for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Knott, R. B.; Smith, G. C.; Watt, G.; Boldeman, J. W.

    1997-02-01

    A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 × 640 mm 2. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimise parallax, the gas mixture was 190 kPa 3He plus 100 kPa CF 4, and the active volume had a thickness of 30 mm. The design maximum neutron count rate of the detector was 10 5 events per secod. The (calculated) neutron detection efficiency was 60% for 2 Å neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 × 5 mm 2) was thereby defined by the wire geometry. A 16-channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise line width of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp, USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display.

  15. Synthetic Covalent and Non-Covalent 2D Materials.

    PubMed

    Boott, Charlotte E; Nazemi, Ali; Manners, Ian

    2015-11-16

    The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.

  16. Quasi 2D Materials: Raman Nanometrology and Thermal Management Applications

    NASA Astrophysics Data System (ADS)

    Shahil, Khan Mohammad Farhan

    Quasi two-dimensional (2D) materials obtained by the "graphene-like" exfoliation attracted tremendous attention. Such materials revealed unique electronic, thermal and optical properties, which can be potentially used in electronics, thermal management and energy conversion. This dissertation research addresses two separate but synergetic problems: (i) preparation and optical characterization of quasi-2D films of the bismuth-telluride (Bi 2Te3) family of materials, which demonstrate both thermoelectric and topological insulator properties; and (ii) investigation of thermal properties of composite materials prepared with graphene and few-layer graphene (FLG). The first part of dissertation reports properties of the exfoliated few-quintuple layers of Bi2Te3, Bi2Se3 and Sb 2Te3. Both non-resonant and resonant Raman scattering spectra have been investigated. It was found that the crystal symmetry breaking in few-quintuple films results in appearance of A1u-symmetry Raman peaks, which are not active in the bulk crystals. The scattering spectra measured under the 633-nm wavelength excitation reveals a number of resonant features, which could be used for analysis of the electronic and phonon processes in these materials. The obtained results help to understand the physical mechanisms of Raman scattering in the few-quintuple-thick films and can be used for nanometrology of topological insulator films on various substrates. The second part of the dissertation is dedicated to investigation of properties of composite materials prepared with graphene and FLG. It was found that the optimized mixture of graphene and multilayer graphene---produced by the high-yield inexpensive liquid-phase-exfoliation technique---can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300 % in the graphene-based polymer at the filler loading fraction f =10 vol. %. It was

  17. Application of conformal map theory for design of 2-D ultrasonic array structure for NDT imaging application: a feasibility study.

    PubMed

    Ramadas, Sivaram N; Jackson, Joseph C; Dziewierz, Jerzy; O'Leary, Richard; Gachagan, Anthony

    2014-03-01

    Two-dimensional ultrasonic phased arrays are becoming increasingly popular in nondestructive evaluation (NDE). Sparse array element configurations are required to fully exploit the potential benefits of 2-D phased arrays. This paper applies the conformal mapping technique as a means of designing sparse 2-D array layouts for NDE applications. Modeling using both Huygens' field prediction theory and 2-D fast Fourier transformation is employed to study the resulting new structure. A conformal power map was used that, for fixed beam width, was shown in simulations to have a greater contrast than rectangular or random arrays. A prototype aperiodic 2-D array configuration for direct contact operation in steel, with operational frequency ~3 MHz, was designed using the array design principle described in this paper. Experimental results demonstrate a working sparse-array transducer capable of performing volumetric imaging.

  18. Transport simulations of the C-2 and C-2U Field Reversed Configurations with the Q2D code

    NASA Astrophysics Data System (ADS)

    Onofri, Marco; Dettrick, Sean; Barnes, Daniel; Tajima, Toshiki; TAE Team

    2016-10-01

    The Q2D code is a 2D MHD code, which includes a neutral fluid and separate ion and electron temperatures, coupled with a 3D Monte Carlo code, which is used to calculate source terms due to neutral beams. Q2D has been benchmarked against the 1D transport code Q1D and is used to simulate the evolution of the C-2 and C-2U field reversed configuration experiments [1]. Q2D simulations start from an initial equilibrium and transport coefficients are chosen to match C-2 experimental data. C-2U is an upgrade of C-2, with more beam power and angled beam injection, which demonstrates plasma sustainment for 5 + ms. The simulations use the same transport coefficients for C-2 and C-2U, showing the formation of a steady state in C-2U, sustained by fast ion pressure and current drive.

  19. Chemical Vapor Deposition of Large-Size Monolayer MoSe2 Crystals on Molten Glass.

    PubMed

    Chen, Jianyi; Zhao, Xiaoxu; Tan, Sherman J R; Xu, Hai; Wu, Bo; Liu, Bo; Fu, Deyi; Fu, Wei; Geng, Dechao; Liu, Yanpeng; Liu, Wei; Tang, Wei; Li, Linjun; Zhou, Wu; Sum, Tze Chien; Loh, Kian Ping

    2017-01-25

    We report the fast growth of high-quality millimeter-size monolayer MoSe2 crystals on molten glass using an ambient pressure CVD system. We found that the isotropic surface of molten glass suppresses nucleation events and greatly improves the growth of large crystalline domains. Triangular monolayer MoSe2 crystals with sizes reaching ∼2.5 mm, and with a room-temperature carrier mobility up to ∼95 cm(2)/(V·s), can be synthesized in 5 min. The method can also be used to synthesize millimeter-size monolayer MoS2 crystals. Our results demonstrate that "liquid-state" glass is a highly promising substrate for the low-cost growth of high-quality large-size 2D transition metal dichalcogenides (TMDs).

  20. Circular photogalvanic effect caused by the transitions between edge and 2D states in a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Magarill, L. I.; Entin, M. V.

    2016-12-01

    The electron absorption and the edge photocurrent of a 2D topological insulator are studied for transitions between edge states to 2D states. The circular polarized light is found to produce the edge photocurrent, the direction of which is determined by light polarization and edge orientation. It is shown that the edge-state current is found to exceed the 2D current owing to the topological protection of the edge states.

  1. Fast 2-D ultrasound strain imaging: the benefits of using a GPU.

    PubMed

    Idzenga, Tim; Gaburov, Evghenii; Vermin, Willem; Menssen, Jan; de Korte, Chris

    2014-01-01

    Deformation of tissue can be accurately estimated from radio-frequency ultrasound data using a 2-dimensional normalized cross correlation (NCC)-based algorithm. This procedure, however, is very computationally time-consuming. A major time reduction can be achieved by parallelizing the numerous computations of NCC. In this paper, two approaches for parallelization have been investigated: the OpenMP interface on a multi-CPU system and Compute Unified Device Architecture (CUDA) on a graphics processing unit (GPU). The performance of the OpenMP and GPU approaches were compared with a conventional Matlab implementation of NCC. The OpenMP approach with 8 threads achieved a maximum speed-up factor of 132 on the computing of NCC, whereas the GPU approach on an Nvidia Tesla K20 achieved a maximum speed-up factor of 376. Neither parallelization approach resulted in a significant loss in image quality of the elastograms. Parallelization of the NCC computations using the GPU, therefore, significantly reduces the computation time and increases the frame rate for motion estimation.

  2. Contrast-Based 3D/2D Registration of the Left Atrium: Fast versus Consistent.

    PubMed

    Hoffmann, Matthias; Kowalewski, Christopher; Maier, Andreas; Kurzidim, Klaus; Strobel, Norbert; Hornegger, Joachim

    2016-01-01

    For augmented fluoroscopy during cardiac ablation, a preoperatively acquired 3D model of a patient's left atrium (LA) can be registered to X-ray images recorded during a contrast agent (CA) injection. An automatic registration method that works also for small amounts of CA is desired. We propose two similarity measures: The first focuses on edges of the patient anatomy. The second computes a contrast agent distribution estimate (CADE) inside the 3D model and rates its consistency with the CA as seen in biplane fluoroscopic images. Moreover, temporal filtering on the obtained registration results of a sequence is applied using a Markov chain framework. Evaluation was performed on 11 well-contrasted clinical angiographic sequences and 10 additional sequences with less CA. For well-contrasted sequences, the error for all 73 frames was 7.9 ± 6.3 mm and it dropped to 4.6 ± 4.0 mm when registering to an automatically selected, well enhanced frame in each sequence. Temporal filtering reduced the error for all frames from 7.9 ± 6.3 mm to 5.7 ± 4.6 mm. The error was typically higher if less CA was used. A combination of both similarity measures outperforms a previously proposed similarity measure. The mean accuracy for well contrasted sequences is in the range of other proposed manual registration methods.

  3. Contrast-Based 3D/2D Registration of the Left Atrium: Fast versus Consistent

    PubMed Central

    Kowalewski, Christopher; Kurzidim, Klaus; Strobel, Norbert; Hornegger, Joachim

    2016-01-01

    For augmented fluoroscopy during cardiac ablation, a preoperatively acquired 3D model of a patient's left atrium (LA) can be registered to X-ray images recorded during a contrast agent (CA) injection. An automatic registration method that works also for small amounts of CA is desired. We propose two similarity measures: The first focuses on edges of the patient anatomy. The second computes a contrast agent distribution estimate (CADE) inside the 3D model and rates its consistency with the CA as seen in biplane fluoroscopic images. Moreover, temporal filtering on the obtained registration results of a sequence is applied using a Markov chain framework. Evaluation was performed on 11 well-contrasted clinical angiographic sequences and 10 additional sequences with less CA. For well-contrasted sequences, the error for all 73 frames was 7.9 ± 6.3 mm and it dropped to 4.6 ± 4.0 mm when registering to an automatically selected, well enhanced frame in each sequence. Temporal filtering reduced the error for all frames from 7.9 ± 6.3 mm to 5.7 ± 4.6 mm. The error was typically higher if less CA was used. A combination of both similarity measures outperforms a previously proposed similarity measure. The mean accuracy for well contrasted sequences is in the range of other proposed manual registration methods. PMID:27051412

  4. A program for 2D modeling (cross) correlogram tables using fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Ma, Xianlin; Yao, Tingting

    2001-08-01

    An alternative to the traditional fitting of analytical correlogram models or of a linear model of coregionalization has been recently proposed, whereby the conditions for permissibility of a set of (cross) correlogram tables are imposed on their Fourier transforms, that is on the corresponding set of (cross) spectrum tables. The resulting model is entirely non-parametric and consists of a set of permissible (cross) correlogram tables from which gridded correlogram values can be read directly. This paper gives the suite of GSLIB-type programs to implement this correlogram modeling approach. Presentation of the program is backed by a case study using actual petroleum reservoir data (porosity and seismic reflection energy).

  5. A fast moving object detection method based on 2D laser scanner and infrared camera

    NASA Astrophysics Data System (ADS)

    Zeng, Lina; Ding, Meng; Zhang, Tianci; Sun, Zejun

    2015-10-01

    Moving object detection is a major research direction of video surveillance systems. This paper proposes a novel approach for moving object detection by fusing information from the laser scanner and infrared camera. First, in accordance with the feature of laser scanner data, we apply robust principal component analysis (RPCA) to studying moving object detection. Then the depth and angle information of moving objects is mapped to the infrared image pixels so as to obtain the regions of interest (ROI). Finally, moving objects can be recognized by making investigation of the ROI. Experimental results show that this method has good real-time performance and accuracy.

  6. Multiyear Statistics of 2-D Shortwave Radiative Effects at Three ARM Sites

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas

    2010-01-01

    This study examines the importance of horizontal photon transport effects, which are not considered in the 1-D calculations of solar radiative heating used by most atmospheric dynamical models. In particular, the paper analyzes the difference between 2-D and 1-D radiative calculations for 2-D vertical cross-sections of clouds that were observed at three sites over 2- to 3-year periods. The results show that 2-D effects increase multiyear 24-hour average total solar absorption by about 4.1 W/sq m, 1.2 W/sq m, and 0.3 W/sq m at a tropical, mid-latitude, and arctic site, respectively. However, 2-D effects are often much larger than these average values, especially for high sun and for convective clouds. The results also reveal a somewhat unexpected behavior, that horizontal photon transport often enhances solar heating even for oblique sun. These findings underscore the need for fast radiation calculation methods that can allow atmospheric dynamical simulations to consider the inherently multidimensional nature of shortwave radiative processes.

  7. New applications for the touchscreen in 2D and 3D medical imaging workstations

    NASA Astrophysics Data System (ADS)

    Hinckley, Ken; Goble, John C.; Pausch, Randy; Kassell, Neal F.

    1995-04-01

    We present a new interface technique which augments a 3D user interface based on the physical manipulation of tools, or props, with a touchscreen. This hybrid interface intuitively and seamlessly combines 3D input with more traditional 2D input in the same user interface. Example 2D interface tasks of interest include selecting patient images from a database, browsing through axial, coronal, and sagittal image slices, or adjusting image center and window parameters. Note the facility with which a touchscreen can be used: the surgeon can move in 3D using the props, and then, without having to put the props down, the surgeon can reach out and touch the screen to perform 2D tasks. Based on previous work by Sears, we provide touchscreen users with visual feedback in the form of a small cursor which appears above the finger, allowing targets much smaller than the finger itself to be selected. Based on our informal user observations to date, this touchscreen stabilization algorithm allows targets as small as 1.08 mm X 1.08 mm to be selected by novices, and makes possible selection of targets as small as 0.27 mm X 0.27 mm after some training. Based on implemented prototype systems, we suggest that touchscreens offer not only intuitive 2D input which is well accepted by physicians, but that touchscreens also offer fast and accurate input which blends well with 3D interaction techniques.

  8. 3D surface reconstruction of apples from 2D NIR images

    NASA Astrophysics Data System (ADS)

    Zhu, Bin; Jiang, Lu; Cheng, Xuemei; Tao, Yang

    2005-11-01

    Machine vision methods are widely used in apple defect detection and quality grading applications. Currently, 2D near-infrared (NIR) imaging of apples is often used to detect apple defects because the image intensity of defects is different from normal apple parts. However, a drawback of this method is that the apple calyx also exhibits similar image intensity to the apple defects. Since an apple calyx often appears in the NIR image, the false alarm rate is high with the 2D NIR imaging method. In this paper, a 2D NIR imaging method is extended to a 3D reconstruction so that the apple calyx can be differentiated from apple defects according to their different 3D depth information. The Lambertian model is used to evaluate the reflectance map of the apple surface, and then Pentland's Shape-From-Shading (SFS) method is applied to reconstruct the 3D surface information of the apple based on Fast Fourier Transform (FFT). Pentland's method is directly derived from human perception properties, making it close to the way human eyes recover 3D information from a 2D scene. In addition, the FFT reduces the computation time significantly. The reconstructed 3D apple surface maps are shown in the results, and different depths of apple calyx and defects are obtained correctly.

  9. A simple 2-D inundation model for incorporating flood damage in urban drainage planning

    NASA Astrophysics Data System (ADS)

    Pathirana, A.; Tsegaye, S.; Gersonius, B.; Vairavamoorthy, K.

    2011-08-01

    An urban inundation model was developed and coupled with 1-D drainage network model (EPA-SWMM5). The objective was to achieve a 1-D/2-D coupled model that is simple and fast enough to be consistently used in planning stages of urban drainage projects. The 2-D inundation model is based on a non-standard simplification of the shallow water equation, lays between diffusion-wave and full dynamic models. Simplifications were made in the process representation and numerical solving mechanisms and a depth scaled Manning coefficient was introduced to achieve stability in the cell wetting-drying process. The 2-D model is coupled with SWMM for simulation of both network flow and surcharge induced inundation. The coupling is archived by mass transfer from the network system to the 2-D system. A damage calculation block is integrated within the model code for assessing flood damage costs in optimal planning of urban drainage networks. The model is stable in dealing with complex flow conditions, and cell wetting/drying processes, as demonstrated by a number of idealised experiments. The model application is demonstrated by applying to a case study in Brazil.

  10. Energy Efficiency of D2D Multi-User Cooperation.

    PubMed

    Zhang, Zufan; Wang, Lu; Zhang, Jie

    2017-03-28

    The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency.

  11. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  12. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

  13. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  14. 2D Crystal heterostructures properties and growth by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xing, Grace Huili

    Two-dimensional (2D) crystals such as transition metal dichalcogenides (TMDs) along with other families of layered materials including graphene, SnSe2, GaSe, BN etc, has attracted intense attention from the scientific community. One monolayer of such materials represent the thinnest ``quantum wells''. These layered materials typically possess an in-plane hexagonal crystal structure, and can be stacked together by interlayer van der Waals interactions. Therefore, it is possible to create novel heterostructures by stacking materials with large lattice mismatches and different properties, for instance, superconductors (NbSe2) , metals, semi-metals (graphene), semiconductors (MoS2) and insulators (BN). Numerous novel material properties and device concepts have been discovered, proposed and demonstrated lately. However, the low internal photoluminescence efficiency (IPE, <1%) and low carrier mobility observed in the 2D semiconductors suggest strongly that the materials under investigation today most likely suffer from a high concentration of defects. In this talk, I will share our progress and the challenges we face in terms of preparing, characterizing these 2D crystals as well as pursuing their applications. This work has been supported in part by NSF, AFOSR and LEAST, one of the STARnet centers.

  15. Fast Reactors

    NASA Astrophysics Data System (ADS)

    Esposito, S.; Pisanti, O.

    The following sections are included: * Elementary Considerations * The Integral Equation to the Neutron Distribution * The Critical Size for a Fast Reactor * Supercritical Reactors * Problems and Exercises

  16. Regulation of ligands for the NKG2D activating receptor

    PubMed Central

    Raulet, David H.; Gasser, Stephan; Gowen, Benjamin G.; Deng, Weiwen; Jung, Heiyoun

    2014-01-01

    NKG2D is an activating receptor expressed by all NK cells and subsets of T cells. It serves as a major recognition receptor for detection and elimination of transformed and infected cells and participates in the genesis of several inflammatory diseases. The ligands for NKG2D are self-proteins that are induced by pathways that are active in certain pathophysiological states. NKG2D ligands are regulated transcriptionally, at the level of mRNA and protein stability, and by cleavage from the cell surface. In some cases, ligand induction can be attributed to pathways that are activated specifically in cancer cells or infected cells. We review the numerous pathways that have been implicated in the regulation of NKG2D ligands, discuss the pathologic states in which those pathways are likely to act, and attempt to synthesize the findings into general schemes of NKG2D ligand regulation in NK cell responses to cancer and infection. PMID:23298206

  17. New generation transistor technologies enabled by 2D crystals

    NASA Astrophysics Data System (ADS)

    Jena, D.

    2013-05-01

    The discovery of graphene opened the door to 2D crystal materials. The lack of a bandgap in 2D graphene makes it unsuitable for electronic switching transistors in the conventional field-effect sense, though possible techniques exploiting the unique bandstructure and nanostructures are being explored. The transition metal dichalcogenides have 2D crystal semiconductors, which are well-suited for electronic switching. We experimentally demonstrate field effect transistors with current saturation and carrier inversion made from layered 2D crystal semiconductors such as MoS2, WS2, and the related family. We also evaluate the feasibility of such semiconducting 2D crystals for tunneling field effect transistors for low-power digital logic. The article summarizes the current state of new generation transistor technologies either proposed, or demonstrated, with a commentary on the challenges and prospects moving forward.

  18. Colloidal 2D-0D Lateral Nanoheterostructures: A Case Study of Site-Selective Growth of CdS Nanodots onto Bi₂Se₃ Nanosheets.

    PubMed

    Xu, Biao; Li, Haoyi; Yang, Hao; Xiang, Wentian; Zhou, Gang; Wu, Yue; Wang, Xun

    2015-06-10

    Two-dimensional (2D) nanoheterostructure (2D NHS) with nanoparticles grown on 2D nanomaterial substrates could potentially enable many novel functionalities. Controlled site-selective growth of nanoparticles on either the lateral or the basal directions of 2D nanomaterial substrates is desirable but extremely challenging. Herein, we demonstrate the rational control of lateral- and basal-selective attachment of CdS nanoparticles onto 2D Bi2Se3 nanosheets through solution phase reactions. The combination of experimental and theoretical efforts elucidate that site-relevant interfacial bonding and kinetic control of molecular precursors play vital roles for site selectivity. Furthermore, the electronic structures revealed from density functional theory calculations explain the superior performance of the lateral 2D NHSs compared to their basal counterpart in prototype photoelectrochemical cells. The present study will inspire the construction of other site-selective 2D NHSs with well-defined structure and unique properties.

  19. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice.

    PubMed

    Pan, Xian; Jeong, Hyunyoung

    2015-07-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼ 50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter.

  20. Automatic computation of 2D cardiac measurements from B-mode echocardiography

    NASA Astrophysics Data System (ADS)

    Park, JinHyeong; Feng, Shaolei; Zhou, S. Kevin

    2012-03-01

    We propose a robust and fully automatic algorithm which computes the 2D echocardiography measurements recommended by America Society of Echocardiography. The algorithm employs knowledge-based imaging technologies which can learn the expert's knowledge from the training images and expert's annotation. Based on the models constructed from the learning stage, the algorithm searches initial location of the landmark points for the measurements by utilizing heart structure of left ventricle including mitral valve aortic valve. It employs the pseudo anatomic M-mode image generated by accumulating the line images in 2D parasternal long axis view along the time to refine the measurement landmark points. The experiment results with large volume of data show that the algorithm runs fast and is robust comparable to expert.

  1. High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display.

    PubMed

    Chang, Yu-Cheng; Jen, Tai-Hsiang; Ting, Chih-Hung; Huang, Yi-Pai

    2014-02-10

    A 2D/3D switchable and rotatable autostereoscopic display using a high-resistance liquid-crystal (Hi-R LC) lens array is investigated in this paper. Using high-resistance layers in an LC cell, a gradient electric-field distribution can be formed, which can provide a better lens-like shape of the refractive-index distribution. The advantages of the Hi-R LC lens array are its 2D/3D switchability, rotatability (in the horizontal and vertical directions), low driving voltage (~2 volts) and fast response (~0.6 second). In addition, the Hi-R LC lens array requires only a very simple fabrication process.

  2. Cadmium selenide quantum wires and the transition from 3D to 2D confinement.

    PubMed

    Yu, Heng; Li, Jingbo; Loomis, Richard A; Gibbons, Patrick C; Wang, Lin-Wang; Buhro, William E

    2003-12-31

    Soluble CdSe quantum wires are prepared by the solution-liquid-solid mechanism, using monodisperse bismith nanoparticles to catalyze wire growth. The quantum wires have micrometer lengths, diameters in the range of 5-20 nm, and diameter distributions of +/-10-20%. Spectroscopically determined wire band gaps compare closely to those calculated by the semiemipirical pseudopotential method, confirming 2D quantum confinement. The diameter dependence of the quantum wire band gaps is compared to that of CdSe quantum dots and rods. Quantum rod band gaps are shown to be delimited by the band gaps of dots and wires of like diameter, for short and long rods, respectively. The experimental data suggest that a length of ca. 30 nm is required for the third dimension of quantum confinement to fully vanish in CdSe rods. That length is about six times the bulk CdSe exciton Bohr radius.

  3. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-04

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  4. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  5. 2D vs. 3D mammography observer study

    NASA Astrophysics Data System (ADS)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  6. Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging.

    PubMed

    Wei, Hongjiang; Zhang, Yuyao; Gibbs, Eric; Chen, Nan-Kuei; Wang, Nian; Liu, Chunlei

    2017-04-01

    Quantitative susceptibility mapping (QSM) measures tissue magnetic susceptibility and typically relies on time-consuming three-dimensional (3D) gradient-echo (GRE) MRI. Recent studies have shown that two-dimensional (2D) multi-slice gradient-echo echo-planar imaging (GRE-EPI), which is commonly used in functional MRI (fMRI) and other dynamic imaging techniques, can also be used to produce data suitable for QSM with much shorter scan times. However, the production of high-quality QSM maps is difficult because data obtained by 2D multi-slice scans often have phase inconsistencies across adjacent slices and strong susceptibility field gradients near air-tissue interfaces. To address these challenges in 2D EPI-based QSM studies, we present a new data processing procedure that integrates 2D and 3D phase processing. First, 2D Laplacian-based phase unwrapping and 2D background phase removal are performed to reduce phase inconsistencies between slices and remove in-plane harmonic components of the background phase. This is followed by 3D background phase removal for the through-plane harmonic components. The proposed phase processing was evaluated with 2D EPI data obtained from healthy volunteers, and compared against conventional 3D phase processing using the same 2D EPI datasets. Our QSM results were also compared with QSM values from time-consuming 3D GRE data, which were taken as ground truth. The experimental results show that this new 2D EPI-based QSM technique can produce quantitative susceptibility measures that are comparable with those of 3D GRE-based QSM across different brain regions (e.g. subcortical iron-rich gray matter, cortical gray and white matter). This new 2D EPI QSM reconstruction method is implemented within STI Suite, which is a comprehensive shareware for susceptibility imaging and quantification. Copyright © 2016 John Wiley & Sons, Ltd.

  7. NKG2D receptor and its ligands in host defense

    PubMed Central

    Lanier, Lewis L.

    2015-01-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808

  8. NKG2D Receptor and Its Ligands in Host Defense.

    PubMed

    Lanier, Lewis L

    2015-06-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8(+) T cells, and subsets of CD4(+) T cells, invariant NKT cells (iNKT), and γδ T cells. In humans, NKG2D transmits signals by its association with the DAP10 adapter subunit, and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least eight genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and posttranslation. In general, healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyperproliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves as a mechanism for the immune system to detect and eliminate cells that have undergone "stress." Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system, and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases.

  9. 2-D Versus 3-D Magnetotelluric Data Interpretation

    NASA Astrophysics Data System (ADS)

    Ledo, Juanjo

    2005-09-01

    In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.

  10. On the uniqueness of quantitative DNA difference descriptors in 2D graphical representation models

    NASA Astrophysics Data System (ADS)

    Nandy, A.; Nandy, P.

    2003-01-01

    The rapid growth in additions to databases of DNA primary sequence data have led to searches for methods to numerically characterize these data and help in fast identification and retrieval of relevant sequences. The DNA descriptors derived from the 2D graphical representation technique have already been proposed to index chemical toxicity and single nucleotide polymorphic (SNP) genes but the inherent degeneracies in this representation have given rise to doubts about their suitability. We prove in this paper that such degeneracies will exist only in very restricted cases and that the method can be relied upon to provide unique descriptors for, in particular, the SNP genes and several other classes of DNA sequences.

  11. Recent advances in 2D materials for photocatalysis.

    PubMed

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-04-07

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  12. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  13. Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids

    PubMed Central

    Yang, Min-Quan; Xu, Yi-Jun; Lu, Wanheng; Zeng, Kaiyang; Zhu, Hai; Xu, Qing-Hua; Ho, Ghim Wei

    2017-01-01

    At present, the technological groundwork of atomically thin two-dimensional (2D) hetero-layered structures realized by successive thin film epitaxial growth is in principle constrained by lattice matching prerequisite as well as low yield and expensive production. Here, we artificially coordinate ultrathin 2D hetero-layered metal chalcogenides via a highly scalable self-surface charge exfoliation and electrostatic coupling approach. Specifically, bulk metal chalcogenides are spontaneously exfoliated into ultrathin layers in a surfactant/intercalator-free medium, followed by unconstrained electrostatic coupling with a dissimilar transition metal dichalcogenide, MoSe2, into scalable hetero-layered hybrids. Accordingly, surface and interfacial-dominated photocatalysis reactivity is used as an ideal testbed to verify the reliability of diverse 2D ultrathin hetero-layered materials that reveal high visible-light photoreactivity, efficient charge transfer and intimate contact interface for stable cycling and storage purposes. Such a synthetic approach renders independent thickness and composition control anticipated to advance the development of ‘design-and-build' 2D layered heterojunctions for large-scale exploration and applications. PMID:28146147

  14. Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids

    NASA Astrophysics Data System (ADS)

    Yang, Min-Quan; Xu, Yi-Jun; Lu, Wanheng; Zeng, Kaiyang; Zhu, Hai; Xu, Qing-Hua; Ho, Ghim Wei

    2017-02-01

    At present, the technological groundwork of atomically thin two-dimensional (2D) hetero-layered structures realized by successive thin film epitaxial growth is in principle constrained by lattice matching prerequisite as well as low yield and expensive production. Here, we artificially coordinate ultrathin 2D hetero-layered metal chalcogenides via a highly scalable self-surface charge exfoliation and electrostatic coupling approach. Specifically, bulk metal chalcogenides are spontaneously exfoliated into ultrathin layers in a surfactant/intercalator-free medium, followed by unconstrained electrostatic coupling with a dissimilar transition metal dichalcogenide, MoSe2, into scalable hetero-layered hybrids. Accordingly, surface and interfacial-dominated photocatalysis reactivity is used as an ideal testbed to verify the reliability of diverse 2D ultrathin hetero-layered materials that reveal high visible-light photoreactivity, efficient charge transfer and intimate contact interface for stable cycling and storage purposes. Such a synthetic approach renders independent thickness and composition control anticipated to advance the development of `design-and-build' 2D layered heterojunctions for large-scale exploration and applications.

