Science.gov

Sample records for 2d fermi surface

  1. Recovering the Fermi surface with 2D-ACAR spectroscopy in samples with defects

    NASA Astrophysics Data System (ADS)

    Dugdale, S. B.; Laverock, J.

    2014-04-01

    When two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) experiments are performed in metals containing defects, conventional analysis in which the measured momentum distribution is folded back into the first Brillouin zone is rendered ineffective due to the contribution from positrons annihilating from the defect. However, by working with the radial anisotropy of the spectrum, it is shown that an image of the Fermi surface can be recovered since the defect contribution is essentially isotropic.

  2. Spin-dependent momentum density distribution and Fermi surface of Ho via 2D-ACAR measurements

    NASA Astrophysics Data System (ADS)

    Hamid, A. S.; Uedono, A.

    2004-03-01

    The first direct measurements of the spin-dependent positron-electron momentum density and Fermi surface of Ho are presented. The measurements were performed using two-dimensional angular correlation of annihilation radiation (ACAR) experiments with reversal magnetic field directions parallel and anti-parallel to the polarization direction of the positron. The analysis confirmed that two hybrid bands influence the Fermi surface of Ho. They are 5d-6s conduction hybrid bands and partial hybridization of 4f-5d bands. In fact, the measured Fermi surface revealed the behavior of the magnetic electrons. Further, the reciprocal lattice points revealed the electronic spin density distribution behavior. The general layout of the Fermi surface of Ho showed a multiply connected surface as an open hole running along the A axis with minority spin distribution and two electron surfaces centered on K and H points, respectively. Furthermore, this Fermi surface showed anti-ferromagnetic character. The measured Fermi surface of Ho showed agreement with the results of a previous band structure calculation method. (

  3. Electronic Structure and Fermi Surface of the Quaternary Intermetallic Borocarbide Superconductor YNi2B2C from 2D-ACAR

    NASA Astrophysics Data System (ADS)

    Hamid, A. S.

    We measured the angular momentum density distribution of YNi2B2C to acquire information about its electronic structure. The measurements were performed using the full-scale utility of the two-dimensional angular correlation of annihilation radiation (2D-ACAR). The measured spectra clarified that Ni (3d) like state, predominantly, affected the Fermi surface of YNi2B2C. Further, s- and p-like-states enhanced its superconducting properties. The Fermi surface of YNi2B2C. was reconstructed using Fourier transformation followed by the LCW (Loucks, Crisp and West) folding procedure. It showed a large and complex surface similar to that of the high temperature superconductors HTS, with anisotropic properties. It also disclosed the effect of d-like state. Nevertheless, the current Fermi surface could deliver the needed topological information to isolate its features. The general layouts of this Fermi surface are; two large electron surfaces running along Γ-Z direction; as well as an additional large electron surface centered on X point; beside one hole surface centered on 100 point. This Fermi surface was interpreted in view of the earlier results.

  4. From weakly to strongly interacting 2D Fermi gases

    NASA Astrophysics Data System (ADS)

    Dyke, Paul; Fenech, Kristian; Lingham, Marcus; Peppler, Tyson; Hoinka, Sascha; Vale, Chris

    2014-05-01

    We study ultracold 2D Fermi gases of 6Li formed in a highly oblate trapping potential. The potential is generated by a cylindrically focused, blue detuned TEM01 mode laser beam. Weak magnetic field curvature provides highly harmonic confinement in the radial direction and we can readily produce single clouds with an aspect ratio of 230. Our experiments investigate the dimensional crossover from 3D to 2D for a two component Fermi gas in the Bose-Einstein Condensate to Bardeen Cooper Schrieffer crossover. Observation of an elbow in measurements of the cloud width vs. atom number is consistent with populating only the lowest transverse harmonic oscillator state for weak attractive interactions. This measurement is extended to the strongly interacting region using the broad Feshbach resonance at 832 G. We also report our progress towards measurement of the 2D equation of state for an interacting 2D Fermi gas via in-situ absorption imaging.

  5. The 2d MIT: The Pseudogap and Fermi Liquid Theory

    NASA Astrophysics Data System (ADS)

    Castner, T. G.

    2005-06-01

    Fermi liquid theory for the 2d metal-insulator transition is extended to include the correlation gap in the density-of-states. The results are consistent with the scaling form g=gce[on(To/T)] at T larger than a characteristic T* ∝ xTc (Tc=Ec= mobility edge). The two-component model n1+nloc=n=nc(1+x) for n>nc is required and the theory explains the T-dependence of the data of Hanein et al. for p-type GaAs.

  6. Fermi-surface reconstruction from two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) data using maximum-likelihood fitting of wavelet-like functions

    NASA Astrophysics Data System (ADS)

    G, A., Major; Fretwell, H. M.; Dugdale, S. B.; Alam, M. A.

    1998-11-01

    A novel method for reconstructing the Fermi surface from experimental two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) projections is proposed. In this algorithm, the 3D electron momentum-density distribution is expanded in terms of a basis of wavelet-like functions. The parameters of the model, the wavelet coefficients, are determined by maximizing the likelihood function corresponding to the experimental data and the projections calculated from the model. In contrast to other expansions, in the case of that in terms of wavelets a relatively small number of model parameters are sufficient for representing the relevant parts of the 3D distribution, thus keeping computation times reasonably short. Unlike other reconstruction methods, this algorithm takes full account of the statistical information content of the data and therefore may help to reduce the amount of time needed for data acquisition. An additional advantage of wavelet expansion may be the possibility of retrieving the Fermi surface directly from the wavelet coefficients rather than indirectly using the reconstructed 3D distribution.

  7. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  8. Crossover from 2D to 3D in a Weakly Interacting Fermi Gas

    SciTech Connect

    Dyke, P.; Kuhnle, E. D.; Hu, H.; Mark, M.; Hoinka, S.; Lingham, M.; Hannaford, P.; Vale, C. J.; Whitlock, S.

    2011-03-11

    We have studied the transition from two to three dimensions in a low temperature weakly interacting {sup 6}Li Fermi gas. Below a critical atom number N{sub 2D} only the lowest transverse vibrational state of a highly anisotropic oblate trapping potential is occupied and the gas is two dimensional. Above N{sub 2D} the Fermi gas enters the quasi-2D regime where shell structure associated with the filling of individual transverse oscillator states is apparent. This dimensional crossover is demonstrated through measurements of the cloud size and aspect ratio versus atom number.

  9. Stability of Fermi surfaces and K theory.

    PubMed

    Horava, Petr

    2005-07-01

    Nonrelativistic Fermi liquids in d+1 dimensions exhibit generalized Fermi surfaces: (d-p)-dimensional submanifolds in the (k,omega)-space supporting gapless excitations. We show that the universality classes of stable Fermi surfaces are classified by K theory, with the pattern of stability determined by Bott periodicity. The Atiyah-Bott-Shapiro construction implies that the low-energy modes near a Fermi surface exhibit relativistic invariance in the transverse p+1 dimensions. This suggests an intriguing parallel between nonrelativistic Fermi liquids and D-branes of string theory. PMID:16090638

  10. FFLO Superfluids in 2D Spin-Orbit Coupled Fermi Gases

    PubMed Central

    Zheng, Zhen; Gong, Ming; Zhang, Yichao; Zou, Xubo; Zhang, Chuanwei; Guo, Guangcan

    2014-01-01

    We show that the combination of spin-orbit coupling and in-plane Zeeman field in a two-dimensional degenerate Fermi gas can lead to a larger parameter region for Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases than that using spin-imbalanced Fermi gases. The resulting FFLO superfluids are also more stable due to the enhanced energy difference between FFLO and conventional Bardeen-Cooper-Schrieffer (BCS) excited states. We clarify the crucial role of the symmetry of Fermi surface on the formation of finite momentum pairing. The phase diagram for FFLO superfluids is obtained in the BCS-BEC crossover region and possible experimental observations of FFLO phases are discussed. PMID:25288379

  11. Fermi Surface and Magnetic Structure of TmGa3

    NASA Astrophysics Data System (ADS)

    Biasini, M.; Kontrym-Sznajd, G.; Monge, M. A.; Gemmi, M.; Czopnik, A.; Jura, A.

    2001-05-01

    We carry out measurements of the two-dimensional angular correlation of the positron annihilation radiation (2D-ACAR) to reconstruct the complex multisheet Fermi surface (FS) of the cubic rare-earth (RE) compound TmGa3. We discover a correlation between the antiferromagnetic structures and the nesting of the FS along the [110] directions. Moreover, we propose methods to estimate the density of states at the Fermi energy ( EF) and the electronic contribution to the specific heat [we obtain N\\(EF\\) = 13.6 states/Ryd cell and γ = 2.4 mJ/mole K2].

  12. Phase Separation and Pair Condensation in a Spin-Imbalanced 2D Fermi Gas.

    PubMed

    Mitra, Debayan; Brown, Peter T; Schauß, Peter; Kondov, Stanimir S; Bakr, Waseem S

    2016-08-26

    We study a two-component quasi-two-dimensional Fermi gas with imbalanced spin populations. We probe the gas at different interaction strengths and polarizations by measuring the density of each spin component in the trap and the pair momentum distribution after time of flight. For a wide range of experimental parameters, we observe in-trap phase separation characterized by the appearance of a spin-balanced core surrounded by a polarized gas. Our momentum space measurements indicate pair condensation in the imbalanced gas even for large polarizations where phase separation vanishes, pointing to the presence of a polarized pair condensate. Our observation of zero momentum pair condensates in 2D spin-imbalanced gases opens the way to explorations of more exotic superfluid phases that occupy a large part of the phase diagram in lower dimensions. PMID:27610853

  13. Deviations from Fermi-Liquid Behavior above Tc in 2D Short Coherence Length Superconductors

    NASA Astrophysics Data System (ADS)

    Trivedi, Nandini; Randeria, Mohit

    1995-07-01

    We show that there are qualitative differences between the temperature dependence of the spin and charge correlations in the normal state of the 2D attractive Hubbard model using quantum Monte Carlo simulations. The one-particle density of states shows a pseudogap above Tc with a depleted N0 with decreasing T. The susceptibility χs and the low frequency spin spectral weight track N0, which explains the spin-gap scaling: 1/T1T~χsT. However, collective excitations contribute to the charge channel, and the compressibility dn/dμ is T independent. This anomalous ``spin-charge separation'' is shown to exist even at intermediate \\|U\\| where the momentum distribution nk gives evidence for a degenerate Fermi system.

  14. Entanglement Entropy and the Fermi Surface

    NASA Astrophysics Data System (ADS)

    Swingle, Brian

    2010-07-01

    Free fermions with a finite Fermi surface are known to exhibit an anomalously large entanglement entropy. The leading contribution to the entanglement entropy of a region of linear size L in d spatial dimensions is S˜Ld-1log⁡L, a result that should be contrasted with the usual boundary law S˜Ld-1. This term depends only on the geometry of the Fermi surface and on the boundary of the region in question. I give an intuitive account of this anomalous scaling based on a low energy description of the Fermi surface as a collection of one-dimensional gapless modes. Using this picture, I predict a violation of the boundary law in a number of other strongly correlated systems.

  15. Fermi surface anisotropy in the cuprates

    NASA Astrophysics Data System (ADS)

    Ramshaw, Brad

    Broken rotational (C4) symmetry is a distinguishing feature for a number of experiments in the underdoped high-Tc cuprates, including electrical resistivity, neutron scattering, Nernst coefficient, and scanning tunneling microscopy. This broken symmetry has not been observed on the Fermi surface, however, with or without the presence of an applied magnetic field. We measure the angle-dependent magnetoresistance-a quantity known to be extremely sensitive to the geometry and symmetry of the Fermi surface-of YBa2Cu3O6.58, and find that the Fermi surface has a clear two-fold symmetry, breaking the C4 symmetry of the copper-oxide plane. We discuss the implications of this finding, including how it fits with recent X-ray measurements in high magnetic fields.

  16. Switchable Fermi surface sheets in greigite

    NASA Astrophysics Data System (ADS)

    Zhang, B.; de Wijs, G. A.; de Groot, R. A.

    2012-07-01

    Greigite (Fe3S4) and magnetite (Fe3O4) are isostructural and isoelectronic ferrimagnets with quite distinct properties. Electronic structure calculations reveal greigite is a normal metal in contrast to half-metallic magnetite. Greigite shows a complex Fermi surface with a unique influence of relativistic effects: The existence of sheets of the Fermi surface depends on the direction of the magnetization. This enables spinorbitronics, spintronics on the level of a single compound rather than a device. Due to its relativistic origin, spin contamination is irrelevant in spinorbitronics and the entire periodic table is available for optimizations.

  17. Programmable variable stiffness 2D surface design

    NASA Astrophysics Data System (ADS)

    Trabia, Sarah; Hwang, Taeseon; Yim, Woosoon

    2014-03-01

    Variable stiffness features can contribute to many engineering applications ranging from robotic joints to shock and vibration mitigation. In addition, variable stiffness can be used in the tactile feedback to provide the sense of touch to the user. A key component in the proposed device is the Biased Magnetorheological Elastomer (B-MRE) where iron particles within the elastomer compound develop a dipole interaction energy. A novel feature of this device is to introduce a field induced shear modulus bias via a permanent magnet which provides an offset with a current input to the electromagnetic control coil to change the compliance or modulus of a base elastomer in both directions (softer or harder). The B-MRE units can lead to the design of a variable stiffness surface. In this preliminary work, both computational and experimental results of the B-MRE are presented along with a preliminary design of the programmable variable stiffness surface design.

  18. Unconventional Fermi surface in an insulating state

    SciTech Connect

    Harrison, Neil; Tan, B. S.; Hsu, Y. -T.; Zeng, B.; Hatnean, M. Ciomaga; Zhu, Z.; Hartstein, M.; Kiourlappou, M.; Srivastava, A.; Johannes, M. D.; Murphy, T. P.; Park, J. -H.; Balicas, L.; Lonzarich, G. G.; Balakrishnan, G.; Sebastian, Suchitra E.

    2015-07-17

    Insulators occur in more than one guise; a recent finding was a class of topological insulators, which host a conducting surface juxtaposed with an insulating bulk. Here, we report the observation of an unusual insulating state with an electrically insulating bulk that simultaneously yields bulk quantum oscillations with characteristics of an unconventional Fermi liquid. We present quantum oscillation measurements of magnetic torque in high-purity single crystals of the Kondo insulator SmB6, which reveal quantum oscillation frequencies characteristic of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6. As a result, the quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly at variance with conventional metallic behavior.

  19. Signature of Fermi surface jumps in positron spectroscopy data

    NASA Astrophysics Data System (ADS)

    Adam, Gh.; Adam, S.

    1999-08-01

    A subtractionless method for solving Fermi surface sheets (FSS), from measured n-axis-projected momentum distribution histograms by two-dimensional angular correlation of the positron—electron annihilation radiation (2D-ACAR) technique, is discussed. The window least squares statistical noise smoothing filter described by Adam et al. [Nucl.Instr. & Meth. A 337 (1993) 188] is first refined such that the window free radial parameters (WRP) are optimally adapted to the data. In an ideal single crystal, the specific jumps induced in the WRP distribution by the existing Fermi surface jumps yield straightforward information on the resolved FSS. In a real crystal, the smearing of the derived WRP optimal values, which originates from positron annihilations with electrons at crystal imperfections, is ruled out by median smoothing of the obtained distribution, over symmetry defined stars of bins. The analysis of a gigacount 2D-ACAR spectrum, measured on the archetypal high- T c compound YBa 2Cu 3O 7- δ at room temperature, illustrates the method. Both electronic FSS, the ridge along ΓX direction and the pillbox centered at the S point of the first Brillouin zone, are resolved.

  20. Focusing surface wave imaging with flexible 2D array

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyuan; Fu, Junqiang; Li, Zhe; Xu, Chunguang; Xiao, Dingguo; Wang, Shaohan

    2016-04-01

    Curved surface is widely exist in key parts of energy and power equipment, such as, turbine blade cylinder block and so on. Cycling loading and harsh working condition of enable fatigue cracks appear on the surface. The crack should be found in time to avoid catastrophic damage to the equipment. A flexible 2D array transducer was developed. 2D Phased Array focusing method (2DPA), Mode-Spatial Double Phased focusing method (MSDPF) and the imaging method using the flexible 2D array probe are studied. Experiments using these focusing and imaging method are carried out. Surface crack image is obtained with both 2DPA and MSDPF focusing method. It have been proved that MSDPF can be more adaptable for curved surface and more calculate efficient than 2DPA.

  1. Three-body bound states of two bosonic impurities immersed in a Fermi sea in 2D

    NASA Astrophysics Data System (ADS)

    Bellotti, F. F.; Frederico, T.; Yamashita, M. T.; Fedorov, D. V.; Jensen, A. S.; Zinner, N. T.

    2016-04-01

    We consider two identical impurities immersed in a Fermi sea for a broad range of masses and for both interacting and non-interacting impurities. The interaction between the particles is described through attractive zero-range potentials and the problem is solved in momentum space. The two impurities can attach to a fermion from the sea and form three-body bound states. The energy of these states increase as function of the Fermi momentum k F, leading to three-body bound states below the Fermi energy. The fate of the states depends highly on two- and three-body thresholds and we find evidence of medium-induced Borromean-like states in 2D. The corrections due to particle-hole fluctuations in the Fermi sea are considered in the three-body calculations and we show that in spite of the fact that they strongly affect both the two- and three-body systems, the correction to the point at which the three-body states cease to exist is small.

  2. Spin dependent momentum density and Fermi surface of ferromagnetic Ni obtained by positron annihilation experiments

    NASA Astrophysics Data System (ADS)

    Hamid, A. S.; Uedono, A.

    2004-11-01

    The cover picture of this issue, taken from [1], shows a cross section of the Fermi surface in the basal plane of nickel. The measurements were carried out using 2D angular correlation of annihilation radiation (ACAR) experiments. The intersecting plane is normal to the c-axis, passing through the and X points. The light regions correspond to a high electron momentum density. The Fermi surface is presented as two hole surfaces around the point and two electron surfaces around the X point.

  3. Observation of the Leggett-Rice effect in an ensemble of 2D Fermi gases

    NASA Astrophysics Data System (ADS)

    Luciuk, Christopher; Smale, Scott; Trotzky, Stefan; Sharum, Haille; Enss, Tilman; Thywissen, Joseph

    2016-05-01

    Transport properties of unitary Fermi gases have been studied extensively in the past few years. Because of strong interparticle scattering at unitarity, many transport phenomenon, in particular the spin diffusivity, are observed to be bounded. However, anomalously slow spin diffusion has been observed in two dimensions and remains to be understood. Here we study the spin currents that arise as a result of a non-equilibrium magnetization in an ensemble of two dimensional Fermi gases. Spin currents possess both a dissipative and reactive component. The dissipative component - parameterized by the spin diffusivity - is a measure of the scattering rate. The reactive component describes a part of the spin current that precesses around the local magnetization known as the Leggett-Rice effect. Using a spin-echo sequence we measure both the amplitude and phase of magnetization dynamics to extract these two transport parameters at a range of interaction strengths near a Feshbach resonance.

  4. Fermi surfaces of surface states on Si(111)-Ag, Au

    NASA Astrophysics Data System (ADS)

    Crain, J. N.; Altmann, K. N.; Bromberger, C.; Himpsel, F. J.

    2002-11-01

    Metallic surface states on semiconducting substrates provide an opportunity to study low-dimensional electrons decoupled from the bulk. Angle resolved photoemission is used to determine the Fermi surface, group velocity, and effective mass for surface states on Si(111)(3)×(3)-Ag, Si(111)(3)×(3)-Au, and Si(111)(21)×(21)-(Ag+Au). For Si(111)(3)×(3)-Ag the Fermi surface consists of small electron pockets populated by electrons from a few % excess Ag. For Si(111)(21)×(21)-(Ag+Au) the pockets increase their size corresponding to a filling by three electrons per unit cell. The (21)×(21) superlattice leads to an intricate surface umklapp pattern and to minigaps of 110 meV, giving an interaction potential of 55 meV for the (21)×(21) superlattice.

  5. Entanglement rules for holographic Fermi surfaces

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Dibakar

    2016-08-01

    In this paper, based on the notion of Gauge/Gravity duality, we explore the laws of entanglement thermodynamics for most generic classes of Quantum Field Theories with hyperscaling violation. In our analysis, we note that for Quantum Field Theories with compressible quark like excitation, the first law of entanglement thermodynamics gets modified due to the presence of an additional term that could be identified as the entanglement chemical potential associated with hidden Fermi surfaces of the boundary theory. Most notably, we find that the so called entanglement chemical potential does not depend on the size of the entangling region and is purely determined by the quark d.o.f. encoded within the entangling region.

  6. Evolution of electron Fermi surface with doping in cobaltates.

    PubMed

    Ma, Xixiao; Lan, Yu; Qin, Ling; Kuang, Lülin; Feng, Shiping

    2016-08-24

    The notion of the electron Fermi surface is one of the characteristic concepts in the field of condensed matter physics, and it plays a crucial role in the understanding of the physical properties of doped Mott insulators. Based on the t-J model, we study the nature of the electron Fermi surface in the cobaltates, and qualitatively reproduce the essential feature of the evolution of the electron Fermi surface with doping. It is shown that the underlying hexagonal electron Fermi surface obeys Luttinger's theorem. The theory also predicts a Fermi-arc phenomenon at the low-doped regime, where the region of the hexagonal electron Fermi surface along the [Formula: see text]-K direction is suppressed by the electron self-energy, and then six disconnected Fermi arcs located at the region of the hexagonal electron Fermi surface along the [Formula: see text]-M direction emerge. However, this Fermi-arc phenomenon at the low-doped regime weakens with the increase of doping. PMID:27351111

  7. Evolution of electron Fermi surface with doping in cobaltates

    NASA Astrophysics Data System (ADS)

    Ma, Xixiao; Lan, Yu; Qin, Ling; Kuang, Lülin; Feng, Shiping

    2016-08-01

    The notion of the electron Fermi surface is one of the characteristic concepts in the field of condensed matter physics, and it plays a crucial role in the understanding of the physical properties of doped Mott insulators. Based on the t-J model, we study the nature of the electron Fermi surface in the cobaltates, and qualitatively reproduce the essential feature of the evolution of the electron Fermi surface with doping. It is shown that the underlying hexagonal electron Fermi surface obeys Luttinger’s theorem. The theory also predicts a Fermi-arc phenomenon at the low-doped regime, where the region of the hexagonal electron Fermi surface along the Γ -K direction is suppressed by the electron self-energy, and then six disconnected Fermi arcs located at the region of the hexagonal electron Fermi surface along the Γ -M direction emerge. However, this Fermi-arc phenomenon at the low-doped regime weakens with the increase of doping.

  8. Corrections to Fermi Liquid theory in 2D in a magnetic field

    NASA Astrophysics Data System (ADS)

    Chubukov, Andrey; Betouras, Joseph; Efremov, Dmitri

    2005-03-01

    In this work, we consider a Fermi liquid in two dimensions in a magnetic field, and study the effects of the Zeeman splitting on thermodynamics. We derive the temperature dependence of the spin susceptibility χs(T) from the thermodynamic potential, and show explicitly how 2pF scattering gives rise to a non- analytic temperature dependence of the susceptibility. We explain why small momentum scattering does not give rise to non-analytic χs(T). We discuss experimental implications of this result.

  9. Non-equilibrium dynamics of an ensemble of 2D Fermi gases

    NASA Astrophysics Data System (ADS)

    Sharum, Haille; Smale, Scott; Luciuk, Christopher; Trotzky, Stefan; Enss, Tilman; Yu, Zhenhua; Zhang, Shizhong; Thywissen, Joseph

    2016-05-01

    We study the dynamics of an ensemble of two dimensional Fermi gases near Feshbach scattering resonances. We begin our experiments with a weakly interacting or non-interacting gas and initiate strong interactions on a timescale that is fast compared to equilibration. We probe the evolution of the short-ranged part of the many-body wavefunction via radio frequency spectroscopy. Alternatively, we perform spin echo measurements to reveal the dissipative (spin diffusion) and reactive (Leggett-Rice effect) components of transverse spin currents.

  10. Pair condensation in a spin-imbalanced 2D Fermi gas

    NASA Astrophysics Data System (ADS)

    Mitra, Debayan; Brown, Peter; Schauss, Peter; Kondov, Stanimir; Bakr, Waseem

    2016-05-01

    We study the phase diagram of the strongly-interacting spin-imbalanced Fermi gas in two dimensions, where the low dimensionality enhances correlations and phase fluctuations. Our interest is motivated by the connection of this system with superconductivity in the presence of a large Zeeman field. We observe pair condensation for a range of spin imbalance and interaction strengths. The measurement of the phase diagram opens the door for a detailed investigation of exotic phases such as the Sarma/broken pair phase and the elusive FFLO phase.

  11. Design Application Translates 2-D Graphics to 3-D Surfaces

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.

  12. Fermi surfaces and energy gaps of high-temperature superconductors

    SciTech Connect

    Shen, Z.X.; Dessau, D.S.

    1994-12-31

    In this short paper, the authors describe their recent experimental results from high-temperature superconductors. In the normal state, the data reveals interesting features of the Fermi surfaces and low energy excitations near the Fermi level. In the superconducting state, the data shows a very strong anisotropy in the superconducting gap.

  13. Spin dependent momentum density and Fermi surface of ferromagnetic Ni obtained by positron annihilation experiments

    NASA Astrophysics Data System (ADS)

    Hamid, A. S.; Uedono, A.

    2004-11-01

    The spin-dependent momentum density and Fermi surface of ferromagnetic Ni have been obtained through positron annihilation experiments. The measurements were carried out through 2D angular correlation of annihilation radiation (ACAR) using longitudinally polarized positrons. The magnetic field direction was reversed in order to study the effect of the spin-dependent positron-electron momentum space density on the Fermi surface of Ni. The results showed that ferromagnetic Ni had different Fermi surfaces for the majority-spin and minority-spin states. The differences due to the spin-states were studied in the momentum space and in the wave vector space. In general, the experimental results showed good agreement with previous theoretical calculations.

  14. Towards a complete Fermi surface in underdoped high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Harrison, Neil

    The discovery of magnetic quantum oscillations in underdoped high Tc superconductors raised many questions, and initiated a quest to understand the origin of the Fermi surface the like of which had not been seen since the very first discovery of quantum oscillations in elemental bismuth. While studies of the Fermi surface of materials are today mostly assisted by computer codes for calculating the electronic band structure, this was not the case in the underdoped high Tc materials. The Fermi surface was shown to reconstructed into small pockets, yet there was no hint of a viable order parameter. Crucial clues to understanding the origin of the Fermi surface were provided by the small value of the observed Fermi surface cross-section, the negative Hall coefficient and the small electronic heat capacity at high magnetic fields. We also know that the magnetic fields were likely to be too weak to destroy the pseudogap and that vortex pinning effects could be seen to persist to high magnetic fields at low temperatures. I will show that the Fermi surface that appears to fit best with the experimental observations is a small electron pocket formed by connecting the nodal `Fermi arcs' seen in photoemission experiments, corresponding to a density-wave state with two different orthogonal ordering vectors. The existence of such order has subsequently been detected by x-ray scattering experiments, thereby strengthening the case for charge ordering being responsible for reconstructing the Fermi surface. I will discuss new efforts to understand the relationship between the charge ordering and the pseudogap state, discussing the fate of the quasiparticles in the antinodal region and the dimensionality of the Fermi surface. The author acknowledges contributions from Suchitra Sebastian, Brad Ramshaw, Mun Chan, Yu-Te Hsu, Mate Hartstein, Gil Lonzarich, Beng Tan, Arkady Shekhter, Fedor Balakirev, Ross McDonald, Jon Betts, Moaz Altarawneh, Zengwei Zhu, Chuck Mielke, James Day, Doug

  15. Manipulating superconductivity in ruthenates through Fermi surface engineering

    NASA Astrophysics Data System (ADS)

    Hsu, Yi-Ting; Cho, Weejee; Rebola, Alejandro Federico; Burganov, Bulat; Adamo, Carolina; Shen, Kyle M.; Schlom, Darrell G.; Fennie, Craig J.; Kim, Eun-Ah

    2016-07-01

    The key challenge in superconductivity research is to go beyond the historical mode of discovery-driven research. We put forth a new strategy, which is to combine theoretical developments in the weak-coupling renormalization-group approach with the experimental developments in lattice-strain-driven Fermi surface engineering. For concreteness we theoretically investigate how superconducting tendencies will be affected by strain engineering of ruthenates' Fermi surface. We first demonstrate that our approach qualitatively reproduces recent experiments under uniaxial strain. We then note that the order of a few percent strain, readily accessible to epitaxial thin films, can bring the Fermi surface close to van Hove singularity. Using the experimental observation of the change in the Fermi surface under biaxial epitaxial strain and ab initio calculations, we predict Tc for triplet pairing to be maximized by getting close to the van Hove singularities without tuning on to the singularity.

  16. 3D surface configuration modulates 2D symmetry detection.

    PubMed

    Chen, Chien-Chung; Sio, Lok-Teng

    2015-02-01

    We investigated whether three-dimensional (3D) information in a scene can affect symmetry detection. The stimuli were random dot patterns with 15% dot density. We measured the coherence threshold, or the proportion of dots that were the mirror reflection of the other dots in the other half of the image about a central vertical axis, at 75% accuracy with a 2AFC paradigm under various 3D configurations produced by the disparity between the left and right eye images. The results showed that symmetry detection was difficult when the corresponding dots across the symmetry axis were on different frontoparallel or inclined planes. However, this effect was not due to a difference in distance, as the observers could detect symmetry on a slanted surface, where the depth of the two sides of the symmetric axis was different. The threshold was reduced for a hinge configuration where the join of two slanted surfaces coincided with the axis of symmetry. Our result suggests that the detection of two-dimensional (2D) symmetry patterns is subject to the 3D configuration of the scene; and that coplanarity across the symmetry axis and consistency between the 2D pattern and 3D structure are important factors for symmetry detection. PMID:25536469

  17. 2D Gridded Surface Data Value-Added Product

    SciTech Connect

    Tang, Q; Xie, S

    2015-08-30

    This report describes the Atmospheric Radiation Measurement (ARM) Best Estimate (ARMBE) 2-dimensional (2D) gridded surface data (ARMBE2DGRID) value-added product. Spatial variability is critically important to many scientific studies, especially those that involve processes of great spatial variations at high temporal frequency (e.g., precipitation, clouds, radiation, etc.). High-density ARM sites deployed at the Southern Great Plains (SGP) allow us to observe the spatial patterns of variables of scientific interests. The upcoming megasite at SGP with its enhanced spatial density will facilitate the studies at even finer scales. Currently, however, data are reported only at individual site locations at different time resolutions for different datastreams. It is difficult for users to locate all the data they need and requires extra effort to synchronize the data. To address these problems, the ARMBE2DGRID value-added product merges key surface measurements at the ARM SGP sites and interpolates the data to a regular 2D grid to facilitate the data application.

  18. Fermi Surface of Nanocrystalline Embedded Particles in Materials: bcc Cu in Fe

    NASA Astrophysics Data System (ADS)

    Nagai, Y.; Chiba, T.; Tang, Z.; Akahane, T.; Kanai, T.; Hasegawa, M.; Takenaka, M.; Kuramoto, E.

    2001-10-01

    We report that a positron can act as a probe to directly reveal electronic structures of nanocrystalline embedded particles in materials. The Fermi surface (FS) of ``bcc'' Cu nanoparticles in an Fe matrix is observed as the first example. A two-dimensional angular correlation of the positron annihilation radiation (2D-ACAR) method is used to measure the momentum distribution which reflects the FS topology. The obtained 2D-ACAR spectra show strong and characteristic anisotropy associated with the necks of the FS around the \\{110\\} Brillouin zone boundaries of the bcc Cu, which are well reproduced by full-potential linearized argumented plane-wave calculations.

  19. Shear viscosity of quasi-2D dipolar Bose-Fermi mixtures with long-range 1/r interactions

    NASA Astrophysics Data System (ADS)

    Darsheshdar, E.; Yavari, H.; Moniri, S. M.

    2016-05-01

    Low-temperature shear viscosity of a spin polarized two-component quasi-2D dipolar Fermi gas with long-range 1/ r interaction in the Bose-Einstein condensation (BEC) limit, where the system can be considered as dimers and the unpaired fermions, is calculated by means of the Kubo formalism. By taking into account the dimer-atom, dimer-dimer, and atom-atom interactions in the self-energies the viscous relaxation time (τ_{η}= (τ_{DA}^{-1}+τ_{DD}^{-1}+ τ_{AA}^{-1})^{-1}) is determined. Since the relaxation rates due to these interactions τ_{DA}^{-1} , τ_{DD}^{ -1} and τ_{AA}^{-1} varies, respectively, as T , T2 , and T in the low-temperature limit T→0 , the dimer-atom and atom-atom interactions play the dominant role to the shear viscosity and the shear viscosity varies as T^{-1} . For small polarization the effect of dimer-dimer interaction is important (τ_{DA},τ_{AA}≫τ_{DD}) , and the shear viscosity changes as the standard T^{-2} behviour. In this case, the temperature behavior of the dimer relaxation rate unaffected by 1/ r interaction and the contact, dipole-dipole, and 1/ r interactions play the same role in the temperature dependence of the shear viscosity. Our results have important consequences for developing experiments and theoretical researches on the transport properties of ultracold gases with repulsive or attractive long range 1/ r interaction.

  20. Observation of Fermi arc surface states in a topological metal.

    PubMed

    Xu, Su-Yang; Liu, Chang; Kushwaha, Satya K; Sankar, Raman; Krizan, Jason W; Belopolski, Ilya; Neupane, Madhab; Bian, Guang; Alidoust, Nasser; Chang, Tay-Rong; Jeng, Horng-Tay; Huang, Cheng-Yi; Tsai, Wei-Feng; Lin, Hsin; Shibayev, Pavel P; Chou, Fang-Cheng; Cava, Robert J; Hasan, M Zahid

    2015-01-16

    The topology of the electronic structure of a crystal is manifested in its surface states. Recently, a distinct topological state has been proposed in metals or semimetals whose spin-orbit band structure features three-dimensional Dirac quasiparticles. We used angle-resolved photoemission spectroscopy to experimentally observe a pair of spin-polarized Fermi arc surface states on the surface of the Dirac semimetal Na3Bi at its native chemical potential. Our systematic results collectively identify a topological phase in a gapless material. The observed Fermi arc surface states open research frontiers in fundamental physics and possibly in spintronics. PMID:25593189

  1. Fermi Surfaces of Surface States on Si(111)

    NASA Astrophysics Data System (ADS)

    Crain, J. N.; Altmann, K. N.; Himpsel, F. J.; Bromberger, C.

    2002-03-01

    Metallic surface states on semi-conducting surfaces provide a unique opportunity to study low-dimensional bands that are decoupled from the bulk. Two such systems that have received much attention for their metallic surface states are Si(111)surd 3× surd 3 - Ag and Si(111) surd 3× surd 3 - Au. We present angle resolved photoemission data mapping the Fermi-surfaces for surd 3× surd 3 - Ag and surd 3× surd 3 - Au, and study the effects of doping the surface with additional Au atoms.[1] For surd 3× surd 3 - Au, an increase in the Au coverage is linked to an increase in the occupancy of the metallic surface state. In the case of surd 3× surd 3 - Ag, the addition of Au forms a new metallic band and a surd 21× surd 21 superlattice that are observed in photoemission. Reference: [1] J N Crain, K N Altmann, C Bromberger, F J Himpsel, submitted to Physics Review B.

  2. Pressure dependence of the Fermi surface of hcp Yb

    NASA Astrophysics Data System (ADS)

    Schirber, J. E.; Beaudry, B. J.; Jepsen, O.

    1981-06-01

    The pressure dependence of Fermi-surface cross sections for principal symmetry directions has been investigated using solid He pressure generation techniques. Careful searches for de Haas-van Alphen signals were conducted from 2 to 9 kbar in both virgin fcc crystals and samples transformed from hcp to fcc. No sign of the frequency reported by Ribault was detected. Results are discussed in terms of theoretically calculated pressure-induced changes in the band structure and Fermi surface of the hcp phase of Yb.

  3. Fermi surface, magnetic, and superconducting properties in actinide compounds

    NASA Astrophysics Data System (ADS)

    Ōnuki, Yoshichika; Settai, Rikio; Haga, Yoshinori; Machida, Yo; Izawa, Koichi; Honda, Fuminori; Aoki, Dai

    2014-08-01

    The de Haas-van Alphen effect, which is a powerful method to explore Fermi surface properties, has been observed in cerium, uranium, and nowadays even in neptunium and plutonium compounds. Here, we present the results of several studies concerning the Fermi surface properties of the heavy fermion superconductors UPt3 and NpPd5Al2, and of the ferromagnetic pressure-induced superconductor UGe2, together with those of some related compounds for which fascinating anisotropic superconductivity, magnetism, and heavy fermion behavior has been observed. xml:lang="fr"

  4. Exotic Paired States with Anisotropic Spin-Dependent Fermi Surfaces

    SciTech Connect

    Feiguin, Adrian E.; Fisher, Matthew P. A.

    2009-07-10

    We propose a model for realizing exotic paired states in cold Fermi gases by using a spin-dependent optical lattice to engineer mismatched Fermi surfaces for each hyperfine species. The BCS phase diagram shows a stable paired superfluid state with coexisting pockets of momentum space with gapless unpaired carriers, similar to the Sarma state in polarized mixtures, but in our case the system is unpolarized. We propose the possible existence of an exotic 'Cooper-pair Bose-metal' phase, which has a gap for single fermion excitations but gapless and uncondensed 'Cooper-pair' excitations residing on a 'Bose surface' in momentum space.

  5. Massively Parallel Computation of Soil Surface Roughness Parameters on A Fermi GPU

    NASA Astrophysics Data System (ADS)

    Li, Xiaojie; Song, Changhe

    2016-06-01

    Surface roughness is description of the surface micro topography of randomness or irregular. The standard deviation of surface height and the surface correlation length describe the statistical variation for the random component of a surface height relative to a reference surface. When the number of data points is large, calculation of surface roughness parameters is time-consuming. With the advent of Graphics Processing Unit (GPU) architectures, inherently parallel problem can be effectively solved using GPUs. In this paper we propose a GPU-based massively parallel computing method for 2D bare soil surface roughness estimation. This method was applied to the data collected by the surface roughness tester based on the laser triangulation principle during the field experiment in April 2012. The total number of data points was 52,040. It took 47 seconds on a Fermi GTX 590 GPU whereas its serial CPU version took 5422 seconds, leading to a significant 115x speedup.

  6. Fermi surface behavior in the ABJM M2-brane theory

    NASA Astrophysics Data System (ADS)

    DeWolfe, Oliver; Henriksson, Oscar; Rosen, Christopher

    2015-06-01

    We calculate fermionic Green's functions for states of the three-dimensional Aharony-Bergman-Jafferis-Maldacena M2-brane theory at large N using the gauge-gravity correspondence. We embed extremal black brane solutions in four-dimensional maximally supersymmetric gauged supergravity, obtain the linearized Dirac equations for each spin-1 /2 mode that cannot mix with a gravitino, and solve these equations with infalling boundary conditions to calculate retarded Green's functions. For generic values of the chemical potentials, we find Fermi surfaces with universally non-Fermi liquid behavior, matching the situation for four-dimensional N =4 super-Yang-Mills. Fermi surface singularities appear and disappear discontinuously at the point where all chemical potentials are equal, reminiscent of a quantum critical point. One limit of parameter space has zero entropy at zero temperature, and fermionic fluctuations are perfectly stable inside an energy region around the Fermi surface. An ambiguity in the quantization of the fermions is resolved by supersymmetry.

  7. Are the surface Fermi arcs in Dirac semimetals topologically protected?

    PubMed

    Kargarian, Mehdi; Randeria, Mohit; Lu, Yuan-Ming

    2016-08-01

    Motivated by recent experiments probing anomalous surface states of Dirac semimetals (DSMs) Na3Bi and Cd3As2, we raise the question posed in the title. We find that, in marked contrast to Weyl semimetals, the gapless surface states of DSMs are not topologically protected in general, except on time-reversal-invariant planes of surface Brillouin zone. We first demonstrate this finding in a minimal four-band model with a pair of Dirac nodes at [Formula: see text] where gapless states on the side surfaces are protected only near [Formula: see text] We then validate our conclusions about the absence of a topological invariant protecting double Fermi arcs in DSMs, using a K-theory analysis for space groups of Na3Bi and Cd3As2 Generically, the arcs deform into a Fermi pocket, similar to the surface states of a topological insulator, and this pocket can merge into the projection of bulk Dirac Fermi surfaces as the chemical potential is varied. We make sharp predictions for the doping dependence of the surface states of a DSM that can be tested by angle-resolved photoemission spectroscopy and quantum oscillation experiments. PMID:27436895

  8. Study of the Fermi surface of molybdenum and chromium via positron annihilation experiments

    NASA Astrophysics Data System (ADS)

    Biasini, Maurizio

    2000-02-01

    A quantitative mapping of the Fermi surface (FS) of molybdenum and chromium was sought by modelling the three-dimensional k-space occupancy with a small number of parameters which were determined by a least-squares fit to the two-dimensional angular correlation of the electron-positron annihilation radiation (2D-ACAR) data subjected to a Lock-Crisp-West (LCW) transformation. The resulting FS topology of molybdenum, unlike what was assumed in previous 2D-ACAR studies, does not support the nesting of its two main FS sheets. In the case of chromium, although the overall discrepancy with the FS expected from the theory is larger, the difference in shape between the same two FS sheets is of lesser extent. According to this analysis the ratio of the electron Fermi volume to the hole Fermi volume is found to deviate from unity, the value expected for compensated metals, for both materials. We suggest that these discrepancies might be due to positron wave function and/or electron-positron many-body distortions not predicted by the theory.

  9. Life on the edge: a beginner’s guide to the Fermi surface

    NASA Astrophysics Data System (ADS)

    Dugdale, S. B.

    2016-05-01

    The concept of the Fermi surface is at the very heart of our understanding of the metallic state. Displaying intricate and often complicated shapes, the Fermi surfaces of real metals are both aesthetically beautiful and subtly powerful. A range of examples is presented of the startling array of physical phenomena whose origin can be traced to the shape of the Fermi surface, together with experimental observations of the particular Fermi surface features.

  10. Spatial Variations in the Fermi Surface of Bi-2212

    NASA Astrophysics Data System (ADS)

    Main, Elizabeth; Pivonka, A. E.; Zeljkovic, I.; Gu, G.; Hudson, E. W.; Hoffman, J. E.

    2011-03-01

    In cuprate superconductors, scanning tunneling microscopy can be used to see variations in the Fermi surface on a nanometer length scale caused by doping inhomogeneity. Prior STM studies show that the local wavelength of the checkerboard, a weak charge modulation ascribed to antinodal Fermi surface nesting, varies with the size of the pseudogap in Bi 2 Sr 2 Cu O6 + δ (Bi-2201). Here we report similar STM measurements in Bi-2212. We therefore confirm the local relationship between pseudogap energy and charge ordering wavevector in a second high-Tc superconductor. We acknowledge support from AFOSR PECASE grant FA9550-06-1-0531, AFOSR DURIP grant FA9550-06-1-0359, NSF Career grant DMR-0847433 and NSF grant DMR-0904400.

  11. Heavy fermions. Unconventional Fermi surface in an insulating state.

    PubMed

    Tan, B S; Hsu, Y-T; Zeng, B; Hatnean, M Ciomaga; Harrison, N; Zhu, Z; Hartstein, M; Kiourlappou, M; Srivastava, A; Johannes, M D; Murphy, T P; Park, J-H; Balicas, L; Lonzarich, G G; Balakrishnan, G; Sebastian, Suchitra E

    2015-07-17

    Insulators occur in more than one guise; a recent finding was a class of topological insulators, which host a conducting surface juxtaposed with an insulating bulk. Here, we report the observation of an unusual insulating state with an electrically insulating bulk that simultaneously yields bulk quantum oscillations with characteristics of an unconventional Fermi liquid. We present quantum oscillation measurements of magnetic torque in high-purity single crystals of the Kondo insulator SmB6, which reveal quantum oscillation frequencies characteristic of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6. The quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly at variance with conventional metallic behavior. PMID:26138105

  12. Spin fluctuation and Fermi surface instability in ferromagnetic superconductors

    NASA Astrophysics Data System (ADS)

    Aoki, Dai; Gourgout, Adrien; Pourret, Alexandre; Bastien, Gaël; Knebel, Georg; Flouquet, Jacques

    2014-08-01

    We review the ferromagnetic superconductivity observed in the uranium based compounds, namely UGe2, URhGe and UCoGe, where the spin-triplet state is most likely realized. An unusual upper critical field Hc2, which is enhanced under a magnetic field in a certain field direction, is discussed in terms of spin fluctuations and of Fermi surface instabilities. xml:lang="fr"

  13. Magnetic and Fermi Surface Properties of EuGa4

    NASA Astrophysics Data System (ADS)

    Nakamura, Ai; Hiranaka, Yuichi; Hedo, Masato; Nakama, Takao; Miura, Yasunao; Tsutsumi, Hiroki; Mori, Akinobu; Ishida, Kazuhiro; Mitamura, Katsuya; Hirose, Yusuke; Sugiyama, Kiyohiro; Honda, Fuminori; Settai, Rikio; Takeuchi, Tetsuya; Hagiwara, Masayuki; Matsuda, Tatsuma D.; Yamamoto, Etsuji; Haga, Yoshinori; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Harima, Hisatomo; Ōnuki, Yoshichika

    2013-10-01

    We grew a high-quality single crystal EuGa4 with the tetragonal structure by the Ga self-flux method, and measured the electrical resistivity, magnetic susceptibility, high-field magnetization, specific heat, thermoelectric power and de Haas--van Alphen (dHvA) effect, together with the electrical resistivity and thermoelectric power under pressure. EuGa4 is found to be a Eu-divalent compound without anisotropy of the magnetic susceptibility in the paramagnetic state and to reveal the same magnetization curve between H \\parallel [100] and [001] in the antiferromagnetic state, where the antiferromagnetic easy-axis is oriented along the [100] direction below a Néel temperature TN=16.5 K. The magnetization curve is discussed on the basis of a simple two-sublattice model. The Fermi surface in the paramagnetic state was clarified from the results of a dHvA experiment for EuGa4 and an energy band calculation for a non-4f reference compound SrGa4, which consists of a small ellipsoidal hole--Fermi surface and a compensated cube-like electron--Fermi surface with vacant space in center. We observed an anomaly in the temperature dependence of the electrical resistivity and thermoelectric power at TCDW=150 K under 2 GPa. This might correspond to an emergence of the charge density wave (CDW). The similar phenomenon was also observed in EuAl4 at ambient pressure. We discussed the CDW phenomenon on the basis of the present peculiar Fermi surfaces.

  14. Fermi Surface Instabilities in Ferromagnetic Superconductor URhGe

    NASA Astrophysics Data System (ADS)

    Aoki, Dai; Knebel, Georg; Flouquet, Jacques

    2014-09-01

    The field-reentrant (field-reinforced) superconductivity on ferromagnetic superconductors is one of the most interesting topics in unconventional superconductivity. The enhancement of effective mass and the induced ferromagnetic fluctuations play key roles for reentrant superconductivity. However, the associated change of the Fermi surface, which is often observed at (pseudo-) metamagnetic transition, can also be a key ingredient. In order to study the Fermi surface instability, we performed Hall effect measurements in the ferromagnetic superconductor URhGe. The Hall effect of URhGe is well explained by two contributions, namely by the normal Hall effect and by the large anomalous Hall effect due to skew scattering. The large change in the Hall coefficient is observed at low fields between the paramagnetic and ferromagnetic states for H || c-axis (easy-magnetization axis) in the orthorhombic structure, indicating that the Fermi surface is reconstructed in the ferromagnetic state below the Curie temperature (TCurie = 9.5 K). At low temperatures (T ll Ttext{Curie}), when the field is applied along the b-axis, the reentrant superconductivity was observed in both the Hall resistivity and the magnetoresistance below 0.4 K. Above 0.4 K, a large jump with the first-order nature was detected in the Hall resistivity at a spin-reorientation field HR ˜ 12.5 T, demonstrating that the marked change of the Fermi surface occurs between the ferromagnetic state and the polarized state above HR. The results can be understood by the Lifshitz-type transition, induced by the magnetic field or by the change of the effective magnetic field.

  15. Are the surface Fermi arcs in Dirac semimetals topologically protected?

    NASA Astrophysics Data System (ADS)

    Lu, Yuan Ming; Kargarian, Mehdi; Randeria, Mohit

    Motivated by recent experiments probing double Fermi arcs on the surface of Dirac semimetals (DSMs) Na3Bi and Cd3As2, we raise the question posed in the title. We find that, in marked contrast to Weyl semimetals, the Fermi arcs of DSMs are not topologically protected in general, except at certain time-reversal invariant momenta. For a simple 4-band model with a pair of Dirac nodes at k = (0, 0, +/-Q) gapless surface states are protected only at kz = 0. We identify symmetry allowed bulk perturbations that destroy Fermi arcs, but show that they are necessarily ``small'', i.e., higher order than terms kept in usual k . p theory. We validate our conclusions about the absence of a topological invariant protecting the surface states in DSMs using a K-theory analysis for the space groups of Na3Bi and Cd3As2 The authors acknowledge the support of the CEM, an NSF MRSEC, under Grant DMR-1420451.

  16. Fermi surface reconstruction in FeSe under high pressure

    NASA Astrophysics Data System (ADS)

    Terashima, Taichi; Kikugawa, Naoki; Kiswandhi, Andhika; Graf, David; Choi, Eun-Sang; Brooks, James S.; Kasahara, Shigeru; Watashige, Tatsuya; Matsuda, Yuji; Shibauchi, Takasada; Wolf, Thomas; Böhmer, Anna E.; Hardy, Frédéric; Meingast, Christoph; Löhneysen, Hilbert v.; Uji, Shinya

    2016-03-01

    We report Shubnikov-de Haas (SdH) oscillation measurements on FeSe under high pressure up to P =16.1 kbar. We find a sudden change in SdH oscillations at the onset of the pressure-induced antiferromagnetism at P ˜8 kbar. We argue that this change can be attributed to a reconstruction of the Fermi surface by the antiferromagnetic order. The negative d Tc /d P observed in a range between P ˜8 and 12 kbar may be explained by the reduction in the density of states due to the reconstruction. The ratio of the transition temperature to the effective Fermi energy remains high under high pressure: kBTc/EF˜0.1 even at P =16.1 kbar.

  17. Spin-orbit coupling at surfaces and 2D materials.

    PubMed

    Krasovskii, E E

    2015-12-16

    Spin-orbit interaction gives rise to a splitting of surface states via the Rashba effect, and in topological insulators it leads to the existence of topological surface states. The resulting k(//) momentum separation between states with the opposite spin underlies a wide range of new phenomena at surfaces and interfaces, such as spin transfer, spin accumulation, spin-to-charge current conversion, which are interesting for fundamental science and may become the basis for a breakthrough in the spintronic technology. The present review summarizes recent theoretical and experimental efforts to reveal the microscopic structure and mechanisms of spin-orbit driven phenomena with the focus on angle and spin-resolved photoemission and scanning tunneling microscopy. PMID:26580290

  18. Fermi Surface Topology and the ARPES Spectra of BISCO

    NASA Astrophysics Data System (ADS)

    Bansil, A.; Lindroos, M.

    2001-03-01

    The Fermi surface (FS) of BISCO has generated considerable recent controversy with attention focused on whether or not the FS is electron- or hole-like in the vicinity of the M(π,0) symmetry point. Given strong matrix element effects in BISCO[1], care is needed in ascertaining delicate FS features in terms of the the ARPES spectra. With this motivation, we have carried out extensive first-principles simulations of photointensity in the entire (k_x,k_y) plane for emission from the Fermi energy at a photon energy of 21.2 eV. The presence of electron or hole sheets in the underlying spectrum is simulated by varying the Fermi energy appropriately. The simulated ARPES spectra are analyzed using a variety of methods that have been invoked in the recent literature for the purpose of deducing FS topology in BISCO from the ARPES data. While different methods indeed help ameliorate matrix element effects to varying degrees, our study also reveals their limitations. The "renormalization" of the spectrum over a large energy window ( ~600 meV) tends to artificially introduce hole-like features, while the gradient of the total spectral weight has a tendancy to induce spurious electron-like features. These and related issues are discussed. Work supported in part by the U.S.D.O.E. [1] A. Bansil and M. Lindroos, Phys. Rev. Letters 83,5154(1999).

  19. Fermi Surface of Donor and Acceptor Graphite Intercalation Compounds.

    NASA Astrophysics Data System (ADS)

    Wang, Guonan

    The Fermi surfaces and the electronic properties of the donor-type stage-1 C_8K and stage-2 C_{24}K, as well as the acceptor-type stage-2 BiCl_3, stage-3 HgCl_2 and stage-3 SbF _5 graphite intercalation compounds were investigated by means of the de Haas-van Alphen effect. The dHvA spectra of the stage-1 C_8 K exhibit two dHvA frequencies, 3126 T and 4250 T. The corresponding effective masses were 0.86 m _0 and 0.92 m_0, respectively. The angular dependence of the dHvA frequencies for a direction within +/-18^circ of the c-axis showed that there are both three-dimensional and two dimensional parts of the Fermi surfaces in C _8K. The three-dimensional Fermi surface has a cross-sectional area corresponding to the dHvA frequency of 3126 T. The charge transfer per potassium atom measured from the dHvA effect is 0.97. This implies that the potassium is ionized completely. These dHvA experimental results support both the Tatar and Rabii model and the revised Ohno, Nakao and Kamimura model for C_8K. Two dominant dHvA frequencies were obtained in stage-2 C_{24}K. They are 286 T and 2570 T, respectively. The predictions of Blinowski's model are in agreement with the experimental data. The charge transfer per potassium is found to be 0.88. This suggests that the potassium s-band is above the Fermi level in C_{24}K. The dHvA measurements for the acceptor compounds show that the stage-2 BiCl_3 GIC had two dHvA frequencies, 327T and 1012T, and each stage -3 compound had three dominant frequencies. They are 121T, 523T and 664T for HgCl_2, and 172T, 656T and 852T for SbF_5. The cyclotron masses corresponding to the dHvA frequencies for these compounds were measured from the temperature dependence of the dHvA amplitudes. The theoretical predictions of the dHvA frequencies and the cyclotron masses from the Blinowski's band models for stage-2 and stage-3 compounds are in agreement with the experimental results. The angular dependence of the dHvA frequencies show that the Fermi

  20. Fermi surface and magnetic structure of rare-earth-Ga3 compounds

    NASA Astrophysics Data System (ADS)

    Biasini, Maurizio; Kontrym-Sznajd, Grazyna; Ferro, Gianclaudio; Czopnik, Andrzej

    2002-03-01

    The measurement of the 2-dimensional angular correlation of the positron annihilation radiation (2D-ACAR), providing a 2D projection of the two-photon electron-positron momentum density, ρ(p), is a powerful tool to investigate the electronic structure of intermetallic compounds. Utilising tomographic reconstruction techniques (G Kontrym-Sznajd et al Mat. Scie. Forum 255-257) 754 (1997) and references therein., the experiment has the unique ability to sample the Brillouin Zone of truly 3-dimensional systems in a cartesian mesh, thus determining their Fermi surface (FS). Our studies have addressed the commensurate and incommensurate antiferromagnetic structures of TmGa3 and ErGa_3, respectively. For both compounds the FSs resulting from the 2D-ACAR experiments are in fair agreement with de Haas van Alphen measurements and with band structure calculations which constrain the 4f electrons to retain a local atomic character (M Biasini at al Phys. Rev. Lett 86), 4616, (2001).. Nevertheless, we discover different nesting features along the [110] directions which can account for the magnetic structures of the two compounds. Moreover, we propose methods to estimate the density of states at the Fermi energy (E_F) and the electronic contribution to the specific heat, γ. We obtain N(E_F)=17 states/ (Ryd cell), γ=2.8 (mJ/mole K^2) and N(E_F)=16 states/ (Ryd cell), γ=2.7 (mJ/mole K^2) for TmGa3 and ErGa_3, respectively.

  1. Fermi surface evolution and luttinger theorem in naxcoo2: asystematic photoemission study

    SciTech Connect

    Yang H.-B.; Pan, Z.-H.; Sekharan, A.K.P.; Sato, T.; Souma, S.; Takahashi, T.; Jin, R.; Sales, B.C.; Mandrus, D.; Fedorov,A.V.; Wang,Z.; Ding, H.

    2005-01-17

    We report a systematic angle-resolved photoemission study on NaxCoO2 for a wide range of Na concentrations (0.3x0.72). In all the metallic samples at different x, we observed (i) only a single holelike Fermi surface centered around and (ii) its area changes with x according to the Luttinger theorem. We also observed a surface state that exhibits a larger Fermi surface area. The e band and the associated small Fermi surface pockets near the K points predicted by band calculations are found to sink below the Fermi energy in a manner almost independent of the doping and temperature.

  2. Emergent nesting of the Fermi surface from local-moment description of iron-pnictide high-Tc superconductors

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jose P.; Araujo, Miguel A. N.; Sacramento, Pedro D.

    2014-07-01

    We uncover the low-energy spectrum of a t-J model for electrons on a square lattice of spin-1 iron atoms with 3dxz and 3dyz orbital character by applying Schwinger-boson-slave-fermion mean-field theory and by exact diagonalization of one hole roaming over a 4 × 4 × 2 lattice. Hopping matrix elements are set to produce hole bands centered at zero two-dimensional (2D) momentum in the free-electron limit. Holes can propagate coherently in the t-J model below a threshold Hund coupling when long-range antiferromagnetic order across the d + = 3d(x + iy)z and d - = 3d(x - iy)z orbitals is established by magnetic frustration that is off-diagonal in the orbital indices. This leads to two hole-pocket Fermi surfaces centered at zero 2D momentum. Proximity to a commensurate spin-density wave (cSDW) that exists above the threshold Hund coupling results in emergent Fermi surface pockets about cSDW momenta at a quantum critical point (QCP). This motivates the introduction of a new Gutzwiller wavefunction for a cSDW metal state. Study of the spin-fluctuation spectrum at cSDW momenta indicates that the dispersion of the nested band of one-particle states that emerges is electron-type. Increasing Hund coupling past the QCP can push the hole-pocket Fermi surfaces centered at zero 2D momentum below the Fermi energy level, in agreement with recent determinations of the electronic structure of mono-layer iron-selenide superconductors.

  3. Surface Tension Components Based Selection of Cosolvents for Efficient Liquid Phase Exfoliation of 2D Materials.

    PubMed

    Shen, Jianfeng; Wu, Jingjie; Wang, Man; Dong, Pei; Xu, Jingxuan; Li, Xiaoguang; Zhang, Xiang; Yuan, Junhua; Wang, Xifan; Ye, Mingxin; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M

    2016-05-01

    A proper design of direct liquid phase exfoliation (LPE) for 2D materials as graphene, MoS2 , WS2 , h-BN, Bi2 Se3 , MoSe2 , SnS2 , and TaS2 with common cosolvents is carried out based on considering the polar and dispersive components of surface tensions of various cosolvents and 2D materials. It has been found that the exfoliation efficiency is enhanced by matching the ratio of surface tension components of cosolvents to that of the targeted 2D materials, based on which common cosolvents composed of IPA/water, THF/water, and acetone/water can be designed for sufficient LPE process. In this context, the library of low-toxic and low-cost solvents with low boiling points for LPE is infinitely enlarged when extending to common cosolvents. Polymer-based composites reinforced with a series of different 2D materials are compared with each other. It is demonstrated that the incorporation of cosolvents-exfoliated 2D materials can substantially improve the mechanical and thermal properties of polymer matrices. Typically, with the addition of 0.5 wt% of such 2D material as MoS2 nanosheets, the tensile strength and Young's modulus increased up to 74.85% and 136.97%, respectively. The different enhancement effect of 2D materials is corresponded to the intrinsic properties and LPE capacity of 2D materials. PMID:27059403

  4. Contact Potentials, Fermi Level Equilibration, and Surface Charging.

    PubMed

    Peljo, Pekka; Manzanares, José A; Girault, Hubert H

    2016-06-14

    This article focuses on contact electrification from thermodynamic equilibration of the electrochemical potential of the electrons of two conductors upon contact. The contact potential difference generated in bimetallic macro- and nanosystems, the Fermi level after the contact, and the amount and location of the charge transferred from one metal to the other are discussed. The three geometries considered are spheres in contact, Janus particles, and core-shell particles. In addition, the force between the two spheres in contact with each other is calculated and is found to be attractive. A simple electrostatic model for calculating charge distribution and potential profiles in both vacuum and an aqueous electrolyte solution is described. Immersion of these bimetallic systems into an electrolyte solution leads to the formation of an electric double layer at the metal-electrolyte interface. This Fermi level equilibration and the associated charge transfer can at least partly explain experimentally observed different electrocatalytic, catalytic, and optical properties of multimetallic nanosystems in comparison to systems composed of pure metals. For example, the shifts in the surface plasmon resonance peaks in bimetallic core-shell particles seem to result at least partly from contact charging. PMID:27176729

  5. Bulk Fermi surface and momentum density in heavily doped La2-xSrxCuO4 using high-resolution Compton scattering and positron annihilation spectroscopies

    NASA Astrophysics Data System (ADS)

    Al-Sawai, W.; Barbiellini, B.; Sakurai, Y.; Itou, M.; Mijnarends, P. E.; Markiewicz, R. S.; Kaprzyk, S.; Wakimoto, S.; Fujita, M.; Basak, S.; Lin, H.; Wang, Yung Jui; Eijt, S. W. H.; Schut, H.; Yamada, K.; Bansil, A.

    2012-03-01

    We have observed the bulk Fermi surface (FS) in an overdoped (x=0.3) single crystal of La2-xSrxCuO4 by using Compton scattering. A two-dimensional (2D) momentum density reconstruction from measured Compton profiles yields a clear FS signature in the third Brillouin zone along [100]. The quantitative agreement between density functional theory (DFT) calculations and momentum density experiment suggests that Fermi-liquid physics is restored in the overdoped regime. In particular the predicted FS topology is found to be in good accord with the corresponding experimental data. We find similar quantitative agreement between the measured 2D angular correlation of positron annihilation radiation (2D-ACAR) spectra and the DFT-based computations. However, 2D-ACAR does not give such a clear signature of the FS in the extended momentum space in either the theory or the experiment.

