Science.gov

Sample records for 2d flood inundation

  1. A simple 2-D inundation model for incorporating flood damage in urban drainage planning

    NASA Astrophysics Data System (ADS)

    Pathirana, A.; Tsegaye, S.; Gersonius, B.; Vairavamoorthy, K.

    2011-08-01

    An urban inundation model was developed and coupled with 1-D drainage network model (EPA-SWMM5). The objective was to achieve a 1-D/2-D coupled model that is simple and fast enough to be consistently used in planning stages of urban drainage projects. The 2-D inundation model is based on a non-standard simplification of the shallow water equation, lays between diffusion-wave and full dynamic models. Simplifications were made in the process representation and numerical solving mechanisms and a depth scaled Manning coefficient was introduced to achieve stability in the cell wetting-drying process. The 2-D model is coupled with SWMM for simulation of both network flow and surcharge induced inundation. The coupling is archived by mass transfer from the network system to the 2-D system. A damage calculation block is integrated within the model code for assessing flood damage costs in optimal planning of urban drainage networks. The model is stable in dealing with complex flow conditions, and cell wetting/drying processes, as demonstrated by a number of idealised experiments. The model application is demonstrated by applying to a case study in Brazil.

  2. A simple 2-D inundation model for incorporating flood damage in urban drainage planning

    NASA Astrophysics Data System (ADS)

    Pathirana, A.; Tsegaye, S.; Gersonius, B.; Vairavamoorthy, K.

    2008-11-01

    In this paper a new inundation model code is developed and coupled with Storm Water Management Model, SWMM, to relate spatial information associated with urban drainage systems as criteria for planning of storm water drainage networks. The prime objective is to achive a model code that is simple and fast enough to be consistently be used in planning stages of urban drainage projects. The formulation for the two-dimensional (2-D) surface flow model algorithms is based on the Navier Stokes equation in two dimensions. An Alternating Direction Implicit (ADI) finite difference numerical scheme is applied to solve the governing equations. This numerical scheme is used to express the partial differential equations with time steps split into two halves. The model algorithm is written using C++ computer programming language. This 2-D surface flow model is then coupled with SWMM for simulation of both pipe flow component and surcharge induced inundation in urban areas. In addition, a damage calculation block is integrated within the inundation model code. The coupled model is shown to be capable of dealing with various flow conditions, as well as being able to simulate wetting and drying processes that will occur as the flood flows over an urban area. It has been applied under idealized and semi-hypothetical cases to determine detailed inundation zones, depths and velocities due to surcharged water on overland surface.

  3. Evaluation of the causes of inundation in a repeatedly flooded zone in the city of Cheongju, Korea, using a 1D/2D model.

    PubMed

    Park, In-Hyeok; Lee, Jeong-Yong; Lee, Ji-Heon; Ha, Sung-Ryong

    2014-01-01

    Currently, unprecedented levels of damage arising from major weather events have been experienced in a number of major cities worldwide. Furthermore, the frequency and the scale of these disasters appear to be increasing and this is viewed by some as tangible proof of climate change. In the urbanized areas sewer overflows and resulting inundation are attributed to the conversion of previous surfaces into impervious surfaces, resulting in increased volumes of runoff which exceed the capacity of sewer systems and in particular combined sewer systems. In this study, the characteristics of sewer overflows and inundation have been analyzed in a repeatedly flooded zone in the city of Cheongju in Korea. This included an assessment of inundation in a 50-year storm event with total rainfall of 165 mm. A detailed XP-SWMM 2D model was assembled and run to simulate the interaction of the sewage system overflows and surface inundation to determine if inundation is due to hydraulic capacity limitations in the sewers or limitations in surface inlet capacities or a combination of both. Calibration was undertaken using observation at three locations (PT #1, PT #2, PT #3) within the study area. In the case of the subsurface flow calibration, R(2) value of 0.91 and 0.78 respectively were achieved at PT #1 and PT #2. Extremely good agreement between observed and predicted surface flow depths was achieved also at PT #1 and PT #2. However, at PT #3 the predicted flow depth was 4 cm lower than the observed depth, which was attributed to the impact of buildings on the local flow distribution. Areas subject to flooding were classified as either Type A (due to insufficient hydraulic capacity of a sewer), Type B (which is an area without flooding notwithstanding insufficient hydraulic capacity of a sewer) or Type C (due to inlet limitations, i.e. there is hydraulic capacity in a sewer which is not utilized). In the total flooded zone, 24% was classified as Type A (10.2 ha) and 25% was

  4. A satellite and model based flood inundation climatology of Australia

    NASA Astrophysics Data System (ADS)

    Schumann, G.; Andreadis, K.; Castillo, C. J.

    2013-12-01

    To date there is no coherent and consistent database on observed or simulated flood event inundation and magnitude at large scales (continental to global). The only compiled data set showing a consistent history of flood inundation area and extent at a near global scale is provided by the MODIS-based Dartmouth Flood Observatory. However, MODIS satellite imagery is only available from 2000 and is hampered by a number of issues associated with flood mapping using optical images (e.g. classification algorithms, cloud cover, vegetation). Here, we present for the first time a proof-of-concept study in which we employ a computationally efficient 2-D hydrodynamic model (LISFLOOD-FP) complemented with a sub-grid channel formulation to generate a complete flood inundation climatology of the past 40 years (1973-2012) for the entire Australian continent. The model was built completely from freely available SRTM-derived data, including channel widths, bank heights and floodplain topography, which was corrected for vegetation canopy height using a global ICESat canopy dataset. Channel hydraulics were resolved using actual channel data and bathymetry was estimated within the model using hydraulic geometry. On the floodplain, the model simulated the flow paths and inundation variables at a 1 km resolution. The developed model was run over a period of 40 years and a floodplain inundation climatology was generated and compared to satellite flood event observations. Our proof-of-concept study demonstrates that this type of model can reliably simulate past flood events with reasonable accuracies both in time and space. The Australian model was forced with both observed flow climatology and VIC-simulated flows in order to assess the feasibility of a model-based flood inundation climatology at the global scale.

  5. Sources of uncertainty in flood inundation maps

    USGS Publications Warehouse

    Bales, J.D.; Wagner, C.R.

    2009-01-01

    Flood inundation maps typically have been used to depict inundated areas for floods having specific exceedance levels. The uncertainty associated with the inundation boundaries is seldom quantified, in part, because all of the sources of uncertainty are not recognized and because data available to quantify uncertainty seldom are available. Sources of uncertainty discussed in this paper include hydrologic data used for hydraulic model development and validation, topographic data, and the hydraulic model. The assumption of steady flow, which typically is made to produce inundation maps, has less of an effect on predicted inundation at lower flows than for higher flows because more time typically is required to inundate areas at high flows than at low flows. Difficulties with establishing reasonable cross sections that do not intersect and that represent water-surface slopes in tributaries contribute additional uncertainties in the hydraulic modelling. As a result, uncertainty in the flood inundation polygons simulated with a one-dimensional model increases with distance from the main channel.

  6. Calibration Of 2D Hydraulic Inundation Models In The Floodplain Region Of The Lower Tagus River

    NASA Astrophysics Data System (ADS)

    Pestanana, R.; Matias, M.; Canelas, R.; Araujo, A.; Roque, D.; Van Zeller, E.; Trigo-Teixeira, A.; Ferreira, R.; Oliveira, R.; Heleno, S.

    2013-12-01

    In terms of inundated area, the largest floods in Portugal occur in the Lower Tagus River. On average, the river overflows every 2.5 years, at times blocking roads and causing important agricultural damages. This paper focus on the calibration of 2D-horizontal flood simulation models for the floods of 2001 and 2006 on a 70-km stretch of the Lower Tagus River. Flood extent maps, derived from ERS SAR and ENVISAT ASAR imagery were compared with the flood extent maps obtained for each simulation, to calibrate roughness coefficients. The combination of the calibration results from the 2001 and 2006 floods provided a preliminary Manning coefficient map of the study area.

  7. A first large-scale flood inundation forecasting model

    SciTech Connect

    Schumann, Guy J-P; Neal, Jeffrey C.; Voisin, Nathalie; Andreadis, Konstantinos M.; Pappenberger, Florian; Phanthuwongpakdee, Kay; Hall, Amanda C.; Bates, Paul D.

    2013-11-04

    At present continental to global scale flood forecasting focusses on predicting at a point discharge, with little attention to the detail and accuracy of local scale inundation predictions. Yet, inundation is actually the variable of interest and all flood impacts are inherently local in nature. This paper proposes a first large scale flood inundation ensemble forecasting model that uses best available data and modeling approaches in data scarce areas and at continental scales. The model was built for the Lower Zambezi River in southeast Africa to demonstrate current flood inundation forecasting capabilities in large data-scarce regions. The inundation model domain has a surface area of approximately 170k km2. ECMWF meteorological data were used to force the VIC (Variable Infiltration Capacity) macro-scale hydrological model which simulated and routed daily flows to the input boundary locations of the 2-D hydrodynamic model. Efficient hydrodynamic modeling over large areas still requires model grid resolutions that are typically larger than the width of many river channels that play a key a role in flood wave propagation. We therefore employed a novel sub-grid channel scheme to describe the river network in detail whilst at the same time representing the floodplain at an appropriate and efficient scale. The modeling system was first calibrated using water levels on the main channel from the ICESat (Ice, Cloud, and land Elevation Satellite) laser altimeter and then applied to predict the February 2007 Mozambique floods. Model evaluation showed that simulated flood edge cells were within a distance of about 1 km (one model resolution) compared to an observed flood edge of the event. Our study highlights that physically plausible parameter values and satisfactory performance can be achieved at spatial scales ranging from tens to several hundreds of thousands of km2 and at model grid resolutions up to several km2. However, initial model test runs in forecast mode

  8. Flood inundation map library, Fort Kent, Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2012-01-01

    Severe flooding occurred in northern Maine from April 28 to May 1, 2008, and damage was extensive in the town of Fort Kent (Lombard, 2010). Aroostook County was declared a Federal disaster area on May 9, 2008. The extent of flooding on both the Fish and St. John Rivers during this event showed that the current Federal Emergency Management Agency (FEMA) Flood Insurance Study (FIS) and Flood Insurance Rate Map (FIRM) (Federal Emergency Management Agency, 1979) were out of date. The U.S. Geological Survey (USGS) conducted a study to develop a flood inundation map library showing the areas and depths for a range of flood stages from bankfull to the flood of record for Fort Kent to complement an updated FIS (Federal Emergency Management Agency, in press). Hydrologic analyses that support the maps include computer models with and without the levee and with various depths of backwater on the Fish River. This fact sheet describes the methods used to develop the maps and describes how the maps can be accessed.

  9. Microwave remote sensing of flood inundation

    NASA Astrophysics Data System (ADS)

    Schumann, Guy J.-P.; Moller, Delwyn K.

    Flooding is one of the most costly natural disasters and thus mapping, modeling and forecasting flood events at various temporal and spatial scales is important for any flood risk mitigation plan, disaster relief services and the global (re-)insurance markets. Both computer models and observations (ground-based, airborne and Earth-orbiting) of flood processes and variables are of great value but the amount and quality of information available varies greatly with location, spatial scales and time. It is very well known that remote sensing of flooding, especially in the microwave region of the electromagnetic spectrum, can complement ground-based observations and be integrated with flood models to augment the amount of information available to end-users, decision-makers and scientists. This paper aims to provide a concise review of both the science and applications of microwave remote sensing of flood inundation, focusing mainly on synthetic aperture radar (SAR), in a variety of natural and man-made environments. Strengths and limitations are discussed and the paper will conclude with a brief account on perspectives and emerging technologies.

  10. Beyond Flood Hazard Maps: Detailed Flood Characterization with Remote Sensing, GIS and 2d Modelling

    NASA Astrophysics Data System (ADS)

    Santillan, J. R.; Marqueso, J. T.; Makinano-Santillan, M.; Serviano, J. L.

    2016-09-01

    Flooding is considered to be one of the most destructive among many natural disasters such that understanding floods and assessing the risks associated to it are becoming more important nowadays. In the Philippines, Remote Sensing (RS) and Geographic Information System (GIS) are two main technologies used in the nationwide modelling and mapping of flood hazards. Although the currently available high resolution flood hazard maps have become very valuable, their use for flood preparedness and mitigation can be maximized by enhancing the layers of information these maps portrays. In this paper, we present an approach based on RS, GIS and two-dimensional (2D) flood modelling to generate new flood layers (in addition to the usual flood depths and hazard layers) that are also very useful in flood disaster management such as flood arrival times, flood velocities, flood duration, flood recession times, and the percentage within a given flood event period a particular location is inundated. The availability of these new layers of flood information are crucial for better decision making before, during, and after occurrence of a flood disaster. The generation of these new flood characteristic layers is illustrated using the Cabadbaran River Basin in Mindanao, Philippines as case study area. It is envisioned that these detailed maps can be considered as additional inputs in flood disaster risk reduction and management in the Philippines.

  11. A software tool for rapid flood inundation mapping

    USGS Publications Warehouse

    Verdin, James; Verdin, Kristine; Mathis, Melissa L.; Magadzire, Tamuka; Kabuchanga, Eric; Woodbury, Mark; Gadain, Hussein

    2016-06-02

    The GIS Flood Tool (GFT) was developed by the U.S. Geological Survey with support from the U.S. Agency for International Development’s Office of U.S. Foreign Disaster Assistance to provide a means for production of reconnaissance-level flood inundation mapping for data-sparse and resource-limited areas of the world. The GFT has also attracted interest as a tool for rapid assessment flood inundation mapping for the Flood Inundation Mapping Program of the U.S. Geological Survey. The GFT can fill an important gap for communities that lack flood inundation mapping by providing a first-estimate of inundation zones, pending availability of resources to complete an engineering study. The tool can also help identify priority areas for application of scarce flood inundation mapping resources. The technical basis of the GFT is an application of the Manning equation for steady flow in an open channel, operating on specially processed digital elevation data. The GFT is implemented as a software extension in ArcGIS. Output maps from the GFT were validated at 11 sites with inundation maps produced previously by the Flood Inundation Mapping Program using standard one-dimensional hydraulic modeling techniques. In 80 percent of the cases, the GFT inundation patterns matched 75 percent or more of the one-dimensional hydraulic model inundation patterns. Lower rates of pattern agreement were seen at sites with low relief and subtle surface water divides. Although the GFT is simple to use, it should be applied with the oversight or review of a qualified hydraulic engineer who understands the simplifying assumptions of the approach.

  12. Developing Flood-Inundation Maps for Johnson Creek, Portland, Oregon

    USGS Publications Warehouse

    Stonewall, Adam J.; Beal, Benjamin A.

    2017-04-14

    Digital flood-inundation maps were created for a 12.9‑mile reach of Johnson Creek by the U.S. Geological Survey (USGS). The flood-inundation maps depict estimates of water depth and areal extent of flooding from the mouth of Johnson Creek to just upstream of Southeast 174th Avenue in Portland, Oregon. Each flood-inundation map is based on a specific water level and associated streamflow at the USGS streamgage, Johnson Creek at Sycamore, Oregon (14211500), which is located near the upstream boundary of the maps. The maps produced by the USGS, and the forecasted flood hydrographs produced by National Weather Service River Forecast Center can be accessed through the USGS Flood Inundation Mapper Web site (http://wimcloud.usgs.gov/apps/FIM/FloodInundationMapper.html).Water-surface elevations were computed for Johnson Creek using a combined one-dimensional and two‑dimensional unsteady hydraulic flow model. The model was calibrated using data collected from the flood of December 2015 (including the calculated streamflows at two USGS streamgages on Johnson Creek) and validated with data from the flood of January 2009. Results were typically within 0.6 foot (ft) of recorded or measured water-surface elevations from the December 2015 flood, and within 0.8 ft from the January 2009 flood. Output from the hydraulic model was used to create eight flood inundation maps ranging in stage from 9 to 16 ft. Boundary condition hydrographs were identical in shape to those from the December 2015 flood event, but were scaled up or down to produce the amount of streamflow corresponding to a specific water-surface elevation at the Sycamore streamgage (14211500). Sensitivity analyses using other hydrograph shapes, and a version of the model in which the peak flow is maintained for an extended period of time, showed minimal variation, except for overbank areas near the Foster Floodplain Natural Area.Simulated water-surface profiles were combined with light detection and ranging (lidar

  13. Clustering-based hybrid inundation model for forecasting flood inundation depths

    NASA Astrophysics Data System (ADS)

    Chang, Li-Chiu; Shen, Hung-Yu; Wang, Yi-Fung; Huang, Jing-Yu; Lin, Yen-Tso

    2010-05-01

    SummaryEstimation of flood depths and extents may provide disaster information for dealing with contingency and alleviating risk and loss of life and property. We present a two-stage procedure underlying CHIM (clustering-based hybrid inundation model), which is composed of linear regression models and ANNs (artificial neural networks) to build the regional flood inundation forecasting model. The two-stage procedure mainly includes data preprocessing and model building stages. In the data preprocessing stage, K-means clustering is used to categorize the data points of the different flooding characteristics in the study area and to identify the control point(s) from individual flooding cluster(s). In the model building stage, three classes of flood depth forecasting models are built in each cluster: the back-propagation neural network (BPNN) for each control point, the linear regression models for the grids that have highly linear correlation with the control point, and a multi-grid BPNN for the grids that do not have highly linear correlation with the control point. The practicability and effectiveness of the proposed approach is tested in the Dacun Township, Changhua County in Central Taiwan. The results show that the proposed CHIM can continuously and adequately provide 1-h-ahead flood inundation maps that well match the simulation flood inundation results and very effectively reduce 99% CPU time.