  15. Multiple Frequency Contrast Source Inversion Method for Vertical Electromagnetic Profiling: 2D Simulation Results and Analyses

    NASA Astrophysics Data System (ADS)

    Li, Jinghe; Song, Linping; Liu, Qing Huo

    2016-02-01

    A simultaneous multiple frequency contrast source inversion (CSI) method is applied to reconstructing hydrocarbon reservoir targets in a complex multilayered medium in two dimensions. It simulates the effects of a salt dome sedimentary formation in the context of reservoir monitoring. In this method, the stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) algorithm is applied as a fast solver for the 2D volume integral equation for the forward computation. The inversion technique with CSI combines the efficient FFT algorithm to speed up the matrix-vector multiplication and the stable convergence of the simultaneous multiple frequency CSI in the iteration process. As a result, this method is capable of making quantitative conductivity image reconstruction effectively for large-scale electromagnetic oil exploration problems, including the vertical electromagnetic profiling (VEP) survey investigated here. A number of numerical examples have been demonstrated to validate the effectiveness and capacity of the simultaneous multiple frequency CSI method for a limited array view in VEP.

  16. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  17. Recovering 3D particle size distributions from 2D sections

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; Olson, Daniel M.

    2017-03-01

    We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible, and practical method to do this; show which of these techniques gives the most faithful conversions; and provide (online) short computer codes to calculate both 2D-3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100-300 individual measurements of apparent particle diameter.

  18. Phonon thermal conduction in novel 2D materials

    NASA Astrophysics Data System (ADS)

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-01

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.

  19. Recent developments in 2D layered inorganic nanomaterials for sensing

    NASA Astrophysics Data System (ADS)

    Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-01

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.

  20. Phonon thermal conduction in novel 2D materials.

    PubMed

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-07

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.

  1. Exact Solution of Ising Model in 2d Shortcut Network

    NASA Astrophysics Data System (ADS)

    Shanker, O.

    We give the exact solution to the Ising model in the shortcut network in the 2D limit. The solution is found by mapping the model to the square lattice model with Brascamp and Kunz boundary conditions.

  2. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  3. Reconstruction-based 3D/2D image registration.

    PubMed

    Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

    2005-01-01

    In this paper we present a novel 3D/2D registration method, where first, a 3D image is reconstructed from a few 2D X-ray images and next, the preoperative 3D image is brought into the best possible spatial correspondence with the reconstructed image by optimizing a similarity measure. Because the quality of the reconstructed image is generally low, we introduce a novel asymmetric mutual information similarity measure, which is able to cope with low image quality as well as with different imaging modalities. The novel 3D/2D registration method has been evaluated using standardized evaluation methodology and publicly available 3D CT, 3DRX, and MR and 2D X-ray images of two spine phantoms, for which gold standard registrations were known. In terms of robustness, reliability and capture range the proposed method outperformed the gradient-based method and the method based on digitally reconstructed radiographs (DRRs).

  4. Dominant 2D magnetic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1995-01-01

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.

  5. Studying Zeolite Catalysts with a 2D Model System

    SciTech Connect

    Boscoboinik, Anibal

    2016-12-07

    Anibal Boscoboinik, a materials scientist at Brookhaven’s Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.

  6. ORION96. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L.A.; Hallquist, J.O.

    1992-02-02

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  7. Emerging and potential opportunities for 2D flexible nanoelectronics

    NASA Astrophysics Data System (ADS)

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  8. Clinical Assessment of 2D/3D Registration Accuracy in 4 Major Anatomic Sites Using On-Board 2D Kilovoltage Images for 6D Patient Setup.

    PubMed

    Li, Guang; Yang, T Jonathan; Furtado, Hugo; Birkfellner, Wolfgang; Ballangrud, Åse; Powell, Simon N; Mechalakos, James

    2015-06-01

    To provide a comprehensive assessment of patient setup accuracy in 6 degrees of freedom (DOFs) using 2-dimensional/3-dimensional (2D/3D) image registration with on-board 2-dimensional kilovoltage (OB-2 DkV) radiographic images, we evaluated cranial, head and neck (HN), and thoracic and abdominal sites under clinical conditions. A fast 2D/3D image registration method using graphics processing unit GPU was modified for registration between OB-2 DkV and 3D simulation computed tomography (simCT) images, with 3D/3D registration as the gold standard for 6 DOF alignment. In 2D/3D registration, body roll rotation was obtained solely by matching orthogonal OB-2 DkV images with a series of digitally reconstructed radiographs (DRRs) from simCT with a small rotational increment along the gantry rotation axis. The window/level adjustments for optimal visualization of the bone in OB-2 DkV and DRRs were performed prior to registration. Ideal patient alignment at the isocenter was calculated and used as an initial registration position. In 3D/3D registration, cone-beam CT (CBCT) was aligned to simCT on bony structures using a bone density filter in 6DOF. Included in this retrospective study were 37 patients treated in 55 fractions with frameless stereotactic radiosurgery or stereotactic body radiotherapy for cranial and paraspinal cancer. A cranial phantom was used to serve as a control. In all cases, CBCT images were acquired for patient setup with subsequent OB-2 DkV verification. It was found that the accuracy of the 2D/3D registration was 0.0 ± 0.5 mm and 0.1° ± 0.4° in phantom. In patient, it is site dependent due to deformation of the anatomy: 0.2 ± 1.6 mm and -0.4° ± 1.2° on average for each dimension for the cranial site, 0.7 ± 1.6 mm and 0.3° ± 1.3° for HN, 0.7 ± 2.0 mm and -0.7° ± 1.1° for the thorax, and 1.1 ± 2.6 mm and -0.5° ± 1.9° for the abdomen. Anatomical deformation and presence of soft tissue in 2D/3D registration affect the consistency with

  9. Clinical Assessment of 2D/3D Registration Accuracy in 4 Major Anatomic Sites Using On-Board 2D Kilovoltage Images for 6D Patient Setup

    PubMed Central

    Li, Guang; Yang, T. Jonathan; Furtado, Hugo; Birkfellner, Wolfgang; Ballangrud, Åse; Powell, Simon N.; Mechalakos, James

    2015-01-01

    To provide a comprehensive assessment of patient setup accuracy in 6 degrees of freedom (DOFs) using 2-dimensional/3-dimensional (2D/3D) image registration with on-board 2-dimensional kilovoltage (OB-2DkV) radiographic images, we evaluated cranial, head and neck (HN), and thoracic and abdominal sites under clinical conditions. A fast 2D/3D image registration method using graphics processing unit GPU was modified for registration between OB-2DkV and 3D simulation computed tomography (simCT) images, with 3D/3D registration as the gold standard for 6DOF alignment. In 2D/3D registration, body roll rotation was obtained solely by matching orthogonal OB-2DkV images with a series of digitally reconstructed radiographs (DRRs) from simCT with a small rotational increment along the gantry rotation axis. The window/level adjustments for optimal visualization of the bone in OB-2DkV and DRRs were performed prior to registration. Ideal patient alignment at the isocenter was calculated and used as an initial registration position. In 3D/3D registration, cone-beam CT (CBCT) was aligned to simCT on bony structures using a bone density filter in 6DOF. Included in this retrospective study were 37 patients treated in 55 fractions with frameless stereotactic radiosurgery or stereotactic body radiotherapy for cranial and paraspinal cancer. A cranial phantom was used to serve as a control. In all cases, CBCT images were acquired for patient setup with subsequent OB-2DkV verification. It was found that the accuracy of the 2D/3D registration was 0.0 ± 0.5 mm and 0.1° ± 0.4° in phantom. In patient, it is site dependent due to deformation of the anatomy: 0.2 ± 1.6 mm and −0.4° ± 1.2° on average for each dimension for the cranial site, 0.7 ± 1.6 mm and 0.3° ± 1.3° for HN, 0.7 ± 2.0 mm and −0.7° ± 1.1° for the thorax, and 1.1 ± 2.6 mm and −0.5° ± 1.9° for the abdomen. Anatomical deformation and presence of soft tissue in 2D/3D registration affect the consistency with

  10. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics.

    PubMed

    Nemilentsau, Andrei; Low, Tony; Hanson, George

    2016-02-12

    Motivated by the recent emergence of a new class of anisotropic 2D materials, we examine their electromagnetic modes and demonstrate that a broad class of the materials can host highly directional hyperbolic plasmons. Their propagation direction can be manipulated on the spot by gate doping, enabling hyperbolic beam reflection, refraction, and bending. The realization of these natural 2D hyperbolic media opens up a new avenue in dynamic control of hyperbolic plasmons not possible in the 3D version.

  11. Supported and Free-Standing 2D Semimetals

    DTIC Science & Technology

    2015-01-15

    of this effort on focusing on rare- earth arsenides (RE-A), although not a van der Waals 2D solid, nonetheless, exhibits substantial 2D quantum size...this effort on focusing on rare- earth arsenides (RE- A), although not a van der Waals 20 solid, nonetheless, exhibits substantial 20 quantum size...Brongersma and S.R. Bank, "Rare- earth monopnictide alloys for tunable, epitaxial metals" in preparation. iii. S. Rahimi, E. M. Krivoy, J. Lee, M. E

  12. Application of 2-D graphical representation of DNA sequence

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Tan, Mingshu; Ding, Kequan

    2005-10-01

    Recently, we proposed a 2-D graphical representation of DNA sequence [Bo Liao, A 2-D graphical representation of DNA sequence, Chem. Phys. Lett. 401 (2005) 196-199]. Based on this representation, we consider properties of mutations and compute the similarities among 11 mitochondrial sequences belonging to different species. The elements of the similarity matrix are used to construct phylogenic tree. Unlike most existing phylogeny construction methods, the proposed method does not require multiple alignment.

  13. phase_space_cosmo_fisher: Fisher matrix 2D contours

    NASA Astrophysics Data System (ADS)

    Stark, Alejo

    2016-11-01

    phase_space_cosmo_fisher produces Fisher matrix 2D contours from which the constraints on cosmological parameters can be derived. Given a specified redshift array and cosmological case, 2D marginalized contours of cosmological parameters are generated; the code can also plot the derivatives used in the Fisher matrix. In addition, this package can generate 3D plots of qH^2 and other cosmological quantities as a function of redshift and cosmology.

  14. A simultaneous 2D/3D autostereo workstation

    NASA Astrophysics Data System (ADS)

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  15. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  16. Regulation of NKG2D ligand gene expression.

    PubMed

    Eagle, Robert A; Traherne, James A; Ashiru, Omodele; Wills, Mark R; Trowsdale, John

    2006-03-01

    The activating immunoreceptor NKG2D has seven known host ligands encoded by the MHC class I chain-related MIC and ULBP/RAET genes. Why there is such diversity of NKG2D ligands is not known but one hypothesis is that they are differentially expressed in different tissues in response to different stresses. To explore this, we compared expression patterns and promoters of NKG2D ligand genes. ULBP/RAET genes were transcribed independent of each other in a panel of cell lines. ULBP/RAET gene expression was upregulated on infection with human cytomegalovirus; however, a clinical strain, Toledo, induced expression more slowly than did a laboratory strain, AD169. ULBP4/RAET1E was not induced by infection with either strain. To investigate the mechanisms behind the similarities and differences in NKG2D ligand gene expression a comparative sequence analysis of NKG2D ligand gene putative promoter regions was conducted. Sequence alignments demonstrated that there was significant sequence diversity; however, one region of high similarity between most of the genes is evident. This region contains a number of potential transcription factor binding sites, including those involved in shock responses and sites for retinoic acid-induced factors. Promoters of some NKG2D ligand genes are polymorphic and several sequence alterations in these alleles abolished putative transcription factor binding.

  17. CYP2D6 variability in populations from Venezuela.

    PubMed

    Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin

    2016-12-01

    CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.

  18. 2D microscopic model of graphene fracture properties

    NASA Astrophysics Data System (ADS)

    Hess, Peter

    2015-05-01

    An analytical two-dimensional (2D) microscopic fracture model based on Morse-type interaction is derived containing no adjustable parameter. From the 2D Young’s moduli and 2D intrinsic strengths of graphene measured by nanoindentation based on biaxial tension and calculated by density functional theory for uniaxial tension the widely unknown breaking force, line or edge energy, surface energy, fracture toughness, and strain energy release rate were determined. The simulated line energy agrees well with ab initio calculations and the fracture toughness of perfect graphene sheets is in good agreement with molecular dynamics simulations and the fracture toughness evaluated for defective graphene using the Griffith relation. Similarly, the estimated critical strain energy release rate agrees well with result of various theoretical approaches based on the J-integral and surface energy. The 2D microscopic model, connecting 2D and three-dimensional mechanical properties in a consistent way, provides a versatile relationship to easily access all relevant fracture properties of pristine 2D solids.

  19. 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications

    NASA Astrophysics Data System (ADS)

    Lin, Zhong; McCreary, Amber; Briggs, Natalie; Subramanian, Shruti; Zhang, Kehao; Sun, Yifan; Li, Xufan; Borys, Nicholas J.; Yuan, Hongtao; Fullerton-Shirey, Susan K.; Chernikov, Alexey; Zhao, Hui; McDonnell, Stephen; Lindenberg, Aaron M.; Xiao, Kai; LeRoy, Brian J.; Drndić, Marija; Hwang, James C. M.; Park, Jiwoong; Chhowalla, Manish; Schaak, Raymond E.; Javey, Ali; Hersam, Mark C.; Robinson, Joshua; Terrones, Mauricio

    2016-12-01

    The rise of two-dimensional (2D) materials research took place following the isolation of graphene in 2004. These new 2D materials include transition metal dichalcogenides, mono-elemental 2D sheets, and several carbide- and nitride-based materials. The number of publications related to these emerging materials has been drastically increasing over the last five years. Thus, through this comprehensive review, we aim to discuss the most recent groundbreaking discoveries as well as emerging opportunities and remaining challenges. This review starts out by delving into the improved methods of producing these new 2D materials via controlled exfoliation, metal organic chemical vapor deposition, and wet chemical means. We look into recent studies of doping as well as the optical properties of 2D materials and their heterostructures. Recent advances towards applications of these materials in 2D electronics are also reviewed, and include the tunnel MOSFET and ways to reduce the contact resistance for fabricating high-quality devices. Finally, several unique and innovative applications recently explored are discussed as well as perspectives of this exciting and fast moving field.

  20. Effect of Feeding-Fasting Cycles on Oxygen Consumption and Bioenergetics of Yellow Perch

    USGS Publications Warehouse

    Chipps, Steven R.; Travis W. Schaeffer,; Daniel E. Spengler,; Casey W. Schoenebeck,; Michael L. Brown,

    2012-01-01

    We measured growth and oxygen consumption of age-1 yellow perch Perca flavescenssubjected to ad libitum (control) or variable feeding cycles of 2 (i.e., 2 d of feed, 2 d of deprivation), 6, or 12 d for a 72-d period. Individual, female yellow perch (initial weight = 51.9 ± 0.9 g [mean ± SE]) were stocked in 110-L aquaria to provide six replicates per treatment and fed measured rations of live fathead minnow Pimephales promelas. Consumption, absolute growth rate, growth efficiency, and oxygen consumption were similar among feeding regimens. However, growth trajectories for fish on the 2-d cycle were significantly lower than other feed–fast cycles. Hyperphagia occurred in all treatments. Bioenergetics model simulations indicated that consumption was significantly underestimated (t = 5.4, df = 4, P = 0.006), while growth was overestimated (t = −5.5, df = 4, P = 0.005) for fish on the 12-d cycle. However, model errors detected between observed and predicted values were low, ranging from −10.1% to +7.8%. We found that juvenile yellow perch exhibited compensatory growth (CG), but none of the feed–fast treatments resulted in growth overcompensation. Likewise, we found no evidence that respiration rates varied with CG, implying that yellow perch bioenergetics models could be used to predict the effects of feeding history and CG response on food consumption and fish growth.

  1. Fast CRCs

    DTIC Science & Technology

    2009-10-01

    Detecting Codes: General Theory and Their Application in Feedback Communication Systems. Kluwer Academic, 1995. [8] D.E. Knuth , The Art of Computer ... computation . Index Terms—Fast CRC, low-complexity CRC, checksum, error-detection code, Hamming code, period of polynomial, fast software implementation...simulations, and performance analysis of systems and networks. CRC implementation in software is desirable, because many computers do not have hardware

  2. Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation

    DOE PAGES

    Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; ...

    2014-10-19

    Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substrate bymore » pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.« less

  3. 2D Hexagonal Boron Nitride (2D-hBN) Explored for the Electrochemical Sensing of Dopamine.

    PubMed

    Khan, Aamar F; Brownson, Dale A C; Randviir, Edward P; Smith, Graham C; Banks, Craig E

    2016-10-04

    Crystalline 2D hexagonal boron nitride (2D-hBN) nanosheets are explored as a potential electrocatalyst toward the electroanalytical sensing of dopamine (DA). The 2D-hBN nanosheets are electrically wired via a drop-casting modification process onto a range of commercially available carbon supporting electrodes, including glassy carbon (GC), boron-doped diamond (BDD), and screen-printed graphitic electrodes (SPEs). 2D-hBN has not previously been explored toward the electrochemical detection/electrochemical sensing of DA. We critically evaluate the potential electrocatalytic performance of 2D-hBN modified electrodes, the effect of supporting carbon electrode platforms, and the effect of "mass coverage" (which is commonly neglected in the 2D material literature) toward the detection of DA. The response of 2D-hBN modified electrodes is found to be largely dependent upon the interaction between 2D-hBN and the underlying supporting electrode material. For example, in the case of SPEs, modification with 2D-hBN (324 ng) improves the electrochemical response, decreasing the electrochemical oxidation potential of DA by ∼90 mV compared to an unmodified SPE. Conversely, modification of a GC electrode with 2D-hBN (324 ng) resulted in an increased oxidation potential of DA by ∼80 mV when compared to the unmodified electrode. We explore the underlying mechanisms of the aforementioned examples and infer that electrode surface interactions and roughness factors are critical considerations. 2D-hBN is utilized toward the sensing of DA in the presence of the common interferents ascorbic acid (AA) and uric acid (UA). 2D-hBN is found to be an effective electrocatalyst in the simultaneous detection of DA and UA at both pH 5.0 and 7.4. The peak separations/resolution between DA and UA increases by ∼70 and 50 mV (at pH 5.0 and 7.4, respectively, when utilizing 108 ng of 2D-hBN) compared to unmodified SPEs, with a particularly favorable response evident in pH 5.0, giving rise to a

  4. Effect of cyp2d6*10 allele on the pharmacokinetics of loratadine in chinese subjects.

    PubMed

    Yin, Ophelia Q P; Shi, X J; Tomlinson, B; Chow, Moses S S

    2005-09-01

    Loratadine is known to be a substrate for both CYP3A4 and CYP2D6 based on a previous in vitro study. In view of the large interindividual variability in loratadine pharmacokinetics and the greater genetically determined variability of CYP2D6 activity than of CYP3A4 in vivo, we hypothesized that CYP2D6 polymorphisms may contribute to the pharmacokinetic variability of loratadine. The purpose of this study was to evaluate the effect of CYP2D6 genotype (specifically the CYP2D6*10 allele) on the pharmacokinetics of loratadine in Chinese subjects. Three groups of healthy male Chinese subjects were enrolled: group I, homozygous CYP2D6*1 (*1/*1, n=4); group II, heterozygous CYP2D6*10 (*1/*10 or *2/*10, n=6); and group III, homozygous CYP2D6*10 (*10/*10, n=7) carriers. Each subject received a single oral dose of 20 mg of loratadine under fasting conditions. Multiple blood samples were collected over 48 h, and the plasma concentrations of loratadine and its metabolite desloratadine were determined by high-performance liquid chromatography. In comparing homozygous CYP2D6*10 (group III) to heterozygous CYP2D6*10 (group II) to homozygous CYP2D6*1 (group I) subjects, loratadine oral clearance values were 7.17+/- 2.54 versus 11.06+/-1.70 versus 14.59+/-2.43 l/h/kg, respectively [one-way analysis of variance (ANOVA), p<0.01], and the corresponding metabolic ratios [area under the plasma concentration-time curve (AUC)(desloratadine)/AUC(loratadine)] were 1.55+/-0.73 versus 2.47+/- 0.46 versus 3.32+/- 0.49, respectively (one-way ANOVA, p<0.05), indicating a gene-dose effect. The results demonstrated that CYP2D6 polymorphism prevalent in the Chinese population significantly affected loratadine pharmacokinetics.

  5. Engineering the Charge Transfer in all 2D Graphene-Nanoplatelets Heterostructure Photodetectors

    PubMed Central

    Robin, A.; Lhuillier, E.; Xu, X. Z.; Ithurria, S.; Aubin, H.; Ouerghi, A.; Dubertret, B.

    2016-01-01

    Two dimensional layered (i.e. van der Waals) heterostructures open up great prospects, especially in photodetector applications. In this context, the control of the charge transfer between the constituting layers is of crucial importance. Compared to bulk or 0D system, 2D materials are characterized by a large exciton binding energy (0.1–1 eV) which considerably affects the magnitude of the charge transfer. Here we investigate a model system made from colloidal 2D CdSe nanoplatelets and epitaxial graphene in a phototransistor configuration. We demonstrate that using a heterostructured layered material, we can tune the magnitude and the direction (i.e. electron or hole) of the charge transfer. We further evidence that graphene functionalization by nanocrystals only leads to a limited change in the magnitude of the 1/f noise. These results draw some new directions to design van der Waals heterostructures with enhanced optoelectronic properties. PMID:27143413

  6. Engineering the Charge Transfer in all 2D Graphene-Nanoplatelets Heterostructure Photodetectors

    NASA Astrophysics Data System (ADS)

    Robin, A.; Lhuillier, E.; Xu, X. Z.; Ithurria, S.; Aubin, H.; Ouerghi, A.; Dubertret, B.

    2016-05-01

    Two dimensional layered (i.e. van der Waals) heterostructures open up great prospects, especially in photodetector applications. In this context, the control of the charge transfer between the constituting layers is of crucial importance. Compared to bulk or 0D system, 2D materials are characterized by a large exciton binding energy (0.1–1 eV) which considerably affects the magnitude of the charge transfer. Here we investigate a model system made from colloidal 2D CdSe nanoplatelets and epitaxial graphene in a phototransistor configuration. We demonstrate that using a heterostructured layered material, we can tune the magnitude and the direction (i.e. electron or hole) of the charge transfer. We further evidence that graphene functionalization by nanocrystals only leads to a limited change in the magnitude of the 1/f noise. These results draw some new directions to design van der Waals heterostructures with enhanced optoelectronic properties.

  7. 2D-pattern matching image and video compression: theory, algorithms, and experiments.

    PubMed

    Alzina, Marc; Szpankowski, Wojciech; Grama, Ananth

    2002-01-01

    In this paper, we propose a lossy data compression framework based on an approximate two-dimensional (2D) pattern matching (2D-PMC) extension of the Lempel-Ziv (1977, 1978) lossless scheme. This framework forms the basis upon which higher level schemes relying on differential coding, frequency domain techniques, prediction, and other methods can be built. We apply our pattern matching framework to image and video compression and report on theoretical and experimental results. Theoretically, we show that the fixed database model used for video compression leads to suboptimal but computationally efficient performance. The compression ratio of this model is shown to tend to the generalized entropy. For image compression, we use a growing database model for which we provide an approximate analysis. The implementation of 2D-PMC is a challenging problem from the algorithmic point of view. We use a range of techniques and data structures such as k-d trees, generalized run length coding, adaptive arithmetic coding, and variable and adaptive maximum distortion level to achieve good compression ratios at high compression speeds. We demonstrate bit rates in the range of 0.25-0.5 bpp for high-quality images and data rates in the range of 0.15-0.5 Mbps for a baseline video compression scheme that does not use any prediction or interpolation. We also demonstrate that this asymmetric compression scheme is capable of extremely fast decompression making it particularly suitable for networked multimedia applications.

  8. An Automatic 3D Facial Landmarking Algorithm Using 2D Gabor Wavelets.

    PubMed

    de Jong, Markus A; Wollstein, Andreas; Ruff, Clifford; Dunaway, David; Hysi, Pirro; Spector, Tim; Fan Liu; Niessen, Wiro; Koudstaal, Maarten J; Kayser, Manfred; Wolvius, Eppo B; Bohringer, Stefan

    2016-02-01

    In this paper, we present a novel approach to automatic 3D facial landmarking using 2D Gabor wavelets. Our algorithm considers the face to be a surface and uses map projections to derive 2D features from raw data. Extracted features include texture, relief map, and transformations thereof. We extend an established 2D landmarking method for simultaneous evaluation of these data. The method is validated by performing landmarking experiments on two data sets using 21 landmarks and compared with an active shape model implementation. On average, landmarking error for our method was 1.9 mm, whereas the active shape model resulted in an average landmarking error of 2.3 mm. A second study investigating facial shape heritability in related individuals concludes that automatic landmarking is on par with manual landmarking for some landmarks. Our algorithm can be trained in 30 min to automatically landmark 3D facial data sets of any size, and allows for fast and robust landmarking of 3D faces.

  9. Two-dimensional semiconductor HfSe{sub 2} and MoSe{sub 2}/HfSe{sub 2} van der Waals heterostructures by molecular beam epitaxy

    SciTech Connect

    Aretouli, K. E.; Tsipas, P.; Tsoutsou, D.; Marquez-Velasco, J.; Xenogiannopoulou, E.; Giamini, S. A.; Vassalou, E.; Kelaidis, N.; Dimoulas, A.

    2015-04-06

    Using molecular beam epitaxy, atomically thin 2D semiconductor HfSe{sub 2} and MoSe{sub 2}/HfSe{sub 2} van der Waals heterostructures are grown on AlN(0001)/Si(111) substrates. Details of the electronic band structure of HfSe{sub 2} are imaged by in-situ angle resolved photoelectron spectroscopy indicating a high quality epitaxial layer. High-resolution surface tunneling microscopy supported by first principles calculations provides evidence of an ordered Se adlayer, which may be responsible for a reduction of the measured workfunction of HfSe{sub 2} compared to theoretical predictions. The latter reduction minimizes the workfunction difference between the HfSe{sub 2} and MoSe{sub 2} layers resulting in a small valence band offset of only 0.13 eV at the MoSe{sub 2}/HfSe{sub 2} heterointerface and a weak type II band alignment.

  10. Optical detectors on GaSe and InSe layered crystals

    NASA Astrophysics Data System (ADS)

    Kyazym-Zade, A. G.; Agaeva, A. A.; Salmanov, V. M.; Mokhtari, A. G.

    2007-12-01

    Fast uncooled GaSe and InSe detectors that can record ultrashort (10-12 10-9 s) laser pulses in the visual and near-IR ranges are developed. The quick response of the detectors is due to rapid recombination channels with a high capture cross section present in the crystals.