  6. Fermi-surface reconstruction by stripe order in cuprate superconductors

    PubMed Central

    Laliberté, F.; Chang, J.; Doiron-Leyraud, N.; Hassinger, E.; Daou, R.; Rondeau, M.; Ramshaw, B.J.; Liang, R.; Bonn, D.A.; Hardy, W.N.; Pyon, S.; Takayama, T.; Takagi, H.; Sheikin, I.; Malone, L.; Proust, C.; Behnia, K.; Taillefer, Louis

    2011-01-01

    The origin of pairing in a superconductor resides in the underlying normal state. In the cuprate high-temperature superconductor YBa2Cu3Oy (YBCO), application of a magnetic field to suppress superconductivity reveals a ground state that appears to break the translational symmetry of the lattice, pointing to some density-wave order. Here we use a comparative study of thermoelectric transport in the cuprates YBCO and La1.8−xEu0.2SrxCuO4 (Eu-LSCO) to show that the two materials exhibit the same process of Fermi-surface reconstruction as a function of temperature and doping. The fact that in Eu-LSCO this reconstruction coexists with spin and charge modulations that break translational symmetry shows that stripe order is the generic non-superconducting ground state of hole-doped cuprates. PMID:21847106

  7. Ultrasonic probe of the AuZn Fermi surface.

    SciTech Connect

    Svitelskiy, O.; Suslov, A. V.; Singleton, J. M.; Lashley, J. C.

    2005-01-01

    We, for the first time, apply the ultrasonic pulse-echo technique to explore the Fermi surface of the martensite phase of the single crystalline AuZn shape memory alloy. The ultrasonic measurements were performed in the magnetic fields of up to 45 T in the temperature range of 0.07 < T < 300 K. In the martensite phase (T < 64 K), the oscillations of the speed of the longitudinal sound wave propagating in the (110) direction indicated a strong acoustic de Haas - van Alphen effect. In addition to the earlier described oscillations with frequencies of 1140 and 4720 Tesla, we observed a new frequency of 120 Tesla, which was predicted theoretically. Corresponding effective masses were in favorable agreement with those expected from band structure calculations.

  8. Fermi-surface reconstruction by stripe order in cuprate superconductors.

    PubMed

    Laliberté, F; Chang, J; Doiron-Leyraud, N; Hassinger, E; Daou, R; Rondeau, M; Ramshaw, B J; Liang, R; Bonn, D A; Hardy, W N; Pyon, S; Takayama, T; Takagi, H; Sheikin, I; Malone, L; Proust, C; Behnia, K; Taillefer, Louis

    2011-01-01

    The origin of pairing in a superconductor resides in the underlying normal state. In the cuprate high-temperature superconductor YBa(2)Cu(3)O(y) (YBCO), application of a magnetic field to suppress superconductivity reveals a ground state that appears to break the translational symmetry of the lattice, pointing to some density-wave order. Here we use a comparative study of thermoelectric transport in the cuprates YBCO and La(1.8-x)Eu(0.2)Sr(x)CuO(4) (Eu-LSCO) to show that the two materials exhibit the same process of Fermi-surface reconstruction as a function of temperature and doping. The fact that in Eu-LSCO this reconstruction coexists with spin and charge modulations that break translational symmetry shows that stripe order is the generic non-superconducting ground state of hole-doped cuprates. PMID:21847106

  9. Gold-induced nanowires on the Ge(100) surface yield a 2D and not a 1D electronic structure

    NASA Astrophysics Data System (ADS)

    de Jong, N.; Heimbuch, R.; Eliëns, S.; Smit, S.; Frantzeskakis, E.; Caux, J.-S.; Zandvliet, H. J. W.; Golden, M. S.

    2016-06-01

    Atomic nanowires on semiconductor surfaces induced by the adsorption of metallic atoms have attracted a lot of attention as possible hosts of the elusive, one-dimensional Tomonaga-Luttinger liquid. The Au/Ge(100) system in particular is the subject of controversy as to whether the Au-induced nanowires do indeed host exotic, 1D (one-dimensional) metallic states. In light of this debate, we report here a thorough study of the electronic properties of high quality nanowires formed at the Au/Ge(100) surface. The high-resolution ARPES data show the low-lying Au-induced electronic states to possess a dispersion relation that depends on two orthogonal directions in k space. Comparison of the E (kx,ky) surface measured using high-resolution ARPES to tight-binding calculations yields hopping parameters in the two different directions that differ by approximately factor of two. Additionally, by pinpointing the Au-induced surface states in the first, second, and third surface Brillouin zones and analyzing their periodicity in k||, the nanowire propagation direction seen clearly in STM can be imported into the ARPES data. We find that the larger of the two hopping parameters corresponds, in fact, to the direction perpendicular to the nanowires (tperp). This proves that the Au-induced electron pockets possess a two-dimensional, closed Fermi surface, and this firmly places the Au/Ge(100) nanowire system outside potential hosts of a Tomonaga-Luttinger liquid. We combine these ARPES data with scanning tunneling spectroscopic measurements of the spatially resolved electronic structure and find that the spatially straight—wirelike—conduction channels observed up to energies of order one electron volt below the Fermi level do not originate from the Au-induced states seen in the ARPES data. The former are rather more likely to be associated with bulk Ge states that are localized to the subsurface region. Despite our proof of the 2D (two-dimentional) nature of the Au

  10. Direct observation of bulk Fermi surface at higher Brillouin zones in a heavily hole-doped cuprate

    NASA Astrophysics Data System (ADS)

    Al-Sawai, W.; Sakurai, Y.; Itou, M.; Barbiellini, B.; Mijnarends, P. E.; Markiewicz, R. S.; Kaprzyk, S.; Gillet, J.-M.; Wakimoto, S.; Fujita, M.; Basak, S.; Lin, H.; Bansil, A.; Yamada, K.

    2010-03-01

    We have observed the bulk Fermi surface (FS) in an overdoped (x=0.3) single crystal of La2-xSrxCuO4 by using Compton scattering. A 2-D momentum density reconstruction [1] from measured Compton profiles, yields a clear FS signature in a higher Brillouin zone centered at p=(1.5,1.5) a.u. The quantitative agreement with density functional theory (DFT) calculations [2] and momentum density experiment suggests that Fermi-liquid physics is restored in the overdoped regime. We have also measured the 2-D angular correlation of positron annihilation radiation (2D-ACAR) [3] and noticed a similar quantitative agreement with the DFT simulations. However, 2D-ACAR does not give a clear signature of the FS in the extended momentum space in both theory and experiment. Work supported in part by the US DOE.[1] Y. Tanaka et al., Phys. Rev. B 63, 045120 (2001).[2] S. Sahrakorpi et al., Phys. Rev. Lett. 95, 157601 (2005).[3] L. C. Smedskjaer et al., J. Phys. Chem. Solids 52, 1541 (1991).

  11. Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Zhang, Mingyu

    2010-09-01

    The methods for simulating surface tension with smoothed particle hydrodynamics (SPH) method in two dimensions and three dimensions are developed. In 2D surface tension model, the SPH particle on the boundary in 2D is detected dynamically according to the algorithm developed by Dilts [G.A. Dilts, Moving least-squares particle hydrodynamics II: conservation and boundaries, International Journal for Numerical Methods in Engineering 48 (2000) 1503-1524]. The boundary curve in 2D is reconstructed locally with Lagrangian interpolation polynomial. In 3D surface tension model, the SPH particle on the boundary in 3D is detected dynamically according to the algorithm developed by Haque and Dilts [A. Haque, G.A. Dilts, Three-dimensional boundary detection for particle methods, Journal of Computational Physics 226 (2007) 1710-1730]. The boundary surface in 3D is reconstructed locally with moving least squares (MLS) method. By transforming the coordinate system, it is guaranteed that the interface function is one-valued in the local coordinate system. The normal vector and curvature of the boundary surface are calculated according to the reconstructed boundary surface and then surface tension force can be calculated. Surface tension force acts only on the boundary particle. Density correction is applied to the boundary particle in order to remove the boundary inconsistency. The surface tension models in 2D and 3D have been applied to benchmark tests for surface tension. The ability of the current method applying to the simulation of surface tension in 2D and 3D is proved.

  12. Unusual dimensionality effects and surface charge density in 2D Mg(OH)2

    NASA Astrophysics Data System (ADS)

    Suslu, Aslihan; Wu, Kedi; Sahin, Hasan; Chen, Bin; Yang, Sijie; Cai, Hui; Aoki, Toshihiro; Horzum, Seyda; Kang, Jun; Peeters, Francois M.; Tongay, Sefaattin

    2016-02-01

    We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics.

  13. Unusual dimensionality effects and surface charge density in 2D Mg(OH)2

    PubMed Central

    Suslu, Aslihan; Wu, Kedi; Sahin, Hasan; Chen, Bin; Yang, Sijie; Cai, Hui; Aoki, Toshihiro; Horzum, Seyda; Kang, Jun; Peeters, Francois M.; Tongay, Sefaattin

    2016-01-01

    We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics. PMID:26846617

  14. Unusual dimensionality effects and surface charge density in 2D Mg(OH)2.

    PubMed

    Suslu, Aslihan; Wu, Kedi; Sahin, Hasan; Chen, Bin; Yang, Sijie; Cai, Hui; Aoki, Toshihiro; Horzum, Seyda; Kang, Jun; Peeters, Francois M; Tongay, Sefaattin

    2016-01-01

    We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics. PMID:26846617

  15. Two-dimensional Fermi surfaces in Kondo insulator SmB₆.

    PubMed

    Li, G; Xiang, Z; Yu, F; Asaba, T; Lawson, B; Cai, P; Tinsman, C; Berkley, A; Wolgast, S; Eo, Y S; Kim, Dae-Jeong; Kurdak, C; Allen, J W; Sun, K; Chen, X H; Wang, Y Y; Fisk, Z; Li, Lu

    2014-12-01

    In the Kondo insulator samarium hexaboride (SmB6), strong correlation and band hybridization lead to an insulating gap and a diverging resistance at low temperature. The resistance divergence ends at about 3 kelvin, a behavior that may arise from surface conductance. We used torque magnetometry to resolve the Fermi surface topology in this material. The observed oscillation patterns reveal two Fermi surfaces on the (100) surface plane and one Fermi surface on the (101) surface plane. The measured Fermi surface cross sections scale as the inverse cosine function of the magnetic field tilt angles, which demonstrates the two-dimensional nature of the conducting electronic states of SmB6. PMID:25477456

  16. The potential energy surface and chaos in 2D Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Li, Jiangdan; Zhang, Suying

    2011-02-01

    We provide a new insight into the relationship between the geometric property of the potential energy surface and chaotic behavior of 2D Hamiltonian dynamical systems, and give an indicator of chaos based on the geometric property of the potential energy surface by defining Mean Convex Index (MCI). We also discuss a model of unstable Hamiltonian in detail, and show our results in good agreement with HBLSL's (Horwitz, Ben Zion, Lewkowicz, Schiffer and Levitan) new Riemannian geometric criterion.

  17. Surface wave phase velocities from 2-D surface wave tomography studies in the Anatolian plate

    NASA Astrophysics Data System (ADS)

    Arif Kutlu, Yusuf; Erduran, Murat; Çakır, Özcan; Vinnik, Lev; Kosarev, Grigoriy; Oreshin, Sergey

    2014-05-01

    We study the Rayleigh and Love surface wave fundamental mode propagation beneath the Anatolian plate. To examine the inter-station phase velocities a two-station method is used along with the Multiple Filter Technique (MFT) in the Computer Programs in Seismology (Herrmann and Ammon, 2004). The near-station waveform is deconvolved from the far-station waveform removing the propagation effects between the source and the station. This method requires that the near and far stations are aligned with the epicentre on a great circle path. The azimuthal difference of the earthquake to the two-stations and the azimuthal difference between the earthquake and the station are restricted to be smaller than 5o. We selected 3378 teleseismic events (Mw >= 5.7) recorded by 394 broadband local stations with high signal-to-noise ratio within the years 1999-2013. Corrected for the instrument response suitable seismogram pairs are analyzed with the two-station method yielding a collection of phase velocity curves in various period ranges (mainly in the range 25-185 sec). Diffraction from lateral heterogeneities, multipathing, interference of Rayleigh and Love waves can alter the dispersion measurements. In order to obtain quality measurements, we select only smooth portions of the phase velocity curves, remove outliers and average over many measurements. We discard these average phase velocity curves suspected of suffering from phase wrapping errors by comparing them with a reference Earth model (IASP91 by Kennett and Engdahl, 1991). The outlined analysis procedure yields 3035 Rayleigh and 1637 Love individual phase velocity curves. To obtain Rayleigh and Love wave travel times for a given region we performed 2-D tomographic inversion for which the Fast Marching Surface Tomography (FMST) code developed by N. Rawlinson at the Australian National University was utilized. This software package is based on the multistage fast marching method by Rawlinson and Sambridge (2004a, 2004b). The

  18. Turbulent flow over a surface-mounted 2-D block in thermally-stratified boundary layers

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Markfort, C. D.; Porte-Agel, F.

    2013-12-01

    Turbulent boundary-layer flows over complex topography have been of great interest in the atmospheric sciences and wind engineering communities. The geometry of the topography, surface characteristics and atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography, such as 2-D or 3-D blocks and 2-D or 3-D sinusoidal hills, conducted under neutrally stratified boundary-layer conditions have provided insightful information of fluid dynamics. However, atmospheric thermal stability has rarely been incorporated into laboratory simulations, in particular, wind-tunnel experiments. Extension of such studies in thermally-stratified wind tunnels will fill this gap and advance our understanding of the underlying physics of flow over complex topography. Additionally, experimental data are useful for the development of new parameterizations for surface fluxes and validation of numerical models such as Large-Eddy Simulation (LES). A series of experiments involving neutral and thermally-stratified boundary-layer flows over a surface-mounted 2-D block, conducted at the Saint Anthony Falls Laboratory boundary-layer wind tunnel, will be presented. The 2-D block, with a width to height ratio of 2:1, occupied the lowest 25% of the turbulent boundary layer. Thermal stratification of the boundary layer was achieved by independently controlling the temperature of both the airflow, the test section floor and block surfaces. Measurements using high-resolution PIV, x-wire/cold-wire anemometry, thermal-couples and surface heat flux sensors were made to identify and quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Emphasis will be put on addressing thermal stability effects on momentum and scalar flux distribution.

  19. CoPc 2D and 1D Arrangement on a Ferromagnetic Surface.

    PubMed

    Annese, Emilia; ViolBarbosa, Carlos E; Rossi, Giorgio; Fujii, Jun

    2016-05-31

    We investigated the growth and electronic properties of Co-phthalocyanine (CoPc) molecule deposited on iron film with different structures (pseudomorph-fcc and bcc) and on iron nanowires by scanning tunnelling microscopy and X-ray absorption spectroscopy (XAS). CoPc molecules self-assemble in a two-dimensional (2D) arrangement with the molecular plane parallel to the iron surfaces, and the local order is lost after the first layer. The molecule-ferromagnet interaction causes the broadening of Co and N unoccupied molecular states as well as different electronic distribution of N states as a function of the atomic structure of iron surface. The ferromagnetic coupling between the molecule and the iron film is dominated by the electronic interaction between Co and the first Fe layer. CoPc 2D arrangement turns into 1D by using as a template the iron nanowire grown on a facet surface of oxidized Cu(332) surface. CoPc molecules interact weakly with the iron nanowires manifesting a substantial Co 3dz spectral feature in XAS spectrum and the possibility of a magnetic interaction between Co moment and iron nanowires. Both CoPc 2D and 1D arrangements can open up new interesting scenarios to tune the magnetic properties of hybrid interfaces involving metallorganic molecules. PMID:27191039

  20. Indirect measurements of Fermi surface parameters of some chevrel phase materials

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Alterovitz, S. A.

    1979-01-01

    A series of measurements of normal state and superconducting properties were made in zero and in high magnetic fields. When these results are combined with a complete set of theoretical expressions, a number of Fermi surface parameters are found.

  1. Hall effect and Fermi surface reconstruction via electron pockets in the high-Tc cuprates

    NASA Astrophysics Data System (ADS)

    Storey, J. G.

    2016-01-01

    The mechanism by which the Fermi surface of high-T c cuprates undergoes a dramatic change from a large hole-like barrel to small arcs or pockets on entering the pseudogap phase remains a question of fundamental importance. Here we calculate the normal-state Hall coefficient from the resonating-valence-bond spin-liquid model developed by Yang, Rice and Zhang. In this model, reconstruction of the Fermi surface occurs via an intermediate regime where the Fermi surface consists of both hole- and electron-like pockets. We find that the doping (x) dependence of the Hall number transitions from 1+x to (x) over this narrow doping range. At low temperatures, a switch from a downturn to an upturn in the Hall coefficient signals the departure of the electron-like pockets from the Fermi surface.

  2. Fermi-Surface Reconstruction and Complex Phase Equilibria in CaFe2As2

    NASA Astrophysics Data System (ADS)

    Gofryk, K.; Saparov, B.; Durakiewicz, T.; Chikina, A.; Danzenbächer, S.; Vyalikh, D. V.; Graf, M. J.; Sefat, A. S.

    2014-05-01

    Fermi-surface topology governs the relationship between magnetism and superconductivity in iron-based materials. Using low-temperature transport, angle-resolved photoemission, and x-ray diffraction, we show unambiguous evidence of large Fermi-surface reconstruction in CaFe2As2 at magnetic spin-density-wave and nonmagnetic collapsed-tetragonal (cT) transitions. For the cT transition, the change in the Fermi-surface topology has a different character with no contribution from the hole part of the Fermi surface. In addition, the results suggest that the pressure effect in CaFe2As2 is mainly leading to a rigid-band-like change of the valence electronic structure. We discuss these results and their implications for magnetism and superconductivity in this material.

  3. Angle resolved photoemission study of Fermi surfaces and single-particle excitations of quasi-low dimensional materials

    NASA Astrophysics Data System (ADS)

    Gweon, Gey-Hong

    Using angle resolved photoemission spectroscopy (ARPES) as the main experimental tool and the single particle Green's function as the main theoretical tool, materials of various degrees of low dimensionality and different ground states are studied. The underlying theme of this thesis is that of one dimensional physics, which includes charge density waves (CDW's) and the Luttinger liquid (LL). The LL is the prime example of a lattice non-Fermi liquid (non-FL) and CDW fluctuations also give non-FL behaviors. Non-FL physics is an emerging paradigm of condensed matter physics. It is thought by some researchers that one dimensional LL behavior is a key element in solving the high temperature superconductivity problem. TiTe2 is a quasi-2 dimensional (quasi-2D) Fermi liquid (FL) material very well suited for ARPES lineshape studies. I report ARPES spectra at 300 K which show an unusual behavior of a peak moving through the Fermi energy (EF). I also report a good fit of the ARPES spectra at 25 K obtained by using a causal Green's function proposed by K. Matho. SmTe3 is a quasi-2D CDW material. The near EF ARPES spectra and intensity map reveal rich details of an anisotropic gap and imperfectly nested Fermi surface (FS) for a high temperature CDW. A simple model of imperfect nesting can be constructed from these data and predicts a CDW wavevector in very good agreement with the value known from electron diffraction. NaMo6O17 and KMo 6O17 are also quasi-2D CDW materials. The "hidden nesting" or "hidden 1 dimensionality" picture for the CDW is confirmed very well by our direct image of the FS. K0.3MoO3, the so-called "blue bronze," is a quasi-1 dimensional (quasi-1D) CDW material. Even in its metallic phase above the CDW transition temperature, its photoemission spectra show an anomalously weak intensity at EF and no clear metallic Fermi edge. I compare predictions of an LL model and a CDW fluctuation model regarding these aspects, and find that the LL scenario explains them

  4. Wall surface temperature calculation in the SolEdge2D-EIRENE transport code

    NASA Astrophysics Data System (ADS)

    Denis, J.; Pégourié, B.; Bucalossi, J.; Bufferand, H.; Ciraolo, G.; Gardarein, J.-L.; Gaspar, J.; Grisolia, C.; Hodille, E.; Missirlian, M.; Serre, E.; Tamain, P.

    2016-02-01

    A thermal wall model is developed for the SolEdge2D-EIRENE edge transport code for calculating the surface temperature of the actively-cooled vessel components in interaction with the plasma. This is a first step towards a self-consistent evaluation of the recycling of particles, which depends on the wall surface temperature. The proposed thermal model is built to match both steady-state temperature and time constant of actively-cooled plasma facing components. A benchmark between this model and the Finite Element Modelling code CAST3M is performed in the case of an ITER-like monoblock. An example of application is presented for a SolEdge2D-EIRENE simulation of a medium-power discharge in the WEST tokamak, showing the steady-state wall temperature distribution and the temperature cycling due to an imposed Edge Localised Mode-like event.

  5. Nonrigid point registration for 2D curves and 3D surfaces and its various applications

    NASA Astrophysics Data System (ADS)

    Wang, Hesheng; Fei, Baowei

    2013-06-01

    A nonrigid B-spline-based point-matching (BPM) method is proposed to match dense surface points. The method solves both the point correspondence and nonrigid transformation without features extraction. The registration method integrates a motion model, which combines a global transformation and a B-spline-based local deformation, into a robust point-matching framework. The point correspondence and deformable transformation are estimated simultaneously by fuzzy correspondence and by a deterministic annealing technique. Prior information about global translation, rotation and scaling is incorporated into the optimization. A local B-spline motion model decreases the degrees of freedom for optimization and thus enables the registration of a larger number of feature points. The performance of the BPM method has been demonstrated and validated using synthesized 2D and 3D data, mouse MRI and micro-CT images. The proposed BPM method can be used to register feature point sets, 2D curves, 3D surfaces and various image data.

  6. Formation and properties of a terpyridine-based 2D MOF on the surface of water

    NASA Astrophysics Data System (ADS)

    Koitz, Ralph; Hutter, Jürg; Iannuzzi, Marcella

    2016-06-01

    Two-dimensional networks inspired by graphene are of prime importance in nanoscience. We present a computational study of an infinite molecular sheet confined on a water surface to assess its properties and formation mechanism. Terpyridine-based ligand molecules are interlinked by Zn ions to form an extended 2D metal-organic framework. We show that the network is stable on the water surface, and that the substrate affects the dynamic properties of the sheet, exhibiting a confining effect and flattening the sheet by 30%. We use metadynamics to characterize the process of network formation and breaking and determine an intra-network binding energy of 143 kJ mol‑1. Based on this mechanistic insight we propose that the 2D network strength can be tuned by varying the rigidity of the ligand through its chemical structure.

  7. Strong phonon anomalies and Fermi surface nesting of simple cubic Polonium

    NASA Astrophysics Data System (ADS)

    Belabbes, A.; Zaoui, A.; Ferhat, M.

    2010-12-01

    The unknown lattice dynamics of simple cubic Polonium is calculated using first-principles density-functional perturbation theory with pseudopotentials and a plane-wave basis set. We notice several phonon anomalies, in particular along major symmetry directions namely M-R, R-Γ, Γ-M, M-X, and X-Γ. The analysis of the Fermi surface strongly suggests that the observed phonon anomalies are Kohn anomalies arising from strong Fermi surface nesting.

  8. Quantum oscillations and the Fermi surface topology of the Weyl semimetal NbP

    NASA Astrophysics Data System (ADS)

    Klotz, J.; Wu, Shu-Chun; Shekhar, Chandra; Sun, Yan; Schmidt, Marcus; Nicklas, Michael; Baenitz, Michael; Uhlarz, M.; Wosnitza, J.; Felser, Claudia; Yan, Binghai

    2016-03-01

    The Weyl semimetal NbP was found to exhibit topological Fermi arcs and exotic magnetotransport properties. Here, we report on magnetic quantum-oscillation measurements on NbP and construct the three-dimensional Fermi surface with the help of band-structure calculations. We reveal a pair of spin-orbit-split electron pockets at the Fermi energy and a similar pair of hole pockets, all of which are strongly anisotropic. The Weyl points that are located in the kz≈π /c plane are found to exist 5 meV above the Fermi energy. Therefore, we predict that the chiral anomaly effect can be realized in NbP by electron doping to drive the Fermi energy to the Weyl points.

  9. Oscillations of light absorption in 2D macroporous silicon structures with surface nanocoatings

    NASA Astrophysics Data System (ADS)

    Karachevtseva, L.; Kuchmii, S.; Lytvynenko, O.; Sizov, F.; Stronska, O.; Stroyuk, A.

    2011-02-01

    We investigated the near-IR light absorption oscillations in 2D macroporous silicon structures with microporous silicon layers and CdTe, ZnO surface nanocrystals. The electro-optical effect was taken into account within the strong electric field approximation. Well-separated oscillations were observed in the spectral ranges of the surface bonds of macroporous silicon structures with surface nanocrystals. The model of the resonant electron scattering on impurity states in electric field of heterojunction “silicon-nanocoating” on macropore surface as well as realization of Wannier-Stark effect on the randomly distributed surface bonds were considered. The Wannier-Stark ladders are not broken by impurities because of the longer scattering lifetime as compared with the period of electron oscillations in an external electric field, in all spectral regions considered for macroporous silicon structures with CdTe and ZnO surface nanocrystals.

  10. Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Zonca, Michael R., Jr.

    Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a

  11. Mirror effects and optical meta-surfaces in 2d atomic arrays

    NASA Astrophysics Data System (ADS)

    Shahmoon, Ephraim; Wild, Dominik; Lukin, Mikhail; Yelin, Susanne

    2016-05-01

    Strong optical response of natural and artificial (meta-) materials typically relies on the fact that the lattice constant that separates their constituent particles (atoms or electromagnetic resonators, respectively) is much smaller than the optical wavelength. Here we consider a single layer of a 2d atom array with a lattice constant on the order of an optical wavelength, which can be thought of as a highly dilute 2d metamaterial (meta-surface). Our theoretical analysis shows how strong scattering of resonant incoming light off the array can be controlled by choosing its lattice constant, e.g. allowing the array to operate as a perfect mirror or a retro-reflector for most incident angles of the incoming light. We discuss the prospects for quantum metasurfaces, i.e. the ability to shape the output quantum state of light by controlling the atomic states, and the possible generality of our results as a universal wave phenomena.

  12. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions

    PubMed Central

    Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim

    2016-01-01

    Fermi arcs are the surface manifestation of the topological nature of Weyl semimetals, enforced by the bulk-boundary correspondence with the bulk Weyl nodes. The surface of tantalum arsenide, similar to that of other members of the Weyl semimetal class, hosts nontopological bands that obscure the exploration of this correspondence. We use the spatial structure of the Fermi arc wave function, probed by scanning tunneling microscopy, as a spectroscopic tool to distinguish and characterize the surface Fermi arc bands. We find that, as opposed to nontopological states, the Fermi arc wave function is weakly affected by the surface potential: it spreads rather uniformly within the unit cell and penetrates deeper into the bulk. Fermi arcs reside predominantly on tantalum sites, from which the topological bulk bands are derived. Furthermore, we identify a correspondence between the Fermi arc dispersion and the energy and momentum of the bulk Weyl nodes that classify this material as topological. We obtain these results by introducing an analysis based on the role the Bloch wave function has in shaping quantum electronic interference patterns. It thus carries broader applicability to the study of other electronic systems and other physical processes. PMID:27551687

  13. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions.

    PubMed

    Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim

    2016-08-01

    Fermi arcs are the surface manifestation of the topological nature of Weyl semimetals, enforced by the bulk-boundary correspondence with the bulk Weyl nodes. The surface of tantalum arsenide, similar to that of other members of the Weyl semimetal class, hosts nontopological bands that obscure the exploration of this correspondence. We use the spatial structure of the Fermi arc wave function, probed by scanning tunneling microscopy, as a spectroscopic tool to distinguish and characterize the surface Fermi arc bands. We find that, as opposed to nontopological states, the Fermi arc wave function is weakly affected by the surface potential: it spreads rather uniformly within the unit cell and penetrates deeper into the bulk. Fermi arcs reside predominantly on tantalum sites, from which the topological bulk bands are derived. Furthermore, we identify a correspondence between the Fermi arc dispersion and the energy and momentum of the bulk Weyl nodes that classify this material as topological. We obtain these results by introducing an analysis based on the role the Bloch wave function has in shaping quantum electronic interference patterns. It thus carries broader applicability to the study of other electronic systems and other physical processes. PMID:27551687

  14. Investigation on the GPS single scattering from a 2-D largescale sea surface

    NASA Astrophysics Data System (ADS)

    Wei, Yiwen; Guo, Lixin

    2014-05-01

    Global positioning system (GPS) signals reflected from the ocean surface can be used for various remote sensing purposes. In this paper, we develop a facet model to simulate the received GPS single from a 2-D largescale sea surface. In this model, the sea surface is envisaged as a two-scale profile on which the long waves are locally approximated by planar facets. The microscopic profile within a facet is assumed to be represented by a set of sinusoidal ripple patches. The complex reflective function of each modified facet is evaluated by a modified formula of the original Bass and Fuks' two-scale model, in which the phase factor of each facet is with the capillary wave modification. The scattering field and the bistatic scattering coefficient of facet model is derived in detail. With received GPS single, we give a detail analysis of the polarization property, the scattering property of GPS scattering signal over the sea surface.

  15. Confinement properties of 2D porous molecular networks on metal surfaces

    NASA Astrophysics Data System (ADS)

    Müller, Kathrin; Enache, Mihaela; Stöhr, Meike

    2016-04-01

    Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article.

  16. Confinement properties of 2D porous molecular networks on metal surfaces.

    PubMed

    Müller, Kathrin; Enache, Mihaela; Stöhr, Meike

    2016-04-20

    Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article

  17. Acoustic Receptivity of a Blasius Boundary Layer with 2-D and Oblique Surface Waviness

    NASA Technical Reports Server (NTRS)

    King, Rudolph A.; Breuer, Kenneth S.

    2000-01-01

    An experimental investigation was conducted to examine acoustic receptivity and subsequent boundary-layer instability evolution for a Blasius boundary layer formed on a flat plate in the presence of two-dimensional (2-D) and oblique (3-D) surface waviness. The effect of the non-localized surface roughness geometry and acoustic wave amplitude on the receptivity process was explored. The surface roughness had a well defined wavenumber spectrum with fundamental wavenumber k (sub w). A planar downstream traveling acoustic wave was created to temporally excite the flow near the resonance frequency of an unstable eigenmode corresponding to k (sub ts) = k (sub w). The range of acoustic forcing levels, epsilon, and roughness heights, DELTA h, examined resulted in a linear dependence of receptivity coefficients; however, the larger values of the forcing combination epsilon dot DELTA h resulted in subsequent nonlinear development of the Tollmien-Schlichting (T-S) wave. This study provided the first experimental evidence of a marked increase in the receptivity coefficient with increasing obliqueness of the surface waviness in excellent agreement with theory. Detuning of the 2-D and oblique disturbances was investigated by varying the streamwise wall-roughness wavenumber a,, and measuring the T-S response. For the configuration where laminar-to-turbulent breakdown occurred, the breakdown process was found to be dominated by energy at the fundamental and harmonic frequencies, indicative of K-type breakdown.

  18. Skyrmions in quasi-2D chiral magnets with broken bulk and surface inversion symmetry (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Randeria, Mohit; Banerjee, Sumilan; Rowland, James

    2015-09-01

    Most theoretical studies of chiral magnetism, and the resulting spin textures, have focused on 3D systems with broken bulk inversion symmetry, where skyrmions are stabilized by easy-axis anisotropy. In this talk I will describe our results on 2D and quasi-2D systems with broken surface inversion, where we find [1] that skyrmion crystals are much more stable than in 3D, especially for the case of easy-plane anisotropy. These results are of particular interest for thin films, surfaces, and oxide interfaces [2], where broken surface-inversion symmetry and Rashba spin-orbit coupling naturally lead to both the chiral Dzyaloshinskii-Moriya (DM) interaction and to easy-plane compass anisotropy. I will then turn to systems that break both bulk and surface inversion, resulting in two distinct DM terms arising from Dresselhaus and Rashba spin-orbit coupling. I will describe [3] the evolution of the skyrmion structure and of the phase diagram as a function of the ratio of Dresselhaus and Rashba terms, which can be tuned by varying film thickness and strain. [1] S. Banerjee, J. Rowland, O. Erten, and M. Randeria, PRX 4, 031045 (2014). [2] S. Banerjee, O. Erten, and M. Randeria, Nature Phys. 9, 626 (2013). [3] J. Rowland, S. Banerjee and M. Randeria, (unpublished).

  19. Nested 1D-2D approach for urban surface flood modeling

    NASA Astrophysics Data System (ADS)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of

  20. Tomographic investigation of fermi level pinning at focused ion beam milled semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Wolf, D.; Lubk, A.; Lenk, A.; Sturm, S.; Lichte, H.

    2013-12-01

    Electron holography in the transmission electron microscope (TEM) offers the spatial and signal resolution for studying effects like Fermi level pinning or dopant concentration variations important for the design of modern electronic devices. To overcome the loss of information along the projection direction, surface effects, and surface damage due to TEM specimen preparation, we apply electron holographic tomography to analyze the 3D potential distribution of semiconductor samples prepared by focused-ion-beam. We observe mid-band gap pinning of the Fermi level at Si surfaces but valence band pinning at Ge surfaces. The pinning extends over tens of nanometers into the bulk.

  1. Infinitesimal-area 2D radiative analysis using parametric surface representation, through NURBS

    SciTech Connect

    Daun, K.J.; Hollands, K.G.T.

    1999-07-01

    The use of form factors in the treatment of radiant enclosures requires that the radiosity and surface properties be treated as uniform over finite areas. This restriction can be relaxed by applying an infinitesimal-area analysis, where the radiant exchange is taken to be between infinitesimal areas, rather than finite areas. This paper presents a generic infinitesimal-area formulation that can be applied to two-dimensional enclosure problems. (Previous infinitesimal-area analyses have largely been restricted to specific, one-dimensional problems.) Specifically, the paper shows how the analytical expression for the kernel of the integral equation can be obtained without human intervention, once the enclosure surface has been defined parametrically. This can be accomplished by using a computer algebra package or by using NURBS algorithms, which are the industry standard for the geometrical representations used in CAD-CAM codes. Once the kernel has been obtained by this formalism, the 2D integral equation can be set up and solved numerically. The result is a single general-purpose infinitesimal-area analysis code that can proceed from surface specification to solution. The authors have implemented this 2D code and tested it on 1D problems, whose solutions have been given in the literature, obtaining agreement commensurate with the accuracy of the published solutions.

  2. Impact of Surface Roughness on Capillary Trapping Using 2D-Micromodel Visualization Experiments

    NASA Astrophysics Data System (ADS)

    Geistlinger, Helmut; Attaei-Dadavi, Iman; Vogel, Hans-Jörg

    2016-04-01

    According to experimental observations, capillary trapping is strongly dependent on the roughness of the pore-solid interface. We performed imbibition experiments in the range of capillary numbers (Ca) from 10^-6 to 5x10^-5 using 2D-micromodels, which exhibit a rough surface. The microstructure comprises a double-porosity structure with pronounced macropores. The dynamics of precursor thin-film flow and its importance for capillary trapping is studied. For the first time Thin-Film Dynamics and the Complex Interplay of Thin Film- and Corner Flow for Snap-off Trapping is visualized using fluorescence microscopy. The experimental data for thin-film flow advancement show a square-root time dependence. Contrary to smooth surfaces, we prove by strict thermodynamical arguments that complete wetting is possible in a broad range of contact angles (0 - 90°). We develop a pore-scale model, which describes the front dynamics of thin-film flow on rough surfaces. Furthermore, contact angle hysteresis is considered for rough surfaces. We conduct a comprehensive cluster analysis, studying the influence of viscous forces (capillary number) and buoyancy forces (bond number) on cluster size distribution and comparing the results with predictions from percolation theory. We found that our experimental results agree with theoretical results of percolation theory for Ca = 10^-6: (i) a universal power-like cluster size distribution, (ii) the linear surface-volume relationship of trapped clusters, and (iii) the existence of the cut-off correlation length for the maximal cluster height. The good agreement is a strong argument that the experimental cluster size distribution is caused by a percolation-like trapping process (Ordinary Percolation). [1] H. Geistlinger, I. Ataei-Dadavi, S. Mohammadian, and H.-J. Vogel (2015) The Impact of Pore structure and Surface Roughness on Capillary Trapping for 2D- and 3D-porous media: Comparison with Percolation theory. Special issue: Applications of

  3. Skyrmions in quasi-2D chiral magnets with broken bulk and surface inversion symmetry

    NASA Astrophysics Data System (ADS)

    Rowland, James; Banerjee, Sumilan; Randeria, Mohit

    2015-03-01

    Most theoretical studies of skyrmions have focused on chiral magnets with broken bulk inversion symmetry, stabilized by easy-axis anisotropy. Recently, we considered 2D systems with broken surface inversion and showed that skyrmion crystals are more stable than in 3D, pointing out the importance of easy-plane anisotropy. In the present work we investigate quasi-2D systems which break both bulk and surface inversion symmetry. The Landau-Ginzburg free energy functional thus contains two Dzyloshinskii-Moriya terms of strength DD and DR arising from Dresselhaus and Rashba spin-orbit coupling respectively. We trace the evolution of the phase diagram as DD /DR is varied, and find that skyrmions are increasingly destabilized with respect to the cone phase as DD increases relative to DR. We find an evolution from vortex-like skyrmions in the pure Dresselhaus limit to hedgehog-like skyrmions in the pure Rashba limit. We discuss the relevance of these results to existing experiments and the prospects of tuning the ratio of Dresselhaus and Rashba spin-orbit coupling via film thickness and strain. Supported by NSF DMR-1410364 (J.R. and M.R.) and DOE-BES DE-SC0005035 (S.B.)

  4. Fracture mode analysis and related surface deformation during dyke intrusion: Results from 2D experimental modelling

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M.; Mourgues, R.; Bureau, D.

    2012-04-01

    The analysis of surface deformation in response to approaching intrusion is important for assessing volcanic hazards. In this paper, we present results from 2D scaled models of magma intrusion, in which we discuss the propagation mode and related surface deformation during dyke growth. Our experiments consist in the injection of analogue magma (Golden syrup) into cohesive fine-grained silica powder, simulating the brittle upper crust. Using an optical image correlation technique (Particle Imaging Velocimetry), we were able to follow the surface deformation, the displacements within the country rock and to calculate strains induced by the magma emplacement. We identified two kinds of intrusion morphologies resulting from different interactions between the dyke and plastic deformations occurring in the country rock near the surface. In both morphologies, the dyke is vertical at depth. Our analysis demonstrates that both hydraulic tensile opening and shear-related propagation operate during this first stage of vertical growth. At the same time, the surface lifted up and formed a smooth symmetrical dome. Both types of morphologies differ in the upper part. During a second stage of evolution, the first type of intrusion inclined at a dip between 45 to 65°. This inclination is not caused by shear deformations and is attributed to stress rotation near the tip. Closer to the surface, the growth of the inclined sheet creates shear bands which conduct the fluid toward the surface. The surface uplift becomes asymmetric. The second type of intrusion does not rotate at depth and continues its vertical propagation by catching vertical tensile cracks. The intrusion of magma in these cracks creates horizontal stresses which are responsible for the closure of fractures and the formation of reverse faults. At the surface the dome remains symmetrical. For both intrusions, the surface uplift accelerates during the second stage and it is strongly influenced by the presence or the

  5. Probing Critical Surfaces in Momentum Space Using Real-Space Entanglement Entropy: Bose versus Fermi

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Lai, Hsin-Hua

    A co-dimension one critical surface in the momentum space can be either a familiar Fermi surface, which separates occupied states from empty ones in the non-interacting fermion case, or a novel Bose surface, where gapless bosonic excitations are anchored. Their presence gives rise to logarithmic violation of entanglement entropy area law. When they are convex, we show that the shape of these critical surfaces can be determined by inspecting the leading logarithmic term of real space entanglement entropy. The fundamental difference between a Fermi surface and a Bose surface is revealed by the fact that the logarithmic terms in entanglement entropies differ by a factor of two: SlogBose = 2SlogFermi , even when they have identical geometry. Our method has remarkable similarity with determining Fermi surface shape using quantum oscillation. We also discuss possible probes of concave critical surfaces in momentum space. HHL and KY acknowledge the National Science Foundation through Grants No. DMR-1004545, DMR-1157490, No. DMR-1442366, and State of Florida. HHL is also partially supported by NSF Grant No. DMR-1309531, and the Smalley Postdoctoral Fellowship in Quantum Ma.

  6. The effect of polarity and surface states on the Fermi level at III-nitride surfaces

    SciTech Connect

    Reddy, P; Bryan, I; Bryan, Z; Guo, W; Hussey, L; Collazo, R; Sitar, Z

    2014-09-28

    Surface states and their influence on the Fermi level at the surface of GaN and AlN are studied using x-ray photoelectron spectroscopy (XPS). The effect of polarity on surface electronic properties was studied. Accurate modeling of the valence band edge and comparison with XPS data revealed the presence of donor surface states at 1.4 eV and acceptor states at energies > 2.7 eV from the valence band in GaN. Al polar AlN showed acceptor states at energies > 3.3 eV. Density of acceptor surface states was estimated to be between 10(13) and 10(14) eV(-1) cm(-2) in both GaN and AlN. The shift in charge neutrality levels and barrier heights due to polarity and the density of surface states on AlN and GaN were estimated from XPS measurements. Theoretical modeling and comparison with XPS data implied full compensation of spontaneous polarization charge by charged surface states. Barrier height measurements also reveal a dependence on polarity with phi(metal-polar)>phi(non-polar)>phi(nitrogen-polar) suggesting that the N-polar surface is the most suitable for Ohmic contacts. (C) 2014 AIP Publishing LLC.

  7. Anomalous Fermi-Surface Dependent Pairing in a Self-Doped High-T(c) Superconductor

    SciTech Connect

    Chen, Yulin; Iyo, Akira; Yang, Wanli; Zhou, Xingjiang; Lu, Donghui; Eisaki, Hiroshi; Devereaux, Thomas P.; Hussain, Zahid; Shen, Z.-X.; /Stanford U., Phys. Dept. /SLAC, SSRL /AIST, Tsukuba /Waterloo U. /LBNL, ALS

    2007-02-12

    We report the discovery of a self-doped multilayer high T{sub c} superconductor Ba{sub 2}Ca{sub 3}Cu{sub 4}O{sub 8}F{sub 2} (F0234) which contains distinctly different superconducting gap magnitudes along its two Fermi-surface sheets. While formal valence counting would imply this material to be an undoped insulator, it is a self-doped superconductor with a T{sub c} of 60 K, possessing simultaneously both electron- and hole-doped Fermi-surface sheets. Intriguingly, the Fermi-surface sheet characterized by the much larger gap is the electron-doped one, which has a shape disfavoring two electronic features considered to be important for the pairing mechanism: the van Hove singularity and the antiferromagnetic ({pi}/{alpha}, {pi}/{alpha}) scattering.

  8. Quantum Oscillation Studies of the Fermi Surface of LaFePO

    SciTech Connect

    Carrington, A.

    2010-05-26

    We review recent experimental measurements of the Fermi surface of the iron-pnictide superconductor LaFePO using quantum oscillation techniques. These studies show that the Fermi surface topology is close to that predicted by first principles density functional theory calculations, consisting of quasi-twodimensional electron-like and hole-like sheets. The total volume of the two hole sheets is almost equal to that of the two electron sheets, and the hole and electron Fermi surface sheets are close to a nesting condition. No evidence for the predicted three dimensional pocket arising from the Fe d{sub z}{sup 2} band is found. Measurements of the effective mass suggest a renormalisation of around two, close to the value for the overall band renormalisation found in recent angle resolved photoemission measurements.

  9. Hole Fermi surface in Bi2Se3 probed by quantum oscillations

    NASA Astrophysics Data System (ADS)

    Piot, B. A.; Desrat, W.; Maude, D. K.; Orlita, M.; Potemski, M.; Martinez, G.; Hor, Y. S.

    2016-04-01

    Transport and torque magnetometry measurements are performed at high magnetic fields and low temperatures in a series of p-type (Ca-doped) Bi2Se3 crystals. The angular dependence of the Shubnikov-de Haas and de Haas-van Alphen quantum oscillations enables us to determine the Fermi surface of the bulk valence band states as a function of the carrier density. At low density, the angular dependence exhibits a downturn in the oscillations frequency between 0∘ and 90∘, reflecting a bag-shaped hole Fermi surface. The detection of a single frequency for all tilt angles rules out the existence of a Fermi surface with different extremal cross sections down to 24 meV. There is therefore no signature of a camelback in the valence band of our bulk samples, in accordance with the direct band gap predicted by G W calculations.

  10. Pressure tuning the Fermi surface topology of the Weyl semimetal NbP

    NASA Astrophysics Data System (ADS)

    dos Reis, R. D.; Wu, S. C.; Sun, Y.; Ajeesh, M. O.; Shekhar, C.; Schmidt, M.; Felser, C.; Yan, B.; Nicklas, M.

    2016-05-01

    We report on the pressure evolution of the Fermi surface topology of the Weyl semimetal NbP, probed by Shubnikov-de Haas oscillations in the magnetoresistance combined with ab initio calculations of the band structure. Although we observe a drastic effect on the amplitudes of the quantum oscillations, the frequencies only exhibit a weak pressure dependence up to 2.8 GPa. The pressure-induced variations in the oscillation frequencies are consistent with our band-structure calculations. Furthermore, we can relate the changes in the amplitudes to small modifications in the shape of the Fermi surface. Our findings show evidence of the stability of the electronic band structure of NbP and demonstrate the power of combining quantum-oscillation studies and band-structure calculations to investigate pressure effects on the Fermi surface topology in Weyl semimetals.

  11. Origin of Fermi-level pinning at GaAs surfaces and interfaces

    NASA Astrophysics Data System (ADS)

    Colleoni, Davide; Miceli, Giacomo; Pasquarello, Alfredo

    2014-12-01

    Through first-principles simulation methods, we assign the origin of Fermi-level pinning at GaAs surfaces and interfaces to the bistability between the As-As dimer and two As dangling bonds, which transform into each other upon charge trapping. This defect is shown to be naturally formed both at GaAs surfaces upon oxygen deposition and in the near-interface substoichiometric oxide. Using electron-counting arguments, we infer that the identified defect occurs in opposite charge states. The Fermi-level pinning then results from the amphoteric nature of this defect which drives the Fermi level to its defect level. These results account for the experimental characterization at both GaAs surfaces and interfaces within a unified picture, wherein the role of As antisites is elucidated.

  12. Origin of Fermi-level pinning at GaAs surfaces and interfaces.

    PubMed

    Colleoni, Davide; Miceli, Giacomo; Pasquarello, Alfredo

    2014-12-10

    Through first-principles simulation methods, we assign the origin of Fermi-level pinning at GaAs surfaces and interfaces to the bistability between the As-As dimer and two As dangling bonds, which transform into each other upon charge trapping. This defect is shown to be naturally formed both at GaAs surfaces upon oxygen deposition and in the near-interface substoichiometric oxide. Using electron-counting arguments, we infer that the identified defect occurs in opposite charge states. The Fermi-level pinning then results from the amphoteric nature of this defect which drives the Fermi level to its defect level. These results account for the experimental characterization at both GaAs surfaces and interfaces within a unified picture, wherein the role of As antisites is elucidated. PMID:25372411

  13. Integrated Coupling of Surface and Subsurface Flow with HYDRUS-2D

    NASA Astrophysics Data System (ADS)

    Hartmann, Anne; Šimůnek, Jirka; Wöhling, Thomas; Schütze, Niels

    2016-04-01

    Describing interactions between surface and subsurface flow processes is important to adequately define water flow in natural systems. Since overland flow generation is highly influenced by rainfall and infiltration, both highly spatially heterogeneous processes, overland flow is unsteady and varies spatially. The prediction of overland flow needs to include an appropriate description of the interactions between the surface and subsurface flow. Coupling surface and subsurface water flow is a challenging task. Different approaches have been developed during the last few years, each having its own advantages and disadvantages. A new approach by Weill et al. (2009) to couple overland flow and subsurface flow based on a generalized Richards equation was implemented into the well-known subsurface flow model HYDRUS-2D (Šimůnek et al., 2011). This approach utilizes the one-dimensional diffusion wave equation to model overland flow. The diffusion wave model is integrated in HYDRUS-2D by replacing the terms of the Richards equation in a pre-defined runoff layer by terms defining the diffusion wave equation. Using this approach, pressure and flux continuity along the interface between both flow domains is provided. This direct coupling approach provides a strong coupling of both systems based on the definition of a single global system matrix to numerically solve the coupled flow problem. The advantage of the direct coupling approach, compared to the loosely coupled approach, is supposed to be a higher robustness, when many convergence problems can be avoided (Takizawa et al., 2014). The HYDRUS-2D implementation was verified using a) different test cases, including a direct comparison with the results of Weill et al. (2009), b) an analytical solution of the kinematic wave equation, and c) the results of a benchmark test of Maxwell et al. (2014), that included several known coupled surface subsurface flow models. Additionally, a sensitivity analysis evaluating the effects

  14. Surface charge effects on the 2D conformation of supercoiled DNA.

    PubMed

    Schmatko, Tatiana; Muller, Pierre; Maaloum, Mounir

    2014-04-21

    We have adsorbed plasmid pUc19 DNA on a supported bilayer. By varying the fraction of cationic lipids in the membrane, we have tuned the surface charge. Plasmid conformations were imaged by Atomic Force Microscopy (AFM). We performed two sets of experiments: deposition from salt free solution on charged bilayers and deposition from salty solutions on neutral bilayers. Both sets show similar trends: at low surface charge density or low bulk salt concentration, the internal electrostatic repulsion forces plasmids to adopt completely opened structures, while at high surface charge density or higher bulk salt concentration, usual supercoiled plectonemes are observed. We experimentally demonstrate the equivalence of surface screening by mobile interfacial charges and bulk screening from salt ions. At low to medium screening, the electrostatic repulsion at plasmid crossings is predominant, leading to a number of crossovers decreasing linearly with the characteristic screening length. We compare our data with an analytical 2D-equilibrated model developed recently for the system and extract the DNA effective charge density when strands are adsorbed at the surface. PMID:24647451

  15. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides

    NASA Astrophysics Data System (ADS)

    Charnukha, Aliaksei

    2015-03-01

    In the family of iron-based superconductors, 1111-type materials exhibit superconductivity with the highest transition temperature Tc=55K. Early theoretical predictions of their electronic structure revealed multiple large circular sheets of the Fermi surface. Here we use ARPES to show that two prototypical compounds of the 1111 type are at odds with this description. Their low-energy band structure is formed by the edges of several bands, which are pulled to the Fermi level from the depths of the theoretically predicted band structure by strong electronic interactions. We further demonstrate that although their low-energy electronic looks remarkably similar, the Tc differs by a factor of 2. Upon closer examination we uncover that one of the bands in the higher-Tc compound sinks to 2.3meV below the Fermi level and thus does not produce a Fermi surface. And yet we find that it hosts a superconducting energy gap 10x larger than the same band in the lower-Tc sister compound. Our results show that the Fermi-surface singularities in the iron-oxypnictides dramatically affect their low-energy electronic properties, including superconductivity, and must therefore be explicitly taken into account in any attempt to understand the pairing mechanism.

  16. Quantum phase transitions, frustration, and the Fermi surface in the Kondo lattice model

    NASA Astrophysics Data System (ADS)

    Eidelstein, Eitan; Moukouri, S.; Schiller, Avraham

    2011-07-01

    The quantum phase transition from a spin-Peierls phase with a small Fermi surface to a paramagnetic Luttinger-liquid phase with a large Fermi surface is studied in the framework of a one-dimensional Kondo-Heisenberg model that consists of an electron gas away from half filling, coupled to a spin-1/2 chain by Kondo interactions. The Kondo spins are further coupled to each other with isotropic nearest-neighbor and next-nearest-neighbor antiferromagnetic Heisenberg interactions which are tuned to the Majumdar-Ghosh point. Focusing on three-eighths filling and using the density-matrix renormalization-group (DMRG) method, we show that the zero-temperature transition between the phases with small and large Fermi momenta appears continuous, and involves a new intermediate phase where the Fermi surface is not well defined. The intermediate phase is spin gapped and has Kondo-spin correlations that show incommensurate modulations. Our results appear incompatible with the local picture for the quantum phase transition in heavy fermion compounds, which predicts an abrupt change in the size of the Fermi momentum.

  17. Fermi Surface of Superconducting LaFePO Determined by Quantum Oscillations

    SciTech Connect

    Coldea, A.I.; Fletcher, J.D.; Carrington, A.; Analytis, J.G.; Bangura, A.F.; Chu, J.-H.; Erickson, A.S.; Fisher, I.R.; Hussey, N.E.; McDonald, R.D.; /Los Alamos

    2010-01-11

    We report extensive measurements of quantum oscillations in the normal state of the Fe-based superconductor LaFePO, (T{sub c} {approx} 6 K) using low temperature torque magnetometry and transport in high static magnetic fields (45 T). We find that the Fermi surface is in broad agreement with the band-structure calculations with the quasiparticle mass enhanced by a factor {approx}2. The quasi-two dimensional Fermi surface consist of nearly-nested electron and hole pockets, suggesting proximity to a spin/charge density wave instability.

  18. Estimating net surface shortwave radiation from Chinese geostationary meteorological satellite FengYun-2D (FY-2D) data under clear sky.

    PubMed

    Zhang, Xiaoyu; Li, Lingling

    2016-03-21

    Net surface shortwave radiation (NSSR) significantly affects regional and global climate change, and is an important aspect of research on surface radiation budget balance. Many previous studies have proposed methods for estimating NSSR. This study proposes a method to calculate NSSR using FY-2D short-wave channel data. Firstly, a linear regression model is established between the top-of-atmosphere (TOA) broadband albedo (r) and the narrowband reflectivity (ρ1), based on data simulated with MODTRAN 4.2. Secondly, the relationship between surface absorption coefficient (as) and broadband albedo (r) is determined by dividing the surface type into land, sea, or snow&ice, and NSSR can then be calculated. Thirdly, sensitivity analysis is performed for errors associated with sensor noise, vertically integrated atmospheric water content, view zenith angle and solar zenith angle. Finally, validation using ground measurements is performed. Results show that the root mean square error (RMSE) between the estimated and actual r is less than 0.011 for all conditions, and the RMSEs between estimated and real NSSR are 26.60 W/m2, 9.99 W/m2, and 23.40 W/m2, using simulated data for land, sea, and snow&ice surfaces, respectively. This indicates that the proposed method can be used to adequately estimate NSSR. Additionally, we compare field measurements from TaiYuan and ChangWu ecological stations with estimates using corresponding FY-2D data acquired from January to April 2012, on cloud-free days. Results show that the RMSE between the estimated and actual NSSR is 48.56W/m2, with a mean error of -2.23W/m2. Causes of errors also include measurement accuracy and estimations of atmospheric water vertical contents. This method is only suitable for cloudless conditions. PMID:27136868

  19. 2D surface temperature measurement of plasma facing components with modulated active pyrometry

    SciTech Connect

    Amiel, S.; Loarer, T.; Pocheau, C.; Roche, H.; Gauthier, E.; Aumeunier, M.-H.; Courtois, X.; Jouve, M.; Balorin, C.; Moncada, V.; Le Niliot, C.; Rigollet, F.

    2014-10-01

    In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (ε ~ 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (ε ~ 0.1–0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity.

  20. 2D surface temperature measurement of plasma facing components with modulated active pyrometry

    NASA Astrophysics Data System (ADS)

    Amiel, S.; Loarer, T.; Pocheau, C.; Roche, H.; Gauthier, E.; Aumeunier, M.-H.; Le Niliot, C.; Rigollet, F.; Courtois, X.; Jouve, M.; Balorin, C.; Moncada, V.

    2014-10-01

    In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (ɛ ˜ 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (ɛ ˜ 0.1-0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity.

  1. Fermi-surface-free superconductivity in underdoped (Bi,Pb)(Sr,La)2CuO6+δ (Bi2201)

    PubMed Central

    Mistark, Peter; Hafiz, Hasnain; Markiewicz, Robert S.; Bansil, Arun

    2015-01-01

    Fermi-surface-free superconductivity arises when the superconducting order pulls down spectral weight from a band that is completely above the Fermi energy in the normal state. We show that this can arise in hole-doped cuprates when a competing order causes a reconstruction of the Fermi surface. The change in Fermi surface topology is accompanied by a characteristic rise in the spectral weight. Our results support the presence of a trisected superconducting dome, and suggest that superconductivity is responsible for stabilizing the (π,π) magnetic order at higher doping. PMID:26084605

  2. Coherent quasiparticles with a small fermi surface in lightly doped Sr(3)Ir(2)O(7).

    PubMed

    de la Torre, A; Hunter, E C; Subedi, A; McKeown Walker, S; Tamai, A; Kim, T K; Hoesch, M; Perry, R S; Georges, A; Baumberger, F

    2014-12-19

    We characterize the electron doping evolution of (Sr_{1-x}La_{x})_{3}Ir_{2}O_{7} by means of angle-resolved photoemission. Concomitant with the metal insulator transition around x≈0.05 we find the emergence of coherent quasiparticle states forming a closed small Fermi surface of volume 3x/2, where x is the independently measured La concentration. The quasiparticle weight Z remains large along the entire Fermi surface, consistent with the moderate renormalization of the low-energy dispersion, and no pseudogap is observed. This indicates a conventional, weakly correlated Fermi liquid state with a momentum independent residue Z≈0.5 in lightly doped Sr_{3}Ir_{2}O_{7}. PMID:25554897

  3. Coherent quasiparticles with a small Fermi Surface in lightly doped Sr3Ir2O7

    NASA Astrophysics Data System (ADS)

    de la Torre, Alberto; McKeown Walker, Siobhan; Tamai, Anna; Hunter, Emily; Subedi, Alaska; Kim, Timur; Hoesch, Moritz; Perry, Robin; Georges, Antoine; Baumberger, Felix

    2015-03-01

    We characterize the electron doping evolution of (Sr1-xLax)Ir2O7 by means of angle-resolved photoemission. Concomitant with the metal insulator transition around x ~ 0 . 05 we find the emergence of coherent quasiparticle states forming a closed small Fermi surface of volume 3 x / 2 , where x is the independently measured La concentration. The quasiparticle weight Z remains large along the entire Fermi surface, consistent with the moderate renormalization of the low-energy dispersion and no pseudogap is observed. This indicates a conventional, weakly correlated Fermi liquid state with a momentum independent residue Z ~ 0 . 5 in lightly doped Sr3Ir2O7, in stark contrast with underdoped cuprates.

  4. Coherent Quasiparticles with a Small Fermi Surface in Lightly Doped Sr3Ir2O7

    NASA Astrophysics Data System (ADS)

    de la Torre, A.; Hunter, E. C.; Subedi, A.; McKeown Walker, S.; Tamai, A.; Kim, T. K.; Hoesch, M.; Perry, R. S.; Georges, A.; Baumberger, F.

    2014-12-01

    We characterize the electron doping evolution of (Sr1 -xLax)3Ir2O7 by means of angle-resolved photoemission. Concomitant with the metal insulator transition around x ≈0.05 we find the emergence of coherent quasiparticle states forming a closed small Fermi surface of volume 3 x /2 , where x is the independently measured La concentration. The quasiparticle weight Z remains large along the entire Fermi surface, consistent with the moderate renormalization of the low-energy dispersion, and no pseudogap is observed. This indicates a conventional, weakly correlated Fermi liquid state with a momentum independent residue Z ≈0.5 in lightly doped Sr3Ir2O7 .

  5. Surface delta interaction in the g7/2 - d5/2 model space

    NASA Astrophysics Data System (ADS)

    Yu, Xiaofei; Zamick, Larry

    2016-05-01

    Using an attractive surface delta interaction we obtain wave functions for 2 neutrons (or neutron holes) in the g7/2 -d5/2 model space. If we take the single particle energies to be degenerate we find that the g factors for I = 2 , 4 and 6 are all the same G (J) =gl, the orbital g factor of the nucleon. For a free neutron gl = 0, so in this case all 2 particles or 2 holes' g factors are equal to zero. Only the orbital part of the g-factors contributes - the spin part cancels out. We then consider the effects of introducing a single energy splitting between the 2 orbits. We make a linear approximation for all other n values.

  6. Surface-Supported Robust 2D Lanthanide-Carboxylate Coordination Networks.

    PubMed

    Urgel, José I; Cirera, Borja; Wang, Yang; Auwärter, Willi; Otero, Roberto; Gallego, José M; Alcamí, Manuel; Klyatskaya, Svetlana; Ruben, Mario; Martín, Fernando; Miranda, Rodolfo; Ecija, David; Barth, Johannes V

    2015-12-16

    Lanthanide-based metal-organic compounds and architectures are promising systems for sensing, heterogeneous catalysis, photoluminescence, and magnetism. Herein, the fabrication of interfacial 2D lanthanide-carboxylate networks is introduced. This study combines low- and variable-temperature scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS) experiments, and density functional theory (DFT) calculations addressing their design and electronic properties. The bonding of ditopic linear linkers to Gd centers on a Cu(111) surface gives rise to extended nanoporous grids, comprising mononuclear nodes featuring eightfold lateral coordination. XPS and DFT elucidate the nature of the bond, indicating ionic characteristics, which is also manifest in appreciable thermal stability. This study introduces a new generation of robust low-dimensional metallosupramolecular systems incorporating the functionalities of the f-block elements. PMID:26524215

  7. Reconstruction de la surface de Fermi dans l'etat normal d'un supraconducteur a haute Tc: Une etude du transport electrique en champ magnetique intense

    NASA Astrophysics Data System (ADS)

    Le Boeuf, David

    Des mesures de resistance longitudinale et de resistance de Hall en champ magnetique intense transverse (perpendiculaire aux plans CuO2) ont ete effectuees au sein de monocristaux de YBa2Cu3Oy (YBCO) demacles, ordonnes et de grande purete, afin d'etudier l'etat fondamental des supraconducteurs a haute Tc dans le regime sous-dope. Cette etude a ete realisee en fonction du dopage et de l'orientation du courant d'excitation J par rapport a l'axe orthorhombique b de la structure cristalline. Les mesures en champ magnetique intense revelent par suppression de la supraconductivite des oscillations magnetiques des resistances longitudinale et de Hall dans YBa2Cu 3O6.51 et YBa2Cu4O8. La conformite du comportement de ces oscillations quantiques au formalisme de Lifshitz-Kosevich, apporte la preuve de l'existence d'une surface de Fermi fermee a caractere quasi-2D, abritant des quasiparticules coherentes respectant la statistique de Fermi-Dirac, dans la phase pseudogap d'YBCO. La faible frequence des oscillations quantiques, combinee avec l'etude de la partie monotone de la resistance de Hall en fonction de la temperature indique que la surface de Fermi d'YBCO sous-dope comprend une petite poche de Fermi occupee par des porteurs de charge negative. Cette particularite de la surface de Fermi dans le regime sous-dope incompatible avec les calculs de structure de bande est en fort contraste avec la structure electronique presente dans le regime surdope. Cette observation implique ainsi l'existence d'un point critique quantique dans le diagramme de phase d'YBCO, au voisinage duquel la surface de Fermi doit subir une reconstruction induite par l'etablissement d'une brisure de la symetrie de translation du reseau cristallin sous-jacent. Enfin, l'etude en fonction du dopage de la resistance de Hall et de la resistance longitudinale en champ magnetique intense suggere qu'un ordre du type onde de densite (DW) est responsable de la reconstruction de la surface de Fermi. L'analogie de

  8. Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal.