  14. Development of flood profiles and flood-inundation maps for the Village of Killbuck, Ohio

    USGS Publications Warehouse

    Ostheimer, Chad J.

    2013-01-01

    Digital flood-inundation maps for a reach of Killbuck Creek near the Village of Killbuck, Ohio, were created by the U.S. Geological Survey (USGS), in cooperation with Holmes County, Ohio. The inundation maps depict estimates of the areal extent of flooding corresponding to water levels (stages) at the USGS streamgage Killbuck Creek near Killbuck (03139000) and were completed as part of an update to Federal Emergency Management Agency Flood-Insurance Study. The maps were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning system that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. The digital maps also have been submitted for inclusion in the data libraries of the USGS interactive Flood Inundation Mapper. Data from the streamgage can be used by emergency-management personnel, in conjunction with the flood-inundation maps, to help determine a course of action when flooding is imminent. Flood profiles for selected reaches were prepared by calibrating a steady-state step-backwater model to an established streamgage rating curve. The step-backwater model then was used to determine water-surface-elevation profiles for 10 flood stages at the streamgage with corresponding streamflows ranging from approximately the 50- to 0.2-percent annual exceedance probabilities. The computed flood profiles were used in combination with digital elevation data to delineate flood-inundation areas.

  15. Utilising social media contents for flood inundation mapping

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Dransch, Doris; Fohringer, Joachim; Kreibich, Heidi

    2016-04-01

    Data about the hazard and its consequences are scarce and not readily available during and shortly after a disaster. An information source which should be explored in a more efficient way is eyewitness accounts via social media. This research presents a methodology that leverages social media content to support rapid inundation mapping, including inundation extent and water depth in the case of floods. It uses quantitative data that are estimated from photos extracted from social media posts and their integration with established data. Due to the rapid availability of these posts compared to traditional data sources such as remote sensing data, areas affected by a flood, for example, can be determined quickly. Key challenges are to filter the large number of posts to a manageable amount of potentially useful inundation-related information, and to interpret and integrate the posts into mapping procedures in a timely manner. We present a methodology and a tool ("PostDistiller") to filter geo-located posts from social media services which include links to photos and to further explore this spatial distributed contextualized in situ information for inundation mapping. The June 2013 flood in Dresden is used as an application case study in which we evaluate the utilization of this approach and compare the resulting spatial flood patterns and inundation depths to 'traditional' data sources and mapping approaches like water level observations and remote sensing flood masks. The outcomes of the application case are encouraging. Strengths of the proposed procedure are that information for the estimation of inundation depth is rapidly available, particularly in urban areas where it is of high interest and of great value because alternative information sources like remote sensing data analysis do not perform very well. The uncertainty of derived inundation depth data and the uncontrollable availability of the information sources are major threats to the utility of the approach.

  16. Fifty-year flood-inundation maps for Tocoa, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Tocoa that would be inundated by a 50-year flood of Rio Tocoa. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Tocoa as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for an estimated 50-year-flood on Rio Tocoa at Tocoa were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and a ground survey at one bridge. There are no nearby long-term stream-gaging stations on Rio Tocoa; therefore, the 50-year-flood discharge for Rio Tocoa, 552 cubic meters per second, was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The drainage area and mean annual precipitation estimated for Rio Tocoa at Tocoa are 204 square kilometers and 1,987 millimeters, respectively. It was assumed that a portion of the 50-year flood, 200 cubic meters per second, would escape the main channel and flow down a side channel before re-entering the main channel again near the lower end of the study area.

  17. Fifty-year flood-inundation maps for Siguatepeque, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Siguatepeque that would be inundated by 50-year floods on Rio Selguapa, Rio Guique, Rio Celan, Rio Calan, and Quebrada Chalantuma. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Siguatepeque as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for 50-year-floods on each of the streams studied were computed using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and ground surveys at six bridges. There are no nearby long-term stream-gaging stations on any of the streams studied; therefore, the 50-year-flood discharges were estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The 50-year-flood discharges estimated for Rio Selguapa, Rio Guique, Rio Celan, Rio Calan, and Quebrada Chalantuma are 323, 168, 161, 146, and 90 cubic meters per second, respectively.

  18. Fifty-year flood-inundation maps for Tegucigalpa, Honduras

    USGS Publications Warehouse

    Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Tegucigalpa that would be inundated by a 50-year flood of Rio Choluteca, Rio Grande, Rio Guacerique, and Rio Chiquito. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Tegucigalpa as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for an estimated 50-year-flood on Rio Choluteca, Rio Grande, Rio Guacerique, and Rio Chiquito at Tegucigalpa were determined using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and ground surveys at bridges. There are no nearby long-term stream-gaging stations; therefore, the 50-year-flood discharges were estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The estimated 50-year-flood discharge is 922 cubic meters per second at Rio Choluteca at downstream end of the study area boundary, 663 cubic meters per second at the mouth of the Rio Grande, 475 cubic meters per second at the mouth of the Rio Guacerique, and 254 cubic meters per second at the mouth of the Rio Chiquito.

  19. Hydrologic sensitivity of flood runoff and inundation: 2011 Thailand floods in the Chao Phraya River basin

    NASA Astrophysics Data System (ADS)

    Sayama, T.; Tatebe, Y.; Iwami, Y.; Tanaka, S.

    2015-07-01

    The Thailand floods in 2011 caused unprecedented economic damage in the Chao Phraya River basin. To diagnose the flood hazard characteristics, this study analyses the hydrologic sensitivity of flood runoff and inundation to rainfall. The motivation is to address why the seemingly insignificant monsoon rainfall, or 1.2 times more rainfall than for past large floods, including the ones in 1995 and 2006, resulted in such devastating flooding. To quantify the hydrologic sensitivity, this study simulated long-term rainfall-runoff and inundation for the entire river basin (160 000 km2). The simulation suggested that the flood inundation volume was 1.6 times more in 2011 than for the past flood events. Furthermore, the elasticity index suggested that a 1 % increase in rainfall causes a 2.3 % increase in runoff and a 4.2 % increase in flood inundation. This study highlights the importance of sensitivity quantification for a better understanding of flood hazard characteristics; the presented basin-wide rainfall-runoff-inundation simulation was an effective approach to analyse the sensitivity of flood runoff and inundation at the river basin scale.

  20. Validation of a Global Hydrodynamic Flood Inundation Model

    NASA Astrophysics Data System (ADS)

    Bates, P. D.; Smith, A.; Sampson, C. C.; Alfieri, L.; Neal, J. C.

    2014-12-01

    In this work we present first validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model (LISFLOOD-FP) to simulate flood inundation at 1km resolution globally and then use downscaling algorithms to determine flood extent and depth at 90m spatial resolution. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. We compare these predictions to flood hazard maps developed by national government agencies in the UK and Germany using similar methods but employing detailed local data, and to observed flood extent at a number of sites including St. Louis, USA and Bangkok in Thailand. Results show that global flood hazard models can have considerable skill given careful treatment to overcome errors in the publicly available data that are used as their input.

  1. A sensitivity analysis using different spatial resolution terrain models and flood inundation models

    NASA Astrophysics Data System (ADS)

    Papaioannou, George; Aronica, Giuseppe T.; Loukas, Athanasios; Vasiliades, Lampros

    2014-05-01

    The impact of terrain spatial resolution and accuracy on the hydraulic flood modeling can pervade the water depth and the flood extent accuracy. Another significant factor that can affect the hydraulic flood modeling outputs is the selection of the hydrodynamic models (1D,2D,1D/2D). Human mortality, ravaged infrastructures and other damages can be derived by extreme flash flood events that can be prevailed in lowlands at suburban and urban areas. These incidents make the necessity of a detailed description of the terrain and the use of advanced hydraulic models essential for the accurate spatial distribution of the flooded areas. In this study, a sensitivity analysis undertaken using different spatial resolution of Digital Elevation Models (DEMs) and several hydraulic modeling approaches (1D, 2D, 1D/2D) including their effect on the results of river flow modeling and mapping of floodplain. Three digital terrain models (DTMs) were generated from the different elevation variation sources: Terrestrial Laser Scanning (TLS) point cloud data, classic land surveying and digitization of elevation contours from 1:5000 scale topographic maps. HEC-RAS and MIKE 11 are the 1-dimensional hydraulic models that are used. MLFP-2D (Aronica et al., 1998) and MIKE 21 are the 2-dimensional hydraulic models. The last case consist of the integration of MIKE 11/MIKE 21 where 1D-MIKE 11 and 2D-MIKE 21 hydraulic models are coupled through the MIKE FLOOD platform. The validation process of water depths and flood extent is achieved through historical flood records. Observed flood inundation areas in terms of simulated maximum water depth and flood extent were used for the validity of each application result. The methodology has been applied in the suburban section of Xerias river at Volos-Greece. Each dataset has been used to create a flood inundation map for different cross-section configurations using different hydraulic models. The comparison of resulting flood inundation maps indicates

  2. Fifty-year flood-inundation maps for Sonaguera, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Sonaguera that would be inundated by a 50-year flood of Rio Sonaguera and its tributary, Rio Juan Lazaro. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Sonaguera as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for an estimated 50-year-flood on Rio Sonaguera and Rio Juan Lazaro at Sonaguera were determined using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and a ground survey at the bridge. There are no nearby long-term stream-gaging stations on Rio Sonaguera or Rio Juan Lazaro; therefore, the 50-year-flood discharge for Rio Sonaguera above the confluence with Rio Juan Lazaro, 194 cubic meters per second; for Rio Juan Lazaro at its mouth, 168 cubic meters per second, and for Rio Sonaguera at the downstream end of the study area, 282 cubic meters per second; were estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation.

  3. Fifty-year flood-inundation maps for Choloma, Honduras

    USGS Publications Warehouse

    Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Choloma that would be inundated by a 50-year flood of Rio Choloma. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Choloma as part of the in the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood on Rio Choloma at Choloma were determined using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light detection and ranging (LIDAR) topographic survey of the area. There are no nearby long-term stream-gaging stations on Rio Choloma; therefore, the 50-year-flood discharge for Rio Choloma, 370 cubic meters per second, was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The drainage area and mean annual precipitation estimated for Rio Choloma at Choloma are 89.5 square kilometers and 2,164 millimeters, respectively.

  4. Fifty-year flood-inundation maps for Catacamas, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Catacamas that would be inundated by a 50-year-flood of Rio Catacamas. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Catacamas as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/ floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood on Rio Catacamas at Catacamas were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. The 50-year-flood discharge for Rio Catacamas at Catacamas, 216 cubic meters per second, was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation because there are no long-term stream-gaging stations on the river from which to estimate the discharge. The drainage area and mean annual precipitation estimated for Rio Catacamas at Catacamas are 45.4 square kilometers and 1,773 millimeters, respectively.

  5. Fifty-year flood-inundation maps for Olanchito, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, M.C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Olanchito that would be inundated by a 50-year-flood of Rio Uchapa. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Olanchito as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood discharge of 243 cubic meters per second on Rio Uchapa at Olanchito were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. There are no nearby long-term stream-gaging stations on Rio Uchapa; therefore, the 50-year-flood discharge for Rio Uchapa was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The drainage area and mean annual precipitation estimated for Rio Uchapa at Olanchito are 97.1 square kilometers and 1,178 millimeters, respectively.

  6. INUNDATION PATTERNS AND FATALITY ANALYSIS ON LARGE-SCALE FLOOD

    NASA Astrophysics Data System (ADS)

    Ikeuchi, Koji; Ochi, Shigeo; Yasuda, Goro; Okamura, Jiro; Aono, Masashi

    In order to enhance the emergency preparedness for large-scale floods of the Ara River, we categorized the inundation patterns and calculated fatality estimates. We devised an effective continuous embankment elevation estimation method employing light detection and ranging data analysis. Drainage pump capabilities, in terms of operatable inundation depth and operatable duration limited by fuel supply logistics, were modeled from pump station data of eac h site along the rivers. Fatality reduction effects due to the enhancement of the drainage capabilities were calculated. We found proper operations of the drainage facilities can decrease the number of estimat ed fatalities considerably in some cases. We also estimated the difference of risk between floods with 200 years return period and those with 1000 years return period. In some of the 1000 years return period cases, we found the estimated fatalities jumped up whereas the populations in inundated areas changed only a little.

  7. How Sensitive is Large-scale Flood Inundation to Rainfall Variability?: Water Balance Analysis Based on Basin-wide Rainfall-Runoff-Inundation Simulation

    NASA Astrophysics Data System (ADS)

    Sayama, T.; Tatebe, Y.; Tanaka, S.

    2013-12-01

    The 2011 large-scale flood over the Chao Phraya River (CPR) basin resulted in the worst economic flood damage to Thailand. The flooding was induced mainly by unprecedented rainfall from five typhoons and tropical depressions between May and October. The total rainfall in the six months during the monsoon season was approximately 1,400 mm, while the average monsoon-season rainfall in this region is about 1,000 mm, and previous large-scale floods were caused by a total rainfall of approximately 1,200 mm. The interpretation of the additional 200 mm of rainfall compared to past events can greatly affect the understanding of the 2011 flood disaster. Up until now, the magnitude of the flood hazard itself has received little attention due to the seemingly insignificant rainfall variability. Instead, the increase of societal vulnerability, such as accumulation of assets in flood-prone areas, has been more highlighted. Nevertheless, without understanding the impact of the rainfall variability on flood runoff and inundation, essential characteristics of the flood disaster may be misinterpreted. In this study, we focused on the hydrologic characteristics of the flood based on 52 year-long inundation simulation. We applied a 2D Rainfall-Runoff-Inundation (RRI) model to the entire CPR basin. After the model validation with river discharges and water levels, remote sensing inundation extents, and peak inundation water depths for 2011, we conducted water balance analysis from the simulation results to investigate the relationship among rainfall, runoff and inundation volumes. The simulation, by taking two major dams into account, found that 131 mm (9%) of the total rainfall (1,400 mm) may have flooded at the peak. The estimated sensitivity of flood inundation to rainfall (dF/dP) was 0.25. This suggests that the additional 200 mm of rainfall may have resulted in a 50 mm, or 8.2 billion m3, increase in flood inundation volume. It accounts for more than 60 % of the total storage

  8. Sensitivity analysis of hydraulic model to morphological changes and changes in flood inundation extent

    NASA Astrophysics Data System (ADS)

    Wong, J. S.; Freer, J.; Bates, P. D.; Sear, D. A.