  11. Regulation of ligands for the activating receptor NKG2D

    PubMed Central

    Mistry, Anita R; O'Callaghan, Chris A

    2007-01-01

    The outcome of an encounter between a cytotoxic cell and a potential target cell depends on the balance of signals from inhibitory and activating receptors. Natural Killer group 2D (NKG2D) has recently emerged as a major activating receptor on T lymphocytes and natural killer cells. In both humans and mice, multiple different genes encode ligands for NKG2D, and these ligands are non-classical major histocompatibility complex class I molecules. The NKG2D–ligand interaction triggers an activating signal in the cell expressing NKG2D and this promotes cytotoxic lysis of the cell expressing the ligand. Most normal tissues do not express ligands for NKG2D, but ligand expression has been documented in tumour and virus-infected cells, leading to lysis of these cells. Tight regulation of ligand expression is important. If there is inappropriate expression in normal tissues, this will favour autoimmune processes, whilst failure to up-regulate the ligands in pathological conditions would favour cancer development or dissemination of intracellular infection. PMID:17614877

  12. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.

  13. 2D DIGE saturation labeling for minute sample amounts.

    PubMed

    Arnold, Georg J; Fröhlich, Thomas

    2012-01-01

    The 2D DIGE technique, based on fluorophores covalently linked to amino acid side chain residues and the concept of an internal standard, has significantly improved reproducibility, sensitivity, and the dynamic range of protein quantification. In saturation DIGE, sulfhydryl groups of cysteines are labeled with cyanine dyes to completion, providing a so far unraveled sensitivity for protein detection and quantification in 2D gel-based proteomic experiments. Only a few micrograms of protein per 2D gel facilitate the analysis of about 2,000 analytes from complex mammalian cell or tissue samples. As a consequence, 2D saturation DIGE is the method of choice when only minute sample amounts are available for quantitative proteome analysis at the level of proteins rather than peptides. Since very low amounts of samples have to be handled in a reproducible manner, saturation DIGE-based proteomic experiments are technically demanding. Moreover, successful saturation DIGE approaches require a strict adherence to adequate reaction conditions at each step. This chapter is dedicated to colleagues already experienced in 2D PAGE protein separation and intends to support the establishment of this ultrasensitive technique in proteomic workgroups. We provide basic guidelines for the experimental design and discuss crucial aspects concerning labeling chemistry, sample preparation, and pitfalls caused by labeling artifacts. A detailed step-by-step protocol comprises all aspects from initial sample preparation to image analysis and statistical evaluation. Furthermore, we describe the generation of preparative saturation DIGE gels necessary for mass spectrometry-based spot identification.

  14. Mermin–Wagner fluctuations in 2D amorphous solids

    PubMed Central

    Illing, Bernd; Fritschi, Sebastian; Kaiser, Herbert; Klix, Christian L.; Maret, Georg; Keim, Peter

    2017-01-01

    In a recent commentary, J. M. Kosterlitz described how D. Thouless and he got motivated to investigate melting and suprafluidity in two dimensions [Kosterlitz JM (2016) J Phys Condens Matter 28:481001]. It was due to the lack of broken translational symmetry in two dimensions—doubting the existence of 2D crystals—and the first computer simulations foretelling 2D crystals (at least in tiny systems). The lack of broken symmetries proposed by D. Mermin and H. Wagner is caused by long wavelength density fluctuations. Those fluctuations do not only have structural impact, but additionally a dynamical one: They cause the Lindemann criterion to fail in 2D in the sense that the mean squared displacement of atoms is not limited. Comparing experimental data from 3D and 2D amorphous solids with 2D crystals, we disentangle Mermin–Wagner fluctuations from glassy structural relaxations. Furthermore, we demonstrate with computer simulations the logarithmic increase of displacements with system size: Periodicity is not a requirement for Mermin–Wagner fluctuations, which conserve the homogeneity of space on long scales. PMID:28137872

  15. Sparse radar imaging using 2D compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

  16. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  17. Secretory pathways generating immunosuppressive NKG2D ligands

    PubMed Central

    Baragaño Raneros, Aroa; Suarez-Álvarez, Beatriz; López-Larrea, Carlos

    2014-01-01

    Natural Killer Group 2 member D (NKG2D) activating receptor, present on the surface of various immune cells, plays an important role in activating the anticancer immune response by their interaction with stress-inducible NKG2D ligands (NKG2DL) on transformed cells. However, cancer cells have developed numerous mechanisms to evade the immune system via the downregulation of NKG2DL from the cell surface, including the release of NKG2DL from the cell surface in a soluble form. Here, we review the mechanisms involved in the production of soluble NKG2DL (sNKG2DL) and the potential therapeutic strategies aiming to block the release of these immunosuppressive ligands. Therapeutically enabling the NKG2D-NKG2DL interaction would promote immunorecognition of malignant cells, thus abrogating disease progression. PMID:25050215

  18. Splashing transients of 2D plasmons launched by swift electrons

    PubMed Central

    Lin, Xiao; Kaminer, Ido; Shi, Xihang; Gao, Fei; Yang, Zhaoju; Gao, Zhen; Buljan, Hrvoje; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng; Zhang, Baile

    2017-01-01

    Launching of plasmons by swift electrons has long been used in electron energy–loss spectroscopy (EELS) to investigate the plasmonic properties of ultrathin, or two-dimensional (2D), electron systems. However, the question of how a swift electron generates plasmons in space and time has never been answered. We address this issue by calculating and demonstrating the spatial-temporal dynamics of 2D plasmon generation in graphene. We predict a jet-like rise of excessive charge concentration that delays the generation of 2D plasmons in EELS, exhibiting an analog to the hydrodynamic Rayleigh jet in a splashing phenomenon before the launching of ripples. The photon radiation, analogous to the splashing sound, accompanies the plasmon emission and can be understood as being shaken off by the Rayleigh jet–like charge concentration. Considering this newly revealed process, we argue that previous estimates on the yields of graphene plasmons in EELS need to be reevaluated. PMID:28138546

  19. Available information in 2D motional Stark effect imaging.

    PubMed

    Creese, Mathew; Howard, John

    2010-10-01

    Recent advances in imaging techniques have allowed the extension of the standard polarimetric 1D motional Stark effect (MSE) diagnostic to 2D imaging of the internal magnetic field of fusion devices [J. Howard, Plasma Phys. Controlled Fusion 50, 125003 (2008)]. This development is met with the challenge of identifying and extracting the new information, which can then be used to increase the accuracy of plasma equilibrium and current density profile determinations. This paper develops a 2D analysis of the projected MSE polarization orientation and Doppler phase shift. It is found that, for a standard viewing position, the 2D MSE imaging system captures sufficient information to allow imaging of the internal vertical magnetic field component B(Z)(r,z) in a tokamak.

  20. Perception-based reversible watermarking for 2D vector maps

    NASA Astrophysics Data System (ADS)

    Men, Chaoguang; Cao, Liujuan; Li, Xiang

    2010-07-01

    This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.

  1. Microscale 2D separation systems for proteomic analysis

    PubMed Central

    Xu, Xin; Liu, Ke; Fan, Z. Hugh

    2012-01-01

    Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues. PMID:22462786

  2. 2D materials for photon conversion and nanophotonics

    NASA Astrophysics Data System (ADS)

    Tahersima, Mohammad H.; Sorger, Volker J.

    2015-09-01

    The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.

  3. Rapid-scan coherent 2D fluorescence spectroscopy.

    PubMed

    Draeger, Simon; Roeding, Sebastian; Brixner, Tobias

    2017-02-20

    We developed pulse-shaper-assisted coherent two-dimensional (2D) electronic spectroscopy in liquids using fluorescence detection. A customized pulse shaper facilitates shot-to-shot modulation at 1 kHz and is employed for rapid scanning over all time delays. A full 2D spectrum with 15 × 15 pixels is obtained in approximately 6 s of measurement time (plus further averaging if needed). Coherent information is extracted from the incoherent fluorescence signal via 27-step phase cycling. We exemplify the technique on cresyl violet in ethanol and recover literature-known oscillations as a function of population time. Signal-to-noise behavior is analyzed as a function of the amount of averaging. Rapid scanning provides a 2D spectrum with a root-mean-square error of < 0.05 after 1 min of measurement time.

  4. 2D-3D transition of gold cluster anions resolved

    NASA Astrophysics Data System (ADS)

    Johansson, Mikael P.; Lechtken, Anne; Schooss, Detlef; Kappes, Manfred M.; Furche, Filipp

    2008-05-01

    Small gold cluster anions Aun- are known for their unusual two-dimensional (2D) structures, giving rise to properties very different from those of bulk gold. Previous experiments and calculations disagree about the number of gold atoms nc where the transition to 3D structures occurs. We combine trapped ion electron diffraction and state of the art electronic structure calculations to resolve this puzzle and establish nc=12 . It is shown that theoretical studies using traditional generalized gradient functionals are heavily biased towards 2D structures. For a correct prediction of the 2D-3D crossover point it is crucial to use density functionals yielding accurate jellium surface energies, such as the Tao-Perdew-Staroverov-Scuseria (TPSS) functional or the Perdew-Burke-Ernzerhof functional modified for solids (PBEsol). Further, spin-orbit effects have to be included, and large, flexible basis sets employed. This combined theoretical-experimental approach is promising for larger gold and other metal clusters.

  5. IUPAP Award: Ion transport in 2D materials

    NASA Astrophysics Data System (ADS)

    Bao, Wenzhong

    Intercalation in 2D materials drastically influences both physical and chemical properties, which leads to a new degree of freedom for fundamental studies and expands the potential applications of 2D materials. In this talk, I will discuss our work in the past two years related to ion intercalation of 2D materials, including insertion of Li and Na ions in graphene and MoS2. We focused on both fundamental mechanism and potential application, e.g. we measured in-situ optical transmittance spectra and electrical transport properties of few-layer graphene (FLG) nanostructures upon electrochemical lithiation/delithiation. By observing a simultaneous increase of both optical transmittance and DC conductivity, strikingly different from other materials, we proposed its application as a next generation transparent electrode.

  6. 2d-retrieval For Mipas-envisat

    NASA Astrophysics Data System (ADS)

    Steck, T.; von Clarmann, T.; Grabowski, U.; Höpfner, M.

    Limb sounding of the Earth's atmosphere provides vertically high resolved profiles of geophysical parameters. The long ray path through the atmosphere makes limb sounders sensitive to even little abundant species. On the other hand, horizontal in- homogeneities, if not taken into account properly, can cause systematic errors within the retrieval process. Especially for limb emission measurements in the mid IR, at- mopheric temperature gradients result in considerable vmr retrieval errors if they are neglected. We present a dedicated method of taking full 2D fields of state parameters (indepen- dent of tangent points) into account in the forward model and in the retrieval. The basic idea is that the 2D state vector is updated sequentially for each limb scan. This method is applied to the 2D retrieval of temperature and vmr for simulated radiances as expected from MIPAS-ENVISAT.

  7. Genetics, genomics, and evolutionary biology of NKG2D ligands.

    PubMed

    Carapito, Raphael; Bahram, Seiamak

    2015-09-01

    Human and mouse NKG2D ligands (NKG2DLs) are absent or only poorly expressed by most normal cells but are upregulated by cell stress, hence, alerting the immune system in case of malignancy or infection. Although these ligands are numerous and highly variable (at genetic, genomic, structural, and biochemical levels), they all belong to the major histocompatibility complex class I gene superfamily and bind to a single, invariant, receptor: NKG2D. NKG2D (CD314) is an activating receptor expressed on NK cells and subsets of T cells that have a key role in the recognition and lysis of infected and tumor cells. Here, we review the molecular diversity of NKG2DLs, discuss the increasing appreciation of their roles in a variety of medical conditions, and propose several explanations for the evolutionary force(s) that seem to drive the multiplicity and diversity of NKG2DLs while maintaining their interaction with a single invariant receptor.

  8. Graphene based 2D-materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  9. Chemical vapour deposition: Transition metal carbides go 2D

    DOE PAGES

    Gogotsi, Yury

    2015-08-17

    Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour deposition with a highmore » crystallinity and very low defect concentration.« less

  10. Applications of Doppler Tomography in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Richards, M.; Budaj, J.; Agafonov, M.; Sharova, O.

    2010-12-01

    Over the past few years, the applications of Doppler tomography have been extended beyond the usual calculation of 2D velocity images of circumstellar gas flows. This technique has now been used with the new Shellspec spectrum synthesis code to demonstrate the effective modeling of the accretion disk and gas stream in the TT Hya Algol binary. The 2D tomography procedure projects all sources of emission onto a single central (Vx, Vy) velocity plane even though the gas is expected to flow beyond that plane. So, new 3D velocity images were derived with the Radioastronomical Approach method by assuming a grid of Vz values transverse to the central 2D plane. The 3D approach has been applied to the U CrB and RS Vul Algol-type binaries to reveal substantial flow structures beyond the central velocity plane.

  11. Chemical vapour deposition: Transition metal carbides go 2D

    SciTech Connect

    Gogotsi, Yury

    2015-08-17

    Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour deposition with a high crystallinity and very low defect concentration.

  12. 2D ACAR momentum density study of the nature of the positron surface state on Al(100)

    SciTech Connect

    Berko, S.; Canter, K.F.; Lynn, K.G.; Mills, A.P.; Roellig, L.O.; West, R.N.

    1985-01-01

    The two-dimensional angular correlation of the 2..gamma.. annihilation radiation (2D ACAR) has been measured from an Al(100) surface bombarded by 200-eV positrons. After removing the contribution of fast para-positronium annihilation, the spectrum from positrons annihilating at the surface exhibits a nearly isotropic conical shape with a (7.1 +- 0.5) mrad FWHM. 5 refs., 6 figs.

  13. Fast valve

    DOEpatents

    Van Dyke, W.J.

    1992-04-07

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing. 4 figs.

  14. Fast valve

    DOEpatents

    Van Dyke, William J.

    1992-01-01

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing.

  15. Hidden landscapes in thin film topological insulators: between order and disorder, 2D and 3D, normal and topological phases

    NASA Astrophysics Data System (ADS)

    Oh, Seongshik

    Topological insulator (TI) is one of the rare systems in the history of condensed matter physics that is initiated by theories and followed by experiments. Although this theory-driven advance helped move the field quite fast despite its short history, apparently there exist significant gaps between theories and experiments. Many of these discrepancies originate from the very fact that the worlds readily accessible to theories are often far from the real worlds that are available in experiments. For example, the very paradigm of topological protection of the surface states on Z2 TIs such as Bi2Se3, Bi2Te3, Sb2Te3, etc, is in fact valid only if the sample size is infinite and the crystal momentum is well-defined in all three dimensions. On the other hand, many widely studied forms of TIs such as thin films and nano-wires have significant confinement in one or more of the dimensions with varying level of disorders. In other words, many of the real world topological systems have some important parameters that are not readily captured by theories, and thus it is often questionable how far the topological theories are valid to real systems. Interestingly, it turns out that this very uncertainty of the theories provides additional control knobs that allow us to explore hidden topological territories. In this talk, I will discuss how these additional knobs in thin film topological insulators reveal surprising, at times beautiful, landscapes at the boundaries between order and disorder, 2D and 3D, normal and topological phases. This work is supported by Gordon and Betty Moore Foundation's EPiQS Initiative (GBMF4418).

  16. Real-time 2-D temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2010-01-01

    We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy.

  17. Towards functional assembly of 3D and 2D nanomaterials

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher B.; Wang, Kai; Ievlev, Anton V.; Muckley, Eric S.; Ivanov, Ilia N.

    2016-09-01

    Functional assemblies of materials can be realized by tuning the work function and band gap of nanomaterials by rational material selection and design. Here we demonstrate the structural assembly of 2D and 3D nanomaterials and show that layering a 2D material monolayer on a 3D metal oxide leads to substantial alteration of both the surface potential and optical properties of the 3D material. A 40 nm thick film of polycrystalline NiO was produced by room temperature rf-sputtering, resulting in a 3D nanoparticle assembly. Chemical vapor deposition (CVD) grown 10-30 μm WS2 flakes (2D material) were placed on the NiO surface using a PDMS stamp transfer technique. The 2D/3D WS2/NiO assembly was characterized using confocal micro Raman spectroscopy to evaluate the vibrational properties and using Kelvin probe force microscopy (KPFM) to evaluate the surface potential. Raman maps of the 2D/3D assembly show spatial non-uniformity of the A1g mode ( 418 cm-1) and the disorder-enhanced longitudinal acoustic mode, 2LA(M) ( 350 cm-1), suggesting that the WS2 exists in a strained condition on when transferred onto 3D polycrystalline NiO. KPFM measurements show that single layer WS2 on SiO2 has a surface potential 75 mV lower than that of SiO2, whereas the surface potential of WS2 on NiO is 15 mV higher than NiO, indicating that WS2 could act as electron donor or acceptor depending on the 3D material it is interfaced with. Thus 2D and 3D materials can be organized into functional assemblies with electron flow controlled by the WS2 either as the electron donor or acceptor.

  18. Laboratory Experiments On Continually Forced 2d Turbulence

    NASA Astrophysics Data System (ADS)

    Wells, M. G.; Clercx, H. J. H.; Van Heijst, G. J. F.

    There has been much recent interest in the advection of tracers by 2D turbulence in geophysical flows. While there is a large body of literature on decaying 2D turbulence or forced 2D turbulence in unbounded domains, there have been very few studies of forced turbulence in bounded domains. In this study we present new experimental results from a continuously forced quasi 2D turbulent field. The experiments are performed in a square Perspex tank filled with water. The flow is made quasi 2D by a steady background rotation. The rotation rate of the tank has a small (<8 %) sinusoidal perturbation which leads to the periodic formation of eddies in the corners of the tank. When the oscillation period of the perturbation is greater than an eddy roll-up time-scale, dipole structures are observed to form. The dipoles can migrate away from the walls, and the interior of the tank is continually filled with vortexs. From experimental visualizations the length scale of the vortexs appears to be largely controlled by the initial formation mechanism and large scale structures are not observed to form at large times. Thus the experiments provide a simple way of cre- ating a continuously forced 2D turbulent field. The resulting structures are in contrast with most previous laboratory experiments on 2D turbulence which have investigated decaying turbulence and have observed the formations of large scale structure. In these experiments, decaying turbulence had been produced by a variety of methods such as the decaying turbulence in the wake of a comb of rods (Massen et al 1999), organiza- tion of vortices in thin conducting liquids (Cardoso et al 1994) or in rotating systems where there are sudden changes in angular rotation rate (Konijnenberg et al 1998). Results of dye visualizations, particle tracking experiments and a direct numerical simulation will be presented and discussed in terms of their oceanographic application. Bibliography Cardoso,O. Marteau, D. &Tabeling, P

  19. 2dF grows up: Echidna for the AAT

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew; Barden, Sam; Miziarski, Stan; Rambold, William; Smith, Greg

    2008-07-01

    We present the concept design of a new fibre positioner and spectrograph system for the Anglo-Australian Telescope, as a proposed enhancement to the Anglo-Australian Observatory's well-known 2dF facility. A four-fold multiplex enhancement is accomplished by replacing the 400-fibre 2dF fibre positioning robot with a 1600-fibre Echidna unit, feeding three clones of the AAOmega optical spectrograph. Such a facility has the capability of a redshift 1 survey of a large fraction of the southern sky, collecting five to ten thousand spectra per night for a million-galaxy survey.

  20. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  1. Evaluation of 2D ceramic matrix composites in aeroconvective environments

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza

    1992-01-01

    An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.

  2. Radiative heat transfer in 2D Dirac materials.

    PubMed

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-06-03

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  3. Quantum process tomography by 2D fluorescence spectroscopy

    SciTech Connect

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  4. Radiative heat transfer in 2D Dirac materials

    DOE PAGES

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  5. Experimental validation of equations for 2D DIC uncertainty quantification.

    SciTech Connect

    Reu, Phillip L.; Miller, Timothy J.

    2010-03-01

    Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.

  6. Scale Invariance in 2D BCS-BEC Crossover

    NASA Astrophysics Data System (ADS)

    Sensarma, Rajdeep; Taylor, Edward; Randeria, Mohit

    2013-03-01

    In 2D BCS-BEC crossover, the frequency of the breathing mode in a harmonic trap, as well as the lower edge of the radio frequency spectroscopy response, show remarkable scale-invariance throughout the crossover regime, i.e. they are independent of the coupling constant. Using functional integral methods, we study the behaviour of these quantities in the 2D BCS-BEC crossover and comment on the possible reasons for this scale independence. RS was supported by DAE, Govt. of India. MR was supported by NSF Grant No. DMR-1006532. ET was supported by NSERC and the Canadian Institute for Advanced Research.

  7. Closed-shell and open-shell 2D nanographenes.

    PubMed

    Sun, Zhe; Wu, Jishan

    2014-01-01

    This chapter describes a series of two-dimensional (2D) expanded arene networks, also known as nanographenes, with either closed-shell or open-shell electronic structure in the ground state. These systems are further categorized into three classes on a basis of different edge structures: those with zigzag edges only, those with armchair edges only, and those possessing both. Distinctive physical properties of these 2D aromatic systems are closely related to their structural characteristics and provide great potential for them as materials for different applications.

  8. 2D Log-Gabor Wavelet Based Action Recognition

    NASA Astrophysics Data System (ADS)

    Li, Ning; Xu, De

    The frequency response of log-Gabor function matches well the frequency response of primate visual neurons. In this letter, motion-salient regions are extracted based on the 2D log-Gabor wavelet transform of the spatio-temporal form of actions. A supervised classification technique is then used to classify the actions. The proposed method is robust to the irregular segmentation of actors. Moreover, the 2D log-Gabor wavelet permits more compact representation of actions than the recent neurobiological models using Gabor wavelet.

  9. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  10. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.

    PubMed

    Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E

    2016-08-21

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.

  11. Project FAST.

    ERIC Educational Resources Information Center

    Essexville-Hampton Public Schools, MI.

    Described are components of Project FAST (Functional Analysis Systems Training) a nationally validated project to provide more effective educational and support services to learning disordered children and their regular elementary classroom teachers. The program is seen to be based on a series of modules of delivery systems ranging from mainstream…

  12. Parametric phase information based 2D Cepstrum PSF estimation method for blind de-convolution of ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Kang, Jooyoung; Park, Sung-Chan; Kim, Jung-ho; Song, Jongkeun

    2014-02-01

    In the ultrasound imaging system, blurring which occurs after passing through ultrasound scanner system, represents point spread function (PSF) that describes the response of the ultrasound imaging system to a point source distribution. So, de-blurring can be achieved by de-convolving the ultrasound images with an estimated of corresponding PSF. However, it is hard to attain an accurate estimation of PSF due to the unknown properties of the tissues of the human body through the ultrasound signal propagates. In this paper, we present a new method for PSF estimation in the Fourier domain (FD) based on parametric minimum phase information, and simultaneously, it performs fast 2D de-convolution in the ultrasound imaging system. Although most of complex cepstrum methods [14], are obtained using complex 2D phase unwrapping [18] [19] in order to estimate the FD-phase information of PSF, our algorithm estimates the 2D PSF using 2D FD-phase information with the parametric weighting factor α and β. They affect the feature of PSF shapes.This makes the computations much simpler and the estimation more accurate. Our algorithm works on the beam-formed uncompressed radio-frequency data, with pre-measured and estimated 2D PSFs database from actual probe used. We have tested our algorithm with vera-sonic system and commercial ultrasound scanner (Philips C4-2), in known speed of sound phantoms and unknown speeds in vivo scans.

  13. Discrepant Results in a 2-D Marble Collision

    ERIC Educational Resources Information Center

    Kalajian, Peter

    2013-01-01

    Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…

  14. 2-D Finite Element Cable and Box IEMP Analysis

    SciTech Connect

    Scivner, G.J.; Turner, C.D.

    1998-12-17

    A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.

  15. 2D Orthogonal Locality Preserving Projection for Image Denoising.

    PubMed

    Shikkenawis, Gitam; Mitra, Suman K

    2016-01-01

    Sparse representations using transform-domain techniques are widely used for better interpretation of the raw data. Orthogonal locality preserving projection (OLPP) is a linear technique that tries to preserve local structure of data in the transform domain as well. Vectorized nature of OLPP requires high-dimensional data to be converted to vector format, hence may lose spatial neighborhood information of raw data. On the other hand, processing 2D data directly, not only preserves spatial information, but also improves the computational efficiency considerably. The 2D OLPP is expected to learn the transformation from 2D data itself. This paper derives mathematical foundation for 2D OLPP. The proposed technique is used for image denoising task. Recent state-of-the-art approaches for image denoising work on two major hypotheses, i.e., non-local self-similarity and sparse linear approximations of the data. Locality preserving nature of the proposed approach automatically takes care of self-similarity present in the image while inferring sparse basis. A global basis is adequate for the entire image. The proposed approach outperforms several state-of-the-art image denoising approaches for gray-scale, color, and texture images.

  16. 2D signature for detection and identification of drugs

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei

    2011-06-01

    The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.

  17. Optoelectronics of supported and suspended 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Bolotin, Kirill

    2014-03-01

    Two-dimensional semiconductors, materials such monolayer molybdenum disulfide (MoS2) are characterized by strong spin-orbit and electron-electron interactions. However, both electronic and optoelectronic properties of these materials are dominated by disorder-related scattering. In this talk, we investigate approaches to reduce scattering and explore physical phenomena arising in intrinsic 2D semiconductors. First, we discuss fabrication of pristine suspended monolayer MoS2 and use photocurrent spectroscopy measurements to study excitons in this material. We observe band-edge and van Hove singularity excitons and estimate their binding energies. Furthermore, we study dissociation of these excitons and uncover the mechanism of their contribution to photoresponse of MoS2. Second, we study strain-induced modification of bandstructures of 2D semiconductors. With increasing strain, we find large and controllable band gap reduction of both single- and bi-layer MoS2. We also detect experimental signatures consistent with strain-induced transition from direct to indirect band gap in monolayer MoS2. Finally, we fabricate heterostructures of dissimilar 2D semiconductors and study their photoresponse. For closely spaced 2D semiconductors we detect charge transfer, while for separation larger than 10nm we observe Forster-like energy transfer between excitations in different layers.

  18. Graphene band structure and its 2D Raman mode

    NASA Astrophysics Data System (ADS)

    Narula, Rohit; Reich, Stephanie

    2014-08-01

    High-precision simulations are used to generate the 2D Raman mode of graphene under a range of screening conditions and laser energies EL. We reproduce the decreasing trend of the 2D mode FWHM vs EL and the nearly linearly increasing dispersion ∂ω2D/∂EL seen experimentally in freestanding (unscreened) graphene, and propose relations between these experimentally accessible quantities and the local, two-dimensional gradients |∇ | of the electronic and TO phonon bands. In light of state-of-the-art electronic structure calculations that acutely treat the long-range e-e interactions of isolated graphene and its experimentally observed 2D Raman mode, our calculations determine a 40% greater slope of the TO phonons about K than given by explicit phonon measurements performed in graphite or GW phonon calculations in graphene. We also deduce the variation of the broadening energy γ [EL] for freestanding graphene and find a nominal value γ ˜140 meV, showing a gradually increasing trend for the range of frequencies available experimentally.

  19. Development of a MEMS 2D separations device

    NASA Astrophysics Data System (ADS)

    Bloschock, Kristen P.; Flyer, Jonathan N.; Schneider, Thomas W.; Hussam, Abul; Van Keuren, Edward R.

    2004-12-01

    A polymer based biochip for rapid 2D separations of peptides, proteins, and other biomedically relevant molecules was designed and fabricated. Like traditional 2D polyacrylamide gel electrophoresis (2D-PAGE) methods, the device will allow molecules to separate based on isoelectric point (pI) and molecular weight (MW). Our design, however, integrates both an initial capillary isoelectric focusing (cIEF) step followed by capillary electrophoresis (CE) in multiple parallel channels, all on a single microfluidic chip. Not only is the "lab-on-a-chip" design easier to use and less expensive, but the miniaturization of the device produces very rapid separations. Compared to traditional 2D-PAGE, which can take hours to complete, we estimate separation times on the order of seconds. Fluorescence detection will be used in the preliminary stages of testing, but the device also is equipped with integrated electrodes in the electrophoresis channels to perform multiplexed electrochemical detection for quantitative analysis. We will present preliminary results of the chip development and testing.