    PubMed

    Inoue, Hiroyuki; Gyenis, András; Wang, Zhijun; Li, Jian; Oh, Seong Woo; Jiang, Shan; Ni, Ni; Bernevig, B Andrei; Yazdani, Ali

    2016-03-11

    Weyl semimetals host topologically protected surface states, with arced Fermi surface contours that are predicted to propagate through the bulk when their momentum matches that of the surface projections of the bulk's Weyl nodes. We used spectroscopic mapping with a scanning tunneling microscope to visualize quasiparticle scattering and interference at the surface of the Weyl semimetal TaAs. Our measurements reveal 10 different scattering wave vectors, which can be understood and precisely reproduced with a theory that takes into account the shape, spin texture, and momentum-dependent propagation of the Fermi arc surface states into the bulk. Our findings provide evidence that Weyl nodes act as sinks for electron transport on the surface of these materials. PMID:26965625

  9. Full 2D observation of water surface elevation from SWOT under different flow conditions

    NASA Astrophysics Data System (ADS)

    Domeneghetti, Alessio; Schumann, Guy; Rui, Wei; Durand, Michael; Pavelsky, Tamlin

    2016-04-01

    The upcoming Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA, Centre National d'Etudes Spatiales (CNES, France), the Canadian Space Agency, and the Space Agency of the UK that will provide a first global, high-resolution observation of ocean and terrestrial water surface heights. Characterized by an observation swath of 120 km and an orbit repeat interval of about 21 days, SWOT will provide unprecedented bi-dimensional observations of rivers wider than 50-100 m. Despite many research activities that have investigated potential uses of remotely sensed data from SWOT, potentials and limitations of the spatial observations provided by the satellite mission for flood modeling still remain poorly understood and investigated. In this study we present a first analysis of the spatial observation of water surface elevation that is expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 200-500 m in width and a floodplain that can be as wide as 5 km and that is delimited by a system of major embankments. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2d model built with detailed topographic and bathymetric information (LiDAR, 2 m resolution), while the simulation of the spatial observation sensed by SWOT is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow reproduced by means of the quasi-2d numerical model) this work provides a first characterization of the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. By referring to a real river reach the analysis provides a credible example of the type of spatial observations that will be available after launch of SWOT and offers a first

  10. Diverse 2D structures obtained by adsorption of charged ABA triblock copolymer on different surfaces

    NASA Astrophysics Data System (ADS)

    Kontturi, Katri S.; Vesterinen, Arja-Helena; Seppälä, Jukka; Laine, Janne

    2012-11-01

    In the larger context of 2D polymeric structures, the morphologies obtained by adsorption and subsequent drying of charged, ABA type amphiphilic triblock copolymer of poly[2-(dimethylamino)ethyl metacrylate] (PDMAEMA) and poly(propylene oxide) (PPO) were investigated with atomic force microscopy and X-ray photoelectron spectroscopy as well as in situ adsorption analysis with quartz crystal microbalance with dissipation monitoring. Hydrophilic silica and hydrophobic polystyrene (PS) were used as substrates for adsorption. The structures emerging from the self-assembly of adsorbing polymer were profoundly influenced by composition of the aqueous solution and the choice of substrate. When adsorbed from dilute polymer solution where the concentration is so low that the polymer does not yet show surface-active behavior, the triblock copolymer unimers associated on hydrophilic silica surface forming large, irregular clustered aggregates, with sizes increasing with electrolyte concentration of the solution. On a hydrophobic PS substrate, on the other hand, unimers spread much more evenly, forming clear surface patterns. The roughness of these patterned structures was tuned with the electrolyte concentration of the solution. Adsorption from a more concentrated polymer solution, where the surface-activity of the polymer is perceptible, resulted in the formation of a smooth film with complete coverage over the hydrophilic silica substrate when the electrolyte concentration was high. On PS, on the other hand, nucleation of evenly scattered globular, disk-like micelles was induced. Besides the dry film morphology, the even distribution of the irreversibly adsorbed polymer over the PS surface was likely to serve as an optimal platform for the build-up of reversible hydrophobically bound multilayers at high electrolyte concentration. The multilayer formation was reversible because a decrease in the electrolyte concentration of the solution re-introduces strong electrostatic

  11. Study on the electronic structure and Fermi surface of 3d-transition-metal disilisides CoSi2

    NASA Astrophysics Data System (ADS)

    Hamid, A. S.

    2012-09-01

    We have investigated the electronic structure, the momentum density distribution ρ( p), and the Fermi surface FS of single crystals of the Pyrite-type 3d-transition-metal disilisides CoSi2. The band structure calculations, the density of states DOS, and the FS, in vicinity of Fermi level, have been carried out using the full-potential linearized augmented plane wave FP-LAPW method within generalized gradient approximation GGA for exchange and correlation potential. The measurements have been performed via the 2D angular correlation of annihilation radiation ACAR experiments. ρ( p) has been reconstructed by using the Fourier transformation technique. The FS has been reconstructed within the first Brillion zone BZ through the Locks, Crisp, and West LCW folding procedures. The analysis confirmed that Si 3 sp states hybrid with both Co 3 d- t 2 g and Co 3 d- e g states around Γ and X points, respectively. The dimensions of the FS of CoSi2 have been compared to the present calculations as well as to the earlier results.

  12. Fermi surface of superconducting LaFePO determined by quantum oscillations

    SciTech Connect

    Mcdonald, Ross D; Coldea, A I; Fletcher, J D; Carrington, A; Bangura, A F; Hussey, N E; Analytis, J G; Chu, J-h; Erickson, A S; Fisher, I R

    2008-01-01

    The recent discovery of superconductivity in ferrooxypnictides, which have a maximum transition temperature intermediate between the two other known high temperature superconductors MgB{sub 2} and the cuprate family, has generated huge interest and excitement. The most critical issue is the origin of the pairing mechanism. Whereas superconductivity in MgB{sub 2} has been shown to arise from strong electron-phonon coupling, the pairing glue in cuprate superconductors is thought by many to have a magnetic origin. The oxypnictides are highly susceptible to magnetic instabilities, prompting analogies with cuprate superconductivity. Progress on formulating the correct theory of superconductivity in these materials will be greatly aided by a detailed knowledge of the Fermi surface parameters. Here we report for the first time extensive measurements of quantum oscillations in a Fe-based superconductor, LaFePO, that provide a precise calliper of the size and shape of the Fermi surface and the effective masses of the relevant charge carriers. Our results show that the Fermi surface is composed of nearly-nested electron and hole pockets in broad agreement with the band-structure predictions but with significant enhancement of the quasiparticle masses. The correspondence in the electron and hole Fermi surface areas provides firm experimental evidence that LaFePO, whilst unreconstructed, lies extremely close to a spin-density-wave instability, thus favoring models that invoke such a magnetic origin for high-temperature superconductivity in oxypnictides.

  13. The low temperature Fermi surface of IrTe2 probed by quantum oscillations.

    NASA Astrophysics Data System (ADS)

    Blake, Samuel; Coldea, Amalia; Watson, Matthew; Narayanan, Arjun; McCollam, Alix; Kasahara, Shigeru; Yamashita, Takuya; Watanabe, Daiki; Shibauchi, Takasada; Matsuda, Yuju; Schoonmaker, Robert

    2014-03-01

    The transition metal dichalcogenide IrTe2 undergoes a structural transition at 280K; doping on the Ir site suppresses this transition and induces superconductivity with Tc of about 3K. The nature of the structural transition is possibly driven by charge disproportionation and the effect this has on the electronic structure of the superconducting state is not fully understood. We report a low temperature investigation of the Fermi surface of IrTe2 from quantum oscillations, using torque measurements performed in magnetic fields up to 33T and temperatures down to 0.3K. The observed extremal areas of the Fermi surface likely correspond to frequencies of a reconstructed Fermi surface, with light effective masses below 0.8me. The angular dependence of these frequencies across multiple crystals of IrTe2 suggests these materials are prone to domain formation upon cooling. We compare our measured Fermi surface with those predicted by electronic structure calculations, based upon the existing structural models, for both above and below the structural transition. This work was supported by EPSRC (UK) and partly by EuroMagnet (EU contract number 228043).

  14. Electron-hole doping asymmetry of Fermi surface reconstructed in a simple Mott insulator

    NASA Astrophysics Data System (ADS)

    Kawasugi, Yoshitaka; Seki, Kazuhiro; Edagawa, Yusuke; Sato, Yoshiaki; Pu, Jiang; Takenobu, Taishi; Yunoki, Seiji; Yamamoto, Hiroshi M.; Kato, Reizo

    2016-08-01

    It is widely recognized that the effect of doping into a Mott insulator is complicated and unpredictable, as can be seen by examining the Hall coefficient in high Tc cuprates. The doping effect, including the electron-hole doping asymmetry, may be more straightforward in doped organic Mott insulators owing to their simple electronic structures. Here we investigate the doping asymmetry of an organic Mott insulator by carrying out electric-double-layer transistor measurements and using cluster perturbation theory. The calculations predict that strongly anisotropic suppression of the spectral weight results in the Fermi arc state under hole doping, while a relatively uniform spectral weight results in the emergence of a non-interacting-like Fermi surface (FS) in the electron-doped state. In accordance with the calculations, the experimentally observed Hall coefficients and resistivity anisotropy correspond to the pocket formed by the Fermi arcs under hole doping and to the non-interacting FS under electron doping.

  15. Quantum Oscillations, Thermoelectric Coefficients, and the Fermi Surface of Semimetallic WTe2.

    PubMed

    Zhu, Zengwei; Lin, Xiao; Liu, Juan; Fauqué, Benoît; Tao, Qian; Yang, Chongli; Shi, Youguo; Behnia, Kamran

    2015-05-01

    We present a study of angle-resolved quantum oscillations of electric and thermoelectric transport coefficients in semimetallic WTe2, which has the particularity of displaying a large B(2) magnetoresistance. The Fermi surface consists of two pairs of electronlike and holelike pockets of equal volumes in a "Russian doll" structure. The carrier density, Fermi energy, mobility, and the mean-free path of the system are quantified. An additional frequency is observed above a threshold field and attributed to the magnetic breakdown across two orbits. In contrast to all other dilute metals, the Nernst signal remains linear in the magnetic field even in the high-field (ωcτ≫1) regime. Surprisingly, none of the pockets extend across the c axis of the first Brillouin zone, making the system a three-dimensional metal with moderate anisotropy in Fermi velocity, yet a large anisotropy in the mean-free path. PMID:25978245

  16. Quantum Oscillations, Thermoelectric Coefficients, and the Fermi Surface of Semimetallic WTe2

    NASA Astrophysics Data System (ADS)

    Zhu, Zengwei; Lin, Xiao; Liu, Juan; Fauqué, Benoît; Tao, Qian; Yang, Chongli; Shi, Youguo; Behnia, Kamran

    2015-05-01

    We present a study of angle-resolved quantum oscillations of electric and thermoelectric transport coefficients in semimetallic WTe2, which has the particularity of displaying a large B2 magnetoresistance. The Fermi surface consists of two pairs of electronlike and holelike pockets of equal volumes in a "Russian doll" structure. The carrier density, Fermi energy, mobility, and the mean-free path of the system are quantified. An additional frequency is observed above a threshold field and attributed to the magnetic breakdown across two orbits. In contrast to all other dilute metals, the Nernst signal remains linear in the magnetic field even in the high-field (ωcτ ≫1 ) regime. Surprisingly, none of the pockets extend across the c axis of the first Brillouin zone, making the system a three-dimensional metal with moderate anisotropy in Fermi velocity, yet a large anisotropy in the mean-free path.

  17. Electron-hole doping asymmetry of Fermi surface reconstructed in a simple Mott insulator.

    PubMed

    Kawasugi, Yoshitaka; Seki, Kazuhiro; Edagawa, Yusuke; Sato, Yoshiaki; Pu, Jiang; Takenobu, Taishi; Yunoki, Seiji; Yamamoto, Hiroshi M; Kato, Reizo

    2016-01-01

    It is widely recognized that the effect of doping into a Mott insulator is complicated and unpredictable, as can be seen by examining the Hall coefficient in high Tc cuprates. The doping effect, including the electron-hole doping asymmetry, may be more straightforward in doped organic Mott insulators owing to their simple electronic structures. Here we investigate the doping asymmetry of an organic Mott insulator by carrying out electric-double-layer transistor measurements and using cluster perturbation theory. The calculations predict that strongly anisotropic suppression of the spectral weight results in the Fermi arc state under hole doping, while a relatively uniform spectral weight results in the emergence of a non-interacting-like Fermi surface (FS) in the electron-doped state. In accordance with the calculations, the experimentally observed Hall coefficients and resistivity anisotropy correspond to the pocket formed by the Fermi arcs under hole doping and to the non-interacting FS under electron doping. PMID:27492864

  18. Fermi Surface and Van Hove Singularities in the Itinerant Metamagnet Sr(3)Ru(2)O(7)

    SciTech Connect

    Tamai, A.; Allan, M.P.; Mercure, J.F.; Meevasana, W.; Dunkel, R.; Lu, D.H.; Perry, R.S.; Mackenzie, A.P.; Singh, D.J.; Shen, Z.-X.; Baumberger, F.; /Scottish U. Research Reactor Ctr. /St. Andrews U.

    2011-01-04

    The low-energy electronic structure of the itinerant metamagnet Sr{sub 3}Ru{sub 2}O{sub 7} is investigated by angle resolved photoemission and density functional calculations. We find well-defined quasiparticle bands with resolution limited line widths and Fermi velocities up to an order of magnitude lower than in single layer Sr{sub 2}RuO{sub 4}. The complete topography, the cyclotron masses and the orbital character of the Fermi surface are determined, in agreement with bulk sensitive de Haas - van Alphen measurements. An analysis of the dxy band dispersion reveals a complex density of states with van Hove singularities (vHs) near the Fermi level; a situation which is favorable for magnetic instabilities.

  19. Geometric Neural Computing for 2D Contour and 3D Surface Reconstruction

    NASA Astrophysics Data System (ADS)

    Rivera-Rovelo, Jorge; Bayro-Corrochano, Eduardo; Dillmann, Ruediger

    In this work we present an algorithm to approximate the surface of 2D or 3D objects combining concepts from geometric algebra and artificial neural networks. Our approach is based on the self-organized neural network called Growing Neural Gas (GNG), incorporating versors of the geometric algebra in its neural units; such versors are the transformations that will be determined during the training stage and then applied to a point to approximate the surface of the object. We also incorporate the information given by the generalized gradient vector flow to select automatically the input patterns, and also in the learning stage in order to improve the performance of the net. Several examples using medical images are presented, as well as images of automatic visual inspection. We compared the results obtained using snakes against the GSOM incorporating the gradient information and using versors. Such results confirm that our approach is very promising. As a second application, a kind of morphing or registration procedure is shown; namely the algorithm can be used when transforming one model at time t 1 into another at time t 2. We include also examples applying the same procedure, now extended to models based on spheres.

  20. Theoretical study of surface plasmons coupling in transition metallic alloy 2D binary grating

    NASA Astrophysics Data System (ADS)

    Dhibi, Abdelhak; Khemiri, Mehdi; Oumezzine, Mohamed

    2016-05-01

    The excitation of a surface plasmon polariton (SPP) wave on a metal-air interface by a 2D diffraction grating is numerically investigated. The grating consists of homogeneous alloys of two metals of a formula AxB1-x, or three metals of a formula AxByCz, where A, B and C could be silver (Ag), copper (Cu), gold (Au) or aluminum (Al). It is observed that all the alloys of two metals present a very small change of surface plasmon resonance (SPR) irrespective of composition x. Moreover, the addition of 25% of Al to two metals alloy is insufficient to change the SPR curves. The influence of the different grating parameters is discussed in details using rigorous coupled-wave analysis (RCWA) method. Furthermore, the SPR is highly dependent on grating periods (dx and dy) and the height of the grating h. The results reveal that dx= dy= 700 nm, h=40 nm and duty cycle w=0.5 are the optimal parameters for exciting SPP.

  1. Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy.

    PubMed

    Doiron-Leyraud, N; Badoux, S; René de Cotret, S; Lepault, S; LeBoeuf, D; Laliberté, F; Hassinger, E; Ramshaw, B J; Bonn, D A; Hardy, W N; Liang, R; Park, J-H; Vignolles, D; Vignolle, B; Taillefer, L; Proust, C

    2015-01-01

    In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet, undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report evidence for a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency shows that it is a distinct Fermi surface, and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction by the charge-density-wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap. PMID:25616011

  2. Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy

    PubMed Central

    Doiron-Leyraud, N.; Badoux, S.; René de Cotret, S.; Lepault, S.; LeBoeuf, D.; Laliberté, F.; Hassinger, E.; Ramshaw, B. J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Park, J.-H..; Vignolles, D.; Vignolle, B.; Taillefer, L.; Proust, C.

    2015-01-01

    In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet, undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report evidence for a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency shows that it is a distinct Fermi surface, and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction by the charge–density–wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap. PMID:25616011

  3. Fermi surface instabilities in CeRh2Si2 at high magnetic field and pressure

    NASA Astrophysics Data System (ADS)

    Palacio Morales, A.; Pourret, A.; Seyfarth, G.; Suzuki, M.-T.; Braithwaite, D.; Knebel, G.; Aoki, D.; Flouquet, J.

    2015-06-01

    We present thermoelectric power (TEP) studies under pressure and high magnetic field in the antiferromagnet CeRh2Si2 at low temperature. Under a magnetic field, large quantum oscillations are observed in the TEP, S (H ) , in the antiferromagnetic phase. They suddenly disappear when entering in the polarized paramagnetic state at Hc, pointing out an important reconstruction of the Fermi surface. Under pressure, S /T increases strongly at low temperature near the critical pressure Pc, where the antiferromagnetic (AF) order is suppressed, implying the interplay of a Fermi surface change and low-energy excitations driven by spin and valence fluctuations. The difference between the TEP signal in the polarized paramagnetic state above Hc at ambient pressure and in the pressure-induced paramagnetic state above Pc can be explained by different Fermi surfaces. Band-structure calculations at P =0 stress that in the AF phase the 4 f contribution at the Fermi level (EF) is weak, while it is the main contribution in the paramagnetic domain. In the polarized paramagnetic phase the 4 f contribution at EF drops. Large quantum oscillations are observed in the antiferromagnetic state while these disappear in the polarized state above Hc. Comparison is made to the CeRu2Si2 series highly studied for its (H ,T ) phase diagram.

  4. Interaction-induced singular Fermi surface in a high-temperature oxypnictide superconductor

    NASA Astrophysics Data System (ADS)

    Charnukha, A.; Thirupathaiah, S.; Zabolotnyy, V. B.; Büchner, B.; Zhigadlo, N. D.; Batlogg, B.; Yaresko, A. N.; Borisenko, S. V.

    2015-05-01

    In the family of iron-based superconductors, LaFeAsO-type materials possess the simplest electronic structure due to their pronounced two-dimensionality. And yet they host superconductivity with the highest transition temperature Tc ≈ 55K. Early theoretical predictions of their electronic structure revealed multiple large circular portions of the Fermi surface with a very good geometrical overlap (nesting), believed to enhance the pairing interaction and thus superconductivity. The prevalence of such large circular features in the Fermi surface has since been associated with many other iron-based compounds and has grown to be generally accepted in the field. In this work we show that a prototypical compound of the 1111-type, SmFe0.92Co0.08AsO , is at odds with this description and possesses a distinctly different Fermi surface, which consists of two singular constructs formed by the edges of several bands, pulled to the Fermi level from the depths of the theoretically predicted band structure by strong electronic interactions. Such singularities dramatically affect the low-energy electronic properties of the material, including superconductivity. We further argue that occurrence of these singularities correlates with the maximum superconducting transition temperature attainable in each material class over the entire family of iron-based superconductors.

  5. Interaction-induced singular Fermi surface in a high-temperature oxypnictide superconductor

    PubMed Central

    Charnukha, A.; Thirupathaiah, S.; Zabolotnyy, V. B.; Büchner, B.; Zhigadlo, N. D.; Batlogg, B.; Yaresko, A. N.; Borisenko, S. V.

    2015-01-01

    In the family of iron-based superconductors, LaFeAsO-type materials possess the simplest electronic structure due to their pronounced two-dimensionality. And yet they host superconductivity with the highest transition temperature Tc ≈ 55K. Early theoretical predictions of their electronic structure revealed multiple large circular portions of the Fermi surface with a very good geometrical overlap (nesting), believed to enhance the pairing interaction and thus superconductivity. The prevalence of such large circular features in the Fermi surface has since been associated with many other iron-based compounds and has grown to be generally accepted in the field. In this work we show that a prototypical compound of the 1111-type, SmFe0.92Co0.08AsO , is at odds with this description and possesses a distinctly different Fermi surface, which consists of two singular constructs formed by the edges of several bands, pulled to the Fermi level from the depths of the theoretically predicted band structure by strong electronic interactions. Such singularities dramatically affect the low-energy electronic properties of the material, including superconductivity. We further argue that occurrence of these singularities correlates with the maximum superconducting transition temperature attainable in each material class over the entire family of iron-based superconductors. PMID:25997611

  6. Interaction-induced singular Fermi surface in a high-temperature oxypnictide superconductor.

    PubMed

    Charnukha, A; Thirupathaiah, S; Zabolotnyy, V B; Büchner, B; Zhigadlo, N D; Batlogg, B; Yaresko, A N; Borisenko, S V

    2015-01-01

    In the family of iron-based superconductors, LaFeAsO-type materials possess the simplest electronic structure due to their pronounced two-dimensionality. And yet they host superconductivity with the highest transition temperature Tc ≈ 55K. Early theoretical predictions of their electronic structure revealed multiple large circular portions of the Fermi surface with a very good geometrical overlap (nesting), believed to enhance the pairing interaction and thus superconductivity. The prevalence of such large circular features in the Fermi surface has since been associated with many other iron-based compounds and has grown to be generally accepted in the field. In this work we show that a prototypical compound of the 1111-type, SmFe(0.92)Co(0.08)AsO , is at odds with this description and possesses a distinctly different Fermi surface, which consists of two singular constructs formed by the edges of several bands, pulled to the Fermi level from the depths of the theoretically predicted band structure by strong electronic interactions. Such singularities dramatically affect the low-energy electronic properties of the material, including superconductivity. We further argue that occurrence of these singularities correlates with the maximum superconducting transition temperature attainable in each material class over the entire family of iron-based superconductors. PMID:25997611

  7. 2D instabilities of surface gravity waves on a linear shear current

    NASA Astrophysics Data System (ADS)

    Francius, Marc; Kharif, Christian

    2016-04-01

    Periodic 2D surface water waves propagating steadily on a rotational current have been studied by many authors (see [1] and references therein). Although the recent important theoretical developments have confirmed that periodic waves can exist over flows with arbitrary vorticity, their stability and their nonlinear evolution have not been much studied extensively so far. In fact, even in the rather simple case of uniform vorticity (linear shear), few papers have been published on the effect of a vertical shear current on the side-band instability of a uniform wave train over finite depth. In most of these studies [2-5], asymptotic expansions and multiple scales method have been used to obtain envelope evolution equations, which allow eventually to formulate a condition of (linear) instability to long modulational perturbations. It is noted here that this instability is often referred in the literature as the Benjamin-Feir or modulational instability. In the present study, we consider the linear stability of finite amplitude two-dimensional, periodic water waves propagating steadily on the free surface of a fluid with constant vorticity and finite depth. First, the steadily propagating surface waves are computed with steepness up to very close to the highest, using a Fourier series expansions and a collocation method, which constitutes a simple extension of Fenton's method [6] to the cases with a linear shear current. Then, the linear stability of these permanent waves to infinitesimal 2D perturbations is developed from the fully nonlinear equations in the framework of normal modes analysis. This linear stability analysis is an extension of [7] to the case of waves in the presence of a linear shear current and permits the determination of the dominant instability as a function of depth and vorticity for a given steepness. The numerical results are used to assess the accuracy of the vor-NLS equation derived in [5] for the characteristics of modulational

  8. Fermi surface reconstruction in hole-doped t-J models without long-range antiferromagnetic order

    NASA Astrophysics Data System (ADS)

    Punk, Matthias; Sachdev, Subir

    2012-05-01

    We calculate the Fermi surface of electrons in hole-doped, extended t-J models on a square lattice in a regime where no long-range antiferromagnetic order is present, and no symmetries are broken. Using the “spinon-dopon” formalism of Ribeiro and Wen, we show that short-range antiferromagnetic correlations lead to a reconstruction of the Fermi surface into hole pockets which are not necessarily centered at the antiferromagnetic Brillouin zone boundary. The Brillouin zone area enclosed by the Fermi surface is proportional to the density of dopants away from half-filling, in contrast to the conventional Luttinger theorem, which counts the total electron density. This state realizes a “fractionalized Fermi liquid” (FL*), which has been proposed as a possible ground state of the underdoped cuprates; we note connections to recent experiments. We also discuss the quantum phase transition from the FL* state to the Fermi liquid state with long-range antiferromagnetic order.

  9. Combination of 3D skin surface texture features and 2D ABCD features for improved melanoma diagnosis.

    PubMed

    Ding, Yi; John, Nigel W; Smith, Lyndon; Sun, Jiuai; Smith, Melvyn

    2015-10-01

    Two-dimensional asymmetry, border irregularity, colour variegation and diameter (ABCD) features are important indicators currently used for computer-assisted diagnosis of malignant melanoma (MM); however, they often prove to be insufficient to make a convincing diagnosis. Previous work has demonstrated that 3D skin surface normal features in the form of tilt and slant pattern disruptions are promising new features independent from the existing 2D ABCD features. This work investigates that whether improved lesion classification can be achieved by combining the 3D features with the 2D ABCD features. Experiments using a nonlinear support vector machine classifier show that many combinations of the 2D ABCD features and the 3D features can give substantially better classification accuracy than using (1) single features and (2) many combinations of the 2D ABCD features. The best 2D and 3D feature combination includes the overall 3D skin surface disruption, the asymmetry and all the three colour channel features. It gives an overall 87.8 % successful classification, which is better than the best single feature with 78.0 % and the best 2D feature combination with 83.1 %. These demonstrate that (1) the 3D features have additive values to improve the existing lesion classification and (2) combining the 3D feature with all the 2D features does not lead to the best lesion classification. The two ABCD features not selected by the best 2D and 3D combination, namely (1) the border feature and (2) the diameter feature, were also studied in separate experiments. It found that inclusion of either feature in the 2D and 3D combination can successfully classify 3 out of 4 lesion groups. The only one group not accurately classified by either feature can be classified satisfactorily by the other. In both cases, they have shown better classification performances than those without the 3D feature in the combinations. This further demonstrates that (1) the 3D feature can be used to

  10. Magnetic breakdown and Landau level spectra of a tunable double-quantum-well Fermi surface

    SciTech Connect

    Simmons, J.A.; Harff, N.E.; Lyo, S.K.; Klem, J.F.; Boebinger, G.S.; Pfeiffer, L.N.; West, K.W.

    1997-12-31

    By measuring longitudinal resistance, the authors map the Landau level spectra of double quantum wells as a function of both parallel (B{sub {parallel}}) and perpendicular (B{sub {perpendicular}}) magnetic fields. In this continuously tunable highly non-parabolic system, the cyclotron masses of the two Fermi surface orbits change in opposite directions with B{sub {parallel}}. This causes the two corresponding ladders of Landau levels formed at finite B{sub {perpendicular}} to exhibit multiple crossings. They also observe a third set of landau levels, independent of B{sub {parallel}}, which arise from magnetic breakdown of the Fermi surface. Both semiclassical and full quantum mechanical calculations show good agreement with the data.

  11. Fermi-surface reconstruction and the origin of high-temperature superconductivity.

    SciTech Connect

    Norman, M. R.; Materials Science Division

    2010-01-01

    In crystalline lattices, the conduction electrons form waves, known as Bloch states, characterized by a momentum vector k. The defining characteristic of metals is the surface in momentum space that separates occupied from unoccupied states. This 'Fermi' surface may seem like an abstract concept, but it can be measured and its shape can have profound consequences for the thermal, electronic, and magnetic properties of a material. In the presence of an external magnetic field B, electrons in a metal spiral around the field direction, and within a semiclassical momentum-space picture, orbit around the Fermi surface. Physical properties, such as the magnetization, involve a sum over these orbits, with extremal orbits on the Fermi surface, i.e., orbits with minimal or maximal area, dominating the sum [Fig. 1(a)]. Upon quantization, the resulting electron energy spectrum consists of Landau levels separated by the cyclotron energy, which is proportional to the magnetic field. As the magnetic field causes subsequent Landau levels to cross through the Fermi energy, physical quantities, such as the magnetization or resistivity, oscillate in response. It turns out that the period of these oscillations, when plotted as a function of 1/B, is proportional to the area of the extremal orbit in a plane perpendicular to the applied field [Fig. 1(b)]. The power of the quantum oscillation technique is obvious: By changing the field direction, one can map out the Fermi surface, much like a blind man feeling an elephant. The nature and topology of the Fermi surface in high-T{sub c} cuprates has been debated for many years. Soon after the materials were discovered by Bednorz and Mueller, it was realized that superconductivity was obtained by doping carriers into a parent insulating state. This insulating state appears to be due to strong electronic correlations, and is known as a Mott insulator. In the case of cuprates, the electronic interactions force the electrons on the copper ion

  12. Unconventional superconductivity and interaction induced Fermi surface reconstruction in the two-dimensional Edwards model

    PubMed Central

    Cho, Dai-Ning; Brink, Jeroen van den; Fehske, Holger; Becker, Klaus W.; Sykora, Steffen

    2016-01-01

    We study the competition between unconventional superconducting pairing and charge density wave (CDW) formation for the two-dimensional Edwards Hamiltonian at half filling, a very general two-dimensional transport model in which fermionic charge carriers couple to a correlated background medium. Using the projective renormalization method we find that a strong renormalization of the original fermionic band causes a new hole-like Fermi surface to emerge near the center of the Brillouin zone, before it eventually gives rise to the formation of a charge density wave. On the new, disconnected parts of the Fermi surface superconductivity is induced with a sign-changing order parameter. We discuss these findings in the light of recent experiments on iron-based oxypnictide superconductors. PMID:26935887

  13. Unconventional superconductivity and interaction induced Fermi surface reconstruction in the two-dimensional Edwards model

    NASA Astrophysics Data System (ADS)

    Cho, Dai-Ning; Brink, Jeroen Van Den; Fehske, Holger; Becker, Klaus W.; Sykora, Steffen

    2016-03-01

    We study the competition between unconventional superconducting pairing and charge density wave (CDW) formation for the two-dimensional Edwards Hamiltonian at half filling, a very general two-dimensional transport model in which fermionic charge carriers couple to a correlated background medium. Using the projective renormalization method we find that a strong renormalization of the original fermionic band causes a new hole-like Fermi surface to emerge near the center of the Brillouin zone, before it eventually gives rise to the formation of a charge density wave. On the new, disconnected parts of the Fermi surface superconductivity is induced with a sign-changing order parameter. We discuss these findings in the light of recent experiments on iron-based oxypnictide superconductors.

  14. Unconventional superconductivity and interaction induced Fermi surface reconstruction in the two-dimensional Edwards model.

    PubMed

    Cho, Dai-Ning; Brink, Jeroen van den; Fehske, Holger; Becker, Klaus W; Sykora, Steffen

    2016-01-01

    We study the competition between unconventional superconducting pairing and charge density wave (CDW) formation for the two-dimensional Edwards Hamiltonian at half filling, a very general two-dimensional transport model in which fermionic charge carriers couple to a correlated background medium. Using the projective renormalization method we find that a strong renormalization of the original fermionic band causes a new hole-like Fermi surface to emerge near the center of the Brillouin zone, before it eventually gives rise to the formation of a charge density wave. On the new, disconnected parts of the Fermi surface superconductivity is induced with a sign-changing order parameter. We discuss these findings in the light of recent experiments on iron-based oxypnictide superconductors. PMID:26935887

  15. Surface hole accumulation and Fermi level stabilization energy in SnTe

    NASA Astrophysics Data System (ADS)

    Nishitani, Junichi; Detert, Douglas; Beeman, Jeffrey; Yu, Kin Man; Walukiewicz, Wladek

    2014-09-01

    SnTe films were deposited by RF magnetron sputtering. The thickness dependence of the sheet hole concentration indicated the presence of a high hole density surface accumulation layer. Irradiation of SnTe by Ne+ ions led to the saturation of the hole concentration corresponding to a Fermi energy that is 0.5 eV below the valence band edge. The stabilized Fermi energy on the surface and in the heavily damaged bulk is in agreement with the amphoteric native defect model. These results show that SnTe is a unique semiconductor with an extremely high valence band edge located at 4.4 eV below the vacuum level.

  16. Nodal Fermi surface pocket approaching an optimal quantum critical point in YBCO

    NASA Astrophysics Data System (ADS)

    Sebastian, Suchitra; Tan, Beng; Lonzarich, Gilbert; Ramshaw, Brad; Harrison, Neil; Balakirev, Fedor; Mielke, Chuck; Sabok, S.; Dabrowski, B.; Liang, Ruixing; Bonn, Doug; Hardy, Walter

    2014-03-01

    I present new quantum oscillation measurements over the entire underdoped regime in YBa2Cu3O6+x and YBa2Cu4O8 using ultra-high magnetic fields to destroy superconductivity and access the normal ground state. A robust small nodal Fermi surface created by charge order is found to extend over the entire underdoped range, exhibiting quantum critical signatures approaching optimal doping.

  17. Electron pockets in the Fermi surface of hole-doped high-Tc superconductors.

    PubMed

    LeBoeuf, David; Doiron-Leyraud, Nicolas; Levallois, Julien; Daou, R; Bonnemaison, J-B; Hussey, N E; Balicas, L; Ramshaw, B J; Liang, Ruixing; Bonn, D A; Hardy, W N; Adachi, S; Proust, Cyril; Taillefer, Louis

    2007-11-22

    High-temperature superconductivity in copper oxides occurs when the materials are chemically tuned to have a carrier concentration intermediate between their metallic state at high doping and their insulating state at zero doping. The underlying evolution of the electron system in the absence of superconductivity is still unclear, and a question of central importance is whether it involves any intermediate phase with broken symmetry. The Fermi surface of the electronic states in the underdoped 'YBCO' materials YBa2Cu3O(y) and YBa2Cu4O8 was recently shown to include small pockets, in contrast with the large cylinder that characterizes the overdoped regime, pointing to a topological change in the Fermi surface. Here we report the observation of a negative Hall resistance in the magnetic-field-induced normal state of YBa2Cu3O(y) and YBa2Cu4O8, which reveals that these pockets are electron-like rather than hole-like. We propose that these electron pockets most probably arise from a reconstruction of the Fermi surface caused by the onset of a density-wave phase, as is thought to occur in the electron-doped copper oxides near the onset of antiferromagnetic order. Comparison with materials of the La2CuO4 family that exhibit spin/charge density-wave order suggests that a Fermi surface reconstruction also occurs in those materials, pointing to a generic property of high-transition-temperature (T(c)) superconductors. PMID:18033293

  18. Quantum oscillations and nodal pockets from Fermi surface reconstruction in the underdoped cuprates

    NASA Astrophysics Data System (ADS)

    Harrison, Neil

    2012-02-01

    Fermiology in the underdoped high Tc cuprates presents us with unique challenges, requiring experimentalists to look deeper into the data than is normally required for clues. Recent measurements of an oscillatory chemical potential affecting the oscillations at high magnetic fields provide a strong indication of a single type of carrier pocket. When considered in conjunction with photoemission and specific heat measurements, a Fermi surface comprised almost entirely of nodal pockets is suggested. The mystery of the Fermi surface is deepened, however, by a near doping-independent Fermi surface cross-sectional area and negative Hall and Seebeck coefficients. We explore ways in which these findings can be reconciled, taking an important hint from the diverging effective mass yielded by quantum oscillations at low dopings. The author wishes to thank Suchitra Sebastian, Moaz Atarawneh, Doug Bonn, Walter Hardy, Ruixing Liang, Charles Mielke and Gilbert Lonzarich who have contributed to this work. The work is supported by the NSF through the NHMFL and by the DOE project ``Science at 100 tesla.''

  19. Quantum oscillations from generic surface Fermi arcs and bulk chiral modes in Weyl semimetals.

    PubMed

    Zhang, Yi; Bulmash, Daniel; Hosur, Pavan; Potter, Andrew C; Vishwanath, Ashvin

    2016-01-01

    We re-examine the question of quantum oscillations from surface Fermi arcs and chiral modes in Weyl semimetals. By introducing two tools - semiclassical phase-space quantization and a numerical implementation of a layered construction of Weyl semimetals - we discover several important generalizations to previous conclusions that were implicitly tailored to the special case of identical Fermi arcs on top and bottom surfaces. We show that the phase-space quantization picture fixes an ambiguity in the previously utilized energy-time quantization approach and correctly reproduces the numerically calculated quantum oscillations for generic Weyl semimetals with distinctly curved Fermi arcs on the two surfaces. Based on these methods, we identify a 'magic' magnetic-field angle where quantum oscillations become independent of sample thickness, with striking experimental implications. We also analyze the stability of these quantum oscillations to disorder, and show that the high-field oscillations are expected to persist in samples whose thickness parametrically exceeds the quantum mean free path. PMID:27033563

  20. Quantum oscillations from generic surface Fermi arcs and bulk chiral modes in Weyl semimetals

    PubMed Central

    Zhang, Yi; Bulmash, Daniel; Hosur, Pavan; Potter, Andrew C.; Vishwanath, Ashvin

    2016-01-01

    We re-examine the question of quantum oscillations from surface Fermi arcs and chiral modes in Weyl semimetals. By introducing two tools - semiclassical phase-space quantization and a numerical implementation of a layered construction of Weyl semimetals - we discover several important generalizations to previous conclusions that were implicitly tailored to the special case of identical Fermi arcs on top and bottom surfaces. We show that the phase-space quantization picture fixes an ambiguity in the previously utilized energy-time quantization approach and correctly reproduces the numerically calculated quantum oscillations for generic Weyl semimetals with distinctly curved Fermi arcs on the two surfaces. Based on these methods, we identify a ‘magic’ magnetic-field angle where quantum oscillations become independent of sample thickness, with striking experimental implications. We also analyze the stability of these quantum oscillations to disorder, and show that the high-field oscillations are expected to persist in samples whose thickness parametrically exceeds the quantum mean free path. PMID:27033563

  1. Multi-method determination of continuous 2D velocity profiles from the surface to 1 km

    NASA Astrophysics Data System (ADS)

    Peterie, S.; Miller, R. D.; Ivanov, J.; Schwenk, J.; Bailey, B. L.; Schwarzer, J.; Markiewicz, R.

    2012-12-01

    Compressional and shear reflection data provide critical measurements of velocity and attenuation that are necessary for numerical simulations of site response from earthquake energy and seismic investigations to lithologic and pore characterizations. Imperative for accurate site response models is a seismic velocity model extending from the surface to the depth of interest that is representative of the true subsurface. In general, no seismic method can be used to characterize the shallowest (< 30 m) and deepest (30 m to 1 km) portions of the subsurface in a single pass with a consistent set of equipment and acquisition parameters. With four unique seismic surveys targeting different portions of the subsurface and different components of the seismic wavefield, we were able to build a comprehensive dataset that facilitated continuous 2D velocity profiles. The upper kilometer underlying our study site consists of Lake Bonneville lucustrine sediments and post-Bonneville alluvium and colluvium from the nearby Wasatch Front in north central Utah (Eardley, 1938; Hintze, 2005). Four unique seismic surveys were acquired along each of two 1.5 km lines located approximately 3 km apart. Data for tomography and multi-channel analysis of surface waves (MASW) were acquired with a bungee accelerated weight drop and 4.5 Hz compressional geophones. P-wave and S-wave reflection data were acquired with an IVI minivib 1 and 28 Hz compressional and 14 Hz SH geophones, respectively. P-wave and S-wave velocities from the surface to 30 m were determined using tomography and MASW, respectively. Stacking velocities of reflections on common midpoint gathers from the vibroseis data were used to determine Vp and Vs from approximately 30 m to nearly 1 km below ground surface. Each Vp and Vs dataset were merged to generate continuous interval and average velocity profiles. The sutured velocity cross-sections were produced for both P- and S-waves in a fashion not previously described in the

  2. Electronic structure, Fermi surface and dHvA effect in YIn3, LuIn3, and YbIn3

    NASA Astrophysics Data System (ADS)

    Antonov, V. N.

    2014-04-01

    The electronic structure, Fermi surface, angle dependence of the cyclotron masses and extremal cross sections of the Fermi surface of RIn3 (R = Y, Lu, and Yb) compounds were investigated from first principles using the fully relativistic Dirac linear muffin-tin orbital method. The effect of the spin-orbit (SO) interaction and Coulomb repulsion U in a frame of the LDA + SO + U method on the Fermi surface, orbital dependence of the cyclotron masses, and extremal cross sections of the Fermi surface are examined in details. A good agreement with experimental data of cyclotron masses and extremal cross sections of the Fermi surface was achieved.

  3. Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction

    NASA Astrophysics Data System (ADS)

    Arredondo, K.; Billen, M. I.

    2012-12-01

    Descending subducted slabs affect both plate tectonics at the surface and overall mantle flow (e.g. Conrad and Lithgow-Bertelloni, 2002). For time-dependent numerical models, the potential evolution of these slabs, ranging from immediate penetration into the lower mantle to prior buckling and stagnation, are affected by parameters such as the plate age, the viscosity jump into the lower mantle, the presence of phase transitions, trench motion and the chosen governing equation approximation (e.g. Billen and Hirth, 2007). Similarly, the overall deviatoric stress within the slab, especially where modified by the phase transitions, may explain the uneven distribution of deep earthquakes with depth (e.g. Bina, 1997). Better understanding of these processes may arise from a more realistic 2-D model that is fully-dynamic, with an overriding plate, freely-moving trench, compositionally-layered slab and seven major phase transitions, in addition to using the compressible (TALA) form of the governing equations. Though the thermodynamic parameters of certain phase transitions may be uncertain, this study aims to test the latest data and encourage further mineralogical research. We will present fully-dynamic models, which explore the importance of the phase transitions, especially those that have been previously excluded such as the wadsleyite to ringwoodite and the pyroxene and garnet phase transitions. These phase transitions, coupled with the modeled compositionally distinct crust, harzburgite, and pyrolite lithosphere layers, may produce new large-scale dynamic behavior not seen in past numerical models, as well as stress variations within the slab related to deep slab seismicity. Feedback from the compositionally complex slab to the dynamic trench may provide further insight on the mechanics of slab stagnation and behavior in the upper and lower mantle. Billen, M. I., and G. Hirth, Rheologic controls on slab dynamics, Geochemistry, Geophysics and Geosystems, 8 (Q08012

  4. Fermi surface versus Fermi sea contributions to intrinsic anomalous and spin Hall effects of multiorbital metals in the presence of Coulomb interaction and spin-Coulomb drag

    NASA Astrophysics Data System (ADS)

    Arakawa, Naoya

    2016-06-01

    Anomalous Hall effect (AHE) and spin Hall effect (SHE) are fundamental phenomena, and their potential for application is great. However, we understand the interaction effects unsatisfactorily, and should have clarified issues about the roles of the Fermi sea term and Fermi surface term of the conductivity of the intrinsic AHE or SHE of an interacting multiorbital metal and about the effects of spin-Coulomb drag on the intrinsic SHE. Here, we resolve the first issue and provide the first step about the second issue by developing a general formalism in the linear response theory with appropriate approximations and using analytic arguments. The most striking result is that even without impurities, the Fermi surface term, a non-Berry-curvature term, plays dominant roles at high or slightly low temperatures. In particular, this Fermi surface term causes the temperature dependence of the dc anomalous Hall or spin Hall conductivity due to the interaction-induced quasiparticle damping and the correction of the dc spin Hall conductivity due to the spin-Coulomb drag. Those results revise our understanding of the intrinsic AHE and SHE. We also find that the differences between the dc anomalous Hall and longitudinal conductivities arise from the difference in the dominant multiband excitations. This not only explains why the Fermi sea term such as the Berry-curvature term becomes important in clean and low-temperature case only for interband transports, but also provides the useful principles on treating the electron-electron interaction in an interacting multiorbital metal for general formalism of transport coefficients. Several correspondences between our results and experiments are finally discussed.

  5. Observation of strong electron pairing on bands without Fermi surfaces in LiFe1-xCoxAs

    NASA Astrophysics Data System (ADS)

    Miao, H.; Qian, T.; Shi, X.; Richard, P.; Kim, T. K.; Hoesch, M.; Xing, L. Y.; Wang, X.-C.; Jin, C.-Q.; Hu, J.-P.; Ding, H.

    2015-01-01

    In conventional BCS superconductors, the quantum condensation of superconducting electron pairs is understood as a Fermi surface instability, in which the low-energy electrons are paired by attractive interactions. Whether this explanation is still valid in high-Tc superconductors such as cuprates and iron-based superconductors remains an open question. In particular, a fundamentally different picture of the electron pairs, which are believed to be formed locally by repulsive interactions, may prevail. Here we report a high-resolution angle-resolved photoemission spectroscopy study on LiFe1-xCoxAs. We reveal a large and robust superconducting gap on a band sinking below the Fermi level on Co substitution. The observed Fermi-surface-free superconducting order is also the largest over the momentum space, which rules out a proximity effect origin and indicates that the order parameter is not tied to the Fermi surface as a result of a surface instability.

  6. Study of colloidal quantum dot surfaces using an innovative thin-film positron 2D-ACAR method

    NASA Astrophysics Data System (ADS)

    Barbiellini, B.; Bansil, A.; Eijt, S. W. H.; Schut, H.; Mijnarends, P. E.; Denison, A. B.

    2006-03-01

    Despite a wealth of information, many fundamental questions regarding the nature of the surface of nanosized inorganic particles and its relationship with the electronic structure remain unsolved. We have investigated the electron momentum density (EMD) of colloidal CdSe quantum-dots via depth-resolved positron 2D angular correlation of annihilation (2D-ACAR) spectroscopy at the Delft intense variable-energy positron beam. This method, in combination with first-principles calculations of the EMD, shows that implanted positrons are trapped at the surface of CdSe nanocrystals. They annihilate mostly with the Se electrons and monitor changes in composition and structure of the surface while hardly sensing the ligand molecules. We thus unambiguously confirm [1] the strong surface relaxation predicted by first-principles calculations [2]. Work supported by the USDOE.[1] S.W.H. Eijt et al., Nature Materials (in press).[2] A. Puzder, et al., Phys. Rev. Lett. 92, 217401 (2004).

  7. Gyrotropic Magnetic Effect and the Magnetic Moment on the Fermi Surface.

    PubMed

    Zhong, Shudan; Moore, Joel E; Souza, Ivo

    2016-02-19

    The current density j^{B} induced in a clean metal by a slowly-varying magnetic field B is formulated as the low-frequency limit of natural optical activity, or natural gyrotropy. Working with a multiband Pauli Hamiltonian, we obtain from the Kubo formula a simple expression for α_{ij}^{GME}=j_{i}^{B}/B_{j} in terms of the intrinsic magnetic moment (orbital plus spin) of the Bloch electrons on the Fermi surface. An alternate semiclassical derivation provides an intuitive picture of the effect, and takes into account the influence of scattering processes in dirty metals. This "gyrotropic magnetic effect" is fundamentally different from the chiral magnetic effect driven by the chiral anomaly and governed by the Berry curvature on the Fermi surface, and the two effects are compared for a minimal model of a Weyl semimetal. Like the Berry curvature, the intrinsic magnetic moment should be regarded as a basic ingredient in the Fermi-liquid description of transport in broken-symmetry metals. PMID:26943554

  8. Quantum Oscillations without a Fermi Surface and the Anomalous de Haas-van Alphen Effect

    NASA Astrophysics Data System (ADS)

    Knolle, Johannes; Cooper, Nigel R.

    2015-10-01

    The de Haas-van Alphen effect (dHvAE), describing oscillations of the magnetization as a function of magnetic field, is commonly assumed to be a definite sign for the presence of a Fermi surface (FS). Indeed, the effect forms the basis of a well-established experimental procedure for accurately measuring FS topology and geometry of metallic systems, with parameters commonly extracted by fitting to the Lifshitz-Kosevich (LK) theory based on Fermi liquid theory. Here we show that, in contrast to this canonical situation, there can be quantum oscillations even for band insulators of certain types. We provide simple analytic formulas describing the temperature dependence of the quantum oscillations in this setting, showing strong deviations from LK theory. We draw connections to recent experiments and discuss how our results can be used in future experiments to accurately determine, e.g., hybridization gaps in heavy-fermion systems.

  9. Strong interaction effects at a Fermi surface in a model for voltage-biased bilayer graphene

    NASA Astrophysics Data System (ADS)

    Armour, Wes; Hands, Simon; Strouthos, Costas

    2015-12-01

    Monte Carlo simulation of a 2+1 dimensional model of voltage-biased bilayer graphene, consisting of relativistic fermions with chemical potential μ coupled to charged excitations with opposite sign on each layer, has exposed noncanonical scaling of bulk observables near a quantum critical point found at strong coupling. We present a calculation of the quasiparticle dispersion relation E (k ) as a function of exciton source j in the same system, employing partially twisted boundary conditions to boost the number of available momentum modes. The Fermi momentum kF and superfluid gap Δ are extracted in the j →0 limit for three different values of μ , and support a strongly interacting scenario at the Fermi surface with Δ ˜O (μ ) . We propose an explanation for the observation μ

  10. Correlation-Driven Topological Fermi Surface Transition in FeSe.

    PubMed

    Leonov, I; Skornyakov, S L; Anisimov, V I; Vollhardt, D

    2015-09-01

    The electronic structure and phase stability of paramagnetic FeSe is computed by using a combination of ab initio methods for calculating band structure and dynamical mean-field theory. Our results reveal a topological change (Lifshitz transition) of the Fermi surface upon a moderate expansion of the lattice. The Lifshitz transition is accompanied with a sharp increase of the local moments and results in an entire reconstruction of magnetic correlations from the in-plane magnetic wave vector, (π,π) to (π,0). We attribute this behavior to a correlation-induced shift of the van Hove singularity originating from the d(xy) and d(xz)/d(yz) bands at the M point across the Fermi level. We propose that superconductivity is strongly influenced, or even induced, by a van Hove singularity. PMID:26382687

  11. Fermi-surface induced modulation in an optimally doped YBCO superconductor.

    SciTech Connect

    Liu, X.; Islam, Z.; Sinha, S. K.; Moss, S. C.; McQueeney, R. J.; Lang, J. C.; Welp, U.; Univ. of California at San Diego; Univ. of Houston; Iowa State Univ.

    2008-01-01

    We have observed a Fermi-surface (FS) induced lattice modulation in a YBa{sub 2}Cu{sub 3}O{sub 7-x} superconductor with a wave vector along CuO chains; i.e., q{sub 1} = (0,{delta},0). The value of {delta} {approx} 0.21 is twice the Fermi wave vector (2k{sub F}) along b* connecting nearly nested FS 'ridges'. The q{sub 1} modulation exists only within O-vacancy-ordered islands [characterized by q{sub 0} = (1/4,0,0)] and persists well above and below T{sub c}. Our results are consistent with the presence of a FS-induced charge-density wave.

  12. Split Fermi Surface Properties based on the Relativistic Effect in Superconductor PdBiSe with the Cubic Chiral Crystal Structure

    NASA Astrophysics Data System (ADS)

    Kakihana, Masashi; Nakamura, Ai; Teruya, Atsushi; Harima, Hisatomo; Haga, Yoshinori; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika

    2015-03-01

    We grew single crystals of PdBiSe with the ullmannite-type cubic chiral structure and carried out de Haas-van Alphen (dHvA) experiments to clarify the Fermi surface properties. The Fermi surfaces are found to split into two different Fermi surfaces, reflecting the non-centrosymmetric crystal structure. A splitting energy between two nearly spherical Fermi surfaces named α and α' is determined as 1050-1260 K. These Fermi surfaces are identified to be due the band-149 and -150 electron Fermi surfaces centered at the Γ point from the results of full-potential linearized augmented plane wave (FLAPW) energy band calculations under consideration of a mass correction in the spin-orbit interaction for Bi-6p electrons based on the relativistic effect. The theoretical splitting energy between these Fermi surfaces is 1080-1150 K, which is in good agreement with the experimental value.

  13. 2D ACAR momentum density study of the nature of the positron surface state on Al(100)

    SciTech Connect

    Berko, S.; Canter, K.F.; Lynn, K.G.; Mills, A.P.; Roellig, L.O.; West, R.N.

    1985-01-01

    The two-dimensional angular correlation of the 2..gamma.. annihilation radiation (2D ACAR) has been measured from an Al(100) surface bombarded by 200-eV positrons. After removing the contribution of fast para-positronium annihilation, the spectrum from positrons annihilating at the surface exhibits a nearly isotropic conical shape with a (7.1 +- 0.5) mrad FWHM. 5 refs., 6 figs.

  14. Ullmann Reaction of Aryl Chlorides on Various Surfaces and the Application in Stepwise Growth of 2D Covalent Organic Frameworks.

    PubMed

    Shi, Ke Ji; Yuan, Ding Wang; Wang, Cheng Xin; Shu, Chen Hui; Li, Deng Yuan; Shi, Zi Liang; Wu, Xin Yan; Liu, Pei Nian

    2016-03-18

    On-surface Ullmann coupling reaction of aryl chlorides has been achieved on Cu(111), Ag(111), and Au(111), and the mechanism has been investigated on the single molecule level using scanning tunneling microscopy and density functional theory. The different reactivity of the aryl halides was utilized to design a stepwise on-surface synthesis, which affords a zigzag template and then converts to 2D porous networks. PMID:26938859

  15. Surface corrections to the moment of inertia and shell structure in finite Fermi systems

    NASA Astrophysics Data System (ADS)

    Gorpinchenko, D. V.; Magner, A. G.; Bartel, J.; Blocki, J. P.

    2016-02-01

    The moment of inertia for nuclear collective rotations is derived within a semiclassical approach based on the Inglis cranking and Strutinsky shell-correction methods, improved by surface corrections within the nonperturbative periodic-orbit theory. For adiabatic (statistical-equilibrium) rotations it was approximated by the generalized rigid-body moment of inertia accounting for the shell corrections of the particle density. An improved phase-space trace formula allows to express the shell components of the moment of inertia more accurately in terms of the free-energy shell correction. Evaluating their ratio within the extended Thomas-Fermi effective-surface approximation, one finds good agreement with the quantum calculations.

  16. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    NASA Astrophysics Data System (ADS)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.

  17. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides

    PubMed Central

    Charnukha, A.; Evtushinsky, D. V.; Matt, C. E.; Xu, N.; Shi, M.; Büchner, B.; Zhigadlo, N. D.; Batlogg, B.; Borisenko, S. V.

    2015-01-01

    In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials. PMID:26678565

  18. Orbital dependent Rashba splitting and electron-phonon coupling of 2D Bi phase on Cu(100) surface

    SciTech Connect

    Gargiani, Pierluigi; Lisi, Simone; Betti, Maria Grazia; Ibrahimi, Amina Taleb; Bertran, François; Le Fèvre, Patrick; Chiodo, Letizia

    2013-11-14

    A monolayer of bismuth deposited on the Cu(100) surface forms a highly ordered c(2×2) reconstructed phase. The low energy single particle excitations of the c(2×2) Bi/Cu(100) present Bi-induced states with a parabolic dispersion in the energy region close to the Fermi level, as observed by angle-resolved photoemission spectroscopy. The electronic state dispersion, the charge density localization, and the spin-orbit coupling have been investigated combining photoemission spectroscopy and density functional theory, unraveling a two-dimensional Bi phase with charge density well localized at the interface. The Bi-induced states present a Rashba splitting, when the charge density is strongly localized in the Bi plane. Furthermore, the temperature dependence of the spectral density close to the Fermi level has been evaluated. Dispersive electronic states offer a large number of decay channels for transitions coupled to phonons and the strength of the electron-phonon coupling for the Bi/Cu(100) system is shown to be stronger than for Bi surfaces and to depend on the electronic state symmetry and localization.

  19. 2D dynamic studies combined with the surface curvature analysis to predict Arias Intensity amplification

    NASA Astrophysics Data System (ADS)

    Torgoev, Almaz; Havenith, Hans-Balder

    2016-01-01

    A 2D elasto-dynamic modelling of the pure topographic seismic response is performed for six models with a total length of around 23.0 km. These models are reconstructed from the real topographic settings of the landslide-prone slopes situated in the Mailuu-Suu River Valley, Southern Kyrgyzstan. The main studied parameter is the Arias Intensity (Ia, m/sec), which is applied in the GIS-based Newmark method to regionally map the seismically-induced landslide susceptibility. This method maps the Ia values via empirical attenuation laws and our studies investigate a potential to include topographic input into them. Numerical studies analyse several signals with varying shape and changing central frequency values. All tests demonstrate that the spectral amplification patterns directly affect the amplification of the Ia values. These results let to link the 2D distribution of the topographically amplified Ia values with the parameter called as smoothed curvature. The amplification values for the low-frequency signals are better correlated with the curvature smoothed over larger spatial extent, while those values for the high-frequency signals are more linked to the curvature with smaller smoothing extent. The best predictions are provided by the curvature smoothed over the extent calculated according to Geli's law. The sample equations predicting the Ia amplification based on the smoothed curvature are presented for the sinusoid-shape input signals. These laws cannot be directly implemented in the regional Newmark method, as 3D amplification of the Ia values addresses more problem complexities which are not studied here. Nevertheless, our 2D results prepare the theoretical framework which can potentially be applied to the 3D domain and, therefore, represent a robust basis for these future research targets.

  20. 2D dynamic studies combined with the surface curvature analysis to predict Arias Intensity amplification

    NASA Astrophysics Data System (ADS)

    Torgoev, Almaz; Havenith, Hans-Balder

    2016-07-01

    A 2D elasto-dynamic modelling of the pure topographic seismic response is performed for six models with a total length of around 23.0 km. These models are reconstructed from the real topographic settings of the landslide-prone slopes situated in the Mailuu-Suu River Valley, Southern Kyrgyzstan. The main studied parameter is the Arias Intensity (Ia, m/sec), which is applied in the GIS-based Newmark method to regionally map the seismically-induced landslide susceptibility. This method maps the Ia values via empirical attenuation laws and our studies investigate a potential to include topographic input into them. Numerical studies analyse several signals with varying shape and changing central frequency values. All tests demonstrate that the spectral amplification patterns directly affect the amplification of the Ia values. These results let to link the 2D distribution of the topographically amplified Ia values with the parameter called as smoothed curvature. The amplification values for the low-frequency signals are better correlated with the curvature smoothed over larger spatial extent, while those values for the high-frequency signals are more linked to the curvature with smaller smoothing extent. The best predictions are provided by the curvature smoothed over the extent calculated according to Geli's law. The sample equations predicting the Ia amplification based on the smoothed curvature are presented for the sinusoid-shape input signals. These laws cannot be directly implemented in the regional Newmark method, as 3D amplification of the Ia values addresses more problem complexities which are not studied here. Nevertheless, our 2D results prepare the theoretical framework which can potentially be applied to the 3D domain and, therefore, represent a robust basis for these future research targets.

  1. Effects of NKG2D haplotypes on the cell-surface expression of NKG2D protein on natural killer and CD8 T cells of peripheral blood among atomic-bomb survivors.

    PubMed

    Imai, Kazue; Hayashi, Tomonori; Yamaoka, Mika; Kajimura, Junko; Yoshida, Kengo; Kusunoki, Yoichiro; Nakachi, Kei

    2012-06-01

    NKG2D is a primary activating receptor that triggers cell-mediated cytotoxicity in NK cells against tumor and virus-infected cells. We previously identified the NKG2D haplotypes in the natural killer gene complex region on chromosome 12p. Two major haplotype alleles, LNK1 and HNK1, were closely related to low and high natural cytotoxic activity phenotypes, respectively. Furthermore, the haplotype of HNK1/HNK1 has revealed a decreased risk of cancer compared with LNK1/LNK1. In the present study, using flow cytometry, we evaluated the functional effects of NKG2D haplotypes and five htSNPs in terms of the cell-surface expression of NKG2D protein on NK and CD8 T cells of peripheral blood among 732 atomic-bomb survivors. NKG2D expression on NK cells showed significant increases, in the order of LNK1/LNK1, LNK1/HNK1 and HNK1/HNK1 haplotypes (p for trend=0.003), or with major homozygous, heterozygous, and minor homozygous genotypes for individual htSNPs (p for trend=0.02-0.003). The same trend was observed for NKG2D expression on CD8 T cells. Our findings indicate that the NKG2D haplotypes are associated with the expression levels of NKG2D protein on NK and CD8 T cells, resulting in inter-individual variations in human cytotoxic response. PMID:22507622

  2. Nonlinear optical conductivity of U (1 ) spin liquids with large spinon Fermi surfaces

    NASA Astrophysics Data System (ADS)

    Ma, Yuan-Fei; Ng, Tai-Kai

    2016-06-01

    In this paper we study the nonlinear current response of U (1 ) spin liquids with large spinon Fermi surfaces under the perturbation of a time-dependent ac electric field E (t ) within the framework of an effective U (1 ) gauge theory. In particular, the third-order nonlinear current response to ac electric fields is derived. We show that as in the case of linear current response, an in-gap power-law (˜ωη ) response is found for the nonlinear current at low frequency. The nonlinear susceptibility may also induce through process of third harmonic generation propagating EM wave with frequency 3 ω inside the spin liquids.

  3. 2D-ordered dielectric sub-micron bowls on a metal surface: a useful hybrid plasmonic-photonic structure

    NASA Astrophysics Data System (ADS)

    Lan, Yue; Wang, Shiqiang; Yin, Xianpeng; Liang, Yun; Dong, Hao; Gao, Ning; Li, Jian; Wang, Hui; Li, Guangtao

    2016-07-01

    Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub-micron bowls on a flat gold surface was proposed, prepared, and theoretically and experimentally characterized. This hybrid structure supports two types of modes: surface plasmon polaritons bound at the metallic surface and waveguided mode of light confined in the cavity of bowls. Optical responses of this hybrid structure as well as the spatial electric field distribution of each mode are found to be strongly dependent on the structural parameters of this system, and thus could be widely modified on demand. Importantly, compared to the widely studied hybrid systems, namely the flat metallic surface coated with a monolayer array of latex spheres, the waveguided mode with strong field enhancement appearing in the cavities of bowls is more facilely accessible and thus suitable for practical use. For demonstration, a 2D-ordered silica sub-micron bowl array deposited on a flat gold surface was fabricated and used as a regenerable platform for fluorescence enhancement by simply accommodating emitters in bowls. All the simulation and experiment results indicate that the 2D-ordered dielectric sub-micron bowls on a metal surface should be a useful hybrid plasmonic-photonic system with great potential for applications such as sensors or tunable emitting devices if appropriate periods and materials are employed.Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub

  4. Surface origin of quasi-2D Shubnikov-de Haas oscillations in Bi2Te2Se

    NASA Astrophysics Data System (ADS)

    Kapustin, A. A.; Stolyarov, V. S.; Bozhko, S. I.; Borisenko, D. N.; Kolesnikov, N. N.