    2012-04-01

    Recent research into modelling floodplain inundation processes is primarily concentrated on the simulation of inundation flow without considering the influences of channel morphology and sediment delivery from upstream. River channels are often represented by simplified geometry and implicitly assumed to remain unchanged. However, during and after flood episodes the river bed elevation can change quickly and in some cases drastically. Despite this, the effect of channel geometry and topographic complexity on model results has been largely unexplored. To address this issue, the impact of channel cross-section geometry, and channel long-profile variability on flood inundation extent are examined using a simplified 1D-2D hydraulic model (LISFLOOD-FP) of the Cockermouth floods of November 2009 within an uncertainty analysis framework. The Cockermouth region provides a useful test site for such study because of the availability of channel and floodplain data, the collection of post-event water and wrack marks and the presence of pre-and post-event morphological surveyed data. More importantly, in some areas the river has undergone significant course change and additionally the deposition of stones and debris on the floodplain. The use of relatively simple formulations of critical velocities in the initiation of motion formula enables the construction of a series of hypothetical bedform scenarios among cross-sections. These scenarios can be used as input to LISFLOOD-FP. Slope gradient, Manning roughness coefficients, grain size characteristic, and critical shear stress will be considered in a Monte Carlo simulation framework. The November 2009 Cockermouth flood is simulated and the results are analysed to quantify the accuracy associated with each bedform scenario and to assess how different channel long-profiles affects the performance of LISFLOOD-FP. The study will further analyse and quantify the variability and uncertainty of flood inundation extent resulting from

  9. Flood-Inundation Maps for Sugar Creek at Crawfordsville, Indiana

    USGS Publications Warehouse

    Martin, Zachary W.

    2016-06-06

    Digital flood-inundation maps for a 6.5-mile reach of Sugar Creek at Crawfordsville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind. Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS site CRWI3).Flood profiles were computed for the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., reach by means of a one-dimensional step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., and high-water marks from the flood of April 19, 2013, which reached a stage of 15.3 feet. The hydraulic model was then used to compute 13 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 4.0 ft (the NWS “action stage”) to 16.0 ft, which is the highest stage interval of the current USGS stage-discharge rating curve and 2 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar]) data having a 0.49-ft root mean squared error and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability

  10. Fifty-year flood-inundation maps for Comayagua, Hondura

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Comayagua that would be inundated by 50-year floods on Rio Humuya and Rio Majada. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Comayagua as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for 50-year-floods on Rio Humuya and Rio Majada at Comayagua were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. The 50-year-flood discharge for Rio Humuya at Comayagua, 1,400 cubic meters per second, was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The reasonableness of the regression discharge was evaluated by comparing it with drainage-area-adjusted 50-year-flood discharges estimated for three long-term Rio Humuya stream-gaging stations. The drainage-area-adjusted 50-year-flood discharges estimated from the gage records ranged from 946 to 1,365 cubic meters per second. Because the regression equation discharge agrees closely with the high end of the range of discharges estimated from the gaging-station records, it was used for the hydraulic modeling to ensure that the resulting 50-year-flood water-surface elevations would not be underestimated. The 50-year-flood

  11. Estimation of Flood Inundation Extent Using Hybrid Models (Invited)

    NASA Astrophysics Data System (ADS)

    Chang, L.; Wang, Y.; Shen, H.

    2009-12-01

    We present a two-stage procedure underlying CHIM (clustering-based hybrid inundation model), which is composed of the linear regression models and ANNs to build the regional flood inundation estimation model. The two-stage procedure includes data preprocessing and model building stages. In the data preprocessing stage, the K-means clustering is used to categorize the data points of the different flooding characteristics and to identify the control point(s) from individual flooding cluster(s). In the model building stage, three classes of flood depth estimation models are built in each cluster: the back-propagation neural network (BPNN) for each control point, the linear regression models for the grids those have highly linear correlation with the control point, and a multi-grid BPNN for the grids those do not exist highly linear correlation with the control point. The effectiveness of the proposed approach is tested in the Dacun township in Taiwan. The results show that the CHIM can continuously and adequately provide one-hour-ahead flood inundation maps and effectively reduce 99% CPU time.

  12. AutoRoute Rapid Flood Inundation Model

    DTIC Science & Technology

    2013-03-01

    extent results from AutoRoute. A file containing all of the cross sections with cross-section profiles, water elevation, and flow velocity is created...2008, a heavy rain event occurred over central and southern Indiana and southern Wisconsin. The rain event resulted in extreme flooding, culminating in...loss of life and millions of dollars in damages. In response to these flooding events, the USGS determined high- water marks in several communities

  13. Fifty-year flood-inundation maps for Choluteca, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Choluteca that would be inundated by 50-year floods on Rio Choluteca and Rio Iztoca. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Choluteca as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for 50-year-floods on Rio Choluteca and Rio Iztoca at Choluteca were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. The estimated 50-year-flood discharge for Rio Choluteca at Choluteca is 4,620 cubic meters per second, which is the drainage-area-adjusted weighted-average of two independently estimated 50-year-flood discharges for the gaging station Rio Choluteca en Puente Choluteca. One discharge, 4,913 cubic meters per second, was estimated from a frequency analysis of the 17 years of peak discharge record for the gage, and the other, 2,650 cubic meters per second, was estimated from a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The weighted-average of the two discharges at the gage is 4,530 cubic meters per second. The 50-year-flood discharge for the study area reach of Rio Choluteca was estimated by multiplying the weighted discharge at the gage by the ratio of the drainage

  14. Fifty-year flood-inundation maps for Nacaome, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, M.C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Nacaome that would be inundated by 50-year floods on Rio Nacaome, Rio Grande, and Rio Guacirope. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Nacaome as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for 50-year-floods on Rio Nacaome, Rio Grande, and Rio Guacirope at Nacaome were computed using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and ground surveys at two bridges. The estimated 50-year-flood discharge for Rio Nacaome at Nacaome, 5,040 cubic meters per second, was computed as the drainage-area-adjusted weighted average of two independently estimated 50-year-flood discharges for the gaging station Rio Nacaome en Las Mercedes, located about 13 kilometers upstream from Nacaome. One of the discharges, 4,549 cubic meters per second, was estimated from a frequency analysis of the 16 years of peak-discharge record for the gage, and the other, 1,922 cubic meters per second, was estimated from a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The weighted-average of the two discharges is 3,770 cubic meters per second. The 50-year-flood discharges for Rio Grande, 3,890 cubic meters per

  15. Fifty-year flood-inundation maps for Juticalpa, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, M.C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Juticalpa that would be inundated by a 50-year flood of Rio Juticalpa. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Juticalpa as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood on Rio Juticalpa at Juticalpa were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. The estimated 50-year-flood discharge for Rio Juticalpa at Juticalpa, 1,360 cubic meters per second, was computed as the drainage-area-adjusted weighted average of two independently estimated 50-year-flood discharges for the gaging station Rio Juticalpa en El Torito, located about 2 kilometers upstream from Juticalpa. One discharge, 1,551 cubic meters per second, was estimated from a frequency analysis of the 33 years of peak-discharge record for the gage, and the other, 486 cubic meters per second, was estimated from a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The weighted-average of the two discharges at the gage is 1,310 cubic meters per second. The 50-year flood discharge for the study area reach of Rio Juticalpa was estimated by multiplying the weighted discharge at the gage by the

  16. Hydrologic sensitivity of flood runoff and inundation: 2011 Thailand floods in the Chao Phraya River basin

    NASA Astrophysics Data System (ADS)

    Sayama, T.; Tatebe, Y.; Iwami, Y.; Tanaka, S.

    2014-11-01

    Thailand floods in 2011 caused an unprecedented economic damage in the Chao Phraya River basin. To diagnose the flood hazard characteristics, this study analyzes the hydrologic sensitivity of flood runoff and inundation to rainfall. The motivation is to address why the seemingly insignificant monsoon rainfall, or 1.2 times more rainfall than past large floods including the ones in 1995 and 2006, resulted in such a devastating flooding. To quantify the hydrologic sensitivity, this study simulated a long-term rainfall-runoff and inundation for the entire river basin (160 000 km2). The simulation suggested that the flood inundation volume in 2011 was 1.6 times more than past flood events. Furthermore the elasticity index suggested that 1% increase in rainfall causes 2.3% increase in runoff and 4.2% increase in flood inundation. This study highlights the importance of sensitivity quantification for better understanding of flood hazard characteristics; and the presented approach is effective for the analysis at large river basins.

  17. GIS-BASED PREDICTION OF HURRICANE FLOOD INUNDATION

    SciTech Connect

    JUDI, DAVID; KALYANAPU, ALFRED; MCPHERSON, TIMOTHY; BERSCHEID, ALAN

    2007-01-17

    A simulation environment is being developed for the prediction and analysis of the inundation consequences for infrastructure systems from extreme flood events. This decision support architecture includes a GIS-based environment for model input development, simulation integration tools for meteorological, hydrologic, and infrastructure system models and damage assessment tools for infrastructure systems. The GIS-based environment processes digital elevation models (30-m from the USGS), land use/cover (30-m NLCD), stream networks from the National Hydrography Dataset (NHD) and soils data from the NRCS (STATSGO) to create stream network, subbasins, and cross-section shapefiles for drainage basins selected for analysis. Rainfall predictions are made by a numerical weather model and ingested in gridded format into the simulation environment. Runoff hydrographs are estimated using Green-Ampt infiltration excess runoff prediction and a 1D diffusive wave overland flow routing approach. The hydrographs are fed into the stream network and integrated in a dynamic wave routing module using the EPA's Storm Water Management Model (SWMM) to predict flood depth. The flood depths are then transformed into inundation maps and exported for damage assessment. Hydrologic/hydraulic results are presented for Tropical Storm Allison.

  18. Development of an flood-inundation model nesting a grid-based distributed rainfall-runoff model for impact assessment of water-related disasters

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Tachikawa, Y.; Yorozu, K.

    2013-12-01

    A risk assessment of water-related disaster under a changing climate has been highly concerned recently. To examine a change of the magnitude of inundation disasters is an important issue for a risk assessment of water-related disasters. It takes huge computational cost to conduct many 2D-inundation simulations for a whole basin under various external force scenarios. If inundation simulations are conducted only for a possible inundation area, it will highly reduce the computational time. To achieve this purpose, a flood-inundation model which nests a distributed rainfall-runoff model was developed. First, as a rainfall-runoff model to predict flood discharge, a distributed hydrologic model in 30 second spatial resolution, 1K-DHM (http://hywr.kuciv.kyoto-u.ac.jp/products/1K-DHM/1K-DHM.html) was developed, which uses digital elevation and flow direction information in HydroSHED developed by the USGS. 1K-DHM routes spatially-distributed rainfall-runoff using kinematic wave approximation from an upper grid to a lower grid along a flow direction map. Second, the flood-inundation model nesting the rainfall-runoff was developed. The framework of the inundation model is as follows. Setting river discharge simulated by 1K-DHM as a boundary condition, the flood-inundation model calculates river discharge and flooded water by the 1D and 2D inertial model which neglects the advective term in a momentum equation proposed by Bates et. al. (J. Hydrol., 387, 33-45, 2010). The inundation model considers a gradient of water stage with lower computational cost than the diffusive wave model. A devised discretization scheme (Bates et. al.: J. Hydrol., 387, 33-45, 2010) enhances the inundation model to capture the relevant mechanisms of flood propagation with very high computational performance and stability. The distributed runoff model and the inundation model use the same topographic data, thus river channel networks in the flood-inundation model with the 3 second resolution falls

  19. Impacts of Extreme Flood Inundation on Bank Filtration Water Quality

    NASA Astrophysics Data System (ADS)

    Ascott, Matthew; Lapworth, Daniel; Gooddy, Daren; Sage, Robert; Karapanos, Ilias; Ward, Robert

    2015-04-01

    Bank filtration systems are a significant component of global water supply and considered to be vulnerable to climate change. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources planning and management under potential future climate change. We provide the first systematic assessment of the recovery in water quality following extreme inundation at a bank filtration site following an extreme (1 in 17 year, duration > 70 days) flood event. During the inundation event, bank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (fraction of surface water, fSW ˜ 1, high DOC > 140% steady state values (SS), > 1 log increase in micro-organic contaminants, microbial detects and turbidity, low SEC < 90% SS, low nitrate, high DO > 500% SS). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2 - 3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (fSW ˜ 0.2 - 0.5, higher nitrate and SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological setting of the site, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Water resources planners and managers should consider flexible operating regimes such as the one implemented at this study site if riverbank filtration systems are to be resilient to future inundation events under climate change. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the suitability of a prospective bank filtration

  20. Spatially distributed model calibration of flood inundation guided by consequences such as loss of property

    NASA Astrophysics Data System (ADS)

    Pappenberger, F.; Beven, K. J.; Frodsham, K.; Matgen, P.

    2005-12-01

    Flood inundation models play an increasingly important role in assessing flood risk. The growth of 2D inundation models that are intimately related to raster maps of floodplains is occurring at the same time as an increase in the availability of 2D remote data (e.g. SAR images and aerial photographs), against which model performancee can be evaluated. This requires new techniques to be explored in order to evaluate model performance in two dimensional space. In this paper we present a fuzzified pattern matching algorithm which compares favorably to a set of traditional measures. However, we further argue that model calibration has to go beyond the comparison of physical properties and should demonstrate how a weighting towards consequences, such as loss of property, can enhance model focus and prediction. Indeed, it will be necessary to abandon a fully spatial comparison in many scenarios to concentrate the model calibration exercise on specific points such as hospitals, police stations or emergency response centers. It can be shown that such point evaluations lead to significantly different flood hazard maps due to the averaging effect of a spatial performance measure. A strategy to balance the different needs (accuracy at certain spatial points and acceptable spatial performance) has to be based in a public and political decision making process.

  1. Delivering integrated HAZUS-MH flood loss analyses and flood inundation maps over the Web

    USGS Publications Warehouse

    Hearn,, Paul P.; Longenecker, Herbert E.; Aguinaldo, John J.; Rahav, Ami N.

    2013-01-01

    Catastrophic flooding is responsible for more loss of life and damages to property than any other natural hazard. Recently developed flood inundation mapping technologies make it possible to view the extent and depth of flooding on the land surface over the Internet; however, by themselves these technologies are unable to provide estimates of losses to property and infrastructure. The Federal Emergency Management Agency’s (FEMA's) HAZUS-MH software is extensively used to conduct flood loss analyses in the United States, providing a nationwide database of population and infrastructure at risk. Unfortunately, HAZUS-MH requires a dedicated Geographic Information System (GIS) workstation and a trained operator, and analyses are not adapted for convenient delivery over the Web. This article describes a cooperative effort by the US Geological Survey (USGS) and FEMA to make HAZUS-MH output GIS and Web compatible and to integrate these data with digital flood inundation maps in USGS’s newly developed Inundation Mapping Web Portal. By running the computationally intensive HAZUS-MH flood analyses offline and converting the output to a Web-GIS compatible format, detailed estimates of flood losses can now be delivered to anyone with Internet access, thus dramatically increasing the availability of these forecasts to local emergency planners and first responders.

  2. Delivering integrated HAZUS-MH flood loss analyses and flood inundation maps over the Web.

    PubMed

    Hearn, Paul P; Longenecker, Herbert E; Aguinaldo, John J; Rahav, Ami N

    2013-01-01

    Catastrophic flooding is responsible for more loss of life and damages to property than any other natural hazard. Recently developed flood inundation mapping technologies make it possible to view the extent and depth of flooding on the land surface over the Internet; however, by themselves these technologies are unable to provide estimates of losses to property and infrastructure. The Federal Emergency Management Agency's (FEMA's) HAZUS-MH software is extensively used to conduct flood loss analyses in the United States, providing a nationwide database of population and infrastructure at risk. Unfortunately, HAZUS-MH requires a dedicated Geographic Information System (GIS) workstation and a trained operator, and analyses are not adapted for convenient delivery over the Web. This article describes a cooperative effort by the US Geological Survey (USGS) and FEMA to make HAZUS-MH output GIS and Web compatible and to integrate these data with digital flood inundation maps in USGS's newly developed Inundation Mapping Web Portal. By running the computationally intensive HAZUS-MH flood analyses offline and converting the output to a Web-GIS compatible format, detailed estimates of flood losses can now be delivered to anyone with Internet access, thus dramatically increasing the availability of these forecasts to local emergency planners and first responders.

  3. Development of a flood-warning system and flood-inundation mapping in Licking County, Ohio

    USGS Publications Warehouse

    Ostheimer, Chad J.