  20. The 2dF Galaxy Redshift Survey: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Maddox, Steve; 2DF Galaxy Redshift Survey Team; Bland-Hawthorn, Joss; Cannon, Russell; Cole, Shaun; Colless, Matthew; Collins, Chris; Couch, Warrick; Dalton, Gavin; Driver, Simon; Ellis, Richard; Efstathiou, George; Folkes, Simon; Frenk, Carlos; Glazebrook, Karl; Kaiser, Nick; Lahav, Ofer; Lumsden, Stuart; Peterson, Bruce; Peacock, John; Sutherland, Will; Taylor, Keith

    Spectroscopic observations for a new survey of 250 000 galaxy redshifts are underway, using the 2dF instrument at the AAT. The input galaxy catalogue and commissioning data are described. The first result from the preliminary data is a new estimate of the galaxy luminosity function at = 0.1.

  1. Volume Calculation of Venous Thrombosis Using 2D Ultrasound Images.

    PubMed

    Dhibi, M; Puentes, J; Bressollette, L; Guias, B; Solaiman, B

    2005-01-01

    Venous thrombosis screening exams use 2D ultrasound images, from which medical experts obtain a rough idea of the thrombosis aspect and infer an approximate volume. Such estimation is essential to follow up the thrombosis evolution. This paper proposes a method to calculate venous thrombosis volume from non-parallel 2D ultrasound images, taking advantage of a priori knowledge about the thrombosis shape. An interactive ellipse fitting contour segmentation extracts the 2D thrombosis contours. Then, a Delaunay triangulation is applied to the set of 2D segmented contours positioned in 3D, and the area that each contour defines, to obtain a global thrombosis 3D surface reconstruction, with a dense triangulation inside the contours. Volume is calculated from the obtained surface and contours triangulation, using a maximum unit normal component approach. Preliminary results obtained on 3 plastic phantoms and 3 in vitro venous thromboses, as well as one in vivo case are presented and discussed. An error rate of volume estimation inferior to 4,5% for the plastic phantoms, and 3,5% for the in vitro venous thromboses was obtained.

  2. ELLIPT2D: A Flexible Finite Element Code Written Python

    SciTech Connect

    Pletzer, A.; Mollis, J.C.

    2001-03-22

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.

  3. Rheological Properties of Quasi-2D Fluids in Microgravity

    NASA Technical Reports Server (NTRS)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  4. Validation and testing of the VAM2D computer code

    SciTech Connect

    Kool, J.B.; Wu, Y.S. )

    1991-10-01

    This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs.

  5. NKG2D ligands mediate immunosurveillance of senescent cells

    PubMed Central

    Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-01-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  6. Studying Zeolite Catalysts with a 2D Model System

    ScienceCinema

    Boscoboinik, Anibal

    2016-12-14

    Anibal Boscoboinik, a materials scientist at Brookhaven’s Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.

  7. 2D nanomaterials based electrochemical biosensors for cancer diagnosis.

    PubMed

    Wang, Lu; Xiong, Qirong; Xiao, Fei; Duan, Hongwei

    2017-03-15

    Cancer is a leading cause of death in the world. Increasing evidence has demonstrated that early diagnosis holds the key towards effective treatment outcome. Cancer biomarkers are extensively used in oncology for cancer diagnosis and prognosis. Electrochemical sensors play key roles in current laboratory and clinical analysis of diverse chemical and biological targets. Recent development of functional nanomaterials offers new possibilities of improving the performance of electrochemical sensors. In particular, 2D nanomaterials have stimulated intense research due to their unique array of structural and chemical properties. The 2D materials of interest cover broadly across graphene, graphene derivatives (i.e., graphene oxide and reduced graphene oxide), and graphene-like nanomaterials (i.e., 2D layered transition metal dichalcogenides, graphite carbon nitride and boron nitride nanomaterials). In this review, we summarize recent advances in the synthesis of 2D nanomaterials and their applications in electrochemical biosensing of cancer biomarkers (nucleic acids, proteins and some small molecules), and present a personal perspective on the future direction of this area.

  8. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  9. Impact of Nanosize on Supercapacitance: Study of 1D Nanorods and 2D Thin-Films of Nickel Oxide.

    PubMed

    Patil, Ranjit A; Chang, Cheng-Ping; Devan, Rupesh S; Liou, Yung; Ma, Yuan-Ron

    2016-04-20

    We synthesized unique one-dimensional (1D) nanorods and two-dimensional (2D) thin-films of NiO on indium-tin-oxide thin-films using a hot-filament metal-oxide vapor deposition technique. The 1D nanorods have an average width and length of ∼100 and ∼500 nm, respectively, and the densely packed 2D thin-films have an average thickness of ∼500 nm. The 1D nanorods perform as parallel units for charge storing. However, the 2D thin-films act as one single unit for charge storing. The 2D thin-films possess a high specific capacitance of ∼746 F/g compared to 1D nanorods (∼230 F/g) using galvanostatic charge-discharge measurements at a current density of 3 A/g. Because the 1D NiO nanorods provide more plentiful surface areas than those of the 2D thin-films, they are fully active at the first few cycles. However, the capacitance retention of the 1D nanorods decays faster than that of the 2D thin-films. Also, the 1D NiO nanorods suffer from instability due to the fast electrochemical dissolution and high nanocontact resistance. Electrochemical impedance spectroscopy verifies that the low dimensionality of the 1D NiO nanorods induces the unavoidable effects that lead them to have poor supercapacitive performances. On the other hand, the slow electrochemical dissolution and small contact resistance in the 2D NiO thin-films favor to achieve high specific capacitance and great stability.

  10. WE-AB-BRA-07: Quantitative Evaluation of 2D-2D and 2D-3D Image Guided Radiation Therapy for Clinical Trial Credentialing, NRG Oncology/RTOG

    SciTech Connect

    Giaddui, T; Yu, J; Xiao, Y; Jacobs, P; Manfredi, D; Linnemann, N

    2015-06-15

    Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance

  11. Prediction of a strain-tunable 2D Topological Dirac semimetal in monolayers of black phosphorus

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuwen; Liu, Qihang; Zunger, Alex; Theory Team

    2015-03-01

    N-dimensional Topological Nonmetals (TNM) such as N = 2D HgTe/CdTe quantum wells or N = 3D Bi2Se3 have a finite (often tiny) band gap between occupied and unoccupied bands, and show conductive Dirac cones in their N-1 dimensional geometric boundaries. On the other hand, examples of topological semimetals (TSM) are known for 3D solids (Cd3As2) where they have Dirac cones in the 3D system itself. Using density functional calculation of bands and the topological invariant Z2 we predict the existence of 2D topological Dirac semimetal in few monolayers of strain tuned black phosphorus (BP), with Dirac cones induced by band inversion. The band structures of few monolayers and bulk crystal of BP under a few percent biaxial and uniaxial strains were calculated using state-of-art electronic structure methods. The critical strain of the transition to TSM was found to decrease as the layer thickness increases. We will discuss the protection of the Dirac cones by the crystalline symmetry in the 2D TSM and the manipulation of crystalline symmetry, which induces further topological phase transitions. Supported by the NSF-DMREF-13-34170.

  12. Half-metallicity in 2D organometallic honeycomb frameworks.

    PubMed

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-26

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  13. 2d-LCA - an alternative to x-wires

    NASA Astrophysics Data System (ADS)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2014-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  14. 2D/3D Image Registration using Regression Learning

    PubMed Central

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-01-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278

  15. Half-metallicity in 2D organometallic honeycomb frameworks

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-01

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  16. The use of 2D-DIGE to understand the regeneration of somatic embryos in avocado.

    PubMed

    Guzmán-García, Eva; Sánchez-Romero, Carolina; Panis, Bart; Carpentier, Sebastien Christian

    2013-12-01

    Avocado embryogenic cell cultures can be classified into two groups based on their morphology when cultured on a medium containing auxin: somatic embryo (SE) and proembryonic masses (PEM) type cultures. The calli of SE-type cell lines are able to go through the maturation process, whereas the calli of PEM cell lines rarely mature. We have investigated four independent avocado cell cultures (two SE and two PEM). The aim of this study was to link the differential regeneration capacity of the four cell cultures to a proteomic pattern and to gain insight into the regeneration capacity. A 2D-DIGE analysis followed by a blind multivariate analysis was able to separate the two SE lines from the PEM lines indicating that the protein profiles of SE and PEM calli are different. Based on the variable importance, that is, the differential protein pattern, we hypothesize that the regeneration capacity in avocado is correlated to the ability to overcome the physicochemical stress stimuli associated with the in vitro culture. Our identical culture conditions do not seem to trigger an appropriate response in PEM lines.

  17. Ultrafast exciton dynamics in 2D in-plane hetero-nanostructures: delocalization and charge transfer.

    PubMed

    Cassette, E; Pedetti, S; Mahler, B; Ithurria, S; Dubertret, B; Scholes, G D

    2017-03-10

    In this article we study the ultrafast dynamics of excitons and charge carriers photogenerated in two-dimensional in-plane heterostructures, namely, CdSe-CdTe nanoplatelets. We combine transient absorption and two-dimensional electronic spectroscopy to study charge transfer and delocalization from a few tens of femtoseconds to several nanoseconds. In contrast with spherical nanocrystals, the relative alignment of the electron and hole states of CdSe and CdTe in thin 2D nanoplatelets does not lead to a type-II heterostructure. Following the excitation in CdSe or CdTe materials, the electron preferentially delocalises instantaneously over the whole heterostructure. In addition, depending on the crown material (CdTe versus CdTeSe), the hole transfers either to trap states or to the crown, within a few hundreds of femtoseconds. We conclude that the photoluminescence band, at lower energy than the CdSe and CdTe first exciton transition, does not result from the recombination of the charge carriers at the charge transfer state but involves localised hole states.

  18. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy.

    PubMed

    Li, Xufan; Lin, Ming-Wei; Lin, Junhao; Huang, Bing; Puretzky, Alexander A; Ma, Cheng; Wang, Kai; Zhou, Wu; Pantelides, Sokrates T; Chi, Miaofang; Kravchenko, Ivan; Fowlkes, Jason; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2016-04-01

    Two-dimensional (2D) heterostructures hold the promise for future atomically thin electronics and optoelectronics because of their diverse functionalities. Although heterostructures consisting of different 2D materials with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) epitaxy, constructing heterostructures from layered semiconductors with large lattice misfits remains challenging. We report the growth of 2D GaSe/MoSe2 heterostructures with a large lattice misfit using two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientation between the two layers, forming a periodic superlattice. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe2 monolayer domains in lateral GaSe/MoSe2 heterostructures, GaSe monolayers are found to overgrow MoSe2 during CVD, forming a stripe of vertically stacked vdW heterostructures at the crystal interface. Such vertically stacked vdW GaSe/MoSe2 heterostructures are shown to form p-n junctions with effective transport and separation of photogenerated charge carriers between layers, resulting in a gate-tunable photovoltaic response. These GaSe/MoSe2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells.

  19. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy

    PubMed Central

    Li, Xufan; Lin, Ming-Wei; Lin, Junhao; Huang, Bing; Puretzky, Alexander A.; Ma, Cheng; Wang, Kai; Zhou, Wu; Pantelides, Sokrates T.; Chi, Miaofang; Kravchenko, Ivan; Fowlkes, Jason; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai

    2016-01-01

    Two-dimensional (2D) heterostructures hold the promise for future atomically thin electronics and optoelectronics because of their diverse functionalities. Although heterostructures consisting of different 2D materials with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) epitaxy, constructing heterostructures from layered semiconductors with large lattice misfits remains challenging. We report the growth of 2D GaSe/MoSe2 heterostructures with a large lattice misfit using two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientation between the two layers, forming a periodic superlattice. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe2 monolayer domains in lateral GaSe/MoSe2 heterostructures, GaSe monolayers are found to overgrow MoSe2 during CVD, forming a stripe of vertically stacked vdW heterostructures at the crystal interface. Such vertically stacked vdW GaSe/MoSe2 heterostructures are shown to form p-n junctions with effective transport and separation of photogenerated charge carriers between layers, resulting in a gate-tunable photovoltaic response. These GaSe/MoSe2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells. PMID:27152356

  20. Optical Signatures from Magnetic 2-D Electron Gases in High Magnetic Fields to 60 Tesla

    SciTech Connect

    Crooker, S.A.; Kikkawa, J.M.; Awschalom, D.D.; Smorchikova, I.P.; Samarth, N.

    1998-11-08

    We present experiments in the 60 Tesla Long-Pulse magnet at the Los Alamos National High Magnetic Field Lab (NHMFL) focusing on the high-field, low temperature photoluminescence (PL) from modulation-doped ZnSe/Zn(Cd,Mn)Se single quantum wells. High-speed charge-coupled array detectors and the long (2 second) duration of the magnet pulse permit continuous acquisition of optical spectra throughout a single magnet shot. High-field PL studies of the magnetic 2D electron gases at temperatures down to 350mK reveal clear intensity oscillations corresponding to integer quantum Hall filling factors, from which we determine the density of the electron gas. At very high magnetic fields, steps in the PL energy are observed which correspond to the partial unlocking of antiferromagnetically bound pairs of Mn2+ spins.

  1. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.

    PubMed

    Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong

    2015-09-01

    Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners.

  2. Fast Steerable Principal Component Analysis

    PubMed Central

    Zhao, Zhizhen; Shkolnisky, Yoel; Singer, Amit

    2016-01-01

    Cryo-electron microscopy nowadays often requires the analysis of hundreds of thousands of 2-D images as large as a few hundred pixels in each direction. Here, we introduce an algorithm that efficiently and accurately performs principal component analysis (PCA) for a large set of 2-D images, and, for each image, the set of its uniform rotations in the plane and their reflections. For a dataset consisting of n images of size L × L pixels, the computational complexity of our algorithm is O(nL3 + L4), while existing algorithms take O(nL4). The new algorithm computes the expansion coefficients of the images in a Fourier–Bessel basis efficiently using the nonuniform fast Fourier transform. We compare the accuracy and efficiency of the new algorithm with traditional PCA and existing algorithms for steerable PCA. PMID:27570801

  3. Fast Steerable Principal Component Analysis.

    PubMed

    Zhao, Zhizhen; Shkolnisky, Yoel; Singer, Amit

    2016-03-01

    Cryo-electron microscopy nowadays often requires the analysis of hundreds of thousands of 2-D images as large as a few hundred pixels in each direction. Here, we introduce an algorithm that efficiently and accurately performs principal component analysis (PCA) for a large set of 2-D images, and, for each image, the set of its uniform rotations in the plane and their reflections. For a dataset consisting of n images of size L × L pixels, the computational complexity of our algorithm is O(nL(3) + L(4)), while existing algorithms take O(nL(4)). The new algorithm computes the expansion coefficients of the images in a Fourier-Bessel basis efficiently using the nonuniform fast Fourier transform. We compare the accuracy and efficiency of the new algorithm with traditional PCA and existing algorithms for steerable PCA.

  4. Response to CYP2D6 substrate antidepressants is predicted by a CYP2D6 composite phenotype based on genotype and comedications with CYP2D6 inhibitors.

    PubMed

    Gressier, F; Verstuyft, C; Hardy, P; Becquemont, L; Corruble, E

    2015-01-01

    The cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of most antidepressants. Comedication with a potent CYP2D6 inhibitor can convert patients with extensive metabolizer (EM) or ultra-rapid metabolizer (UM) genotypes into poor metabolizer (PM) phenotypes. Since comedication is frequent in depressed patients treated with antidepressants, we investigated the effect of the CYP2D6 composite phenotype on antidepressant efficacy, taking into account both the CYP2D6 genotype and comedication with CYP2D6 inhibitors. 87 Caucasian in patients with a major depressive episode were prospectively treated with flexible doses of antidepressant monotherapy as well as comedications and genotyped for the major CYP2D6 alleles (CYP2D6*3 rs35742686, *4 rs3892097, *5 del, *6 rs5030655, and *2xN). They were classified for CYP2D6 composite phenotype and assessed for antidepressant response after 4 weeks. In terms of genotypes (g), 6 subjects were UMg, 6 PMg, and 75 EMg. Ten patients were coprescribed a CYP2D6 inhibitor, resulting in the following composite phenotypes (cp): 5 UMcp, 16 PMcp, and 66 EMcp. Whereas none of the CYP2D6 genotypes were significantly associated with antidepressant response, UMcp had a lower antidepressant response than PMcp or EMcp (respectively: 39.0 ± 17.9, 50.0 ± 26.0, and 61.6 ± 23.4, p = 0.02). Despite small sample size, this study suggests that a CYP2D6 composite phenotype, taking into account both genotype and comedications with CYP2D6 inhibitors, could predict CYP2D6 substrate antidepressants response. Thus, to optimize antidepressant response, CYP2D6 genotype could be performed and comedications with CYP2D6 inhibitors should be avoided, when prescribing CYP2D6 substrate antidepressants.

  5. A post-beamforming 2-D pseudoinverse filter for coarsely sampled ultrasound arrays.

    PubMed

    Wan, Yayun; Ebbini, Emad S

    2009-09-01

    Beamforming artifacts due to coarse discretization of imaging apertures represent a significant barrier against the use of array probes in high-frequency applications. Nyquist sampling of array apertures dictates center-to-center spacing of lambda/2 for elimination of grating lobes in the array pattern. However, this requirement is hard to achieve using current transducer technologies, even at the lower end of high-frequency ultrasonic imaging (in the range 25-35 MHz). In this paper, we present a new design approach for 2-D regularized pseudoinverse (PIO) filters suitable for restoring imaging contrast in systems employing coarsely sampled arrays. The approach is based on a discretized 2-D imaging model for linear arrays assuming scattering from a Cartesian grid in the imaging field of view (FOV). We show that the discretized imaging operator can be represented with a block Toeplitz matrix with the blocks themselves being Toeplitz. With sufficiently large grid size in the axial and lateral directions, it is possible to replace this Toeplitz-block block Toeplitz (TBBT) operator with its circulant-block block circulant (CBBC) equivalent. This leads to a computationally efficient implementation of the regularized pseudoinverse filtering approach using the 2-D fast Fourier transform (FFT). The derivation of the filtering equation is shown in detail and the regularization procedure is fully described. Using FIELD, we present simulation data to show the 2-D point-spread functions (PSFs) for imaging systems employing linear arrays with fine and coarse sampling of the imaging aperture. PSFs are also computed for a coarsely sampled array with different levels of regularization to demonstrate the tradeoff between contrast and spatial resolution. These results demonstrate the well-behaved nature of the PSF with the variation in a single regularization parameter. Specifically, the 6 dB axial and lateral dimensions of the PSF increase gradually with increasing value of the

  6. 2-D linear motion system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology

  7. Gold-standard performance for 2D hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.; MacVicar, B. J.

    2013-12-01

    Two-dimensional, depth-averaged hydrodynamic (2D) models are emerging as an increasingly useful tool for environmental water resources engineering. One of the remaining technical hurdles to the wider adoption and acceptance of 2D modeling is the lack of standards for 2D model performance evaluation when the riverbed undulates, causing lateral flow divergence and convergence. The goal of this study was to establish a gold-standard that quantifies the upper limit of model performance for 2D models of undulating riverbeds when topography is perfectly known and surface roughness is well constrained. A review was conducted of published model performance metrics and the value ranges exhibited by models thus far for each one. Typically predicted velocity differs from observed by 20 to 30 % and the coefficient of determination between the two ranges from 0.5 to 0.8, though there tends to be a bias toward overpredicting low velocity and underpredicting high velocity. To establish a gold standard as to the best performance possible for a 2D model of an undulating bed, two straight, rectangular-walled flume experiments were done with no bed slope and only different bed undulations and water surface slopes. One flume tested model performance in the presence of a porous, homogenous gravel bed with a long flat section, then a linear slope down to a flat pool bottom, and then the same linear slope back up to the flat bed. The other flume had a PVC plastic solid bed with a long flat section followed by a sequence of five identical riffle-pool pairs in close proximity, so it tested model performance given frequent undulations. Detailed water surface elevation and velocity measurements were made for both flumes. Comparing predicted versus observed velocity magnitude for 3 discharges with the gravel-bed flume and 1 discharge for the PVC-bed flume, the coefficient of determination ranged from 0.952 to 0.987 and the slope for the regression line was 0.957 to 1.02. Unsigned velocity

  8. Instantons in 2D U(1) Higgs model and 2D CP(N-1) sigma models

    NASA Astrophysics Data System (ADS)

    Lian, Yaogang

    2007-12-01

    In this thesis I present the results of a study of the topological structures of 2D U(1) Higgs model and 2D CP N-1 sigma models. Both models have been studied using the overlap Dirac operator construction of topological charge density. The overlap operator provides a more incisive probe into the local topological structure of gauge field configurations than the traditional plaquette-based operator. In the 2D U(1) Higgs model, we show that classical instantons with finite sizes violate the negativity of topological charge correlator by giving a positive contribution to the correlator at non-zero separation. We argue that instantons in 2D U(1) Higgs model must be accompanied by large quantum fluctuations in order to solve this contradiction. In 2D CPN-1 sigma models, we observe the anomalous scaling behavior of the topological susceptibility chi t for N ≤ 3. The divergence of chi t in these models is traced to the presence of small instantons with a radius of order a (= lattice spacing), which are directly observed on the lattice. The observation of these small instantons provides detailed confirmation of Luscher's argument that such short-distance excitations, with quantized topological charge, should be the dominant topological fluctuations in CP1 and CP 2, leading to a divergent topological susceptibility in the continuum limit. For the CPN-1 models with N > 3 the topological susceptibility is observed to scale properly with the mass gap. Another topic presented in this thesis is an implementation of the Zolotarev optimal rational approximation for the overlap Dirac operator. This new implementation has reduced the time complexity of the overlap routine from O(N3 ) to O(N), where N is the total number of sites on the lattice. This opens up a door to more accurate lattice measurements in the future.

  9. Optimizing sparse sampling for 2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Roeding, Sebastian; Klimovich, Nikita; Brixner, Tobias

    2017-02-01

    We present a new data acquisition concept using optimized non-uniform sampling and compressed sensing reconstruction in order to substantially decrease the acquisition times in action-based multidimensional electronic spectroscopy. For this we acquire a regularly sampled reference data set at a fixed population time and use a genetic algorithm to optimize a reduced non-uniform sampling pattern. We then apply the optimal sampling for data acquisition at all other population times. Furthermore, we show how to transform two-dimensional (2D) spectra into a joint 4D time-frequency von Neumann representation. This leads to increased sparsity compared to the Fourier domain and to improved reconstruction. We demonstrate this approach by recovering transient dynamics in the 2D spectrum of a cresyl violet sample using just 25% of the originally sampled data points.

  10. D2-D1 phase transition of columnar liquid crystals

    NASA Astrophysics Data System (ADS)

    Sun, Y. F.; Swift, J.

    1986-04-01

    The D2-D1 phase transition in columnar liquid crystals of the HAT series [e.g., HAT11 (triphenelene hexa-n-dodecanoate)] is discussed within the framework of Landau theory. The order parameters which describe the transition are abstracted from a tensor density function, and are associated with two irreducible representations of the symmetry group of the high-temperature D2 phase. A mechanism for a first-order transition is then suggested in accordance with both theoretical considerations and the experimental result for the D2-D1 transition. Two possible arrangements of the herringbone structure of the D1 phase are obtained, each of which gives six orientational states in the low-temperature D1 phase.

  11. Extreme Growth of Enstrophy on 2D Bounded Domains

    NASA Astrophysics Data System (ADS)

    Protas, Bartosz; Sliwiak, Adam

    2016-11-01

    We study the vortex states responsible for the largest instantaneous growth of enstrophy possible in viscous incompressible flow on 2D bounded domain. The goal is to compare these results with estimates obtained using mathematical analysis. This problem is closely related to analogous questions recently considered in the periodic setting on 1D, 2D and 3D domains. In addition to systematically characterizing the most extreme behavior, these problems are also closely related to the open question of the finite-time singularity formation in the 3D Navier-Stokes system. We demonstrate how such extreme vortex states can be found as solutions of constrained variational optimization problems which in the limit of small enstrophy reduce to eigenvalue problems. Computational results will be presented for circular and square domains emphasizing the effect of geometric singularities (corners of the domain) on the structure of the extreme vortex states. Supported by an NSERC (Canada) Discovery Grant.

  12. Strength design with 2-d triaxial braid textile composites

    SciTech Connect

    Smith, L.V.; Swanson, S.R.

    1994-12-31

    Textile preforms are currently being considered as a possible means for reducing the cost of advanced fiber composites. This paper presents a methodology for strength design of carbon/epoxy 2-d braid fiber composites under general conditions of biaxial stress loading. A comprehensive investigation into the in-plane strength properties of 2-d braids has been carried out, using tubular specimens of AS4/1895 carbon fiber/epoxy made with the RTM process. The biaxial loadings involved both compression-compression and tension-tension biaxial tests. The results showed that failure under biaxial loading could be based on procedures similar to those developed for laminates, using critical strain values in the axial and braid direction fibers, but with degraded strength properties because of the undulating nature of -the fiber paths. A significant loss of strength was observed in the braid directions.

  13. Band-structure engineering in conjugated 2D polymers.

    PubMed

    Gutzler, Rico

    2016-10-26

    Conjugated polymers find widespread application in (opto)electronic devices, sensing, and as catalysts. Their common one-dimensional structure can be extended into the second dimension to create conjugated planar sheets of covalently linked molecules. Extending π-conjugation into the second dimension unlocks a new class of semiconductive polymers which as a consequence of their unique electronic properties can find usability in numerous applications. In this article the theoretical band structures of a set of conjugated 2D polymers are compared and information on the important characteristics band gap and valence/conduction band dispersion is extracted. The great variance in these characteristics within the investigated set suggests 2D polymers as exciting materials in which band-structure engineering can be used to tailor sheet-like organic materials with desired electronic properties.

  14. Enhanced automated platform for 2D characterization of RFID communications

    NASA Astrophysics Data System (ADS)

    Vuza, Dan Tudor; Vlǎdescu, Marian

    2016-12-01

    The characterization of the quality of communication between an RFID reader and a transponder at all expected positions of the latter on the reader antenna is of primal importance for the evaluation of performance of an RFID system. Continuing the line of instruments developed for this purpose by the authors, the present work proposes an enhanced version of a previously introduced automated platform for 2D evaluation. By featuring higher performance in terms of mechanical speed, the new version allows to obtain 2D maps of communication with a higher resolution that would have been prohibitive in terms of test duration with the previous version. The list of measurement procedures that can be executed with the platform is now enlarged with additional ones, such as the determination of the variation of the magnetic coupling between transponder and antenna across the antenna surface and the utilization of transponder simulators for evaluation of the quality of communication.

  15. Transition to chaos in an open unforced 2D flow

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.; Vastano, John A.

    1993-01-01

    The present numerical study of unsteady, low Reynolds number flow past a 2D airfoil attempts to ascertain the bifurcation sequence leading from simple periodic to complex aperiodic flow with rising Reynolds number, as well as to characterize the degree of chaos present in the aperiodic flow and assess the role of numerics in the modification and control of the observed bifurcation scenario. The ARC2D Navier-Stokes code is used in an unsteady time-accurate mode for most of these computations. The system undergoes a period-doubling bifurcation to chaos as the Reynolds number is increased from 800 to 1600; its chaotic attractors are characterized by estimates of the fractal dimension and partial Liapunov exponent spectra.

  16. Hard and Soft Physics with 2D Materials

    NASA Astrophysics Data System (ADS)

    McEuen, Paul

    With their remarkable structural, thermal, mechanical, optical, chemical, and electronic properties, 2D materials are truly special. For example, a graphene sheet can be made into a high-performance transistor, but it is also the ultimate realization of a thin mechanical sheet. Such sheets, first studied in detail by August Föppl over a hundred years ago, are notoriously complex, since they can bend, buckle, and crumple in a variety of ways. In this talk, I will discuss a number of experiments to probe these unusual materials, from the effects of ripples on the mechanical properties of a graphene sheet, to folding with atomically thin bimorphs, to the electronic properties of bilayer graphene solitons. Finally, I discuss how the Japanese paper art of kirigami (kiru = `to cut', kami = `paper') applied to 2D materials offers a route to mechanical metamaterials and the construction of nanoscale machines.

  17. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  18. Controlling avalanche criticality in 2D nano arrays

    PubMed Central

    Zohar, Y. C.; Yochelis, S.; Dahmen, K. A.; Jung, G.; Paltiel, Y.