    2015-08-01

    Transport measurements at liquid helium temperatures were done on a number of Bi2Te2Se samples with thicknesses ranging from 30 to 200 μm in order to detect surface states. In each sample we observed Shubnikov-de Haas (SdH) oscillations and sublinear dependence of off-diagonal component of magnetoresistance tensor on magnetic field. The periods of SdH oscillations in inverse magnetic field were found to be the same within 15%. The positions of SdH oscillations are determined by the normal to surface component of magnetic field. We found that the measured conductivity can be well described by a model with two groups of electrons, 2D and 3D. The conductivity of 2D electrons was found to be relatively weakly varying from sample to sample and not depending on thickness in a systematic manner. This behavior can be explained only by their localization on the surface. Comparison of the results of magnetotransport measurements with our scanning tunneling spectroscopy results on atomically smooth Bi2Te2Se surface in ultrahigh vacuum led us to conclude that the surface electrons are separated from the bulk electrons by a depletion layer approximately 100 nm thick. This effect could provide the dominant contribution of surface electrons to conductivity in samples with thicknesses less than 200 nm.

  5. Maximal Cherenkov γ-radiation on Fermi-surface of compact stars

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2014-05-15

    The quantum magnetohydrodynamic model is employed in this paper to study the extraordinary (XO) elliptically polarized electromagnetic wave dispersion in quantum plasmas with spin-1/2 magnetization and relativistic degeneracy effects, considering also the electron-exchange and quantum diffraction of electrons. From the lower and upper calculated XO-modes, it is observed that, for electrons on the surface of the Fermi-sphere, the lower XO-mode can excite the Cherenkov radiation by crossing the Fermi-line, with some proper conditions depending on the values of independent plasma parameters, such as the relativistic-degeneracy, the atomic-number of constituent ions, and the magnetic field strength. Particularly, a lower electron number-density and Cherenkov radiation frequency limits are found to exist, for instance, for given values of the plasma ions atomic-number and the magnetic field strength below which the radiation can not be excited by the electrons on the Fermi-surface. This lower density limit increases by decrease in the atomic-number but decreases with decrease in the strength of the ambient magnetic field. It is remarkable that in this research it is discovered that the maximal Cherenkov-radiation per unit-length (the energy radiated by superluminal electrons traveling through the dielectric medium) coincides with the plasma number-densities, which is present in compact stars with the maximal radiation frequency lying in the gamma-ray spectrum. Current study can provide an important plasma diagnostic tool for a wide plasma density range, be it the solid density, the warm dense matter, the inertial confined or the astrophysical compact plasmas and may reveal an important cooling mechanism for white dwarfs. Current findings may also answer the fundamental astrophysical question on the mysterious origin of intense cosmic gamma-ray emissions.

  6. 2D-ordered dielectric sub-micron bowls on a metal surface: a useful hybrid plasmonic-photonic structure.

    PubMed

    Lan, Yue; Wang, Shiqiang; Yin, Xianpeng; Liang, Yun; Dong, Hao; Gao, Ning; Li, Jian; Wang, Hui; Li, Guangtao

    2016-07-21

    Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub-micron bowls on a flat gold surface was proposed, prepared, and theoretically and experimentally characterized. This hybrid structure supports two types of modes: surface plasmon polaritons bound at the metallic surface and waveguided mode of light confined in the cavity of bowls. Optical responses of this hybrid structure as well as the spatial electric field distribution of each mode are found to be strongly dependent on the structural parameters of this system, and thus could be widely modified on demand. Importantly, compared to the widely studied hybrid systems, namely the flat metallic surface coated with a monolayer array of latex spheres, the waveguided mode with strong field enhancement appearing in the cavities of bowls is more facilely accessible and thus suitable for practical use. For demonstration, a 2D-ordered silica sub-micron bowl array deposited on a flat gold surface was fabricated and used as a regenerable platform for fluorescence enhancement by simply accommodating emitters in bowls. All the simulation and experiment results indicate that the 2D-ordered dielectric sub-micron bowls on a metal surface should be a useful hybrid plasmonic-photonic system with great potential for applications such as sensors or tunable emitting devices if appropriate periods and materials are employed. PMID:27349558

  7. Tunable 3D and 2D polystyrene nanoparticle assemblies using surface wettability, low volume fraction and surfactant effects

    NASA Astrophysics Data System (ADS)

    Pillai, S.; Hemmersam, A. G.; Mukhopadhyay, R.; Meyer, R. L.; Moghimi, S. M.; Besenbacher, F.; Kingshott, P.

    2009-01-01

    Polymer-based nanopatterning on metal surfaces is of increasing importance to a number of applications, including biosensors, bioelectronic devices and medical implants. Here we show that polycrystalline gold surfaces can be functionalized with monocomponent nanoparticle (NP) assemblies by a simple drop deposition method. Ordered 3D hexagonal close-packed structures consisting of 350 nm polystyrene (PS) NPs on hydrophobically modified gold surfaces from solutions of very low volume fraction (phiv = 0.0006) were obtained as a result of capillary force induced self-assembly, whilst 2D self-assembly of PS NPs was generated over large area on hydrophilic gold and TiO2 surfaces by spin coating. Furthermore, we show that when Triton X-100 is added to the PS NP suspending medium longer range ordering is obtained. Our observations may initiate interesting applications in the areas of nanoengineering of metal-based sensors and as a means to design new nanostructures for biocompatible implant surfaces.

  8. Single reconstructed Fermi surface pocket in an underdoped single-layer cuprate superconductor

    PubMed Central

    Chan, M. K.; Harrison, N.; McDonald, R. D.; Ramshaw, B. J.; Modic, K. A.; Barišić, N.; Greven, M.

    2016-01-01

    The observation of a reconstructed Fermi surface via quantum oscillations in hole-doped cuprates opened a path towards identifying broken symmetry states in the pseudogap regime. However, such an identification has remained inconclusive due to the multi-frequency quantum oscillation spectra and complications accounting for bilayer effects in most studies. We overcome these impediments with high-resolution measurements on the structurally simpler cuprate HgBa2CuO4+δ (Hg1201), which features one CuO2 plane per primitive unit cell. We find only a single oscillatory component with no signatures of magnetic breakdown tunnelling to additional orbits. Therefore, the Fermi surface comprises a single quasi-two-dimensional pocket. Quantitative modelling of these results indicates that a biaxial charge density wave within each CuO2 plane is responsible for the reconstruction and rules out criss-crossed charge stripes between layers as a viable alternative in Hg1201. Lastly, we determine that the characteristic gap between reconstructed pockets is a significant fraction of the pseudogap energy. PMID:27448102

  9. Single reconstructed Fermi surface pocket in an underdoped single-layer cuprate superconductor.

    PubMed

    Chan, M K; Harrison, N; McDonald, R D; Ramshaw, B J; Modic, K A; Barišić, N; Greven, M

    2016-01-01

    The observation of a reconstructed Fermi surface via quantum oscillations in hole-doped cuprates opened a path towards identifying broken symmetry states in the pseudogap regime. However, such an identification has remained inconclusive due to the multi-frequency quantum oscillation spectra and complications accounting for bilayer effects in most studies. We overcome these impediments with high-resolution measurements on the structurally simpler cuprate HgBa2CuO4+δ (Hg1201), which features one CuO2 plane per primitive unit cell. We find only a single oscillatory component with no signatures of magnetic breakdown tunnelling to additional orbits. Therefore, the Fermi surface comprises a single quasi-two-dimensional pocket. Quantitative modelling of these results indicates that a biaxial charge density wave within each CuO2 plane is responsible for the reconstruction and rules out criss-crossed charge stripes between layers as a viable alternative in Hg1201. Lastly, we determine that the characteristic gap between reconstructed pockets is a significant fraction of the pseudogap energy. PMID:27448102

  10. Single reconstructed Fermi surface pocket in an underdoped single-layer cuprate superconductor

    NASA Astrophysics Data System (ADS)

    Chan, M. K.; Harrison, N.; McDonald, R. D.; Ramshaw, B. J.; Modic, K. A.; Barišić, N.; Greven, M.

    2016-07-01

    The observation of a reconstructed Fermi surface via quantum oscillations in hole-doped cuprates opened a path towards identifying broken symmetry states in the pseudogap regime. However, such an identification has remained inconclusive due to the multi-frequency quantum oscillation spectra and complications accounting for bilayer effects in most studies. We overcome these impediments with high-resolution measurements on the structurally simpler cuprate HgBa2CuO4+δ (Hg1201), which features one CuO2 plane per primitive unit cell. We find only a single oscillatory component with no signatures of magnetic breakdown tunnelling to additional orbits. Therefore, the Fermi surface comprises a single quasi-two-dimensional pocket. Quantitative modelling of these results indicates that a biaxial charge density wave within each CuO2 plane is responsible for the reconstruction and rules out criss-crossed charge stripes between layers as a viable alternative in Hg1201. Lastly, we determine that the characteristic gap between reconstructed pockets is a significant fraction of the pseudogap energy.

  11. Origin of Fermi-level pinning and its control on the n -type Ge(100) surface

    NASA Astrophysics Data System (ADS)

    Kuzmin, Mikhail; Laukkanen, Pekka; Mäkelä, Jaakko; Tuominen, Marjukka; Yasir, Muhammad; Dahl, Johnny; Punkkinen, Marko P. J.; Kokko, Kalevi

    2016-07-01

    Strong Fermi-level pinning (FLP) near the valence-band maximum on n -type Ge surfaces has been a long-standing challenge in semiconductor physics, and the nature of this phenomenon has been heavily debated for years. Here, we report a systematic synchrotron-based photoemission study of atomically well-defined Ge(100) surfaces and interfaces to elucidate the origin of FLP in such systems. It is experimentally shown that the FLP on n -Ge is not due to the dangling-bond, back-bond, and defect states, but is strongly contributed by the evanescent state of the Ge bulk. The conditions required for alleviating the FLP and even the implementation of a flatband structure on Ge(100) are formulated. Such a structure is realized in the BaO/Ge(100) system where one can obtain control over the Fermi-level position in the Ge gap. These findings are not only important from a fundamental viewpoint, but also open a route to producing Ohmic metal-insulator-semiconductor contacts for n -type Ge-based technology.

  12. Magnetic and Fermi Surface Properties of Ferromagnets EuPd2 and EuPt2

    NASA Astrophysics Data System (ADS)

    Nakamura, Ai; Akamine, Hiromu; Ashitomi, Yousuke; Honda, Fuminori; Aoki, Dai; Takeuchi, Tetsuya; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Tatetsu, Yasutomi; Maehira, Takahiro; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika

    2016-08-01

    We succeeded in growing single crystals of the ferromagnets EuPd2 and EuPt2 with the Laves-type cubic structure by the Bridgman method, namely, heating constituting materials in a Mo crucible up to a high temperature of about 1500 °C. The ferromagnetic properties of EuPd2 and EuPt2 with Curie temperatures of 74 and 100 K, respectively, were confirmed from the results of electrical resistivity, specific heat, and magnetization measurements. The ordered moment is 7 μB/Eu, revealing the Eu-divalent ferromagnetism. The present Eu-divalent electronic state is found to be robust against high pressures of up to 8 GPa and is not changed into the Eu-trivalent state. We also carried out de Haas-van Alphen (dHvA) experiments for EuPd2. The detected dHvA branches in EuPd2 are well explained by the relativistic linearized augmented plane wave (RLAPW) energy band calculations for SrPd2, revealing a closed hole Fermi surface and compensated four closed electron Fermi surfaces.

  13. Fermi surface reconstruction and multiple quantum phase transitions in the antiferromagnet CeRhIn5

    PubMed Central

    Jiao, Lin; Chen, Ye; Kohama, Yoshimitsu; Graf, David; Bauer, E. D.; Singleton, John; Zhu, Jian-Xin; Weng, Zongfa; Pang, Guiming; Shang, Tian; Zhang, Jinglei; Lee, Han-Oh; Park, Tuson; Jaime, Marcelo; Thompson, J. D.; Steglich, Frank; Si, Qimiao; Yuan, H. Q.

    2015-01-01

    Conventional, thermally driven continuous phase transitions are described by universal critical behavior that is independent of the specific microscopic details of a material. However, many current studies focus on materials that exhibit quantum-driven continuous phase transitions (quantum critical points, or QCPs) at absolute zero temperature. The classification of such QCPs and the question of whether they show universal behavior remain open issues. Here we report measurements of heat capacity and de Haas–van Alphen (dHvA) oscillations at low temperatures across a field-induced antiferromagnetic QCP (Bc0 ≈ 50 T) in the heavy-fermion metal CeRhIn5. A sharp, magnetic-field-induced change in Fermi surface is detected both in the dHvA effect and Hall resistivity at B0* ≈ 30 T, well inside the antiferromagnetic phase. Comparisons with band-structure calculations and properties of isostructural CeCoIn5 suggest that the Fermi-surface change at B0* is associated with a localized-to-itinerant transition of the Ce-4f electrons in CeRhIn5. Taken in conjunction with pressure experiments, our results demonstrate that at least two distinct classes of QCP are observable in CeRhIn5, a significant step toward the derivation of a universal phase diagram for QCPs. PMID:25561536

  14. Silicon quantum wires on Ag(1 1 0): Fermi surface and quantum well states

    NASA Astrophysics Data System (ADS)

    Valbuena, M. A.; Avila, J.; Dávila, M. E.; Leandri, C.; Aufray, B.; Le Lay, G.; Asensio, M. C.

    2007-10-01

    One-dimensional Si quantum wires have been grown on silver single crystals upon deposition of ˜0.25 monolayer of Si on Ag(1 1 0) surfaces. Scanning tunneling microscopy (STM) clearly shows parallel 1D Si chains along the [-1 1 0] Ag crystallographic direction. Low Energy Electron Diffraction (LEED) confirms the massively parallel assembly of these selforganized Nanowires (NWs). We have characterized these nano-objects by measuring the dispersion of the NWs valence band at room temperature using Angle-Resolved PhotoEmission Spectroscopy (ARPES). Also, the Fermi Surface (FS) of the Ag(1 1 0) substrate has been mapped before and after the silicon deposition, trying to put in evidence the metallic or semiconductor character of the NWs silicon's states close to the Fermi level. Our results show the existence of well-defined quantum states associated to the silicon super-structure. Both LEED and ARUPS results confirm that the NWs have typical 1D features, however their metallic or semiconductor character could not be confirmed.

  15. Remarkable doping effects beyond altering Fermi surface on the superconductivity of iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Ye, Z. R.; Zhang, Y.; Chen, F.; Xu, M.; Jiang, J.; Niu, X. H.; Wen, C. H. P.; Xie, B. P.; Feng, D. L.; Xing, L. Y.; Wang, X. C.; Jin, C. Q.

    2014-03-01

    The superconductivity in Fe-based superconductors could be achieved by doping the parent compounds. Previous researches were focusing on the charge carrier density or Fermi surface alteration by doping only. However, the dominating factors based on Fermiology have many inconsistencies, which indicates that some other effects induced by doping are neglected. Using ARPES, we have established the microscopic and more comprehensive picture of doping on the electronic structure beyond altering Fermi surface. We have figured out other two critical effects of doping, scattering and changing correlation. With doping, the dxy-related band around the zone center is found to be much more sensitive than the dxz/dyz-related bands and the strength of the impurity scattering strongly depends on the position of dopants, which resembles the case in cuprates. On the other hand, we observed that the electron correlation decreases with doping, which is universal in various systems of Fe-based superconductors. Moderate electron correlation is critical for the high Tc. The two effects we observed here both are very important for the superconductivity, and explain a lot of previous mysteries and unresolved issues.

  16. Vortical and nonlinear effects in the roll motion of a 2-D body in the free surface investigated by SPH

    NASA Astrophysics Data System (ADS)

    Olmez, O.; Ozbulut, M.; Yildiz, M.; Goren, O.

    2016-06-01

    The present study investigates the vortical and nonlinear effects in the roll motion of a 2-D body with square cross-sections by using Smoothed Particle Hydrodynamics (SPH). A 2-D rigid body with square cross-section is taken into account for the benchmark study and subjected to the oscillatory roll motion with a given angular frequency. The governing equations are continuity equation and Euler's equation with artificial viscosity term. Weakly Compressible SPH (WCSPH) scheme is employed for the discretization of the governing equations. Velocities of the fluid particles are updated by means of XSPH+Artificial Particle Displacement (VXSPH+APD) algorithm. In this method only the free surface fluid particles are subjected to VXSPH algorithm while the APD algorithm is employed for the fully populated flow regions. The hybrid usage of numerical treatment keeps free surface particles together by creating an artificial surface tension on the free surface. VXSPH+APD is a proven numerical treatment to provide the most accurate results for this type of free surface flows (Ozbulut et al. 2014). The results of the present study are compared with those of the experimental studies as well as with those of the numerical methods obtained from the current literature.

  17. Investigation of ellipsometric parameters of 2D microrough surfaces by FDTD.

    PubMed

    Qiu, J; Ran, D F; Liu, Y B; Liu, L H

    2016-07-10

    Ellipsometry is a powerful method for measuring the optical constants of materials and is very sensitive to surface roughness. In previous ellipsometric measurement of optical constants of solid materials with rough surfaces, researchers frequently used effective medium approximation (EMA) with roughness already known to fit the complex refractive index of the material. However, the ignored correlation length, the other important parameter of rough surfaces, will definitely result in fitting errors. Hence it is necessary to consider the influence of surface roughness and correlation length on the ellipsometric parameters Δ (phase difference) and Ψ (azimuth) characterizing practical systems. In this paper, the influence of roughness of two-dimensional randomly microrough surfaces (relative roughness σ/λ ranges from 0.001 to 0.025) of silicon on ellipsometric parameters was simulated by the finite-difference time-domain method which was validated with experimental results. The effects of incident angle, relative roughness, and correlation length were numerically investigated for two-dimensional Gaussian distributed randomly microrough surfaces, respectively. The simulated results showed that compared with the smooth surface, only tiny changes of the ellipsometric parameter Δ could be observed for microrough silicon surface in the vicinity of the Brewster angle, but obviously changes of Ψ occur especially in the vicinity of the Brewster angle. More differences between the ellipsometric parameters of the rough surface and smooth surface can been seen especially in the vicinity of the Brewster angle as the relative roughness σ/λ increases or correlation length τ decreases. The results reveal that when we measure the optical constants of solid materials by ellipsometry, the smaller roughness, larger correlation length and larger incident wavelength will lead to the higher precision of measurements. PMID:27409321

  18. Electronic structure and Fermi surfaces of transition metal carbides with rocksalt structure

    NASA Astrophysics Data System (ADS)

    Paduani, C.

    2008-06-01

    First-principles calculations were carried out to investigate the structural and electronic properties of the metal carbides FeC, CoC, NiC, and PtC in the rocksalt structure. The full-potential linearized augmented-plane wave (FP-LAPW) method was used in the framework of the density-functional theory with the generalized gradient approximation (GGA) for the exchange-correlation potential. Ground state properties are determined and compared with available experimental data. The energy band structures, densities of states, and Fermi surface structures are obtained, which show that these compounds are metallic like the conventional transition metal carbides. There is an extensive hybridization between the metal-d and C-2p states for all the studied carbides, which can form bonding and antibonding states. From FeC to PtC a band narrowing for the hybridized metal-d and C-2p states near to the Fermi level takes place, which is expected to lead to smaller interactions between adjacent atoms. The largest bulk modulus of FeC is expected to be associated with the behavior of valence electrons near the Fermi level, i.e. a higher degree of hybridization between p-d states that are responsible for the chemical bonding results in strengthened interactions. The decrease in the number of bonding orbitals or decrease in metallic valence with the increase in number of 3d electrons from FeC to PtC provides a mechanism for weaker interactions due to the filling of antibonding bands.

  19. A Coupled Finite-Volume Model for 2-D Surface and 3-D Subsurface Flows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface-subsurface interactions are an intrinsic component of the hydrologic response within a watershed; therefore, hydrologic modeling tools should consider these interactions to provide reliable predictions, especially during rainfall-runoff processes. This paper presents a fully implicit coupled...

  20. Evolution of the Fermi surface of a doped topological insulator with carrier concentration

    NASA Astrophysics Data System (ADS)

    Lahoud, E.; Maniv, E.; Petrushevsky, M. Shaviv; Naamneh, M.; Ribak, A.; Wiedmann, S.; Petaccia, L.; Salman, Z.; Chashka, K. B.; Dagan, Y.; Kanigel, A.

    2013-11-01

    In an ideal bulk topological insulator (TI) conducting surface states protected by time-reversal symmetry enfold an insulating crystal. However, the archetypical TI, Bi2Se3, is actually never insulating; it is in fact a relatively good metal. Nevertheless, it is the most studied system among all the TIs, mainly due to its simple band structure and large spin-orbit gap. Recently, it was shown that copper intercalated Bi2Se3 becomes superconducting and it was suggested as a realization of a topological superconductor. Here we use a combination of techniques that are sensitive to the shape of the Fermi surface (FS): the Shubnikov-de Haas effect and angle-resolved photoemission spectroscopy to study the evolution of the FS shape with carrier concentration, n. We find that as n increases, the FS becomes two-dimensional-like. These results are of crucial importance for understanding the superconducting properties of CuxBi2Se3.

  1. Measurement of residual radioactive surface contamination by 2-D laser heated TLD

    SciTech Connect

    Jones, S.C.

    1997-06-01

    The feasibility of applying and adapting a two-dimensional laser heated thermoluminescence dosimetry system to the problem of surveying for radioactive surface contamination was studied. The system consists of a CO{sub 2} laser-based reader and monolithic arrays of thin dosimeter elements. The arrays consist of 10,201 thermoluminescent phosphor elements of 40 micron thickness, covering a 900 cm{sup 2} area. Array substrates are 125 micron thick polyimide sheets, enabling them to easily conform to regular surface shapes, especially for survey of surfaces that are inaccessible for standard survey instruments. The passive, integrating radiation detectors are sensitive to alpha and beta radiation at contamination levels below release guideline limits. Required contact times with potentially contaminated surfaces are under one hour to achieve detection of transuranic alpha emission at 100 dpm/100 cm{sup 2}. Positional information obtained from array evaluation is useful for locating contamination zones. Unique capabilities of this system for survey of sites, facilities and material include measurement inside pipes and other geometrical configurations that prevent standard surveys, and below-surface measurement of alpha and beta emitters in contaminated soils. These applications imply a reduction of material that must be classified as radioactive waste by virtue of its possibility of contamination, and cost savings in soil sampling at contaminated sites.

  2. Recent high-magnetic-field experiments on the 'high Tc' cuprates: Fermi-surface instabilities as a driver for superconductivity

    SciTech Connect

    Singleton, John; Mc Donald, Ross D; Cox, Susan

    2008-01-01

    The authors give a brief review of high-magnetic-field quantum-oscillation measurements on cuprate superconductors. In the case of the underdoped cuprates, a number of small Fermi-surface pockets are observed, probably due to the incommensurate nesting of the predicted (large) hole Fermi surface. The Fermi-surface instabilities that drive this nesting are also likely to result in the incommensurate spin fluctuations observed in inelastic neutron-scattering measurements. They suggest that the unusually high superconducting transitions in the cuprates are driven by an exact mapping of these incommensurate spin fluctuations onto the d{sub x{sup 2}-y{sup 2}} Cooper-pair wavefunction. The maximum energy of the fluctuations {approx} 100s of Kelvin gives an appropriate energy scale for the superconducting transition temperature.

  3. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class.

    PubMed

    Huang, Shin-Ming; Xu, Su-Yang; Belopolski, Ilya; Lee, Chi-Cheng; Chang, Guoqing; Wang, BaoKai; Alidoust, Nasser; Bian, Guang; Neupane, Madhab; Zhang, Chenglong; Jia, Shuang; Bansil, Arun; Lin, Hsin; Hasan, M Zahid

    2015-01-01

    Weyl fermions are massless chiral fermions that play an important role in quantum field theory but have never been observed as fundamental particles. A Weyl semimetal is an unusual crystal that hosts Weyl fermions as quasiparticle excitations and features Fermi arcs on its surface. Such a semimetal not only provides a condensed matter realization of the anomalies in quantum field theories but also demonstrates the topological classification beyond the gapped topological insulators. Here, we identify a topological Weyl semimetal state in the transition metal monopnictide materials class. Our first-principles calculations on TaAs reveal its bulk Weyl fermion cones and surface Fermi arcs. Our results show that in the TaAs-type materials the Weyl semimetal state does not depend on fine-tuning of chemical composition or magnetic order, which opens the door for the experimental realization of Weyl semimetals and Fermi arc surface states in real materials. PMID:26067579

  4. Itinerant 5 f Electrons and the Fermi Surface Properties in an Enhanced Pauli Paramagnet NpGe3

    NASA Astrophysics Data System (ADS)

    Aoki, Dai; Yamagami, Hiroshi; Homma, Yoshiya; Shiokawa, Yoshinobu; Yamamoto, Etsuji; Nakamura, Akio; Haga, Yoshinori; Settai, Rikio; Ōnuki, Yoshichika

    2005-08-01

    We succeeded in growing a high-quality single crystal of an enhanced Pauli paramagnet, NpGe3, by the Bi-flux method, and observed the de Haas-van Alphen (dHvA) effect. The topology of a Fermi surface is well explained by the relativistic linear augmented-plane-wave (LAPW) band calculations based on the 5 f itinerant band model. The Fermi surface consists of a nearly spherical electron-Fermi surface with necks along the < 100 > direction, forming a hollow ball, centered at the R point, which is derived from the single band. The cyclotron effective mass is in the range from 2.6 to 16 m0, which is enhanced approximately 3.5 times from the corresponding band mass.

  5. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class

    PubMed Central

    Huang, Shin-Ming; Xu, Su-Yang; Belopolski, Ilya; Lee, Chi-Cheng; Chang, Guoqing; Wang, BaoKai; Alidoust, Nasser; Bian, Guang; Neupane, Madhab; Zhang, Chenglong; Jia, Shuang; Bansil, Arun; Lin, Hsin; Hasan, M. Zahid

    2015-01-01

    Weyl fermions are massless chiral fermions that play an important role in quantum field theory but have never been observed as fundamental particles. A Weyl semimetal is an unusual crystal that hosts Weyl fermions as quasiparticle excitations and features Fermi arcs on its surface. Such a semimetal not only provides a condensed matter realization of the anomalies in quantum field theories but also demonstrates the topological classification beyond the gapped topological insulators. Here, we identify a topological Weyl semimetal state in the transition metal monopnictide materials class. Our first-principles calculations on TaAs reveal its bulk Weyl fermion cones and surface Fermi arcs. Our results show that in the TaAs-type materials the Weyl semimetal state does not depend on fine-tuning of chemical composition or magnetic order, which opens the door for the experimental realization of Weyl semimetals and Fermi arc surface states in real materials. PMID:26067579

  6. Magnetic frustration, short-range correlations and the role of the paramagnetic Fermi surface of PdCrO2

    PubMed Central

    Billington, David; Ernsting, David; Millichamp, Thomas E.; Lester, Christopher; Dugdale, Stephen B.; Kersh, David; Duffy, Jonathan A.; Giblin, Sean R.; Taylor, Jonathan W.; Manuel, Pascal; Khalyavin, Dmitry D.; Takatsu, Hiroshi

    2015-01-01

    Frustrated interactions exist throughout nature, with examples ranging from protein folding through to frustrated magnetic interactions. Whilst magnetic frustration is observed in numerous electrically insulating systems, in metals it is a rare phenomenon. The interplay of itinerant conduction electrons mediating interactions between localised magnetic moments with strong spin-orbit coupling is likely fundamental to these systems. Therefore, knowledge of the precise shape and topology of the Fermi surface is important in any explanation of the magnetic behaviour. PdCrO2, a frustrated metallic magnet, offers the opportunity to examine the relationship between magnetic frustration, short-range magnetic order and Fermi surface topology. By mapping the short-range order in reciprocal space and experimentally determining the electronic structure, we have identified the dual role played by the Cr electrons in which the itinerant ones on the nested paramagnetic Fermi surface mediate the frustrated magnetic interactions between local moments. PMID:26206589

  7. Magnetic frustration, short-range correlations and the role of the paramagnetic Fermi surface of PdCrO2.

    PubMed

    Billington, David; Ernsting, David; Millichamp, Thomas E; Lester, Christopher; Dugdale, Stephen B; Kersh, David; Duffy, Jonathan A; Giblin, Sean R; Taylor, Jonathan W; Manuel, Pascal; Khalyavin, Dmitry D; Takatsu, Hiroshi

    2015-01-01

    Frustrated interactions exist throughout nature, with examples ranging from protein folding through to frustrated magnetic interactions. Whilst magnetic frustration is observed in numerous electrically insulating systems, in metals it is a rare phenomenon. The interplay of itinerant conduction electrons mediating interactions between localised magnetic moments with strong spin-orbit coupling is likely fundamental to these systems. Therefore, knowledge of the precise shape and topology of the Fermi surface is important in any explanation of the magnetic behaviour. PdCrO2, a frustrated metallic magnet, offers the opportunity to examine the relationship between magnetic frustration, short-range magnetic order and Fermi surface topology. By mapping the short-range order in reciprocal space and experimentally determining the electronic structure, we have identified the dual role played by the Cr electrons in which the itinerant ones on the nested paramagnetic Fermi surface mediate the frustrated magnetic interactions between local moments. PMID:26206589

  8. Self-Consistent Interpretation of the 2D Structure of the Liquid Au82Si18 Surface: Bending Rigidity and the Debye-Waller Effect

    NASA Astrophysics Data System (ADS)

    Mechler, S.; Pershan, P. S.; Yahel, E.; Stoltz, S. E.; Shpyrko, O. G.; Lin, B.; Meron, M.; Sellner, S.

    2010-10-01

    The structural and mechanical properties of 2D crystalline surface phases that form at the surface of liquid eutectic Au82Si18 are studied using synchrotron x-ray scattering over a large temperature range. In the vicinity of the eutectic temperature the surface consists of a 2D atomic bilayer crystalline phase that transforms into a 2D monolayer crystalline phase during heating. The latter phase eventually melts into a liquidlike surface on further heating. We demonstrate that the short wavelength capillary wave fluctuations are suppressed due to the bending rigidity of 2D crystalline phases. The corresponding reduction in the Debye-Waller factor allows for measured reflectivity to be explained in terms of an electron density profile that is consistent with the 2D surface crystals.

  9. Collapse of Ferromagnetism and Fermi Surface Instability near Reentrant Superconductivity of URhGe.

    PubMed

    Gourgout, A; Pourret, A; Knebel, G; Aoki, D; Seyfarth, G; Flouquet, J

    2016-07-22

    We present thermoelectric power and resistivity measurements in the ferromagnetic superconductor URhGe for a magnetic field applied along the hard magnetization b axis of the orthorhombic crystal. Reentrant superconductivity is observed near the spin reorientation transition at H_{R}=12.75  T, where a first order transition from the ferromagnetic to the polarized paramagnetic state occurs. Special focus is given to the longitudinal configuration, where both the electric and heat current are parallel to the applied field. The validity of the Fermi-liquid T^{2} dependence of the resistivity through H_{R} demonstrates clearly that no quantum critical point occurs at H_{R}. Thus, the ferromagnetic transition line at H_{R} becomes first order implying the existence of a tricritical point at finite temperature. The enhancement of magnetic fluctuations in the vicinity of the tricritical point stimulates the reentrance of superconductivity. The abrupt sign change observed in the thermoelectric power with the thermal gradient applied along the b axis together with the strong anomalies in the other directions is definitive macroscopic evidence that in addition a significant change of the Fermi surface appears through H_{R}. PMID:27494485

  10. Collapse of Ferromagnetism and Fermi Surface Instability near Reentrant Superconductivity of URhGe

    NASA Astrophysics Data System (ADS)

    Gourgout, A.; Pourret, A.; Knebel, G.; Aoki, D.; Seyfarth, G.; Flouquet, J.

    2016-07-01

    We present thermoelectric power and resistivity measurements in the ferromagnetic superconductor URhGe for a magnetic field applied along the hard magnetization b axis of the orthorhombic crystal. Reentrant superconductivity is observed near the spin reorientation transition at HR=12.75 T , where a first order transition from the ferromagnetic to the polarized paramagnetic state occurs. Special focus is given to the longitudinal configuration, where both the electric and heat current are parallel to the applied field. The validity of the Fermi-liquid T2 dependence of the resistivity through HR demonstrates clearly that no quantum critical point occurs at HR. Thus, the ferromagnetic transition line at HR becomes first order implying the existence of a tricritical point at finite temperature. The enhancement of magnetic fluctuations in the vicinity of the tricritical point stimulates the reentrance of superconductivity. The abrupt sign change observed in the thermoelectric power with the thermal gradient applied along the b axis together with the strong anomalies in the other directions is definitive macroscopic evidence that in addition a significant change of the Fermi surface appears through HR.

  11. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family

    NASA Astrophysics Data System (ADS)

    Liu, Z. K.; Yang, L. X.; Sun, Y.; Zhang, T.; Peng, H.; Yang, H. F.; Chen, C.; Zhang, Y.; Guo, Y. F.; Prabhakaran, D.; Schmidt, M.; Hussain, Z.; Mo, S.-K.; Felser, C.; Yan, B.; Chen, Y. L.

    2016-01-01

    Topological Weyl semimetals (TWSs) represent a novel state of topological quantum matter which not only possesses Weyl fermions (massless chiral particles that can be viewed as magnetic monopoles in momentum space) in the bulk and unique Fermi arcs generated by topological surface states, but also exhibits appealing physical properties such as extremely large magnetoresistance and ultra-high carrier mobility. Here, by performing angle-resolved photoemission spectroscopy (ARPES) on NbP and TaP, we directly observed their band structures with characteristic Fermi arcs of TWSs. Furthermore, by systematically investigating NbP, TaP and TaAs from the same transition metal monopnictide family, we discovered their Fermiology evolution with spin-orbit coupling (SOC) strength. Our experimental findings not only reveal the mechanism to realize and fine-tune the electronic structures of TWSs, but also provide a rich material base for exploring many exotic physical phenomena (for example, chiral magnetic effects, negative magnetoresistance, and the quantum anomalous Hall effect) and novel future applications.

  12. Tunable Surface Energy Interlayer Coating to Control the Phase Behavior of Block Copolymers in 2D Confinement

    NASA Astrophysics Data System (ADS)

    Hwang, Sungyoul; Kim, Youngkeol; Kwon, Dokyeong; Char, Kookheon

    There have been many studies to investigate the phase behavior of block copolymers (BCPs) in cylindrical confinement. In the nanometer scale 2D confinement, the phase behavior of BCPs is mainly dependent upon commensurability and interfacial interaction. However, most studies have focused only on the effects of commensurability on the microdomains of BCP. In this study, we employed organosilicate (OS) which has tunable surface energy upon adjusting curing temperature as interlayer to examine the phase behavior of BCPs as a function of interfacial energy. The OS interlayer was coated in the inner surface of anodized aluminum oxide (AAO) pores by template-wetting method and cured in a range of temperature to control the surface energy of the interlayer. Lamellae-forming poly(styrene-b-methyl methacrylate) (PS-b-PMMA) (SMA) in the melt was injected into the OS-coated AAO pores by capillary forces. With the detailed analysis, we note that the self-assembly of SMA within 2D confinement is competitively affected by both entropic and enthalpic effects as the contact interfacial energy is varied. Simply by controlling the curing temperature of the OS interlayer, various morphologies arising from both preferential and neutral wetting were identified.

  13. Understanding 2D atomic resolution imaging of the calcite surface in water by frequency modulation atomic force microscopy.

    PubMed

    Tracey, John; Miyazawa, Keisuke; Spijker, Peter; Miyata, Kazuki; Reischl, Bernhard; Canova, Filippo Federici; Rohl, Andrew L; Fukuma, Takeshi; Foster, Adam S

    2016-10-14

    Frequency modulation atomic force microscopy (FM-AFM) experiments were performed on the calcite (10[Formula: see text]4) surface in pure water, and a detailed analysis was made of the 2D images at a variety of frequency setpoints. We observed eight different contrast patterns that reproducibly appeared in different experiments and with different measurement parameters. We then performed systematic free energy calculations of the same system using atomistic molecular dynamics to obtain an effective force field for the tip-surface interaction. By using this force field in a virtual AFM simulation we found that each experimental contrast could be reproduced in our simulations by changing the setpoint, regardless of the experimental parameters. This approach offers a generic method for understanding the wide variety of contrast patterns seen on the calcite surface in water, and is generally applicable to AFM imaging in liquids. PMID:27609045

  14. Modeling and analysis of surface potential of single gate fully depleted SOI MOSFET using 2D-Poisson's equation

    NASA Astrophysics Data System (ADS)

    Mani, Prashant; Tyagi, Chandra Shekhar; Srivastav, Nishant

    2016-03-01

    In this paper the analytical solution of the 2D Poisson's equation for single gate Fully Depleted SOI (FDSOI) MOSFET's is derived by using a Green's function solution technique. The surface potential is calculated and the threshold voltage of the device is minimized for the low power consumption. Due to minimization of threshold voltage the short channel effect of device is suppressed and after observation we obtain the device is kink free. The structure and characteristics of SingleGate FDSOI MOSFET were matched by using MathCAD and silvaco respectively.

  15. Rayleigh surface wave interaction with the 2D exciton Bose-Einstein condensate

    SciTech Connect

    Boev, M. V.; Kovalev, V. M.

    2015-06-15

    We describe the interaction of a Rayleigh surface acoustic wave (SAW) traveling on the semiconductor substrate with the excitonic gas in a double quantum well located on the substrate surface. We study the SAW attenuation and its velocity renormalization due to the coupling to excitons. Both the deformation potential and piezoelectric mechanisms of the SAW-exciton interaction are considered. We focus on the frequency and excitonic density dependences of the SAW absorption coefficient and velocity renormalization at temperatures both above and well below the critical temperature of Bose-Einstein condensation of the excitonic gas. We demonstrate that the SAW attenuation and velocity renormalization are strongly different below and above the critical temperature.

  16. Surface-confined 2D polymerization of a brominated copper-tetraphenylporphyrin on Au(111).

    PubMed

    Smykalla, Lars; Shukrynau, Pavel; Korb, Marcus; Lang, Heinrich; Hietschold, Michael

    2015-03-01

    A coupling-limited approach for the Ullmann reaction-like on-surface synthesis of a two-dimensional covalent organic network starting from a halogenated metallo-porphyrin is demonstrated. Copper-octabromo-tetraphenylporphyrin molecules can diffuse and self-assemble when adsorbed on the inert Au(111) surface. Splitting-off of bromine atoms bonded at the macrocyclic core of the porphyrin starts at room temperature after the deposition and is monitored by X-ray photoelectron spectroscopy for different annealing steps. Direct coupling between the reactive carbon sites of the molecules is, however, hindered by the molecular shape. This leads initially to an ordered non-covalently interconnected supramolecular structure. Further heating to 300 °C and an additional hydrogen dissociation step is required to link the molecular macrocycles via a phenyl group and form large ordered polymeric networks. This approach leads to a close-packed covalently bonded network of overall good quality. The structures are characterized using scanning tunneling microscopy. Different kinds of lattice defects and, furthermore, the impact of polymerization on the HOMO-LUMO gap are discussed. Density functional theory calculations corroborate the interpretations and give further insight into the adsorption of the debrominated molecule on the surface and the geometry and coupling reaction of the polymeric structure. PMID:25672486

  17. Surface-confined 2D polymerization of a brominated copper-tetraphenylporphyrin on Au(111)

    NASA Astrophysics Data System (ADS)

    Smykalla, Lars; Shukrynau, Pavel; Korb, Marcus; Lang, Heinrich; Hietschold, Michael

    2015-02-01

    A coupling-limited approach for the Ullmann reaction-like on-surface synthesis of a two-dimensional covalent organic network starting from a halogenated metallo-porphyrin is demonstrated. Copper-octabromo-tetraphenylporphyrin molecules can diffuse and self-assemble when adsorbed on the inert Au(111) surface. Splitting-off of bromine atoms bonded at the macrocyclic core of the porphyrin starts at room temperature after the deposition and is monitored by X-ray photoelectron spectroscopy for different annealing steps. Direct coupling between the reactive carbon sites of the molecules is, however, hindered by the molecular shape. This leads initially to an ordered non-covalently interconnected supramolecular structure. Further heating to 300 °C and an additional hydrogen dissociation step is required to link the molecular macrocycles via a phenyl group and form large ordered polymeric networks. This approach leads to a close-packed covalently bonded network of overall good quality. The structures are characterized using scanning tunneling microscopy. Different kinds of lattice defects and, furthermore, the impact of polymerization on the HOMO-LUMO gap are discussed. Density functional theory calculations corroborate the interpretations and give further insight into the adsorption of the debrominated molecule on the surface and the geometry and coupling reaction of the polymeric structure.

  18. Angle-resolved photoemission spectroscopy of the insulating NaxWO3: Anderson localization, polaron formation, and remnant Fermi surface.

    PubMed

    Raj, S; Hashimoto, D; Matsui, H; Souma, S; Sato, T; Takahashi, T; Sarma, D D; Mahadevan, Priya; Oishi, S

    2006-04-14

    The electronic structure of the insulating sodium tungsten bronze, Na(0.025)WO(3), is investigated by high-resolution angle-resolved photoemission spectroscopy. We find that near-E(F) states are localized due to the strong disorder arising from random distribution of Na+ ions in the WO(3) lattice, which makes the system insulating. The temperature dependence of photoemission spectra provides direct evidence for polaron formation. The remnant Fermi surface of the insulator is found to be the replica of the real Fermi surface in the metallic system. PMID:16712121

  19. Effect of Fermi surface nesting on resonant spin excitations in Ba{<_1-x}K{<_x}Fe{<_2}As{<_2}.

    SciTech Connect

    Castellan, J.-P.; Rosenkranz, S.; Goremychkin, E.A.; Chung, D.Y.; Todorov, I.S.; Kanatzidis, M.G.; Eremin, I.; Knolle, J.; Chubukov, A.V.; Maiti, s.; Norman, M.R.; Weber, F.; Claus, H.; Guidi, T.; Bewley, R.I.; Osborn, R.

    2011-01-01

    We report inelastic neutron scattering measurements of the resonant spin excitations in Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} over a broad range of electron band filling. The fall in the superconducting transition temperature with hole doping coincides with the magnetic excitations splitting into two incommensurate peaks because of the growing mismatch in the hole and electron Fermi surface volumes, as confirmed by a tight-binding model with s{sub {+-}}-symmetry pairing. The reduction in Fermi surface nesting is accompanied by a collapse of the resonance binding energy and its spectral weight, caused by the weakening of electron-electron correlations.

  20. CNNEDGEPOT: CNN based edge detection of 2D near surface potential field data

    NASA Astrophysics Data System (ADS)

    Aydogan, D.

    2012-09-01

    All anomalies are important in the interpretation of gravity and magnetic data because they indicate some important structural features. One of the advantages of using gravity or magnetic data for searching contacts is to be detected buried structures whose signs could not be seen on the surface. In this paper, a general view of the cellular neural network (CNN) method with a large scale nonlinear circuit is presented focusing on its image processing applications. The proposed CNN model is used consecutively in order to extract body and body edges. The algorithm is a stochastic image processing method based on close neighborhood relationship of the cells and optimization of A, B and I matrices entitled as cloning template operators. Setting up a CNN (continues time cellular neural network (CTCNN) or discrete time cellular neural network (DTCNN)) for a particular task needs a proper selection of cloning templates which determine the dynamics of the method. The proposed algorithm is used for image enhancement and edge detection. The proposed method is applied on synthetic and field data generated for edge detection of near-surface geological bodies that mask each other in various depths and dimensions. The program named as CNNEDGEPOT is a set of functions written in MATLAB software. The GUI helps the user to easily change all the required CNN model parameters. A visual evaluation of the outputs due to DTCNN and CTCNN are carried out and the results are compared with each other. These examples demonstrate that in detecting the geological features the CNN model can be used for visual interpretation of near surface gravity or magnetic anomaly maps.

  1. Application of 2D surface ERT to on-site wastewater treatment survey

    NASA Astrophysics Data System (ADS)

    Forquet, N.; French, H. K.

    2012-05-01

    Interest in the functioning of on-site wastewater treatment in rural areas has grown both among authorities and private companies in France and elsewhere in Europe. This is partly due to the enforcement of a new law that obliges communities to control on-site wastewater treatment systems. For extensive systems—mostly Vertical Flow Sand Filters (VFSF)—the introduction of this law revealed the absence of reliable methods to assess if a system was built according to recommendations and is operating well. The aim of this paper is to examine whether surface Electrical Resistivity Tomography (ERT) is a reliable method for mapping outline of filter dimensions and reveal clogging effects. Using forward modeling of synthetic models, we created sensitivity maps of ideal resistivity maps revealing that the method is well-suited to outline the horizontal extent of the filter but not necessarily its constitutive layers because the coarse gravel layer near the surface reduces the sensitivity to features below this layer. Hence whatever the geophysical signal is produced by clogging, this will be difficult to detect. The most appropriate inversion procedure, i.e. the L1-norm inversion, reveals the filter extent with an error less than the electrode spacing independent of noise levels. Finally, the procedure is illustrated for a real case ERT survey on a full scale VFSF. This study reveals that simple surface ERT measurements provide a good estimate of the filter area, but additional methods are required for more detailed vertical analysis including potential detection of clogging effects.

  2. Volterra Series Approach for Nonlinear Aeroelastic Response of 2-D Lifting Surfaces

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Marzocca, Piergiovanni; Librescu, Liviu

    2001-01-01

    The problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via Volterra series approach is addressed. The related aeroelastic governing equations are based upon the inclusion of structural nonlinearities, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of geometric nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.

  3. Direct observation of nonequivalent Fermi-arc states of opposite surfaces in the noncentrosymmetric Weyl semimetal NbP

    NASA Astrophysics Data System (ADS)

    Souma, S.; Wang, Zhiwei; Kotaka, H.; Sato, T.; Nakayama, K.; Tanaka, Y.; Kimizuka, H.; Takahashi, T.; Yamauchi, K.; Oguchi, T.; Segawa, Kouji; Ando, Yoichi

    2016-04-01

    We have performed high-resolution angle-resolved photoemission spectroscopy (ARPES) on noncentrosymmetric Weyl semimetal candidate NbP, and determined the electronic states of both Nb- and P-terminated surfaces. We revealed a drastic difference in the Fermi-surface topology between two types of surfaces, whereas the Fermi arcs on both surfaces are likely terminated at the surface projection of the same bulk Weyl nodes. A comparison of the ARPES data with our first-principles band calculations suggests a notable difference in the electronic structure at the Nb-terminated surface between theory and experiment. The present result opens a platform for realizing exotic quantum phenomena arising from the unusual surface properties of Weyl semimetals.

  4. 2D inverse modeling for potential fields on rugged observation surface using constrained Delaunay triangulation

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Hu, Xiangyun; Xi, Yufei; Liu, Tianyou

    2015-03-01

    The regular grid discretization is prevalent in the inverse modeling for gravity and magnetic data. However, this subdivision strategy performs lower precision to represent the rugged observation surface. To deal with this problem, we evaluate a non-structured discretization method in which the subsurface with rolling terrain is divided into numbers of Delaunay triangular cells and each mesh has the uniform physical property distributions. The gravity and magnetic anomalies of a complex-shaped anomalous body are represented as the summaries of the single anomaly produced by each triangle field source. When inverting for the potential field data, we specify a minimization objective function composed of data constraints and then use the preconditioned conjugate gradient algorithm to iteratively solve the matrix minimization equations, where the preconditioner is determined by the distances between triangular cells and surface observers. We test our method using synthetic data; all tests return favorable results. In the case studies involving the gravity and magnetic anomalies of the Mengku and Pobei deposits in Xinjiang, northwest China, the inferred magnetite orebodies and ultrabasic rocks distributions are verified by the additional drilling and geological information. The discretization of constrained Delaunay triangulation provides an useful approach of computing and inverting the potential field data on the situations of undulate topography and complicated objects.

  5. Elastic constants and Fermi surface topology change in Calaverite AuTe{sub 2}: A density functional study

    SciTech Connect

    Gudelli, Vijay Kumar Kanchana, V.

    2014-04-24

    Structural, elastic, electronic and Fermi surface studies of AuTe{sub 2} have been carried out by means of first principles calculations based on density functional theory. The calculated ground state properties agree well with the experiment. Fermi surface and elastic constants are predicted for the first time and from the calculated elastic constants we find the compound to be mechanically stable satisfying the stability criteria of monoclinic structure. In addition, we also find the c-axis to be more compressible than the other two which is also speculated from the present work. The metallic behaviour of this compound is confirmed from the electronic band structure calculation as we find the bands to cross the Fermi level (E{sub F}). In addition, we also observe a FS topology change under pressure which is also explained in the present work.

  6. Fermi surface study of ScAu{sub 2}(Al, In) and ScPd{sub 2}(Sn, Pb) compounds

    SciTech Connect

    Reddy, P. V. Sreenivasa; Kanchana, V.; Vaitheeswaran, G.

    2015-06-24

    A detailed study on the electronic structure and Fermi surface (FS) of superconducting Heusler compounds ScAu{sub 2}(Al, In) and ScPd{sub 2}(Sn, Pb) has been carried out using first principles electronic structure calculations. The spin orbit coupling is found to play a major role in understanding the band structure and FS. Analysis of the data shows the importance of spin orbit coupling effect in the above compounds. The bands which cross Fermi level (EF) are found to be dominated by the Sc d{sub t2g}-states. The calculated total density of states are in good agreement with the experimentally reported value for ScPd{sub 2}Sn. Under compression we find a change in the Fermi surface topology of ScPd{sub 2}Sn at V/V{sub 0} = 0.95 (pressure of≈15 GPa), which is explained using the band structure calculations.

  7. Scattering theory of the chiral magnetic effect in a Weyl semimetal: interplay of bulk Weyl cones and surface Fermi arcs

    NASA Astrophysics Data System (ADS)

    Baireuther, P.; Hutasoit, J. A.; Tworzydło, J.; Beenakker, C. W. J.

    2016-04-01

    We formulate a linear response theory of the chiral magnetic effect in a finite Weyl semimetal, expressing the electrical current density j induced by a slowly oscillating magnetic field B or chiral chemical potential μ in terms of the scattering matrix of Weyl fermions at the Fermi level. Surface conduction can be neglected in the infinite-system limit for δ j/δ μ , but not for δ j/δ B: the chirally circulating surface Fermi arcs give a comparable contribution to the bulk Weyl cones no matter how large the system is, because their smaller number is compensated by an increased flux sensitivity. The Fermi arc contribution to {μ }-1δ j/δ B has the universal value {(e/h)}2, protected by chirality against impurity scattering—unlike the bulk contribution of opposite sign.

  8. Anomalous Fermi-Surface Dependent Pairing in a Self-Doped High-Tc Superconductor

    SciTech Connect

    Chen, Y.

    2010-05-03

    We report the discovery of a self-doped multi-layer high T{sub c} superconductor Ba{sub 2}Ca{sub 3}Cu{sub 4}O{sub 8}F{sub 2} (F0234) which contains distinctly different superconducting gap magnitudes along its two Fermi surface(FS) sheets. While formal valence counting would imply this material to be an undoped insulator, it is a self-doped superconductor with a T{sub c} of 60K, possessing simultaneously both electron- and hole-doped FS sheets. Intriguingly, the FS sheet characterized by the much larger gap is the electron-doped one, which has a shape disfavoring two electronic features considered to be important for the pairing mechanism: the van Hove singularity and the antiferromagnetic ({pi}/a, {pi}/a) scattering.

  9. Fermi surface distortion induced by interaction between Rashba and Zeeman effects

    SciTech Connect

    Choi, Won Young; Koo, Hyun Cheol; Chang, Joonyeon; Kim, Hyung-jun; Lee, Kyung-Jin

    2015-05-07

    To evaluate Fermi surface distortion induced by interaction between Rashba and Zeeman effects, the channel resistance in an InAs quantum well layer is investigated with an in-plane magnetic field transverse to the current direction. In the magnetoresistance curve, the critical point occurs at ∼3.5 T, which is approximately half of the independently measured Rashba field. To get an insight into the correlation between the critical point in magnetoresistance curve and the Rashba strength, the channel conductivity is calculated using a two-dimensional free-electron model with relaxation time approximation. The critical point obtained from the model calculation is in agreement with the experiment, suggesting that the observation of critical point can be an alternative method to experimentally determine the Rashba parameter.

  10. Fermi surface in local-density-functional theory and in gradient expansions

    NASA Astrophysics Data System (ADS)

    Mearns, Daniel; Kohn, Walter

    1989-05-01

    It has recently been shown that the Kohn-Sham (KS) equations, even with the exact exchange-correlation potential, vxc(r), in general do not yield the exact physical Fermi surface (FS). The latter may be obtained either from the discontinuities of the momentum distribution in the exact ground state or, equally well, from the locus of singularities in q space of the exact density-density response function, χ(q,q) (Kohn effect). The present paper considers approximations in which the exact exchange-correlation energy functional is replaced by a gradient expansion of arbitrary finite order m [e.g., Exc(2)[n] =Fd3 [exc(n(r))n(r)+gxc (n(r))||∇n(r)||2

  11. Modeling the angle-dependent magnetoresistance oscillations of Fermi surfaces with hexagonal symmetry

    NASA Astrophysics Data System (ADS)

    Prentice, Joseph C. A.; Coldea, Amalia I.

    2016-06-01

    By solving the Boltzmann transport equation we investigate theoretically the general form of oscillations in the resistivity caused by varying the direction of an applied magnetic field for the case of quasi-two-dimensional systems on hexagonal lattices. The presence of the angular magnetoresistance oscillations can be used to map out the topology of the Fermi surface and we study how this effect varies as a function of the degree of interplane warping as well as a function of the degree of isotropic scattering. We find that the angular-dependent effect due to in-plane rotation follows the symmetry imposed by the lattice whereas for interplane rotation the degree of warping dictates the dominant features observed in simulations. Our calculations make predictions for specific angle-dependent magnetotransport signatures in magnetic fields expected for quasi-two-dimensional hexagonal compounds similar to PdCoO2 and PtCoO2.

  12. Fermi Surface Evolution Across Multiple Charge Density Wave Transitions in ErTe3

    SciTech Connect

    Moore, R.G.; Brouet, V.; He, R.; Lu, D.H.; Ru, N.; Chu, J.-H.; Fisher, I.R.; Shen, Z.-X.; /SLAC, SSRL /Stanford U., Geballe Lab.

    2010-02-15

    The Fermi surface (FS) of ErTe{sub 3} is investigated using angle-resolved photoemission spectroscopy (ARPES). Low temperature measurements reveal two incommensurate charge density wave (CDW) gaps created by perpendicular FS nesting vectors. A large {Delta}{sub 1} = 175 meV gap arising from a CDW with c* - q{sub CDW1} {approx} 0.70(0)c* is in good agreement with the expected value. A second, smaller {Delta}{sub 2} = 50 meV gap is due to a second CDW with a* - q{sub CDW2} {approx} 0.68(5)a*. The temperature dependence of the FS, the two gaps and possible interaction between the CDWs are examined.

  13. Band structure and fermi surface of Electron-Doped C{sub 60} Monolayers

    SciTech Connect

    Yang, W.L.; Brouet, V.; Zhou, X.J.; Choi, Hyoung J.; Louie, Steven G.; Cohen, Marvin L.; Kellar, S.A.; Bogdanov, P.V.; Lanzara, A.; Goldoni, A.; Parmigiani, F.; Hussain, Z.; Shen, Z-X.

    2003-11-06

    C60 fullerides are challenging systems because both the electron-phonon and electron-electron interactions are large on the energy scale of the expected narrow band width. We report angle-resolved photoemission data on the band dispersion for an alkali doped C60 monolayer and a detailed comparison with theory. Compared to the maximum bare theoretical band width of 170 meV, the observed 100-meV dispersion is within the range of renormalization by electron-phonon coupling. This dispersion is only a fraction of the integrated peak width, revealing the importance of many-body effects. Additionally, measurements on the Fermi surface indicate the robustness of the Luttinger theorem even for materials with strong interactions.

  14. Bulk Fermi surface and electronic properties of Cu0.07Bi2Se3

    NASA Astrophysics Data System (ADS)

    Martin, C.; Craciun, V.; Miller, K. H.; Uzakbaiuly, B.; Buvaev, S.; Berger, H.; Hebard, A. F.; Tanner, D. B.

    2013-05-01

    The electronic properties of Cu0.07Bi2Se3 have been investigated using Shubnikov-de Haas and optical reflectance measurements. Quantum oscillations reveal a bulk, three-dimensional Fermi surface with anisotropy kFc/kFab≈ 2 and a modest increase in free-carrier concentration and in scattering rate with respect to the undoped Bi2Se3, also confirmed by reflectivity data. The effective mass is almost identical to that of Bi2Se3. Optical conductivity reveals a strong enhancement of the bound impurity bands with Cu addition, suggesting that a significant number of Cu atoms enter the interstitial sites between Bi and Se layers or may even substitute for Bi. This conclusion is also supported by x-ray diffraction measurements, where a significant increase of microstrain was found in Cu0.07Bi2Se3, compared to Bi2Se3.

  15. Band structure and Fermi surface of electron-doped C60 monolayers.

    PubMed

    Yang, W L; Brouet, V; Zhou, X J; Choi, Hyoung J; Louie, Steven G; Cohen, Marvin L; Kellar, S A; Bogdanov, P V; Lanzara, A; Goldoni, A; Parmigiani, F; Hussain, Z; Shen, Z-X

    2003-04-11

    C60 fullerides are challenging systems because both the electron-phonon and electron-electron interactions are large on the energy scale of the expected narrow band width. We report angle-resolved photoemission data on the band dispersion for an alkali-doped C60 monolayer and a detailed comparison with theory. Compared to the maximum bare theoretical band width of 170 meV, the observed 100-meV dispersion is within the range of renormalization by electron-phonon coupling. This dispersion is only a fraction of the integrated peak width, revealing the importance of many-body effects. Additionally, measurements on the Fermi surface indicate the robustness of the Luttinger theorem even for materials with strong interactions. PMID:12690192

  16. Fermi surface topology and negative longitudinal magnetoresistance observed in the semimetal NbAs2

    NASA Astrophysics Data System (ADS)

    Shen, Bing; Deng, Xiaoyu; Kotliar, Gabriel; Ni, Ni

    2016-05-01

    We report transverse and longitudinal magnetotransport properties of NbAs2 single crystals. Attributing to the electron-hole compensation, nonsaturating large transverse magnetoresistance reaches up to 8000 at 9 T at 1.8 K with mobility around 1 to 2 m2V-1S-1 . We present a thorough study of angular-dependent Shubnikov-de Haas (SdH) quantum oscillations of NbAs2. Three distinct oscillation frequencies are identified. First-principles calculations reveal four types of Fermi-surface pockets: electron α pocket, hole β pocket, hole γ pocket, and small electron δ pocket. Although the angular dependence of α ,β , and δ agree well with the SdH data, γ pocket is missing in SdH. Negative longitudinal magnetoresistance is observed which may be linked to novel topological states in this material, although systematic study is necessary to ascertain its origin.

  17. Magnetic-field- and temperature-dependent Fermi surface of CeBiPt

    NASA Astrophysics Data System (ADS)

    Wosnitza, J.; Goll, G.; Bianchi, A. D.; Bergk, B.; Kozlova, N.; Opahle, I.; Elgazzar, S.; Richter, Manuel; Stockert, O.; Löhneysen, H. v.; Yoshino, T.; Takabatake, T.

    2006-09-01

    The half-Heusler compounds CeBiPt and LaBiPt are semimetals with very low charge-carrier concentrations as evidenced by Shubnikov de Haas (SdH) and Hall-effect measurements. Neutron-scattering results reveal a simple antiferromagnetic structure in CeBiPt below TN = 1.15 K. The band structure of CeBiPt sensitively depends on temperature, magnetic field and stoichiometry. Above a certain, sample-dependent, threshold field (B>25 T), the SdH signal disappears and the Hall coefficient reduces significantly. These effects are absent in the non-4f compound LaBiPt. Electronic-band-structure calculations can well explain the observed behaviour by a 4f-polarization-induced Fermi-surface modification.

  18. Predicting 2D geotechnical parameter fields in near-surface sedimentary environments

    NASA Astrophysics Data System (ADS)

    Rumpf, M.; Tronicke, J.

    2014-02-01

    For a detailed characterization of near-surface environments, geophysical techniques are increasingly used to support more conventional point-based techniques such as borehole and direct-push logging. Because the underlying parameter relations are often complex, site-specific, or even poorly understood, a remaining challenging task is to link the geophysical parameter models to the actual geotechnical target parameters measured only at selected points. We propose a workflow based on nonparametric regression to establish functional relationships between jointly inverted geophysical parameters and selected geotechnical parameters as measured, for example, by different borehole and direct-push tools. To illustrate our workflow, we present field data collected to characterize a near-surface sedimentary environment. Our field data base includes crosshole ground penetrating radar (GPR), seismic P-, and S-wave data sets collected between 25 m deep boreholes penetrating sand- and gravel dominated sediments. Furthermore, different typical borehole and direct-push logs are available. We perform a global joint inversion of traveltimes extracted from the crosshole geophysical data using a recently proposed approach based on particle swarm optimization. Our inversion strategy allows for generating consistent models of GPR, P-wave, and S-wave velocities including an appraisal of uncertainties. We analyze the observed complex relationships between geophysical velocities and target parameter logs using the alternating conditional expectation (ACE) algorithm. This nonparametric statistical tool allows us to perform multivariate regression analysis without assuming a specific functional relation between the variables. We are able to explain selected target parameters such as characteristic grain size values or natural gamma activity by our inverted geophysical data and to extrapolate these parameters to the inter-borehole plane covered by our crosshole experiments. We conclude that

  19. Scaling Analysis of Ocean Surface Turbulent Heterogeneities from Satellite Remote Sensing: Use of 2D Structure Functions

    PubMed Central

    Renosh, P. R.; Schmitt, Francois G.; Loisel, Hubert

    2015-01-01

    Satellite remote sensing observations allow the ocean surface to be sampled synoptically over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a), and the Sea Surface Temperature (SST), rarely studied. The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. For that purpose, we show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG) of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF) can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics. PMID:26017551

  20. Leaf Area Index Estimation in Vineyards from Uav Hyperspectral Data, 2d Image Mosaics and 3d Canopy Surface Models

    NASA Astrophysics Data System (ADS)

    Kalisperakis, I.; Stentoumis, Ch.; Grammatikopoulos, L.; Karantzalos, K.