    2012-01-01

    Digital flood-inundation maps for selected reaches of South Fork Licking River, Raccoon Creek, North Fork Licking River, and the Licking River in Licking County, Ohio, were created by the U.S. Geological Survey (USGS), in cooperation with the Ohio Department of Transportation; U.S. Department of Transportation, Federal Highway Administration; Muskingum Watershed Conservancy District; U.S. Department of Agriculture, Natural Resources Conservation Service; and the City of Newark and Village of Granville, Ohio. The inundation maps depict estimates of the areal extent of flooding corresponding to water levels (stages) at the following USGS streamgages: South Fork Licking River at Heath, Ohio (03145173); Raccoon Creek below Wilson Street at Newark, Ohio (03145534); North Fork Licking River at East Main Street at Newark, Ohio (03146402); and Licking River near Newark, Ohio (03146500). The maps were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning system that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. As part of the flood-warning streamflow network, the USGS re-installed one streamgage on North Fork Licking River, and added three new streamgages, one each on North Fork Licking River, South Fork Licking River, and Raccoon Creek. Additionally, the USGS upgraded a lake-level gage on Buckeye Lake. Data from the streamgages and lake-level gage can be used by emergency-management personnel, in conjunction with the flood-inundation maps, to help determine a course of action when flooding is imminent. Flood profiles for selected reaches were prepared by calibrating steady-state step-backwater models to selected, established streamgage rating curves. The step-backwater models then were used to determine water-surface-elevation profiles for up to 10 flood stages at a streamgage with corresponding streamflows ranging from approximately

  4. Calibration of 2D Hydraulic Inundation Models with SAR Imagery in the Floodplain Region of the Lower Tagus River

    NASA Astrophysics Data System (ADS)

    Pestana, Rita; Matias, Magda; Canelas, Ricardo; Roque, Dora; Araujo, Amelia; Van Zeller, Emilia; Trigo-Teixeira, Antonio; Ferreira, Rui; Oliveira, Rodrigo; Heleno, Sandra; Falcão, Ana Paula; Gonçalves, Alexandre B.

    2014-05-01

    Floods account for 40% of all natural hazards worldwide and were responsible for the loss of about 100 thousand human lives and affected more than 1,4 million people in the last decade of the 20th century alone. Floods have been the deadliest natural hazard in Portugal in the last 100 years. In terms of inundated area, the largest floods in Portugal occur in the Lower Tagus (LT) River. On average, the river overflows every 2.5 years, at times blocking roads and causing important agricultural damages. The economical relevance of the area and the high frequency of the relevant flood events make the LT floodplain a good pilot region to conduct a data-driven, systematic calibration work of flood hydraulic models. This paper focus on the calibration of 2D-horizontal flood simulation models for the floods of 1997, 2001 and 2006 on a 70-km stretch of the LT River, between Tramagal and Omnias, using the software Tuflow. This computational engine provides 2D solutions based on the Stelling finite-difference, alternating direction implicit (ADI) scheme that solves the full 2D free surface shallow-water flow equations and allowed the introduction of structures that constrain water flow. The models were based on a digital terrain model (DTM) acquired in 2008 by radar techniques (5m of spatial resolution) and on in situ measurements of water elevation in Omnias (downstream boundary condition) and discharge in Tramagal and Zezere (upstream boundary conditions). Due to the relevancy of several dykes on this stretch of the LT River, non-existent on the available DTM, five of them were introduced in the models. All models have the same boundaries and were simulated using steady-state flow initial conditions. The resolution of the 2D grid mesh was 30m. Land cover data for the study area was retrieved from Corine Land Cover 2006 (CO-ordination of INformation on the Environment) with spatial resolution of 100m, and combined with estimated manning coefficients obtained in literature

  5. Cascading rainfall uncertainty into flood inundation impact models

    NASA Astrophysics Data System (ADS)

    Souvignet, Maxime; Freer, Jim E.; de Almeida, Gustavo A. M.; Coxon, Gemma; Neal, Jeffrey C.; Champion, Adrian J.; Cloke, Hannah L.; Bates, Paul D.

    2014-05-01

    Observed and numerical weather prediction (NWP) simulated precipitation products typically show differences in their spatial and temporal distribution. These differences can considerably influence the ability to predict hydrological responses. For flood inundation impact studies, as in forecast situations, an atmospheric-hydrologic-hydraulic model chain is needed to quantify the extent of flood risk. Uncertainties cascaded through the model chain are seldom explored, and more importantly, how potential input uncertainties propagate through this cascade, and how best to approach this, is still poorly understood. This requires a combination of modelling capabilities, the non-linear transformation of rainfall to river flow using rainfall-runoff models, and finally the hydraulic flood wave propagation based on the runoff predictions. Improving the characterisation of uncertainty, and what is important to include, in each component is important for quantifying impacts and understanding flood risk for different return periods. In this paper, we propose to address this issue by i) exploring the effects of errors in rainfall on inundation predictive capacity within an uncertainty framework by testing inundation uncertainty against different comparable meteorological conditions (i.e. using different rainfall products) and ii) testing different techniques to cascade uncertainties (e.g. bootstrapping, PPU envelope) within the GLUE (generalised likelihood uncertainty estimation) framework. Our method cascades rainfall uncertainties into multiple rainfall-runoff model structures using the Framework for Understanding Structural Errors (FUSE). The resultant prediction uncertainties in upstream discharge provide uncertain boundary conditions that are cascaded into a simplified shallow water hydraulic model (LISFLOOD-FP). Rainfall data captured by three different measurement techniques - rain gauges, gridded radar data and numerical weather predictions (NWP) models are evaluated

  6. Tharsis-triggered Flood Inundations of the Lowlands of Mars

    NASA Technical Reports Server (NTRS)

    Fairen, Alberto G.; Dohm, James M.; Baker, Victor R.; dePablo, Miguel A.

    2003-01-01

    Throughout the recorded history of Mars, liquid water has distinctly shaped its landscape, including the prominent circum-Chryse and the northwestern slope valleys outflow channel systems [1], and the extremely flat northern plains topography at the distal reaches of these outflow channel systems.Basing on the ideas of episodic greenhouse atmosphere and water stability on the lowlands of Mars [3], a conceptual scheme for water evolution and associated geomorphologic features on the northern plains can be proposed. This model highlights Tharsis-triggered flood inundations and their direct impact on shaping the northern plains, as well as making possible the existence of fossil and/or extant life.Possible biologic evolution throughout the resulting different climatic and hydrologic conditions would account for very distinct metabolic pathways for hypothesized organisms capable of surviving and perhaps evolving in each aqueous environment, those that existed in the dry and cold periods between the flood inundations, and those organisms that could survive both extremes. Terrestrial microbiota, chemolithotrophic and heterotrophic bacteria, provide exciting analogues for such potential extremophile existence in Mars, especially where long-lived, magmatic-driven hydrothermal activity is indicated [14].

  7. Flood Inundation Analysis Considering Mega Floods in PyeonChang River Basin of South Korea

    NASA Astrophysics Data System (ADS)

    Kim, D.; Han, D.; Choi, C.; Lee, J.; Kim, H. S.

    2015-12-01

    Recently, abnormal climate has frequently occurred around the world due to global warming. In South Korea, more than 90% of damage due to natural disasters has been caused by extreme events like strong wind and heavy rainfall. Most studies regarding the impact of extreme events on flood damage have focused on a single heavy rainfall event. But several heavy rainfall events can be occurred continuously and these events will affect occurring huge flood damage. This study explores the impact of the continuous extreme events on the flood damage. Here we call Mega flood for this type of flood which is caused by the continuous extreme events. Inter Event Time Definition (IETD) method is applied for making Mega flood scenarios depending on independent rainfall event scenarios. Flood inundations are estimated in each situation of the Mega flood scenarios and the flood damages are estimated using a Multi-Dimensional Flood Damage Analysis (MD-FDA) method. As a result, we expect that flood damage caused by Mega flood leads to much greater than damage driven by single rainfall event. The results of this study can be contributed for making a guideline and design criteria in order to reduce flood damage.This work was supported by the National Research Foundation of Korea (NRF) and grant funded by the Korean government (MEST; No. 2011-0028564).

  8. Development of a Flood-Warning System and Flood-Inundation Mapping for the Blanchard River in Findlay, Ohio

    USGS Publications Warehouse

    Whitehead, Matthew T.; Ostheimer, Chad J.

    2009-01-01

    Digital flood-inundation maps of the Blanchard River in Findlay, Ohio, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Findlay, Ohio. The maps, which correspond to water levels at the USGS streamgage at Findlay (04189000), were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning system that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. The USGS reestablished one streamgage and added another on the Blanchard River upstream of Findlay. Additionally, the USGS established one streamgage each on Eagle and Lye Creeks, tributaries to the Blanchard River. The stream-gage sites were equipped with rain gages and multiple forms of telemetry. Data from these gages can be used by emergency management personnel to determine a course of action when flooding is imminent. Flood profiles computed by means of a step-backwater model were prepared and calibrated to a recent flood with a return period exceeding 100 years. The hydraulic model was then used to determine water-surface-elevation profiles for 11 flood stages with corresponding streamflows ranging from approximately 2 to 100 years in recurrence interval. The simulated flood profiles were used in combination with digital elevation data to delineate the flood-inundation areas. Maps of Findlay showing flood-inundation areas overlain on digital orthophotographs are presented for the selected floods.

  9. Flood-inundation maps for the West Branch Delaware River, Delhi, New York, 2012

    USGS Publications Warehouse

    Coon, William F.; Breaker, Brian K.

    2012-01-01

    Digital flood-inundation maps for a 5-mile reach of the West Branch Delaware River through the Village and part of the Town of Delhi, New York, were created by the U.S. Geological Survey (USGS) in cooperation with the Village of Delhi, the Delaware County Soil and Water Conservation District, and the Delaware County Planning Department. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the Federal Flood Inundation Mapper Web site at http://wim.usgs.gov/FIMI/FloodInundationMapper.html, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) referenced to the USGS streamgage at West Branch Delaware River upstream from Delhi, N.Y. (station number 01421900). In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model that had been used to produce the flood insurance rate maps for the most recent flood insurance study for the Town and Village of Delhi. This hydraulic model was used to compute 10 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from 7 ft or near bankfull to 16 ft, which exceeds the stages that correspond to both the estimated 0.2-percent annual-exceedance-probability flood (500-year recurrence interval flood) and the maximum recorded peak flow. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model, which was derived from Light Detection and Ranging (LiDAR) data with a 1.2-ft (0.61-ft root mean squared error) vertical accuracy and 3.3-ft (1-meter) horizontal resolution, to delineate the area flooded at each water level. A map that was produced using this method to delineate the inundated area for the flood that occurred on August 28, 2011, agreed well with highwater marks that had been located in the field using a

  10. Development of a flood-warning network and flood-inundation mapping for the Blanchard River in Ottawa, Ohio

    USGS Publications Warehouse

    Whitehead, Matthew T.

    2011-01-01

    Digital flood-inundation maps of the Blanchard River in Ottawa, Ohio, were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Department of Agriculture, Natural Resources Conservation Service and the Village of Ottawa, Ohio. The maps, which correspond to water levels (stages) at the USGS streamgage at Ottawa (USGS streamgage site number 04189260), were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning Network that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. Flood profiles were computed by means of a step-backwater model calibrated to recent field measurements of streamflow. The step-backwater model was then used to determine water-surface-elevation profiles for 12 flood stages with corresponding streamflows ranging from less than the 2-year and up to nearly the 500-year recurrence-interval flood. The computed flood profiles were used in combination with digital elevation data to delineate flood-inundation areas. Maps of the Village of Ottawa showing flood-inundation areas overlain on digital orthophotographs are presented for the selected floods. As part of this flood-warning network, the USGS upgraded one streamgage and added two new streamgages, one on the Blanchard River and one on Riley Creek, which is tributary to the Blanchard River. The streamgage sites were equipped with both satellite and telephone telemetry. The telephone telemetry provides dual functionality, allowing village officials and the public to monitor current stage conditions and enabling the streamgage to call village officials with automated warnings regarding flood stage and/or predetermined rates of stage increase. Data from the streamgages serve as a flood warning that emergency management personnel can use in conjunction with the flood-inundation maps by to determine a course of action when flooding is imminent.

  11. Nested 1D-2D approach for urban surface flood modeling

    NASA Astrophysics Data System (ADS)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of

  12. Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping

    NASA Astrophysics Data System (ADS)

    Saksena, Siddharth; Merwade, Venkatesh

    2015-11-01

    Topography plays a major role in determining the accuracy of flood inundation areas. However, many areas in the United States and around the world do not have access to high quality topographic data in the form of Digital Elevation Models (DEM). For such areas, an improved understanding of the effects of DEM properties such as horizontal resolution and vertical accuracy on flood inundation maps may eventually lead to improved flood inundation modeling and mapping. This study attempts to relate the errors arising from DEM properties such as spatial resolution and vertical accuracy to flood inundation maps, and then use this relationship to create improved flood inundation maps from coarser resolution DEMs with low accuracy. The results from the five stream reaches used in this study show that water surface elevations (WSE) along the stream and the flood inundation area have a linear relationship with both DEM resolution and accuracy. This linear relationship is then used to extrapolate the water surface elevations from coarser resolution DEMs to get water surface elevations corresponding to a finer resolution DEM. Application of this approach show that improved results can be obtained from flood modeling by using coarser and less accurate DEMs, including public domain datasets such as the National Elevation Dataset and Shuttle Radar Topography Mission (SRTM) DEMs. The improvement in the WSE and its application to obtain better flood inundation maps is dependent on the study reach characteristics such as land use, valley shape, reach length and width. Application of the approach presented in this study on more reaches may lead to development of guidelines for flood inundation mapping using coarser resolution and less accurate topographic datasets.

  13. A quasi-2D flood modeling approach to simulate substance transport in polder systems for environment flood risk assessment.

    PubMed

    Lindenschmidt, Karl-Erich; Huang, Shaochun; Baborowski, Martina

    2008-07-01

    In flood modeling, many one-dimensional (1D) hydrodynamic and water quality models are too restricted in capturing the spatial differentiation of processes within a polder or system of polders and two-dimensional (2D) models are too demanding in data requirements and computational resources, especially if Monte-Carlo techniques are to be used for model uncertainty analyses. The first goal of this paper is to show the successful development of a quasi-2D modeling approach which still calculates the dynamic wave in 1D but the discretisation of the computational units is in 2D, allowing a better spatial representation of the flow and substance transport processes in the polders without a large additional expenditure on data pre-processing and simulation processing. The models DYNHYD (1D hydrodynamics) and TOXI (sediment and micro-pollutant transport) were used as a basis for the hydrodynamic and water quality simulations. An extreme flood event on the Elbe River, Germany, with a proposed polder system variant was used as a test case. The results show a plausible differentiation of suspended sediment and zinc concentrations within the polders both spatially and temporally. This fulfills the second goal of this research. The third goal of this work is to provide an example methodology of carrying out an environmental risk assessment in inundated areas by flood waters, as required by the European Union floods directive. The deposition of zinc in polders was used for this example, due to its high contamination potential in the Elbe River. The extended quasi-2D modeling system incorporates a Monte-Carlo uncertainty analysis to assess the environmental impact of heavy metal deposition in the polders during extreme flooding. The environmental risk computed gives a 48% chance of exceeding the inspection value of 500 mg zinc/kg sediment for a flood such as the August 2002 event.

  14. Importance of Integrating High-Resoultion 2D Flood Hazard Maps in the Flood Disaster Management of Marikina City, Philippines

    NASA Astrophysics Data System (ADS)

    Tapales, Ben Joseph; Mendoza, Jerico; Uichanco, Christopher; Mahar Francisco Amante Lagmay, Alfredo; Moises, Mark Anthony; Delmendo, Patricia; Eneri Tingin, Neil

    2015-04-01

    Flooding has been a perennial problem in the city of Marikina. These incidences result in human and economic losses. In response to this, the city has been investing in their flood disaster mitigation program in the past years. As a result, flooding in Marikina was reduced by 31% from 1992 to 2004. [1] However, these measures need to be improved so as to mitigate the effects of floods with more than 100 year return period, such as the flooding brought by tropical storm Ketsana in 2009 which generated 455mm of rains over a 24-hour period. Heavy rainfall caused the streets to be completely submerged in water, leaving at least 70 people dead in the area. In 2012, the Southwest monsoon, enhanced by a typhoon, brought massive rains with an accumulated rainfall of 472mm for 22-hours, a number greater than that which was experienced during Ketsana. At this time, the local government units were much more prepared in mitigating the risk with the use of early warning and evacuation measures, resulting to zero casualty in the area. Their urban disaster management program, however, can be further improved through the integration of high-resolution 2D flood hazard maps in the city's flood disaster management. The use of these maps in flood disaster management is essential in reducing flood-related risks. This paper discusses the importance and advantages of integrating flood maps in structural and non-structural mitigation measures in the case of Marikina City. Flood hazard maps are essential tools in predicting the frequency and magnitude of floods in an area. An information that may be determined with the use of these maps is the locations of evacuation areas, which may be accurately positioned using high-resolution 2D flood hazard maps. Evacuation of people in areas that are not vulnerable of being inundated is one of the unnecessary measures that may be prevented and thus optimizing mitigation efforts by local government units. This paper also discusses proposals for a more

  15. Importance of Integrating High-Resoultion 2D Flood Hazard Maps in the Flood Disaster Management of Marikina City, Philippines

    NASA Astrophysics Data System (ADS)

    Tapales, B. J. M.; Mendoza, J.; Uichanco, C.; Lagmay, A. M. F. A.; Moises, M. A.; Delmendo, P.; Tingin, N. E.