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments. PMID:23677142

  19. FPCAS2D user's guide, version 1.0

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.

    1994-01-01

    The FPCAS2D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady two-dimensional full potential equation which is solved for a cascade of blades. The structural analysis is based on a two degree-of-freedom rigid typical section model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS2D code. A complete description of the input data is provided in this report. In addition, four test cases, including inputs and outputs, are provided.

  20. Structural Complexity and Phonon Physics in 2D Arsenenes.

    PubMed

    Carrete, Jesús; Gallego, Luis J; Mingo, Natalio

    2017-03-15

    In the quest for stable 2D arsenic phases, four different structures have been recently claimed to be stable. We show that, due to phonon contributions, the relative stability of those structures differs from previous reports and depends crucially on temperature. We also show that one of those four phases is in fact mechanically unstable. Furthermore, our results challenge the common assumption of an inverse correlation between structural complexity and thermal conductivity. Instead, a richer picture emerges from our results, showing how harmonic interactions, anharmonicity, and symmetries all play a role in modulating thermal conduction in arsenenes. More generally, our conclusions highlight how vibrational properties are an essential element to be carefully taken into account in theoretical searches for new 2D materials.

  1. Controlling avalanche criticality in 2D nano arrays.

    PubMed

    Zohar, Y C; Yochelis, S; Dahmen, K A; Jung, G; Paltiel, Y

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.

  2. Micro-structural Fluctuations in 2D Dusty Plasma Liquids

    SciTech Connect

    I Lin; Huang, Y.-H.; Teng, L.-W.

    2007-07-13

    We address structural fluctuations in a cold 2D dusty plasma liquid which is self-organized through the strong Coulomb coupling of the negatively charged micro-meter sized dust particles suspending in weakly ionized discharges. The 2D liquids consist of triangular type ordered domains surrounded by defect clusters, which can be reorganized through avalanche type hopping under the interplay of strong Coulomb coupling and thermal fluctuations. The spatio-temporal evolutions of the local bond-orientational order are directly tracked through digital optical microscopy. The power law scaling of the temporal persistence length of fluctuations is obtained for the cold liquid. The measurement of the conditional probability of the persistence lengths of the successive fluctuating cycles suggests certain types of the persistence length combinations are more preferred. The memory of persistence lasts a few fluctuating cycles.

  3. 2D FEM Heat Transfer & E&M Field Code

    SciTech Connect

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

  4. Absolute state-selected total cross sections for the ion-molecule reactions O + (4S,2D,2P)+H2(D2)

    NASA Astrophysics Data System (ADS)

    Li, X.; Huang, Y.-L.; Flesch, G. D.; Ng, C. Y.

    1997-01-01

    Absolute total cross sections for the state-selected reactions of O+(4S,2D,2P)+H2 (D2) have been measured in the center-of-mass collision energy (Ec.m.) range of 0.02-12 eV. The cross sections for OH+ (OD+) from O+(2D)+H2 (D2) are slightly higher than those from O+(4S)+H2 (D2), whereas the OH+ (OD+) cross sections from O+ (2P)+H2 (D2) are ≈40% lower than those from O+(4S)+H2 (D2) and O+ (2D)+H2 (D2). At Ec.m.<0.5 eV, the total cross sections for OH+ (OD+) from O+ (4S)+H2 (D2) and O+(2D)+H2 (D2) are in accord with those predicted by the Langevin-Gioumousis-Stevenson model. Significantly higher cross sections are observed for H+ (D+) and H2+ (D2+) from O+(2D)+H2 (D2) and O+(2P)+H2 (D2), as compared to those from O+(4S)+H2 (D2). The exothermic nature of the O+(2D,2P)+H2 (D2) charge transfer collisions accounts for the high cross sections observed for H2+ (D2+). While the H+ (D+) ions observed in the O+(4S)+H2 (D2) reaction are identified with the H+ (D+)+O+H channel, the H+ (D+) ions from the reactions involving O+(2D) and O+(2P) are associated mostly with the H+ (D+)+OH (OD) channel, the formation of which obeys the spin-conservation rule. The comparison of the sum (σT) of cross sections for OH+ (OD+), H2+ (D2+), and H+ (D+) from O+(4S)+H2 (D2) to those from O+(2D)+H2 (D2) and O+(2P)+H2 (D2) shows that the σTs for O+(4S)+H2 (D2), O+(2D)+H2 (D2), and O+(2P)+H2 (D2) at Ec.m.<0.5 eV are comparable. At Ec.m.>0.5 eV, the σTs for O+(2P)+H2 (D2) are greater than those for O+(2D)+H2 (D2), which in turn are greater than those for O+(4S)+H2 (D2). This observation is attributed to the increase in the number of accessible product channels for reactions involving the excited O+(2D) and O+(2P) reactant ions.

  5. Local Topological Order Inhibits Thermal Stability in 2D

    NASA Astrophysics Data System (ADS)

    Landon-Cardinal, Olivier; Poulin, David

    2013-03-01

    We study the robustness of quantum information stored in the degenerate ground space of a local, frustration-free Hamiltonian with commuting terms on a 2D spin lattice. On one hand, a macroscopic energy barrier separating the distinct ground states under local transformations would protect the information from thermal fluctuations. On the other hand, local topological order would shield the ground space from static perturbations. Here we demonstrate that local topological order implies a constant energy barrier, thus inhibiting thermal stability.

  6. Synchronization of semiconductor laser arrays with 2D Bragg structures

    NASA Astrophysics Data System (ADS)

    Baryshev, V. R.; Ginzburg, N. S.

    2016-08-01

    A model of a planar semiconductor multi-channel laser is developed. In this model two-dimensional (2D) Bragg mirror structures are used for synchronizing radiation of multiple laser channels. Coupling of longitudinal and transverse waves can be mentioned as the distinguishing feature of these structures. Synchronization of 20 laser channels is demonstrated with a semi-classical approach based on Maxwell-Bloch equations.

  7. Statistical analysis of quiet stance sway in 2-D.

    PubMed

    Bakshi, Avijit; DiZio, Paul; Lackner, James R

    2014-04-01

    Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909-912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model's ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior-posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation.

  8. Flow transitions in a 2D directional solidification model

    NASA Technical Reports Server (NTRS)

    Larroude, Philippe; Ouazzani, Jalil; Alexander, J. Iwan D.

    1992-01-01

    Flow transitions in a Two Dimensional (2D) model of crystal growth were examined using the Bridgman-Stockbarger me thod. Using a pseudo-spectral Chebyshev collocation method, the governing equations yield solutions which exhibit a symmetry breaking flow tansition and oscillatory behavior indicative of a Hopf bifurcation at higher values of Ra. The results are discussed from fluid dynamic viewpoint, and broader implications for process models are also addressed.

  9. Vertical heterostructures based on graphene and other 2D materials

    SciTech Connect

    Antonova, I. V.

    2016-01-15

    Recent advances in the fabrication of vertical heterostructures based on graphene and other dielectric and semiconductor single-layer materials, including hexagonal boron nitride and transition-metal dichalcogenides, are reviewed. Significant progress in this field is discussed together with the great prospects for the development of vertical heterostructures for various applications, which are associated, first of all, with reconsideration of the physical principles of the design and operation of device structures based on graphene combined with other 2D materials.

  10. Fully automated 2D-3D registration and verification.

    PubMed

    Varnavas, Andreas; Carrell, Tom; Penney, Graeme

    2015-12-01

    Clinical application of 2D-3D registration technology often requires a significant amount of human interaction during initialisation and result verification. This is one of the main barriers to more widespread clinical use of this technology. We propose novel techniques for automated initial pose estimation of the 3D data and verification of the registration result, and show how these techniques can be combined to enable fully automated 2D-3D registration, particularly in the case of a vertebra based system. The initialisation method is based on preoperative computation of 2D templates over a wide range of 3D poses. These templates are used to apply the Generalised Hough Transform to the intraoperative 2D image and the sought 3D pose is selected with the combined use of the generated accumulator arrays and a Gradient Difference Similarity Measure. On the verification side, two algorithms are proposed: one using normalised features based on the similarity value and the other based on the pose agreement between multiple vertebra based registrations. The proposed methods are employed here for CT to fluoroscopy registration and are trained and tested with data from 31 clinical procedures with 417 low dose, i.e. low quality, high noise interventional fluoroscopy images. When similarity value based verification is used, the fully automated system achieves a 95.73% correct registration rate, whereas a no registration result is produced for the remaining 4.27% of cases (i.e. incorrect registration rate is 0%). The system also automatically detects input images outside its operating range.

  11. Report of the 1988 2-D Intercomparison Workshop, chapter 3

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Brasseur, Guy; Soloman, Susan; Guthrie, Paul D.; Garcia, Rolando; Yung, Yuk L.; Gray, Lesley J.; Tung, K. K.; Ko, Malcolm K. W.; Isaken, Ivar

    1989-01-01

    Several factors contribute to the errors encountered. With the exception of the line-by-line model, all of the models employ simplifying assumptions that place fundamental limits on their accuracy and range of validity. For example, all 2-D modeling groups use the diffusivity factor approximation. This approximation produces little error in tropospheric H2O and CO2 cooling rates, but can produce significant errors in CO2 and O3 cooling rates at the stratopause. All models suffer from fundamental uncertainties in shapes and strengths of spectral lines. Thermal flux algorithms being used in 2-D tracer tranport models produce cooling rates that differ by as much as 40 percent for the same input model atmosphere. Disagreements of this magnitude are important since the thermal cooling rates must be subtracted from the almost-equal solar heating rates to derive the net radiative heating rates and the 2-D model diabatic circulation. For much of the annual cycle, the net radiative heating rates are comparable in magnitude to the cooling rate differences described. Many of the models underestimate the cooling rates in the middle and lower stratosphere. The consequences of these errors for the net heating rates and the diabatic circulation will depend on their meridional structure, which was not tested here. Other models underestimate the cooling near 1 mbar. Suchs errors pose potential problems for future interactive ozone assessment studies, since they could produce artificially-high temperatures and increased O3 destruction at these levels. These concerns suggest that a great deal of work is needed to improve the performance of thermal cooling rate algorithms used in the 2-D tracer transport models.

  12. Parallel-pipeline 2-D DCT/IDCT processor chip

    NASA Astrophysics Data System (ADS)

    Ruiz, G. A.; Michell, J. A.; Buron, A.

    2005-06-01

    This paper describes the architecture of an 8x8 2-D DCT/IDCT processor with high throughput and a cost-effective architecture. The 2D DCT/IDCT is calculated using the separability property, so that its architecture is made up of two 1-D processors and a transpose buffer (TB) as intermediate memory. This transpose buffer presents a regular structure based on D-type flip-flops with a double serial input/output data-flow very adequate for pipeline architectures. The processor has been designed with parallel and pipeline architecture to attain high throughput, reduced hardware and maximum efficiency in all arithmetic elements. This architecture allows that the processing elements and arithmetic units work in parallel at half the frequency of the data input rate, except for normalization of transform which it is done in a multiplier operating at maximum frequency. Moreover, it has been verified that the precision analysis of the proposed processor meets the demands of IEEE Std. 1180-1990 used in video codecs ITU-T H.261 and ITU-T H.263. This processor has been conceived using a standard cell design methodology and manufactured in a 0.35-μm CMOS CSD 3M/2P 3.3V process. It has an area of 6.25 mm2 (the core is 3mm2) and contains a total of 11.7k gates, of which 5.8k gates are flip-flops. A data input rate frequency of 300MHz has been established with a latency of 172 cycles for the 2-D DCT and 178 cycles for the 2-D IDCT. The computing time of a block is close to 580ns. Its performances in computing speed as well as hardware complexity indicate that the proposed design is suitable for HDTV applications.

  13. FASTWO - A 2-D interactive algebraic grid generator

    NASA Technical Reports Server (NTRS)

    Luh, Raymond Ching-Chung; Lombard, C. K.

    1988-01-01

    This paper presents a very simple and effective computational procedure, FASTWO, for generating patched composite finite difference grids in 2-D for any geometry. Major components of the interactive graphics based method that is closely akin to and borrows many tools from transfinite interpolation are highlighted. Several grids produced by FASTWO are shown to illustrate its powerful capability. Comments about extending the methodology to 3-D are also given.

  14. Energy level transitions of gas in a 2D nanopore

    SciTech Connect

    Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.

    2015-10-27

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.

  15. 2D Lattices of Ferromagnetic Nanoparticles as Supermagnetics

    DTIC Science & Technology

    1999-06-18

    Supermagnetics DISTRIBUTION: Approved for public release, distribution unlimited Availability: Hard copy only. This paper is part of the following report: TITLE...Technology" OAN.01 i St Petersburg, Russia, June 14-18, 1999 © 1999 loffe Institute 2D lattices of ferromagnetic nanoparticles as supermagnetics A. A...temperature the system became ordered due to the dipole interaction of particles. Such a state of the system was defined as supermagnetic [ ]. The critical

  16. 2D and 3D Traveling Salesman Problem

    ERIC Educational Resources Information Center

    Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt

    2011-01-01

    When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…

  17. Numerical 2D-modeling of multiroll leveling

    NASA Astrophysics Data System (ADS)

    Mathieu, N.; Potier-Ferry, M.; Zahrouni, H.

    2016-10-01

    Multiroll leveling is a forming process used in the metals industries (aluminum, steel, …) in order to correct flatness defects and minimize residual stresses in strips thanks to alternating bending. This work proposes a Finite Element 2D model to simulate the metal sheet conveying through the machine. Obtained results (plastic strain and residual stress distributions through thickness) are analysed. Strip deformation, after elastic springback and potential buckling, is also predicted (residual curvatures).

  18. 2-D Signal Generation Using State-Space Formulation.

    DTIC Science & Technology

    1985-12-01

    published that have established nonoptical .~ -~ Iimage processing as a viable area of research. A large portion of this research emphasizes the linear...research and the study of time-discrete linear systems. This thesis develops the discrete model of Roesser [Ref. 5] for linear image processing which... THESIS 2-D SIGNAL GENERATION USING STATE-SPACE FORMULATION - • by (.) Evangelos Theofilou December 1985 • Thesis Advisor: Sydney R. Parker Approved

  19. Geometric properties of quasiperiodic orbits of 2D Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Adrover, A.; Giona, M.

    1999-08-01

    By enforcing the isomorphism between the group SL(2, R ) and linear fractional transforms, this letter shows that, for quasi-periodic orbits of 2D area-preserving maps possessing regions of chaotic behavior, the vector tangent to the quasiperiodic orbit can be obtained from the dynamics of the associated linear fractional transforms (obtained from the differential of the map), which is Cesaro convergent. Several implications of this geometric result are addressed.

  20. [3D display of sequential 2D medical images].

    PubMed

    Lu, Yisong; Chen, Yazhu

    2003-12-01

    A detailed review is given in this paper on various current 3D display methods for sequential 2D medical images and the new development in 3D medical image display. True 3D display, surface rendering, volume rendering, 3D texture mapping and distributed collaborative rendering are discussed in depth. For two kinds of medical applications: Real-time navigation system and high-fidelity diagnosis in computer aided surgery, different 3D display methods are presented.

  1. NASA High-Speed 2D Photogrammetric Measurement System

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2012-01-01

    The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.

  2. Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures

    PubMed Central

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2015-01-01

    Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices. PMID:26679513

  3. The inversion of 2D NMR relaxometry data using L1 regularization

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaolong; Su, Guanqun; Wang, Lijia; Nie, Shengdong; Ge, Xinmin

    2017-02-01

    NMR relaxometry has been used as a powerful tool to study molecular dynamics. Many algorithms have been developed for the inversion of 2D NMR relaxometry data. Unlike traditional algorithms implementing L2 regularization, high order Tikhonov regularization or iterative regularization, L1 penalty term is involved to constrain the sparsity of resultant spectra in this paper. Then fast iterative shrinkage-thresholding algorithm (FISTA) is proposed to solve the L1 regularization problem. The effectiveness, noise vulnerability and practical utility of the proposed algorithm are analyzed by simulations and experiments. The results demonstrate that the proposed algorithm has a more excellent capability to reveal narrow peaks than traditional inversion algorithms. The L1 regularization implemented by our algorithm can be a useful complementary to the existing algorithms.

  4. Optical Multiplications With Single Element 2-D Acousto-Optic Laser Beam Deflector

    NASA Astrophysics Data System (ADS)

    Soos, Jolanta I.; Leepa, Douglas C.; Rosemeier, Ronald G.

    1989-05-01

    With the current need for developing very fast computers in comparison to conventional digital chip based systems, the future for optical based signal processing is very bright. Attention has turned to a different application of optics utilizing mathematical operations, in which case operations are numerical, sometimes discrete, and often algebraic in nature. Interest has been so vigorous that many view it as a small revolution in optics, whereby optical signal processing is beginning to encompass what is frequently described as optical computing. The term is fully intended to imply a close comparison with the operations performed by scientific digital canputers. This paper will describe the applications of single element 2-D acousto-optic deflectors for optical multiplication systems.

  5. Effective Temperature of 2D Dusty Plasma Liquids at the Discrete Level

    SciTech Connect

    Io, C.-W.; Chan, C.-L.; I Lin

    2007-07-13

    Fluctuation-dissipation theory has been used to measure the effective temperature of non-equilibrium system. In this work, using a 2D dusty plasma liquid formed by the negatively charged fine particles suspending in weakly ionized discharges and sheared by two CW counter parallel laser beams, we measure the micro-transport at the kinetic level. The effective temperatures Teff at different time scales are obtained through the Stokes-Einstein relation which relates the diffusion coefficient (D) and the viscosity ({eta}). The external energy is cascaded from the slow hopping modes to the fast caging modes through mutual coupling, which leads to the higher effective temperature of the slow hopping modes.

  6. Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures.

    PubMed

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2015-12-18

    Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices.

  7. 2D:4D Ratio and its Implications in Medicine

    PubMed Central

    Jeevanandam, Saravanakumar

    2016-01-01

    Digit ratios, especially 2D:4D ratio, a potential proxy marker for prenatal androgen exposure shows sexual dimorphism. Existing literature and recent research show accumulating evidence on 2D:4D ratio showing correlations with various phenotypic traits in humans. Ratio of 2D:4D is found to correlate negatively to testosterone and positively to oestrogen in the foetus. Interestingly, it is constant since birth and not influenced by the adult hormone levels. Usually, males have lower ratios when compared to females. Prenatal androgen exposure and therefore, digit ratios have been reported to be associated with numerical competencies, spatial skills, handedness, cognitive abilities, academic performance, sperm counts, personalities and prevalence of obesity, migraine, eating disorders, depression, myopia, autism etc. The authors have attempted to write a brief account on the digit ratios and the dimorphism observed in various physiological, psychological and behavioural traits. Also, the authors have discussed the relevant molecular basics and the methods of measurement of digit ratios. PMID:28208851

  8. 2D optical beam splitter using diffractive optical elements (DOE)

    NASA Astrophysics Data System (ADS)

    Wen, Fung J.; Chung, Po S.

    2006-09-01

    A novel approach for optical beam distribution into a 2-dimensional (2-D) packaged fiber arrays using 2-D Dammann gratings is investigated. This paper focuses on the design and fabrication of the diffractive optical element (DOE) and investigates the coupling efficiencies of the beamlets into a packaged V-grooved 2x2 fibre array. We report for the first time experimental results of a 2-D optical signal distribution into a packaged 2x2 fibre array using Dammann grating. This grating may be applicable to the FTTH network as it can support sufficient channels with good output uniformity together with low polarization dependent loss (PDL) and acceptable insertion loss. Using an appropriate optimization algorithm (the steepest descent algorithm in this case), the optimum profile for the gratings can be calculated. The gratings are then fabricated on ITO glass using electron-beam lithography. The overall performance of the design shows an output uniformity of around 0.14 dB and an insertion loss of about 12.63 dB, including the DOE, focusing lens and the packaged fiber array.

  9. Shear viscosity measurements in a 2D Yukawa liquid

    NASA Astrophysics Data System (ADS)

    Nosenko, Volodymyr

    2005-03-01

    Shear viscosity was measured for a 2D strongly-coupled Yukawa liquid. First, we formed a dilute monolayer suspension of microspheres in a partially-ionized rarefied gas, i.e., a dusty plasma. In the absence of manipulation, the suspension forms a 2D triangular lattice. We used a new in-situ method of applying a shear stress using the scattering forces applied by counter-propagating laser beams. The lattice melted and a shear flow formed. Using digital video microscopy for direct imaging and particle tracking, the microscopic dynamics of the shear flow are observed. Averaging the velocities of individual microspheres, a velocity flow profile was calculated. Using the Navier-Stokes equation with an additional frictional term to account for gas drag, we fit the velocity profile. The fit yielded the value of the shear viscosity. The kinematic viscosity of our particle suspension is of order 1 mm^2s-1, which is comparable to that for liquid water. We believe this is the first report of a rheological measurement in a 2D dusty plasma. This talk is based on V. Nosenko and J. Goree, PRL 93, 155004 (2004).

  10. Hybrid 3D-2D printing for bone scaffolds fabrication

    NASA Astrophysics Data System (ADS)

    Seleznev, V. A.; Prinz, V. Ya

    2017-02-01

    It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields.

  11. Volumetric elasticity imaging with a 2-D CMUT array.

    PubMed

    Fisher, Ted G; Hall, Timothy J; Panda, Satchi; Richards, Michael S; Barbone, Paul E; Jiang, Jingfeng; Resnick, Jeff; Barnes, Steve

    2010-06-01

    This article reports the use of a two-dimensional (2-D) capacitive micro-machined ultrasound transducer (CMUT) to acquire radio-frequency (RF) echo data from relatively large volumes of a simple ultrasound phantom to compare three-dimensional (3-D) elasticity imaging methods. Typical 2-D motion tracking for elasticity image formation was compared with three different methods of 3-D motion tracking, with sum-squared difference (SSD) used as the similarity measure. Differences among the algorithms were the degree to which they tracked elevational motion: not at all (2-D search), planar search, combination of multiple planes and plane independent guided search. The cross-correlation between the predeformation and motion-compensated postdeformation RF echo fields was used to quantify motion tracking accuracy. The lesion contrast-to-noise ratio was used to quantify image quality. Tracking accuracy and strain image quality generally improved with increased tracking sophistication. When used as input for a 3-D modulus reconstruction, high quality 3-D displacement estimates yielded accurate and low noise modulus reconstruction.

  12. Building 3D scenes from 2D image sequences

    NASA Astrophysics Data System (ADS)

    Cristea, Paul D.

    2006-05-01

    Sequences of 2D images, taken by a single moving video receptor, can be fused to generate a 3D representation. This dynamic stereopsis exists in birds and reptiles, whereas the static binocular stereopsis is common in mammals, including humans. Most multimedia computer vision systems for stereo image capture, transmission, processing, storage and retrieval are based on the concept of binocularity. As a consequence, their main goal is to acquire, conserve and enhance pairs of 2D images able to generate a 3D visual perception in a human observer. Stereo vision in birds is based on the fusion of images captured by each eye, with previously acquired and memorized images from the same eye. The process goes on simultaneously and conjointly for both eyes and generates an almost complete all-around visual field. As a consequence, the baseline distance is no longer fixed, as in the case of binocular 3D view, but adjustable in accordance with the distance to the object of main interest, allowing a controllable depth effect. Moreover, the synthesized 3D scene can have a better resolution than each individual 2D image in the sequence. Compression of 3D scenes can be achieved, and stereo transmissions with lower bandwidth requirements can be developed.

  13. A novel point cloud registration using 2D image features

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Chou; Tai, Yen-Chou; Lee, Jhong-Jin; Chen, Yong-Sheng

    2017-01-01

    Since a 3D scanner only captures a scene of a 3D object at a time, a 3D registration for multi-scene is the key issue of 3D modeling. This paper presents a novel and an efficient 3D registration method based on 2D local feature matching. The proposed method transforms the point clouds into 2D bearing angle images and then uses the 2D feature based matching method, SURF, to find matching pixel pairs between two images. The corresponding points of 3D point clouds can be obtained by those pixel pairs. Since the corresponding pairs are sorted by their distance between matching features, only the top half of the corresponding pairs are used to find the optimal rotation matrix by the least squares approximation. In this paper, the optimal rotation matrix is derived by orthogonal Procrustes method (SVD-based approach). Therefore, the 3D model of an object can be reconstructed by aligning those point clouds with the optimal transformation matrix. Experimental results show that the accuracy of the proposed method is close to the ICP, but the computation cost is reduced significantly. The performance is six times faster than the generalized-ICP algorithm. Furthermore, while the ICP requires high alignment similarity of two scenes, the proposed method is robust to a larger difference of viewing angle.

  14. Resolving 2D Amorphous Materials with Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Burson, Kristen M.; Buechner, Christin; Lewandowski, Adrian; Heyde, Markus; Freund, Hans-Joachim

    Novel two-dimensional (2D) materials have garnered significant scientific interest due to their potential technological applications. Alongside the emphasis on crystalline materials, such as graphene and hexagonal BN, a new class of 2D amorphous materials must be pursued. For amorphous materials, a detailed understanding of the complex structure is necessary. Here we present a structural study of 2D bilayer silica on Ru(0001), an insulating material which is weakly coupled to the substrate. Atomic structure has been determined with a dual mode atomic force microscopy (AFM) and scanning tunneling microscopy (STM) sensor in ultra-high vacuum (UHV) at low temperatures, revealing a network of different ring sizes. Liquid AFM measurements with sub-nanometer resolution bridge the gap between clean UHV conditions and the environments that many material applications demand. Samples are grown and characterized in vacuum and subsequently transferred to the liquid AFM. Notably, the key structural features observed, namely nanoscale ring networks and larger holes to the substrate, show strong quantitative agreement between the liquid and UHV microscopy measurements. This provides direct evidence for the structural stability of these silica films for nanoelectronics and other applications. KMB acknowledges support from the Alexander von Humboldt Foundation.

  15. F-theory and 2d (0, 2) theories

    NASA Astrophysics Data System (ADS)

    Schäfer-Nameki, Sakura; Weigand, Timo

    2016-05-01

    F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N = (0 , 2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0 , 2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0 , 2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0 , 2) GLSM is realized via different T-branes or gluing data in F-theory.