    2015-08-01

    The indirect estimation of leaf area index (LAI) in large spatial scales is crucial for several environmental and agricultural applications. To this end, in this paper, we compare and evaluate LAI estimation in vineyards from different UAV imaging datasets. In particular, canopy levels were estimated from i.e., (i) hyperspectral data, (ii) 2D RGB orthophotomosaics and (iii) 3D crop surface models. The computed canopy levels have been used to establish relationships with the measured LAI (ground truth) from several vines in Nemea, Greece. The overall evaluation indicated that the estimated canopy levels were correlated (r2 > 73%) with the in-situ, ground truth LAI measurements. As expected the lowest correlations were derived from the calculated greenness levels from the 2D RGB orthomosaics. The highest correlation rates were established with the hyperspectral canopy greenness and the 3D canopy surface models. For the later the accurate detection of canopy, soil and other materials in between the vine rows is required. All approaches tend to overestimate LAI in cases with sparse, weak, unhealthy plants and canopy.

  1. Scaling Analysis of Ocean Surface Turbulent Heterogeneities from Satellite Remote Sensing: Use of 2D Structure Functions.

    PubMed

    Renosh, P R; Schmitt, Francois G; Loisel, Hubert

    2015-01-01

    Satellite remote sensing observations allow the ocean surface to be sampled synoptically over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a), and the Sea Surface Temperature (SST), rarely studied. The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. For that purpose, we show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG) of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF) can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics. PMID:26017551

  2. Water formation through O2 + D pathway on cold silicate and amorphous water ice surfaces of interstellar interest

    NASA Astrophysics Data System (ADS)

    Chaabouni, H.; Minissale, M.; Manicò, G.; Congiu, E.; Noble, J. A.; Baouche, S.; Accolla, M.; Lemaire, J. L.; Pirronello, V.; Dulieu, F.

    2012-12-01

    The formation of the first monolayer of water molecules on bare dust grains is of primary importance to understand the growth of the icy mantles that cover dust in the interstellar medium. In this work, we explore experimentally the formation of water molecules from O2 + D reaction on bare silicate surfaces that simulates the grains present in the diffuse interstellar clouds at visual extinctions (AV < 3 mag). For comparison, we also study the formation of water molecules on surfaces covered with amorphous water ice representing the dense clouds (AV ⩾ 3 mag). Our studies focus on the formation of water molecules in the sub-monolayer and monolayer regimes using reflection absorption infrared spectroscopy and temperature-programmed desorption techniques. We provide the fractions of the products, such as D2O and D2O2 molecules formed on three astrophysically relevant surfaces held at 10 K (amorphous olivine-type silicate, porous amorphous water ice, and nonporous amorphous water ice). Our results showed that the formation of D2O molecules occurs with an efficiency of about 55%-60% on nonporous amorphous water ice and about 18% on bare silicate grains surfaces. We explain the low efficiency of D2O water formation on the silicate surfaces by the desorption upon formation of certain products once the reaction occurs between O2 and D atoms on the surface. A kinetic model taking into account the chemical desorption of newly formed water supports our conclusions.

  3. High plasmon concentration on the surfaces of rectangular metallic rods embedded in air in a 2D photonic crystal

    NASA Astrophysics Data System (ADS)

    Calvo-Velasco, D. M.; Porras-Montenegro, N.

    2016-04-01

    Using the revised plane wave method, we calculated the photonic band structure (PBS) considering TE polarization of a square 2D photonic crystal made of rectangular metallic rods embedded in air. In case of square rods and comparing different plasma frequencies, we found a characteristic band distribution related with the existence of localized plasmons on the rod surfaces, and also we found that this type of rod shape contributes to a high concentration of the electromagnetic field close to the rod corners. Considering rectangular rods and varying one of the sides of the rods, we found a PBS that presents a reorganization of the bands in comparing with the low dispersion present in the square rod case, related with a high localization of the radiation on the rod surfaces.

  4. Study of Unsteady Flow Actuation Produced by Surface Plasma Actuator on 2-D Airfoil

    NASA Astrophysics Data System (ADS)

    Phan, Minh Khang; Shin, Jichul

    2014-10-01

    Effect of flow actuation driven by low current continuous or pulsed DC surface glow discharge plasma actuator is studied. Schlieren image of induced flow on flat plate taken at a high repetition rate reveals that the actuation is mostly initiated near the cathode. Assuming that the actuation is mostly achieved by ions in the cathode sheath region, numerical model for the source of flow actuation is obtained by analytical estimation of ion pressure force created in DC plasma sheath near the cathode and added in momentum equation as a body force term. Modeled plasma flow actuator is simulated with NACA0012 airfoil oscillating over a certain range of angle of attack (AoA) at specific reduced frequencies of airfoil. By changing actuation authority according to the change in AoA, stabilization of unsteady flow field is improved and hence steady aerodynamic performance can be maintained. Computational result shows that plasma actuation is only effective in modifying aerodynamic characteristics of separated flow. It turns out that plasma pulse frequency should be tuned for optimal performance depending on phase angle and rotating speed. The actuation authority can be parameterized by a ratio between plasma pulse frequency and reduced frequency.

  5. Two-dimensional Fermi surfaces in Kondo insulating SmB6

    NASA Astrophysics Data System (ADS)

    Li, Gang

    There has been renewed interest in Samarium Hexaboride, which is a strongly correlated heavy Fermion material. Hybridization between itinerant electrons and localized orbitals lead to an opening of charge gap at low temperature. However, the resistivity of SmB6 does not diverge at low temperature. Former studies suggested that this residual conductance is contributed by various origins. Recent theoretical developments suggest that the particular symmetry of energy bands of SmB6 may host a topologically non-trivial surface state, i.e., a topological Kondo insulator. To probe the Fermiology of the possible metallic surface state, we use sensitive torque magnetometry to detect the de Haas van Alphen (dHvA) effect due to Landau level quantization on flux-grown crystals, down to He-3 temperature and up to 45 Tesla. Our angular and temperature dependent data suggest two-dimensional Fermi Surfaces lie in both crystalline (001) and (101) surface planes of SmB6.

  6. Reduction of Fermi level pinning and recombination at polycrystalline CdTe surfaces by laser irradiation

    SciTech Connect

    Simonds, Brian J.; Kheraj, Vipul; Palekis, Vasilios; Ferekides, Christos; Scarpulla, Michael A.

    2015-06-14

    Laser processing of polycrystalline CdTe is a promising approach that could potentially increase module manufacturing throughput while reducing capital expenditure costs. For these benefits to be realized, the basic effects of laser irradiation on CdTe must be ascertained. In this study, we utilize surface photovoltage spectroscopy (SPS) to investigate the changes to the electronic properties of the surface of polycrystalline CdTe solar cell stacks induced by continuous-wave laser annealing. The experimental data explained within a model consisting of two space charge regions, one at the CdTe/air interface and one at the CdTe/CdS junction, are used to interpret our SPS results. The frequency dependence and phase spectra of the SPS signal are also discussed. To support the SPS findings, low-temperature spectrally-resolved photoluminescence and time-resolved photoluminescence were also measured. The data show that a modest laser treatment of 250 W/cm{sup 2} with a dwell time of 20 s is sufficient to reduce the effects of Fermi level pinning at the surface due to surface defects.

  7. Large Exciton Energy Shifts by Reversible Surface Exchange in 2D II-VI Nanocrystals.

    PubMed

    Zhou, Yang; Wang, Fudong; Buhro, William E

    2015-12-01

    Reaction of n-octylamine-passivated {CdSe[n-octylamine](0.53±0.06)} quantum belts with anhydrous metal carboxylates M(oleate)2 (M = Cd, Zn) results in a rapid exchange of the L-type amine passivation for Z-type M(oleate)2 passivation. The cadmium-carboxylate derivative is determined to have the composition {CdSe[Cd(oleate)2](0.19±0.02)}. The morphologies and crystal structures of the quantum belts are largely unaffected by the exchange processes. Addition of n-octylamine or oleylamine to the M(oleate)2-passivated quantum belts removes M(oleate)2 and restores the L-type amine passivation. Analogous, reversible surface exchanges are also demonstrated for CdS quantum platelets. The absorption and emission spectra of the quantum belts and platelets are reversibly shifted to lower energy by M(oleate)2 passivation vs amine passivation. The largest shift of 140 meV is observed for the Cd(oleate)2-passivated CdSe quantum belts. These shifts are attributed entirely to changes in the strain states in the Zn(oleate)2-passivated nanocrystals, whereas changes in strain states and confinement dimensions contribute roughly equally to the shifts in the Cd(oleate)2-passivated nanocrystals. Addition of Cd(oleate)2, which electronically couples to the nanocrystal lattices, increases the effective thickness of the belts and platelets by approximately a half of a monolayer, thus increasing the confinement dimension. PMID:26568026

  8. Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction

    NASA Astrophysics Data System (ADS)

    Arredondo, K.; Billen, M. I.

    2013-12-01

    feedback to other added processes remain important, which could encourage mineralogical research into multiphase systems. Feedback from the compositionally complex slab to the dynamic trench may improve understanding on the mechanics of slab behavior in the upper and lower mantle and surface behavior of the subducting and overriding plates. Běhounková, M., and H. Cízková, Long-wavelength character of subducted slabs in the lower mantle, Earth and Planetary Science Letters, 275, 43-53, 2008. Fukao, Y., M. Obayashi, T. Nakakuki, and the Deep Slab Project Group, Stagnant slab: A review, Annual Reviews of Earth and Planetary Science, 37, 19-46, 2009. Ricard, Y., E. Mattern, and J. Matas, Synthetic tomographic images of slabs from mineral physics, in Earth's Deep Mantle: Structure, Composition, and Evolution, Geophysical Monograph Series, vol. 160, American Geophysical Union, 2005.

  9. The 7 × 1 Fermi Surface Reconstruction in a Two-dimensional f -electron Charge Density Wave System: PrTe3

    PubMed Central

    Lee, Eunsook; Kim, D. H.; Kim, Hyun Woo; Denlinger, J. D.; Kim, Heejung; Kim, Junwon; Kim, Kyoo; Min, B. I.; Min, B. H.; Kwon, Y. S.; Kang, J.-S.

    2016-01-01

    The electronic structure of a charge density wave (CDW) system PrTe3 and its modulated structure in the CDW phase have been investigated by employing ARPES, XAS, Pr 4 f RPES, and first-principles band structure calculation. Pr ions are found to be nearly trivalent, supporting the CDW instability in the metallic Te sheets through partial filling. Finite Pr 4 f spectral weight is observed near the Fermi level, suggesting the non-negligible Pr 4 f contribution to the CDW formation through the Pr 4 f -Te 5p hybridization. The two-fold symmetric features in the measured Fermi surface (FS) of PrTe3 are explained by the calculated FS for the assumed 7 × 1 CDW supercell formation in Te sheets. The shadow bands and the corresponding very weak FSs are observed, which originate from both the band folding due to the 3D interaction of Te sheets with neighboring Pr-Te layers and that due to the CDW-induced FS reconstruction. The straight vertical FSs are observed along kz, demonstrating the nearly 2D character for the near-EF states. The observed linear dichroism reveals the in-plane orbital character of the near-EF Te 5p states. PMID:27453329

  10. The 7 × 1 Fermi Surface Reconstruction in a Two-dimensional f -electron Charge Density Wave System: PrTe3

    NASA Astrophysics Data System (ADS)

    Lee, Eunsook; Kim, D. H.; Kim, Hyun Woo; Denlinger, J. D.; Kim, Heejung; Kim, Junwon; Kim, Kyoo; Min, B. I.; Min, B. H.; Kwon, Y. S.; Kang, J.-S.

    2016-07-01

    The electronic structure of a charge density wave (CDW) system PrTe3 and its modulated structure in the CDW phase have been investigated by employing ARPES, XAS, Pr 4 f RPES, and first-principles band structure calculation. Pr ions are found to be nearly trivalent, supporting the CDW instability in the metallic Te sheets through partial filling. Finite Pr 4 f spectral weight is observed near the Fermi level, suggesting the non-negligible Pr 4 f contribution to the CDW formation through the Pr 4 f -Te 5p hybridization. The two-fold symmetric features in the measured Fermi surface (FS) of PrTe3 are explained by the calculated FS for the assumed 7 × 1 CDW supercell formation in Te sheets. The shadow bands and the corresponding very weak FSs are observed, which originate from both the band folding due to the 3D interaction of Te sheets with neighboring Pr-Te layers and that due to the CDW-induced FS reconstruction. The straight vertical FSs are observed along kz, demonstrating the nearly 2D character for the near-EF states. The observed linear dichroism reveals the in-plane orbital character of the near-EF Te 5p states.

  11. The 7 × 1 Fermi Surface Reconstruction in a Two-dimensional f -electron Charge Density Wave System: PrTe3.

    PubMed

    Lee, Eunsook; Kim, D H; Kim, Hyun Woo; Denlinger, J D; Kim, Heejung; Kim, Junwon; Kim, Kyoo; Min, B I; Min, B H; Kwon, Y S; Kang, J-S

    2016-01-01

    The electronic structure of a charge density wave (CDW) system PrTe3 and its modulated structure in the CDW phase have been investigated by employing ARPES, XAS, Pr 4 f RPES, and first-principles band structure calculation. Pr ions are found to be nearly trivalent, supporting the CDW instability in the metallic Te sheets through partial filling. Finite Pr 4 f spectral weight is observed near the Fermi level, suggesting the non-negligible Pr 4 f contribution to the CDW formation through the Pr 4 f -Te 5p hybridization. The two-fold symmetric features in the measured Fermi surface (FS) of PrTe3 are explained by the calculated FS for the assumed 7 × 1 CDW supercell formation in Te sheets. The shadow bands and the corresponding very weak FSs are observed, which originate from both the band folding due to the 3D interaction of Te sheets with neighboring Pr-Te layers and that due to the CDW-induced FS reconstruction. The straight vertical FSs are observed along kz, demonstrating the nearly 2D character for the near-EF states. The observed linear dichroism reveals the in-plane orbital character of the near-EF Te 5p states. PMID:27453329

  12. Fermi surfaces, spin-mixing parameter, and colossal anisotropy of spin relaxation in transition metals from ab initio theory

    NASA Astrophysics Data System (ADS)

    Zimmermann, Bernd; Mavropoulos, Phivos; Long, Nguyen H.; Gerhorst, Christian-Roman; Blügel, Stefan; Mokrousov, Yuriy

    2016-04-01

    The Fermi surfaces and Elliott-Yafet spin-mixing parameter (EYP) of several elemental metals are studied by ab initio calculations. We focus first on the anisotropy of the EYP as a function of the direction of the spin-quantization axis [B. Zimmermann et al., Phys. Rev. Lett. 109, 236603 (2012), 10.1103/PhysRevLett.109.236603]. We analyze in detail the origin of the gigantic anisotropy in 5 d hcp metals as compared to 5 d cubic metals by band structure calculations and discuss the stability of our results against an applied magnetic field. We further present calculations of light (4 d and 3 d ) hcp crystals, where we find a huge increase of the EYP anisotropy, reaching colossal values as large as 6000 % in hcp Ti. We attribute these findings to the reduced strength of spin-orbit coupling, which promotes the anisotropic spin-flip hot loops at the Fermi surface. In order to conduct these investigations, we developed an adapted tetrahedron-based method for the precise calculation of Fermi surfaces of complicated shape and accurate Fermi-surface integrals within the full-potential relativistic Korringa-Kohn-Rostoker Green function method.

  13. Field lines and magnetic surfaces in a two-component slab/2D model of interplanetary magnetic fluctuations

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Pontius, D. H., Jr.; Gray, P. C.; Bieber, J. W.

    1995-01-01

    A two-component model for the spectrum of interplanetary magnetic fluctuations was proposed on the basis of ISEE observations, and has found an intriguing level of application in other solar wind studies. The model fluctuations consist of a fraction of 'slab' fluctuations, varying only in the direction parallel to the locally uniform mean magnetic field B(0) and a complement of 2D (two-dimensional) fluctuations that vary in the directions transverse to B(0). We have developed an spectral method computational algorithm for computing the magnetic flux surfaces (flux tubes) associated with the composite model, based upon a precise analogy with equations for ideal transport of a passive scalar in planar two dimensional geometry. Visualization of various composite models will be presented, including the 80 percent 2D/ 20 percent slab model with delta B/B(0) approximately equals 1 and a minus 5/3 spectral law, that is thought to approximately represent a snapshot of solar wind turbulence. Characteristically, the visualizations show that flux tubes, even when defined as regular on some plane, shred and disperse rapidly as they are viewed along the parallel direction. This diffusive process, which generalizes the standard picture of field line random walk, will be discussed in detail. Evidently, the traditional picture that flux tubes randomize like strands of spaghetti with a uniform tangle along the axial direction is in need of modification.

  14. Surfaces of nanomaterials for sustainable energy applications: thin-film 2D-ACAR and PALS studies

    NASA Astrophysics Data System (ADS)

    Barbiellini, B.; Chai, L.; Al-Sawai, W.; Eijt, S. W. H.; Mijnarends, P. E.; Schut, H.; Gao, Y.; Houtepen, A. J.; Ravelli, L.; Egger, W.; van Huis, M. A.; Bansil, A.

    2013-03-01

    Positron (e+) annihilation spectroscopy is one of only a few techniques to probe the surfaces of nanoparticles. We investigated thin films of PbSe colloidal semiconductor nanocrystals (NCs) in the range 2-10 nm as prospective highly efficient absorbers for solar cells. We compare and contrast our findings with previous studies on CdSe NCs. Evidence obtained from our e+ lifetime spectroscopy study using the PLEPS spectrometer shows that 90-95% of the implanted positrons are effectively trapped and confined at the surfaces of these NCs. The remaining 5-10% of the e+ annihilate in the relatively large oleic acid ligands, in fair agreement with the estimated positron stopping power of the PbSe nanoparticle ``core'' relative to the ligand ``shell.'' 2D-ACAR measurements on the same set of films using the low-energy e+ beam POSH showed that the e+ wavefunction at the surfaces of the PbSe NCs is more localized than for the case of CdSe NCs. Comparison with calculated e+ - e- momentum densities indicates a Pb deficiency at the surfaces of the PbSe NCs, which correlates with e+ lifetime and the NCs morphology. Work supported in part by the US Department of Energy.

  15. Effects of standing wave states on low temperature growth of 2D Pb islands on Si(111) surfaces

    NASA Astrophysics Data System (ADS)

    Tsong, Tien T.

    2002-03-01

    Flat-top 2D Pb islands of nanometer size with critical and magic thickness have been observed in the Pb/Si(111)-7x7 system at low temperature using scanning tunneling microscopy. The growth behavior, formation of new electronic bound states, redistribution of surface charge density, and oscillatory relaxations in the island thickness arise from quantum size effects. All these properties are perfectly correlated to each other [1]. This and other more recent results will be presented. Work supported by the NSC of ROC and Academia Sinica. [1]. W. B. Su, S. H. Chang, W. B. Jian, C. S. Chang, L. J. Chen and T. T. Tsong, Phys. Rev. Lett. 86, 5116 (2001); W. B. Su, S. H. Chang, C. S. Chang, L. J. Chen and T. T. Tsong, Jpn J. Appl. Phys. 40, 4299 (2001).

  16. Competing order, Fermi surface reconstruction, and quantum oscillations in underdoped high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Dimov, Ivailo; Goswami, Pallab; Jia, Xun; Chakravarty, Sudip

    2008-10-01

    We consider incommensurate order parameters for electrons on a square lattice which reduce to d -density wave order when the ordering wave vector Q is close to Q0=(π/a,π/a) , a being the lattice spacing and describe the associated charge and current distributions within a single-harmonic approximation that conserves current to lowest order. Such incommensurate orders can arise at the mean-field level in extended Hubbard models, but the main goal here is to explore thoroughly the consequences within a Hartree-Fock approximation. We find that Fermi surface reconstruction in the underdoped regime can correctly capture the phenomenology of the recent quantum oscillation experiments that suggest incommensurate order, in particular the de Haas-van Alphen oscillations of the magnetization in high fields and very low temperatures in presumably the mixed state of these superconductors. For 10% hole doping in YBa2Cu3O6+δ , we find in addition to the main frequency around 530 T arising from the electron pocket and a hole frequency at around 1650 T, a new low frequency from a smaller hole pocket at 250 T for which there are some indications that require further investigations. The oscillation corresponding to the electron pocket will be further split due to bilayer coupling, but the splitting is sufficiently small to require more refined measurements. The truly incommensurate d -density wave breaks both time reversal and inversion, but the product of these two symmetry operations is preserved. The resulting Fermi surface splits into spin-up and spin-down sectors that are inversion conjugates. Each of the spin sectors results in a band structure that violates reflection symmetry, which can be determined in spin and angle-resolved photoemission spectroscopies. For those experiments such as the current photoemission experiments or the quantum oscillation measurements that cannot resolve the spin components, the bands will appear to be symmetric because of the equal mixture of

  17. Digitized crime scene forensics: automated trace separation of toolmarks on high-resolution 2D/3D CLSM surface data

    NASA Astrophysics Data System (ADS)

    Clausing, Eric; Vielhauer, Claus

    2015-03-01

    Locksmith forensics is an important and very challenging part of classic crime scene forensics. In prior work, we propose a partial transfer to the digital domain, to effectively support forensic experts and present approaches for a full process chain consisting of five steps: Trace positioning, 2D/3D acquisition with a confocal 3D laser scanning microscope, detection by segmentation, trace type determination, and determination of the opening method. In particular the step of trace segmentation on high-resolution 3D surfaces thereby turned out to be the part most difficult to implement. The reason for that is the highly structured and complex surfaces to be analyzed. These surfaces are cluttered with a high number of toolmarks, which overlap and distort each other. In Clausing et al., we present an improved approach for a reliable segmentation of relevant trace regions but without the possibility of separating single traces out of segmented trace regions. However, in our past research, especially features based on shape and dimension turned out to be highly relevant for a fully automated analysis and interpretation. In this paper, we consequently propose an approach for this separation. To achieve this goal, we use our segmentation approach and expand it with a combination of the watershed algorithm with a graph-based analysis. Found sub-regions are compared based on their surface character and are connected or divided depending on their similarity. We evaluate our approach with a test set of about 1,300 single traces on the exemplary locking cylinder component 'key pin' and thereby are able of showing the high suitability of our approach.

  18. High Resolution 2-D Fluoresd3nce Imaging of the Mass Boundary Layer Thickness at Free Water Surfaces

    NASA Astrophysics Data System (ADS)

    Kräuter, C.; Trofimova, D.; Kiefhaber, D.; Krah, N.; Jähne, B.

    2014-03-01

    A novel 2-D fluorescence imaging technique has been developed to visualize the thickness of the aqueous mass boundary layer at a free water surface. Fluorescence is stimulated by high-power LEDs and is observed from above with a low noise, high resolution and high-speed camera. The invasion of ammonia into water leads to an increase in pH (from a starting value of 4), which is visualized with the fluorescent dye pyranine. The flux of ammonia can be controlled by controlling its air side concentration. A higher flux leads to basic pH values (pH > 7) in a thicker layer at the water surface from which fluorescent light is emitted. This allows the investigation of processes affecting the transport of gases in different depths in the aqueous mass boundary layer. In this paper, the chemical system and optical components of the measurement method are presented and its applicability to a wind-wave tank experiment is demonstrated.

  19. Fermi-Compton scattering due to magnetopause surface fluctuations in Jupiter's magnetospheric cavity

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1981-01-01

    The effects of boundary surface fluctuations on a spectrum of electromagnetic radiation trapped in a high Q (quality) cavity are considered. Undulating walls introduce small frequency shifts at reflection to the radiation, and it is argued that the process is entirely analogous to both Fermi (particle) acceleration and inverse Compton scattering. A Fokker-Planck formalism is pursued; it yields a diffusion equation in frequency for which the Green's function and steady-state solutions are found. Applying this analysis to the Jovian continuum radiation discovered by Voyager spacecraft, it is suggested that characteristic diffusion times are greater than 1 year, and that in order to account for the steep frequency spectra observed, an unidentified loss mechanism must operate in the cavity with a decay time constant approximately equal to the characteristic diffusion time divided by 28. A radiator-reactor model of the cavity is investigated to provide an estimate for the intrinsic luminosity of the low frequency (approximately 100 Hz) continuum source whose power is approximately 7 x 10 to the 6th W.

  20. Band structure, Fermi surface, superconductivity, and resistivity of actinium under high pressure

    SciTech Connect

    Dakshinamoorthy, M.; Iyakutti, K.

    1984-12-15

    The electronic band structures of fcc actinium (Ac) have been calculated for a wide range of pressures by reducing the unit-cell volume from 1.0V/sub 0/ to 0.5V/sub 0/ with use of the relativistic augmented-plane-wave method. The density of states and Fermi-surface cross sections corresponding to various volumes are obtained. Calculations for the band-structure-related quantities such as electron-phonon mass enhancement factor lambda, superconducting transition temperature T/sub c/, and resistivity rho corresponding to different volumes are performed. It is seen that T/sub c/ increases with pressure, i.e., with decreasing volume. A new empirical relation for the volume dependence of T/sub c/ is proposed and its validity is checked using the T/sub c/ values obtained from the above band-structure results. The resistivity rho first increases with increasing pressure (i.e., with decreasing volume) and then decreases for higher pressures (i.e., for smaller volumes).

  1. Fermi surface of the ferromagnetic semimetal, EuB{sub 6}

    SciTech Connect

    Aronson, M.C.; Sarrao, J.L.; Fisk, Z.; Whitton, M.; Brandt, B.L.

    1999-02-01

    We report the results of magnetoresistance and magnetization measurements on single crystal EuB{sub 6} for temperatures above and below the ferromagnetic ordering temperatures T{sub C}{sup +}=15.3 K and T{sub C}{sup {minus}}=12.5 K, in magnetic fields as large as 30 T. Shubnikov{endash}de Haas and de Haas{endash}van Alphen oscillations were observed with four fundamental frequencies. By comparison to band-structure calculations, we ascribe the orbits to small pockets of electrons and holes, centered at the {ital X} points. The effective masses and extremal areas of the pockets are in good agreement with the predictions of band-structure calculations. We conclude that EuB{sub 6} is an intrinsic semimetal and not a doped insulator. The intrinsic carrier concentration is 1.2{times}10{sup 20} cm{sup {minus}3}, although our sample is somewhat uncompensated, with a 65{percent} surplus of holes. There is no appreciable modification to the Fermi-surface dimensions or carrier masses with the onset of ferromagnetism. {copyright} {ital 1999} {ital The American Physical Society}

  2. Pressure-enhanced superconductivity in A15-type Nb3 Ge via increased Fermi surface nesting

    NASA Astrophysics Data System (ADS)

    Stillwell, Ryan; Jeffries, Jason; McCall, Scott; Jenei, Zsolt; Weir, Sam; Vohra, Yogesh

    The A15-type superconductors are the most widely used superconductors in industrial applications yet the physics behind maximizing the superconducting transition temperature is still not completely understood. The highest transition temperatures found to date have recently been reported for high-pressure hydride materials and it is believed that they too are BCS-type phonon-mediated superconductors, just like the A15-type superconductors. Understanding the electron-phonon coupling has therefore been brought front stage in the search to understand the mechanisms for optimizing high-temperature superconductors. Using a multi-faceted suite of high-pressure techniques we found that Nb3Ge has an isostructural phase transition at high pressure that correlates directly with a bandstructure change seen in high-pressure magnetotransport measurements. Our results suggest that A15-type superconductivity is not only phonon-mediated but that the degree of Fermi surface nesting is a controlling parameter for maximizing the superconducting transition temperature. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

  3. Direct Measurements of Fermi Level Pinning at the Surface of Intrinsically n-Type InGaAs Nanowires.

    PubMed

    Speckbacher, Maximilian; Treu, Julian; Whittles, Thomas J; Linhart, Wojciech M; Xu, Xiaomo; Saller, Kai; Dhanak, Vinod R; Abstreiter, Gerhard; Finley, Jonathan J; Veal, Tim D; Koblmüller, Gregor

    2016-08-10

    Surface effects strongly dominate the intrinsic properties of semiconductor nanowires (NWs), an observation that is commonly attributed to the presence of surface states and their modification of the electronic band structure. Although the effects of the exposed, bare NW surface have been widely studied with respect to charge carrier transport and optical properties, the underlying electronic band structure, Fermi level pinning, and surface band bending profiles are not well explored. Here, we directly and quantitatively assess the Fermi level pinning at the surfaces of composition-tunable, intrinsically n-type InGaAs NWs, as one of the prominent, technologically most relevant NW systems, by using correlated photoluminescence (PL) and X-ray photoemission spectroscopy (XPS). From the PL spectral response, we reveal two dominant radiative recombination pathways, that is, direct near-band edge transitions and red-shifted, spatially indirect transitions induced by surface band bending. The separation of their relative transition energies changes with alloy composition by up to more than ∼40 meV and represent a direct measure for the amount of surface band bending. We further extract quantitatively the Fermi level to surface valence band maximum separation using XPS, and directly verify a composition-dependent transition from downward to upward band bending (surface electron accumulation to depletion) with increasing Ga-content x(Ga) at a crossover near x(Ga) ∼ 0.2. Core level spectra further demonstrate the nature of extrinsic surface states being caused by In-rich suboxides arising from the native oxide layer at the InGaAs NW surface. PMID:27458736

  4. Electronic structure of disordered CuPd alloys by positron-annihilation 2D-ACAR

    SciTech Connect

    Smedskjaer, L.C.; Benedek, R.; Siegel, R.W.; Legnini, D.G.; Stahulak, M.D.; Bansil, A.

    1988-01-01

    We report 2D-ACAR experiments and KKR CPA calculations on alpha-phase single-crystal Cu/sub 1-x/Pd/sub x/ in the range x less than or equal to 0.25. The flattening of the Fermi surface near (110) with increasing x predicted by theory is confirmed by our experimental results. 16 refs., 2 figs.

  5. Surface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures

    PubMed Central

    Wang, Tao; Green, Ryan; Nair, Rajesh Ramakrishnan; Howell, Mark; Mohapatra, Subhra; Guldiken, Rasim; Mohapatra, Shyam Sundar

    2015-01-01

    Detection and quantification of cell viability and growth in two-dimensional (2D) and three-dimensional (3D) cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose–response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs) permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW) device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS) well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control) were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids) and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in 3D cell

  6. Surface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures.

    PubMed

    Wang, Tao; Green, Ryan; Nair, Rajesh Ramakrishnan; Howell, Mark; Mohapatra, Subhra; Guldiken, Rasim; Mohapatra, Shyam Sundar

    2015-01-01

    Detection and quantification of cell viability and growth in two-dimensional (2D) and three-dimensional (3D) cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose-response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs) permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW) device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS) well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control) were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids) and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in 3D cell

  7. Fermi surface of SrFe2P2 determined by de Haas-van Alphen effect

    SciTech Connect

    Analytis, J.G.

    2010-05-26

    We report measurements of the Fermi surface (FS) of the ternary iron-phosphide SrFe{sub 2}P{sub 2} using the de Haas-van Alphen effect. The calculated FS of this compound is very similar to SrFe{sub 2}As{sub 2}, the parent compound of the high temperature superconductors. Our data show that the Fermi surface is composed of two electron and two hole sheets in agreement with bandstructure calculations. Several of the sheets show strong c-axis warping emphasizing the importance of three-dimensionality in the non-magnetic state of the ternary pnictides. We find that the electron and hole pockets have a different topology, implying that this material does not satisfy a ({pi},{pi}) nesting condition.

  8. Large Fermi Surface of Heavy Electrons at the Border of Mott Insulating State in NiS2

    DOE PAGESBeta

    Friedemann, S.; Chang, H.; Gamża, M. B.; Reiss, P.; Chen, X.; Alireza, P.; Coniglio, W. A.; Graf, D.; Tozer, S.; Grosche, F. M.

    2016-05-12

    One early triumph of quantum physics is the explanation why some materials are metallic whereas others are insulating. While a treatment based on single electron states is correct for most materials this approach can fail spectacularly, when the electrostatic repulsion between electrons causes strong correlations. Not only can these favor new and subtle forms of matter, such as magnetism or superconductivity, they can even cause the electrons in a half-filled energy band to lock into position, producing a correlated, or Mott insulator. The transition into the Mott insulating state raises important fundamental questions. Foremost among these is the fate ofmore » the electronic Fermi surface and the associated charge carrier mass, as the Mott transition is approached. We report the first direct observation of the Fermi surface on the metallic side of a Mott insulating transition by high pressure quantum oscillatory measurements in NiS2. We find our results point at a large Fermi surface consistent with Luttinger's theorem and a strongly enhanced quasiparticle effective mass. These two findings are in line with central tenets of the Brinkman-Rice picture of the correlated metal near the Mott insulating state and rule out alternative scenarios in which the carrier concentration vanishes continuously at the metal-insulator transition.« less

  9. Large Fermi Surface of Heavy Electrons at the Border of Mott Insulating State in NiS2

    NASA Astrophysics Data System (ADS)

    Friedemann, S.; Chang, H.; Gamża, M. B.; Reiss, P.; Chen, X.; Alireza, P.; Coniglio, W. A.; Graf, D.; Tozer, S.; Grosche, F. M.

    2016-05-01

    One early triumph of quantum physics is the explanation why some materials are metallic whereas others are insulating. While a treatment based on single electron states is correct for most materials this approach can fail spectacularly, when the electrostatic repulsion between electrons causes strong correlations. Not only can these favor new and subtle forms of matter, such as magnetism or superconductivity, they can even cause the electrons in a half-filled energy band to lock into position, producing a correlated, or Mott insulator. The transition into the Mott insulating state raises important fundamental questions. Foremost among these is the fate of the electronic Fermi surface and the associated charge carrier mass, as the Mott transition is approached. We report the first direct observation of the Fermi surface on the metallic side of a Mott insulating transition by high pressure quantum oscillatory measurements in NiS2. Our results point at a large Fermi surface consistent with Luttinger’s theorem and a strongly enhanced quasiparticle effective mass. These two findings are in line with central tenets of the Brinkman-Rice picture of the correlated metal near the Mott insulating state and rule out alternative scenarios in which the carrier concentration vanishes continuously at the metal-insulator transition.

  10. Fermi Surface of Sr_{2}RuO_{4}: Spin-Orbit and Anisotropic Coulomb Interaction Effects.

    PubMed

    Zhang, Guoren; Gorelov, Evgeny; Sarvestani, Esmaeel; Pavarini, Eva

    2016-03-11

    The topology of the Fermi surface of Sr_{2}RuO_{4} is well described by local-density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction alone worsens or does not correct this discrepancy. In order to reproduce experiments, it is essential to account for the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and the isotropic Coulomb term in determining the Fermi surface shape. Its effects are likely sizable in other correlated multiorbital systems. In addition, we find that the low-energy self-energy matrix-responsible for the reshaping of the Fermi surface-sizably differs from the static Hartree-Fock limit. Finally, we find a strong spin-orbital entanglement; this supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr_{2}RuO_{4}. PMID:27015496

  11. Entanglement in ground and excited states of gapped fermion systems and their relationship with fermi surface and thermodynamic equilibrium properties

    NASA Astrophysics Data System (ADS)

    Storms, Michelle; Singh, Rajiv

    2014-03-01

    We study bipartite entanglement entropies in the ground and excited states of model fermion systems, where a staggered potential, μs, induces a gap in the spectrum. Ground state entanglement entropies satisfy the ``area law,'' and the ``area-law'' coefficient is found to diverge as a logarithm of the staggered potential, when the system has an extended Fermi surface at μs = 0 . On the square-lattice, we show that the coefficient of the logarithmic divergence depends on the fermi surface geometry and its orientation with respect to the real-space interface between subsystems and is related to the Widom conjecture as enunciated by Gioev and Klich (Phys. Rev. Lett. 96, 100503 (2006)). For point Fermi surfaces in two-dimension, the ``area-law'' coefficient stays finite as μs --> 0 . The von Neumann entanglement entropy associated with the excited states follows a ``volume law'' and allows us to calculate an entropy density function sV(e) , which is substantially different from the thermodynamic entropy density function sT(e) when the lattice is bipartitioned into two equal subsystems, but approaches the thermodynamic entropy density as the fraction of sites in the larger subsystem, that is integrated out, approaches unity.

  12. Large Fermi Surface of Heavy Electrons at the Border of Mott Insulating State in NiS2

    PubMed Central

    Friedemann, S.; Chang, H.; Gamża, M. B.; Reiss, P.; Chen, X.; Alireza, P.; Coniglio, W. A.; Graf, D.; Tozer, S.; Grosche, F. M.

    2016-01-01

    One early triumph of quantum physics is the explanation why some materials are metallic whereas others are insulating. While a treatment based on single electron states is correct for most materials this approach can fail spectacularly, when the electrostatic repulsion between electrons causes strong correlations. Not only can these favor new and subtle forms of matter, such as magnetism or superconductivity, they can even cause the electrons in a half-filled energy band to lock into position, producing a correlated, or Mott insulator. The transition into the Mott insulating state raises important fundamental questions. Foremost among these is the fate of the electronic Fermi surface and the associated charge carrier mass, as the Mott transition is approached. We report the first direct observation of the Fermi surface on the metallic side of a Mott insulating transition by high pressure quantum oscillatory measurements in NiS2. Our results point at a large Fermi surface consistent with Luttinger’s theorem and a strongly enhanced quasiparticle effective mass. These two findings are in line with central tenets of the Brinkman-Rice picture of the correlated metal near the Mott insulating state and rule out alternative scenarios in which the carrier concentration vanishes continuously at the metal-insulator transition. PMID:27174799

  13. Hidden order in URu2Si2 originates from Fermi surface gapping induced by dynamic symmetry breaking.

    PubMed

    Elgazzar, S; Rusz, J; Amft, M; Oppeneer, P M; Mydosh, J A

    2009-04-01

    Spontaneous, collective ordering of electronic degrees of freedom leads to second-order phase transitions that are characterized by an order parameter driving the transition. The notion of a 'hidden order' has recently been used for a variety of materials where a clear phase transition occurs without a known order parameter. The prototype example is the heavy-fermion compound URu(2)Si(2), where a mysterious hidden-order transition occurs at 17.5 K. For more than twenty years this system has been studied theoretically and experimentally without a firm grasp of the underlying physics. Here, we provide a microscopic explanation of the hidden order using density-functional theory calculations. We identify the Fermi surface 'hot spots' where degeneracy induces a Fermi surface instability and quantify how symmetry breaking lifts the degeneracy, causing a surprisingly large Fermi surface gapping. As the mechanism for the hidden order, we deduce spontaneous symmetry breaking through a dynamic mode of antiferromagnetic moment excitations. PMID:19234447

  14. Large Fermi Surface of Heavy Electrons at the Border of Mott Insulating State in NiS2.

    PubMed

    Friedemann, S; Chang, H; Gamża, M B; Reiss, P; Chen, X; Alireza, P; Coniglio, W A; Graf, D; Tozer, S; Grosche, F M

    2016-01-01

    One early triumph of quantum physics is the explanation why some materials are metallic whereas others are insulating. While a treatment based on single electron states is correct for most materials this approach can fail spectacularly, when the electrostatic repulsion between electrons causes strong correlations. Not only can these favor new and subtle forms of matter, such as magnetism or superconductivity, they can even cause the electrons in a half-filled energy band to lock into position, producing a correlated, or Mott insulator. The transition into the Mott insulating state raises important fundamental questions. Foremost among these is the fate of the electronic Fermi surface and the associated charge carrier mass, as the Mott transition is approached. We report the first direct observation of the Fermi surface on the metallic side of a Mott insulating transition by high pressure quantum oscillatory measurements in NiS2. Our results point at a large Fermi surface consistent with Luttinger's theorem and a strongly enhanced quasiparticle effective mass. These two findings are in line with central tenets of the Brinkman-Rice picture of the correlated metal near the Mott insulating state and rule out alternative scenarios in which the carrier concentration vanishes continuously at the metal-insulator transition. PMID:27174799

  15. Fermi surface nesting and spin density wave instability in the overdoped superconducting iron pnictides

    NASA Astrophysics Data System (ADS)

    Jiang, Hong-Min; Yao, Zi-Jian; Zhang, Fu-Chun

    2012-11-01

    The nesting of electron Fermi pocket with one of the two hole pockets around the Brillouin zone center has been attributed to the spin density wave (SDW) instability in the parent compound of superconducting iron pnictides. We propose here that the second hole Fermi pocket may be nested with the electron pocket in the doped case, which results in a new SDW instability. Our work is motivated by and may explain the recent scanning tunneling spectroscopy (STM) measurements on NaFe1-xCoxAs, which show an asymmetric gap-like feature near the Fermi level in the overdoped regime (Zhou X. et al., Phys. Rev. Lett., 109 (2012) 037002). We use a multi-band model to examine this feature within random phase approximation to include the coupling between the itinerant electron and the local spins.

  16. Fermi Surface Evolution and Luttinger Theorem in NaxCoO2: A Systematic Photoemission Study

    SciTech Connect

    Yang, H. B.; Pan, Z. H.; Sekharan, A. K. P.; Sato, T.; Souma, S.; Takahashi, T.; Jin, Rongying; Sales, Brian C; Mandrus, David; Fedorov, A. V.; Wang, Z.; Ding, H.

    2005-01-01

    We report a systematic angle-resolved photoemission study on Na{sub x}CoO{sub 2} for a wide range of Na concentrations (0.3 {le} x {le} 0.72). In all the metallic samples at different x, we observed (i) only a single holelike Fermi surface centered around {Gamma} and (ii) its area changes with x according to the Luttinger theorem. We also observed a surface state that exhibits a larger Fermi surface area. The e{prime}{sub g} band and the associated small Fermi surface pockets near the K points predicted by band calculations are found to sink below the Fermi energy in a manner almost independent of the doping and temperature.

  17. Determination of the Fermi surface in high-T{sub c} superconductors by angle-resolved photoemission spectroscopy

    SciTech Connect

    Mesot, J.; Randeria, M.; Norman, M. R.; Kaminski, A.; Fretwell, H. M.; Campuzano, J. C.; Ding, H.; Takeuchi, T.; Sato, T.; Yokoya, T.

    2001-06-01

    We study the normal-state electronic excitations probed by angle-resolved photoemission spectroscopy (ARPES) in Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}CuO{sub 6} (Bi2201) and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi2212). Our main goal is to establish explicit criteria for determining the Fermi surface from ARPES data on strongly interacting systems where sharply defined quasiparticles do not exist and the dispersion is very weak in parts of the Brillouin zone. Additional complications arise from strong matrix element variations within the zone. We present detailed results as a function of incident photon energy, and show simple experimental tests to distinguish between an intensity drop due to matrix element effects and spectral weight loss due to a Fermi crossing. We reiterate the use of polarization selection rules in disentangling the effect of umklapps due to the BiO superlattice in Bi2212. We conclude that, despite all the complications, the Fermi surface can be determined unambiguously; it is a single large hole barrel centered about ({pi},{pi}) in both materials.

  18. Orbital characters and near two-dimensionality of Fermi surfaces in NaFe1-xCoxAs

    NASA Astrophysics Data System (ADS)

    Liu, Z.-H.; Richard, P.; Li, Y.; Jia, L.-L.; Chen, G.-F.; Xia, T.-L.; Wang, D.-M.; He, J.-B.; Yang, H.-B.; Pan, Z.-H.; Valla, T.; Johnson, P. D.; Xu, N.; Ding, H.; Wang, S.-C.

    2012-11-01

    We report a comprehensive study of orbital characters and tridimensional nature of the electronic bands of 111-family in Fe-pnictides superconductors, NaFe1-xCoxAs (x = 0 and 0.05), with angle-resolved photoemission spectroscopy. We determined the orbital characters and the kz dependence of the low-energy electronic structures by tuning the polarization and the energy of the incident photons. We observed two nearly two-dimensional hole-like Fermi surfaces (FS) near the Brillouin zone (BZ) center and two electron-like FS near BZ corner. The bands near the Fermi level (EF) are mainly derived from the Fe 3dxy, 3dyz, and 3dzx orbitals.

  19. Fermi Surface and Quasiparticle Excitations of Sr2RhO4

    SciTech Connect

    Baumberger, F.; Ingle, N. J. C.; Meevasana, W.; Lu, D. H.; Perry, R. S.; Mackenzie, A. P.; Hussain, Z; Singh, David J; Shen, Z. X.

    2006-01-01

    The electronic structure of the layered 4d transition metal oxide Sr2RhO4 is investigated by angle resolved photoemission. We find well-defined quasiparticle excitations with a highly anisotropic dispersion, suggesting a quasi-two-dimensional Fermi-liquid-like ground state. Markedly different from the isostructural Sr2RuO4, only two bands with dominant Rh 4dxz;zy character contribute to the Fermi surface. A quantitative analysis of the photoemission quasiparticle band structure is in excellent agreement with bulk data. In contrast, it is found that state-of-the-art density functional calculations in the local density approximation differ significantly from the experimental findings.

  20. Doping driven small-to-large Fermi surface transition and d-wave superconductivity in a two-dimensional Kondo lattice

    NASA Astrophysics Data System (ADS)

    Eder, R.; Wróbel, P.

    2011-07-01

    We study the two-dimensional Kondo lattice model with an additional Heisenberg exchange between localized spins. In a first step, we use mean-field theory with two order parameters. The first order parameter is a complex pairing amplitude between conduction electrons and localized spins that describes condensation of Kondo (or Zhang-Rice) singlets. A nonvanishing value implies that the localized spins contribute to the Fermi surface volume. The second-order parameter describes singlet pairing between the localized spins and competes with the Kondo-pairing order parameter. Reduction of the carrier density in the conduction band reduces the energy gain due to the formation of the large Fermi surface and induces a phase transition to a state with strong singlet correlations between the localized spins and a Fermi surface that comprises only the conduction electrons. The model thus shows a doping driven change of its Fermi surface volume. At intermediate doping and low temperature, there is a phase where both order parameters coexist, which has a gapped large Fermi surface and dx2-y2 superconductivity. The theory thus qualitatively reproduces the phase diagram of cuprate superconductors. In the second part of this paper, we show how the two phases with different Fermi surface volume emerge in a strong-coupling theory applicable in the limit of large Kondo exchange. The large Fermi surface phase corresponds to a “vacuum” of localized Kondo singlets with uniform phase, and the quasiparticles are spin-1/2 charge fluctuations around this fully paired state. In the small Fermi surface phase, the quasiparticles correspond to propagating Kondo singlets or triplets whereby the phase of a given Kondo singlet corresponds to its momentum. In this picture, a phase transition occurs for low filling of the conduction band as well.

  1. Quantum oscillations from the cylindrical Fermi-surface sheet of potassium created by the charge-density wave

    NASA Astrophysics Data System (ADS)

    Lacueva, Graciela; Overhauser, A. W.

    1992-07-01

    Oscillations reported by Dunifer et al. in microwave transmission through thin K layers are found to be periodic in 1/H. The oscillations arise from conduction-electron Landau levels passing through a small cylindrical sheet of the Fermi surface. This cylinder had been envisioned theoretically after incorporating both charge-density-wave and crystalline potentials in Schrödinger's equation. The cylinder's cross-sectional area is found to be πk2F/69, in agreement with the area inferred from the perpendicular-field cyclotron resonance, discovered by Grimes in the surface impedance.

  2. Regulating spin and Fermi surface topology of a quantum metal film by the surface (interface) monatomic layer

    NASA Astrophysics Data System (ADS)

    Matsuda, Iwao

    2012-02-01

    the Rashba-type surface alloy reduces the spin-relaxation time in the ultrathin film significantly [5]. These results demonstrate that spin and Fermi surface topology of a quantum metal film can be regulated by the surface (interface) monatomic layer.[0pt] [1] T. Okuda, Y. Takeichi, K. He, A. Harasawa, A. Kakizaki, and I. Matsuda, Phys. Rev. B 80, 113409 (2009).[0pt] [2] K. He, T. Hirahara, T. Okuda, S. Hasegawa, A. Kakizaki, and I. Matsuda, Phys. Rev. Lett. 101, 107604 (2008).[0pt] [3] K. He, Y. Takeichi, M. Ogawa, T. Okuda, P. Moras, D. Topwal, A. Harasawa, T. Hirahara, C. Carbone, A. Kakizaki, and I. Matsuda, Phys. Rev. Lett. 104, 156805 (2010).[0pt] [4] N. Miyata, R. Hobara, H. Narita, T. Hirahara, S. Hasegawa, and I. Matsuda, Japanese Journal of Applied Physics 50, 036602 (2011).[0pt] [5] N. Miyata, H. Narita, M. Ogawa, A. Harasawa, R. Hobara, T. Hirahara, P. Moras, D.Topwal, C.Carbone, S.Hasegawa, and I. Matsuda, Phys. Rev. B, 83, 195305 (2011).

  3. First 2D-ACAR Measurements on Cu with the new Spectrometer at TUM

    NASA Astrophysics Data System (ADS)

    Weber, J. A.; Böni, P.; Ceeh, H.; Leitner, M.; Hugenschmidt, Ch

    2013-06-01

    The two-dimensional measurement of the angular correlation of the positron annihilation radiation (2D-ACAR) is a powerful tool to investigate the electronic structure of materials. Here we report on the first results obtained with the new 2D-ACAR spectrometer at the Technische Universitat München (TUM). To get experience in processing and interpreting 2D-ACAR data, first measurements were made on copper. The obtained data are treated with standard procedures and compared to theoretical calculations. It is shown that the measurements are in good agreement with the calculations and that the Fermi surface can be entirely reconstructed using three projections only.

  4. Using Hydrus 2-D to assess the emitters optimal position for Eggplants under surface and subsurface drip irrigation

    NASA Astrophysics Data System (ADS)

    Ghazouani, Hiba; Autovino, Dario; Douh, Boutheina; Boujelben, Abdel Hamid; Provenznao, Giuseppe; Rallo, Giovanni

    2014-05-01

    The main objective of the work is to assess the emitters optimal position for Eggplant crop (Solanum melongena L.) in a sandy loam soil irrigated with surface or subsurface drip irrigation systems, by means of field measurements and simulations carried out with Hydrus-2D model. Initially, the performance of the model is evaluated on the basis of the comparison between simulated soil water contents (SWC) and the corresponding measured in two plots, in which laterals with coextruded emitters are laid on the soil surface (T0) and at 20 cm depth (T20), respectively. In order to choose the best position of the lateral, the results of different simulation runs, carried out by changing the installation depth of the lateral (5 cm, 15 cm and 45 cm) were compared in terms of ratio between actual transpiration and total amount of water provided during the entire growing season (WUE). Experiments were carried out, from April to June 2007, at Institut Supérieur Agronomique de Chott Mériem (Sousse, Tunisia). In the two plots, plants were spaced 0.40 m along the row and 1.2 m between the rows. Each plot was irrigated by means of laterals with coextruded emitters spaced 0.40 m and discharging a flow rate equal to 4.0 l h-1 at a nominal pressure of 100 kPa. In each plot, spatial and temporal variability of SWCs were acquired with a Time Domain Reflectometry probe (Trime-FM3), on a total of four 70 cm long access tubes, installed along the direction perpendicular to the plant row, at distances of 0, 20, 40 and 60 cm from the emitter. Irrigation water was supplied, accounting for the rainfall, every 7-10 days at the beginning of the crop cycle (March-April) and approximately once a week during the following stages till the harvesting (May-June), for a total of 15 one-hour watering. To run the model, soil evaporation, Ep, and crop transpiration, Tp were determined according to the modified FAO Penman-Monteith equation and the dual crop coefficient approach, whereas soil hydraulics

  5. Observation of an electron band above the Fermi level in FeTe₀.₅₅Se₀.₄₅ from in-situ surface doping

    DOE PAGESBeta

    Zhang, P.; Richard, P.; Xu, N.; Xu, Y. -M.; Ma, J.; Qian, T.; Fedorov, A. V.; Denlinger, J. D.; Gu, G. D.; Ding, H.

    2014-10-27

    We used in-situ potassium (K) evaporation to dope the surface of the iron-based superconductor FeTe₀.₅₅Se₀.₄₅. The systematic study of the bands near the Fermi level confirms that electrons are doped into the system, allowing us to tune the Fermi level of this material and to access otherwise unoccupied electronic states. In particular, we observe an electron band located above the Fermi level before doping that shares similarities with a small three-dimensional pocket observed in the cousin, heavily-electron-doped KFe₂₋xSe₂ compound.

  6. Observation of an electron band above the Fermi level in FeTe₀.₅₅Se₀.₄₅ from in-situ surface doping

    SciTech Connect

    Zhang, P.; Richard, P.; Xu, N.; Xu, Y. -M.; Ma, J.; Qian, T.; Fedorov, A. V.; Denlinger, J. D.; Gu, G. D.; Ding, H.

    2014-10-27

    We used in-situ potassium (K) evaporation to dope the surface of the iron-based superconductor FeTe₀.₅₅Se₀.₄₅. The systematic study of the bands near the Fermi level confirms that electrons are doped into the system, allowing us to tune the Fermi level of this material and to access otherwise unoccupied electronic states. In particular, we observe an electron band located above the Fermi level before doping that shares similarities with a small three-dimensional pocket observed in the cousin, heavily-electron-doped KFe₂₋xSe₂ compound.

  7. On the 2D-transition, hysteresis and thermodynamic equilibrium of Kr adsorption on a graphite surface.

    PubMed

    Diao, Rui; Fan, Chunyan; Do, D D; Nicholson, D

    2015-12-15

    The adsorption and desorption of Kr on graphite at temperatures in the range 60-88K, was systematically investigated using a combination of several simulation techniques including: Grand Canonical Monte Carlo (GCMC), Canonical kinetic-Monte Carlo (C-kMC) and the Mid-Density Scheme (MDS). Particular emphasis was placed on the gas-solid, gas-liquid and liquid-solid 2D phase transitions. For temperatures below the bulk triple point, the transition from a 2D-liquid-like monolayer to a 2D-solid-like state is manifested as a sub-step in the isotherm. A further increase in the chemical potential leads to another rearrangement of the 2D-solid-like state from a disordered structure to an ordered structure that is signalled by (1) another sub-step in the monolayer region and (2) a spike in the plot of the isosteric heat versus density at loadings close to the dense monolayer coverage concentration. Whenever a 2D transition occurs in a grand canonical isotherm it is always associated with a hysteresis, a feature that is not widely recognised in the literature. We studied in details this hysteresis with the analysis of the canonical isotherm, obtained with C-kMC, which exhibits a van der Waals (vdW) type loop with a vertical segment in the middle. We complemented the hysteresis loop and the vdW curve with the analysis of the equilibrium transition obtained with the MDS, and found that the equilibrium transition coincides exactly with the vertical segment of the C-kMC isotherm, indicating the co-existence of two phases at equilibrium. We also analysed adsorption at higher layers and found that the 2D-coexistence is also observed, provided that the temperature is well below the triple point. Finally the 2D-critical temperatures were obtained for the first three layers and they are in good agreement with the experimental data in the literature. PMID:26364074

  8. Direct Observation of the Fermi Arc Surface State in the Three-Dimensional Dirac Semimetal Na3Bi

    NASA Astrophysics Data System (ADS)

    Liang, Aiji; Wang, Zhijun; Chen, Chaoyu; Shi, Youguo; Yi, Hemian; Feng, Ya; Xie, Zhuojin; He, Shaolong; He, Junfeng; Peng, Yingying; Liu, Xu; Liu, Yan; Zhao, Lin; Liu, Guodong; Zhang, Jun; Nakatake, M.; Arita, M.; Shimada, K.; Namatame, H.; Taniguchi, M.; Xu, Zuyan; Chen, Chuangtian; Dai, Xi; Fang, Zhong; Zhou, Xingjiang

    2015-03-01

    The three dimensional (3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction and valence bands connect to each other. Here we report the direct observation of the linearly dispersive 3D bulk Dirac points at the natural (001) cleaving surface of Na3Bi single crystal by high resolution ARPES. In addition, we have directly observed two separated 3D bulk Dirac nodes by elaborately cleaving Na3Bi samples at a non-natural-cleavage (100) crystalline surface. We further unveil the unusual Fermi-arc surface states connecting the two 3D Dirac nodes. At this unique (100) crystalline surface, the identification of the 3D Dirac semimetal state in Na3Bi paves the way for systematically exploring rich exotic topological physics such as topological insulator and Weyl semimetal state.

  9. Fermi Surface Reconstruction inside the Hidden Order Phase of URu2Si2 Probed by Thermoelectric Measurements

    NASA Astrophysics Data System (ADS)

    Pourret, Alexandre; Palacio-Morales, Alexandra; Krämer, Steffen; Malone, Liam; Nardone, Marc; Aoki, Dai; Knebel, Georg; Flouquet, Jacques

    2013-03-01

    We report thermoelectric measurements of the low carrier heavy fermion compound URu2Si2 at high fields up to 34 T and at low temperatures down to 500 mK. The field dependence of the thermoelectric power (TEP) and the Nernst signal shows successive anomalies deep inside the hidden order (HO) phase. The field position of these anomalies correspond to different changes in the Shubnikov--de Haas frequencies and effective masses around 12, 17, 23, and 30 T. These results indicate successive reconstructions of the Fermi surface, which imply electronic phase transitions well within the HO phase.

  10. Interaction quenches of Fermi gases

    SciTech Connect

    Uhrig, Goetz S.

    2009-12-15

    It is shown that the jump in the momentum distribution of Fermi gases evolves smoothly for small and intermediate times once an interaction between the fermions is suddenly switched on. The jump does not vanish abruptly. The loci in momentum space where the jumps occur are those of the noninteracting Fermi sea. No relaxation of the Fermi surface geometry takes place.

  11. The impact of pore structure and surface roughness on capillary trapping for 2-D and 3-D porous media: Comparison with percolation theory

    NASA Astrophysics Data System (ADS)

    Geistlinger, Helmut; Ataei-Dadavi, Iman; Mohammadian, Sadjad; Vogel, Hans-Jörg

    2015-11-01

    We study the impact of pore structure and surface roughness on capillary trapping of nonwetting gas phase during imbibition with water for capillary numbers between 10-7 and 5 × 10-5, within glass beads, natural sands, glass beads monolayers, and 2-D micromodels. The materials exhibit different roughness of the pore-solid interface. We found that glass beads and natural sands, which exhibit nearly the same grain size distribution, pore size distribution, and connectivity, showed a significant difference of the trapped gas phase of about 15%. This difference can be explained by the microstructure of the pore-solid interface. Based on the visualization of the trapping dynamics within glass beads monolayers and 2-D micromodels, we could show that bypass trapping controls the trapping process in glass beads monolayers, while snap-off trapping controls the trapping process in 2-D micromodels. We conclude that these different trapping processes are the reason for the different trapping efficiency, when comparing glass beads packs with natural sand packs. Moreover, for small capillary numbers of 10-6, we found that the cluster size distribution of trapped gas clusters of all 2-D and 3-D porous media can be described by a universal power law behavior predicted from percolation theory. This cannot be expected a priori for 2-D porous media, because bicontinuity of the two bulk phases is violated. Obviously, bicontinuity holds for the thin-film water phase and the bulk gas phase. The snap-off trapping process leads to ordinary bond percolation in front of the advancing bulk water phase and is the reason for the observed universal power law behavior in 2-D micromodels with rough surfaces.

  12. Bulk Fermi Surface of Charge-Neutral Excitations in SmB6 or Not: A Heat-Transport Study

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Cui, S.; Dong, J. K.; Zhao, D.; Wu, T.; Chen, X. H.; Sun, Kai; Yao, Hong; Li, S. Y.

    2016-06-01

    Recently, there have been increasingly hot debates on whether a bulk Fermi surface of charge-neutral excitations exists in the topological Kondo insulator SmB6 . To unambiguously resolve this issue, we perform the low-temperature thermal conductivity measurements of a high-quality SmB6 single crystal down to 0.1 K and up to 14.5 T. Our experiments show that the residual linear term of thermal conductivity at the zero field is zero, within the experimental accuracy. Furthermore, the thermal conductivity is insensitive to the magnetic field up to 14.5 T. These results demonstrate the absence of fermionic charge-neutral excitations in bulk SmB6 , such as scalar Majorana fermions or spinons and, thus, exclude the existence of a bulk Fermi surface suggested by a recent quantum oscillation study of SmB6 . This puts a strong constraint on the explanation of the quantum oscillations observed in SmB6 .

  13. Direct, experimental evidence of the Fermi surface in YBa sub 2 Cu sub 3 O sub 7-x

    SciTech Connect

    Haghighi, H.; Kaiser, J.H.; Rayner, S.L.; West, R.N. ); Liu, J.Z.; Shelton, R. ); Howell, R.H.; Sterne, P.A.; Solal, F.; Fluss, M.J. )

    1991-04-29

    We report new measurements of the electron-positron momentum spectra of YBa{sub 2}Cu{sub 3}O{sub 7-x} performed with ultra-high statistical precision. These data differ from previous results in two significant respects: They show the D{sub 2} symmetry appropriate for untwinned crystals and, more importantly, they show unmistakable, statistically significant, discontinuities that are evidence of a major Fermi surface section. These results provide a partial answer to a question of special significance to the study of high temperature superconductors i.e. the distribution of the electrons in the material, the electronic structure. Special consideration has been given both experimentally and theoretically to the existence and shape of a Fermi surface in the materials and to the superconducting gap. There are only three experimental techniques that can provide details of the electronic structure at useful resolutions. They are angular correlation of positron annihilation radiation, ACAR, angle resolved photo emission, PE, and de Haas van Alphen measurements. 11 refs., 4 figs.

  14. Two-dimensional effects at the Fermi level of the c(2×2)-MnCu/Cu( 0 0 1 ) surface alloy

    NASA Astrophysics Data System (ADS)

    Gallego, S.; Soria, F.; Muñoz, M. C.

    2003-02-01

    A detailed study of the electronic structure of the c(2×2)-MnCu/Cu(0 0 1) surface alloy at the Fermi level is presented. We show that the complex topology of the two-dimensional momentum distribution of the electrons is due to the sum of two effects: the projection of the bulk Fermi surface onto the (2×2) plane, and the presence of new electronic states induced by the minority spin band of Mn. The crucial role of the surface potential in the intensity and dispersion of the states is discussed.

  15. Lattice distortion associated with Fermi-surface reconstruction in Sr3Rh4Sn13

    NASA Astrophysics Data System (ADS)

    Kuo, C. N.; Tseng, C. W.; Wang, C. M.; Wang, C. Y.; Chen, Y. R.; Wang, L. M.; Lin, C. F.; Wu, K. K.; Kuo, Y. K.; Lue, C. S.

    2015-04-01

    Superconducting Sr3Rh4Sn13 has been of current interest due to indications of a characteristic phase transition associated with structural distortions in its normal state. To further shed light on the nature of the phase transition, we performed a detailed study of single crystalline Sr3Rh4Sn13 by means of the thermal expansion, electrical resistivity, Hall coefficient, Seebeck coefficient, thermal conductivity, as well as 119Sn nuclear magnetic resonance (NMR) measurements, mainly focusing on the signatures around the phase transition temperature T*=137 K. The phase transition has been characterized by marked features near T* in all measured physical quantities. In particular, the NMR characteristics provide microscopic evidence for the reduction in the electronic Fermi-level density of states (DOSs) below T*. Based on the analysis of the 119Sn NMR spin-lattice relaxation rate, we clearly demonstrated that the Sn 5 s partial Fermi-level DOS in Sr3Rh4Sn13 is reduced by 13% across the phase transition. In this respect, it points to the strong association between electronic and structural instability for the peculiar phase transition in Sr3Rh4Sn13 .