    2014-12-01

    Flooding has been a perennial problem in the city of Marikina. These incidences result in human and economic losses. In response to this, the city has been investing in their flood disaster mitigation program in the past years. As a result, flooding in Marikina was reduced by 31% from 1992 to 2004. [1] However, these measures need to be improved so as to mitigate the effects of floods with more than 100 year return period, such as the flooding brought by tropical storm Ketsana in 2009 which generated 455mm of rains over a 24-hour period. Heavy rainfall caused the streets to be completely submerged in water, leaving at least 70 people dead in the area. In 2012, the Southwest monsoon, enhanced by a typhoon, brought massive rains with an accumulated rainfall of 472mm for 22-hours, a number greater than that which was experienced during Ketsana. At this time, the local government units were much more prepared in mitigating the risk with the use of early warning and evacuation measures, resulting to zero casualty in the area. Their urban disaster management program, however, can be further improved through the integration of high-resolution 2D flood hazard maps in the city's flood disaster management. The use of these maps in flood disaster management is essential in reducing flood-related risks. This paper discusses the importance and advantages of integrating flood maps in structural and non-structural mitigation measures in the case of Marikina City. Flood hazard maps are essential tools in predicting the frequency and magnitude of floods in an area. An information that may be determined with the use of these maps is the locations of evacuation areas, which may be accurately positioned using high-resolution 2D flood hazard maps. Evacuation of areas that are not vulnerable of being inundated is one of the unnecessary measures that may be prevented and thus optimizing mitigation efforts by local government units. This paper also discusses proposals for a more efficient

  16. Improved Large-Scale Inundation Modelling by 1D-2D Coupling and Consideration of Hydrologic and Hydrodynamic Processes - a Case Study in the Amazon

    NASA Astrophysics Data System (ADS)

    Hoch, J. M.; Bierkens, M. F.; Van Beek, R.; Winsemius, H.; Haag, A.

    2015-12-01

    Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World's population and the associated implications, sound knowledge of flood hazard and related risk is crucial. Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation. Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory. The present research constitutes a first step into a globally applicable approach to fully couple

  17. Estimated flood-inundation maps for Cowskin Creek in western Wichita, Kansas

    USGS Publications Warehouse

    Studley, Seth E.

    2003-01-01

    The October 31, 1998, flood on Cowskin Creek in western Wichita, Kansas, caused millions of dollars in damages. Emergency management personnel and flood mitigation teams had difficulty in efficiently identifying areas affected by the flooding, and no warning was given to residents because flood-inundation information was not available. To provide detailed information about future flooding on Cowskin Creek, high-resolution estimated flood-inundation maps were developed using geographic information system technology and advanced hydraulic analysis. Two-foot-interval land-surface elevation data from a 1996 flood insurance study were used to create a three-dimensional topographic representation of the study area for hydraulic analysis. The data computed from the hydraulic analyses were converted into geographic information system format with software from the U.S. Army Corps of Engineers' Hydrologic Engineering Center. The results were overlaid on the three-dimensional topographic representation of the study area to produce maps of estimated flood-inundation areas and estimated depths of water in the inundated areas for 1-foot increments on the basis of stream stage at an index streamflow-gaging station. A Web site (http://ks.water.usgs.gov/Kansas/cowskin.floodwatch) was developed to provide the public with information pertaining to flooding in the study area. The Web site shows graphs of the real-time streamflow data for U.S. Geological Survey gaging stations in the area and monitors the National Weather Service Arkansas-Red Basin River Forecast Center for Cowskin Creek flood-forecast information. When a flood is forecast for the Cowskin Creek Basin, an estimated flood-inundation map is displayed for the stream stage closest to the National Weather Service's forecasted peak stage. Users of the Web site are able to view the estimated flood-inundation maps for selected stages at any time and to access information about this report and about flooding in general. Flood

  18. Validation of a global hydrodynamic flood inundation model against high resolution observation data of urban flooding

    NASA Astrophysics Data System (ADS)

    Bates, Paul; Sampson, Chris; Smith, Andy; Neal, Jeff

    2015-04-01

    In this work we present further validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model that uses highly efficient numerical algorithms (LISFLOOD-FP) to simulate flood inundation at ~1km resolution globally and then use downscaling algorithms to determine flood extent and water depth at 3 seconds of arc spatial resolution (~90m at the equator). The global model has ~150 million cells and requires ~180 hours of CPU time for a 10 year simulation period. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. This method has already been show to compare well to return period flood hazard maps derived from models built with high resolution and accuracy local data (Sampson et al., submitted), yet the output from the global flood model has not yet been compared to real flood observations. Whilst the spatial resolution of the global model is high given the size of the model domain, ~1km resolution is still coarse compared to the models typically used to simulate urban flooding and the data typically used to validate these (~25m or less). Comparison of the global model to real-world observations or urban flooding therefore represents an exceptionally stringent test of model skill. In this paper we therefore

  19. Hydraulic model and flood-inundation maps developed for the Pee Dee National Wildlife Refuge, North Carolina

    USGS Publications Warehouse

    Smith, Douglas G.; Wagner, Chad R.

    2016-04-08

    A series of digital flood-inundation maps were developed on the basis of the water-surface profiles produced by the model. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Program Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent and depth of flooding corresponding to selected water levels at the USGS streamgage Pee Dee River at Pee Dee Refuge near Ansonville, N.C. These maps, when combined with real-time water-level information from USGS streamgages, provide managers with critical information to help plan flood-response activities and resource protection efforts.

  20. An expanded model: flood-inundation maps for the Leaf River at Hattiesburg, Mississippi, 2013

    USGS Publications Warehouse

    Storm, John B.

    2014-01-01

    Digital flood-inundation maps for a 6.8-mile reach of the Leaf River at Hattiesburg, Mississippi (Miss.), were created by the U.S. Geological Survey (USGS) in cooperation with the City of Hattiesburg, City of Petal, Forrest County, Mississippi Emergency Management Agency, Mississippi Department of Homeland Security, and the Emergency Management District. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Leaf River at Hattiesburg, Miss. (station no. 02473000). Current conditions for estimating near-real-time areas of inundation by use of USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relations at the Leaf River at Hattiesburg, Miss. streamgage (02473000) and documented high-water marks from recent and historical floods. The hydraulic model was then used to determine 13 water-surface profiles for flood stages at 1.0-foot intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system (GIS

  1. Ohio River backwater flood-inundation maps for the Saline and Wabash Rivers in southern Illinois

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Sharpe, Jennifer B.; Soong, David T.

    2012-01-01

    Digital flood-inundation maps for the Saline and Wabash Rivers referenced to elevations on the Ohio River in southern Illinois were created by the U.S. Geological Survey (USGS). The inundation maps, accessible through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Ohio River at Old Shawneetown, Illinois-Kentucky (station number 03381700). Current gage height and flow conditions at this USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?03381700. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That NWS forecasted peak-stage information, also shown on the Ohio River at Old Shawneetown inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, eight water-surface elevations were mapped at 5-foot (ft) intervals referenced to the streamgage datum ranging from just above the NWS Action Stage (31 ft) to above the maximum historical gage height (66 ft). The elevations of the water surfaces were compared to a Digital Elevation Model (DEM) by using a Geographic Information System (GIS) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage heights from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  2. Flood-inundation maps for the Flatrock River at Columbus, Indiana, 2012

    USGS Publications Warehouse

    Coon, William F.

    2013-01-01

    Digital flood-inundation maps for a 5-mile reach of the Flatrock River on the western side of Columbus, Indiana, from County Road 400N to the river mouth at the confluence with Driftwood River, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the Federal Flood Inundation Mapper Web site at http://wim.usgs.gov/FIMI/FloodInundationMapper.html, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Flatrock River at Columbus (station number 03363900). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service, which also presents the USGS data, at http:/water.weather.gov/ahps/. Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation at the Flatrock River streamgage, high-water marks that were surveyed following the flood of June 7, 2008, and water-surface profiles from the current flood-insurance study for the City of Columbus. The hydraulic model was then used to compute 12 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from 9 ft or near bankfull to 20 ft, which exceeds the stages that correspond to both the estimated 0.2-percent annual exceedance probability flood (500-year recurrence interval flood) and the maximum recorded peak flow. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from Light Detection and Ranging (LiDAR) data having a 0.37 ft

  3. 1D and 2D urban dam-break flood modelling in Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Ozdemir, Hasan; Neal, Jeffrey; Bates, Paul; Döker, Fatih

    2014-05-01

    Urban flood events are increasing in frequency and severity as a consequence of several factors such as reduced infiltration capacities due to continued watershed development, increased construction in flood prone areas due to population growth, the possible amplification of rainfall intensity due to climate change, sea level rise which threatens coastal development, and poorly engineered flood control infrastructure (Gallegos et al., 2009). These factors will contribute to increased urban flood risk in the future, and as a result improved modelling of urban flooding according to different causative factor has been identified as a research priority (Gallegos et al., 2009; Ozdemir et al. 2013). The flooding disaster caused by dam failures is always a threat against lives and properties especially in urban environments. Therefore, the prediction of dynamics of dam-break flows plays a vital role in the forecast and evaluation of flooding disasters, and is of long-standing interest for researchers. Flooding occurred on the Ayamama River (Istanbul-Turkey) due to high intensity rainfall and dam-breaching of Ata Pond in 9th September 2009. The settlements, industrial areas and transportation system on the floodplain of the Ayamama River were inundated. Therefore, 32 people were dead and millions of Euros economic loses were occurred. The aim of this study is 1 and 2-Dimensional flood modelling of the Ata Pond breaching using HEC-RAS and LISFLOOD-Roe models and comparison of the model results using the real flood extent. The HEC-RAS model solves the full 1-D Saint Venant equations for unsteady open channel flow whereas LISFLOOD-Roe is the 2-D shallow water model which calculates the flow according to the complete Saint Venant formulation (Villanueva and Wright, 2006; Neal et al., 2011). The model consists a shock capturing Godunov-type scheme based on the Roe Riemann solver (Roe, 1981). 3 m high resolution Digital Surface Model (DSM), natural characteristics of the pond

  4. Hydrological and hydraulic models for determination of flood-prone and flood inundation areas

    NASA Astrophysics Data System (ADS)

    Aksoy, Hafzullah; Sadan Ozgur Kirca, Veysel; Burgan, Halil Ibrahim; Kellecioglu, Dorukhan

    2016-05-01

    Geographic Information Systems (GIS) are widely used in most studies on water resources. Especially, when the topography and geomorphology of study area are considered, GIS can ease the work load. Detailed data should be used in this kind of studies. Because of, either the complication of the models or the requirement of highly detailed data, model outputs can be obtained fast only with a good optimization. The aim in this study, firstly, is to determine flood-prone areas in a watershed by using a hydrological model considering two wetness indexes; the topographical wetness index, and the SAGA (System for Automated Geoscientific Analyses) wetness index. The wetness indexes were obtained in the Quantum GIS (QGIS) software by using the Digital Elevation Model of the study area. Flood-prone areas are determined by considering the wetness index maps of the watershed. As the second stage of this study, a hydraulic model, HEC-RAS, was executed to determine flood inundation areas under different return period-flood events. River network cross-sections required for this study were derived from highly detailed digital elevation models by QGIS. Also river hydraulic parameters were used in the hydraulic model. Modelling technology used in this study is made of freely available open source softwares. Based on case studies performed on watersheds in Turkey, it is concluded that results of such studies can be used for taking precaution measures against life and monetary losses due to floods in urban areas particularly.

  5. Evaluation of low impact development approach for mitigating flood inundation at a watershed scale in China.

    PubMed

    Hu, Maochuan; Sayama, Takahiro; Zhang, Xingqi; Tanaka, Kenji; Takara, Kaoru; Yang, Hong

    2017-05-15

    Low impact development (LID) has attracted growing attention as an important approach for urban flood mitigation. Most studies evaluating LID performance for mitigating floods focus on the changes of peak flow and runoff volume. This paper assessed the performance of LID practices for mitigating flood inundation hazards as retrofitting technologies in an urbanized watershed in Nanjing, China. The findings indicate that LID practices are effective for flood inundation mitigation at the watershed scale, and especially for reducing inundated areas with a high flood hazard risk. Various scenarios of LID implementation levels can reduce total inundated areas by 2%-17% and areas with a high flood hazard level by 6%-80%. Permeable pavement shows better performance than rainwater harvesting against mitigating urban waterlogging. The most efficient scenario is combined rainwater harvesting on rooftops with a cistern capacity of 78.5 mm and permeable pavement installed on 75% of non-busy roads and other impervious surfaces. Inundation modeling is an effective approach to obtaining the information necessary to guide decision-making for designing LID practices at watershed scales.

  6. Flood-inundation maps for the Schoharie Creek at Prattsville, New York, 2014

    USGS Publications Warehouse

    Nystrom, Elizabeth A.

    2016-02-18

    These flood-inundation maps, along with near-real-time stage data from USGS streamgages and forecasted stage data from the National Weather Service, can provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for postflood recovery efforts.

  7. A robust and quick method to validate large scale flood inundation modelling with SAR remote sensing

    NASA Astrophysics Data System (ADS)

    Schumann, G. J.; Neal, J. C.; Bates, P. D.

    2011-12-01

    With flood frequency likely to increase as a result of altered precipitation patterns triggered by climate change, there is a growing demand for more data and, at the same time, improved flood inundation modeling. The aim is to develop more reliable flood forecasting systems over large scales that account for errors and inconsistencies in observations, modeling, and output. Over the last few decades, there have been major advances in the fields of remote sensing, particularly microwave remote sensing, and flood inundation modeling. At the same time both research communities are attempting to roll out their products on a continental to global scale. In a first attempt to harmonize both research efforts on a very large scale, a two-dimensional flood model has been built for the Niger Inland Delta basin in northwest Africa on a 700 km reach of the Niger River, an area similar to the size of the UK. This scale demands a different approach to traditional 2D model structuring and we have implemented a simplified version of the shallow water equations as developed in [1] and complemented this formulation with a sub-grid structure for simulating flows in a channel much smaller than the actual grid resolution of the model. This joined integration allows to model flood flows across two dimensions with efficient computational speeds but without losing out on channel resolution when moving to coarse model grids. Using gaged daily flows, the model was applied to simulate the wetting and drying of the Inland Delta floodplain for 7 years from 2002 to 2008, taking less than 30 minutes to simulate 365 days at 1 km resolution. In these rather data poor regions of the world and at this type of scale, verification of flood modeling is realistically only feasible with wide swath or global mode remotely sensed imagery. Validation of the Niger model was carried out using sequential global mode SAR images over the period 2006/7. This scale not only requires different types of models and

  8. A large scale rainfall-runoff-inundation analysis of Thailand Flood 2011

    NASA Astrophysics Data System (ADS)

    Sayama, T.; Tatebe, Y.; Tanaka, S.