  16. An Intercomparison of 2-D Models Within a Common Framework

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.; Scott, Courtney J.; Jackman, Charles H.; Fleming, Eric L.; Considine, David B.; Kinnison, Douglas E.; Connell, Peter S.; Rotman, Douglas A.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    A model intercomparison among the Atmospheric and Environmental Research (AER) 2-D model, the Goddard Space Flight Center (GSFC) 2-D model, and the Lawrence Livermore National Laboratory 2-D model allows us to separate differences due to model transport from those due to the model's chemical formulation. This is accomplished by constructing two hybrid models incorporating the transport parameters of the GSFC and LLNL models within the AER model framework. By comparing the results from the native models (AER and e.g. GSFC) with those from the hybrid model (e.g. AER chemistry with GSFC transport), differences due to chemistry and transport can be identified. For the analysis, we examined an inert tracer whose emission pattern is based on emission from a High Speed Civil Transport (HSCT) fleet; distributions of trace species in the 2015 atmosphere; and the response of stratospheric ozone to an HSCT fleet. Differences in NO(y) in the upper stratosphere are found between models with identical transport, implying different model representations of atmospheric chemical processes. The response of O3 concentration to HSCT aircraft emissions differs in the models from both transport-dominated differences in the HSCT-induced perturbations of H2O and NO(y) as well as from differences in the model represent at ions of O3 chemical processes. The model formulations of cold polar processes are found to be the most significant factor in creating large differences in the calculated ozone perturbations

  17. Volumetric Elasticity Imaging with a 2D CMUT Array

    PubMed Central

    Fisher, Ted G.; Hall, Timothy J.; Panda, Satchi; Richards, Michael S.; Barbone, Paul E.; Jiang, Jingfeng; Resnick, Jeff; Barnes, Steve

    2010-01-01

    This paper reports the use of a two-dimensional (2D) capacitive micro-machined ultrasound transducer (CMUT) to acquire radio frequency (RF) echo data from relatively large volumes of a simple ultrasound phantom to compare 3D elasticity imaging methods. Typical 2D motion tracking for elasticity image formation was compared to three different methods of 3D motion tracking, with sum-squared difference (SSD) used as the similarity measure. Differences among the algorithms were the degree to which they tracked elevational motion: not at all (2D search), planar search, combination of multiple planes, and plane independent guided search. The cross correlation between the pre-deformation and motion-compensated post-deformation RF echo fields was used to quantify motion tracking accuracy. The lesion contrast-to-noise ratio was used to quantify image quality. Tracking accuracy and strain image quality generally improved with increased tracking sophistication. When used as input for a 3D modulus reconstruction, high quality 3D displacement estimates yielded accurate and low noise modulus reconstruction. PMID:20510188

  18. Murine cytomegalovirus regulation of NKG2D ligands.

    PubMed

    Lenac, Tihana; Arapović, Jurica; Traven, Luka; Krmpotić, Astrid; Jonjić, Stipan

    2008-06-01

    Human cytomegalovirus (HCMV) is a ubiquitous pathogen that causes morbidity risk in immunologically suppressed and immunodeficient patients including congenital infections. Approaches to curb the consequences of HCMV infections are restricted by a lack of complete understanding of viral pathogenesis. The infection of mice with murine cytomegalovirus (MCMV) as a model of HCMV infection has been particularly useful in elucidating the role of innate and adaptive immune response mechanisms. A large number of cytomegalovirus genes modulate the innate and the adaptive host immune response. The products of several MCMV genes are involved in subverting the natural killer (NK) cell response by down-modulating cellular ligands for the NKG2D receptor expressed on NK cells and CD8(+) T cells. Mutant viruses lacking these immunoevasion genes are attenuated with respect to virus growth in vivo. Given the importance of the NKG2D receptor in controlling both NK- and T cell-mediated immunity, it is of tremendous importance to understand the molecular mechanisms and consequences of viral regulation of the NKG2D ligands.

  19. Design Application Translates 2-D Graphics to 3-D Surfaces

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.

  20. 2D depiction of nonbonding interactions for protein complexes.

    PubMed

    Zhou, Peng; Tian, Feifei; Shang, Zhicai

    2009-04-30

    A program called the 2D-GraLab is described for automatically generating schematic representation of nonbonding interactions across the protein binding interfaces. The input file of this program takes the standard PDB format, and the outputs are two-dimensional PostScript diagrams giving intuitive and informative description of the protein-protein interactions and their energetics properties, including hydrogen bond, salt bridge, van der Waals interaction, hydrophobic contact, pi-pi stacking, disulfide bond, desolvation effect, and loss of conformational entropy. To ensure these interaction information are determined accurately and reliably, methods and standalone programs employed in the 2D-GraLab are all widely used in the chemistry and biology community. The generated diagrams allow intuitive visualization of the interaction mode and binding specificity between two subunits in protein complexes, and by providing information on nonbonding energetics and geometric characteristics, the program offers the possibility of comparing different protein binding profiles in a detailed, objective, and quantitative manner. We expect that this 2D molecular graphics tool could be useful for the experimentalists and theoreticians interested in protein structure and protein engineering.

  1. Broadband THz Spectroscopy of 2D Nanoscale Materials

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Tripathi, Shivendra; Huang, Mengchen; Hsu, Jen-Feng; D'Urso, Brian; Lee, Hyungwoo; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy

    Two-dimensional (2D) materials such as graphene and transition-metal dichalcogenides (TMDC) have attracted intense research interest in the past decade. Their unique electronic and optical properties offer the promise of novel optoelectronic applications in the terahertz regime. Recently, generation and detection of broadband terahertz (10 THz bandwidth) emission from 10-nm-scale LaAlO3/SrTiO3 nanostructures created by conductive atomic force microscope (c-AFM) lithography has been demonstrated . This unprecedented control of THz emission at 10 nm length scales creates a pathway toward hybrid THz functionality in 2D-material/LaAlO3/SrTiO3 heterostructures. Here we report initial efforts in THz spectroscopy of 2D nanoscale materials with resolution comparable to the dimensions of the nanowire (10 nm). Systems under investigation include graphene, single-layer molybdenum disulfide (MoS2), and tungsten diselenide (WSe2) nanoflakes. 1. Y. Ma, et al., Nano Lett. 13, 2884 (2013). We gratefully acknowledge financial support from the following agencies and grants: AFOSR (FA9550-12-1-0268 (JL, PRI), FA9550-12-1-0342 (CBE)), ONR (N00014-13-1-0806 (JL, CBE), N00014-15-1-2847 (JL)), NSF DMR-1124131 (JL, CBE) and DMR-1234096 (CBE).

  2. GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.

    PubMed

    Dorgham, Osama M; Laycock, Stephen D; Fisher, Mark H

    2012-09-01

    Recent advances in programming languages for graphics processing units (GPUs) provide developers with a convenient way of implementing applications which can be executed on the CPU and GPU interchangeably. GPUs are becoming relatively cheap, powerful, and widely available hardware components, which can be used to perform intensive calculations. The last decade of hardware performance developments shows that GPU-based computation is progressing significantly faster than CPU-based computation, particularly if one considers the execution of highly parallelisable algorithms. Future predictions illustrate that this trend is likely to continue. In this paper, we introduce a way of accelerating 2-D/3-D image registration by developing a hybrid system which executes on the CPU and utilizes the GPU for parallelizing the generation of digitally reconstructed radiographs (DRRs). Based on the advancements of the GPU over the CPU, it is timely to exploit the benefits of many-core GPU technology by developing algorithms for DRR generation. Although some previous work has investigated the rendering of DRRs using the GPU, this paper investigates approximations which reduce the computational overhead while still maintaining a quality consistent with that needed for 2-D/3-D registration with sufficient accuracy to be clinically acceptable in certain applications of radiation oncology. Furthermore, by comparing implementations of 2-D/3-D registration on the CPU and GPU, we investigate current performance and propose an optimal framework for PC implementations addressing the rigid registration problem. Using this framework, we are able to render DRR images from a 256×256×133 CT volume in ~24 ms using an NVidia GeForce 8800 GTX and in ~2 ms using NVidia GeForce GTX 580. In addition to applications requiring fast automatic patient setup, these levels of performance suggest image-guided radiation therapy at video frame rates is technically feasible using relatively low cost PC

  3. Generation of 2D Land Cover Maps for Urban Areas Using Decision Tree Classification

    NASA Astrophysics Data System (ADS)

    Höhle, J.

    2014-09-01

    A 2D land cover map can automatically and efficiently be generated from high-resolution multispectral aerial images. First, a digital surface model is produced and each cell of the elevation model is then supplemented with attributes. A decision tree classification is applied to extract map objects like buildings, roads, grassland, trees, hedges, and walls from such an "intelligent" point cloud. The decision tree is derived from training areas which borders are digitized on top of a false-colour orthoimage. The produced 2D land cover map with six classes is then subsequently refined by using image analysis techniques. The proposed methodology is described step by step. The classification, assessment, and refinement is carried out by the open source software "R"; the generation of the dense and accurate digital surface model by the "Match-T DSM" program of the Trimble Company. A practical example of a 2D land cover map generation is carried out. Images of a multispectral medium-format aerial camera covering an urban area in Switzerland are used. The assessment of the produced land cover map is based on class-wise stratified sampling where reference values of samples are determined by means of stereo-observations of false-colour stereopairs. The stratified statistical assessment of the produced land cover map with six classes and based on 91 points per class reveals a high thematic accuracy for classes "building" (99 %, 95 % CI: 95 %-100 %) and "road and parking lot" (90 %, 95 % CI: 83 %-95 %). Some other accuracy measures (overall accuracy, kappa value) and their 95 % confidence intervals are derived as well. The proposed methodology has a high potential for automation and fast processing and may be applied to other scenes and sensors.

  4. Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)

    ClinicalTrials.gov

    2016-10-24

    Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  5. Resolving spectral information from time domain induced polarization data through 2-D inversion

    NASA Astrophysics Data System (ADS)

    Fiandaca, Gianluca; Ramm, James; Binley, Andrew; Gazoty, Aurélie; Christiansen, Anders Vest; Auken, Esben

    2013-02-01

    Field-based time domain (TD) induced polarization (IP) surveys are usually modelled by taking into account only the integral chargeability, thus disregarding spectral content. Furthermore, the effect of the transmitted waveform is commonly neglected, biasing inversion results. Given these limitations of conventional approaches, a new 2-D inversion algorithm has been developed using the full voltage decay of the IP response, together with an accurate description of the transmitter waveform and receiver transfer function. This allows reconstruction of the spectral information contained in the TD decay series. The inversion algorithm is based around a 2-D complex conductivity kernel that is computed over a range of frequencies and converted to the TD through a fast Hankel transform. Two key points in the implementation ensure that computation times are minimized. First, the speed of the Jacobian computation, time transformed from frequency domain through the same transformation adopted for the forward response is optimized. Secondly, the reduction of the number of frequencies where the forward response and Jacobian are calculated: cubic splines are used to interpolate the responses to the frequency sampling necessary in the fast Hankel transform. These features, together with parallel computation, ensure inversion times comparable with those of direct current algorithms. The algorithm has been developed in a laterally constrained inversion scheme, and handles both smooth and layered inversions; the latter being helpful in sedimentary environments, where quasi-layered models often represent the actual geology more accurately than smooth minimum-structure models. In the layered inversion approach, a general method to derive the thickness derivative from the complex conductivity Jacobian is also proposed. One synthetic example of layered inversion and one field example of smooth inversion show the capability of the algorithm and illustrates a complete uncertainty

  6. Optimizing water hyperpolarization and dissolution for sensitivity-enhanced 2D biomolecular NMR

    NASA Astrophysics Data System (ADS)

    Olsen, Greg; Markhasin, Evgeny; Szekely, Or; Bretschneider, Christian; Frydman, Lucio

    2016-03-01

    A recent study explored the use of hyperpolarized water, to enhance the sensitivity of nuclei in biomolecules thanks to rapid proton exchanges with labile amide backbone and sidechain groups. Further optimizations of this approach have now allowed us to achieve proton polarizations approaching 25% in the water transferred into the NMR spectrometer, effective water T1 times approaching 40 s, and a reduction in the dilution demanded for the cryogenic dissolution process. Further hardware developments have allowed us to perform these experiments, repeatedly and reliably, in 5 mm NMR tubes. All these ingredients - particularly the ⩾3000× 1H polarization enhancements over 11.7 T thermal counterparts, long T1 times and a compatibility with high-resolution biomolecular NMR setups - augur well for hyperpolarized 2D NMR studies of peptides, unfolded proteins and intrinsically disordered systems undergoing fast exchanges of their protons with the solvent. This hypothesis is here explored by detailing the provisions that lead to these significant improvements over previous reports, and demonstrating 1D coherence transfer experiments and 2D biomolecular HMQC acquisitions delivering NMR spectral enhancements of 100-500× over their optimized, thermally-polarized, counterparts.

  7. Coherent X-ray beam metrology using 2D high-resolution Fresnel-diffraction analysis.

    PubMed

    Ruiz-Lopez, M; Faenov, A; Pikuz, T; Ozaki, N; Mitrofanov, A; Albertazzi, B; Hartley, N; Matsuoka, T; Ochante, Y; Tange, Y; Yabuuchi, T; Habara, T; Tanaka, K A; Inubushi, Y; Yabashi, M; Nishikino, M; Kawachi, T; Pikuz, S; Ishikawa, T; Kodama, R; Bleiner, D

    2017-01-01

    Direct metrology of coherent short-wavelength beamlines is important for obtaining operational beam characteristics at the experimental site. However, since beam-time limitation imposes fast metrology procedures, a multi-parametric metrology from as low as a single shot is desirable. Here a two-dimensional (2D) procedure based on high-resolution Fresnel diffraction analysis is discussed and applied, which allowed an efficient and detailed beamline characterization at the SACLA XFEL. So far, the potential of Fresnel diffraction for beamline metrology has not been fully exploited because its high-frequency fringes could be only partly resolved with ordinary pixel-limited detectors. Using the high-spatial-frequency imaging capability of an irradiated LiF crystal, 2D information of the coherence degree, beam divergence and beam quality factor M(2) were retrieved from simple diffraction patterns. The developed beam metrology was validated with a laboratory reference laser, and then successfully applied at a beamline facility, in agreement with the source specifications.

  8. A simple 2-D inundation model for incorporating flood damage in urban drainage planning

    NASA Astrophysics Data System (ADS)

    Pathirana, A.; Tsegaye, S.; Gersonius, B.; Vairavamoorthy, K.

    2008-11-01

    In this paper a new inundation model code is developed and coupled with Storm Water Management Model, SWMM, to relate spatial information associated with urban drainage systems as criteria for planning of storm water drainage networks. The prime objective is to achive a model code that is simple and fast enough to be consistently be used in planning stages of urban drainage projects. The formulation for the two-dimensional (2-D) surface flow model algorithms is based on the Navier Stokes equation in two dimensions. An Alternating Direction Implicit (ADI) finite difference numerical scheme is applied to solve the governing equations. This numerical scheme is used to express the partial differential equations with time steps split into two halves. The model algorithm is written using C++ computer programming language. This 2-D surface flow model is then coupled with SWMM for simulation of both pipe flow component and surcharge induced inundation in urban areas. In addition, a damage calculation block is integrated within the inundation model code. The coupled model is shown to be capable of dealing with various flow conditions, as well as being able to simulate wetting and drying processes that will occur as the flood flows over an urban area. It has been applied under idealized and semi-hypothetical cases to determine detailed inundation zones, depths and velocities due to surcharged water on overland surface.

  9. Characterization of cytochrome P-450 2D1 activity in rat brain: high-affinity kinetics for dextromethorphan.

    PubMed

    Tyndale, R F; Li, Y; Li, N Y; Messina, E; Miksys, S; Sellers, E M

    1999-08-01

    We investigated the enzymatic function, stability, and regional distribution of rat brain cytochrome P-450 (CYP) 2D1 activity. CYP2D1 is the homolog of human CYP2D6, a genetically variable enzyme that activates or inactivates many clinical drugs acting on the central nervous system (e.g., antidepressants, monoamine oxidase inhibitors, serotonin uptake inhibitors, and neuroleptics), drugs of abuse (e.g., amphetamine and codeine), neurotoxins (e.g., 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1,2,3, 4-tetrahydroquinoline), and endogenous neurochemicals (e.g., tryptamine). The CYP2D family has been identified in rodent, canine, and primate brain. Conversion of dextromethorphan to dextrorphan by rat brain membranes was assayed by HPLC and was dependent on NADPH, protein concentration, and incubation time. Significant loss of activity was observed in some homogenizing buffers and after freezing of whole tissues or membrane preparations. Dextromethorphan (0.5-640 microM) metabolism was mediated by high- and low-affinity enzyme systems; K(m1) was 2.7 +/- 2.6 and K(m2) was 757 +/- 156 microM (n = 3 rats, mean +/- S.E.). The enzyme activity was significantly (p <.01) and stereoselectively inhibited by CYP2D1 inhibitors quinine and quinidine (not by CYP2C or CYP3A inhibitors), and by anti-CYP2D6 peptide antiserum (not by anti-CYP2C, -CYP2B, or -CYP3A antibodies). The enzymatic activity demonstrated significant brain regional variation (n = 10 regions, p <.001). These data characterize CYP2D1-mediated dextromethorphan metabolism in rat brain and suggest that localized metabolism of other CYP2D1 substrates (drugs, neurotoxins, and possibly endogenous compounds) within the brain will occur. In humans, CYP2D6 is genetically polymorphic; the variable expression of brain CYP2D6 may result in interindividual differences in central drug and neurotoxin metabolism, possibly contributing to interindividual differences in drug effects and neurotoxicity.

  10. Hierarchical alignment and full resolution pattern recognition of 2D NMR spectra: application to nematode chemical ecology.

    PubMed

    Robinette, Steven L; Ajredini, Ramadan; Rasheed, Hasan; Zeinomar, Abdulrahman; Schroeder, Frank C; Dossey, Aaron T; Edison, Arthur S

    2011-03-01

    Nuclear magnetic resonance (NMR) is the most widely used nondestructive technique in analytical chemistry. In recent years, it has been applied to metabolic profiling due to its high reproducibility, capacity for relative and absolute quantification, atomic resolution, and ability to detect a broad range of compounds in an untargeted manner. While one-dimensional (1D) (1)H NMR experiments are popular in metabolic profiling due to their simplicity and fast acquisition times, two-dimensional (2D) NMR spectra offer increased spectral resolution as well as atomic correlations, which aid in the assignment of known small molecules and the structural elucidation of novel compounds. Given the small number of statistical analysis methods for 2D NMR spectra, we developed a new approach for the analysis, information recovery, and display of 2D NMR spectral data. We present a native 2D peak alignment algorithm we term HATS, for hierarchical alignment of two-dimensional spectra, enabling pattern recognition (PR) using full-resolution spectra. Principle component analysis (PCA) and partial least squares (PLS) regression of full resolution total correlation spectroscopy (TOCSY) spectra greatly aid the assignment and interpretation of statistical pattern recognition results by producing back-scaled loading plots that look like traditional TOCSY spectra but incorporate qualitative and quantitative biological information of the resonances. The HATS-PR methodology is demonstrated here using multiple 2D TOCSY spectra of the exudates from two nematode species: Pristionchus pacificus and Panagrellus redivivus. We show the utility of this integrated approach with the rapid, semiautomated assignment of small molecules differentiating the two species and the identification of spectral regions suggesting the presence of species-specific compounds. These results demonstrate that the combination of 2D NMR spectra with full-resolution statistical analysis provides a platform for chemical and

  11. Altered expression of small heterodimer partner governs cytochrome P450 (CYP) 2D6 induction during pregnancy in CYP2D6-humanized mice.

    PubMed

    Koh, Kwi Hye; Pan, Xian; Shen, Hong-Wu; Arnold, Samuel L M; Yu, Ai-Ming; Gonzalez, Frank J; Isoherranen, Nina; Jeong, Hyunyoung

    2014-02-07

    Substrates of a major drug-metabolizing enzyme CYP2D6 display increased elimination during pregnancy, but the underlying mechanisms are unknown in part due to a lack of experimental models. Here, we introduce CYP2D6-humanized (Tg-CYP2D6) mice as an animal model where hepatic CYP2D6 expression is increased during pregnancy. In the mouse livers, expression of a known positive regulator of CYP2D6, hepatocyte nuclear factor 4α (HNF4α), did not change during pregnancy. However, HNF4α recruitment to CYP2D6 promoter increased at term pregnancy, accompanied by repressed expression of small heterodimer partner (SHP). In HepG2 cells, SHP repressed HNF4α transactivation of CYP2D6 promoter. In transgenic (Tg)-CYP2D6 mice, SHP knockdown led to a significant increase in CYP2D6 expression. Retinoic acid, an endogenous compound that induces SHP, exhibited decreased hepatic levels during pregnancy in Tg-CYP2D6 mice. Administration of all-trans-retinoic acid led to a significant decrease in the expression and activity of hepatic CYP2D6 in Tg-CYP2D6 mice. This study provides key insights into mechanisms underlying altered CYP2D6-mediated drug metabolism during pregnancy, laying a foundation for improved drug therapy in pregnant women.

  12. 2D OR NOT 2D: THE EFFECT OF DIMENSIONALITY ON THE DYNAMICS OF FINGERING CONVECTION AT LOW PRANDTL NUMBER

    SciTech Connect

    Garaud, Pascale; Brummell, Nicholas

    2015-12-10

    Fingering convection (otherwise known as thermohaline convection) is an instability that occurs in stellar radiative interiors in the presence of unstable compositional gradients. Numerical simulations have been used in order to estimate the efficiency of mixing induced by this instability. However, fully three-dimensional (3D) computations in the parameter regime appropriate for stellar astrophysics (i.e., low Prandtl number) are prohibitively expensive. This raises the question of whether two-dimensional (2D) simulations could be used instead to achieve the same goals. In this work, we address this issue by comparing the outcome of 2D and 3D simulations of fingering convection at low Prandtl number. We find that 2D simulations are never appropriate. However, we also find that the required 3D computational domain does not have to be very wide: the third dimension only needs to contain a minimum of two wavelengths of the fastest-growing linearly unstable mode to capture the essentially 3D dynamics of small-scale fingering. Narrow domains, however, should still be used with caution since they could limit the subsequent development of any large-scale dynamics typically associated with fingering convection.

  13. Hybrid 3D-2D printing of bone scaffolds Hybrid 3D-2D printing methods for bone scaffolds fabrication.

    PubMed

    Prinz, V Ya; Seleznev, Vladimir

    2016-12-13

    It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields.

  14. Solution conformation of 2-aminopurine (2-AP) dinucleotide determined by ultraviolet 2D fluorescence spectroscopy (UV-2D FS).

    PubMed

    Widom, Julia R; Johnson, Neil P; von Hippel, Peter H; Marcus, Andrew H

    2013-02-01

    We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analog of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS) - a fluorescence-detected variation of 2D electronic spectroscopy - to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point-dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R12 = 3.5 Å ± 0.5 Å, twist angle θ12 = 5° ± 5°), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV-2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein-nucleic acid complexes.

  15. Cloning and characterization of a novel human phosphatidic acid phosphatase type 2, PAP2d, with two different transcripts PAP2d_v1 and PAP2d_v2.

    PubMed

    Sun, Liyun; Gu, Shaohua; Sun, Yaqiong; Zheng, Dan; Wu, Qihan; Li, Xin; Dai, Jianfeng; Dai, Jianliang; Ji, Chaoneng; Xie, Yi; Mao, Yumin

    2005-04-01

    This study reports the cloning and characterization of a novel human phosphatidic acid phosphatase type 2 isoform cDNAs (PAP2d) from the foetal brain cDNA library. The PAP2d gene is localized on chromosome 1p21.3. It contains six exons and spans 112 kb of the genomic DNA. By large-scale cDNA sequencing we found two splice variants of PAP2d, PAP2d_v1 and PAP2d_v2. The PAP2d_v1 cDNA is 1722 bp in length and spans an open reading frame from nucleotide 56 to 1021, encoding a 321aa protein. The PAP2d_v2 cDNA is 1707 bp in length encoding a 316aa protein from nucleotide 56-1006. The PAP2d_v1 cDNA is 15 bp longer than the PAP2d_v2 cDNA in the terminal of the fifth exon and it creates different ORF. Both of the proteins contain a well-conserved PAP2 motif. The PAP2d_v1 is mainly expressed in human brain, lung, kidney, testis and colon, while PAP2d_v2 is restricted to human placenta, skeletal muscle, and kidney. The two splice variants are co-expressed only in kidney.

  16. 2D Seismic Reflection Data across Central Illinois

    SciTech Connect

    Smith, Valerie; Leetaru, Hannes

    2014-09-30

    In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made

  17. Human erythrocytes analyzed by generalized 2D Raman correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wesełucha-Birczyńska, Aleksandra; Kozicki, Mateusz; Czepiel, Jacek; Łabanowska, Maria; Nowak, Piotr; Kowalczyk, Grzegorz; Kurdziel, Magdalena; Birczyńska, Malwina; Biesiada, Grażyna; Mach, Tomasz; Garlicki, Aleksander

    2014-07-01

    The most numerous elements of the blood cells, erythrocytes, consist mainly of two components: homogeneous interior filled with hemoglobin and closure which is the cell membrane. To gain insight into their specific properties we studied the process of disintegration, considering these two constituents, and comparing the natural aging process of human healthy blood cells. MicroRaman spectra of hemoglobin within the single RBC were recorded using 514.5, and 785 nm laser lines. The generalized 2D correlation method was applied to analyze the collected spectra. The time passed from blood donation was regarded as an external perturbation. The time was no more than 40 days according to the current storage limit of blood banks, although, the average RBC life span is 120 days. An analysis of the prominent synchronous and asynchronous cross peaks allow us to get insight into the mechanism of hemoglobin decomposition. Appearing asynchronous cross-peaks point towards globin and heme separation from each other, while synchronous shows already broken globin into individual amino acids. Raman scattering analysis of hemoglobin "wrapping", i.e. healthy erythrocyte ghosts, allows for the following peculiarity of their behavior. The increasing power of the excitation laser induced alterations in the assemblage of membrane lipids. 2D correlation maps, obtained with increasing laser power recognized as an external perturbation, allows for the consideration of alterations in the erythrocyte membrane structure and composition, which occurs first in the proteins. Cross-peaks were observed indicating an asynchronous correlation between the senescent-cell antigen (SCA) and heme or proteins vibrations. The EPR spectra of the whole blood was analyzed regarding time as an external stimulus. The 2D correlation spectra points towards participation of the selected metal ion centers in the disintegration process.

  18. Digit ratio (2D:4D), salivary testosterone, and handedness.

    PubMed

    Beaton, Alan A; Rudling, Nick; Kissling, Christian; Taurines, Regine; Thome, Johannes

    2011-03-01

    The length of the index finger relative to that of the ring finger, the 2D:4D ratio, has been taken to be a marker of the amount of testosterone (T) that was present in the foetal environment (Manning, Scutt, Wilson, & Lewis-Jones, 1998). It has also been suggested (Geschwind & Galaburda, 1987) that elevated levels of foetal T are associated with left-handedness and that adult levels of circulating T might relate to foetal levels (Jamison, Meier, & Campbell, 1993). We used multiple regression analyses to investigate whether there is any relationship between either left or right hand 2D:4D ratio and handedness. We also examined whether adult levels of salivary T (or cortisol, used as a control hormone) predict digit ratio and/or handedness. Although the 2D:4D ratio of neither the left nor the right hand was related to handedness, the difference between the digit ratios of the right and left hands, D(R-L), was a significant predictor of handedness and of the performance difference between the hands on a peg-moving task, supporting previous findings (Manning & Peters, 2009; Manning et al., 1998; Manning, Trivers, Thornhill, & Singh, 2000; Stoyanov, Marinov, & Pashalieva, 2009). Adult circulating T levels did not predict the digit ratio of the left or right hand; nor was there a significant relationship between concentrations of salivary T (or cortisol) and either hand preference or asymmetry in manual skill. We suggest that the association between D(R-L) and hand preference arises because D(R-L) is a correlate of sensitivity to T in the developing foetus.

  19. Quantitation of protein in samples prepared for 2-D electrophoresis.

    PubMed

    Berkelman, Tom

    2008-01-01

    The concentration of protein in a sample prepared for two dimensional (2-D) electrophoretic analysis is usually determined by protein assay. Reasons for this include the following. (1) Protein quantitation ensures that the amount of protein to be separated is appropriate for the gel size and visualization method. (2) Protein quantitation facilitates comparison among similar samples, as image-based analysis is simplified when equivalent quantities of proteins have been loaded on the gels to be compared. (3) Quantitation is necessary in cases where the protein sample is labeled with dye before separation (1,2). The labeling chemistry is affected by the dye to protein ratio so it is essential to know the protein concentration before setting up the labeling reaction.A primary consideration with quantitating protein in samples prepared for 2-D electrophoresis is interference by nonprotein substances that may be present in the sample. These samples generally contain chaotropic solubilizing agents, detergents, reductants, buffers or carrier ampholytes, all of which potentially interfere with protein quantitation. The most commonly used protein assays in proteomics research are colorimetric assays in which the presence of protein causes a color change that can be measured spectrophotometrically (3). All protein assays utilize standards, a dilution series of a known concentration of a known protein, to create a standard curve. Two methods will be considered that circumvent some of the problems associated with interfering substances and are well suited for samples prepared for 2-D electrophoresis. The first method (4.1.1) relies on a color change that occurs upon binding of a dye to protein and the second (4.1.2) relies on binding and reduction of cupric ion (Cu2+) ion to cuprous ion (Cu+) by proteins.

  20. Long-lived magnetoexcitons in 2D-fermion system

    NASA Astrophysics Data System (ADS)

    Kulik, L. V.; Zhuravlev, A. S.; Gorbunov, A. V.; Timofeev, V. B.; Kukushkin, I. V.