  16. Measurements of Schottky barrier heights formed from metals and 2D transition metal dichalcogedides

    NASA Astrophysics Data System (ADS)

    Kim, Changsik; Moon, Inyong; Nam, Seunggeol; Cho, Yeonchoo; Shin, Hyeon-Jin; Park, Seongjun; Yoo, Won Jong

    Schottky barrier height (SBH) is an important parameter that needs to be considered for designing electronic devices. However, for two dimensional (2D) materials based devices, SBH control is limited by 2D structure induced quantum confinement and 2D surface induced Fermi level pinning. In this work, we explore differences in measuring SBH between 2D and 3D materials. Recently, low temperature I-V measurement has been reported to extract SBH based on thermionic emission equation for Schottky diode. However, 2D devices are not real Schottky diode in that both source and drain metal electrodes make Schottky contact. According to our experimental results, SBH extracted from linear slope of ln (I/T3/2) against 1/T show widely diverse values, dependent on applied voltage bias and tested temperature which affect carrier transport including tunneling or thermionic emission across the metal-2D material interface. In this work, we wish to demonstrate the method to determine SBH and Fermi level pinning which are attributed to 2D transition metal dichalcogedides, differently from conventional 3D materials. .

  17. Split Fermi Surface Properties in Ullmannite NiSbS and PdBiSe with the Cubic Chiral Crystal Structure

    NASA Astrophysics Data System (ADS)

    Kakihana, Masashi; Teruya, Atsushi; Nishimura, Kengo; Nakamura, Ai; Takeuchi, Tetsuya; Haga, Yoshinori; Harima, Hisatomo; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika

    2015-09-01

    We grew single crystals of ullmannite NiSbS and PbBiSe with the cubic chiral structure and carried out electrical resistivity, specific heat, and de Haas-van Alphen (dHvA) experiments to clarify their Fermi surface properties. The Fermi surfaces were found to split into two, reflecting the non-centrosymmetric crystal structure. The splitting energies between the two nearly spherical electron Fermi surfaces named α and α' were determined as 220 K in NiSbS and 1050 K in PdBiSe for H || [100] or [001]. This difference in splitting energies between the two compounds originates mainly from the fact that the spin-orbit interactions of Ni-3d, Sb-5p, and S-3p electrons in NiSbS are smaller in magnitude than those of Pd-4d, Bi-6p, and Se-4p electrons in PdBiSe, respectively.

  18. Tuning the metal-insulator transition in NdNiO3 heterostructures via Fermi surface instability and spin fluctuations

    NASA Astrophysics Data System (ADS)

    Dhaka, R. S.; Das, Tanmoy; Plumb, N. C.; Ristic, Z.; Kong, W.; Matt, C. E.; Xu, N.; Dolui, Kapildeb; Razzoli, E.; Medarde, M.; Patthey, L.; Shi, M.; Radović, M.; Mesot, Joël

    2015-07-01

    We employed in situ pulsed laser deposition (PLD) and angle-resolved photoemission spectroscopy (ARPES) to investigate the mechanism of the metal-insulator transition (MIT) in NdNiO3 (NNO) thin films, grown on NdGaO3(110) and LaAlO3(100) substrates. In the metallic phase, we observe three-dimensional hole and electron Fermi surface (FS) pockets formed from strongly renormalized bands with well-defined quasiparticles. Upon cooling across the MIT in NNO/NGO sample, the quasiparticles lose coherence via a spectral weight transfer from near the Fermi level to localized states forming at higher binding energies. In the case of NNO/LAO, the bands are apparently shifted upward with an additional holelike pocket forming at the corner of the Brillouin zone. We find that the renormalization effects are strongly anisotropic and are stronger in NNO/NGO than NNO/LAO. Our study reveals that substrate-induced strain tunes the crystal field splitting, which changes the FS properties, nesting conditions, and spin-fluctuation strength, and thereby controls the MIT via the formation of an electronic order parameter with QAF˜(1 /4 ,1 /4 ,1 /4 ±δ ) .

  19. Coronates, spherical containers, bowl-shaped surfaces, porous 1D-, 2D-, 3D-metallo-coordination polymers, and metallodendrimers.

    PubMed

    Saalfrank, Rolf W; Scheurer, Andreas

    2012-01-01

    Supramolecular coordination cages and polymers bear exceptional advantages over their organic counterparts. They are available in one-pot reactions and in high yields and display physical properties that are generally inaccessible with organic species. Moreover, their weak, reversible, noncovalent bonding interactions facilitate error checking and self-correction. This review emphasizes the achievements in supramolecular coordination container as well as polymer chemistry initiated by serendipity and their materialization based on rational design. The recognition of similarities in the synthesis of different supramolecular assemblies allows prediction of potential structures in related cases. The combination of detailed symmetry considerations with the basic rules of coordination chemistry has only recently allowed for the design of rational strategies for the construction of a variety of nanosized spherical containers, bowls, 1D-, 2D-, and 3D-coordination polymers with specified size and shape. PMID:22160460

  20. Metallic 2D Surface State of Silicon by Ionic Liquid gating and observation of Reentrant Insulating behavior

    NASA Astrophysics Data System (ADS)

    Nelson, J. J.; Goldman, A. M.

    2015-03-01

    Metal insulator transitions are usually observed in high mobility and low carrier density 2D electron systems. There are several open questions regarding the metallic state including its existence in the limit of zero temperature. The current experimental focus is on the production of higher mobility samples to push the critical carrier density to even lower values, which will increase the effects of the Coulomb interaction. Here we report an unexpected result, the observation of the onset of a metallic state at high carrier densities in silicon gated with the ionic liquid DEME-TFSI. In addition we have observed a return to the insulating state as the carrier density was further increased. This reentrant insulting behavior is an effect that was recently predicted. Supported in part by NSF/DMR-1263316. Part of this work was carried out at the Minnesota Nanocenter.

  1. Surface origin of quasi-2D Shubnikov–de Haas oscillations in Bi{sub 2}Te{sub 2}Se

    SciTech Connect

    Kapustin, A. A. Stolyarov, V. S.; Bozhko, S. I.; Borisenko, D. N.; Kolesnikov, N. N.

    2015-08-15

    Transport measurements at liquid helium temperatures were done on a number of Bi{sub 2}Te{sub 2}Se samples with thicknesses ranging from 30 to 200 μm in order to detect surface states. In each sample we observed Shubnikov–de Haas (SdH) oscillations and sublinear dependence of off-diagonal component of magnetoresistance tensor on magnetic field. The periods of SdH oscillations in inverse magnetic field were found to be the same within 15%. The positions of SdH oscillations are determined by the normal to surface component of magnetic field. We found that the measured conductivity can be well described by a model with two groups of electrons, 2D and 3D. The conductivity of 2D electrons was found to be relatively weakly varying from sample to sample and not depending on thickness in a systematic manner. This behavior can be explained only by their localization on the surface. Comparison of the results of magnetotransport measurements with our scanning tunneling spectroscopy results on atomically smooth Bi{sub 2}Te{sub 2}Se surface in ultrahigh vacuum led us to conclude that the surface electrons are separated from the bulk electrons by a depletion layer approximately 100 nm thick. This effect could provide the dominant contribution of surface electrons to conductivity in samples with thicknesses less than 200 nm.

  2. Orientational Tuning of the Fermi Sea of Confined Electrons at the SrTiO3 (110) and (111) Surfaces

    NASA Astrophysics Data System (ADS)

    Rödel, T. C.; Bareille, C.; Fortuna, F.; Baumier, C.; Bertran, F.; Le Fèvre, P.; Gabay, M.; Hijano Cubelos, O.; Rozenberg, M. J.; Maroutian, T.; Lecoeur, P.; Santander-Syro, A. F.

    2014-06-01

    We report the existence of confined electronic states at the (110) and (111) surfaces of SrTiO3. Using angle-resolved photoemission spectroscopy, we find that the corresponding Fermi surfaces, subband masses, and orbital ordering are different from the ones at the (001) surface of SrTiO3. This occurs because the crystallographic symmetries of the surface and subsurface planes and the effective electron masses along the confinement direction influence the symmetry of the electronic structure and the orbital ordering of the t2g manifold. Remarkably, our analysis of the data also reveals that the carrier concentration and thickness are similar for all three surface orientations, despite their different polarities. The orientational tuning of the microscopic properties of two-dimensional electron states at the surface of SrTiO3 echoes the tailoring of macroscopic (e.g., transport) properties reported recently in LaAlO3/SrTiO3 (110) and (111) interfaces, and is promising for searching new types of two-dimensional electronic states in correlated-electron oxides.

  3. Effects of carbon fiber surface treatment on the tribological properties of 2D woven carbon fabric/polyimide composites

    NASA Astrophysics Data System (ADS)

    Zhang, Xinrui; Pei, Xianqiang; Jia, Qian; Wang, Qihua

    2009-06-01

    Polyacrylonitrile (PAN)-based carbon fabric (CF) was modified with strong HNO3 oxidation and then introduced into polyimide (PI) composites. The friction and wear properties of the carbon fabric reinforced polyimide composites (CFRP), sliding against GCr15 stainless steel rings, were investigated on an M-2000 model ring-on-block test rig under dry sliding. Experimental results revealed that the carbon fiber surface treatment largely reduced the friction and wear of the CFRP. Compared with the untreated ones, the surface-modified CF can enhance the tribological properties of CFRP efficiently due to the improved adhesion between the CF and the PI matrix. Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) study of the carbon fiber surface showed that the fiber surface became rougher and the oxygen concentration increased greatly after surface treatment, which improved the adhesion between the fiber and the PI matrix and improved the friction-reduction and anti-wear properties of the CFRP.

  4. Phonon dispersions and Fermi surfaces nesting explaining the variety of charge ordering in titanium-oxypnictides superconductors.

    PubMed

    Nakano, Kousuke; Hongo, Kenta; Maezono, Ryo

    2016-01-01

    There has been a puzzle between experiments and theoretical predictions on the charge ordering of layered titanium-oxypnictides superconductors. Unconventional mechanisms to explain this discrepancy have been argued so far, even affecting the understanding of superconductivity on the compound. We provide a new theoretical prediction, by which the discrepancy itself is resolved without any complicated unconventional explanation. Phonon dispersions and changes of nesting vectors in Fermi surfaces are clarified to lead to the variety of superlattice structures even for the common crystal structures when without CDW, including orthorhombic 2 × 2 × 1 one for BaTi2As2O, which has not yet been explained successfully so far, being different from tetragonal for BaTi2Sb2O and BaTi2Bi2O. The electronic structure analysis can naturally explain experimental observations about CDW including most latest ones without any cramped unconventional mechanisms. PMID:27430418

  5. Doping Evolution of the Underlying Fermi Surface in La_2−xSr_xCuO_4

    SciTech Connect

    Yoshida, T.

    2010-05-03

    We have performed a systematic doping dependent study of La{sub 2-x}Sr{sub x}CuO{sub 4} (LSCO) (0.03 {le} x {le} 0.3) by angle-resolved photoemission spectroscopy. In the entire doping range, the underlying 'Fermi surface' determined from the low energy spectral weight approximately satisfies Luttinger's theorem, even down to the lightly-doped region. This is in strong contrast to the result on Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2} (Na-CCOC), which shows a strong deviation from Luttinger's theorem. The differences between LSCO and Na-CCOC are correlated with the different behaviors of the chemical potential shift and spectral weight transfer induced by hole doping.

  6. Fermi Surface and Superconductivity in Low-Density High-Mobility Delta-Doped SrTiO3

    SciTech Connect

    Kim, M.

    2011-08-19

    The electronic structure of low-density n-type SrTiO{sub 3} {delta}-doped heterostructures is investigated by angular dependent Shubnikov-de Haas oscillations. In addition to a controllable crossover from a three- to two-dimensional Fermi surface, clear beating patterns for decreasing dopant layer thicknesses are found. These indicate the lifting of the degeneracy of the conduction band due to subband quantization in the two-dimensional limit. Analysis of the temperature-dependent oscillations shows that similar effective masses are found for all components, associated with the splitting of the light electron pocket. The dimensionality crossover in the superconducting state is found to be distinct from the normal state, resulting in a rich phase diagram as a function of dopant layer thickness.

  7. Phonon dispersions and Fermi surfaces nesting explaining the variety of charge ordering in titanium-oxypnictides superconductors

    NASA Astrophysics Data System (ADS)

    Nakano, Kousuke; Hongo, Kenta; Maezono, Ryo

    2016-07-01

    There has been a puzzle between experiments and theoretical predictions on the charge ordering of layered titanium-oxypnictides superconductors. Unconventional mechanisms to explain this discrepancy have been argued so far, even affecting the understanding of superconductivity on the compound. We provide a new theoretical prediction, by which the discrepancy itself is resolved without any complicated unconventional explanation. Phonon dispersions and changes of nesting vectors in Fermi surfaces are clarified to lead to the variety of superlattice structures even for the common crystal structures when without CDW, including orthorhombic 2 × 2 × 1 one for BaTi2As2O, which has not yet been explained successfully so far, being different from tetragonal for BaTi2Sb2O and BaTi2Bi2O. The electronic structure analysis can naturally explain experimental observations about CDW including most latest ones without any cramped unconventional mechanisms.

  8. Pressure effect on the Fermi surface of {alpha}-(ET){sub 2}TlHg(SeCN){sub 4}

    SciTech Connect

    Laukhin, V.N.; Lee, I.J.; Kushch, N.D.

    1996-12-31

    Magnetoresistence studies of the quasi-two dimensional organic conductor {alpha} - (ET){sub 2}TIHg(SeCN){sub 4} have been carried out under hydrostatic pressure, P. Only one series of SdH oscillations was observed at 3.5Fermi surface variations. Slow oscillations with frequency {approximately}47T were also observed at P=0, which were not observed for P=3.5 kbar. These may be connected with some imperfect nesting of the open orbits at ambient pressure, which may result in a destruction of superconductivity in Se-containing compound.

  9. Phonon dispersions and Fermi surfaces nesting explaining the variety of charge ordering in titanium-oxypnictides superconductors

    PubMed Central

    Nakano, Kousuke; Hongo, Kenta; Maezono, Ryo

    2016-01-01

    There has been a puzzle between experiments and theoretical predictions on the charge ordering of layered titanium-oxypnictides superconductors. Unconventional mechanisms to explain this discrepancy have been argued so far, even affecting the understanding of superconductivity on the compound. We provide a new theoretical prediction, by which the discrepancy itself is resolved without any complicated unconventional explanation. Phonon dispersions and changes of nesting vectors in Fermi surfaces are clarified to lead to the variety of superlattice structures even for the common crystal structures when without CDW, including orthorhombic 2 × 2 × 1 one for BaTi2As2O, which has not yet been explained successfully so far, being different from tetragonal for BaTi2Sb2O and BaTi2Bi2O. The electronic structure analysis can naturally explain experimental observations about CDW including most latest ones without any cramped unconventional mechanisms. PMID:27430418

  10. Quasi-two-dimensional Fermi surfaces of the heavy-fermion superconductor Ce2PdIn8

    NASA Astrophysics Data System (ADS)

    Götze, K.; Klotz, J.; Gnida, D.; Harima, H.; Aoki, D.; Demuer, A.; Elgazzar, S.; Wosnitza, J.; Kaczorowski, D.; Sheikin, I.

    2015-09-01

    We report low-temperature de Haas-van Alphen (dHvA) effect measurements in magnetic fields up to 35 T of the heavy-fermion superconductor Ce2PdIn8 . The comparison of the experimental results with band-structure calculations implies that the 4 f electrons are itinerant rather than localized. The cyclotron masses estimated at high field are only moderately enhanced, 8 m0 and 14 m0 , but are substantially larger than the corresponding band masses. The observed angular dependence of the dHvA frequencies suggests quasi-two-dimensional Fermi surfaces in agreement with band-structure calculations. However, the deviation from ideal two-dimensionality is larger than in CeCoIn5, to which Ce2PdIn8 bears a lot of similarities. This subtle distinction accounts for the different superconducting critical temperatures of the two compounds.

  11. Role of Quantum and Surface-State Effects in the Bulk Fermi-Level Position of Ultrathin Bi Films.

    PubMed

    Hirahara, T; Shirai, T; Hajiri, T; Matsunami, M; Tanaka, K; Kimura, S; Hasegawa, S; Kobayashi, K

    2015-09-01

    We performed high-resolution photon-energy and polarization-dependent ARPES measurements on ultrathin Bi(111) films [6-180 bilayers (BL), 2.5-70 nm thick] formed on Si(111). In addition to the extensively studied surface states (SSs), the edge of the bulk valence band was clearly measured by using S-polarized light. We found direct evidence that this valence band edge, which forms a hole pocket in the bulk Bi crystal, does not cross the Fermi level for the 180 BL thick film. This is consistent with the predicted semimetal-to-semiconductor transition due to the quantum-size effect [V.B. Sandomirskii, Sov. Phys. JETP 25, 101 (1967)]. However, it became metallic again when the film thickness was decreased (below 30 BL). A plausible explanation for this phenomenon is the modification of the charge neutrality condition due to the size effect of the SSs. PMID:26382694

  12. Sensitivities of Tropical Cyclones to Surface Friction and the Coriolis Parameter in a 2-D Cloud-Resolving Model

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode; Tao, Wei-Kuo; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The sensitivities to surface friction and the Coriolis parameter in tropical cyclogenesis are studied using an axisymmetric version of the Goddard cloud ensemble model. Our experiments demonstrate that tropical cyclogenesis can still occur without surface friction. However, the resulting tropical cyclone has very unrealistic structure. Surface friction plays an important role of giving the tropical cyclones their observed smaller size and diminished intensity. Sensitivity of the cyclogenesis process to surface friction. in terms of kinetic energy growth, has different signs in different phases of the tropical cyclone. Contrary to the notion of Ekman pumping efficiency, which implies a preference for the highest Coriolis parameter in the growth rate if all other parameters are unchanged, our experiments show no such preference.

  13. Calibration of Modulation Transfer Function of Surface Profilometers with 1D and 2D Binary Pseudo-random Array Standards

    SciTech Connect

    Yashchuk, Valeriy V.; McKinney, Wayne R.; Takacs, Peter Z.

    2008-05-19

    We suggest and describe the use of a binary pseudo-random grating as a standard test surface for calibration of the modulation transfer function of microscopes. Results from calibration of a MicromapTM-570 interferometric microscope are presented.

  14. Effets Seebeck et Nernst dans les cuprates: Etude de la reconstruction de la surface de Fermi sous champ magnetique intense

    NASA Astrophysics Data System (ADS)

    Laliberte, Francis

    2010-06-01

    Ce memoire presente des mesures de transport thermoelectrique, les effets Seebeck et Nernst, dans une serie d'echantillons de supraconducteurs a haute temperature critique. Des resultats obtenus recemment au Laboratoire National des Champs Magnetiques Intenses a Grenoble sur La1.7Eu0.2Sr0.1 CuO4, La1.675Eu0.2Sr0.125CuO 4, La1.64Eu0.2Sr0.16CuO4, La1.74Eu0.1Sr0.16CuO4 et La 1.4Nd0.4Sr0.2CuO4 sont analyses. Une attention particuliere est accordee aux equations de la theorie semi-classique du transport et leur validite est verifiee. La procedure experimentale et les materiaux utilises pour concevoir les montages de mesures sont expliques en detail. Enfin, un chapitre est dedie a l'explication et l'interpretation des resultats de transport thermoelectrique sur YBa2Cu3O6+delta publies au cours de l'hiver 2010 dans les revues Nature et Physical Review Letters. Les donnees d'effet Seebeck dans les echantillons de La 1.8-x,Eu0.2SrxCuO 4, ou un changement de signe est observe, permettent de conclure a la presence d'une poche d'electrons dans la surface de Fermi qui domine le transport a basse temperature dans la region sous-dopee du diagramme de phase. Cette conclusion est similaire a celle obtenue par des mesures d'effet Hall dans YBa 2Cu3O6+delta et elle cadre bien dans un scenario de reconstruction de la surface de Fermi. Les donnees d'effet Nernst recueillies indiquent que la contribution des fluctuations supraconductrices est limitee a un modeste intervalle de temperature au-dessus de la temperature critique.

  15. Study of colloidal quantum-dot surfaces using an innovative thin-film positron 2D-ACAR method

    NASA Astrophysics Data System (ADS)

    Eijt, Stephan W. H.; van Veen, Anton (Tom); Schut, Henk; Mijnarends, Peter E.; Denison, Art B.; Barbiellini, Bernardo; Bansil, Arun

    2006-01-01

    Nanosized inorganic particles are of great interest because their electronic properties can be easily tailored, providing a tremendous potential for applications in optoelectronic devices, light-emitting diodes, solar cells and hydrogen storage. Confinement of electrons and holes to dimensions comparable to their wavelength leads to quantum-well states with modified wavefunctions and density of states. Surface phenomena are crucial in determining nanoparticle properties in view of their large surface-to-volume ratio. Despite a wealth of information, many fundamental questions about the nature of the surface and its relationship with the electronic structure remain unsolved. Ab initio calculations on CdSe nanocrystals suggest that passivating the ligands does not produce the ideal wurtzite structure and that Se atoms relax outwards irrespective of passivation. Here we show that implanted positrons are trapped at the surface of CdSe nanocrystals. They annihilate mostly with the Se electrons, monitor changes in composition and structure of the surface while hardly sensing the ligand molecules, and we thus unambiguously confirm the predicted strong surface relaxation.

  16. Study of colloidal quantum-dot surfaces using an innovative thin-film positron 2D-ACAR method.

    PubMed

    Eijt, Stephan W H; van Veen, Anton Tom; Schut, Henk; Mijnarends, Peter E; Denison, Art B; Barbiellini, Bernardo; Bansil, Arun

    2006-01-01

    Nanosized inorganic particles are of great interest because their electronic properties can be easily tailored, providing a tremendous potential for applications in optoelectronic devices, light-emitting diodes, solar cells and hydrogen storage. Confinement of electrons and holes to dimensions comparable to their wavelength leads to quantum-well states with modified wavefunctions and density of states. Surface phenomena are crucial in determining nanoparticle properties in view of their large surface-to-volume ratio. Despite a wealth of information, many fundamental questions about the nature of the surface and its relationship with the electronic structure remain unsolved. Ab initio calculations on CdSe nanocrystals suggest that passivating the ligands does not produce the ideal wurtzite structure and that Se atoms relax outwards irrespective of passivation. Here we show that implanted positrons are trapped at the surface of CdSe nanocrystals. They annihilate mostly with the Se electrons, monitor changes in composition and structure of the surface while hardly sensing the ligand molecules, and we thus unambiguously confirm the predicted strong surface relaxation. PMID:16380729

  17. Quasiparticles and Fermi liquid behaviour in an organic metal

    PubMed Central

    Kiss, T.; Chainani, A.; Yamamoto, H.M.; Miyazaki, T.; Akimoto, T.; Shimojima, T.; Ishizaka, K.; Watanabe, S.; Chen, C.-T.; Fukaya, A.; Kato, R.; Shin, S.

    2012-01-01

    Many organic metals display exotic properties such as superconductivity, spin-charge separation and so on and have been described as quasi-one-dimensional Luttinger liquids. However, a genuine Fermi liquid behaviour with quasiparticles and Fermi surfaces have not been reported to date for any organic metal. Here, we report the experimental Fermi surface and band structure of an organic metal (BEDT-TTF)3Br(pBIB) obtained using angle-resolved photoelectron spectroscopy, and show its consistency with first-principles band structure calculations. Our results reveal a quasiparticle renormalization at low energy scales (effective mass m*=1.9 me) and ω2 dependence of the imaginary part of the self energy, limited by a kink at ~50 meV arising from coupling to molecular vibrations. The study unambiguously proves that (BEDT-TTF)3Br(pBIB) is a quasi-2D organic Fermi liquid with a Fermi surface consistent with Shubnikov-de Haas results. PMID:23011143

  18. All-epitaxial, lithographically defined, current- and mode-confined vertical-cavity surface-emitting laser based on selective interfacial fermi-level pinning

    SciTech Connect

    Ahn, J.; Lu, D.; Deppe, D.G.

    2005-01-10

    An approach is presented to fabricate a current- and mode-confined vertical-cavity surface-emitting laser that is all-epitaxial and lithographically defined. The device uses selective Fermi level pinning to self-align the electrical injection to a mode-confining intracavity phase-shifting mesa.

  19. A 2D Gaussian-Beam-Based Method for Modeling the Dichroic Surfaces of Quasi-Optical Systems

    NASA Astrophysics Data System (ADS)

    Elis, Kevin; Chabory, Alexandre; Sokoloff, Jérôme; Bolioli, Sylvain

    2016-08-01

    In this article, we propose an approach in the spectral domain to treat the interaction of a field with a dichroic surface in two dimensions. For a Gaussian beam illumination of the surface, the reflected and transmitted fields are approximated by one reflected and one transmitted Gaussian beams. Their characteristics are determined by means of a matching in the spectral domain, which requires a second-order approximation of the dichroic surface response when excited by plane waves. This approximation is of the same order as the one used in Gaussian beam shooting algorithm to model curved interfaces associated with lenses, reflector, etc. The method uses general analytical formulations for the GBs that depend either on a paraxial or far-field approximation. Numerical experiments are led to test the efficiency of the method in terms of accuracy and computation time. They include a parametric study and a case for which the illumination is provided by a horn antenna. For the latter, the incident field is firstly expressed as a sum of Gaussian beams by means of Gabor frames.

  20. A 2D Gaussian-Beam-Based Method for Modeling the Dichroic Surfaces of Quasi-Optical Systems

    NASA Astrophysics Data System (ADS)

    Elis, Kevin; Chabory, Alexandre; Sokoloff, Jérôme; Bolioli, Sylvain

    2016-03-01

    In this article, we propose an approach in the spectral domain to treat the interaction of a field with a dichroic surface in two dimensions. For a Gaussian beam illumination of the surface, the reflected and transmitted fields are approximated by one reflected and one transmitted Gaussian beams. Their characteristics are determined by means of a matching in the spectral domain, which requires a second-order approximation of the dichroic surface response when excited by plane waves. This approximation is of the same order as the one used in Gaussian beam shooting algorithm to model curved interfaces associated with lenses, reflector, etc. The method uses general analytical formulations for the GBs that depend either on a paraxial or far-field approximation. Numerical experiments are led to test the efficiency of the method in terms of accuracy and computation time. They include a parametric study and a case for which the illumination is provided by a horn antenna. For the latter, the incident field is firstly expressed as a sum of Gaussian beams by means of Gabor frames.

  1. Zeeman-driven Lifshitz transition: a model for the experimentally observed Fermi-surface reconstruction in YbRh2Si2.

    PubMed

    Hackl, Andreas; Vojta, Matthias

    2011-04-01

    The heavy-fermion metal YbRh(2)Si(2) displays a field-driven quantum phase transition where signatures of a Fermi-surface reconstruction have been identified, often interpreted as a breakdown of the Kondo effect. We argue that instead many properties of the material can be consistently described by assuming a Zeeman-driven Lifshitz transition of narrow heavy-fermion bands. Using a suitable quasiparticle model, we find a smeared jump in the Hall constant and lines of maxima in susceptibility and specific heat, very similar to experimental data. An intermediate non-Fermi-liquid regime emerges due to the small effective Fermi energy near the transition. Further experiments to discriminate the different scenarios are proposed. PMID:21517414

  2. Growth of porous anodized alumina on the sputtered aluminum films with 2D-3D morphology for high specific surface area

    NASA Astrophysics Data System (ADS)

    Liao, M. W.; Chung, C. K.

    2014-08-01

    The porous anodic aluminum oxide (AAO) with high-aspect-ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional (1D) nanostructures. The high specific surface area of AAO can also be applied to the super capacitor and the supporting substrate for catalysis. The rough surface could be helpful to enhance specific surface area but it generally results in electrical field concentration even to ruin AAO. In this article, the aluminum (Al) films with the varied 2D-3D morphology on Si substrates were prepared using magnetron sputtering at a power of 50 W-185 W for 1 h at a working pressure of 2.5 × 10-1 Pa. Then, AAO was fabricated from the different Al films by means of one-step hybrid pulse anodizing (HPA) between the positive 40 V and the negative -2 V (1 s:1 s) for 3 min in 0.3 M oxalic acid at a room temperature. The microstructure and morphology of Al films were characterized by X-ray diffraction, scanning electron microscope and atomic force microscope, respectively. Some hillocks formed at the high target power could be attributed to the grain texture growth in the normal orientation of Al(1 1 1). The 3D porous AAO structure which is different from the conventional 2D planar one has been successfully demonstrated using HPA on the film with greatly rough hillock-surface formed at the highest power of 185 W. It offers a potential application of the new 3D AAO to high specific surface area devices.

  3. Section 1. Simulation of surface-water integrated flow and transport in two-dimensions: SWIFT2D user's manual

    USGS Publications Warehouse

    Schaffranek, Raymond W.

    2004-01-01

    A numerical model for simulation of surface-water integrated flow and transport in two (horizontal-space) dimensions is documented. The model solves vertically integrated forms of the equations of mass and momentum conservation and solute transport equations for heat, salt, and constituent fluxes. An equation of state for salt balance directly couples solution of the hydrodynamic and transport equations to account for the horizontal density gradient effects of salt concentrations on flow. The model can be used to simulate the hydrodynamics, transport, and water quality of well-mixed bodies of water, such as estuaries, coastal seas, harbors, lakes, rivers, and inland waterways. The finite-difference model can be applied to geographical areas bounded by any combination of closed land or open water boundaries. The simulation program accounts for sources of internal discharges (such as tributary rivers or hydraulic outfalls), tidal flats, islands, dams, and movable flow barriers or sluices. Water-quality computations can treat reactive and (or) conservative constituents simultaneously. Input requirements include bathymetric and topographic data defining land-surface elevations, time-varying water level or flow conditions at open boundaries, and hydraulic coefficients. Optional input includes the geometry of hydraulic barriers and constituent concentrations at open boundaries. Time-dependent water level, flow, and constituent-concentration data are required for model calibration and verification. Model output consists of printed reports and digital files of numerical results in forms suitable for postprocessing by graphical software programs and (or) scientific visualization packages. The model is compatible with most mainframe, workstation, mini- and micro-computer operating systems and FORTRAN compilers. This report defines the mathematical formulation and computational features of the model, explains the solution technique and related model constraints, describes the

  4. Long-wavelength infrared surface plasmons on Ga-doped ZnO films excited via 2D hole arrays for extraordinary optical transmission

    NASA Astrophysics Data System (ADS)

    Cleary, Justin W.; Esfahani, Nima Nader; Vangala, Shivashankar; Guo, Junpeng; Hendrickson, Joshua R.; Leedy, Kevin D.; Thomson, Darren; Look, David C.

    2013-09-01

    Extraordinary optical transmission (EOT) through highly conductive ZnO films with sub-wavelength hole arrays is investigated in the long-wavelength infrared regime. EOT is facilitated by the excitation of surface plasmon polaritons (SPPs) and can be tuned utilizing the physical structure size such as period. Pulse laser deposited Ga-doped ZnO has been shown to have fluctuations in optical and electrical parameters based on fabrication techniques, providing a complimentary tuning means. The sub-wavelength 2D hole arrays are fabricated in the Ga-doped ZnO films via standard lithography and etching processes. Optical reflection measurements completed with a microscope coupled FTIR system contain absorption resonances that are in agreement with analytical theories for excitation of SPPs on 2D structures. EOT through Ga-doped ZnO is numerically demonstrated at wavelengths where SPPs are excited. This highly conductive ZnO EOT structure may prove useful in novel integrated components such as tunable biosensors or surface plasmon coupling mechanisms.

  5. Remembering Fermi

    SciTech Connect

    Cronin, James

    2005-03-30

    A combination of the discovery of nuclear fission and the circumstances of the 2nd World War brought Enrico Fermi to Chicago, where he led the team that produced the first controlled, self-sustained nuclear chain reaction. Following the war in 1945 Chancellor Hutchins, William Zachariasen, and Walter Bartky convinced Fermi to accept a professorship at the University of Chicago, where the Institute for Nuclear Studies was established. Fermi served as the leading figure in surely the greatest collection of scientists the world has ever seen. Fermi's tenure at Chicago was cut short by his death in 1954. My talk will concentrate on the years 1945-54. Examples of his research notebooks, his speeches, his teaching, and his correspondence will be discussed.

  6. Characteristics of surface plasmon-polariton waves excited on 2D periodically patterned columnar thin films of silver.

    PubMed

    Dutta, Jhuma; Anantha Ramakrishna, S; Lakhtakia, Akhlesh

    2016-09-01

    Periodically patterned thin films of slanted silver nanocolumns were deposited by directing a collimated vapor flux of silver toward square and hexagonal gratings of photoresist on glass substrates. Angle-resolved specular-transmittance measurements in the visible and near-infrared wavelength bands on these periodically patterned columnar thin films (CTFs) were carried out to investigate the excitation of surface plasmon-polariton (SPP) waves bound tightly to either the air/CTF or the photoresist/CTF interfaces. The orientation of the propagation vector of the incident p-polarized plane wave with respect to the morphologically significant plane of the CTFs was varied to reveal asymmetric (unidirectional) coupling of Floquet modes to SPP waves. The asymmetric coupling is maximal when the propagation vector of the incident plane wave lies wholly in the morphologically significant plane. Theoretical understanding based on the Bruggeman formalism to homogenize the silver CTFs into hyperbolic biaxial continua is able to explain the experimental observations very well. PMID:27607490

  7. Blind test of methods for obtaining 2-D near-surface seismic velocity models from first-arrival traveltimes

    USGS Publications Warehouse

    Zelt, Colin A.; Haines, Seth; Powers, Michael H.; Sheehan, Jacob; Rohdewald, Siegfried; Link, Curtis; Hayashi, Koichi; Zhao, Don; Zhou, Hua-wei; Burton, Bethany L.; Petersen, Uni K.; Bonal, Nedra D.; Doll, William E.

    2013-01-01

    Seismic refraction methods are used in environmental and engineering studies to image the shallow subsurface. We present a blind test of inversion and tomographic refraction analysis methods using a synthetic first-arrival-time dataset that was made available to the community in 2010. The data are realistic in terms of the near-surface velocity model, shot-receiver geometry and the data's frequency and added noise. Fourteen estimated models were determined by ten participants using eight different inversion algorithms, with the true model unknown to the participants until it was revealed at a session at the 2011 SAGEEP meeting. The estimated models are generally consistent in terms of their large-scale features, demonstrating the robustness of refraction data inversion in general, and the eight inversion algorithms in particular. When compared to the true model, all of the estimated models contain a smooth expression of its two main features: a large offset in the bedrock and the top of a steeply dipping low-velocity fault zone. The estimated models do not contain a subtle low-velocity zone and other fine-scale features, in accord with conventional wisdom. Together, the results support confidence in the reliability and robustness of modern refraction inversion and tomographic methods.

  8. The relationship between substructure in 2D X-ray surface brightness images and weak-lensing mass maps of galaxy clusters: a simulation study

    NASA Astrophysics Data System (ADS)

    Powell, Leila C.; Kay, Scott T.; Babul, Arif

    2009-12-01

    Recent X-ray and weak-lensing observations of galaxy clusters have revealed that the hot gas does not always directly trace the dark matter within these systems. Such configurations are extremely interesting. They offer a new vista on to the complex interplay between gravity and baryonic physics, and may even be used as indicators of the clusters' dynamical state. In this paper, we undertake a study to determine what insight can be reliably gleaned from the comparison of the X-ray and the weak-lensing mass maps of galaxy clusters. We do this by investigating the two-dimensional (2D) substructure within three high-resolution cosmological simulations of galaxy clusters. Our main results focus on non-radiative gas dynamics, but we also consider the effects of radiative cooling at high redshift. For our analysis, we use a novel approach, based on unsharp-masking, to identify substructures in 2D surface mass density and X-ray surface brightness maps. At full resolution (~15h-1 kpc), this technique is capable of identifying almost all self-bound dark matter subhaloes with M > 1012h-1Msolar. We also report a correlation between the mass of a subhalo and the area of its corresponding 2D detection; such a correlation, once calibrated, could provide a useful estimator for substructure mass. Comparing our 2D mass and X-ray substructures, we find a surprising number of cases where the matching fails: around one-third of galaxy-sized substructures have no X-ray counterpart. Some interesting cases are also found at larger masses, in particular the cores of merging clusters where the situation can be complex. Finally, we degrade our mass maps to what is currently achievable with weak-lensing observations (~100h-1kpc at z = 0.2). While the completeness mass limit increases by around an order of magnitude, a mass-area correlation remains. Our paper clearly demonstrates that the next generation of lensing surveys should start to reveal a wealth of information on cluster substructure.

  9. FTOM-2D: a two-dimensional approach to model the detailed thermal behavior of nonplanar surfaces

    NASA Astrophysics Data System (ADS)

    Bartos, B.; Stein, K.

    2015-10-01

    The Fraunhofer thermal object model (FTOM) predicts the temperature of an object as a function of the environmental conditions. The model has an outer layer exchanging radiation and heat with the environment and a stack of layers beyond modifying the thermal behavior. The innermost layer is at a constant or variable temperature called core temperature. The properties of the model (6 parameters) are fitted to minimize the difference between the prediction and a time series of measured temperatures. The model can be used for very different objects like backgrounds (e.g. meadow, forest, stone, or sand) or objects like vehicles. The two dimensional enhancement was developed to model more complex objects with non-planar surfaces and heat conduction between adjacent regions. In this model we call the small thermal homogenous interacting regions thermal pixels. For each thermal pixel the orientation and the identities of the adjacent pixels are stored in an array. In this version 7 parameters have to be fitted. The model is limited to a convex geometry to reduce the complexity of the heat exchange and allow for a higher number of thermal pixels. For the test of the model time series of thermal images of a test object (CUBI) were analyzed. The square sides of the cubes were modeled as 25 thermal pixels (5 × 5). In the time series of thermal images small areas in the size of the thermal pixels were analyzed to generate data files that can easily be read by the model. The program was developed with MATLAB and the final version in C++ using the OpenMP multiprocessor library. The differential equation for the heat transfer is the time consuming part in the computation and was programmed in C. The comparison show a good agreement of the fitted and not fitted thermal pixels with the measured temperatures. This indicates the ability of the model to predict the temperatures of the whole object.

  10. Complete Fermi Surface and Surface State in WTe2 Revealed by High-Resolution Laser-Based Angle-Resolved Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Chenlu; Zhang, Yan; Liu, Guodong; Mao, Zhiqiang; He, Shaolong; Zhao, Lin; Chen, Chuangtian; Xu, Zuyan; Zhou, Xingjiang

    WTe2, an unique transition metal dichalcogenide, attracts considerable attention recently, which shows an extremely large magnetoresistance (MR) with no saturation under very high field. In this talk, we will present our high resolution laser-ARPES study on WTe2. Our distinctive ARPES system is equipped with the VUV laser and the time-of-flight (TOF) electron energy analyzer, being featured by super-high energy resolution, simultaneous data acquisition for two-dimensional momentum space and much reduced nonlinearity effect. With this advanced apparatus, the very high quality of electronic structure data are obtained for WTe2 which gives a full picture of the Fermi surface. Meanwhile, the obtained systematic temperature dependence of its electronic state leads us to a better understanding on the origin of large magnetoresistance in WTe2.

  11. Latent instabilities in metallic LaNiO3 films by strain control of Fermi-surface topology

    PubMed Central

    Yoo, Hyang Keun; Hyun, Seung Ill; Moreschini, Luca; Kim, Hyeong-Do; Chang, Young Jun; Sohn, Chang Hee; Jeong, Da Woon; Sinn, Soobin; Kim, Yong Su; Bostwick, Aaron; Rotenberg, Eli; Shim, Ji Hoon; Noh, Tae Won

    2015-01-01

    Strain control is one of the most promising avenues to search for new emergent phenomena in transition-metal-oxide films. Here, we investigate the strain-induced changes of electronic structures in strongly correlated LaNiO3 (LNO) films, using angle-resolved photoemission spectroscopy and the dynamical mean-field theory. The strongly renormalized eg-orbital bands are systematically rearranged by misfit strain to change its fermiology. As tensile strain increases, the hole pocket centered at the A point elongates along the kz-axis and seems to become open, thus changing Fermi-surface (FS) topology from three- to quasi-two-dimensional. Concomitantly, the FS shape becomes flattened to enhance FS nesting. A FS superstructure with Q1 = (1/2,1/2,1/2) appears in all LNO films, while a tensile-strained LNO film has an additional Q2 = (1/4,1/4,1/4) modulation, indicating that some instabilities are present in metallic LNO films. Charge disproportionation and spin-density-wave fluctuations observed in other nickelates might be their most probable origins. PMID:25735658

  12. Transfer of Neutrons from Deep Below the Fermi Surface via the (p,t) Reaction in the N = 90 Region

    NASA Astrophysics Data System (ADS)

    Humby, P.; Wilson, E.; Beausang, C. W.; Simon, A.; Gell, K.; Tarlow, T.; Vyas, G.; Ross, T. J.; Hughes, R. O.; Burke, J. T.; Casperson, R. J.; Koglin, J.; Ota, S.; Allmond, J. M.; McCleskey, M.; McCleskey, E.; Saastamoinen, A.; Chyzh, R.; Dag, M.

    2015-10-01

    The 152,154Sm(p,t) reactions were used to investigate excited states populated by the transfer of neutrons from deep below the Fermi surface. States corresponding to the transfer of at least one neutron from below the N = 82 shell closure are of particular interest since they provide a sensitive probe of the evolution of the shell closure with increasing deformation. In the present work, large quasi-discrete structures were observed in the triton energy spectra at excitation energies of 2-3 MeV and are interpreted in terms of the underlying Nilsson orbitals. The experiment utilized a 25 MeV proton beam from the K-150 cyclotron at the Cyclotron Institute of Texas A&M University and the outgoing charged particles and γ rays were detected using the STARLiTeR array. This work is supported by the U.S. Department of Energy No. DE-FG02-05ER41379, DE-FG52-09NA29467 and DE-NA0001801, the National Science Foundation under PHY-130581, and by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  13. Latent instabilities in metallic LaNiO₃ films by strain control of Fermi-surface topology

    DOE PAGESBeta

    Yoo, Hyang Keun; Hyun, Seung Ill; Moreschini, Luca; Kim, Hyeong -Do; Chang, Young Jun; Sohn, Chang Hee; Jeong, Da Woon; Sinn, Soobin; Kim, Yong Su; Bostwick, Aaron; et al

    2015-03-04

    Strain control is one of the most promising avenues to search for new emergent phenomena in transition metal-oxide films. Here, we investigate the strain-induced changes of electronic structures in strongly correlated LaNiO₃ (LNO) films, using angle-resolved photoemission spectroscopy and the dynamical mean-field theory. The strongly renormalized eg-orbital bands are systematically rearranged by misfit strain to change its fermiology. As tensile strain increases, the hole pocket centered at the A point elongates along the kz-axis and seems to become open, thus changing Fermi-surface (FS) topology from three- to quasi-two-dimensional. Concomitantly, the FS shape becomes flattened to enhance FS nesting. A FSmore » superstructure withQ₁ = (1/2,1/2,1/2) appears in all LNO films, while a tensile-strained LNO film has an additional Q₂ = (1/4,1/4,1/4) modulation, indicating that some instabilities are present in metallic LNO films. Charge disproportionation and spin-density-wave fluctuations observed in other nickelates might be their most probable origins« less

  14. Latent instabilities in metallic LaNiO₃ films by strain control of Fermi-surface topology

    SciTech Connect

    Yoo, Hyang Keun; Hyun, Seung Ill; Moreschini, Luca; Kim, Hyeong -Do; Chang, Young Jun; Sohn, Chang Hee; Jeong, Da Woon; Sinn, Soobin; Kim, Yong Su; Bostwick, Aaron; Rotenberg, Eli; Shim, Ji Hoon; Noh, Tae Won

    2015-03-04

    Strain control is one of the most promising avenues to search for new emergent phenomena in transition metal-oxide films. Here, we investigate the strain-induced changes of electronic structures in strongly correlated LaNiO₃ (LNO) films, using angle-resolved photoemission spectroscopy and the dynamical mean-field theory. The strongly renormalized eg-orbital bands are systematically rearranged by misfit strain to change its fermiology. As tensile strain increases, the hole pocket centered at the A point elongates along the kz-axis and seems to become open, thus changing Fermi-surface (FS) topology from three- to quasi-two-dimensional. Concomitantly, the FS shape becomes flattened to enhance FS nesting. A FS superstructure withQ₁ = (1/2,1/2,1/2) appears in all LNO films, while a tensile-strained LNO film has an additional Q₂ = (1/4,1/4,1/4) modulation, indicating that some instabilities are present in metallic LNO films. Charge disproportionation and spin-density-wave fluctuations observed in other nickelates might be their most probable origins

  15. Lifshitz transition in high magnetic fields in UPt2Si2: Magnetoresistivity, Hall effect, magnetostriction and Fermi surface

    NASA Astrophysics Data System (ADS)

    Sullow, S.; Schulze Grachtrup, D.; Steinki, N.; Cakir, Z.; Zwicknagl, G.; Sheikin, I.; Jaime, M.; Mydosh, J. A.

    We have measured the magnetoresistivity and Hall effect of single crystalline UPt2Si2 in DC magnetic fields up to 35 T at temperatures down to 50 mK. Moreover, we have carried out magnetostriction measurements in pulsed magnetic fields up to 55 T for temperatures down to 1.5 K. For the magnetic field applied along the c axis we observe strong changes in the Hall effect at the previously established field induced phase boundaries AFM I <--> III and III <--> V (see Ref.). From a detailed analysis of the Hall effect, we find evidence for topological changes of the Fermi surface due to at least one Lifshitz transition. Furthermore, in the magnetoresistivity and magnetostriction data we find a distinct history dependent anomaly within phase III, indicative of a first order phase transition. We relate our findings to band structure calculations carried out under consideration of the concept of a dual nature of the uranium 5 f electrons with different degrees of localization.

  16. Wind-tunnel experiments of turbulent flow over a surface-mounted 2-D block in a thermally-stratified boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando

    2014-11-01

    Turbulent flows over complex surface topography have been of great interest in the atmospheric science and wind engineering communities. The geometry of the topography, surface roughness and temperature characteristics as well as the atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography models, under neutrally stratified boundary-layer conditions, have provided insights into fluid dynamics. However, atmospheric thermal stability has rarely been considered in laboratory experiments, e.g., wind-tunnel experiments. Series of wind-tunnel experiments of thermally-stratified boundary-layer flow over a surface-mounted 2-D block, in a well-controlled boundary-layer wind tunnel, will be presented. Measurements using high-resolution PIV, x-wire/cold-wire anemometry and surface heat flux sensors were conducted to quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Results will be shown to address thermal stability effects on momentum and scalar flux distribution in the wake, as well as dominant mechanism of turbulent kinetic energy generation and consumption. The authors gratefully acknowledge funding from the Swiss National Foundation (Grant 200021-132122), the National Science Foundation (Grant ATM-0854766) and NASA (Grant NNG06GE256).

  17. Bilayer splitting versus Fermi-surface warping as an origin of slow oscillations of in-plane magnetoresistance in rare-earth tritellurides

    NASA Astrophysics Data System (ADS)

    Grigoriev, Pavel D.; Sinchenko, Alexander A.; Lejay, Pascal; Hadj-Azzem, Abdellali; Balay, Joël; Leynaud, Olivier; Zverev, Vladimir N.; Monceau, Pierre

    2016-06-01

    Slow oscillations (SlO) of the in-plane magnetoresistance with a frequency less than 4 T are observed in the rare-earth tritellurides and proposed as an effective tool to explore the electronic structure in various strongly anisotropic quasi-two-dimensional compounds. Contrary to the usual Shubnikov-de-Haas oscillations, SlO originate not from small Fermi-surface pockets, but from the entanglement of close frequencies due to a finite interlayer transfer integral, either between the two Te planes forming a bilayer or between two adjacent bilayers. From the observed angular dependence of the frequency and the phase of SlO we argue that they originate from the bilayer splitting rather than from the Fermi-surface warping. The SlO frequency gives the value of the interlayer transfer integral ≈1 meV for TbTe3 and GdTe3.

  18. Correlation between Fermi surface transformations and superconductivity in the electron-doped high-Tc superconductor Nd2 -xCexCuO4

    NASA Astrophysics Data System (ADS)

    Helm, T.; Kartsovnik, M. V.; Proust, C.; Vignolle, B.; Putzke, C.; Kampert, E.; Sheikin, I.; Choi, E.-S.; Brooks, J. S.; Bittner, N.; Biberacher, W.; Erb, A.; Wosnitza, J.; Gross, R.

    2015-09-01

    Two critical points have been revealed in the normal-state phase diagram of the electron-doped cuprate superconductor Nd2 -xCexCuO4 by exploring the Fermi surface properties of high-quality single crystals by high-field magnetotransport. First, the quantitative analysis of the Shubnikov-de Haas effect shows that the weak superlattice potential responsible for the Fermi surface reconstruction in the overdoped regime extrapolates to zero at the doping level xc=0.175 corresponding to the onset of superconductivity. Second, the high-field Hall coefficient exhibits a sharp drop right below optimal doping xopt=0.145 where the superconducting transition temperature is maximum. This drop is most likely caused by the onset of long-range antiferromagnetic ordering. Thus the superconducting dome appears to be pinned by two critical points to the normal state phase diagram.

  19. Momentum density and 2D-ACAR experiments in YBa sub 2 Cu sub 3 O sub 7

    SciTech Connect

    Bansil, A. . Dept. of Physics); Smedskjaer, L.C. )

    1991-12-01

    We compare measured c-projected 2D-ACAR spectrum from an untwinned single crystal of YBa{sub 2}Cu{sub 3}O{sub 7-x} with the corresponding band theory predictions. Many different one-dimensional sections through the spectrum are considered, together with the characteristic amplitudes and shapes of the spectral anisotropies, with a focus on identifying and delineating Fermi surface signatures in the spectra. The positron data clearly show several distinct features of the ridge Fermi surface predicted by the band theory, and give an indication of the pillbox Fermi sheet. The good agreement between theory and experiment suggests that the band theory framework based on the local density approximation (LDA) is capable of providing a substantially correct description of the momentum density and Fermiology of the normal ground state electronic structure of YBa{sub 2}Cu{sub 3}O{sub 7}.

  20. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    SciTech Connect

    James R. Wood; A. Wylie; W. Quinlan

    2004-10-01

    One of the principal objectives of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. During this reporting period, microbial samples were collected from the Trusty Steed prospect area in Grand Traverse County, Michigan. The samples were analyzed using the Microbial Oil Surveying Technique (MOST) technique and revealed only a local (1-point) anomaly. A decision to resample over that point is pending, but drilling has been postponed for the time being. The main news this reporting period is that in the Bear Lake area, northwest Michigan, Federated Oil & Gas Properties' Charlich-Fauble 2-9HD horizontal lateral, has cumulative production of more than 72,000 barrels of oil and is still producing 50 to 75 bopd from a Silurian Niagaran reef reservoir eighteen months after the well was completed. Surface geochemical surveys conducted in the demonstration area were consistent with production results although the ultimate decision to drill was based on interpretation of conventional subsurface and 2D seismic data. The surface geochemical techniques employed were Solid Phase MicroExtraction (SPME) and MOST. The geochemical results have been submitted to World Oil for publication. New geochemical surveys are planned for November in the Springdale quadrangle in Manistee County, Michigan. These surveys will concentrate on sampling over the trace of the proposed horizontal wells rather than a broad grid survey.

  1. Entanglement in ground and excited states of gapped free-fermion systems and their relationship with Fermi surface and thermodynamic equilibrium properties.

    PubMed

    Storms, Michelle; Singh, Rajiv R P

    2014-01-01

    We study bipartite entanglement entropies in the ground and excited states of free-fermion models, where a staggered potential, μs, induces a gap in the spectrum. Ground-state entanglement entropies satisfy the "area law", and the "area-law" coefficient is found to diverge as a logarithm of the staggered potential, when the system has an extended Fermi surface at μs=0. On the square lattice, we show that the coefficient of the logarithmic divergence depends on the Fermi surface geometry and its orientation with respect to the real-space interface between subsystems and is related to the Widom conjecture as enunciated by Gioev and Klich [ Phys. Rev. Lett. 96 100503 (2006)]. For point Fermi surfaces in two-dimension, the "area-law" coefficient stays finite as μs→0. The von Neumann entanglement entropy associated with the excited states follows a "volume law" and allows us to calculate an entropy density function sV(e), which is substantially different from the thermodynamic entropy density function sT(e), when the lattice is bipartitioned into two equal subsystems but approaches the thermodynamic entropy density as the fraction of sites in the larger subsystem, that is integrated out, approaches unity. PMID:24580190

  2. Entanglement in ground and excited states of gapped free-fermion systems and their relationship with Fermi surface and thermodynamic equilibrium properties

    NASA Astrophysics Data System (ADS)

    Storms, Michelle; Singh, Rajiv R. P.

    2014-01-01

    We study bipartite entanglement entropies in the ground and excited states of free-fermion models, where a staggered potential, μs, induces a gap in the spectrum. Ground-state entanglement entropies satisfy the "area law", and the "area-law" coefficient is found to diverge as a logarithm of the staggered potential, when the system has an extended Fermi surface at μs=0. On the square lattice, we show that the coefficient of the logarithmic divergence depends on the Fermi surface geometry and its orientation with respect to the real-space interface between subsystems and is related to the Widom conjecture as enunciated by Gioev and Klich [Phys. Rev. Lett. 96, 100503 (2006), 10.1103/PhysRevLett.96.100503]. For point Fermi surfaces in two-dimension, the "area-law" coefficient stays finite as μs→0. The von Neumann entanglement entropy associated with the excited states follows a "volume law" and allows us to calculate an entropy density function sV(e), which is substantially different from the thermodynamic entropy density function sT(e), when the lattice is bipartitioned into two equal subsystems but approaches the thermodynamic entropy density as the fraction of sites in the larger subsystem, that is integrated out, approaches unity.

  3. Orbital origin and matrix element effects in the Ag/Si(1 1 1)-( √{3}×√{3})R30° Fermi surface

    NASA Astrophysics Data System (ADS)

    Pérez-Dieste, V.; Sánchez-Royo, J. F.; Avila, J.; Izquierdo, M.; Roca, L.; Tejeda, A.; Asensio, M. C.

    2007-02-01

    The Fermi surface (FS) of the Ag/Si(1 1 1)- √{3}×√{3} reconstruction with an excess of Ag has been mapped by angle resolved photoemission spectroscopy with polarized light in a wide region of the reciprocal space and with different detection geometries. In contrast to previous results, a strong polarization dependence is observed. Applying the dipole selection rules, it is found that the surface state at the Fermi level, S 1 state, has odd symmetry with respect to the mirror plane of the honeycomb-chained triangle structure, indicating that it is mainly derived from Ag 5p x and 5p y orbitals. This conclusion is revised in the new frame of a inequivalent-triangle structure for the Ag/Si(1 1 1)- √{3}×√{3} at room temperature. Besides, strong modulations of the intensity distribution are found that deviate the Fermi surface pattern from its expected two-dimensional periodical behavior.

  4. Ab initio potential energy and dipole moment surfaces, infrared spectra, and vibrational predissociation dynamics of the 35Cl-⋯H2/D2 complexes

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. A.; Grinev, T. A.; Kłos, J.; Bieske, E. J.; Szczȩśniak, M. M.; Chałasiński, G.

    2003-12-01

    Three-dimensional potential energy and dipole moment surfaces of the Cl--H2 system are calculated ab initio by means of a coupled cluster method with single and double excitations and noniterative correction to triple excitations with augmented correlation consistent quadruple-zeta basis set supplemented with bond functions, and represented in analytical forms. Variational calculations of the energy levels up to the total angular momentum J=25 provide accurate estimations of the measured rotational spectroscopic constants of the ground van der Waals levels n=0 of the Cl-⋯H2/D2 complexes although they underestimate the red shifts of the mid-infrared spectra with v=0→v=1 vibrational excitation of the monomer. They also attest to the accuracy of effective radial interaction potentials extracted previously from experimental data using the rotational RKR procedure. Vibrational predissociation of the Cl-⋯H2/D2(v=1) complexes is shown to follow near-resonant vibrational-to-rotational energy transfer mechanism so that more than 97% of the product monomers are formed in the highest accessible rotational level. This mechanism explains the strong variation of the predissociation rate with isotopic content and nuclear spin form of the complex. Strong deviation of the observed relative abundances of ortho and para forms of the complexes from those of the monomers is qualitatively explained by the secondary ligand exchange reactions in the ionic beam, within the simple thermal equilibrium model. Positions and intensities of the hot v=0, n=1→v=1, n=1 and combination v=0, n=0→v=1, n=1 bands are predicted, and implications to the photoelectron spectroscopy of the complex are briefly discussed.

  5. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    SciTech Connect

    James R. Wood; T.J. Bornhorst; William B. Harrison; W. Quinlan

    2002-04-01

    The fault study continues to find more faults and develop new techniques to visualize them. Data from the Dundee Formation has been used to document 11 major faults in the Michigan Basin which have now been verified using data from other horizons. These faults control the locations of many of the large anticlinal structures in the Michigan Basin and likely controlled fluid movements as well. The surface geochemistry program is also moving along well with emphasis on measuring samples collected last sampling season. The new GC laboratory is now functional and has been fully staffed as of December. The annual project review was held March 7-9 in Tampa, Florida. Contracts are being prepared for drilling the Bower's prospects in Isabella County, Michigan, this spring or summer. A request was made to extend the scope of the project to include the Willison Basin. A demonstration well has been suggested in Burke County, N. Dakota, following a review of 2D seismic and surface geochem. A 3D seismic survey is scheduled for the prospect.

  6. Impact of stratospheric aircraft on calculations of nitric acid trihydrate cloud surface area densities using NMC temperatures and 2D model constituent distributions

    NASA Technical Reports Server (NTRS)

    Considine, David B.; Douglass, Anne R.

    1994-01-01

    A parameterization of NAT (nitric acid trihydrate) clouds is developed for use in 2D models of the stratosphere. The parameterization uses model distributions of HNO3 and H2O to determine critical temperatures for NAT formation as a function of latitude and pressure. National Meteorological Center temperature fields are then used to determine monthly temperature frequency distributions, also as a function of latitude and pressure. The fractions of these distributions which fall below the critical temperatures for NAT formation are then used to determine the NAT cloud surface area density for each location in the model grid. By specifying heterogeneous reaction rates as functions of the surface area density, it is then possible to assess the effects of the NAT clouds on model constituent distributions. We also consider the increase in the NAT cloud formation in the presence of a fleet of stratospheric aircraft. The stratospheric aircraft NO(x) and H2O perturbations result in increased HNO3 as well as H2O. This increases the probability of NAT formation substantially, especially if it is assumed that the aircraft perturbations are confined to a corridor region.

  7. Topological change of the Fermi surface in ternary iron-pnictides with reduced c/a ratio: A dHvA study of CaFe2P2

    SciTech Connect

    Coldea, Amalia I.; Andrew, C.M.J.; Analytis, J.G.; McDonald, R.D.; Bangura, A.F.; Chu, J.-H.; Fisher, I.R.; Carrington, A.; /Bristol U.

    2010-05-26

    We report a de Haas-van Alphen effect study of the Fermi surface of CaFe{sub 2}P{sub 2} using low temperature torque magnetometry up to 45 T. This system is a close structural analogue of the collapsed tetragonal non-magnetic phase of CaFe{sub 2}As{sub 2}. We find the Fermi surface of CaFe{sub 2}P{sub 2} to differ from other related ternary phosphides in that its topology is highly dispersive in the c-axis, being three-dimensional in character and with identical mass enhancement on both electron and hole pockets ({approx} 1.5). The dramatic change in topology of the Fermi surface suggests that in a state with reduced (c/a) ratio, when bonding between pnictogen layers becomes important, the Fermi surface sheets are unlikely to be nested.

  8. 2-D ACAR measurements of Ni/sub 3/A1

    SciTech Connect

    Smedskjaer, L.C.; DasGupta, A.; Legnini, D.G.; Stahulak, M.D.

    1987-07-01

    In connection with a detailed study of the electronic structure and stability of the aluminides (Ni,Fe)/sub 3/Al, 2-D ACAR positron annihilation measurements were made on a Ni/sub 3/Al single crystal to study the Fermi surface. The results for Ni/sub 3/Al have been compared with results for pure Ni. Strong similarities were found for the electronic structures of these materials. Theoretical calculations of the Fermi surface for Ni/sub 3/Al are in good agreement with the experimental results. The GAMMA/sub 16/ sheet, not previously observed in any experiment, has now been observed for the first time in Ni/sub 3/Al. 14 refs., 10 figs.

  9. Topological Odd-Parity Superconductivity Close to Type-II 2D Van Hove Singularities

    NASA Astrophysics Data System (ADS)

    Yao, Hong; Yang, Fan

    2014-03-01

    We study unconventional superconductivity induced by weak repulsive interactions in 2D electronic systems at Van Hove singularity (VHS) where electronic density of states is logarithmically divergent. We define two types of VH saddle points. For type-I VH systems, weak repulsive interactions generically induce unconventional singlet pairing. However and more interestingly, for type-II VH systems renormalization group treatment shows that weak repulsive interactions favor triplet pairing (e.g. p-wave) when the Fermi surface has no good nesting. When such type-II VH systems respecting tetragonal or hexagonal point group symmetry, topological superconductivity (chiral p +ip or time reversal invariant Z2 p +ip pairing) will generally occur. We shall also discuss implications of this study to recently discovered BiS2-based superconductors and other superconducting materials that host type-II VH singularities in their Fermi surfaces.

  10. Sensitivity of Fermi level position at Ga-polar, N-polar, and nonpolar m-plane GaN surfaces to vacuum and air ambient

    NASA Astrophysics Data System (ADS)

    Janicki, Łukasz; Ramírez-López, Manolo; Misiewicz, Jan; Cywiński, Grzegorz; Boćkowski, Michał; Muzioł, Grzegorz; Chèze, Caroline; Sawicka, Marta; Skierbiszewski, Czesław; Kudrawiec, Robert

    2016-05-01

    Ga-polar, N-polar, and nonpolar m-plane GaN UN+ structures have been examined in air and vacuum ambient by contactless electroreflectance (CER). This technique is very sensitive to the surface electric field that varies with the Fermi level position at the surface. For UN+ GaN structures [i.e., GaN (undoped)/GaN (n-type)/substrate], a homogeneous built-in electric field is expected in the undoped GaN layer that is manifested by Franz–Keldysh oscillation (FKO) in CER spectra. A clear change in FKO has been observed in CER spectra for N-polar and nonpolar m-plane structures when changing from air to vacuum ambient. This means that those surfaces are very sensitive to ambient atmosphere. In contrast to that, only a small change in FKO can be seen in the Ga-polar structure. This clearly shows that the ambient sensitivity of the Fermi level position at the GaN surface varies with the crystallographic orientation and is very high for N-polar and nonpolar m-plane surfaces. This feature of the N-polar and nonpolar m-plane surfaces can be very important for GaN-based devices grown on these crystallographic orientations and can be utilized in some of the devices, e.g., sensors.