    2012-12-01

    A large amount of rainfall during the 2011 monsoonal season caused an unprecedented flood disaster in the Chao Phraya River basin in Thailand. When a large-scale flood occurs, it is very important to take appropriate emergency measures by holistically understanding the characteristics of the flooding based on available information and by predicting its possible development. This paper proposes quick response-type flood simulation that can be conducted during a severe flooding event. The hydrologic simulation model used in this study is designed to simulate river discharges and flood inundation simultaneously for an entire river basin with satellite based rainfall and topographic information. The model is based on two-dimensional diffusive wave equations for rainfall-runoff and inundation calculations. The model takes into account the effects of lateral subsurface flow and vertical infiltration flow since these two types of flow are also important processes. This paper presents prediction results obtained in mid-October 2011, when the flooding in Thailand was approaching to its peak. Our scientific question is how well we can predict the possible development of a large-scale flooding event with limited information and how much we can improve the prediction with more local information. In comparison with a satellite based flood inundation map, the study found that the quick response-type simulation (Case A) was capable of capturing the peak flood inundation extent reasonably. Our interpretation of the prediction was that the flooding might continue even until the end of November, which was positively confirmed to some extent by the actual flooding status in late November. In the meantime, the Case A simulation generally overestimated the peak water level. To address this overestimation, the input data was updated with additional local information (Case B). Consequently, the simulation accuracy improved in the lower basin by up to about 10 % for discharge and up to

  9. HEC-RAS 5.0 Vs. TELEMAC-2D: a model comparison for flood-hazard and flood-risk estimation

    NASA Astrophysics Data System (ADS)

    Ezzahra Maatar, Fatma; Domeneghetti, Alessio; Brath, Armando

    2015-04-01

    River flooding is considered among the most frequent catastrophic events causing dramatic consequences in terms of loss of human life and economic damages. Therefore, the flood-hazard and flood-risk management appear nowadays the fundamental activities that public bodies and authorities in charge have to implement in order to reduce human and socio-economic losses. In this context, our study specifically refers to a flood event occurred on January 19, 2014, along the Secchia River (a tributary of the Po River; North Italy), with the aim of evaluating the suitability of different numerical tools for the reproduction of the flood dynamics. During this specific event a failure on the main embankment caused the overflowing of an overall volume of about 40•106 m3 within 48 hours inundating nearly 200 km² of the floodplain area. Thus, our study aims at reproducing the inundation dynamics using two different fully bi-dimensional (2D) hydrodynamic models, both based on Saint-Venant equations: Telemac-2D and HEC-RAS 5.0 (Beta version). The former (Telemac-2D) is a widely employed and well known 2D model adopting a finite-element scheme based on triangular elements, while the latter, HEC-RAS 5.0, is the first, recently released, version of a coupled 1D-2D model that enables one to simulate river and floodplains interactions through a finite-volume scheme. Taking advantage of the historical observations, we investigate the suitability of the new 1D-2D model in reproducing the flood patterns testing its performance in case of different mesh resolutions (i.e. cell dimension ranging from 50 m to 200 m) and Digital Elevation Model accuracy (i.e. DEM resolution varying from 1 m to 50 m). Models' performances are thus compared with real observations in terms of flood patterns (i.e. overall flood extent and flood dynamics) and flood-hazard indexes (such as water depth, flow velocity, impulse, etc.). Finally, we compare the accuracy of both models on the reconstruction of recorded

  10. Estimated Flood Discharges and Map of Flood-Inundated Areas for Omaha Creek, near Homer, Nebraska, 2005

    USGS Publications Warehouse

    Dietsch, Benjamin J.; Wilson, Richard C.; Strauch, Kellan R.

    2008-01-01

    Repeated flooding of Omaha Creek has caused damage in the Village of Homer. Long-term degradation and bridge scouring have changed substantially the channel characteristics of Omaha Creek. Flood-plain managers, planners, homeowners, and others rely on maps to identify areas at risk of being inundated. To identify areas at risk for inundation by a flood having a 1-percent annual probability, maps were created using topographic data and water-surface elevations resulting from hydrologic and hydraulic analyses. The hydrologic analysis for the Omaha Creek study area was performed using historical peak flows obtained from the U.S. Geological Survey streamflow gage (station number 06601000). Flood frequency and magnitude were estimated using the PEAKFQ Log-Pearson Type III analysis software. The U.S. Army Corps of Engineers' Hydrologic Engineering Center River Analysis System, version 3.1.3, software was used to simulate the water-surface elevation for flood events. The calibrated model was used to compute streamflow-gage stages and inundation elevations for the discharges corresponding to floods of selected probabilities. Results of the hydrologic and hydraulic analyses indicated that flood inundation elevations are substantially lower than from a previous study.

  11. Development of flood-inundation maps for the Mississippi River in Saint Paul, Minnesota

    USGS Publications Warehouse

    Czuba, Christiana R.; Fallon, James D.; Lewis, Corby R.; Cooper, Diane F.

    2014-01-01

    Digital flood-inundation maps for a 6.3-mile reach of the Mississippi River in Saint Paul, Minnesota, were developed through a multi-agency effort by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and in collaboration with the National Weather Service. The inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the National Weather Service Advanced Hydrologic Prediction Service site at http://water.weather.gov/ahps/inundation.php, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgage at the Mississippi River at Saint Paul (05331000). The National Weather Service forecasted peak-stage information at the streamgage may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the Mississippi River by means of a one-dimensional step-backwater model. The hydraulic model was calibrated using the most recent stage-discharge relation at the Robert Street location (rating curve number 38.0) of the Mississippi River at Saint Paul (streamgage 05331000), as well as an approximate water-surface elevation-discharge relation at the Mississippi River at South Saint Paul (U.S. Army Corps of Engineers streamgage SSPM5). The model also was verified against observed high-water marks from the recent 2011 flood event and the water-surface profile from existing flood insurance studies. The hydraulic model was then used to determine 25 water-surface profiles for flood stages at 1-foot intervals ranging from approximately bankfull stage to greater than the highest recorded stage at streamgage 05331000. The simulated water-surface profiles were then combined with a geographic information system digital elevation model, derived from high-resolution topography

  12. Flood-inundation maps for the Tippecanoe River near Delphi, Indiana

    USGS Publications Warehouse

    Menke, Chad D.; Bunch, Aubrey R.; Kim, Moon H.

    2013-01-01

    Digital flood-inundation maps for an 11-mile reach of the Tippecanoe River that extends from County Road W725N to State Road 18 below Oakdale Dam, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at USGS streamgage 03333050, Tippecanoe River near Delphi, Ind. Current conditions at the USGS streamgages in Indiana may be obtained online at http://waterdata.usgs.gov/in/nwis/current/?type=flow. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, water-surface profiles were simulated for the stream reach by means of a hydraulic one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation at USGS streamgage 03333050, Tippecanoe River near Delphi, Ind., and USGS streamgage 03332605, Tippecanoe River below Oakdale Dam, Ind. The hydraulic model was then used to simulate 13 water-surface profiles for flood stages at 1-foot intervals reference to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the

  13. Flood-inundation maps for the Suncook River in Epsom, Pembroke, Allenstown, and Chichester, New Hampshire

    USGS Publications Warehouse

    Flynn, Robert H.; Johnston, Craig M.; Hays, Laura

    2012-01-01

    Digital flood-inundation maps for a 16.5-mile reach of the Suncook River in Epsom, Pembroke, Allenstown, and Chichester, N.H., from the confluence with the Merrimack River to U.S. Geological Survey (USGS) Suncook River streamgage 01089500 at Depot Road in North Chichester, N.H., were created by the USGS in cooperation with the New Hampshire Department of Homeland Security and Emergency Management. The inundation maps presented in this report depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Suncook River at North Chichester, N.H. (station 01089500). The current conditions at the USGS streamgage may be obtained on the Internet (http://waterdata.usgs.gov/nh/nwis/uv/?site_no=01089500&PARAmeter_cd=00065,00060). The National Weather Service forecasts flood hydrographs at many places that are often collocated with USGS streamgages. Forecasted peak-stage information is available on the Internet at the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) flood-warning system site (http://water.weather.gov/ahps/) and may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. These maps along with real-time stream stage data from the USGS Suncook River streamgage (station 01089500) and forecasted stream stage from the NWS will provide emergency management personnel and residents with information that is critical for flood-response activities, such as evacuations, road closures, disaster declarations, and post-flood recovery. The maps, along with current stream-stage data from the USGS Suncook River streamgage and forecasted stream-stage data from the NWS, can be accessed at the USGS Flood Inundation Mapping Science Web site http://water.usgs.gov/osw/flood_inundation/.

  14. The Upper Mississippi River floodscape: spatial patterns of flood inundation and associated plant community distributions

    USGS Publications Warehouse

    DeJager, Nathan R.; Rohweder, Jason J.; Yin, Yao; Hoy, Erin E.

    2016-01-01

    Questions How is the distribution of different plant communities associated with patterns of flood inundation across a large floodplain landscape? Location Thirty-eight thousand nine hundred and seventy hectare of floodplain, spanning 320 km of the Upper Mississippi River (UMR). Methods High-resolution elevation data (Lidar) and 30 yr of daily river stage data were integrated to produce a ‘floodscape’ map of growing season flood inundation duration. The distributions of 16 different remotely sensed plant communities were quantified along the gradient of flood duration. Results Models fitted to the cumulative frequency of occurrence of different vegetation types as a function of flood duration showed that most types exist along a continuum of flood-related occurrence. The diversity of community types was greatest at high elevations (0–10 d of flooding), where both upland and lowland community types were found, as well as at very low elevations (70–180 d of flooding), where a variety of lowland herbaceous communities were found. Intermediate elevations (20–60 d of flooding) tended to be dominated by floodplain forest and had the lowest diversity of community types. Conclusions Although variation in flood inundation is often considered to be the main driver of spatial patterns in floodplain plant communities, few studies have quantified flood–vegetation relationships at broad scales. Our results can be used to identify targets for restoration of historical hydrological regimes or better anticipate hydro-ecological effects of climate change at broad scales.

  15. Flood-inundation maps for the East Fork White River at Shoals, Indiana

    USGS Publications Warehouse

    Boldt, Justin A.

    2016-05-06

    Digital flood-inundation maps for a 5.9-mile reach of the East Fork White River at Shoals, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the East Fork White River at Shoals, Ind. (USGS station number 03373500). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS AHPS site SHLI3). NWS AHPS forecast peak stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.Flood profiles were computed for the East Fork White River reach by means of a one-dimensional, step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the current stage-discharge relation (USGS rating no. 43.0) at USGS streamgage 03373500, East Fork White River at Shoals, Ind. The calibrated hydraulic model was then used to compute 26 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from approximately bankfull (10 ft) to the highest stage of the current stage-discharge rating curve (35 ft). The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM), derived from light detection and ranging (lidar) data, to delineate the area flooded at each water level. The areal extent of the 24-ft flood-inundation map was

  16. Flood extent maps from satellite imagery, hydrometric data and downstream water surface slope to constrain uncertainty in inundation modelling based on SRTM or LiDAR topography

    NASA Astrophysics Data System (ADS)

    Yan, Kun; Di Baldassarre, Giuliano; Neal, Jeffrey; Solomatine, Dimitri P.

    2013-04-01

    Flood inundation modelling is one of the essential steps in flood risk assessment. However, in many rivers and floodplains the desirable input data are not sufficient or unavailable. A potential opportunity to fill this gap might be offered nowadays by the global remote sensing data, which can be freely (or at low cost) obtained from internet, such as the Shuttle Radar Topography Mission (SRTM). However, it is not clear to what extent modellers can trust or make use of these topographic data. Previous studies have assessed the usefulness of SRTM topography data in supporting flood inundation modelling of one-dimensional (1D) hydraulic model in a medium-large scale river (River Po) considering the major source of uncertainty (parameter and inflow) (e.g. Yan et al., 2012). This study attempts to prove the potential value of SRTM topography in supporting two-dimensional (2D) inundation modelling. The usual practice by modellers is to apply a normal depth (calculated from the energy slope) as the downstream boundary condition. The energy slope is usually unknown and is estimated as the average bed slope under the assumption of uniform flow near the downstream boundary. Being a study involving the attenuation of the flood wave, a steeper energy slope is expected. Thus, the inundation modelling results (e.g. water levels, inundation extent) are affected by this assumption. The sensitivity and the interrelationship of energy slope, roughness coefficients for the prediction of water stage and flood extent are investigated for both high resolution topography (i.e. LiDAR) and global topography (i.e. SRTM) in a river reach of the Dee, in the United Kingdom. Through the comparison of the two models, the performance of the SRTM-based Model in reproducing the food extent and downstream water levels were demonstrated. Reference: Yan, K., Di Baldassarre, G., Solomatine, D.P. (2012). Exploring the potential of SRTM topographic data for flood inundation modelling under uncertainty

  17. Flood-inundation maps for the Susquehanna River near Harrisburg, Pennsylvania, 2013

    USGS Publications Warehouse

    Roland, Mark A.; Underwood, Stacey M.; Thomas, Craig M.; Miller, Jason F.; Pratt, Benjamin A.; Hogan, Laurie G.; Wnek, Patricia A.

    2014-01-01

    A series of 28 digital flood-inundation maps was developed for an approximate 25-mile reach of the Susquehanna River in the vicinity of Harrisburg, Pennsylvania. The study was selected by the U.S. Army Corps of Engineers (USACE) national Silver Jackets program, which supports interagency teams at the state level to coordinate and collaborate on flood-risk management. This study to produce flood-inundation maps was the result of a collaborative effort between the USACE, National Weather Service (NWS), Susquehanna River Basin Commission (SRBC), The Harrisburg Authority, and the U.S. Geological Survey (USGS). These maps are accessible through Web-mapping applications associated with the NWS, SRBC, and USGS. The maps can be used in conjunction with the real-time stage data from the USGS streamgage 01570500, Susquehanna River at Harrisburg, Pa., and NWS flood-stage forecasts to help guide the general public in taking individual safety precautions and will provide local municipal officials with a tool to efficiently manage emergency flood operations and flood mitigation efforts. The maps were developed using the USACE HEC–RAS and HEC–GeoRAS programs to compute water-surface profiles and to delineate estimated flood-inundation areas for selected stream stages. The maps show estimated flood-inundation areas overlaid on high-resolution, georeferenced, aerial photographs of the study area for stream stages at 1-foot intervals between 11 feet and 37 feet (which include NWS flood categories Action, Flood, Moderate, and Major) and the June 24, 1972, peak-of-record flood event at a stage of 33.27 feet at the Susquehanna River at Harrisburg, Pa., streamgage.

  18. Flood-inundation maps for the Scioto River at La Rue, Ohio

    USGS Publications Warehouse

    Whitehead, Matthew

    2015-08-26

    Digital flood-inundation maps for a 3-mile (mi) reach of the Scioto River that extends about 1/2 mi upstream and 1/2 mi downstream of the corporate boundary for La Rue, Ohio, were created by the U.S. Geological Survey (USGS) in cooperation with the Village of La Rue, Marion County Commissioners, Montgomery Township, and Marion County Scioto River Conservancy. The flood-inundation maps show estimates of the areal extent and depth of flooding correspond ing to selected water levels (stages) at the USGS streamgage on the Scioto River at La Rue (station number 03217500). The maps can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_ inundation/ . Near-real-time stages at this streamgage can be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/oh/nwis/uv/?site_no=03217500 or the National Weather Service (NWS) Advanced Hydro - logic Prediction Service at http://water.weather.gov/ahps2/ hydrograph.php?wfo=cle&gage=LARO1 , which also forecasts flood hydrographs at this site.

  19. Flood-inundation maps for the Yellow River at Plymouth, Indiana

    USGS Publications Warehouse

    Menke, Chad D.; Bunch, Aubrey R.; Kim, Moon H.

    2016-11-16

    Digital flood-inundation maps for a 4.9-mile reach of the Yellow River at Plymouth, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 05516500, Yellow River at Plymouth, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=05516500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http:/water.weather.gov/ahps/). The NWS AHPS forecasts flood hydrographs at many sites that are often collocated with USGS streamgages, including the Yellow River at Plymouth, Ind. NWS AHPS-forecast peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood and forecasts of flood hydrographs at this site.For this study, flood profiles were computed for the Yellow River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the current stage-discharge relations at the Yellow River streamgage, in combination with the flood-insurance study for Marshall County (issued in 2011). The calibrated hydraulic model was then used to determine eight water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The 1-percent annual exceedance probability flood profile elevation (flood elevation with recurrence intervals within 100 years) is within

  20. GIS-based Study of Spatiotemporal Behavior of Urban Flood Inundation

    NASA Astrophysics Data System (ADS)

    Abedin, S. J.; Stephen, H.