    2017-01-01

    The paper addresses the experimental technique that, when applied to a 2D-electron system in the integer quantum Hall regime with filling factor ν = 2 (the Hall insulating state), allows resonant excitation of magnetoexcitons, their detection, control of an ensemble of long-lived triplet excitons and investigation of their radiationless decay related to exciton spin relaxation into the ground state. The technique proposed enables independent control of photoexcited electrons and Fermi-holes using photoinduced resonance reflection spectra as well as estimate with a reasonable degree of accuracy the resulting density of photoinduced electron-hole pairs bound into magnetoexcitons. The mere existence of triplet excitons was directly established by inelastic light scattering spectra which were analyzed to determine the value of singlet-triplet exciton splitting. It was found that the lifetimes of triplet excitons conditioned by electron spin relaxation in highly perfect GaAs/AlGaAs heterostructures with highly mobile 2D electrons are extremely long exceeding 100 μs at T < 1 K. The paper presents a qualitative explanation of the long-spin relaxation lifetimes which are unprecedented for translation-invariant 2D systems. This enabled us to create sufficiently high concentrations of triplet magnetoexcitons, electrically neutral excitations following Bose-Einstein statistics, in a Fermi electron system and investigate their collective properties. At sufficiently high densities of triplet magnetoexcitons and low temperatures, T < 1 K, the degenerate magnetofermionic system exhibits condensation of the triplet magnetoexcitons into a qualitatively new collective state with unusual properties which occurs in the space of generalized moments (magnetic translation vectors). The occurrence of a condensed phase is accompanied with a significant decrease in the viscosity of the photoexcited system, which is responsible for electron spin transport at macroscopic distances, as well

  1. 2D to 3D conversion implemented in different hardware

    NASA Astrophysics Data System (ADS)

    Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli

    2015-02-01

    Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.

  2. Numerical modelling of spallation in 2D hydrodynamics codes

    NASA Astrophysics Data System (ADS)

    Maw, J. R.; Giles, A. R.

    1996-05-01

    A model for spallation based on the void growth model of Johnson has been implemented in 2D Lagrangian and Eulerian hydrocodes. The model has been extended to treat complete separation of material when voids coalesce and to describe the effects of elevated temperatures and melting. The capabilities of the model are illustrated by comparison with data from explosively generated spall experiments. Particular emphasis is placed on the prediction of multiple spall effects in weak, low melting point, materials such as lead. The correlation between the model predictions and observations on the strain rate dependence of spall strength is discussed.

  3. Beam-Plasma Instabilities in a 2D Yukawa Lattice

    SciTech Connect

    Kyrkos, S.; Kalman, G. J.; Rosenberg, M.

    2009-06-05

    We consider a 2D Yukawa lattice of grains, with a beam of other charged grains moving in the lattice plane. In contrast to Vlasov plasmas, where the electrostatic instability excited by the beam is only longitudinal, here both longitudinal and transverse instabilities of the lattice phonons can develop. We determine and compare the transverse and longitudinal growth rates. The growth rate spectrum in wave number space exhibits remarkable gaps where no instability can develop. Depending on the system parameters, the transverse instability can be selectively excited.

  4. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    SciTech Connect

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  5. Quantum Oscillations in an Interfacial 2D Electron Gas.

    SciTech Connect

    Zhang, Bingop; Lu, Ping; Liu, Henan; Lin, Jiao; Ye, Zhenyu; Jaime, Marcelo; Balakirev, Fedor F.; Yuan, Huiqiu; Wu, Huizhen; Pan, Wei; Zhang, Yong

    2016-01-01

    Recently, it has been predicted that topological crystalline insulators (TCIs) may exist in SnTe and Pb1-xSnxTe thin films [1]. To date, most studies on TCIs were carried out either in bulk crystals or thin films, and no research activity has been explored in heterostructures. We present here the results on electronic transport properties of the 2D electron gas (2DEG) realized at the interfaces of PbTe/ CdTe (111) heterostructures. Evidence of topological state in this interfacial 2DEG was observed.

  6. 2D Magneto-Optical Trapping of Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Hummon, Matthew T.; Yeo, Mark; Stuhl, Benjamin K.; Collopy, Alejandra L.; Xia, Yong; Ye, Jun

    2013-04-01

    We demonstrate one- and two-dimensional transverse laser cooling and magneto-optical trapping of the polar molecule yttrium (II) oxide (YO). In a 1D magneto-optical trap (MOT), we characterize the magneto-optical trapping force and decrease the transverse temperature by an order of magnitude, from 25 to 2 mK, limited by interaction time. In a 2D MOT, we enhance the intensity of the YO beam and reduce the transverse temperature in both transverse directions. The approach demonstrated here can be applied to many molecular species and can also be extended to 3D.

  7. Black liquor gasification phase 2D final report

    SciTech Connect

    Kohl, A.L.; Stewart, A.E.

    1988-06-01

    This report covers work conducted by Rockwell International under Amendment 5 to Subcontract STR/DOE-12 of Cooperative Agreement DE-AC-05-80CS40341 between St. Regis Corporation (now Champion International) and the Department of Energy (DOE). The work has been designated Phase 2D of the overall program to differentiate it from prior work under the same subcontract. The overall program is aimed at demonstrating the feasibility of and providing design data for the Rockwell process for gasifying Kraft black liquor. In this process, concentrated black liquor is converted into low-Btu fuel gas and reduced melt by reaction with air in a specially designed gasification reactor.

  8. 2D/3D Synthetic Vision Navigation Display

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, jason L.

    2008-01-01

    Flight-deck display software was designed and developed at NASA Langley Research Center to provide two-dimensional (2D) and three-dimensional (3D) terrain, obstacle, and flight-path perspectives on a single navigation display. The objective was to optimize the presentation of synthetic vision (SV) system technology that permits pilots to view multiple perspectives of flight-deck display symbology and 3D terrain information. Research was conducted to evaluate the efficacy of the concept. The concept has numerous unique implementation features that would permit enhanced operational concepts and efficiencies in both current and future aircraft.

  9. Experimental validation of 2-D generalized geometric super resolved approach

    NASA Astrophysics Data System (ADS)

    Borkowski, Amikam; Zalevsky, Zeev; Cohen, Nadav; Hadas, Zadok; Marom, Emanuel; Javidi, Bahram

    2014-01-01

    In this paper, we generalize the method of using a 2-D moving binary random mask to overcome the geometrical resolution limitation of an imaging sensor. The spatial blurring is caused by the size of the imaging sensor pixels which yield insufficient spatial sampling. The mask is placed in an intermediate image plane and can be shifted in any direction while keeping the sensor as well as all other optical components fixed. Out of the set of images that are captured and registered, a high resolution image can be composed. In addition, this proposed approach reduces the amount of required computations and it has an improved robustness to spatial noise.

  10. Ultrathin 2D Metal-Organic Framework Nanosheets.

    PubMed

    Zhao, Meiting; Wang, Yixian; Ma, Qinglang; Huang, Ying; Zhang, Xiao; Ping, Jianfeng; Zhang, Zhicheng; Lu, Qipeng; Yu, Yifu; Xu, Huan; Zhao, Yanli; Zhang, Hua

    2015-12-02

    A facile surfactant-assisted bottom-up synthetic method to prepare a series of freestanding ultrathin 2D M-TCPP (M = Zn, Cu, Cd or Co, TCPP = tetrakis(4-carboxyphenyl)porphyrin) nanosheets with a thickness of sub-10 nm is developed. As a proof-of-concept application, some of them are successfully used as new platforms for DNA detection. The Cu-TCPP nanosheet-based sensor shows excellent fluorescent sensing performance and is used for the simultaneous detection of multiple DNA targets.

  11. 2D photonic crystal and its angular reflective azimuthal spectrum

    NASA Astrophysics Data System (ADS)

    Senderakova, Dagmar; Drzik, Milan; Tomekova, Juliana

    2016-12-01

    Contemporary, attention is paid to photonic crystals, which can strongly modify light propagation through them and enable a controllable light manipulation. The contribution is focused on a sub-wavelength 2D structure formed by Al2O3 layer on silicon substrate, patterned with periodic hexagonal lattice of deep air holes. Using various laser sources of light at single wavelength, azimuthal angle dependence of the mirror-like reflected light intensity was recorded photo-electrically. The results obtained can be used to sample the band-structure of leaky modes of the photonic crystal more reliably and help us to map the photonic dispersion diagram.

  12. Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.

    2009-01-01

    VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.

  13. Fracture surfaces of heterogeneous materials: A 2D solvable model

    NASA Astrophysics Data System (ADS)

    Katzav, E.; Adda-Bedia, M.; Derrida, B.

    2007-05-01

    Using an elastostatic description of crack growth based on the Griffith criterion and the principle of local symmetry, we present a stochastic model describing the propagation of a crack tip in a 2D heterogeneous brittle material. The model ensures the stability of straight cracks and allows for the study of the roughening of fracture surfaces. When neglecting the effect of the nonsingular stress, the problem becomes exactly solvable and yields analytic predictions for the power spectrum of the paths. This result suggests an alternative to the conventional power law analysis often used in the analysis of experimental data.

  14. Optical diffraction by ordered 2D arrays of silica microspheres

    NASA Astrophysics Data System (ADS)

    Shcherbakov, A. A.; Shavdina, O.; Tishchenko, A. V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.

    2017-03-01

    The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality.

  15. Efficient 2d full waveform inversion using Fortran coarray

    NASA Astrophysics Data System (ADS)

    Ryu, Donghyun; Kim, ahreum; Ha, Wansoo

    2016-04-01

    We developed a time-domain seismic inversion program using the coarray feature of the Fortran 2008 standard to parallelize the algorithm. We converted a 2d acoustic parallel full waveform inversion program with Message Passing Interface (MPI) to a coarray program and examined performance of the two inversion programs. The results show that the speed of the waveform inversion program using the coarray is slightly faster than that of the MPI version. The standard coarray lacks features for collective communication; however, it can be improved in following standards since it is introduced recently. The parallel algorithm can be applied for 3D seismic data processing.

  16. Interplay between Anderson and Stark Localization in 2D Lattices

    SciTech Connect

    Kolovsky, A. R.

    2008-11-07

    This Letter studies the dynamics of a quantum particle in 2D lattices with on-site disorder in the presence of a static field. It is shown that the particle is localized along the field direction, while in the orthogonal direction to the field it shows diffusive dynamics for algebraically large times. For weak disorder an analytical expression for the diffusion coefficient is obtained by mapping the problem to a band random matrix. This expression is confirmed by numerical simulations of the particle's dynamics, which also indicate the existence of a universal equation for the diffusion coefficient, valid for an arbitrary disorder strength.

  17. Calculation of 2D electronic band structure using matrix mechanics

    NASA Astrophysics Data System (ADS)

    Pavelich, R. L.; Marsiglio, F.

    2016-12-01

    We extend previous work, applying elementary matrix mechanics to one-dimensional periodic arrays (to generate energy bands), to two-dimensional arrays. We generate band structures for the square-lattice "2D Kronig-Penney model" (square wells), the "muffin-tin" potential (circular wells), and Gaussian wells. We then apply the method to periodic arrays of more than one atomic site in a unit cell, specifically to the case of materials with hexagonal lattices like graphene. These straightforward extensions of undergraduate-level calculations allow students to readily determine band structures of current research interest.

  18. Dynamics of Quarks in a 2D Flux Tube

    SciTech Connect

    Koshelkin, Andrey V.; Wong, Cheuk-Yin

    2015-01-01

    On the basis of a compactification of the (3+1) into (1+1) dimensional space-time [1], the quark states inside the 2D flux tube are studied for the case of a linear transverse confining potential. The derived states are classified by both the projections of the orbital momentum and the spin along the tube direction. The spectrum of the fermion states is evaluated. It is found that the energy eigenvalues of the quarks appear to be approximately related to the square root of the eigenvalues of the two-dimensional harmonic oscillator.

  19. A High-Performance Lithium-Ion Capacitor Based on 2D Nanosheet Materials.

    PubMed

    Li, Shaohui; Chen, Jingwei; Cui, Mengqi; Cai, Guofa; Wang, Jiangxin; Cui, Peng; Gong, Xuefei; Lee, Pooi See

    2017-02-01

    Lithium-ion capacitors (LICs) are promising electrical energy storage systems for mid-to-large-scale applications due to the high energy and large power output without sacrificing long cycle stability. However, due to the different energy storage mechanisms between anode and cathode, the energy densities of LICs often degrade noticeably at high power density, because of the sluggish kinetics limitation at the battery-type anode side. Herein, a high-performance LIC by well-defined ZnMn2 O4 -graphene hybrid nanosheets anode and N-doped carbon nanosheets cathode is presented. The 2D nanomaterials offer high specific surface areas in favor of a fast ion transport and storage with shortened ion diffusion length, enabling fast charge and discharge. The fabricated LIC delivers a high specific energy of 202.8 Wh kg(-1) at specific power of 180 W kg(-1) , and the specific energy remains 98 Wh kg(-1) even when the specific power achieves as high as 21 kW kg(-1) .

  20. 3D surface configuration modulates 2D symmetry detection.

    PubMed

    Chen, Chien-Chung; Sio, Lok-Teng

    2015-02-01

    We investigated whether three-dimensional (3D) information in a scene can affect symmetry detection. The stimuli were random dot patterns with 15% dot density. We measured the coherence threshold, or the proportion of dots that were the mirror reflection of the other dots in the other half of the image about a central vertical axis, at 75% accuracy with a 2AFC paradigm under various 3D configurations produced by the disparity between the left and right eye images. The results showed that symmetry detection was difficult when the corresponding dots across the symmetry axis were on different frontoparallel or inclined planes. However, this effect was not due to a difference in distance, as the observers could detect symmetry on a slanted surface, where the depth of the two sides of the symmetric axis was different. The threshold was reduced for a hinge configuration where the join of two slanted surfaces coincided with the axis of symmetry. Our result suggests that the detection of two-dimensional (2D) symmetry patterns is subject to the 3D configuration of the scene; and that coplanarity across the symmetry axis and consistency between the 2D pattern and 3D structure are important factors for symmetry detection.

  1. Meshfree natural vibration analysis of 2D structures

    NASA Astrophysics Data System (ADS)

    Kosta, Tomislav; Tsukanov, Igor

    2014-02-01

    Determination of resonance frequencies and vibration modes of mechanical structures is one of the most important tasks in the product design procedure. The main goal of this paper is to describe a pioneering application of the solution structure method (SSM) to 2D structural natural vibration analysis problems and investigate the numerical properties of the method. SSM is a meshfree method which enables construction of the solutions to the engineering problems that satisfy exactly all prescribed boundary conditions. This method is capable of using spatial meshes that do not conform to the shape of a geometric model. Instead of using the grid nodes to enforce boundary conditions, it employs distance fields to the geometric boundaries and combines them with the basis functions and prescribed boundary conditions at run time. This defines unprecedented geometric flexibility of the SSM as well as the complete automation of the solution procedure. In the paper we will explain the key points of the SSM as well as investigate the accuracy and convergence of the proposed approach by comparing our results with the ones obtained using analytical methods or traditional finite element analysis. Despite in this paper we are dealing with 2D in-plane vibrations, the proposed approach has a straightforward generalization to model vibrations of 3D structures.

  2. 2D Radiative Transfer in Magnetically Confined Structures

    NASA Astrophysics Data System (ADS)

    Heinzel, P.; Anzer, U.

    2003-01-01

    Magnetically confined structures in the solar atmosphere exhibit a large complexity in their shapes and physical conditions. As an example, we show the case of so-called magnetic dips in prominences which are in magnetohydrostatic equilibria. For such models we solve 2D non-LTE multilevel problem for hydrogen with PRD in Lyman resonance lines. The iterative technique used is based on the MALI approach with simple diagonal ALO and SC formal solver. To compute the hydrogen ionization balance, the preconditioned MALI equations are linearized with respect to atomic level populations and electron density and solved iteratively using the Newton-Raphson scheme. Two additional problems are addressed: (i) an adequate iteration method for cases when the column-mass scale is used in one of the two dimensions but varies along the other dimension (which has a geometrical scaling); and (ii) a possibility of using AMR (Adaptive Mesh Refinement) algorithms to account for steep 2D gradients of selected variables (temperature, density, etc.).

  3. 2D Gridded Surface Data Value-Added Product

    SciTech Connect

    Tang, Q; Xie, S

    2015-08-30

    This report describes the Atmospheric Radiation Measurement (ARM) Best Estimate (ARMBE) 2-dimensional (2D) gridded surface data (ARMBE2DGRID) value-added product. Spatial variability is critically important to many scientific studies, especially those that involve processes of great spatial variations at high temporal frequency (e.g., precipitation, clouds, radiation, etc.). High-density ARM sites deployed at the Southern Great Plains (SGP) allow us to observe the spatial patterns of variables of scientific interests. The upcoming megasite at SGP with its enhanced spatial density will facilitate the studies at even finer scales. Currently, however, data are reported only at individual site locations at different time resolutions for different datastreams. It is difficult for users to locate all the data they need and requires extra effort to synchronize the data. To address these problems, the ARMBE2DGRID value-added product merges key surface measurements at the ARM SGP sites and interpolates the data to a regular 2D grid to facilitate the data application.

  4. Peak width issues with generalised 2D correlation NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kirwan, Gemma M.; Adams, Michael J.

    2008-12-01

    Two-dimensional spectral correlation analysis is shown to be sensitive to fluctuations in spectral peak width as a function of perturbation variable. This is particularly significant where peak width fluctuations are of similar order of magnitude as the peak width values themselves and where changes in peak width are not random but are, for example, proportional to intensity. In such cases these trends appear in the asynchronous matrix as false peaks that serve to interfere with interpretation of the data. Complex, narrow band spectra such as provided by 1H NMR spectroscopy are demonstrated to be prone to such interference. 2D correlation analysis was applied to a series of NMR spectra corresponding to a commercial wine fermentation, in which the samples collected over a period of several days exhibit dramatic changes in concentration of minor and major components. The interference due to changing peak width effects is eliminated by synthesizing the recorded spectra using a constant peak width value prior to performing 2D correlation analysis.

  5. Reconstruction of a 2D seismic wavefield by seismic gradiometry

    NASA Astrophysics Data System (ADS)

    Maeda, Takuto; Nishida, Kiwamu; Takagi, Ryota; Obara, Kazushige

    2016-12-01

    We reconstructed a 2D seismic wavefield and obtained its propagation properties by using the seismic gradiometry method together with dense observations of the Hi-net seismograph network in Japan. The seismic gradiometry method estimates the wave amplitude and its spatial derivative coefficients at any location from a discrete station record by using a Taylor series approximation. From the spatial derivatives in horizontal directions, the properties of a propagating wave packet, including the arrival direction, slowness, geometrical spreading, and radiation pattern can be obtained. In addition, by using spatial derivatives together with free-surface boundary conditions, the 2D vector elastic wavefield can be decomposed into divergence and rotation components. First, as a feasibility test, we performed an analysis with a synthetic seismogram dataset computed by a numerical simulation for a realistic 3D medium and the actual Hi-net station layout. We confirmed that the wave amplitude and its spatial derivatives were very well-reproduced for period bands longer than 25 s. Applications to a real large earthquake showed that the amplitude and phase of the wavefield were well reconstructed, along with slowness vector. The slowness of the reconstructed wavefield showed a clear contrast between body and surface waves and regional non-great-circle-path wave propagation, possibly owing to scattering. Slowness vectors together with divergence and rotation decomposition are expected to be useful for determining constituents of observed wavefields in inhomogeneous media.

  6. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.

    2001-01-01

    We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on an equal footing. Electron bandstructure is treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are consistent with 1D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller leakage current than the longer gate length device without a significant trade-off in on-current.

  7. Magnetic gating of a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Dang, Xiaoqian; Burton, J. D.; Tsymbal, Evgeny Y.

    2016-09-01

    Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic ‘gate’ representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate.

  8. Mass loss in 2D rotating stellar models

    SciTech Connect

    Lovekin, Caterine; Deupree, Bob

    2010-10-05

    Radiatively driven mass loss is an important factor in the evolution of massive stars . The mass loss rates depend on a number of stellar parameters, including the effective temperature and luminosity. Massive stars are also often rapidly rotating, which affects their structure and evolution. In sufficiently rapidly rotating stars, both the effective temperature and radius vary significantly as a function of latitude, and hence mass loss rates can vary appreciably between the poles and the equator. In this work, we discuss the addition of mass loss to a 2D stellar evolution code (ROTORC) and compare evolution sequences with and without mass loss. Preliminary results indicate that a full 2D calculation of mass loss using the local effective temperature and luminosity can significantly affect the distribution of mass loss in rotating main sequence stars. More mass is lost from the pole than predicted by 1D models, while less mass is lost at the equator. This change in the distribution of mass loss will affect the angular momentum loss, the surface temperature and luminosity, and even the interior structure of the star. After a single mass loss event, these effects are small, but can be expected to accumulate over the course of the main sequence evolution.

  9. 2D vibrational properties of epitaxial silicene on Ag(111)

    NASA Astrophysics Data System (ADS)

    Solonenko, Dmytro; Gordan, Ovidiu D.; Le Lay, Guy; Sahin, Hasan; Cahangirov, Seymur; Zahn, Dietrich R. T.; Vogt, Patrick

    2017-03-01

    The two-dimensional silicon allotrope, silicene, could spur the development of new and original concepts in Si-based nanotechnology. Up to now silicene can only be epitaxially synthesized on a supporting substrate such as Ag(111). Even though the structural and electronic properties of these epitaxial silicene layers have been intensively studied, very little is known about its vibrational characteristics. Here, we present a detailed study of epitaxial silicene on Ag(111) using in situ Raman spectroscopy, which is one of the most extensively employed experimental techniques to characterize 2D materials, such as graphene, transition metal dichalcogenides, and black phosphorous. The vibrational fingerprint of epitaxial silicene, in contrast to all previous interpretations, is characterized by three distinct phonon modes with A and E symmetries. Both, energies and symmetries of theses modes are confirmed by ab initio theory calculations. The temperature dependent spectral evolution of these modes demonstrates unique thermal properties of epitaxial silicene and a significant electron-phonon coupling. These results unambiguously support the purely two-dimensional character of epitaxial silicene up to about 300 °C, whereupon a 2D-to-3D phase transition takes place. The detailed fingerprint of epitaxial silicene will allow us to identify it in different environments or to study its modifications.

  10. Conformal Laplace superintegrable systems in 2D: polynomial invariant subspaces

    NASA Astrophysics Data System (ADS)

    Escobar-Ruiz, M. A.; Miller, Willard, Jr.

    2016-07-01

    2nd-order conformal superintegrable systems in n dimensions are Laplace equations on a manifold with an added scalar potential and 2n-1 independent 2nd order conformal symmetry operators. They encode all the information about Helmholtz (eigenvalue) superintegrable systems in an efficient manner: there is a 1-1 correspondence between Laplace superintegrable systems and Stäckel equivalence classes of Helmholtz superintegrable systems. In this paper we focus on superintegrable systems in two-dimensions, n = 2, where there are 44 Helmholtz systems, corresponding to 12 Laplace systems. For each Laplace equation we determine the possible two-variate polynomial subspaces that are invariant under the action of the Laplace operator, thus leading to families of polynomial eigenfunctions. We also study the behavior of the polynomial invariant subspaces under a Stäckel transform. The principal new results are the details of the polynomial variables and the conditions on parameters of the potential corresponding to polynomial solutions. The hidden gl 3-algebraic structure is exhibited for the exact and quasi-exact systems. For physically meaningful solutions, the orthogonality properties and normalizability of the polynomials are presented as well. Finally, for all Helmholtz superintegrable solvable systems we give a unified construction of one-dimensional (1D) and two-dimensional (2D) quasi-exactly solvable potentials possessing polynomial solutions, and a construction of new 2D PT-symmetric potentials is established.

  11. DNN-state identification of 2D distributed parameter systems

    NASA Astrophysics Data System (ADS)

    Chairez, I.; Fuentes, R.; Poznyak, A.; Poznyak, T.; Escudero, M.; Viana, L.

    2012-02-01

    There are many examples in science and engineering which are reduced to a set of partial differential equations (PDEs) through a process of mathematical modelling. Nevertheless there exist many sources of uncertainties around the aforementioned mathematical representation. Moreover, to find exact solutions of those PDEs is not a trivial task especially if the PDE is described in two or more dimensions. It is well known that neural networks can approximate a large set of continuous functions defined on a compact set to an arbitrary accuracy. In this article, a strategy based on the differential neural network (DNN) for the non-parametric identification of a mathematical model described by a class of two-dimensional (2D) PDEs is proposed. The adaptive laws for weights ensure the 'practical stability' of the DNN-trajectories to the parabolic 2D-PDE states. To verify the qualitative behaviour of the suggested methodology, here a non-parametric modelling problem for a distributed parameter plant is analysed.

  12. MESH2D GRID GENERATOR DESIGN AND USE

    SciTech Connect

    Flach, G.; Smith, F.

    2012-01-20

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j{sub 0}) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. The overall mesh is constructed from grid zones that are typically then subdivided into a collection of smaller grid cells. The grid zones usually correspond to distinct materials or larger-scale geometric shapes. The structured grid zones are identified through uppercase indices (I,J). Subdivision of zonal regions into grid cells can be done uniformly, or nonuniformly using either a polynomial or geometric skewing algorithm. Grid cells may be concentrated backward, forward, or toward both ends. Figure 1 illustrates the above concepts in the context of a simple four zone grid.

  13. Facial biometrics based on 2D vector geometry

    NASA Astrophysics Data System (ADS)

    Malek, Obaidul; Venetsanopoulos, Anastasios; Androutsos, Dimitrios

    2014-05-01

    The main challenge of facial biometrics is its robustness and ability to adapt to changes in position orientation, facial expression, and illumination effects. This research addresses the predominant deficiencies in this regard and systematically investigates a facial authentication system in the Euclidean domain. In the proposed method, Euclidean geometry in 2D vector space is being constructed for features extraction and the authentication method. In particular, each assigned point of the candidates' biometric features is considered to be a 2D geometrical coordinate in the Euclidean vector space. Algebraic shapes of the extracted candidate features are also computed and compared. The proposed authentication method is being tested on images from the public "Put Face Database". The performance of the proposed method is evaluated based on Correct Recognition (CRR), False Acceptance (FAR), and False Rejection (FRR) rates. The theoretical foundation of the proposed method along with the experimental results are also presented in this paper. The experimental results demonstrate the effectiveness of the proposed method.

  14. Spectroscopic properties of multilayered gold nanoparticle 2D sheets.

    PubMed

    Yoshida, Akihito; Imazu, Keisuke; Li, Xinheng; Okamoto, Koichi; Tamada, Kaoru

    2012-12-11

    We report the fabrication technique and optical properties of multilayered two-dimensional (2D) gold nanoparticle sheets ("Au nanosheet"). The 2D crystalline monolayer sheet composed of Au nanoparticles shows an absorption peak originating from a localized surface plasmon resonance (LSPR). It was found that the absorption spectra dramatically change when the monolayers are assembled into the multilayers on different substrates (quartz or Au). In the case of the multilayers on Au thin film (d = 200 nm), the LSPR peak is shifted to longer wavelength at the near-IR region by increasing the number of layers. The absorbance also depends on the layer number and shows the nonlinear behavior. On the other hand, the multilayers on quartz substrate show neither such LSPR peak shift nor nonlinear response of absorbance. The layer number dependence on metal surfaces can be interpreted as the combined effects between the near-field coupling of the LSPR and the far-field optics of the stratified metamaterial films, as proposed in our previous study. We also report the spectroscopic properties of hybrid multilayers composed of two kinds of monolayers, i.e., Au nanosheet and Ag nanosheet. The combination of the different metal nanoparticle sheets realizes more flexible plasmonic color tuning.

  15. Asymmetric 2D spatial beam filtering by photonic crystals

    NASA Astrophysics Data System (ADS)

    Gailevicius, D.; Purlys, V.; Maigyte, L.; Gaizauskas, E.; Peckus, M.; Gadonas, R.; Staliunas, K.