  11. Fermi questions

    NASA Astrophysics Data System (ADS)

    Bouffard, Karen

    1999-05-01

    This column contains problems and solutions for the general category of questions known as "Fermi" questions. Forcing the students to use their ability to estimate, giving answers in terms of order-of-magnitude, is not only a challenge for a competition, but a teaching strategy to use in the classroom to develop self-confidence and the ability to analyze answers as to whether or not they make sense, as opposed to relying on the "precision" of a calculator value.

  12. Surface related multiple elimination (SRME) and radon transform forward multiple modeling methods applied to 2D multi-channel seismic profiles from the Chukchi Shelf, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ilhan, I.; Coakley, B. J.

    2013-12-01

    The Chukchi Edges project was designed to establish the relationship between the Chukchi Shelf and Borderland and indirectly test theories of opening for the Canada Basin. During this cruise, ~5300 km of 2D multi-channel reflection seismic profiles and other geophysical data (swath bathymetry, gravity, magnetics, sonobuoy refraction seismic) were collected from the RV Marcus G. Langseth across the transition between the Chukchi Shelf and Chukchi Borderland, where the water depths vary from 30 m to over 3 km. Multiples occur when seismic energy is trapped in a layer and reflected from an acoustic interface more than once. Various kinds of multiples occur during seismic data acquisition. These depend on the ray-path the seismic energy follows through the layers. One of the most common multiples is the surface related multiple, which occurs due to strong acoustic impedance contrast between the air and water. The reflected seismic energy from the water surface is trapped within the water column, thus reflects from the seafloor multiple times. Multiples overprint the primary reflections and complicate data interpretation. Both surface related multiple elimination (SRME) and forward parabolic radon transform multiple modeling methods were necessary to attenuate the multiples. SRME is applied to shot gathers starting with the near offset interpolation, multiple estimation using water depths, and subtracting the model multiple from the shot gathers. This method attenuated surface related multiple energy, however, peg-leg multiples remained in the data. The parabolic radon transform method minimized the effect of these multiples. This method is applied to normal moveout (NMO) corrected common mid-point gathers (CMP). The CMP gathers are fitted or modeled with curves estimated from the reference offset, moveout range, moveout increment parameters. Then, the modeled multiples are subtracted from the data. Preliminary outputs of these two methods show that the surface related

  13. 2D dry granular free-surface flow over complex topography with obstacles. Part I: experimental study using a consumer-grade RGB-D sensor

    NASA Astrophysics Data System (ADS)

    Caviedes-Voullième, Daniel; Juez, Carmelo; Murillo, Javier; García-Navarro, Pilar

    2014-12-01

    Avalanches, debris flows and other types of gravity-driven granular flows are a common hazard in mountainous regions. These regions often have human settlements in the lower parts of valleys, with human structures dangerously exposed to the destructive effects of these geophysical flows. Therefore a scientific effort has been made to understand, model and simulate geophysical granular flows. In order for computer models and simulations to be of predictive value they need to be validated under controlled, yet nature-like conditions. This work presents an experimental study of granular flow over a simplified mountain slope and valley topography. The experimental facility has a rough bed with very high slope at the upstream end and adverse slope on the downstream end, following a parabolic profile. Obstacles are present in the lower regions. Transient measurements of the moving granular surfaces were taken with a consumer-grade RGB-D sensor, providing transient 2D elevation fields around the obstacles. Three experimental configurations were tested, with semispheres of different diameters and a square dike obstacle. The experimental results are very consistent and repeatable. The quantitative, transient and two-dimensional data for all three experiments constitute excellent benchmarking tests for computational models, such as the one presented in a companion paper.

  14. From 2-D CuO nanosheets to 3-D hollow nanospheres: interface-assisted synthesis, surface photovoltage properties and photocatalytic activity

    SciTech Connect

    Zhu Jun; Qian Xuefeng

    2010-07-15

    CuO hierarchical hollow nanostructures, assembled by nanosheets, were successfully prepared in n-octanol/aqueous liquid system through a microwave approach. Controlled experiments revealed that both bubble and interface play key roles in determining the self-assembly process of CuO hierarchical hollow nanostructures, and the morphology/size of building blocks and final products could be readily tuned by adjusting reaction parameters. Furthermore, a self-assembly mechanism of aggregation-then-growth process through bubble template was proposed for the formation of the hollow hierarchical architectures. Photocatalytic performance evidenced that the obtained CuO hierarchical hollow nanostructures possessed superior photocatalytic efficiency on RhB than that of non-hollow nanostructures, which could be easily demonstrated by SPS response about the separation and recombination situation of photogenerated charges. - Graphical abstract: From 2-D CuO nanosheets to 3-D hollow nanospheres: interface-assisted synthesis, surface photovoltage properties and photocatalytic activity. Various CuO architectures with different morphologies and sizes, including hierarchical hollow nanostructures were prepared through a synergic bubble-template and interface-assisted approach.

  15. Observation of an electron band above the Fermi level in FeTe{sub 0.55}Se{sub 0.45} from in-situ surface doping

    SciTech Connect

    Zhang, P.; Ma, J.; Qian, T.; Richard, P. Ding, H.; Xu, N.; Xu, Y.-M.; Fedorov, A. V.; Denlinger, J. D.; Gu, G. D.

    2014-10-27

    We used in-situ potassium (K) evaporation to dope the surface of the iron-based superconductor FeTe{sub 0.55}Se{sub 0.45}. The systematic study of the bands near the Fermi level confirms that electrons are doped into the system, allowing us to tune the Fermi level of this material and to access otherwise unoccupied electronic states. In particular, we observe an electron band located above the Fermi level before doping that shares similarities with a small three-dimensional pocket observed in the cousin, heavily electron-doped KFe{sub 2−x}Se{sub 2} compound.

  16. Enrico Fermi

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    Enrico Fermi was, of all the great physicists of the 20th century, among the most respected and admired. He was respected and admired because of his contributions to both theoretical and experimental physics, because of his leadership in discovering for mankind a powerful new source of energy, and above all, because of his personal character. He was always reliable and trustworthy. He had both of his feet on the ground all the time. He had great strength, but never threw his weight around. He did not play to the gallery. He did not practise one-up-manship. He exemplified, I always believe, the perfect Confucian gentleman...

  17. Observation of the electron ridge Fermi surface in YBa{sub 2}Cu{sub 3}O{sub 7-x} by positron annihilation

    SciTech Connect

    Smedskjaer, L.C.; Fang, Y.; Bailey, K.G.; Welp, U.; Bansil, A.

    1991-04-01

    Positron annihilation (two-dimensional-angular-correlation) experiments on an untwinned single crystal of metallic YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} sample are reported in the c-projection. The measurements were carried out at room temperature and involved 94 Mcounts. An analysis of the spectra reveals clearly for the first time the presence of the electron ridge Fermi surface associated with the one-dimensional chain bands, and orthorhombic anisotropies in momentum density in good agreement with the band theory predictions.

  18. Electronic bands, Fermi surface, and elastic properties of new 4.2 K superconductor SrPtAs with a honeycomb structure from first principles calculations

    NASA Astrophysics Data System (ADS)

    Shein, I. R.; Ivanovskii, A. L.

    2011-10-01

    The hexagonal phase SrPtAs (s.g. P6/ mmm; #194) with a honeycomb lattice structure was recently declared as a new low-temperature ( T C ∼ 4.2 K) superconductor. Here, by means of first-principles calculations the optimized structural parameters, electronic bands, Fermi surface, total and partial densities of states, inter-atomic bonding picture, independent elastic constants, bulk and shear moduli for SrPtAs were obtained for the first time and analyzed in comparison with the related layered superconductor SrPt 2As 2.

  19. Fermi surface of MoO2 studied by angle-resolved photoemission spectroscopy, de Haas-van Alphen measurements, and electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Moosburger-Will, Judith; Kündel, Jörg; Klemm, Matthias; Horn, Siegfried; Hofmann, Philip; Schwingenschlögl, Udo; Eyert, Volker

    2009-03-01

    A comprehensive study of the electronic properties of monoclinic MoO2 from both an experimental and a theoretical point of view is presented. We focus on the investigation of the Fermi body and the band structure using angle-resolved photoemission spectroscopy, de Haas-van Alphen measurements, and electronic structure calculations. For the latter, the full-potential augmented spherical wave method has been applied. Very good agreement between the experimental and theoretical results is found. In particular, all Fermi surface sheets are correctly identified by all three approaches. Previous controversies concerning additional holelike surfaces centered around the Z and B points could be resolved; these surfaces were artifacts of the atomic-sphere approximation used in the old calculations. Our results underline the importance of electronic structure calculations for the understanding of MoO2 and the neighboring rutile-type early transition-metal dioxides. This includes the low-temperature insulating phases of VO2 and NbO2 , which have crystal structures very similar to that of molybdenum dioxide and display the well-known prominent metal-insulator transitions.

  20. Fermi-level stabilization in the topological insulators Bi2Se3 and Bi2Te3: Origin of the surface electron gas

    NASA Astrophysics Data System (ADS)

    Suh, Joonki; Fu, Deyi; Liu, Xinyu; Furdyna, Jacek K.; Yu, Kin Man; Walukiewicz, Wladyslaw; Wu, Junqiao

    2014-03-01

    Two-dimensional electron gas (2DEG) coexists with topological states on the surface of topological insulators (TIs), while the origin of the 2DEG remains elusive. In this work, electron density in TI thin films (Bi2Se3,Bi2Te3, and their alloys) were manipulated by controlling the density of electronically active native defects with particle irradiation. The measured electron concentration increases with irradiation dose but saturates at different levels for Bi2Se3 and Bi2Te3. The results are in quantitative agreement with the amphoteric defect model, which predicts that electronically active native defects shift the Fermi energy (EF) toward a Fermi stabilization level (EFS) located universally at ˜4.9 eV below the vacuum level. Combined with thickness-dependent data, it is demonstrated that regardless of the bulk doping, the surface EF is always pinned at EFS, producing a band bending and 2DEG on TI film surfaces. Our work elucidates native defect physics of TIs with a model universally applicable to other semiconductors and has critical implications for potential device applications of TIs.

  1. 2D Dynamic Models of Subduction: Links between Surface Plate Motion and Deformation in the Transition Zone from Observations of Deep Slab Seismicity

    NASA Astrophysics Data System (ADS)

    Arredondo, K.; Billen, M. I.

    2015-12-01

    Observations of seismicity and seismic tomography provide constraints on the geometry of slabs within mantle, while compression/tension axis derived from moment tensor solutions provide constraints on the internal deformation of slabs. However, since these observations provide only a somewhat blurred or incomplete snapshot of the slab in time, it is difficult to directly relate these observations to the evolution of the slab geometry and the forces acting on and within the slab. In contrast, plate tectonic reconstructions provide time-dependent constraints on the surface motion of plates and the trench at subduction zones, which are related to the dynamical evolution of the slab. We use 2D geodynamical simulations of subduction to explore the relationship between dynamical process within the deforming slab and the observations of surface plate motion and the state-of-stress in slabs. Specifically we utilize models that include the extended Boussinesq approximation (shear heating and latent heat terms in the energy equation), a layered lithosphere with pyrolite, harzburgite and basalt/eclogite, compositionally-dependent phase transitions, and a composite rheology with yielding. The models employ a weak crustal layer that decouples the overriding and subducting plates and allows for dynamically determined trench motion. Here we show that, 1) multiple phase transitions increase slab folding, 2) ridge push significantly increases trench retreat, and 3) strength of the weak crustal layer influences slab detachment. Compared to past studies a more realistic treatment of the phase transitions makes trench retreat more difficult to generate: a weaker plate may encourage slab retreat but detaches once the slab tip crosses into the transition zone due to the rapid increase in slab density. As suggested by previous studies, slab folding within the transition zone changes the direction of forces on the slab and causes periodic changes from trench retreat to trench advance. We

  2. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  3. Lifshits quantum phase transitions and rearrangement of the Fermi surface upon a change in the hole concentration in high-temperature superconductors

    SciTech Connect

    Ovchinnikov, S. G. Korshunov, M. M.; Shneyder, E. I.

    2009-11-15

    Changes in the electronic structure in the normal phase of high-T{sub c} superconductors (HTSCs), viz., layered cuprates, are considered. The results of LDA + GTB calculations of the electron structure and the Fermi surface of La{sub 2-x}Sr{sub x}CuO{sub 4} one-layer cuprates with allowance for strong correlations are compared with ARPES and quantum oscillations data. Two critical points x{sub c1} and x{sub c2} are discovered at which the rear-rangement of the Fermi surface takes place. In the vicinity of these points, changes in the thermodynamic properties at low temperatures are determined using the Lifshits ideology concerning 2.5-order quantum phase transitions. A singularity {delta}(C/T) {proportional_to} (x - x{sub e}){sup 1/2} in the electron heat capacity agrees well with the available experimental data in the vicinity of x{sub c1} {approx} 0.15. Sign reversal of the Hall constant upon doping is also considered qualitatively.

  4. Nodal to nodeless superconducting energy-gap structure change concomitant with Fermi-surface reconstruction in the heavy-fermion compound CeCoIn5

    DOE PAGESBeta

    Kim, Hyunsoo; Tanatar, M. A.; Flint, R.; Petrovic, C.; Hu, Rongwei; White, B. D.; Lum, I. K.; Maple, M. B.; Prozorov, R.

    2015-01-15

    The London penetration depth λ(T) was measured in single crystals of Ce1–xRxCoIn₅, R=La, Nd, and Yb down to Tmin ≈ 50 mK (Tc/Tmin ~50) using a tunnel-diode resonator. In the cleanest samples Δλ(T) is best described by the power law, Δλ(T) ∝ Tn, with n ~ 1, consistent with line nodes. Substitutions of Ce with La, Nd, and Yb lead to similar monotonic suppressions of Tc, however, the effects on Δλ(T) differ. While La and Nd dopings lead to increase of the exponent n and saturation at n ~ 2, as expected for a dirty nodal superconductor, Yb doping leadsmore » to n > 3, suggesting a change from nodal to nodeless superconductivity. As a result, this superconducting gap structure change happens in the same doping range where changes of the Fermi surface topology were reported, implying that the nodal structure and Fermi surface topology are closely linked.« less

  5. Fermi-Surface Topological Phase Transition and Horizontal Order-Parameter Nodes in CaFe2As2 Under Pressure

    PubMed Central

    Gonnelli, R. S.; Daghero, D.; Tortello, M.; Ummarino, G. A.; Bukowski, Z.; Karpinski, J.; Reuvekamp, P. G.; Kremer, R. K.; Profeta, G.; Suzuki, K.; Kuroki, K.

    2016-01-01

    Iron-based compounds (IBS) display a surprising variety of superconducting properties that seems to arise from the strong sensitivity of these systems to tiny details of the lattice structure. In this respect, systems that become superconducting under pressure, like CaFe2As2, are of particular interest. Here we report on the first directional point-contact Andreev-reflection spectroscopy (PCARS) measurements on CaFe2As2 crystals under quasi-hydrostatic pressure, and on the interpretation of the results using a 3D model for Andreev reflection combined with ab-initio calculations of the Fermi surface (within the density functional theory) and of the order parameter symmetry (within a random-phase-approximation approach in a ten-orbital model). The almost perfect agreement between PCARS results at different pressures and theoretical predictions highlights the intimate connection between the changes in the lattice structure, a topological transition in the holelike Fermi surface sheet, and the emergence on the same sheet of an order parameter with a horizontal node line. PMID:27216477

  6. Fermi surface reconstruction and quantum oscillations in underdoped YBa2Cu3O7 -x modeled in a single bilayer with mirror symmetry broken by charge density waves

    NASA Astrophysics Data System (ADS)

    Briffa, A. K. R.; Blackburn, E.; Hayden, S. M.; Yelland, E. A.; Long, M. W.; Forgan, E. M.

    2016-03-01

    Hole-doped high-temperature cuprate superconductors below optimum doping have electronlike Fermi surfaces occupying a small fraction of the Brillouin zone. There is strong evidence that this is linked to charge density wave (CDW) order, which reconstructs the large holelike Fermi surfaces predicted by band structure calculations. Recent experiments have revealed the structure of the two CDW components in the benchmark bilayer material YBa2Cu3O7 -x in high field where quantum oscillation (QO) measurements are performed. We have combined these results with a tight-binding description of the bands in a single bilayer to give a minimal model revealing the essential physics of the situation. Here we show that this approach, combined with the effects of spin-orbit interactions and the pseudogap, gives a good qualitative description of the multiple frequencies seen in the QO observations in this material. Magnetic breakdown through weak CDW splitting of the bands will lead to a field dependence of the QO spectrum and to the observed fourfold symmetry of the results in tilted fields.

  7. Fermi-Surface Topological Phase Transition and Horizontal Order-Parameter Nodes in CaFe2As2 Under Pressure.

    PubMed

    Gonnelli, R S; Daghero, D; Tortello, M; Ummarino, G A; Bukowski, Z; Karpinski, J; Reuvekamp, P G; Kremer, R K; Profeta, G; Suzuki, K; Kuroki, K

    2016-01-01

    Iron-based compounds (IBS) display a surprising variety of superconducting properties that seems to arise from the strong sensitivity of these systems to tiny details of the lattice structure. In this respect, systems that become superconducting under pressure, like CaFe2As2, are of particular interest. Here we report on the first directional point-contact Andreev-reflection spectroscopy (PCARS) measurements on CaFe2As2 crystals under quasi-hydrostatic pressure, and on the interpretation of the results using a 3D model for Andreev reflection combined with ab-initio calculations of the Fermi surface (within the density functional theory) and of the order parameter symmetry (within a random-phase-approximation approach in a ten-orbital model). The almost perfect agreement between PCARS results at different pressures and theoretical predictions highlights the intimate connection between the changes in the lattice structure, a topological transition in the holelike Fermi surface sheet, and the emergence on the same sheet of an order parameter with a horizontal node line. PMID:27216477

  8. Nernst and Seebeck coefficients of the cuprate superconductor YBa2Cu3O6.67: a study of Fermi surface reconstruction.

    PubMed

    Chang, J; Daou, R; Proust, Cyril; Leboeuf, David; Doiron-Leyraud, Nicolas; Laliberté, Francis; Pingault, B; Ramshaw, B J; Liang, Ruixing; Bonn, D A; Hardy, W N; Takagi, H; Antunes, A B; Sheikin, I; Behnia, K; Taillefer, Louis

    2010-02-01

    The Seebeck and Nernst coefficients S and nu of the cuprate superconductor YBa{2}Cu{3}O{y} (YBCO) were measured in a single crystal with doping p=0.12 in magnetic fields up to H=28 T. Down to T=9 K, nu becomes independent of field by H approximately 30 T, showing that superconducting fluctuations have become negligible. In this field-induced normal state, S/T and nu/T are both large and negative in the T-->0 limit, with the magnitude and sign of S/T consistent with the small electronlike Fermi surface pocket detected previously by quantum oscillations and the Hall effect. The change of sign in S(T) at T approximately 50 K is remarkably similar to that observed in La2-xBaxCuO4, La{2-x-y}Nd{y}Sr_{x}CuO{4}, and La{2-x-y}Eu{y}Sr{x}CuO{4}, where it is clearly associated with the onset of stripe order. We propose that a similar density-wave mechanism causes the Fermi surface reconstruction in YBCO. PMID:20366789

  9. Fermi-Surface Topological Phase Transition and Horizontal Order-Parameter Nodes in CaFe2As2 Under Pressure

    NASA Astrophysics Data System (ADS)

    Gonnelli, R. S.; Daghero, D.; Tortello, M.; Ummarino, G. A.; Bukowski, Z.; Karpinski, J.; Reuvekamp, P. G.; Kremer, R. K.; Profeta, G.; Suzuki, K.; Kuroki, K.

    2016-05-01

    Iron-based compounds (IBS) display a surprising variety of superconducting properties that seems to arise from the strong sensitivity of these systems to tiny details of the lattice structure. In this respect, systems that become superconducting under pressure, like CaFe2As2, are of particular interest. Here we report on the first directional point-contact Andreev-reflection spectroscopy (PCARS) measurements on CaFe2As2 crystals under quasi-hydrostatic pressure, and on the interpretation of the results using a 3D model for Andreev reflection combined with ab-initio calculations of the Fermi surface (within the density functional theory) and of the order parameter symmetry (within a random-phase-approximation approach in a ten-orbital model). The almost perfect agreement between PCARS results at different pressures and theoretical predictions highlights the intimate connection between the changes in the lattice structure, a topological transition in the holelike Fermi surface sheet, and the emergence on the same sheet of an order parameter with a horizontal node line.

  10. Momentum density and 2D-ACAR experiments in YBa{sub 2}Cu{sub 3}O{sub 7}

    SciTech Connect

    Bansil, A.; Smedskjaer, L.C.

    1991-12-01

    We compare measured c-projected 2D-ACAR spectrum from an untwinned single crystal of YBa{sub 2}Cu{sub 3}O{sub 7-x} with the corresponding band theory predictions. Many different one-dimensional sections through the spectrum are considered, together with the characteristic amplitudes and shapes of the spectral anisotropies, with a focus on identifying and delineating Fermi surface signatures in the spectra. The positron data clearly show several distinct features of the ridge Fermi surface predicted by the band theory, and give an indication of the pillbox Fermi sheet. The good agreement between theory and experiment suggests that the band theory framework based on the local density approximation (LDA) is capable of providing a substantially correct description of the momentum density and Fermiology of the normal ground state electronic structure of YBa{sub 2}Cu{sub 3}O{sub 7}.

  11. Mesh2d

    SciTech Connect

    Greg Flach, Frank Smith

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.

  12. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  13. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  14. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  15. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  16. Spin Polarization and Texture of the Fermi Arcs in the Weyl Fermion Semimetal TaAs.

    PubMed

    Xu, Su-Yang; Belopolski, Ilya; Sanchez, Daniel S; Neupane, Madhab; Chang, Guoqing; Yaji, Koichiro; Yuan, Zhujun; Zhang, Chenglong; Kuroda, Kenta; Bian, Guang; Guo, Cheng; Lu, Hong; Chang, Tay-Rong; Alidoust, Nasser; Zheng, Hao; Lee, Chi-Cheng; Huang, Shin-Ming; Hsu, Chuang-Han; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Komori, Fumio; Kondo, Takeshi; Shin, Shik; Lin, Hsin; Jia, Shuang; Hasan, M Zahid

    2016-03-01

    A Weyl semimetal is a new state of matter that hosts Weyl fermions as quasiparticle excitations. The Weyl fermions at zero energy correspond to points of bulk-band degeneracy, called Weyl nodes, which are separated in momentum space and are connected only through the crystal's boundary by an exotic Fermi arc surface state. We experimentally measure the spin polarization of the Fermi arcs in the first experimentally discovered Weyl semimetal TaAs. Our spin data, for the first time, reveal that the Fermi arcs' spin-polarization magnitude is as large as 80% and lies completely in the plane of the surface. Moreover, we demonstrate that the chirality of the Weyl nodes in TaAs cannot be inferred by the spin texture of the Fermi arcs. The observed nondegenerate property of the Fermi arcs is important for establishing its exact topological nature, which reveals that spins on the arc form a novel type of 2D matter. Additionally, the nearly full spin polarization we observed (∼80%) may be useful in spintronic applications. PMID:26991191

  17. Spin Polarization and Texture of the Fermi Arcs in the Weyl Fermion Semimetal TaAs

    NASA Astrophysics Data System (ADS)

    Xu, Su-Yang; Belopolski, Ilya; Sanchez, Daniel S.; Neupane, Madhab; Chang, Guoqing; Yaji, Koichiro; Yuan, Zhujun; Zhang, Chenglong; Kuroda, Kenta; Bian, Guang; Guo, Cheng; Lu, Hong; Chang, Tay-Rong; Alidoust, Nasser; Zheng, Hao; Lee, Chi-Cheng; Huang, Shin-Ming; Hsu, Chuang-Han; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Komori, Fumio; Kondo, Takeshi; Shin, Shik; Lin, Hsin; Jia, Shuang; Hasan, M. Zahid

    2016-03-01

    A Weyl semimetal is a new state of matter that hosts Weyl fermions as quasiparticle excitations. The Weyl fermions at zero energy correspond to points of bulk-band degeneracy, called Weyl nodes, which are separated in momentum space and are connected only through the crystal's boundary by an exotic Fermi arc surface state. We experimentally measure the spin polarization of the Fermi arcs in the first experimentally discovered Weyl semimetal TaAs. Our spin data, for the first time, reveal that the Fermi arcs' spin-polarization magnitude is as large as 80% and lies completely in the plane of the surface. Moreover, we demonstrate that the chirality of the Weyl nodes in TaAs cannot be inferred by the spin texture of the Fermi arcs. The observed nondegenerate property of the Fermi arcs is important for establishing its exact topological nature, which reveals that spins on the arc form a novel type of 2D matter. Additionally, the nearly full spin polarization we observed (˜80 %) may be useful in spintronic applications.

  18. Model of Odd N in the Terrestrial Thermosphere: 1. A First Principles Calculation of the NO2 Potential Energy Surfaces Relevant to the Production of NO via the N(2D)+O2 Reaction.

    NASA Astrophysics Data System (ADS)

    Dothe, H.; Braunstein, M.; Duff, J. W.; Sharma, R. D.

    2001-12-01

    The daytime observation of 5.3 μ m thermospheric emission from the NO fundamental vibration-rotation band by the interferometer aboard the cryogenic infrared radiance instrumentation for shuttle (CIRRIS 1A) has provided important insight into the phenomenology of NO formation. The four major mechanisms to the 5.3 μ m emission considered by previous modeling are solar pumping, inelastic collisions of O with NO(v=0), the reactions of N(2D) with O2, and the reactions of N(4S) with O2. It has previously been shown that the reaction of N(4S) with O2 is consistent with rotationally nonthermal 5.3 μ m emission, while the N(2D)+O2 reaction has been assumed to contribute to rotationally thermal emission. The assumption of a thermal rotational distribution from the N(2D)+O2 reaction cannot be confirmed by the CIRRIS 1A data. The existence of a significant fraction of nonthermal atoms in the tail of the N(2D) energy distribution function (EDF) in the daylit thermosphere was demonstrated earlier (AGU Spring 2001). Therefore the investigation of possible nonthermal behavior in NO formation via the N(2D)+O2 reaction in the daylit and aurorally dosed thermosphere requires energy dependent cross sections for the reaction between N(2D) and O2. To calculate the N(2D)+O2 cross sections, potential energy surfaces (PES) of the NO2 system are required. The output of these calculations include the energy dependent cross sections and the vibrational and rotational distribution of the nascent NO needed for accurate calculation of the cooling rates due to 5.3 μ m emission. This work concentrates on the first step towards the calculation of such cross sections, the ab initio calculations of the NO2 PES. Previous existing PES, using different basis sets and electron correlation levels, have shown disagreements in the magnitude of the barriers for the lowest lying doublet surfaces in the reaction entrance channel. Comparative results from our calculations are presented here, showing PES

  19. Entanglement Entropy of Fermi Liquids via Multidimensional Bosonization

    NASA Astrophysics Data System (ADS)

    Ding, Wenxin; Seidel, Alexander; Yang, Kun

    2012-01-01

    The logarithmic violations of the area law, i.e., an “area law” with logarithmic correction of the form S˜Ld-1log⁡L, for entanglement entropy are found in both 1D gapless fermionic systems with Fermi points and high-dimensional free fermions. This paper shows that both violations are of the same origin, and that, in the presence of Fermi-liquid interactions, such behavior persists for 2D fermion systems. In this paper, we first consider the entanglement entropy of a toy model, namely, a set of decoupled 1D chains of free spinless fermions, to relate both violations in an intuitive way. We then use multidimensional bosonization to rederive the formula by Gioev and Klich [D. Gioev and I. Klich, Entanglement Entropy of Fermions in Any Dimension and the Widom Conjecture, Phys. Rev. Lett.PRLTAO0031-9007 96, 100503 (2006).10.1103/PhysRevLett.96.100503] for free fermions through a low-energy effective Hamiltonian and explicitly show that, in both cases, the logarithmic corrections to the area law share the same origin: the discontinuity at the Fermi surface (points). In the presence of Fermi-liquid (forward-scattering) interactions, the bosonized theory remains quadratic in terms of the original local degrees of freedom, and, after regularizing the theory with a mass term, we are able to calculate the entanglement entropy perturbatively up to second order in powers of the coupling parameter for a special geometry via the replica trick. We show that these interactions do not change the leading scaling behavior for the entanglement entropy of a Fermi liquid. At higher orders, we argue that this should remain true through a scaling analysis.

  20. Nonanalytic corrections to the Fermi-liquid behavior

    NASA Astrophysics Data System (ADS)

    Chubukov, Andrey V.; Maslov, Dmitrii L.

    2003-10-01

    The issue of nonanalytic corrections to the Fermi-liquid behavior is revisited. Previous studies have indicated that the corrections to the Fermi-liquid forms of the specific heat and the static spin susceptibility (CFL∝T, χFLs=const) are nonanalytic in D⩽3 and scale as δC(T)∝TD, χs(T)∝TD-1, and χs(Q)∝QD-1, with extra logarithms in D=3 and 1. It is shown that these nonanalytic corrections originate from the universal singularities in the dynamical bosonic response functions of a generic Fermi liquid. In contrast to the leading, Fermi-liquid forms which depend on the interaction averaged over the Fermi surface, the nonanalytic corrections are parametrized by only two coupling constants, which are the components of the interaction potential at momentum transfers q=0 and q=2pF. For three-dimensional (3D) systems, a recent result of Belitz, Kirkpatrick, and Vojta for the spin susceptibility is reproduced and the issue why a nonanalytic momentum dependence, χs(Q,T=0)-χFLs∝Q2log Q, is not paralleled by a nonanalyticity in the T dependence [χs(0,T)-χFLs]∝T2 is clarified. For 2D systems, explicit forms of C(T)-CFL∝T2, χ(Q,T=0)-χFL∝|Q|, and χ(0,T)-χFL∝T are obtained. It is shown that earlier calculations of the temperature dependences in two dimensions are incomplete.

  1. Nonanalytic Magnetic Response of Fermi- and non-Fermi Liquids

    NASA Astrophysics Data System (ADS)

    Chubukov, Andrey; Maslov, Dmitrii; Saha, Ronojoy

    2007-03-01

    We revisit the issue of the non-analytic dependence of the static spin susceptibility of a 2D Fermi liquid on temperature and a magnetic field, χs(T, H) = χ0+ A T fχ(μB|H|/T). We show that in a generic Fermi liquid the prefactor A is expressed via complex combinations of the Landau parameters, and does not reduce to the backscattering amplitude, contrary to the case of the specific heat C(T, H). We show that this distinction with the specific heat is mostly relevant near a ferromagnetic QCP -- the non-analytic terms in χs(T,H) are less singular near QCP than those in C(T, H).

  2. Fermi surface reconstruction in (Ba1-xKx)Fe2As2 (0.44 ≤ x ≤ 1) probed by thermoelectric power measurements

    SciTech Connect

    Hodovanets, Halyna; Liu, Yong; Jesche, Anton; Ran, Sheng; Mun, Eun Deok; Lograsso, Thomas A; Bud'ko, Sergey L; Canfield, Paul C

    2014-06-01

    We report in-plane thermoelectric power measurements on single crystals of (Ba1-xKx)Fe2As2(0.44≤x≤1). We observe a minimum in the S|T=const versus x at x~0.55 that can be associated with the change in the topology of the Fermi surface, a Lifshitz transition, related to the electron pockets at the center of M point crossing the Fermi level. This feature is clearly observable below ~75 K. Thermoelectric power also shows a change in the x~0.8–0.9 range, where the maximum in the thermoelectric power collapses into a plateau. This Lifshitz transition is most likely related to the reconstruction of the Fermi surface associated with the transformation of the hole pockets at the M point into four blades as observed by ARPES measurements.

  3. Propeller-Like Low Temperature Fermi Surface of Ba1-xKxFe2As2 from Magnetotransport and Photoemission Measurements

    NASA Astrophysics Data System (ADS)

    Evtushinsky, Daniil V.; Kordyuk, Alexander A.; Zabolotnyy, Volodymyr B.; Inosov, Dmytro S.; Kim, Timur K.; Büchner, Bernd; Luo, Huiqian; Wang, Zhaosheng; Wen, Hai-Hu; Sun, Guoli; Lin, Chengtian; Borisenko, Sergey V.

    2011-02-01

    The Hall coefficient of the hole-doped iron arsenide Ba1-xKxFe2As2 (BKFA) is calculated purely on the basis of the electronic structure, revealed in the angle-resolved photoemission spectroscopy (ARPES) experiments, and compared to the one measured directly. The observed agreement allows us to state that upon cooling the Fermi surface (FS) in the optimally doped BKFA gradually evolves to the propeller-like topology, on which the superconductivity develops. Persistence of the notable temperature dependence in both photoemission and magnetotransport experiments well above the spin-density-wave (SDW) transition suggests that the FS reconstruction in BKFA is partially decoupled from the emergence of static magnetism.

  4. ARPES on Na0.6CoO2: Fermi Surface and Unusual Band Dispersion

    SciTech Connect

    Yang, H. B.; Wang, S. -C.; Sekharan, A. K. P.; Matsui, H.; Souma, S.; Sato, T.; Takahashi, T.; Takeuchi, T.; Campuzano, J. C.; Jin, Rongying; Sales, Brian C; Mandrus, David; Wang, Z.; Ding, H.

    2004-01-01

    The electronic structure of single crystals Na{sub 0.6}CoO{sub 2}, which are closely related to the superconducting Na{sub 0.3}CoO{sub 2} {center_dot} yH{sub 2}O (T{sub c}-5 K), is studied by angle-resolved photoelectron spectroscopy. While the measured Fermi surface (FS) is consistent with the large FS enclosing the {Gamma} point from the band theory, the predicted small FS pockets near the K points are absent. In addition, the band dispersion is found to be highly renormalized, and anisotropic along the two principal axes ({Gamma}-K, {Gamma}-M). Our measurements also indicate that an extended flatband is formed slightly above EF along {Gamma}-K.

  5. Bosonization of the low energy excitations of Fermi liquids

    SciTech Connect

    Castro Neto, A.H.; Fradkin, E. )

    1994-03-07

    We bosonize the low energy excitations of Fermi liquids in any number of dimensions in the limit of long wavelengths. The bosons are a coherent superposition of electron-hole pairs and are related with the displacements of the Fermi surface in some arbitrary direction. A coherent-state path integral for the bosonized theory is derived and it is shown to represent histories of the shape of the Fermi surface. The Landau theory of Fermi liquids can be obtained from the formalism in the absence of nesting of the Fermi surface and singular interactions. We show that the Landau equation for sound waves is exact in the semiclassical approximation for the bosons.

  6. Fermi Pulsar Analysis

    NASA Video Gallery

    This animation illustrates how analysis of Fermi data reveals new pulsars. Fermi's LAT records the precise arrival time and approximate direction of the gamma rays it detects, but to identify a pul...

  7. 2D and 3D Shear-Wave Velocity Structure to >1 Km Depth from Ambient and Active Surface Waves: Three "Deep Remi" Case Studies

    NASA Astrophysics Data System (ADS)

    Louie, J. N.; Pancha, A.; Pullammanappallil, S. K.

    2014-12-01

    Refraction microtermor routinely assesses 1D and 2D velocity-depth profiles to shallow depths of approximately 100 m primarily for engineering applications. Estimation of both shallow and deep (>100 m) shear-velocity structure are key elements in the assessment of urban areas for potential earthquake ground shaking, damage, and the calibration of recorded ground motions. Three independent studies investigated the ability of the refraction microtremor technology to image deep velocity structure, to depths exceeding 1 km (Deep ReMi). In the first study, we were able to delineate basin thicknesses of up to 900 m and the deep-basin velocity structure beneath the Reno-area basin. Constraints on lateral velocity changes in 3D as well as on velocity profiles extended down to 1500 m, and show a possible fault offset. This deployment used 30 stand-alone wireless instruments mated to 4.5 Hz geophones, along each of five arrays 2.9 to 5.8 km long. Rayleigh-wave dispersion was clear at frequencies as low as 0.5 Hz using 120 sec ambient urban noise records. The results allowed construction of a 3D velocity model, vetted by agreement with gravity studies. In a second test, a 5.8 km array delimited the southern edge of the Tahoe Basin, with constraints from gravity. There, bedrock depth increased by 250 m in thickness over a distance of 1600 m, with definition of the velocity of the deeper basin sediments. The third study delineated the collapse region of an underground nuclear explosion within a thick sequence of volcanic extrusives, using a shear-wave minivibe in a radial direction, and horizontal geophones. Analysis showed the cavity extends to 620 m depth, with a width of 180 m and a height of 220 m. Our results demonstrate that deep velocity structure can be recovered using ambient noise. This technique offers the ability to define 2D and 3D structural representations essential for seismic hazard evaluation.

  8. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  9. Electron-positron momentum density distribution of Gd from 2D ACAR data via Maximum Entropy and Cormack's methods

    NASA Astrophysics Data System (ADS)

    Pylak, M.; Kontrym-Sznajd, G.; Dobrzyński, L.

    2011-08-01

    A successful application of the Maximum Entropy Method (MEM) to the reconstruction of electron-positron momentum density distribution in gadolinium out of the experimental of 2D ACAR data is presented. Formally, the algorithm used was prepared for two-dimensional reconstructions from line integrals. For the first time the results of MEM, applied to such data, are compared in detail with the ones obtained by means of Cormack's method. It is also shown how the experimental uncertainties may influence the results of the latter analysis. Preliminary calculations, using WIEN2k code, of band structure and Fermi surface have been done as well.

  10. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    SciTech Connect

    James R. Wood; W. Quinlan

    2003-10-01

    The principal objective of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. During this reporting period, a new field demonstration, Springdale Prospect in Manistee County, Michigan was begun to assess the validity and usefulness of the microbial surface geochemical technique. The surface geochemistry data showed a fair-to-good microbial anomaly that may indicate the presence of a fault or stratigraphic facies change across the drilling path. The surface geochemistry sampling at the original Bear Lake demonstration site was updated several months after the prospect was confirmed and production begun. As expected, the anomaly appears to be diminishing as the positive (apical) anomaly is replaced by a negative (edge) anomaly, probably due to the pressure draw-down in the reservoir.

  11. Fermi level pinning characterisation on ammonium fluoride-treated surfaces of silicon by energy-filtered doping contrast in the scanning electron microscope.

    PubMed

    Chee, Augustus K W

    2016-01-01

    Two-dimensional dopant profiling using the secondary electron (SE) signal in the scanning electron microscope (SEM) is a technique gaining impulse for its ability to enable rapid and contactless low-cost diagnostics for integrated device manufacturing. The basis is doping contrast from electrical p-n junctions, which can be influenced by wet-chemical processing methods typically adopted in ULSI technology. This paper describes the results of doping contrast studies by energy-filtering in the SEM from silicon p-n junction specimens that were etched in ammonium fluoride solution. Experimental SE micro-spectroscopy and numerical simulations indicate that Fermi level pinning occurred on the surface of the treated-specimen, and that the doping contrast can be explained in terms of the ionisation energy integral for SEs, which is a function of the dopant concentration, and surface band-bending effects that prevail in the mechanism for doping contrast as patch fields from the specimen are suppressed. PMID:27576347

  12. Fermi level pinning characterisation on ammonium fluoride-treated surfaces of silicon by energy-filtered doping contrast in the scanning electron microscope

    PubMed Central

    Chee, Augustus K. W.

    2016-01-01

    Two-dimensional dopant profiling using the secondary electron (SE) signal in the scanning electron microscope (SEM) is a technique gaining impulse for its ability to enable rapid and contactless low-cost diagnostics for integrated device manufacturing. The basis is doping contrast from electrical p-n junctions, which can be influenced by wet-chemical processing methods typically adopted in ULSI technology. This paper describes the results of doping contrast studies by energy-filtering in the SEM from silicon p-n junction specimens that were etched in ammonium fluoride solution. Experimental SE micro-spectroscopy and numerical simulations indicate that Fermi level pinning occurred on the surface of the treated-specimen, and that the doping contrast can be explained in terms of the ionisation energy integral for SEs, which is a function of the dopant concentration, and surface band-bending effects that prevail in the mechanism for doping contrast as patch fields from the specimen are suppressed. PMID:27576347

  13. A temperature dependent 2D-ACAR study of untwinned metallic YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}

    SciTech Connect

    Smedskjaer, L.C.; Welp, U.; Fang, Y.; Bailey, K.G.; Bansil, A.

    1992-02-01

    The authors have carried out 2D-ACAR measurements in the c-axis projection on an untwinned single crystal of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} as a function of temperature, for five temperatures ranging from 30K to 300K. These temperature dependent 2D-ACAR spectra can be approximated by a superposition of two temperature independent spectra with temperature dependent weighting factors. The authors discuss how the temperature dependence of the data can be exploited to obtain a {open_quote}background corrected{close_quote} experimental spectrum, which is found to be in remarkable accord with the corresponding band theory based predictions, including for the first time the overall amplitude of the anisotropy in the 2D-ACAR. The corrected data also show clear signatures of the ridge Fermi surface and an indication of the pillbox surface.

  14. Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry.

    PubMed

    Davidenko, Natalia; Schuster, Carlos F; Bax, Daniel V; Farndale, Richard W; Hamaia, Samir; Best, Serena M; Cameron, Ruth E

    2016-10-01

    Studies of cell attachment to collagen-based materials often ignore details of the binding mechanisms-be they integrin-mediated or non-specific. In this work, we have used collagen and gelatin-based substrates with different dimensional characteristics (monolayers, thin films and porous scaffolds) in order to establish the influence of composition, crosslinking (using carbodiimide) treatment and 2D or 3D architecture on integrin-mediated cell adhesion. By varying receptor expression, using cells with collagen-binding integrins (HT1080 and C2C12 L3 cell lines, expressing α2β1, and Rugli expressing α1β1) and a parent cell line C2C12 with gelatin-binding receptors (αvβ3 and α5β1), the nature of integrin binding sites was studied in order to explain the bioactivity of different protein formulations. We have shown that alteration of the chemical identity, conformation and availability of free binding motifs (GxOGER and RGD), resulting from addition of gelatin to collagen and crosslinking, have a profound effect on the ability of cells to adhere to these formulations. Carbodiimide crosslinking ablates integrin-dependent cell activity on both two-dimensional and three-dimensional architectures while the three-dimensional scaffold structure also leads to a high level of non-specific interactions remaining on three-dimensional samples even after a rigorous washing regime. This phenomenon, promoted by crosslinking, and attributed to cell entrapment, should be considered in any assessment of the biological activity of three-dimensional substrates. Spreading data confirm the importance of integrin-mediated cell engagement for further cell activity on collagen-based compositions. In this work, we provide a simple, but effective, means of deconvoluting the effects of chemistry and dimensional characteristics of a substrate, on the cell activity of protein-derived materials, which should assist in tailoring their biological properties for specific tissue engineering

  15. Electronic structure, Dirac points and Fermi arc surface states in three-dimensional Dirac semimetal Na3Bi from angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Aiji, Liang; Chaoyu, Chen; Zhijun, Wang; Youguo, Shi; Ya, Feng; Hemian, Yi; Zhuojin, Xie; Shaolong, He; Junfeng, He; Yingying, Peng; Yan, Liu; Defa, Liu; Cheng, Hu; Lin, Zhao; Guodong, Liu; Xiaoli, Dong; Jun, Zhang; M, Nakatake; H, Iwasawa; K, Shimada; M, Arita; H, Namatame; M, Taniguchi; Zuyan, Xu; Chuangtian, Chen; Hongming, Weng; Xi, Dai; Zhong, Fang; Xing-Jiang, Zhou

    2016-07-01

    The three-dimensional (3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction band and valence band are connected. They have isolated 3D Dirac nodes in the whole Brillouin zone and can be viewed as a 3D counterpart of graphene. Recent theoretical calculations and experimental results indicate that the 3D Dirac semimetal state can be realized in a simple stoichiometric compound A 3Bi (A = Na, K, Rb). Here we report comprehensive high-resolution angle-resolved photoemission (ARPES) measurements on the two cleaved surfaces, (001) and (100), of Na3Bi. On the (001) surface, by comparison with theoretical calculations, we provide a proper assignment of the observed bands, and in particular, pinpoint the band that is responsible for the formation of the three-dimensional Dirac cones. We observe clear evidence of 3D Dirac cones in the three-dimensional momentum space by directly measuring on the k x –k y plane and by varying the photon energy to get access to different out-of-plane k z s. In addition, we reveal new features around the Brillouin zone corners that may be related with surface reconstruction. On the (100) surface, our ARPES measurements over a large momentum space raise an issue on the selection of the basic Brillouin zone in the (100) plane. We directly observe two isolated 3D Dirac nodes on the (100) surface. We observe the signature of the Fermi-arc surface states connecting the two 3D Dirac nodes that extend to a binding energy of ∼150 meV before merging into the bulk band. Our observations constitute strong evidence on the existence of the Dirac semimetal state in Na3Bi that are consistent with previous theoretical and experimental work. In addition, our results provide new information to clarify on the nature of the band that forms the 3D Dirac cones, on the possible formation of surface reconstruction of the (001) surface, and on the issue of basic Brillouin zone selection for the (100) surface. Project supported by the

  16. Two step formation of metal aggregates by surface X-ray radiolysis under Langmuir monolayers: 2D followed by 3D growth.

    PubMed

    Mukherjee, Smita; Fauré, Marie-Claude; Goldmann, Michel; Fontaine, Philippe

    2015-01-01

    In order to form a nanostructured metallic layer below a Langmuir monolayer, radiolysis synthesis was carried out in an adapted geometry that we call surface X-ray radiolysis. In this procedure, an X-ray beam produced by a synchrotron beamline intercepts the surface of an aqueous metal-ion solution covered by a Langmuir monolayer at an angle of incidence below the critical angle for total internal reflection. Underneath the organic layer, the X-ray beam induces the radiolytic synthesis of a nanostructured metal-organic layer whose ultrathin thickness is defined by the vertical X-ray penetration depth. We have shown that increasing the X-ray flux on the surface, which considerably enhances the kinetics of the silver layer formation, results in a second growth regime of silver nanocrystals. Here the formation of the oriented thin layer is followed by the appearance of a 3D powder of silver clusters. PMID:26734531

  17. Two step formation of metal aggregates by surface X-ray radiolysis under Langmuir monolayers: 2D followed by 3D growth

    PubMed Central

    Mukherjee, Smita; Fauré, Marie-Claude; Goldmann, Michel

    2015-01-01

    Summary In order to form a nanostructured metallic layer below a Langmuir monolayer, radiolysis synthesis was carried out in an adapted geometry that we call surface X-ray radiolysis. In this procedure, an X-ray beam produced by a synchrotron beamline intercepts the surface of an aqueous metal-ion solution covered by a Langmuir monolayer at an angle of incidence below the critical angle for total internal reflection. Underneath the organic layer, the X-ray beam induces the radiolytic synthesis of a nanostructured metal–organic layer whose ultrathin thickness is defined by the vertical X-ray penetration depth. We have shown that increasing the X-ray flux on the surface, which considerably enhances the kinetics of the silver layer formation, results in a second growth regime of silver nanocrystals. Here the formation of the oriented thin layer is followed by the appearance of a 3D powder of silver clusters. PMID:26734531

  18. Unveiling Unidentified Fermi Sources

    NASA Astrophysics Data System (ADS)

    Zhang, Lizhong; South Pole Telescope

    2016-01-01

    The Fermi γ-ray Space Telescope (Fermi) has surveyed the entire sky at the highest-energy band of the electromagnetic spectrum. The majority of Fermi sources have counterpart identifications from multi-wavelength large-area surveys, particularly in the radio and x-ray bands. However, around 35% of Fermi sources remain unidentified, a problem exasperated by the low resolution of the telescope. Understanding the nature of unidentified Fermi sources is one of the most pressing problems in γ-ray astronomy. The South Pole Telescope (SPT) has completed a survey covering a 2500 square degrees of the southern extragalactic sky with arcminute resolution at millimeter wavelengths. The mm wavelength is the most efficient means to identify blazars and unidentified Fermi sources. Our analysis shows that the SPT point source catalog provides candidate associations for 40% of the unidentified Fermi sources, showing them to be flat-spectrum radio quasars which are extraordinarily bright at millimeter (mm) wavelengths.

  19. Justification of the Nonlinear Schrödinger Equation for the Evolution of Gravity Driven 2D Surface Water Waves in a Canal of Finite Depth

    NASA Astrophysics Data System (ADS)

    Düll, Wolf-Patrick; Schneider, Guido; Wayne, C. Eugene

    2016-05-01

    In 1968 V.E. Zakharov derived the Nonlinear Schrödinger equation for the two-dimensional water wave problem in the absence of surface tension, that is, for the evolution of gravity driven surface water waves, in order to describe slow temporal and spatial modulations of a spatially and temporarily oscillating wave packet. In this paper we give a rigorous proof that the wave packets in the two-dimensional water wave problem in a canal of finite depth can be approximated over a physically relevant timespan by solutions of the Nonlinear Schrödinger equation.

  20. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR; VERNON FIELD, ISABELLA COUNTY, MI.

    SciTech Connect

    James R. Wood; A. Wylie; W. Quinlan

    2004-01-01

    The principal objective of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. During this reporting period, a new field demonstration, Springdale Prospect in Manistee County, Michigan was begun to assess the validity and usefulness of the microbial surface geochemical technique. The surface geochemistry data showed a fair-to-good microbial anomaly that may indicate the presence of a fault or stratigraphic facies change across the drilling path. The main news this reporting period is the confirmed discovery of producing hydrocarbons at the State Springdale & O'Driscoll No.16-16 demonstration well in Manistee County. This well was spudded in late November, tested and put on production in December 2003. To date it is flowing nearly 100 barrels of liquid hydrocarbons per day, which is a good well in Michigan. Reserves have not been established yet. The surface geochemistry sampling at the Springdale demonstration site will be repeated this spring after the well has been on production for several months to see if the anomaly pattern changes. We expect that the anomaly will diminish as the original positive (apical) anomaly is replaced by a negative (edge) anomaly, probably due to the pressure draw-down in the reservoir. This is the behavior that we observed at the Bear lake demonstration well reported last quarter.

  1. A numerical study of steady 2D flow around NACA 0015 and NACA 0012 hydrofoil with free surface using VOF method

    NASA Astrophysics Data System (ADS)

    Adjali, Saadia; Belkadi, Mustapha; Aounallah, Mohammed; Imine, Omar

    2015-05-01

    Accurate simulation of turbulent free surface flows around surface ships has a central role in the optimal design of such naval vessels. The flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. In this paper, our goal is to estimate the lift and drag coefficients for NACA 0012 of hydrofoil advancing in calm water under steady conditions with free surface and emerged NACA 0015. The commercial CFD software FLUENT version 14 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26.The shear stress k-ωSST model is used for turbulence modeling and the volume of fluid technique is employed to simulate the free-surface motion. In this computation, the second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRIC scheme for VOF discretisation. The results obtained compare well with the experimental data.

  2. Poly(amido amine)-based multilayered thin films on 2D and 3D supports for surface-mediated cell transfection.

    PubMed

    Hujaya, Sry D; Marchioli, Giulia; Roelofs, Karin; van Apeldoorn, Aart A; Moroni, Lorenzo; Karperien, Marcel; Paulusse, Jos M J; Engbersen, Johan F J

    2015-05-10

    Two linear poly(amido amine)s, pCABOL and pCHIS, prepared by polyaddition of cystamine bisacrylamide (C) with 4-aminobutanol (ABOL) or histamine (HIS), were explored to form alternating multilayer thin films with DNA to obtain functionalized materials with transfection capacity in 2D and 3D. Therefore, COS-7 cells were cultured on top of multilayer films formed by layer-by-layer dipcoating of these polymers with GFP-encoded pDNA, and the effect of the number of layers and cell seeding density on the transfection efficiency was evaluated. Multilayer films with pCABOL were found to be superior to pCHIS in facilitating transfection, which was attributed to higher incorporation of pDNA and release of the transfection agent. High amounts of transfected cells were obtained on pCABOL films, correlating proportionally over a wide range with seeding density. Optimal transfection efficiency was obtained with pCABOL films composed of 10 bilayers. Further increase in the number of bilayers only marginally increased transfection efficiency. Using the optimal multilayer and cell seeding conditions, pCABOL multilayers were fabricated on poly(ε-caprolactone) (PCL), heparinized PCL (PCL-HEP), and poly(lactic acid) (PLA) disks as examples of common biomedical supports. The multilayers were found to completely mask the properties of the original substrates, with significant improvement in cell adhesion, which is especially pronounced for PCL and PLA disks. With all these substrates, transfection efficiency was found to be in the range of 25-50% transfected cells. The pCABOL/pDNA multilayer films can also conveniently add transfection capability to 3D scaffolds. Significant improvement in cell adhesion was observed after multilayer coating of 3D-plotted fibers of PCL (with and without an additional covalent heparin layer), especially for the PCL scaffold without heparin layer and transfection was observed on both 3D PCL and PCL-HEP scaffolds. These results show that layer

  3. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    SciTech Connect

    James R. Wood; T.J. Bornhorst; S.D. Chittick; William B. Harrison; W. Quinlan

    2001-10-31

    Two major accomplishments resulted from Phase I. One is the success of the surface geochemistry program, which collected over 800 samples from the site of the 1st demonstration well in Vernon Field and has pretty well provided us with the tools to delineate favorable ground from unfavorable. The second is the recent detailed mapping of the Central Michigan Basin that for the first time revealed the presence of at least two major faults that control the location of many of the reservoirs in the Michigan Basin. These faults were located from structure maps obtained by contouring the surface of the Dundee Formation using top picks from 9861 wells in 14 counties. Faults were inferred where the contour lines were most dense (''stacked'').

  4. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    SciTech Connect

    James R. Wood; W. Quinlan

    2003-07-01

    The principal objective of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. As part of the project, a field demonstration was undertaken to assess the validity and usefulness of the microbial surface geochemical technique. The surface geochemistry data showed a strong anomaly in the Myrtle Beach area that would justify drilling by itself and even more so in conjunction with the structural interpretation from the 3D seismic data. The Myrtle Beach geochemical survey indicated a good to excellent prospect which was confirmed by drilling. Presented in this quarterly report is the Case History and Well Summary for the Myrtle Beach area in Burke County, North Dakota. This case history presents the important technical details regarding the geochemistry and the two vertical wells that are part of this field demonstration, and the applicability of these results to other demonstration projects. This format could be duplicated for other demonstration projects and is being used on all subsequent field demonstrations as they near completion.

  5. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    SciTech Connect

    James R. Wood; A. Wylie; W. Quinlan

    2004-07-01

    The principal objective of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. During this reporting period, plans were finalized for additional surface geochemical sampling in the new Springdale Prospect field demonstration in Manistee County, Michigan. Plans were also developed to acquire additional surface geochemical data in the vicinity of the Bagley Prospect area in Otsego County, Michigan. The main news this reporting period is the continued success in the Springdale demonstration area. The State Springdale & O'Driscoll No.16-16 and the State Springdale & Herban 12-16 horizontal demonstration wells in Manistee County, Michigan are both flowing nearly 100 barrels of liquid hydrocarbons per day plus gas, which are good wells in Michigan. Reserves have not been established yet. A third horizontal well, the State Springdale & Wilburn 1-21 HD has been drilled and is waiting on completion. Two more horizontal wells have been permitted in the Springdale area by our industry partner.

  6. Chemical analysis of solid materials by a LIMS instrument designed for space research: 2D elemental imaging, sub-nm depth profiling and molecular surface analysis

    NASA Astrophysics Data System (ADS)

    Moreno-García, Pavel; Grimaudo, Valentine; Riedo, Andreas; Neuland, Maike B.; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2016-04-01

    Direct quantitative chemical analysis with high lateral and vertical resolution of solid materials is of prime importance for the development of a wide variety of research fields, including e.g., astrobiology, archeology, mineralogy, electronics, among many others. Nowadays, studies carried out by complementary state-of-the-art analytical techniques such as Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), Secondary Ion Mass Spectrometry (SIMS), Glow Discharge Time-of-Flight Mass Spectrometry (GD-TOF-MS) or Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) provide extensive insight into the chemical composition and allow for a deep understanding of processes that might have fashioned the outmost layers of an analyte due to its interaction with the surrounding environment. Nonetheless, these investigations typically employ equipment that is not suitable for implementation on spacecraft, where requirements concerning weight, size and power consumption are very strict. In recent years Laser Ablation/Ionization Mass Spectrometry (LIMS) has re-emerged as a powerful analytical technique suitable not only for laboratory but also for space applications.[1-3] Its improved performance and measurement capabilities result from the use of cutting edge ultra-short femtosecond laser sources, improved vacuum technology and fast electronics. Because of its ultimate compactness, simplicity and robustness it has already proven to be a very suitable analytical tool for elemental and isotope investigations in space research.[4] In this contribution we demonstrate extended capabilities of our LMS instrument by means of three case studies: i) 2D chemical imaging performed on an Allende meteorite sample,[5] ii) depth profiling with unprecedented sub-nm vertical resolution on Cu electrodeposited interconnects[6,7] and iii) preliminary molecular desorption of polymers without assistance of matrix or functionalized substrates.[8] On the whole

  7. Band structure, Fermi surface, elastic, thermodynamic, and optical properties of AlZr 3 , AlCu 3 , and AlCu 2 Zr: First-principles study

    NASA Astrophysics Data System (ADS)

    Parvin, R.; Parvin, F.; Ali, M. S.; Islam, A. K. M. A.

    2016-08-01

    The electronic properties (Fermi surface, band structure, and density of states (DOS)) of Al-based alloys AlM 3 (M = Zr and Cu) and AlCu2Zr are investigated using the first-principles pseudopotential plane wave method within the generalized gradient approximation (GGA). The structural parameters and elastic constants are evaluated and compared with other available data. Also, the pressure dependences of mechanical properties of the compounds are studied. The temperature dependence of adiabatic bulk modulus, Debye temperature, specific heat, thermal expansion coefficient, entropy, and internal energy are all obtained for the first time through quasi-harmonic Debye model with phononic effects for T = 0 K–100 K. The parameters of optical properties (dielectric functions, refractive index, extinction coefficient, absorption spectrum, conductivity, energy-loss spectrum, and reflectivity) of the compounds are calculated and discussed for the first time. The reflectivities of the materials are quite high in the IR–visible–UV region up to ∼ 15 eV, showing that they promise to be good coating materials to avoid solar heating. Some of the properties are also compared with those of the Al-based Ni3Al compound.

  8. As-As dimerization, Fermi surfaces and the anomalous electrical transport properties of UAsSe and ThAsSe

    SciTech Connect

    Withers, Ray L. . E-mail: withers@rsc.anu.edu.au; Midden, Herman J.P. van; Prodan, Albert; Midgley, P.A.; Schoenes, J.; Vincent, R.

    2006-07-15

    A temperature dependent electron diffraction study has been carried out on UAsSe to search for evidence of As-As dimerization at low temperature. A highly structured characteristic diffuse intensity distribution, closely related to that recently reported for ThAsSe, has been observed at low temperature and interpreted in terms of a gradual charge density wave type phase transition upon lowering of temperature involving disordered As-As dimerization within (001) planes. Plausible models of the proposed As-As dimerization have been obtained using a group theoretical approach. Electronic band structure calculations of ThAsSe and UAsSe have been used to search for potential Fermi surface nesting wave-vectors. The results are in good agreement with the experimentally observed diffuse intensity distributions in both cases. - Graphical abstract: A typical <001> zone axis EDP of UAsSe taken at {approx}80-90 K. In addition to the strong Bragg reflections of the underlying P4/nmm average structure, note the presence of a highly structured characteristic diffuse intensity distribution arising from disordered As-As dimerization.

  9. Soft X-ray ARPES investigation of the nickelate Fermi surface in exchange biased LaNiO3-LaMnO3 superlattices

    NASA Astrophysics Data System (ADS)

    Bruno, Flavio; McKeown Walker, S.; de la Torre, A.; Tamai, A.; Gibert, M.; Catalano, S.; Triscone, J.-M.; Wang, Z.; Bisti, F.; Strocov, V.; Baumberger, F.

    2015-03-01

    We investigate (111)-oriented superlattices consisting of paramagnetic LaNiO3 (LNO) and ferromagnetic LaMnO3 (LMO). The field dependence of the magnetization in these heterostructures was measured at 5 K after cooling the sample in the presence of a 0.4 T field. Surprisingly, a shift of 15 mT in the magnetization loop towards negative fields along the magnetic field axis was observed. If the same measurement is repeated in a (111) LMO thin film, no exchange bias is observed which implies that LNO is the driving force for the biasing effect exhibited by the heterostructures. Since LNO is a well-known paramagnetic material, the existence of exchange bias in the superlattices implies the existence of an interface-induced magnetic order. Here we use soft x-ray angle resolved photoemission spectroscopy -SX ARPES- to study the electronic band structure of LNO layers in these heterostructures. Due to the increase in photoelectron escape depth in the 500 - 1000 eV energy range, we are able to map the LNO Fermi surface below 7 u.c. of LMO. In this talk we will discuss the similarities and differences in the electronic structure between thin films of (111)-LNO and buried LNO-LMO interfaces.

  10. Electronic structure, Fermi surfaces, and electron-phonon coupling in La-doped Sr2TiO4 and SrTiO3

    NASA Astrophysics Data System (ADS)

    Nie, Yuefeng; Chatterjee, Shouvik; Burganov, Bulat; Monkman, Eric; Harter, John; Shai, Daniel; Lee, Che-Hui; Schlom, Darrell; Shen, Kyle

    2012-02-01

    Sr2TiO4 is a quasi-two-dimensional Ruddlesden-Popper structure analogue to SrTiO3, and is isostructural with the cuprate parent compound La2CuO4. Although the electronic structure of SrTiO3 has been well-explored due to its importance in oxide electronics, little is known about the electronic properties of Sr2TiO4. To investigate this, we synthesized epitaxial La doped Sr2TiO4 and SrTiO3 films on (100) LSAT substrates by molecular beam epitaxy (MBE) and investigated the electronic structure using angle-resolved photoemission spectroscopy (ARPES). The electronic structure of 5% La doped Sr2TiO4 shows a single electron like band with mostly Ti-3dxy character dispersing across the Fermi surface which corresponds well with LDA calculations. This is in contrast to doped SrTiO3 where all three t2g bands are degenerate. We also observed signatures of strong electron-phonon coupling in the quasi-two-dimensional Sr2TiO4 materials which appear to be absent in three-dimensional SrTiO3.