    2013-12-01

    Drainage infrastructure plays an important role in removing excess water from an urban area. Flooding occurs when the runoff exceeds the capacity of a drainage system. Flooding in urban settings creates hazardous situations by affecting daily life of people, disrupting utility services and damaging properties. It is important to analyze the spatial variation of flooding with time for effective flood hazard mitigation. Geographic Information System (GIS) has gained much interest to perform spatial and temporal analysis of floods. The objective of this research is to study the spatiotemporal behavior of flood inundation resulting from rainfall in an urban catchment. Simplified water budget equation is used where inflow is rainfall, outflow is drainage, and storage is the flood inundation. Typically, outflow is determined by producing a runoff hydrograph for a given rainfall. In this research, we generate a runoff hydrograph using Soil Conservation Service (SCS) Curve Number method in GIS where rainfall data, hydrologic soil group, landuse, and surface friction data are used as inputs. Rainfall duration is divided into five minute intervals and runoff hydrograph for each interval is generated. These individual hydrographs are accumulated to generate a hydrograph for the whole rainfall event. The hydrograph flows are compared to the hydraulic capacity of drainage inlet to estimate inundation. This approach is tested with a known flood in Thomas and Mack parking lot of the University of Nevada Las Vegas. This flood resulted from a 25-year rainfall event on September 11, 2012 and damaged many vehicles and impacted university operations. We use Light Detection And Ranging (LiDAR) data to delineate the urban catchment of the parking lot with the drainage inlet as pour point. This is a curb-opening drainage inlet that is 116 in. long and 4.5 in. high. Assuming the drainage inlet to be in sump condition, the hydraulic capacity of the inlet is estimated to be 0.18 m3/sec. We

  1. A Dynamic Flood Inundation Model Framework to Assess Coastal Flood Risk in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Bilskie, M. V.; Hagen, S. C.; Passeri, D. L.; Alizad, K.; Medeiros, S. C.; Irish, J. L.

    2015-12-01

    Coastal regions around the world are susceptible to a variety of natural disasters causing extreme inundation. It is anticipated that the vulnerability of coastal cities will increase due to the effects of climate change, and in particular sea level rise (SLR). A novel framework was developed to generate a suite of physics-based storm surge models that include projections of coastal floodplain dynamics under climate change scenarios: shoreline erosion/accretion, dune morphology, salt marsh migration, and population dynamics. First, the storm surge inundation model was extensively validated for present day conditions with respect to astronomic tides and hindcasts of Hurricane Ivan (2004), Dennis (2005), Katrina (2005), and Isaac (2012). The model was then modified to characterize the future outlook of the landscape for four climate change scenarios for the year 2100 (B1, B2, A1B, and A2), and each climate change scenario was linked to a sea level rise of 0.2 m, 0.5 m, 1.2 m, and 2.0 m. The adapted model was then used to simulate hurricane storm surge conditions for each climate scenario using a variety of tropical cyclones as the forcing mechanism. The collection of results shows the intensification of inundation area and the vulnerability of the coast to potential future climate conditions. The methodology developed herein to assess coastal flooding under climate change can be performed across any coastal region worldwide, and results provide awareness of regions vulnerable to extreme flooding in the future. Note: The main theme behind this work is to appear in a future Earth's Future publication. Bilskie, M. V., S. C. Hagen, S. C. Medeiros, and D. L. Passeri (2014), Dynamics of sea level rise and coastal flooding on a changing landscape, Geophysical Research Letters, 41(3), 927-934. Parris, A., et al. (2012), Global Sea Level Rise Scenarios for the United States National Climate AssessmentRep., 37 pp. Passeri, D. L., S. C. Hagen, M. V. Bilskie, and S. C. Medeiros

  2. Flood-inundation maps for the North Branch Elkhart River at Cosperville, Indiana

    USGS Publications Warehouse

    Kim, Moon H.; Johnson, Esther M.

    2014-01-01

    Digital flood-inundation maps for a reach of the North Branch Elkhart River at Cosperville, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers, Detroit District. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage 04100222, North Branch Elkhart River at Cosperville, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=04100222. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http:/water.weather.gov/ahps/). The NWS AHPS forecasts flood hydrographs at many places that are often colocated with USGS streamgages, including the North Branch Elkhart River at Cosperville, Ind. NWS AHPS-forecast peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the North Branch Elkhart River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 04100222, North Branch Elkhart River at Cosperville, Ind., and preliminary high-water marks from the flood of March 1982. The calibrated hydraulic model was then used to determine four water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a geographic information system (GIS

  3. Social media as an information source for rapid flood inundation mapping

    NASA Astrophysics Data System (ADS)

    Fohringer, J.; Dransch, D.; Kreibich, H.; Schröter, K.

    2015-07-01

    During and shortly after a disaster data about the hazard and its consequences are scarce and not readily available. Information provided by eye-witnesses via social media are a valuable information source, which should be explored in a more effective way. This research proposes a methodology that leverages social media content to support rapid inundation mapping, including inundation extent and water depth in case of floods. The novelty of this approach is the utilization of quantitative data that are derived from photos from eye-witnesses extracted from social media posts and its integration with established data. Due to the rapid availability of these posts compared to traditional data sources such as remote sensing data, for example areas affected by a flood can be determined quickly. The challenge is to filter the large number of posts to a manageable amount of potentially useful inundation-related information as well as their timely interpretation and integration in mapping procedures. To support rapid inundation mapping we propose a methodology and develop a tool to filter geo-located posts from social media services which include links to photos. This spatial distributed contextualized in-situ information is further explored manually. In an application case study during the June 2013 flood in central Europe we evaluate the utilization of this approach to infer spatial flood patterns and inundation depths in the city of Dresden.

  4. Social media as an information source for rapid flood inundation mapping

    NASA Astrophysics Data System (ADS)

    Fohringer, J.; Dransch, D.; Kreibich, H.; Schröter, K.

    2015-12-01

    During and shortly after a disaster, data about the hazard and its consequences are scarce and not readily available. Information provided by eyewitnesses via social media is a valuable information source, which should be explored in a~more effective way. This research proposes a methodology that leverages social media content to support rapid inundation mapping, including inundation extent and water depth in the case of floods. The novelty of this approach is the utilization of quantitative data that are derived from photos from eyewitnesses extracted from social media posts and their integration with established data. Due to the rapid availability of these posts compared to traditional data sources such as remote sensing data, areas affected by a flood, for example, can be determined quickly. The challenge is to filter the large number of posts to a manageable amount of potentially useful inundation-related information, as well as to interpret and integrate the posts into mapping procedures in a timely manner. To support rapid inundation mapping we propose a methodology and develop "PostDistiller", a tool to filter geolocated posts from social media services which include links to photos. This spatial distributed contextualized in situ information is further explored manually. In an application case study during the June 2013 flood in central Europe we evaluate the utilization of this approach to infer spatial flood patterns and inundation depths in the city of Dresden.

  5. Flood-inundation maps for the East Fork White River near Bedford, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2014-01-01

    Digital flood-inundation maps for an 1.8-mile reach of the East Fork White River near Bedford, Indiana (Ind.) were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selectedwater levels (stages) at USGS streamgage 03371500, East Fork White River near Bedford, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=03371500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages, including the East Fork White River near Bedford, Ind. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the East Fork White River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 03371500, East Fork White River near Bedford, Ind., and documented high-water marks from the flood of June 2008. The calibrated hydraulic model was then used to determine 20 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM, derived from

  6. Flood-inundation maps for the Saddle River from Rochelle Park to Lodi, New Jersey, 2012

    USGS Publications Warehouse

    Hoppe, Heidi L.; Watson, Kara M.

    2012-01-01

    Digital flood-inundation maps for a 2.75-mile reach of the Saddle River from 0.2 mile upstream from the Interstate 80 bridge in Rochelle Park to 1.5 miles downstream from the U.S. Route 46 bridge in Lodi, New Jersey, were created by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Saddle River at Lodi, New Jersey (station 01391500). Current conditions for estimating near real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/nwis/uv?site_no=01391500. The National Weather Service (NWS) forecasts flood hydrographs at many places that are often collocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relations at the Saddle River at Lodi, New Jersey streamgage and documented high-water marks from recent floods. The hydraulic model was then used to determine 11 water-surface profiles for flood stages at the Saddle River streamgage at 1-ft intervals referenced to the streamgage datum, North American Vertical Datum of 1988 (NAVD 88), and ranging from bankfull, 0.5 ft below NWS Action Stage, to the extent of the stage-discharge rating, which is approximately 1 ft higher than the highest recorded water level at the streamgage. Action Stage is the stage which when reached by a rising stream the NWS or a partner needs to take some type of mitigation action in

  7. Flood-inundation maps for the Iroquois River at Rensselaer, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.; Bunch, Aubrey R.

    2013-01-01

    Digital flood-inundation maps for a 4.0-mile reach of the Iroquois River at Rensselaer, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage 05522500, Iroquois River at Rensselaer, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at (http://waterdata.usgs.gov/in/nwis/uv?site_no=05522500). In addition, the National Weather Service (NWS) forecasts flood hydrographs at the Rensselaer streamgage. That forecasted peak-stage information, also available on the Internet (http://water.weather.gov/ahps/), may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the Iroquois River reach by means of a one-dimensional step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the most current (June 27, 2012) stage-discharge relations at USGS streamgage 05522500, Iroquois River at Rensselaer, Ind., and high-water marks from the flood of July 2003. The calibrated hydraulic model was then used to determine nine water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding

  8. Flood-inundation maps for the St. Marys River at Fort Wayne, Indiana

    USGS Publications Warehouse

    Menke, Chad D.; Kim, Moon H.; Fowler, Kathleen K.

    2012-01-01

    Digital flood-inundation maps for a 9-mile reach of the St. Marys River that extends from South Anthony Boulevard to Main Street at Fort Wayne, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Fort Wayne. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at the USGS streamgage 04182000 St. Marys River near Fort Wayne, Ind. Current conditions at the USGS streamgages in Indiana may be obtained from the National Water Information System: Web Interface. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system. The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, water-surface profiles were simulated for the stream reach by means of a hydraulic one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relation at the USGS streamgage 04182000 St. Marys River near Fort Wayne, Ind. The hydraulic model was then used to simulate 11 water-surface profiles for flood stages at 1-ft intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. A flood inundation map was generated for each water-surface profile stage (11 maps in all) so that for any given flood stage users will be

  9. Cascading uncertainties in flood inundation models to uncertain estimates of damage and loss

    NASA Astrophysics Data System (ADS)

    Fewtrell, Timothy; Michel, Gero; Ntelekos, Alexandros; Bates, Paul

    2010-05-01

    The complexity of flood processes, particularly in urban environments, and the difficulties of collecting data during flood events, presents significant and particular challenges to modellers, especially when considering large geographic areas. As a result, the modelling process incorporates a number of areas of uncertainty during model conceptualisation, construction and evaluation. There is a wealth of literature detailing the relative magnitudes of uncertainties in numerical flood input data (e.g. boundary conditions, model resolution and friction specification) for a wide variety of flood inundation scenarios (e.g. fluvial inundation and surface water flooding). Indeed, recent UK funded projects (e.g. FREE) have explicitly examined the effect of cascading uncertainties in ensembles of GCM output through rainfall-runoff models to hydraulic flood inundation models. However, there has been little work examining the effect of cascading uncertainties in flood hazard ensembles to estimates of damage and loss, the quantity of interest when assessing flood risk. Furthermore, vulnerability is possibly the largest area of uncertainty for (re-)insurers as in-depth and reliable of knowledge of portfolios is difficult to obtain. Insurance industry CAT models attempt to represent a credible range of flood events over large geographic areas and as such examining all sources of uncertainty is not computationally tractable. However, the insurance industry is also marked by a trend towards an increasing need to understand the variability in flood loss estimates derived from these CAT models. In order to assess the relative importance of uncertainties in flood inundation models and depth/damage curves, hypothetical 1-in-100 and 1-in-200 year return period flood events are propagated through the Greenwich embayment in London, UK. Errors resulting from topographic smoothing, friction specification and inflow boundary conditions are cascaded to form an ensemble of flood levels and

  10. Big Blue River at Shelbyville, Indiana flood-inundation geospatial datasets​

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2017-01-01

    Digital flood-inundation maps for a 4.1-mile reach of the Big Blue River at Shelbyville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Big Blue River at Shelbyville, Indiana (station number 03361500). Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (SBVI3).Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at the Big Blue River at Shelbyville, Ind., streamgage. The calibrated hydraulic model was then used to compute 12 water-surface profiles for flood stages referenced to the streamgage datum and ranging from 9.0 feet, or near bankfull, to 19.4 feet, the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar] data having a 0.98-foot vertical accuracy and 4.9-foot horizontal resolution) to delineate the area flooded at each water level.The attached files on this landing page are the inputs and outputs for the U.S. Army Corps of Engineers HEC-RAS model used to create flood-inundation maps for the referenced report, https://doi.org/10.3133/sir20165166. There are two child items that contain final geospatial datasets for the flood-inundation maps

  11. Flood-inundation maps for the DuPage River from Plainfield to Shorewood, Illinois, 2013

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Sharpe, Jennifer B.

    2013-01-01

    Digital flood-inundation maps for a 15.5-mi reach of the DuPage River from Plainfield to Shorewood, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the Will County Stormwater Management Planning Committee. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights or stages) at the USGS streamgage at DuPage River at Shorewood, Illinois (sta. no. 05540500). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05540500. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. The NWS-forecasted peak-stage information, also shown on the DuPage River at Shorewood inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was then used to determine nine water-surface profiles for flood stages at 1-ft intervals referenced to the streamgage datum and ranging from NWS Action stage of 6 ft to the historic crest of 14.0 ft. The simulated water-surface profiles were then combined with a Digital Elevation Model (DEM) (derived from Light Detection And Ranging (LiDAR) data) by using a Geographic Information System (GIS) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage height from USGS streamgages and forecasted stream stages from the NWS, provide emergency

  12. Flood-inundation maps for the White River at Spencer, Indiana

    USGS Publications Warehouse

    Nystrom, Elizabeth A.

    2013-01-01

    Digital flood-inundation maps for a 5.3-mile reach of the White River at Spencer, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage White River at Spencer, Indiana (sta. no. 03357000). Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/. National Weather Service (NWS)-forecasted peak-stage inforamation may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation at the White River at Spencer, Indiana, streamgage and documented high-water marks from the flood of June 8, 2008. The hydraulic model was then used to compute 20 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from the NWS action stage (9 feet) to the highest rated stage (28 feet) at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The availability of these maps along with Internet information regarding the current stage from the Spencer USGS streamgage and forecasted stream stages from the NWS will provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road

  13. The Role of Satellite Derived Data for Flood Inundation Mapping Using GIS

    NASA Astrophysics Data System (ADS)

    Kuldeep; Garg, P. K.

    2015-08-01

    River flooding in planar region is the most significant type of natural disaster that modern society is exposed to, affecting several thousand people each year. Recent flood events, population growth concerns have augmented the call for global methods which utilise both spatial and temporal dynamics. Object oriented classification approaches based on the segmentation are being adopted for extraction of variety of thematic information from high resolution satellite images. Generation of landuse/cover map which is one of the important inputs to the model for flood inundation mapping and for accurate assessment of damage due to floods requires advanced methods of image classification. The Cartosat-1 (PAN) satellite data has been fused with the LISS-III (MX) to obtain the color image containing both high spatial and spectral information. The fused image is further classified to obtain the landuse/cover map using object based classification approach. The classification results are assessed by calculating overall accuracy and kappa index with the help of error matrix. The overall accuracy of classification has been obtained 86.00% with kappa index 0.7815. The objective of this study is to develop a GIS aided model for flood inundation mapping of the surrounding of the part of the Yamuna River which flows through the two districts i.e. Yamuna Nagar and Saharanpur in states of Haryana and Uttar Pradesh respectively. The model considers the five parameters viz. topography (slope, elevation) information, landuse/cover, time series data of surface water elevation, river geometry and location of the rain gauge station. Field survey has been conducted to validate the positional accuracy of the DEM and landuse/cover classes using DGPS. A final flood inundation map has been prepared by combining all weighted layers with in GIS environment. The flood inundation maps can further be used for quick identification of areas of potential flood hazard to minimize the flood losses.

  14. Fifty-year flood-inundation maps for La Ceiba, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, M.C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of La Ceiba that would be inundated by a 50-year-flood of Rio Cangrejal. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of La Ceiba as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood discharge of 1,030 cubic meters per second on Rio Cangrejal at La Ceiba were computed using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. There are no nearby long-term stream-gaging stations on Rio Cangrejal; therefore, the 50-year-flood discharge for Rio Cangrejal at La Ceiba was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The drainage area and mean annual precipitation estimated for Rio Cangrejal at La Ceiba are 498 square kilometers and 2,306 millimeters, respectively.