    2016-04-01

    Spatial filtering techniques are important for improving the spatial quality of light beams. Photonic crystals (PhCs) with a selective spatial (angular) transmittance can also provide spatial filtering with the added benefit transversal symmetries, submillimeter dimensions and monolithic integration in other devices, such as micro-lasers or semiconductor lasers. Workable bandgap PhC configurations require a modulated refractive index with period lengths that are approximately less than the wavelength of radiation. This imposes technical limitations, whereby the available direct laser write (DLW) fabrication techniques are limited in resolution and refractive index depth. If, however, a deflection mechanism is chosen instead, a functional filter PhC can be produced that is operational in the visible wavelength regime. For deflection based PhCs glass is an attractive choice as it is highly stable medium. 2D and 3D PhC filter variations have already been produced on soda-lime glass. However, little is known about how to control the scattering of PhCs when approaching the smallest period values. Here we look into the internal structure of the initially symmetric geometry 2D PhCs and associating it with the resulting transmittance spectra. By varying the DLW fabrication beam parameters and scanning algorithms, we show that such PhCs contain layers that are comprised of semi-tilted structure voxels. We show the appearance of asymmetry can be compensated in order to circumvent some negative effects at the cost of potentially maximum scattering efficiency.

  16. 2D Hilbert transform for phase retrieval of speckle fields

    NASA Astrophysics Data System (ADS)

    Gorsky, M. P.; Ryabyi, P. A.; Ivanskyi, D. I.

    2016-09-01

    The paper presents principal approaches to diagnosing the structure forming skeleton of the complex optical field. An analysis of optical field singularity algorithms depending on intensity discretization and image resolution has been carried out. An optimal approach is chosen, which allows to bring much closer the solution of the phase problem of localization speckle-field special points. The use of a "window" 2D Hilbert transform for reconstruction of the phase distribution of the intensity of a speckle field is proposed. It is shown that the advantage of this approach consists in the invariance of a phase map to a change of the position of the kernel of transformation and in a possibility to reconstruct the structure-forming elements of the skeleton of an optical field, including singular points and saddle points. We demonstrate the possibility to reconstruct the equi-phase lines within a narrow confidence interval, and introduce an additional algorithm for solving the phase problem for random 2D intensity distributions.

  17. Dynamics of quasi 2D co-rotating vortex merger

    NASA Astrophysics Data System (ADS)

    Khandekar, Akshay G.

    Merger of vortices is examined experimentally to compare the merger of slender parallel vortices generated coincidentally. It is known that like-sign vortices rotate around a common center of circulation and merger between the vortices may occur under certain conditions. This merger is dependent on the strength of the vortex circulation, distance of separation between the centers of the two vortices, ReGamma, and vorticity distribution. Quasi-2D experimental data is examined and merger relations are derived. The 2D experiments conducted in a vortex generator tank uses high aspect ratio rotating paddles. The vortex merger tank generates slender co-rotating vortices and are examined using PIV (Particle Image Velocimetry). Merger characteristics are compared at centerline, 25% span and 5% span for different circulation strengths. Symmetric and asymmetric mergers are studied and it is found that in both cases, the vortex pair rotates around an axis perpendicular to the plane of the vortex pair. Symmetric merger is seen to occur at the center between the two vortices whereas in asymmetric merger the stronger vortex breaks the weaker vortex filaments and continues to follow its path. Wall effects seem to have an effect of vortex braiding and vortex stretching. Closer to the wall, the merger time increases while the merged vortex dissipates faster than at the centerline.

  18. Marginal fluctuations as instantons on M2/D2-branes

    NASA Astrophysics Data System (ADS)

    Naghdi, M.

    2014-03-01

    We introduce some (anti-) M/D-branes through turning on the corresponding field strengths of the 11- and 10-dimensional supergravity theories over spaces, where we use and for the internal spaces. Indeed, when we add M2/D2-branes on the same directions with the near horizon branes of the Aharony-Bergman-Jafferis-Maldacena model, all symmetries and supersymmetries are preserved trivially. In this case, we obtain a localized object just in the horizon. This normalizable bulk massless scalar mode is a singlet of and , and it agrees with a marginal boundary operator of the conformal dimension of . However, after performing a special conformal transformation, we see that the solution is localized in the Euclideanized space and is attributable to the included anti-M2/D2-branes, which are also necessary to ensure that there is no back-reaction. The resultant theory now breaks all supersymmetries to , while the other symmetries are so preserved. The dual boundary operator is then set up from the skew-whiffing of the representations and for the supercharges and scalars, respectively, while the fermions remain fixed in of the original theory. Besides, we also address another alternate bulk to boundary matching procedure through turning on one of the gauge fields of the full gauge group along the same lines with a similar situation to the one faced in the AdS/CFT correspondence. The latter approach covers the difficulty already faced with in the bulk-boundary matching procedure for as well.

  19. 2D Numerical MHD Models of Solar Explosive Events

    NASA Astrophysics Data System (ADS)

    Roussev, I.

    2001-10-01

    Observations of the Sun reveal a great variety of dynamic phenomena interpretable as a manifestation of magnetic reconnection. These range from small-scale 'Explosive events' seen in the 'quiet' Sun, through violent flares observed in active regions. The high degree of complexity of the magnetic field inferred from observations may locally produce a fruitful environment for the process of magnetic reconnection to take place. Explosive events are associated with regions undergoing magnetic flux cancellation. This thesis presents a 2-dimensional (2D) numerical study devoted to explore the idea that the salient spectral signatures seen in explosive events are most probably caused by bi-directional outflow jets as a results of an ongoing magnetic reconnection. In order to provide qualitative results needed for the better physical interpretation of solar explosive events, several models intended to represent a 'quiet' Sun transition of solar explosive events, several models intended to represent a 'quiet' Sun transition region undergoing magnetic reconnection are examined, in both unstratified and gravitationally stratified atmospheres. The magnetic reconnection is initiated in an ad hoc manner, and the dynamic evolution is followed by numerically solving the equations of 2D dissipative magnetohydrodynamics (MHD), including the effects of field-aligned thermal conduction, radiative losses, volumetric heating, and anomalous resistivity.

  20. Defect Dynamics and Zipping of 2D Colloidal Crystallites

    NASA Astrophysics Data System (ADS)

    Bowley, Chris; Smullin, Sylvia; Ling, Xinsheng

    1998-03-01

    We use video microscopy to study defect dynamics in 2D colloidal (charged polystyrene microspheres) crystallites formed at the water-air interface. For small 2D crystallites, one might expect to see free edge dislocations in such small systems since the cost of forming such defects scales logarithmically with the size of the crystallite. But we found that as soon as an edge dislocation forms, it quickly moves to the edge of the crystallite and disappears. This is due to an attraction with an image dislocation outside the edge. As a result, most crystallites are defect-free during most of the time. Interesting things happen when two crystallites try to bind to each other, or zip together. A sharp transition occurs at the shared edge of the two crystallites during the zipping process. This is clearly manifested by a sudden change in the relative velocity between two drifting crystallites or a sudden re-orientation of one of the crystallites relative to the other. This work was supported by the startup funds and a Richard Salomon Faculty Research Award from Brown University.

  1. Influence of Elevation Data Source on 2D Hydraulic Modelling

    NASA Astrophysics Data System (ADS)

    Bakuła, Krzysztof; StĘpnik, Mateusz; Kurczyński, Zdzisław

    2016-08-01

    The aim of this paper is to analyse the influence of the source of various elevation data on hydraulic modelling in open channels. In the research, digital terrain models from different datasets were evaluated and used in two-dimensional hydraulic models. The following aerial and satellite elevation data were used to create the representation of terrain-digital terrain model: airborne laser scanning, image matching, elevation data collected in the LPIS, EuroDEM, and ASTER GDEM. From the results of five 2D hydrodynamic models with different input elevation data, the maximum depth and flow velocity of water were derived and compared with the results of the most accurate ALS data. For such an analysis a statistical evaluation and differences between hydraulic modelling results were prepared. The presented research proved the importance of the quality of elevation data in hydraulic modelling and showed that only ALS and photogrammetric data can be the most reliable elevation data source in accurate 2D hydraulic modelling.

  2. 2D NMR-spectroscopic screening reveals polyketides in ladybugs.

    PubMed

    Deyrup, Stephen T; Eckman, Laura E; McCarthy, Patrick H; Smedley, Scott R; Meinwald, Jerrold; Schroeder, Frank C

    2011-06-14

    Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature's cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior fractionation or isolation. Our screen led to discovery and subsequent isolation of two families of tricyclic pyrones in Delphastus catalinae, a tiny ladybird beetle that is employed commercially as a biological pest control agent. The D. catalinae pyrones are based on 23-carbon polyketide chains forming 1,11-dioxo-2,6,10-trioxaanthracene and 4,8-dioxo-1,9,13-trioxaanthracene derivatives, representing ring systems not previously found in nature. This study highlights the utility of 2D NMR-spectroscopic screening for exploring nature's structure space and suggests that insect metabolomes remain vastly underexplored.

  3. 2D NMR-spectroscopic screening reveals polyketides in ladybugs

    PubMed Central

    Deyrup, Stephen T.; Eckman, Laura E.; McCarthy, Patrick H.; Smedley, Scott R.; Meinwald, Jerrold; Schroeder, Frank C.

    2011-01-01

    Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature’s cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior fractionation or isolation. Our screen led to discovery and subsequent isolation of two families of tricyclic pyrones in Delphastus catalinae, a tiny ladybird beetle that is employed commercially as a biological pest control agent. The D. catalinae pyrones are based on 23-carbon polyketide chains forming 1,11-dioxo-2,6,10-trioxaanthracene and 4,8-dioxo-1,9,13-trioxaanthracene derivatives, representing ring systems not previously found in nature. This study highlights the utility of 2D NMR-spectroscopic screening for exploring nature’s structure space and suggests that insect metabolomes remain vastly underexplored. PMID:21646540

  4. Electron-Phonon Scattering in Atomically Thin 2D Perovskites.

    PubMed

    Guo, Zhi; Wu, Xiaoxi; Zhu, Tong; Zhu, Xiaoyang; Huang, Libai

    2016-11-22

    Two-dimensional (2D) atomically thin perovskites with strongly bound excitons are highly promising for optoelectronic applications. However, the nature of nonradiative processes that limit the photoluminescence (PL) efficiency remains elusive. Here, we present time-resolved and temperature-dependent PL studies to systematically address the intrinsic exciton relaxation pathways in layered (C4H9NH3)2(CH3NH3)n-1PbnI3n+1 (n = 1, 2, 3) structures. Our results show that scatterings via deformation potential by acoustic and homopolar optical phonons are the main scattering mechanisms for excitons in ultrathin single exfoliated flakes, exhibiting a T(γ) (γ = 1.3 to 1.9) temperature dependence for scattering rates. We attribute the absence of polar optical phonon and defect scattering to efficient screening of Coulomb potential, similar to what has been observed in 3D perovskites. These results establish an understanding of the origins of nonradiative pathways and provide guidelines for optimizing PL efficiencies of atomically thin 2D perovskites.

  5. Interactive 2D to 3D stereoscopic image synthesis

    NASA Astrophysics Data System (ADS)

    Feldman, Mark H.; Lipton, Lenny

    2005-03-01

    Advances in stereoscopic display technologies, graphic card devices, and digital imaging algorithms have opened up new possibilities in synthesizing stereoscopic images. The power of today"s DirectX/OpenGL optimized graphics cards together with adapting new and creative imaging tools found in software products such as Adobe Photoshop, provide a powerful environment for converting planar drawings and photographs into stereoscopic images. The basis for such a creative process is the focus of this paper. This article presents a novel technique, which uses advanced imaging features and custom Windows-based software that utilizes the Direct X 9 API to provide the user with an interactive stereo image synthesizer. By creating an accurate and interactive world scene with moveable and flexible depth map altered textured surfaces, perspective stereoscopic cameras with both visible frustums and zero parallax planes, a user can precisely model a virtual three-dimensional representation of a real-world scene. Current versions of Adobe Photoshop provide a creative user with a rich assortment of tools needed to highlight elements of a 2D image, simulate hidden areas, and creatively shape them for a 3D scene representation. The technique described has been implemented as a Photoshop plug-in and thus allows for a seamless transition of these 2D image elements into 3D surfaces, which are subsequently rendered to create stereoscopic views.

  6. Application Perspective of 2D+SCALE Dimension

    NASA Astrophysics Data System (ADS)

    Karim, H.; Rahman, A. Abdul

    2016-09-01

    Different applications or users need different abstraction of spatial models, dimensionalities and specification of their datasets due to variations of required analysis and output. Various approaches, data models and data structures are now available to support most current application models in Geographic Information System (GIS). One of the focuses trend in GIS multi-dimensional research community is the implementation of scale dimension with spatial datasets to suit various scale application needs. In this paper, 2D spatial datasets that been scaled up as the third dimension are addressed as 2D+scale (or 3D-scale) dimension. Nowadays, various data structures, data models, approaches, schemas, and formats have been proposed as the best approaches to support variety of applications and dimensionality in 3D topology. However, only a few of them considers the element of scale as their targeted dimension. As the scale dimension is concerned, the implementation approach can be either multi-scale or vario-scale (with any available data structures and formats) depending on application requirements (topology, semantic and function). This paper attempts to discuss on the current and new potential applications which positively could be integrated upon 3D-scale dimension approach. The previous and current works on scale dimension as well as the requirements to be preserved for any given applications, implementation issues and future potential applications forms the major discussion of this paper.

  7. The effects of aging on haptic 2D shape recognition.

    PubMed

    Overvliet, Krista E; Wagemans, J; Krampe, Ralf T

    2013-12-01

    We use the image-mediation model (Klatzky & Lederman, 1987) as a framework to investigate potential sources of adult age differences in the haptic recognition of two-dimensional (2D) shapes. This model states that the low-resolution, temporally sequential, haptic input is translated into a visual image, which is then reperceived through the visual processors, before it is matched against a long-term memory representation and named. In three experiments we tested groups of 12 older (mean age 73.11) and three groups of 12 young adults (mean age 22.80) each. In Experiment 1 we confirm age-related differences in haptic 2D shape recognition, and we show the typical age × complexity interaction. In Experiment 2 we show that if we facilitate the visual translation process, age differences become smaller, but only with simple shapes and not with the more complex everyday objects. In Experiment 3 we target the last step in the model (matching and naming) for complex stimuli. We found that age differences in exploration time were considerably reduced when this component process was facilitated by providing a category name. We conclude that the image-mediation model can explain adult-age differences in haptic recognition, particularly if the role of working memory in forming the transient visual image is considered. Our findings suggest that sensorimotor skills thought to rely on peripheral processes for the most part are critically constrained by age-related changes in central processing capacity in later adulthood.

  8. Predicting non-square 2D dice probabilities

    NASA Astrophysics Data System (ADS)

    Pender, G. A. T.; Uhrin, M.

    2014-07-01

    The prediction of the final state probabilities of a general cuboid randomly thrown onto a surface is a problem that naturally arises in the minds of men and women familiar with regular cubic dice and the basic concepts of probability. Indeed, it was considered by Newton in 1664 (Newton 1967 The Mathematical Papers of Issac Newton vol I (Cambridge: Cambridge University Press) pp 60-1). In this paper we make progress on the 2D problem (which can be realized in 3D by considering a long cuboid, or alternatively a rectangular cross-sectioned dreidel). For the two-dimensional case we suggest that the ratio of the probabilities of landing on each of the two sides is given by \\frac{\\sqrt{{{k}^{2}}+{{l}^{2}}}-k}{\\sqrt{{{k}^{2}}+{{l}^{2}}}-l}\\frac{arctan \\frac{l}{k}}{arctan \\frac{k}{l}} where k and l are the lengths of the two sides. We test this theory both experimentally and computationally, and find good agreement between our theory, experimental and computational results. Our theory is known, from its derivation, to be an approximation for particularly bouncy or ‘grippy’ surfaces where the die rolls through many revolutions before settling. On real surfaces we would expect (and we observe) that the true probability ratio for a 2D die is a somewhat closer to unity than predicted by our theory. This problem may also have wider relevance in the testing of physics engines.

  9. CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction

    NASA Astrophysics Data System (ADS)

    Park, J. S.; Dong, Z.; Kim, Sungtae; Perepezko, J. H.

    2000-04-01

    Diffusion couples based upon Cu2Se/In2Se3 pairings have been examined in order to identify the kinetics of intermediate phase development and the associated phase equilibria. For the diffusion couples annealed at 550 °C for 1.5 h, all phases included in the Cu2Se-In2Se3 pseudobinary phase diagram section developed including the CuInSe2 (CIS) phase. Also, the In6Se7 phase formed for annealing times in excess of 1.5 h at 550 °C, indicating a modification of the diffusion pathway outside the pseudobinary phase diagram section. The growth of the CIS phase formed by reactive diffusion follows parabolic kinetics (x2=kt) with the k value of 3.3×10-8 cm2/s. CIS phase precipitates with a dendritic morphology are also produced within the Cu2Se side of the diffusion couple far from the initial interface, indicating that In is the fast component during interdiffusion. Based upon electron diffraction analysis and simulation of electron diffraction patterns, the dendritic shaped CIS precipitate structure was uniquely determined to be the metastable zinc blende type rather than the stable chalcopyrite-type structure. The structure and orientation relationship between the metastable CIS phase and the Cu2Se matrix satisfy the conditions established for the development of a solid state dendritic morphology.

  10. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate.

    PubMed

    Trache, Tudor; Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-12-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values.

  11. Preliminary abatement device evaluation: 1D-2D KGM cyclone design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclones are predominately used in controlling cotton gin particulate matter (PM) emissions. The most commonly used cyclone designs are the 2D-2D and 1D-3D; however other designs such as the 1D-2D KGM have or are currently being used. A 1D-2D cyclone has a barrel length equal to the barrel diamete...

  12. Influence of amino acid residue 374 of cytochrome P-450 2D6 (CYP2D6) on the regio- and enantio-selective metabolism of metoprolol.

    PubMed Central

    Ellis, S W; Rowland, K; Ackland, M J; Rekka, E; Simula, A P; Lennard, M S; Wolf, C R; Tucker, G T

    1996-01-01

    Cytochrome P-450 2D6 (CYP2D6) is an important human drug-metabolizing enzyme responsible for the oxidation of more than 30 widely used therapeutic agents. The enzymes encoded by the published genomic [Kimura, Umeno, Skoda, Meyer and Gonzalez (1989) Am. J. Hum. Genet. 45, 889-904] and cDNA [Gonzalez, Skoda, Kimura, Umeno, Zanger, Nebert, Gelboin, Hardwick and Meyer (1988) Nature 331, 442-446] sequences of CYP2D6, and presumed to represent wild-type sequences, differ at residue 374 and encode valine (CYP2D6-Val) and methionine (CYP2D6-Met) respectively. The influence of this amino acid difference on cytochrome P-450 expression, ligand binding, catalysis and stereoselective oxidation of metoprolol was investigated by the heterologous expression of the corresponding cDNAs in the yeast Saccharomyces cerevisiae. The level of expression of apo- and holo-protein was similar with each form of CYP2D6 cDNA, and the binding affinities of a series of ligands to CYP2D6-Val and CYP2D6-Met were identical. The enantioselective O-demethylation and alpha-hydroxylation of metoprolol were also similar with each form of CYP2D6, O-demethylation being R-(+)- enantioselective (CYP2D6-Val: R/S, 1.6; CYP2D6-Met: R/S, 1.4), whereas alpha-hydroxylation showed a preference for S-(-)-metoprolol (CYP2D6-Val: R/S, 0.7; CYP2D6-Met: R/S, 0.8). However, although the favoured regiomer overall was O-demethylmetoprolol (ODM), the regioselectivity for O-demethylation of each metoprolol enantiomer was significantly greater for CYP2D6-Val [R-(+)-: ODM/alpha-hydroxymetoprolol (alpha OH), 5.9; S-(-)-: ODM/alpha OH, 2.5) than that observed for CYP2D6-Met [R-(+)-: ODM/alpha OH, 2.2; S-(-)-: ODM/alpha OH, 1.4]. The stereoselective properties of CYP2D6-Val were consistent with those observed for CYP2D6 in human liver microsomes. The difference in the stereoselective properties of CYP2D6-Val and CYP2D6-Met were rationalized with respect to a homology model of the active site of CYP2D6 based on an alignment with

  13. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar.

    PubMed

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-20

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method.

  14. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar

    PubMed Central

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-01

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835

  15. Frequency of undetected CYP2D6 hybrid genes in clinical samples: impact on phenotype prediction.

    PubMed

    Black, John Logan; Walker, Denise L; O'Kane, Dennis J; Harmandayan, Maria

    2012-01-01

    Cytochrome P450 2D6 (CYP2D6) is highly polymorphic. CYP2D6-2D7 hybrid genes can be present in samples containing CYP2D6*4 and CYP2D6*10 alleles. CYP2D7-2D6 hybrid genes can be present in samples with duplication signals and in samples with homozygous genotyping results. The frequency of hybrid genes in clinical samples is unknown. We evaluated 1390 samples for undetected hybrid genes by polymerase chain reaction (PCR) amplification, PCR fragment analysis, TaqMan copy number assays, DNA sequencing, and allele-specific primer extension assay. Of 508 CYP2D6*4-containing samples, 109 (21.5%) harbored CYP2D6*68 + *4-like, whereas 9 (1.8%) harbored CYP2D6*4N + *4-like. Of 209 CYP2D6*10-containing samples, 44 (21.1%) were found to have CYP2D6*36 + *10. Of 332 homozygous samples, 4 (1.2%) harbored a single CYP2D7-2D6 hybrid, and of 341 samples with duplication signals, 25 (7.3%) harbored an undetected CYP2D7-2D6 hybrid. Phenotype before and after accurate genotyping was predicted using a method in clinical use. The presence of hybrid genes had no effect on the phenotype prediction of CYP2D6*4- and CYP2D6*10-containing samples. Four of four (100%) homozygous samples containing a CYP2D7-2D6 gene had a change in predicted phenotype, and 23 of 25 (92%) samples with a duplication signal and a CYP2D7-2D6 gene had a change in predicted phenotype. Four novel genes were identified (CYP2D6*13A1 variants 1 and 2, CYP2D6*13G1, and CYP2D6*13G2), and two novel hybrid tandem structures consisting of CYP2D6*13B + *68×2 + *4-like and CYP2D6*13A1 variant 2 + *1×N were observed.

  16. Symmetry origins of the `caldera' valence band distortion in 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Li, Pengke; Appelbaum, Ian; Physics Department Team

    The electronic structures of many two-dimensional van der Waals semiconductors exhibit various fascinating properties distinct from their three-dimensional bulk counterparts. Through an examination of their lattice symmetries, we identify several universal rules dictating their band dispersion in the monolayer limit, where in-plane mirror symmetry and quantum confinement play critical roles. Taking group-III metal monochalcogenides (such as GaSe) as an example, we reveal the origin of the unusual `caldera' shape of the valence band edge (otherwise inelegantly dubbed an `upside down Mexican hat'), which we show is surprisingly common among other 2D semiconductors (such as in phosphorene for k along its zigzag direction). Reference: arXiv:1508.06963

  17. Interactive initialization of 2D/3D rigid registration

    SciTech Connect

    Gong, Ren Hui; Güler, Özgür; Kürklüoglu, Mustafa; Lovejoy, John; Yaniv, Ziv

    2013-12-15

    Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 ± 5.0 mm with an average interaction time of 146.3 ± 73.0 s, and the AR-based method had mTREs of 7.2 ± 3.2 mm with interaction times of 44 ± 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 ± 5.0 mm with an average interaction time of 132.1 ± 66.4 s, and the AR-based method had mTREs of 8.3 ± 5.0 mm with interaction times of 58 ± 52 s. Conclusions: Based on the

  18. New set of 2D/3D thermodynamic indices for proteins. A formalism based on “ Molten Globule” theory

    NASA Astrophysics Data System (ADS)

    Ruiz-Blanco Yasser, B.; García, Y.; Sotomayor-Torres, C. M.; Yovani, Marrero-Ponce

    We define eight new macromolecular indices, and several related descriptors for proteins. The coarse grained methodology used for its deduction ensures its fast execution and becomes a powerful potential tool to explore large databases of protein structures. The indices are intended for stability studies, predicting Φ-values, predicting folding rate constants, protein QSAR/QSPR as well as protein alignment studies. Also, these indices could be used as scoring function in protein-protein docking or 3D protein structure prediction algorithms and any others applications which need a numerical code for proteins and/or residues from 2D or 3D format.

  19. Monolithic uncooled IR detectors of polycrystalline PbSe: a real alternative

    NASA Astrophysics Data System (ADS)

    Vergara, G.; Gómez, L. J.; Villamayor, V.; Álvarez, M.; Torquemada, M. C.; Rodrigo, M. T.; Verdú, M.; Sánchez, F. J.; Almazán, R. M.; Plaza, J.; Rodriguez, P.; Catalán, I.; Gutierrez, R.; Montojo, M. T.; Serra-Graells, F.; Margarit, J. M.; Terés, L.

    2007-04-01

    Paradoxically more than 50 years after being used in WWII, polycrystalline PbSe technology has turned today into an emerging technology. Without any doubt one of the main facts responsible for the PbSe resurgence is a new method for processing detectors based on a Vapour Phase Deposition (VPD) technique developed at CIDA. Using this method, the first low density 2D PbSe Focal Plane Array (FPA), an x-y addressed type device, was processed on silicon. Even though the last advances have been important they are not yet enough to consider this technology as a real alternative to other uncooled technologies. To reach technical relevance and commercial interest it is obligated to integrate monolithically or hybridize the sensors with their corresponding read out electronics (ROIC). Aiming to process monolithic devices, a proper CMOS read out electronics were designed. In parallel, enabled technologies were developed for adapting the material peculiarities to the CMOS substrates. In this work, the first monolithic device of VPD PbSe is presented. Even though it is a modest 16x16 FPA with a pitch of 200 μm, it represents an important milestone, allocating polycrystalline PbSe among the major players in the short list of uncooled IR detectors. Unlike microbolometers and ferroelectrics, it is a photonic detector suitable for being used as a detector in low cost IR imagers sensitive to the MWIR band and with frame rates as high as 1000 fps. The number of applications is therefore huge, some of them specific, unique and highly demanded in the military and security fields such as sensors applied to fast imagers, Active Protection Systems or low cost seekers.

  20. 2D harmonic filtering of MR phase images in multicenter clinical setting: toward a magnetic signature of cerebral microbleeds.

    PubMed

    Kaaouana, Takoua; de Rochefort, Ludovic; Samaille, Thomas; Thiery, Nathalie; Dufouil, Carole; Delmaire, Christine; Dormont, Didier; Chupin, Marie

    2015-01-01

    Cerebral microbleeds (CMBs) have emerged as a new imaging marker of small vessel disease. Composed of hemosiderin, CMBs are paramagnetic and can be detected with MRI sequences sensitive to magnetic susceptibility (typically, gradient recalled echo T2* weighted images). Nevertheless, their identification remains challenging on T2* magnitude images because of confounding structures and lesions. In this context, T2* phase image may play a key role in better characterizing CMBs because of its direct relationship with local magnetic field variations due to magnetic susceptibility difference. To address this issue, susceptibility-based imaging techniques were proposed, such as Susceptibility Weighted Imaging (SWI) and Quantitative Susceptibility Mapping (QSM). But these techniques have not yet been validated for 2D clinical data in multicenter settings. Here, we introduce 2DHF, a fast 2D phase processing technique embedding both unwrapping and harmonic filtering designed for data acquired in 2D, even with slice-to-slice inconsistencies. This method results in internal field maps which reveal local field details due to magnetic inhomogeneity within the region of interest only. This technique is based on the physical properties of the induced magnetic field and should yield consistent results. A synthetic phantom was created for numerical simulations. It simulates paramagnetic and diamagnetic lesions within a 'brain-like' tissue, within a background. The method was evaluated on both this synthetic phantom and multicenter 2D datasets acquired in standardized clinical setting, and compared with two state-of-the-art methods. It proved to yield consistent results on synthetic images and to be applicable and robust on patient data. As a proof-of-concept, we finally illustrate that it is possible to find a magnetic signature of CMBs and CMCs on internal field maps generated with 2DHF on 2D clinical datasets that give consistent results with CT-scans in a subsample of 10 subjects