  11. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  12. 2D microwave imaging reflectometer electronics

    NASA Astrophysics Data System (ADS)

    Spear, A. G.; Domier, C. W.; Hu, X.; Muscatello, C. M.; Ren, X.; Tobias, B. J.; Luhmann, N. C.

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  13. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247

  14. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  15. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    SciTech Connect

    James R. Wood; A. Wylie; W. Quinlan

    2004-04-01

    One of the main objectives of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. As part of the project, several field demonstrations were undertaken to assess the validity and usefulness of the microbial surface geochemical technique. The important observations from each of these field demonstrations are briefly reviewed in this annual report. These demonstrations have been successful in identifying the presence or lack of hydrocarbons in the subsurface and can be summarized as follows: (1) The surface geochemistry data showed a fair-to-good microbial anomaly that may indicate the presence of a fault or stratigraphic facies change across the drilling path of the State Springdale & O'Driscoll No.16-16 horizontal demonstration well in Manistee County, Michigan. The well was put on production in December 2003. To date, the well is flowing nearly 100 barrels of liquid hydrocarbons per day plus gas, which is a good well in Michigan. Reserves have not been established yet. Two successful follow-up horizontal wells have also been drilled in the Springdale area. Additional geochemistry data will be collected in the Springdale area in 2004. (2) The surface geochemistry sampling in the Bear Lake demonstration site in Manistee County, Michigan was updated after the prospect was confirmed and production begun; the original subsurface and seismic interpretation used to guide the location of the geochemical survey for the Charlich Fauble re-entry was different than the interpretation used by the operator who ultimately drilled the well. As expected, the anomaly appears to be diminishing as the positive (apical) microbial anomaly is replaced by a negative (edge) anomaly, probably due to the pressure draw-down in the reservoir. (3) The geochemical sampling program over the Vernon Field, Isabella County, Michigan is now

  16. Creative Computing with Landlab: Open-Source Python Software for Building and Exploring 2D Models of Earth-Surface Dynamics

    NASA Astrophysics Data System (ADS)

    Tucker, G. E.; Hobley, D. E.; Gasparini, N. M.; Hutton, E.; Istanbulluoglu, E.; Nudurupati, S.; Adams, J. M.

    2013-12-01

    Computer models help us explore the consequences of scientific hypotheses at a level of precision and quantification that is impossible for our unaided minds. The process of writing and debugging the necessary code is often time-consuming, however, and this cost can inhibit progress. The code-development barrier can be especially problematic when a field is rapidly unearthing new data and new ideas, as is presently the case in surface dynamics. To help meet the need for rapid, flexible model development, we have written a prototype software framework for two-dimensional numerical modeling of planetary surface processes. The Landlab software can be used to develop new models from scratch, to create models from existing components, or a combination of the two. Landlab provides a gridding module that allows you to create and configure a model grid in just a few lines of code. Grids can be regular or unstructured, and can readily be used to implement staggered-grid numerical solutions to equations for various types of geophysical flow. The gridding module provides built-in functions for common numerical operations, such as calculating gradients and integrating fluxes around the perimeter of cells. Landlab is written in Python, a high-level language that enables rapid code development and takes advantage of a wealth of libraries for scientific computing and graphical output. Landlab also provides a framework for assembling new models from combinations of pre-built components. This capability is illustrated with several examples, including flood inundation, long-term landscape evolution, impact cratering, post-wildfire erosion, and ecohydrology. Interoperability with the Community Surface Dynamics Modeling System (CSDMS) Model-Coupling Framework allows models created in Landlab to be combined with other CSDMS models, which helps to bring frontier problems in landscape and seascape dynamics within closer theoretical reach.

  17. High Dynamics and Precision Optical Measurement Using a Position Sensitive Detector (PSD) in Reflection-Mode: Application to 2D Object Tracking over a Smart Surface

    PubMed Central

    Ivan, Ioan Alexandru; Ardeleanu, Mihai; Laurent, Guillaume J.

    2012-01-01

    When related to a single and good contrast object or a laser spot, position sensing, or sensitive, detectors (PSDs) have a series of advantages over the classical camera sensors, including a good positioning accuracy for a fast response time and very simple signal conditioning circuits. To test the performance of this kind of sensor for microrobotics, we have made a comparative analysis between a precise but slow video camera and a custom-made fast PSD system applied to the tracking of a diffuse-reflectivity object transported by a pneumatic microconveyor called Smart-Surface. Until now, the fast system dynamics prevented the full control of the smart surface by visual servoing, unless using a very expensive high frame rate camera. We have built and tested a custom and low cost PSD-based embedded circuit, optically connected with a camera to a single objective by means of a beam splitter. A stroboscopic light source enhanced the resolution. The obtained results showed a good linearity and a fast (over 500 frames per second) response time which will enable future closed-loop control by using PSD. PMID:23223078

  18. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    SciTech Connect

    James R. Wood; T.J. Bornhorst; S.D. Chittick; William B. Harrison; W. Quinlan; E. Taylor

    2001-07-31

    A principal goal of the Budget Period I was to demonstrate that surface geochemistry could be used to locate bypassed hydrocarbons in old fields. This part of the program was successful. A surface geochemical survey, employing 5 different techniques, was carried out in the Spring and Summer of 2000 and a demonstration well, the State Vernon & Smock 13-23 HD1 (permit number: PN 53945) was drilled in Vernon Township, Isabella County, Michigan in the late fall of 2000. A demonstration well was selected and drilled based on geologic considerations and surface geochemistry. Over 460 soil samples were collected and analyzed over the drill site. A good anomaly was detected near the proposed well site and the demonstration well, the Smock 13-23, was drilled to a depth of 3157 feet by November 17, 2000. Two laterals were drilled, and hydrocarbons were located in a zone approximately 175 feet in length. However, it was determined that the pay zone was too small and difficult reservoir conditions (water production) prevented putting the well in production. The Smock 13-23 was shut in and abandoned January 15, 2001. A post-mortem determined that the main reason the well was not economic was because the zone was nearly completely flushed by earlier recovery operations. The post mortem also revealed the presence of an unmapped shale plug crossing the first lateral. It appears that this shale was detected by the geochemical survey, but its significance was not appreciated at the time. It is possible that sections of the well were faulty, ''porposing'' up and down so as to create water blockages. We are continuing to use the Vernon Field and the demonstration well to calibrate the geochemical data. Eventually, this study may provide a standard site that can be used to test and calibrate geochemical anomalies, something that does not presently exist. A postmortem report on the well, including the geology and geochemistry used to site the well, is presented in Appendix I. Five

  19. A Novel 2D Image Compression Algorithm Based on Two Levels DWT and DCT Transforms with Enhanced Minimize-Matrix-Size Algorithm for High Resolution Structured Light 3D Surface Reconstruction

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2015-09-01

    Image compression techniques are widely used on 2D image 2D video 3D images and 3D video. There are many types of compression techniques and among the most popular are JPEG and JPEG2000. In this research, we introduce a new compression method based on applying a two level discrete cosine transform (DCT) and a two level discrete wavelet transform (DWT) in connection with novel compression steps for high-resolution images. The proposed image compression algorithm consists of four steps. (1) Transform an image by a two level DWT followed by a DCT to produce two matrices: DC- and AC-Matrix, or low and high frequency matrix, respectively, (2) apply a second level DCT on the DC-Matrix to generate two arrays, namely nonzero-array and zero-array, (3) apply the Minimize-Matrix-Size algorithm to the AC-Matrix and to the other high-frequencies generated by the second level DWT, (4) apply arithmetic coding to the output of previous steps. A novel decompression algorithm, Fast-Match-Search algorithm (FMS), is used to reconstruct all high-frequency matrices. The FMS-algorithm computes all compressed data probabilities by using a table of data, and then using a binary search algorithm for finding decompressed data inside the table. Thereafter, all decoded DC-values with the decoded AC-coefficients are combined in one matrix followed by inverse two levels DCT with two levels DWT. The technique is tested by compression and reconstruction of 3D surface patches. Additionally, this technique is compared with JPEG and JPEG2000 algorithm through 2D and 3D root-mean-square-error following reconstruction. The results demonstrate that the proposed compression method has better visual properties than JPEG and JPEG2000 and is able to more accurately reconstruct surface patches in 3D.

  20. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    SciTech Connect

    James R. Wood; A. Wylie; W. Quinlan

    2004-12-31

    One of the principal objectives of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. During this reporting period, microbial samples were collected from the Springdale prospect area in Manistee County, Michigan. The samples were taken along the trace of the proposed horizontal wells. The samples are presently being analyzed and the results will be reported in the next quarterly report. The main news this reporting period is that the Springdale prospect area in Manistee County, Michigan, continues to see drilling activity. Our industry partner, Jordan Development Company, LLC, is permitting additional horizontal wells following their success in the prospect area.

  1. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    SciTech Connect

    James R. Wood; T.J. Bornhorst; S.D. Chittick; William B. Harrison; W. Quinlan

    2002-01-01

    In this reporting period, we extended the fault study to include more faults and developed new techniques to visualize the faults. We now have used data from the Dundee Formation to document 11 major faults in the Michigan Basin and are in the process of reviewing data from other horizons. These faults appear to control the locations of many of the large anticlinal structures in the Michigan Basin and likely controlled fluid movements as well. The surface geochemistry program is also moving along well with emphasis on measuring samples collected last sampling season. The new laboratory is now functional and has been fully staffed as of December. The annual project review has been set for March 7-9 in Tampa, Florida. Contracts are being prepared for drilling the Bower's prospects in Isabella County, Michigan, this spring or summer.

  2. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTRY, MI

    SciTech Connect

    James R. Wood; A. Wylie; W. Quinlan

    2004-04-01

    The principal objective of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. A major part of the remaining project will focus on using surface geochemistry to delineate prospects. A Niagaran reef field geochemical survey, the Bagley Prospect area in Otsego County, Michigan is scheduled to take place this summer. Previous wells drilled in Bagley Prospect area in the early 1970's and in place in late 2002 and early 2003 resulted in discoveries and numerous hydrocarbon shows in the Brown Niagaran reservoir interval. The Bagley region is still considered an area of interest by the industry and appears ripe for a geochemical survey. Our industry partner is interested in a possible test in the Bagley prospect because subsurface geophysical and geological interpretation indicates the presence of structures. Anomalous production and pressure data further suggest the region is not yet well understood and should not be considered mature. The most recent well, the Bagley 1-22A sidetrack, was unsuccessful at locating a new reef culmination to the south of the original vertical well and did not encounter hydrocarbon shows. The sidetrack and well were plugged and abandoned. The proposed geochemical survey will concentrate on areas away from the Bagley 1-22A to the north and west but will include the entire prospect so that the existing data can be used in interpretations. Bagley appears to offer a unique combination of potential and data for a geochemical study that focuses on looking for new oil in an area that has exhausted traditional geologic and geophysical methods. The Bear Lake pinnacle reef trend in Manistee County, Michigan, is also scheduled for further geochemical work this summer. Industry interest, mostly by small companies, is picking up in this area and it is also ripe for targeted geochemical surveys for the

  3. Baby universes in 2d quantum gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Jain, Sanjay; Thorleifsson, Gudmar

    1993-06-01

    We investigate the fractal structure of 2d quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent γstring.

  4. Complete active space second order perturbation theory (CASPT2) study of N(2D) + H2O reaction paths on D1 and D0 potential energy surfaces: Direct and roaming pathways

    NASA Astrophysics Data System (ADS)

    Isegawa, Miho; Liu, Fengyi; Maeda, Satoshi; Morokuma, Keiji

    2014-10-01

    We report reaction paths starting from N(2D) + H2O for doublet spin states, D0 and D1. The potential energy surfaces are explored in an automated fashion using the global reaction route mapping strategy. The critical points and reaction paths have been fully optimized at the complete active space second order perturbation theory level taking all valence electrons in the active space. In addition to direct dissociation pathways that would be dominant, three roaming processes, two roaming dissociation, and one roaming isomerization: (1) H2ON → H-O(H)N → H-HON → NO(2Π) + H2, (2) cis-HNOH → HNO-H → H-HNO → NO + H2, (3) H2NO → H-HNO → HNO-H → trans-HNOH, are confirmed on the D0 surface.

  5. Regional subsidence modelling in Murcia city (SE Spain) using 1-D vertical finite element analysis and 2-D interpolation of ground surface displacements

    NASA Astrophysics Data System (ADS)

    Tessitore, S.; Fernández-Merodo, J. A.; Herrera, G.; Tomás, R.; Ramondini, M.; Sanabria, M.; Duro, J.; Mulas, J.; Calcaterra, D.

    2015-11-01

    Subsidence is a hazard that may have natural or anthropogenic origin causing important economic losses. The area of Murcia city (SE Spain) has been affected by subsidence due to groundwater overexploitation since the year 1992. The main observed historical piezometric level declines occurred in the periods 1982-1984, 1992-1995 and 2004-2008 and showed a close correlation with the temporal evolution of ground displacements. Since 2008, the pressure recovery in the aquifer has led to an uplift of the ground surface that has been detected by the extensometers. In the present work an elastic hydro-mechanical finite element code has been used to compute the subsidence time series for 24 geotechnical boreholes, prescribing the measured groundwater table evolution. The achieved results have been compared with the displacements estimated through an advanced DInSAR technique and measured by the extensometers. These spatio-temporal comparisons have showed that, in spite of the limited geomechanical data available, the model has turned out to satisfactorily reproduce the subsidence phenomenon affecting Murcia City. The model will allow the prediction of future induced deformations and the consequences of any piezometric level variation in the study area.

  6. 2D numerical simulation of impinging jet onto the concave surface by k - w - overline{{v2 }} - f turbulence model

    NASA Astrophysics Data System (ADS)

    Seifi, Zeinab; Nazari, Mohammad Reza; Khalaji, Erfan

    2016-03-01

    In the present article, the characteristics of turbulent jet impinging onto a concave surface is studied using k - w - overline{{v2 }} - f turbulence model. Dependent parameters such as inlet Reynolds number (2960 < Re < 12,000), nozzle-plate distance (4 < H/B < 10), concavity (D/B = 30, 60) of confined and unconfined impinging jet are scrutinized to find out whether this approach would bring any privileges compared to other investigations or not. The obtained results indicate better performance in low nozzle-plate distance in comparison with those mentioned in other literatures. Furthermore, the average Nusselt number of confined impinging jet overtakes unconfined one (similar circumstances) while this trend will decline as relative concavity increases. Moreover, local heat transfer of stagnation area and wall jet goes up and down through nozzle-plate distance enhancement respectively. Finally, the effects of sinusoidal pulsed inlet profile on heat transfer of unconfined impinging jet indicate direct affiliation of amplitude and neutral impact of frequency on Nusselt number distribution.

  7. Using Recent Advances in 2D Seismic Technology and Surface Geochemistry to Economically Redevelop a Shallow Shelf Carbonate Reservoir: Vernon Field, Isabella County, M, Class III

    SciTech Connect

    Wood, James R.; Bornhorst, T.J.; Chittick, S.D.; Harrison, William B.; Tayjor, W. Quinlan

    2001-08-07

    In this project a consortium consisting of Cronus Exploration (Traverse City, MI), Michigan Technological University (Houghton, MI) and Western Michigan University (Kalamazoo, MI) proposed to develop and execute an economical and environmentally sensitive plan for recovery of hydrocarbons from an abandoned shallow-shelf carbonate field that is typical of many fields in the U.S. Midwest. This is a 5-year project that will use surface geochemistry as a tool to reduce risk in locating and producing hydrocarbons in Class II fields. The project will develop new techniques for measuring hydrocarbon gases in the soil horizon to locate new and bypassed oil in the shallow-shelf carbonate environments typified by the Dundee and Trenton Formations of the Michigan Basin (Fisher et. al., 1988). In Phase I of the project, the consortium proposes to re-develop the Vernon Oil field located in Vernon Twp, Isabella County, Michigan and produce both bypassed hydrocarbons from the original field and to locate and produce extensions of the original field.

  8. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    SciTech Connect

    James R. Wood; W. Quinlan

    2003-01-01

    Presented in this quarterly report is the Case History and Well Summary for the Vernon Field demonstration project in Isabella County, Michigan. This new case history and well summary format organizes and presents the technical and historical details of the Vernon Field demonstration, as well as the field demonstration results and the applicability of these results to other demonstration projects. This format could be duplicated for other demonstration projects and will be used on all subsequent field demonstrations as they near completion. Planning for the annual project meeting in Tampa, Florida has begun. This meeting will be held March 7-9, 2003 at the same site as the last three meetings. The goals of this project were to: (1) test the use of multi-lateral wells to recover bypassed hydrocarbons and (2) to access the potential of using surface geochemistry to reduce drilling risk. Two new demonstration wells, the State-Smock and the Bowers 4-25, were drilled to test the Dundee Formation at Vernon Field for bypassed oil. Neither well was commercial, although both produced hydrocarbon shows. An extensive geochemical survey in the vicinity of Vernon Field, covering much of Isabella County, has produced a base map for interpretation of anomalies in Michigan. Several potential new anomalies were discovered that could be further investigated.

  9. M-theoretic derivations of 4d-2d dualities: from a geometric Langlands duality for surfaces, to the AGT correspondence, to integrable systems

    NASA Astrophysics Data System (ADS)

    Tan, Meng-Chwan

    2013-07-01

    In part I, we extend our analysis in [arXiv:0807.1107], and show that a mathematically conjectured geometric Langlands duality for complex surfaces in [1], and its generalizations — which relate some cohomology of the moduli space of certain ("ramified") G-instantons to the integrable representations of the Langlands dual of certain affine (sub) G-algebras, where G is any compact Lie group — can be derived, purely physically, from the principle that the spacetime BPS spectra of string-dual M-theory compactifications ought to be equivalent. In part II, to the setup in part I, we introduce Omega-deformation via fluxbranes and add half-BPS boundary defects via M9-branes, and show that the celebrated AGT correspondence in [2, 3], and its generalizations — which essentially relate, among other things, some equivariant cohomology of the moduli space of certain ("ramified") G-instantons to the integrable representations of the Langlands dual of certain affine -algebras — can likewise be derived from the principle that the spacetime BPS spectra of string-dual M-theory compactifications ought to be equivalent. In part III, we consider various limits of our setup in part II, and connect our story to chiral fermions and integrable systems. Among other things, we derive the NekrasovOkounkov conjecture in [4] — which relates the topological string limit of the dual Nekrasov partition function for pure G to the integrable representations of the Langlands dual of an affine G-algebra — and also demonstrate that the Nekrasov-Shatashvili limit of the "fullyramified" Nekrasov instanton partition function for pure G is a simultaneous eigenfunction of the quantum Toda Hamiltonians associated with the Langlands dual of an affine G-algebra. Via the case with matter, we also make contact with Hitchin systems and the "ramified" geometric Langlands correspondence for curves.

  10. Imaging high stage river-water intrusion into a contaminated aquifer along a major river corridor using 2D time-lapse surface electrical resistivity tomography

    SciTech Connect

    Wallin, Erin L.; Johnson, Timothy C.; Greenwood, William J.; Zachara, John M.

    2013-03-29

    The Hanford 300 Area is located adjacent to the Columbia River in south-central Washington State, USA, and was a former site for nuclear fuel processing operations. Waste disposal practices resulted in persistent unsaturated zone and groundwater contamination, the primary contaminant of concern being uranium. Uranium behavior at the site is intimately linked with river stage driven groundwater-river water exchange such that understanding the nature of river water intrusion into the 300 Area is critical for predicting uranium desorption and transport. In this paper we use time-lapse electrical resistivity tomography (ERT) to image the inland intrusion of river during high stage conditions. We demonstrate a modified time-lapse inversion approach, whereby the transient water table elevation is explicitly modeled by removing regularization constraints across the water table boundary. This implementation was critical for producing meaningful imaging results. We inverted approximately 1200 data sets (400 per line over 3 lines) using high performance computing resources to produce a time-lapse sequence of changes in bulk conductivity caused by river water intrusion during the 2011 spring runoff cycle over approximately 125 days. The resulting time series for each mesh element was then analyzed using common time series analysis to reveal the timing and location of river water intrusion beneath each line. The results reveal non-uniform flows characterized by preferred flow zones where river water enters and exits quickly with stage increase and decrease, and low permeability zones with broader bulk conductivity ‘break through’ curves and longer river water residence times. The time-lapse ERT inversion approach removes the deleterious effects of changing water table elevation and enables remote and spatial continuous groundwater-river water exchange monitoring using surface based ERT arrays under conditions where groundwater and river water conductivity are in contrast.

  11. Positron 2D-ACAR experiments and electron-positron momentum density in YBa{sub 2}Cu{sub 3}O{sub 7-x}

    SciTech Connect

    Smedskjaer, L.C.; Welp, U.; Fang, Y.; Bailey, K.G.; Bansil, A.

    1991-12-01

    We discuss positron annihilation (2D-ACAR) measurements in the C- projection on an untwinned metallic single crystal of YBa{sub 2}Cu{sub 3}O{sub 7-x} as a function of temperature, for five temperatures ranging from 30K to 300K. The measured 2D-ACAR intensities are interpreted in terms of the electron-positron momentum density obtained within the KKR-band theory framework. The temperature dependence of the 2D-ACAR spectra is used to extract a ``background corrected`` experimental spectrum which is in remarkable accord with the corresponding band theory predictions, and displays in particular clear signatures of the electron ridge Fermi surface.

  12. Positron 2D-ACAR experiments and electron-positron momentum density in YBa sub 2 Cu sub 3 O sub 7-x

    SciTech Connect

    Smedskjaer, L.C.; Welp, U.; Fang, Y.; Bailey, K.G. ); Bansil, A. . Dept. of Physics)

    1991-12-01

    We discuss positron annihilation (2D-ACAR) measurements in the C- projection on an untwinned metallic single crystal of YBa{sub 2}Cu{sub 3}O{sub 7-x} as a function of temperature, for five temperatures ranging from 30K to 300K. The measured 2D-ACAR intensities are interpreted in terms of the electron-positron momentum density obtained within the KKR-band theory framework. The temperature dependence of the 2D-ACAR spectra is used to extract a background corrected'' experimental spectrum which is in remarkable accord with the corresponding band theory predictions, and displays in particular clear signatures of the electron ridge Fermi surface.

  13. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  14. The Bristol HIDAC 2D-ACAR Spectrometer

    NASA Astrophysics Data System (ADS)

    Dugdale, S. B.; Laverock, J.; Utfeld, C.; Alam, M. A.; Haynes, T. D.; Billington, D.; Ernsting, D.

    2013-06-01

    We describe the Bristol spectrometer for positron annihilation Fermi surface studies utilising high-density avalanche chambers (HIDACs) as position sensitive detectors. Measurements on α-SiO2 show, through the momentum distribution of para-positronium, the substantial improvement in resolution compared to Anger cameras. Measurements of the Fermi surface of V are used to determine the resolution. The new spectrometer is found to have an efficiency of 12.5 ± 0.6 % and a (coincidence) contribution to the position resolution of 0.96 ± 0.1 mm.

  15. Universal Fermi gases in mixed dimensions.

    PubMed

    Nishida, Yusuke; Tan, Shina

    2008-10-24

    We investigate a two-species Fermi gas in which one species is confined in a two-dimensional plane (2D) or one-dimensional line (1D) while the other is free in the three-dimensional space (3D). We discuss the realization of such a system with the interspecies interaction tuned to resonance. When the mass ratio is in the range 0.03512D)/m_(3D)<6.35 for the 2D-3D mixture or 0.006 46

  16. Universal Fermi Gases in Mixed Dimensions

    SciTech Connect

    Nishida, Yusuke; Tan, Shina

    2008-10-24

    We investigate a two-species Fermi gas in which one species is confined in a two-dimensional plane (2D) or one-dimensional line (1D) while the other is free in the three-dimensional space (3D). We discuss the realization of such a system with the interspecies interaction tuned to resonance. When the mass ratio is in the range 0.03512D}/m{sub 3D}<6.35 for the 2D-3D mixture or 0.006 46

  17. GBL-2D Version 1.0: a 2D geometry boolean library.

    SciTech Connect

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  18. Fermi at Six Months

    NASA Technical Reports Server (NTRS)

    Hays, Elizabeth

    2009-01-01

    An overview of the Fermi Gamma-ray Space Telescope's first 6 months in operation is provided. The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy rage 20 MeV to more than 300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. It contains a Large Area Telescope capable of viewing the entire sky every 3 hours and a Gamma-ray Burst Monitor for viewing the entire unocculted sky. Since its launch on June 11, 2008 Fermi has provided information on pulsars, gamma ray bursts, relativistic jets, the active galactic nucleus, and a globular star cluster. This presentation describes Fermi's development, mission, instruments and recent findings.

  19. Fermi Galactic Center Zoom

    NASA Video Gallery

    This animation zooms into an image of the Milky Way, shown in visible light, and superimposes a gamma-ray map of the galactic center from NASA's Fermi. Raw data transitions to a view with all known...

  20. Fermi, Szilard and Trinity

    ERIC Educational Resources Information Center

    Anderson, Herbert L.

    1974-01-01

    The final installment of the author's recollections of his work with physicists Enrico Fermi, Leo Szilard and others in developing the first controlled nuclear chain reaction and in preparing the test explosion of the first atomic bomb. (GS)

  1. Complete active space second order perturbation theory (CASPT2) study of N({sup 2}D) + H{sub 2}O reaction paths on D{sub 1} and D{sub 0} potential energy surfaces: Direct and roaming pathways

    SciTech Connect

    Isegawa, Miho; Liu, Fengyi; Maeda, Satoshi; Morokuma, Keiji

    2014-10-21

    We report reaction paths starting from N({sup 2}D) + H{sub 2}O for doublet spin states, D{sub 0} and D{sub 1}. The potential energy surfaces are explored in an automated fashion using the global reaction route mapping strategy. The critical points and reaction paths have been fully optimized at the complete active space second order perturbation theory level taking all valence electrons in the active space. In addition to direct dissociation pathways that would be dominant, three roaming processes, two roaming dissociation, and one roaming isomerization: (1) H{sub 2}ON → H–O(H)N → H–HON → NO({sup 2}Π) + H{sub 2}, (2) cis-HNOH → HNO–H → H–HNO → NO + H{sub 2}, (3) H{sub 2}NO → H–HNO → HNO–H → trans-HNOH, are confirmed on the D{sub 0} surface.

  2. Anomalous Hall Effect in a 2D Rashba Ferromagnet.

    PubMed

    Ado, I A; Dmitriev, I A; Ostrovsky, P M; Titov, M

    2016-07-22

    Skew scattering on rare impurity configurations is shown to dominate the anomalous Hall effect in a 2D Rashba ferromagnet. The mechanism originates in scattering on rare impurity pairs separated by distances of the order of the Fermi wavelength. The corresponding theoretical description goes beyond the conventional noncrossing approximation. The mechanism provides the only contribution to the anomalous Hall conductivity in the most relevant metallic regime and strongly modifies previously obtained results for lower energies in the leading order with respect to impurity strength. PMID:27494487

  3. Stacking up 2D materials

    NASA Astrophysics Data System (ADS)

    Mayor, Louise

    2016-05-01

    Graphene might be the most famous example, but there are other 2D materials and compounds too. Louise Mayor explains how these atomically thin sheets can be layered together to create flexible “van der Waals heterostructures”, which could lead to a range of novel applications.

  4. A Geometric Boolean Library for 2D Objects

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various filemore » formats, are also provided in the library.« less

  5. A Geometric Boolean Library for 2D Objects

    SciTech Connect

    McBride, Corey L.; Yarberry, Victor; Jorgensen, Craig

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various file formats, are also provided in the library.

  6. Two Dimensional Effective Electron Mass at the Fermi Level in Quantum Wells of III-V, Ternary and Quaternary Semiconductors.

    PubMed

    Chakrabarti, S; Chatterjee, B; Debbarma, S; Ghatak, K P

    2015-09-01

    In this paper we study the influence of strong electric field on the two dimensional (2D)effective electron mass (EEM) at the Fermi level in quantum wells of III-V, ternary and quaternary semiconductors within the framework of k x p formalism by formulating a new 2D electron energy spectrum. It appears taking quantum wells of InSb, InAs, Hg(1-x)Cd(x)Te and In(1-x)Ga(x)As(1-y)P(y) lattice matched to InP as examples that the EEM increases with decreasing film thickness, increasing electric field and increases with increasing surface electron concentration exhibiting spikey oscillations because of the crossing over of the Fermi level by the quantized level in quantum wells and the quantized oscillation occurs when the Fermi energy touches the sub-band energy. The electric field makes the mass quantum number dependent and the oscillatory mass introduces quantum number dependent mass anisotropy in addition to energy. The EEM increases with decreasing alloy composition where the variations are totally band structure dependent. Under certain limiting conditions all the results for all the cases get simplified into the well-known parabolic energy bands and thus confirming the compatibility test. The content of this paper finds three applications in the fields of nano-science and technology. PMID:26716200

  7. First-principles study of 2D electride : Gadolinium carbide

    NASA Astrophysics Data System (ADS)

    Nandadasa, Chandani; Kim, Seong-Gon; Kim, Sungho; Kim, Sung Wng

    Electrides are an exclusive class of ionic compounds in which some electrons are occupying crystal voids instead of attaching to specific atoms or bonds. Using first-principles density functional theory calculations, we study structural, electronic and magnetic properties of Gd2C. The theoretically predicted structure of Gd2C is in good agreement with the available experimental data. Energy band diagram of Gd2C shows that they are crossing the Fermi level. Projected electronic density of states plots indicate that the interstitial sites are the main contributor to the density of states at the Fermi level. Charge of individual atoms including interstitial site are obtained using Bader analysis. Magnetic properties of Gd2C is determined from magnetization density plots. Work functions of Gd2C are determined for (001) and (100) surfaces with the technique of macroscopic average of electrostatic potential with the Fermi energy of bulk.

  8. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  9. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  10. FermiGrid

    SciTech Connect

    Yocum, D.R.; Berman, E.; Canal, P.; Chadwick, K.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; /Fermilab

    2007-05-01

    As one of the founding members of the Open Science Grid Consortium (OSG), Fermilab enables coherent access to its production resources through the Grid infrastructure system called FermiGrid. This system successfully provides for centrally managed grid services, opportunistic resource access, development of OSG Interfaces for Fermilab, and an interface to the Fermilab dCache system. FermiGrid supports virtual organizations (VOs) including high energy physics experiments (USCMS, MINOS, D0, CDF, ILC), astrophysics experiments (SDSS, Auger, DES), biology experiments (GADU, Nanohub) and educational activities.

  11. Nanoimprint lithography: 2D or not 2D? A review

    NASA Astrophysics Data System (ADS)

    Schift, Helmut

    2015-11-01

    Nanoimprint lithography (NIL) is more than a planar high-end technology for the patterning of wafer-like substrates. It is essentially a 3D process, because it replicates various stamp topographies by 3D displacement of material and takes advantage of the bending of stamps while the mold cavities are filled. But at the same time, it keeps all assets of a 2D technique being able to pattern thin masking layers like in photon- and electron-based traditional lithography. This review reports about 20 years of development of replication techniques at Paul Scherrer Institut, with a focus on 3D aspects of molding, which enable NIL to stay 2D, but at the same time enable 3D applications which are "more than Moore." As an example, the manufacturing of a demonstrator for backlighting applications based on thermally activated selective topography equilibration will be presented. This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale.

  12. Critical Doping for the Onset of Fermi-Surface Reconstruction by Charge-Density-Wave Order in the Cuprate Superconductor La2 -xSrx CuO4

    NASA Astrophysics Data System (ADS)

    Badoux, S.; Afshar, S. A. A.; Michon, B.; Ouellet, A.; Fortier, S.; LeBoeuf, D.; Croft, T. P.; Lester, C.; Hayden, S. M.; Takagi, H.; Yamada, K.; Graf, D.; Doiron-Leyraud, N.; Taillefer, Louis

    2016-04-01

    The Seebeck coefficient S of the cuprate superconductor La2 -xSrxCuO4 (LSCO) was measured in magnetic fields large enough to access the normal state at low temperatures, for a range of Sr concentrations from x =0.07 to x =0.15 . For x =0.11 , 0.12, 0.125, and 0.13, S /T decreases upon cooling to become negative at low temperatures. The same behavior is observed in the Hall coefficient RH (T ) . In analogy with other hole-doped cuprates at similar hole concentrations p , the negative S and RH show that the Fermi surface of LSCO undergoes a reconstruction caused by the onset of charge-density-wave modulations. Such modulations have indeed been detected in LSCO by x-ray diffraction in precisely the same doping range. Our data show that in LSCO this Fermi-surface reconstruction is confined to 0.085

  13. Orthogonal metals: The simplest non-Fermi liquids

    NASA Astrophysics Data System (ADS)

    Nandkishore, Rahul; Metlitski, Max A.; Senthil, T.

    2012-07-01

    We present a fractionalized metallic phase which is indistinguishable from the Fermi liquid in conductivity and thermodynamics, but is sharply distinct in one-electron properties, such as the electron spectral function. We dub this phase the “orthogonal metal.” The orthogonal metal and the transition to it from the Fermi liquid are naturally described using a slave-particle representation wherein the electron is expressed as a product of a fermion and a slave Ising spin. We emphasize that when the slave spins are disordered, the result is not a Mott insulator (as erroneously assumed in the prior literature), but rather the orthogonal metal. We construct prototypical ground-state wave functions for the orthogonal metal by modifying the Jastrow factor of Slater-Jastrow wave functions that describe ordinary Fermi liquids. We further demonstrate that the transition from the Fermi liquid to the orthogonal metal can, in some circumstances, provide a simple example of a continuous destruction of a Fermi surface with a critical Fermi surface appearing right at the critical point. We present exactly soluble models that realize an orthogonal metal phase, and the phase transition to the Fermi liquid. These models thus provide valuable solvable examples for phase transitions associated with the death of a Fermi surface.

  14. Pairing in a dry Fermi sea.

    PubMed

    Maier, T A; Staar, P; Mishra, V; Chatterjee, U; Campuzano, J C; Scalapino, D J

    2016-01-01

    In the traditional Bardeen-Cooper-Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin-fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability. PMID:27312569

  15. Aspects of non-Fermi-liquid metals

    NASA Astrophysics Data System (ADS)

    Pivovarov, Eugene

    We consider several examples of metallic systems that exhibit non-Fermi-liquid behavior. In these examples the system is not a Fermi liquid due to the presence of a "hidden" order. The primary models are density waves with an odd-frequency-dependent order parameter and density waves with d-wave symmetry. In the first model, the same-time correlation functions vanish and there is a conventional Fermi surface. In the second model, the gap vanishes at the nodes. We derive the phase diagrams and study the thermodynamic and kinetic properties. We also consider the effects of competing orders on the phase diagram when the underlying microscopic interaction has a high symmetry.

  16. Pairing in a dry Fermi sea

    NASA Astrophysics Data System (ADS)

    Maier, T. A.; Staar, P.; Mishra, V.; Chatterjee, U.; Campuzano, J. C.; Scalapino, D. J.

    2016-06-01

    In the traditional Bardeen-Cooper-Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin-fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.

  17. Fermi TGF detection map

    NASA Video Gallery

    Fermi’s Gamma-ray Burst Monitor detected 130 TGFs from August 2008 to the end of 2010. Thanks to instrument tweaks, the team has been able to improve the detection rate to several TGFs per week. ...

  18. More Fermi questions

    NASA Astrophysics Data System (ADS)

    Bouffard, Karen

    1999-09-01

    "Fermi" questions are a popular component of most Physics Olympics meets. Asking students to make a reasonable assumption about a problem and give answers in terms of order of magnitude is not only a great challenge for a competition, but is also a valued teaching strategy in the classroom.

  19. The surface-state of the topological insulator Bi2Se3 revealed by cyclotron resonance

    SciTech Connect

    Mcdonald, Ross D; Ayala - Valenzuela, Oscar E; Altarawneh, Moaz M; Analytis, James G

    2011-01-14

    Transport measurements of topological insulators are dominated by the conductivity of the bulk, leading to substantial difficulties in resolving the properties of the surface. To this end, we use high magnetic field, rf- and microwave-spectroscopy to selectively couple to the surface conductivity of Bi2Se3 at high frequency. In the frequency range of a few GHz we observe a crossover from quantum oscillations indicative of a small 3D Fermi surface, to cyclotron resonance indicative of a 2D surface state. By probing the conductivity at reduced skin depths, we have observed a 2D cyclotron resonance from a material whose bulk Fermi-surface is 3D. The frequency-magnetic field scaling of this resonance is inconsistent with the bulk effective mass, but more consistent with the dispersion and band filling of a Dirac-like surface state as observed by ARPES, with substantial manybody renormalization.

  20. Cooper pairing in non-Fermi liquids

    NASA Astrophysics Data System (ADS)

    Metlitski, Max A.; Mross, David F.; Sachdev, Subir; Senthil, T.

    2015-03-01

    States of matter with a sharp Fermi surface but no well-defined Landau quasiparticles arise in a number of physical systems. Examples include (i) quantum critical points associated with the onset of order in metals; (ii) spinon Fermi-surface [U(1) spin-liquid] state of a Mott insulator; (iii) Halperin-Lee-Read composite fermion charge liquid state of a half-filled Landau level. In this work, we use renormalization group techniques to investigate possible instabilities of such non-Fermi liquids in two spatial dimensions to Cooper pairing. We consider the Ising-nematic quantum critical point as an example of an ordering phase transition in a metal, and demonstrate that the attractive interaction mediated by the order-parameter fluctuations always leads to a superconducting instability. Moreover, in the regime where our calculation is controlled, superconductivity preempts the destruction of electronic quasiparticles. On the other hand, the spinon Fermi surface and the Halperin-Lee-Read states are stable against Cooper pairing for a sufficiently weak attractive short-range interaction; however, once the strength of attraction exceeds a critical value, pairing sets in. We describe the ensuing quantum phase transition between (i) U(1 ) and Z2 spin-liquid states; (ii) Halperin-Lee-Read and Moore-Read states.

  1. Multienzyme Inkjet Printed 2D Arrays.

    PubMed

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  2. Fermi Arcs vs. Fermi Pockets in Electron-doped Perovskite Iridates

    PubMed Central

    He, Junfeng; Hafiz, H.; Mion, Thomas R.; Hogan, T.; Dhital, C.; Chen, X.; Lin, Qisen; Hashimoto, M.; Lu, D. H.; Zhang, Y.; Markiewicz, R. S.; Bansil, A.; Wilson, S. D.; He, Rui-Hua

    2015-01-01

    We report on an angle resolved photoemission (ARPES) study of bulk electron-doped perovskite iridate, (Sr1−xLax)3Ir2O7. Fermi surface pockets are observed with a total electron count in keeping with that expected from La substitution. Depending on the energy and polarization of the incident photons, these pockets show up in the form of disconnected “Fermi arcs”, reminiscent of those reported recently in surface electron-doped Sr2IrO4. Our observed spectral variation is consistent with the coexistence of an electronic supermodulation with structural distortion in the system. PMID:25704850

  3. Fermi arcs vs. fermi pockets in electron-doped perovskite iridates

    DOE PAGESBeta

    He, Junfeng; Hafiz, H.; Mion, Thomas R.; Hogan, T.; Dhital, C.; Chen, X.; Lin, Qisen; Hashimoto, M.; Lu, D. H.; Zhang, Y.; et al

    2015-02-23

    We report on an angle resolved photoemission (ARPES) study of bulk electron-doped perovskite iridate, (Sr1-xLax)₃Ir₂O₇. Fermi surface pockets are observed with a total electron count in keeping with that expected from La substitution. Depending on the energy and polarization of the incident photons, these pockets show up in the form of disconnected “Fermi arcs”, reminiscent of those reported recently in surface electron-doped Sr₂IrO₄. Our observed spectral variation is consistent with the coexistence of an electronic supermodulation with structural distortion in the system.

  4. Fermi arcs vs. fermi pockets in electron-doped perovskite iridates

    SciTech Connect

    He, Junfeng; Hafiz, H.; Mion, Thomas R.; Hogan, T.; Dhital, C.; Chen, X.; Lin, Qisen; Hashimoto, M.; Lu, D. H.; Zhang, Y.; Markiewicz, R. S.; Bansil, A.; Wilson, S. D.; He, Rui -Hua

    2015-02-23

    We report on an angle resolved photoemission (ARPES) study of bulk electron-doped perovskite iridate, (Sr1-xLax)₃Ir₂O₇. Fermi surface pockets are observed with a total electron count in keeping with that expected from La substitution. Depending on the energy and polarization of the incident photons, these pockets show up in the form of disconnected “Fermi arcs”, reminiscent of those reported recently in surface electron-doped Sr₂IrO₄. Our observed spectral variation is consistent with the coexistence of an electronic supermodulation with structural distortion in the system.

  5. Stable non-Fermi-liquid phase of itinerant spin-orbit coupled ferromagnets

    NASA Astrophysics Data System (ADS)

    Bahri, Yasaman; Potter, Andrew C.

    2015-07-01

    Direct (nongradient) coupling between a gapless bosonic field and a Fermi surface results in the destruction of Landau quasiparticles and a breakdown of Fermi liquid theory. Such a non-Fermi-liquid phase arises in spin-orbit coupled ferromagnets with spontaneously broken continuous symmetries due to strong coupling between rotational Goldstone modes and itinerant electrons. These systems provide an experimentally accessible context for studying non-Fermi-liquid physics. Possible examples include low-density Rashba coupled electron gases, which have a natural tendency towards spontaneous ferromagnetism, or topological insulator surface states with proximity-induced ferromagnetism. Crucially, unlike the related case of a spontaneous nematic distortion of the Fermi surface, for which controlled field theory calculations predict that the non-Fermi-liquid regime will be masked by a superconducting dome, we show that the non-Fermi-liquid phase in spin-orbit coupled ferromagnets is stable.

  6. Stable non-Fermi liquid phase of itinerant spin-orbit coupled ferromagnets

    NASA Astrophysics Data System (ADS)

    Bahri, Yasaman; Potter, Andrew

    2015-03-01

    Direct coupling between gapless bosons and a Fermi surface results in the destruction of Landau quasiparticles and a breakdown of Fermi liquid theory. Such a non-Fermi liquid phase arises in spin-orbit coupled ferromagnets with spontaneously broken continuous symmetries due to strong coupling between rotational Goldstone modes and itinerant electrons. These systems provide an experimentally accessible context for studying non-Fermi liquid physics. Possible examples include low-density Rashba coupled electron gases, which have a natural tendency towards spontaneous ferromagnetism, or topological insulator surface states with proximity-induced ferromagnetism. Crucially, unlike the related case of a spontaneous nematic distortion of the Fermi surface, for which the non-Fermi liquid regime is expected to be masked by a superconducting dome, we show that the non-Fermi liquid phase in spin-orbit coupled ferromagnets is stable.

  7. Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jin; Choi, Kyoungjun; Lee, Bora; Kim, Yuna; Hong, Byung Hee

    2015-07-01

    Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.

  8. Fermi Surface of Three-Dimensional La1 -xSrxMnO3 Explored by Soft-X-Ray ARPES: Rhombohedral Lattice Distortion and its Effect on Magnetoresistance

    NASA Astrophysics Data System (ADS)

    Lev, L. L.; Krempaský, J.; Staub, U.; Rogalev, V. A.; Schmitt, T.; Shi, M.; Blaha, P.; Mishchenko, A. S.; Veligzhanin, A. A.; Zubavichus, Y. V.; Tsetlin, M. B.; Volfová, H.; Braun, J.; Minár, J.; Strocov, V. N.

    2015-06-01

    Electronic structure of the three-dimensional colossal magnetoresistive perovskite La1 -xSrxMnO3 has been established using soft-x-ray angle-resolved photoemission spectroscopy with its intrinsically sharp definition of three-dimensional electron momentum. The experimental results show much weaker polaronic coupling compared to the bilayer manganites and are consistent with the theoretical band structure including the empirical Hubbard parameter U. The experimental Fermi surface unveils the canonical topology of alternating three-dimensional electron spheres and hole cubes, with their shadow contours manifesting the rhombohedral lattice distortion. This picture has been confirmed by one-step photoemission calculations including displacement of the apical oxygen atoms. The rhombohedral distortion is neutral to the Jahn-Teller effect and thus polaronic coupling, but affects the double-exchange electron hopping and thus the colossal magnetoresistance effect.

  9. Pair momentum distribution in Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8+. delta. measured by positron annihilation: Existence and nature of the Fermi surface

    SciTech Connect

    Chan, L.P. ); Harshman, D.R. ); Lynn, K.G. ); Massidda, S. , PHB Ecublens, CH-105 Lausanne ); Mitzi, D.B. )

    1991-09-02

    We report the first measurement of the positron-electron momentum density in superconducting single-crystal Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} ({ital T}{sub {ital c}}{approx}90 K). The observed anisotropy exhibits a twofold (rather than fourfold) symmetry, which is attributed to the superlattice modulation along the {ital b} axis of the BiO{sub 2} layers. Subtraction of the superlattice contribution also reveals a pair momentum distribution consistent with the CuO{sub 2} and BiO{sub 2} Fermi surfaces, and in reasonable agreement with the theoretical pair momentum density derived from band theory.

  10. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  11. NKG2D receptor and its ligands in host defense

    PubMed Central

    Lanier, Lewis L.

    2015-01-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808

  12. Importance of the Fermi-surface topology to the superconducting state of the electron-doped pnictide Ba(Fe1-xCox)₂As₂

    DOE PAGESBeta

    Liu, Chang; Palczewski, A. D.; Dhaka, R. S.; Kondo, Takeshi; Fernandes, R. M.; Mun, E. D.; Hodovanets, H.; Thaler, A. N.; Schmalian, J.; Bud’ko, S. L.; et al

    2011-07-25

    We used angle-resolved photoemission spectroscopy and thermoelectric power to study the poorly explored, highly overdoped side of the phase diagram of Ba(Fe1-xCox)₂As₂ high-temperature superconductor. Our data demonstrate that several Lifshitz transitions—topological changes of the Fermi surface—occur for large x. The central hole barrel changes to ellipsoids that are centered at Z at x~0.11 and subsequently disappear around x~0.2; changes in thermoelectric power occur at similar x values. Tc decreases and goes to zero around x~0.15—between the two Lifshitz transitions. Beyond x=0.2 the central pocket becomes electron-like and superconductivity does not exist. Our observations reveal the importance of the underlying Fermiologymore » in electron-doped iron arsenides. We speculate that a likely necessary condition for superconductivity in these materials is the presence of the central hole pockets rather than nesting between central and corner pockets.« less

  13. Photo-Induced Unpinning of Fermi Level in WO3

    PubMed Central

    Malagù, Cesare; Carotta, Maria C.; Comini, Elisabetta; Faglia, Guido; Giberti, Alessio; Guidi, Vincenzo; Maffeis, Thierry G.G.; Martinelli, Giuliano; Sberveglieri, Giorgio; Wilks, Steve P.

    2005-01-01

    Atomic force and high resolution scanning tunneling analyses were carried out on nanostructured WO3 films. It turned out that the band gap measured by scanning tunneling spectroscopy at surface is lower than the band gap reported in the literature. This effect is attributed to the high density of surface states in this material, which allows tunneling into these states. Such a high density of surface states pins the Fermi level resulting in modest surface activity at room temperature. Photo activation of WO3 results in unpinning of the Fermi level and thereby in higher chemical activity at surface.

  14. Pairing, pseudogap and Fermi arcs in cuprates

    SciTech Connect

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scattering creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.

  15. Pairing, pseudogap and Fermi arcs in cuprates

    DOE PAGESBeta

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scatteringmore » creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.« less

  16. Pressure profiles of nonuniform two-dimensional atomic Fermi gases

    NASA Astrophysics Data System (ADS)

    Martiyanov, Kirill; Barmashova, Tatiana; Makhalov, Vasiliy; Turlapov, Andrey

    2016-06-01

    Spatial profiles of the pressure have been measured in atomic Fermi gases with primarily two-dimensional (2D) kinematics. The in-plane motion of the particles is confined by a Gaussian-shape potential. The two-component deeply degenerate Fermi gases are prepared at different values of the s -wave attraction. The pressure profile is found using the force-balance equation, from the measured density profile and the trapping potential. The pressure is compared to zero-temperature models within the local density approximation. In the weakly interacting regime, the pressure lies above a Landau Fermi-liquid theory and below the ideal-Fermi-gas model, whose prediction coincides with that of the Cooper-pair mean-field theory. The values closest to the data are provided by the approach where the mean field of Cooper pairs is supplemented with fluctuations. In the regime of strong interactions, in response to the increasing attraction, the pressure shifts below this model reaching lower values calculated within Monte Carlo methods. Comparison to models shows that interaction-induced departure from 2D kinematics is either small or absent. In particular, comparison with a lattice Monte Carlo suggests that kinematics is two dimensional in the strongly interacting regime.

  17. GRB Studies with Fermi

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.

    2008-01-01

    This slide presentation reviews the studies of Gamma Ray Bursts (GRB) with the Fermi Gamma Ray Space Telescope. Included are pictures of the observatory, with illustrations of the Large Area Telescope (LAT), and the Gamma-ray Burst Monitor (GBM) including information about both their capabilities. Graphs showing the GBM count rate over time after the GBM trigger for three GRBs, preliminary charts showing the multiple detector light curves the spectroscopy of the main LAT peak and the spectral evolution of GRB 080916C Burst Temporally-extended LAT emission.

  18. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  19. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    SciTech Connect

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1998-12-14

    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  20. Ion Transport in 2-D Graphene Nanochannels

    NASA Astrophysics Data System (ADS)

    Xie, Quan; Foo, Elbert; Duan, Chuanhua

    2015-11-01

    Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).

  1. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  2. Fermi surfaces and p -d hybridization in the diluted magnetic semiconductor Ba1 -xKx(Zn1-yMny) 2As2 studied by soft x-ray angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Zhao, G. Q.; Zhao, K.; Chen, B. J.; Horio, M.; Koshiishi, K.; Xu, J.; Kobayashi, M.; Minohara, M.; Sakai, E.; Horiba, K.; Kumigashira, H.; Gu, Bo; Maekawa, S.; Uemura, Y. J.; Jin, C. Q.; Fujimori, A.

    2015-12-01

    The electronic structure of the new diluted magnetic semiconductor Ba1-xKx(Zn1-yMny )2As2 (x =0.30 , y =0.15 ) in single crystal form has been investigated by angle-resolved photoemission spectroscopy (ARPES). Measurements with soft x rays clarify the host valence-band electronic structure primarily composed of the As 4 p states. Two hole pockets around the Γ point, a hole corrugated cylinder surrounding the Γ and Z points, and an electron pocket around the Z point are observed, and explain the metallic transport of Ba1-xKx(Zn1-yMny )2As2 . This is contrasted with Ga1-xMnxAs (GaMnAs), where it is located above the As 4 p valence-band maximum (VBM) and no Fermi surfaces have been clearly identified. Resonance soft x-ray ARPES measurements reveal a nondispersive (Kondo-resonance-like) Mn 3 d impurity band near the Fermi level, as in the case of GaMnAs. However, the impurity band is located well below the VBM, unlike the impurity band in GaMnAs, which is located around and above the VBM. We conclude that, while the strong hybridization between the Mn 3 d and the As 4 p orbitals plays an important role in creating the impurity band and inducing high temperature ferromagnetism in both systems, the metallic transport may predominantly occur in the host valence band in Ba1-xKx(Zn1-yMny )2As2 and in the impurity band in GaMnAs.

  3. Electronic structure study on 2D hydrogenated Icosagens nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Marutheeswaran, S.; Ramaclus, Jerald V.; Paul, Dolon Chapa

    2014-12-01

    Metal nitride nanosheets has attracted remarkable importance in surface catalysis due to its characteristic ionic nature. In this paper, using density functional theory, we investigate geometric stability and electronic properties of hydrogenated Icosagen nitride nanosheets. Binding energy of the sheets reveals hydrogenation is providing more stability. Band structure of the hydrogenated sheets is found to be n-type semiconductor. Partial density of states shows metals (B, Al, Ga and In) and its hydrogens dominating in the Fermi region. Mulliken charge analysis indications that hydrogenated nanosheets are partially hydridic surface nature except boron nitride.

  4. Analysis of the antiferromagnetic phase transitions of the 2D Kondo lattice

    NASA Astrophysics Data System (ADS)

    Jones, Barbara

    2010-03-01

    The Kondo lattice continues to present an interesting and relevant challenge, with its interactions between Kondo, RKKY, and coherent order. We present our study[1] of the antiferromagnetic quantum phase transitions of a 2D Kondo-Heisenberg square lattice. Starting from the nonlinear sigma model as a model of antiferromagnetism, we carry out a renormalization group analysis of the competing Kondo-RKKY interaction to one-loop order in an ɛ-expansion. We find a new quantum critical point (QCP) strongly affected by Kondo fluctuations. Near this QCP, there is a breakdown of hydrodynamic behavior, and the spin waves are logarithmically frozen out. The renormalization group results allow us to propose a new phase diagram near the antiferromagnetic fixed point of this 2D Kondo lattice model. The T=0 phase diagram contains four phases separated by a tetracritical point, the new QCP. For small spin fluctuations, we find a stable local magnetic moment antiferromagnet. For stronger coupling, region II is a metallic quantum disordered paramagnet. We find in region III a paramagnetic phase driven by Kondo interactions, with possible ground states of a heavy fermion liquid or a Kondo driven spin-liquid. The fourth phase is a spiral phase, or a large-Fermi-surface antiferromagnetic phase. We will describe these phases in more detail, including possible experimental confirmation of the spiral phase. The existence of the tetracritical point found here would be expected to affect the phase diagram at finite temperatures as well. In addition, It is hoped that these results, and particularly the Kondo interaction paramagnetic phase, will serve to bridge to solutions starting from the opposite limit, of a Kondo effect leading to a heavy fermion ground state. Work in collaboration with T. Tzen Ong. [4pt] [1] T. Ong and B. A. Jones, Phys. Rev. Lett. 103, 066405 (2009).

  5. Evidence of a short-range incommensurate d-wave charge order from a fermionic two-loop renormalization group calculation of a 2D model with hot spots

    SciTech Connect

    Carvalho, Vanuildo S de; Freire, Hermann

    2014-09-15

    The two-loop renormalization group (RG) calculation is considerably extended here for the two-dimensional (2D) fermionic effective field theory model, which includes only the so-called “hot spots” that are connected by the spin-density-wave (SDW) ordering wavevector on a Fermi surface generated by the 2D t−t{sup ′} Hubbard model at low hole doping. We compute the Callan–Symanzik RG equation up to two loops describing the flow of the single-particle Green’s function, the corresponding spectral function, the Fermi velocity, and some of the most important order-parameter susceptibilities in the model at lower energies. As a result, we establish that–in addition to clearly dominant SDW correlations–an approximate (pseudospin) symmetry relating a short-range incommensurated-wave charge order to the d-wave superconducting order indeed emerges at lower energy scales, which is in agreement with recent works available in the literature addressing the 2D spin-fermion model. We derive implications of this possible electronic phase in the ongoing attempt to describe the phenomenology of the pseudogap regime in underdoped cuprates.

  6. Spiraling Fermi arcs in Weyl materials

    NASA Astrophysics Data System (ADS)

    Li, Songci; Andreev, Anton

    In Weyl materials the valence and conduction electron bands touch at an even number of isolated points in the Brillouin zone. In the vicinity of these points the electron dispersion is linear and may be described by the massless Dirac equation. This results in nontrivial topology of Berry connection curvature. One of its consequences is the existence of peculiar surface electron states whose Fermi surfaces form arcs connecting projections of the Weyl points onto the surface plane. Band bending near the boundary of the crystal also produces surface states. We show that in Weyl materials band bending near the crystal surface gives rise to spiral structure of energy surfaces of arc states. The corresponding Fermi surface has the shape of a spiral that winds about the projection of the Weyl point onto the surface plane. The direction of the winding is determined by the helicity of the Weyl point and the sign of the band bending potential. For close valleys arc state morphology may be understood in terms of avoided crossing of oppositely winding spirals. This work is supported by the U.S. Department of Energy Office of Science, Basic Energy Sciences under Award Number DE-FG02-07ER46452.

  7. Superfluid fermi gas in optical lattices: self-trapping, stable, moving solitons and breathers.

    PubMed

    Xue, Ju-Kui; Zhang, Ai-Xia

    2008-10-31

    We predict the existence of self-trapping, stable, moving solitons and breathers of Fermi wave packets along the Bose-Einstein condensation (BEC)-BCS crossover in one dimension (1D), 2D, and 3D optical lattices. The dynamical phase diagrams for self-trapping, solitons, and breathers of the Fermi matter waves along the BEC-BCS crossover are presented analytically and verified numerically by directly solving a discrete nonlinear Schrödinger equation. We find that the phase diagrams vary greatly along the BEC-BCS crossover; the dynamics of Fermi wave packet are different from that of Bose wave packet. PMID:18999797

  8. Surface Tomonaga-Luttinger-Liquid State on Bi/InSb(001).

    PubMed

    Ohtsubo, Yoshiyuki; Kishi, Jun-Ichiro; Hagiwara, Kenta; Le Fèvre, Patrick; Bertran, François; Taleb-Ibrahimi, Amina; Yamane, Hiroyuki; Ideta, Shin-Ichiro; Matsunami, Masaharu; Tanaka, Kiyohisa; Kimura, Shin-Ichi

    2015-12-18

    A 1D metallic surface state was created on an anisotropic InSb(001) surface covered with Bi. Angle-resolved photoelectron spectroscopy (ARPES) showed a 1D Fermi contour with almost no 2D distortion. Close to the Fermi level (E_{F}), the angle-integrated photoelectron spectra showed power-law scaling with the binding energy and temperature. The ARPES plot above E_{F}, obtained thanks to a thermally broadened Fermi edge at room temperature, showed a 1D state with continuous metallic dispersion across E_{F} and power-law intensity suppression around E_{F}. These results strongly suggest a Tomonaga-Luttinger liquid on the Bi/InSb(001) surface. PMID:26722934

  9. Bottom-Up Preparation of Ultrathin 2D Aluminum Oxide Nanosheets by Duplicating Graphene Oxide.

    PubMed

    Huang, Zhifeng; Zhou, Anan; Wu, Jifeng; Chen, Yunqiang; Lan, Xiaoli; Bai, Hua; Li, Lei

    2016-02-24

    2D ultrathin aluminum oxide (2D-Al2O3) nanosheets are prepared by duplicating graphene oxide. An amorphous precursor of the hydroxide of aluminum is first deposited onto graphene oxide sheets, which are then converted into 2D-Al2 O3 nanosheets by calcination, while the graphene oxide is removed. The 2D-Al2O3 nanosheets have a large specific surface area and a superior adsorption capacity to fluoride ions. PMID:26678843

  10. Magnetic gating of a 2D topological insulator.

    PubMed

    Dang, Xiaoqian; Burton, J D; Tsymbal, Evgeny Y

    2016-09-28

    Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic 'gate' representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate. PMID:27437829

  11. Magnetic gating of a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Dang, Xiaoqian; Burton, J. D.; Tsymbal, Evgeny Y.

    2016-09-01

    Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic ‘gate’ representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate.

  12. Frictional drag between two dilute 2D hole layers

    NASA Astrophysics Data System (ADS)

    Pillarisetty, R.; Noh, H.; Tsui, D. C.; de Poortere, E. P.; Tutuc, E.; Shayegan, M.

    2002-03-01

    We present results of drag measurements on 2D hole systems in the low density limit (rs ranging from 19 to 39), close to their apparent B=0 metal to insulator transitions at p ~ 8.5×10^9 cm-2. The drag resistivity(ρ_D) of our sample, with a 300 Å center to center quantum well separation, is 1.5 kΩ/ Box for 1.5×10^10 cm-2 at 1 K. This is sufficiently large to allow measurements at dilution fridge temperatures to study whether the 2D hole systems show non-Fermi liquid behavior. We find that for Talt0.5T_F, the data exhibit a slightly stronger than T^2 dependence. As the temperature is further increased we find a crossover to a linear dependence, and ρ_D/T^2 vs T exhibits a peak similar to that observed in previous experiments involving phonon mediated electron-electron scattering and plasmon enhancement. Unlike these previous reports, which exhibited a local maxima in ρD around matched densities, our samples show a clearly monotonic dependence upon either layer density. These results will be discussed in light of interaction effects expected in such a large rs regime.

  13. Local currents in a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Dang, Xiaoqian; Burton, J. D.; Tsymbal, Evgeny Y.

    2015-12-01

    Symmetry protected edge states in 2D topological insulators are interesting both from the fundamental point of view as well as from the point of view of potential applications in nanoelectronics as perfectly conducting 1D channels and functional elements of circuits. Here using a simple tight-binding model and the Landauer-Büttiker formalism we explore local current distributions in a 2D topological insulator focusing on effects of non-magnetic impurities and vacancies as well as finite size effects. For an isolated edge state, we show that the local conductance decays into the bulk in an oscillatory fashion as explained by the complex band structure of the bulk topological insulator. We demonstrate that although the net conductance of the edge state is topologically protected, impurity scattering leads to intricate local current patterns. In the case of vacancies we observe vortex currents of certain chirality, originating from the scattering of current-carrying electrons into states localized at the edges of hollow regions. For finite size strips of a topological insulator we predict the formation of an oscillatory band gap in the spectrum of the edge states, the emergence of Friedel oscillations caused by an open channel for backscattering from an impurity and antiresonances in conductance when the Fermi energy matches the energy of the localized state created by an impurity.

  14. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  15. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  16. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  17. Experimental validation of equations for 2D DIC uncertainty quantification.

    SciTech Connect

    Reu, Phillip L.; Miller, Timothy J.

    2010-03-01

    Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.

  18. The Statistical Fermi Paradox

    NASA Astrophysics Data System (ADS)

    Maccone, C.

    In this paper is provided the statistical generalization of the Fermi paradox. The statistics of habitable planets may be based on a set of ten (and possibly more) astrobiological requirements first pointed out by Stephen H. Dole in his book Habitable planets for man (1964). The statistical generalization of the original and by now too simplistic Dole equation is provided by replacing a product of ten positive numbers by the product of ten positive random variables. This is denoted the SEH, an acronym standing for “Statistical Equation for Habitables”. The proof in this paper is based on the Central Limit Theorem (CLT) of Statistics, stating that the sum of any number of independent random variables, each of which may be ARBITRARILY distributed, approaches a Gaussian (i.e. normal) random variable (Lyapunov form of the CLT). It is then shown that: 1. The new random variable NHab, yielding the number of habitables (i.e. habitable planets) in the Galaxy, follows the log- normal distribution. By construction, the mean value of this log-normal distribution is the total number of habitable planets as given by the statistical Dole equation. 2. The ten (or more) astrobiological factors are now positive random variables. The probability distribution of each random variable may be arbitrary. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into the SEH by allowing an arbitrary probability distribution for each factor. This is both astrobiologically realistic and useful for any further investigations. 3. By applying the SEH it is shown that the (average) distance between any two nearby habitable planets in the Galaxy may be shown to be inversely proportional to the cubic root of NHab. This distance is denoted by new random variable D. The relevant probability density function is derived, which was named the "Maccone distribution" by Paul Davies in

  19. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  20. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.