  15. Fifty-year flood-inundation maps for El Progreso, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of El Progreso that would be inundated by a 50-year flood of Rio Pelo. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of El Progreso as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood on Rio Pelo at El Progreso were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. There are no nearby long-term stream-gaging stations on Rio Pelo; therefore, the 50-year-flood discharge for Rio Pelo, 235 cubic meters per second, was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The drainage area and mean annual precipitation estimated for Rio Pelo at El Progreso are 47.4 square kilometers and 1,920 millimeters, respectively.

  16. Flood-inundation maps for the Mississinewa River at Marion, Indiana, 2013

    USGS Publications Warehouse

    Coon, William F.

    2014-01-01

    Digital flood-inundation maps for a 9-mile (mi) reach of the Mississinewa River from 0.75 mi upstream from the Pennsylvania Street bridge in Marion, Indiana, to 0.2 mi downstream from State Route 15 were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Mississinewa River at Marion (station number 03326500). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site. Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the current stage-discharge relation at the Mississinewa River streamgage, in combination with water-surface profiles from historic floods and from the current (2002) flood-insurance study for Grant County, Indiana. The hydraulic model was then used to compute seven water-surface profiles for flood stages at 1-fo (ft) intervals referenced to the streamgage datum and ranging from 10 ft, which is near bankfull, to 16 ft, which is between the water levels associated with the estimated 10- and 2-percent annual exceedance probability floods (floods with recurrence interval between 10 and 50 years) and equals the “major flood stage” as defined by the NWS. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging (lidar) data having a 0.98 ft vertical accuracy and 4.9 ft

  17. Building Flood Inundation Warning Systems by Using Serial-Propagated Neural Networks

    NASA Astrophysics Data System (ADS)

    Chang, L.; Zhunag, Z.; Shen, H.; Wang, Y.; Yang, C.

    2010-12-01

    Floods are one of the most dangerous natural hazards and the greatest challenge for hydrologists due to their mass force and short response time. Taiwan is located in the northwestern Pacific Ocean where the activities of the subtropical jet stream are frequent. In the last century, there were about 360 typhoons, an average of 3.6 annually that hit the Taiwan Island. Typhoons are usually coupled with huge amounts of rain from June to October, and disastrous flooding results from the intense bursts of rainfall. The rivers in this island are short and steep, and their flows are relatively quick with floods lasting only for a few hours and usually less than one day. The large flood peaks with fast-rising limbs would unavoidably cause serious disasters. Last year Typhoon Morakot struck south Taiwan with stunning rainfall on August 8th with the highest precipitation reaching 1166 mm/day. It caused 665 deaths, 34 missing, many civilian injuries, and even a small village was buried under the following debris flow. Estimation of flood depths and extents may provide the disaster information for dealing with contingency and alleviating risk and loss of life and property. We proposed serial-propagated back-propagation neural networks (BPNNs) to forecast one to six-hour-ahead flood inundation depths. The practicability and effectiveness of the proposed approach is tested on several inundation-prone spots of three counties in Taiwan. The results show that the proposed serial-propagated BPNNs can adequately provide one to six-hour-ahead flood inundation depths that well match the simulation flood inundation results.

  18. Flood-inundation maps for the East Fork White River at Columbus, Indiana

    USGS Publications Warehouse

    Lombard, Pamela J.

    2013-01-01

    Digital flood-inundation maps for a 5.4-mile reach of the East Fork White River at Columbus, Indiana, from where the Flatrock and Driftwood Rivers combine to make up East Fork White River to just upstream of the confluence of Clifty Creek with the East Fork White River, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at USGS streamgage 03364000, East Fork White River at Columbus, Indiana. Current conditions at the USGS streamgage may be obtained on the Internet from the USGS National Water Information System (http://waterdata.usgs.gov/in/nwis/uv/?site_no=03364000&agency_cd=USGS&). The National Weather Service (NWS) forecasts flood hydrographs for the East Fork White River at Columbus, Indiana at their Advanced Hydrologic Prediction Service (AHPS) flood warning system Website (http://water.weather.gov/ahps/), that may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at USGS streamgage 03364000, East Fork White River at Columbus, Indiana. The calibrated hydraulic model was then used to determine 15 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data), having a 0.37-ft vertical accuracy and a 1.02 ft

  19. Flood-inundation maps for the Wabash River at Terre Haute, Indiana

    USGS Publications Warehouse

    Lombard, Pamela J.

    2013-01-01

    Digital flood-inundation maps for a 6.3-mi reach of the Wabash River from 0.1 mi downstream of the Interstate 70 bridge to 1.1 miles upstream of the Route 63 bridge, Terre Haute, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to select water levels (stages) at the USGS streamgage Wabash River at Terre Haute (station number 03341500). Current conditions at the USGS streamgage may be obtained on the Internet from the USGS National Water Information System (http://waterdata.usgs.gov/in/nwis/uv/?site_no=03341500&agency_cd=USGS&p"). In addition, the same data are provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps//). Within this system, the NWS forecasts flood hydrographs for the Wabash River at Terre Haute that may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relation at the Wabash River at the Terre Haute streamgage. The hydraulic model was then used to compute 22 water-surface profiles for flood stages at 1-ft interval referenced to the streamgage datum and ranging from bank-full to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data having a 0.37-ft vertical accuracy and a 1.02-ft horizontal accuracy) to delineate the area flooded at each water

  20. Flood-inundation maps for the White River at Newberry, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.; Kim, Moon H.; Menke, Chad D.

    2012-01-01

    Digital flood-inundation maps for a 4.9-mile reach of the White River at Newberry, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at USGS streamgage 03360500, White River at Newberry, Ind. Current conditions at the USGS streamgage may be obtained on the Internet (http://waterdata.usgs.gov/in/nwis/uv?site_no=03360500). The National Weather Service (NWS) forecasts flood hydrographs at the Newberry streamgage. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the White River reach by means of a one-dimensional step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the most current stage-discharge relation at USGS streamgage 03360500, White River at Newberry, Ind., and high-water marks from a flood in June 2008.The calibrated hydraulic model was then used to determine 22 water-surface profiles for flood stages a1-foot intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage at Newberry, Ind., and forecasted stream stages from the NWS, provide emergency management personnel and

  1. Flood-inundation maps for the Driftwood River and Sugar Creek near Edinburgh, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.; Kim, Moon H.; Menke, Chad D.

    2012-01-01

    Digital flood-inundation maps for an 11.2 mile reach of the Driftwood River and a 5.2 mile reach of Sugar Creek, both near Edinburgh, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Camp Atterbury Joint Maneuver Training Center, Edinburgh, Indiana. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at the USGS streamgage 03363000 Driftwood River near Edinburgh, Ind. Current conditions at the USGS streamgage in Indiana may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/current/?type=flow. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system at http://water.weather.gov/ahps/. The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relations at the USGS streamgage 03363000 Driftwood River near Edinburgh, Ind. The hydraulic model was then used to determine elevations throughout the study reaches for nine water-surface profiles for flood stages at 1-ft intervals referenced to the streamgage datum and ranging from bankfull to nearly the highest recorded water level at the USGS streamgage 03363000 Driftwood River near Edinburgh, Ind. The simulated water-surface profiles were then combined with a geospatial digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to

  2. Flood-inundation maps for White River at Petersburg, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2015-08-20

    The availability of these maps along with Internet information regarding current stage from the USGS streamgage at White River at Petersburg, Ind., and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post-flood recovery efforts.

  3. Flood-inundation maps for the Elkhart River at Goshen, Indiana

    USGS Publications Warehouse

    Strauch, Kellan R.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Indiana Office of Community and Rural Affairs, created digital flood-inundation maps for an 8.3-mile reach of the Elkhart River at Goshen, Indiana, extending from downstream of the Goshen Dam to downstream from County Road 17. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to nine selected water levels (stages) at the USGS streamgage at Elkhart River at Goshen (station number 04100500). Current conditions for the USGS streamgages in Indiana may be obtained on the Internet at http://waterdata.usgs.gov/. In addition, stream stage data have been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relation at the Elkhart River at Goshen streamgage. The hydraulic model was then used to compute nine water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from approximately bankfull (5 ft) to greater than the highest recorded water level (13 ft). The simulated water-surface profiles were then combined with a geographic information system (GIS) digital-elevation model (DEM), derived from Light Detection and Ranging (LiDAR) data having a 0.37-ft vertical accuracy and 3.9-ft horizontal resolution in order to delineate the area flooded at each

  4. Flood Inundation Modelling Under Uncertainty Using Globally and Freely Available Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Yan, K.; Di Baldassarre, G.; Giustarini, L.; Solomatine, D. P.

    2012-04-01

    The extreme consequences of recent catastrophic events have highlighted that flood risk prevention still needs to be improved to reduce human losses and economic damages, which have considerably increased worldwide in recent years. Flood risk management and long term floodplain planning are vital for living with floods, which is the currently proposed approach to cope with floods. To support the decision making processes, a significant issue is the availability of data to build appropriate and reliable models, from which the needed information could be obtained. The desirable data for model building, calibration and validation are often not sufficient or available. A unique opportunity is offered nowadays by globally available data which can be freely downloaded from internet. This might open new opportunities for filling the gap between available and needed data, in order to build reliable models and potentially lead to the development of global inundation models to produce floodplain maps for the entire globe. However, there remains the question of what is the real potential of those global remote sensing data, characterized by different accuracy, for global inundation monitoring and how to integrate them with inundation models. This research aims at contributing to understand whether the current globally and freely available remote sensing data (e.g. SRTM, SAR) can be actually used to appropriately support inundation modelling. In this study, the SRTM DEM is used for hydraulic model building, while ENVISAT-ASAR satellite imagery is used for model validation. To test the usefulness of these globally and freely available data, a model based on the high resolution LiDAR DEM and ground data (high water marks) is used as benchmark. The work is carried out on a data-rich test site: the River Alzette in the north of Luxembourg City. Uncertainties are estimated for both SRTM and LiDAR based models. Probabilistic flood inundation maps are produced under the framework of

  5. Flood-inundation maps for the St. Joseph River at Elkhart, Indiana

    USGS Publications Warehouse

    Martin, Zachary W.

    2017-02-01

    Digital flood-inundation maps for a 6.6-mile reach of the St. Joseph River at Elkhart, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 04101000, St. Joseph River at Elkhart, Ind. Real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at https://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS site EKMI3).Flood profiles were computed for the stream reach by means of a one-dimensional, step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 04101000, St. Joseph River at Elkhart, Ind., and the documented high-water marks from the flood of March 1982. The hydraulic model was then used to compute six water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 23.0 ft (the NWS “action stage”) to 28.0 ft, which is the highest stage interval of the current USGS stage-discharge rating curve and 1 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar] data having a 0.49-ft root mean squared error and 4.9-ft horizontal resolution, resampled to a 10-ft grid) to delineate the area flooded at each stage.The availability of these maps, along with Internet information

  6. A 2D simulation model for urban flood management

    NASA Astrophysics Data System (ADS)

    Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo

    2014-05-01

    The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and

  7. Flood inundation maps for the Wabash River at New Harmony, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2016-10-11

    Digital flood-inundation maps for a 3.68-mile reach of the Wabash River extending 1.77 miles upstream and 1.91 miles downstream from streamgage 03378500 at New Harmony, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Wabash River at New Harmony, Ind. (station 03378500). Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NHRI3).Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at the Wabash River at New Harmony, Ind., streamgage and the documented high-water marks from the flood of April 27–28, 2013. The calibrated hydraulic model was then used to compute 17 water-surface profiles for flood stages at approximately 1-foot intervals referenced to the streamgage datum and ranging from 10.0 feet, or near bankfull, to 25.4 feet, the highest stage of the stage-discharge rating curve used in the model. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging (lidar) data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) to delineate the area flooded at each water level.The availability of these maps along with Internet information regarding current stage from the USGS streamgage at Wabash River at New

  8. Flood inundation extent and depth in selected areas of Louisiana, Texas, and Mississippi in March 2016

    USGS Publications Warehouse

    Heal, Elizabeth; Breaker, Brian

    2016-01-01

    Heavy rainfall occurred across Louisiana, Texas, Arkansas, and Mississippi in March 2016 as a result of a slow-moving southward dip in the jetstream, funneling tropical moisture into parts of the Gulf Coastal States and the Mississippi River Valley. The storm caused major flooding in the northwestern and southeastern parts of Louisiana and in eastern Texas. Flooding also occurred in the Mississippi River Valley in Arkansas and Mississippi. Over 26 inches of rain were reported near Monroe, Louisiana over the duration of the storm event. In March 2016, U.S. Geological Survey (USGS) personnel made over 490 streamflow measurements at over 375 locations in Louisiana, Texas, Arkansas, and Mississippi. Many of those streamflow measurements were made for verifying the accuracy of stage-streamflow relations at gaging stations operated by the USGS. Peak streamflows were the highest on record at 14 locations, and streamflows at 29 locations ranked in the top five for the period of record at U.S. Geological streamflow-gaging stations analyzed for this report. Following the storm event, USGS personnel documented 451 high-water marks in Louisiana and on the western side of the Sabine River in Texas. Many of these high-water marks were used to create 19 flood-inundation maps for selected areas of Louisiana and Texas that experienced flooding in March 2016.This data release contains the actual flood-depth measurements made in 13 selected river basins of Louisiana, Texas, and Mississippi during March 2016. The file types contained in this data release are shape files, metadata, and images created by mapping software. Measurements were made in these 13 basins to document flood depth and assist in the estimation of flood-inundation area. The flood-inundation maps created from these measurements can be found in Breaker and others (2016).

  9. Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014

    USGS Publications Warehouse

    Peters, Arin J.; Studley, Seth E.

    2016-01-25

    Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The

  10. Flood-inundation maps for Lake Champlain in Vermont and in northern Clinton County, New York

    USGS Publications Warehouse

    Flynn, Robert H.; Hayes, Laura

    2016-06-30

    Digital flood-inundation maps for an approximately100-mile length of Lake Champlain in Addison, Chittenden, Franklin, and Grand Isle Counties in Vermont and northern Clinton County in New York were created by the U.S. Geological Survey (USGS) in cooperation with the International Joint Commission (IJC). The flood-inundationmaps, which can be accessed through the International Joint Commission (IJC) Web site at http://www.ijc.org/en_/, depict estimates of the areal extent flooding correspondingto selected water levels (stages) at the USGS lake gage on the Richelieu River (Lake Champlain) at Rouses Point, N.Y. (station number 04295000). In this study, wind and seiche effects (standing oscillating wave with a long wavelength) were not taken into account and the flood-inundation mapsreflect 11 stages (elevations) for Lake Champlain that are static for the study length of the lake. Near-real-time stages at this lake gage, and others on Lake Champlain, may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at the Richelieu River (Lake Champlain) at Rouses Point.Static flood boundary extents were determined for LakeChamplain in Addison, Chittenden, Franklin, and Grand Isle Counties in Vermont and northern Clinton County in New York using recently acquired (2013–2014) lidar (light detection and ranging) and may be referenced to any of the five USGS lake gages on Lake Champlain. Of these five lakgages, USGS lake gage 04295000, Richelieu River (Lake Champlain) at Rouses Point, N.Y., is the only USGS lake gage that is also a National Weather Service prediction location. Flood boundary extents for the Lake Champlain static flood-inundation map corresponding to the May 201 flood(103.2 feet [ft], National Geodetic Vertical Datum [NGVD] 29) were evaluated by comparing these boundary

  11. Flood Inundation Mapping in the Logone Floodplain from Multi Temporal Landsat ETM+Imagery

    NASA Technical Reports Server (NTRS)

    Jung, Hahn Chul; Alsdorf, Douglas E.; Moritz, Mark; Lee, Hyongki; Vassolo, Sara

    2011-01-01

    Yearly flooding in the Logone floodplain makes an impact on agricultural, pastoral, and fishery systems in the Lake Chad Basin. Since the flooding extent and depth are highly variable, flood inundation mapping helps us make better use of water resources and prevent flood hazards in the Logone floodplain. The flood maps are generated from 33 multi temporal Landsat Enhanced Thematic Mapper Plus (ETM+) during three years 2006 to 2008. Flooded area is classified using a short-wave infrared band whereas open water is classified by Iterative Self-organizing Data Analysis (ISODATA) clustering. The maximum flooding extent in the study area increases up to approximately 5.8K km2 in late October 2008. The study also provides strong correlation of the flooding extents with water height variations in both the floodplain and the river based on a second polynomial regression model. The water heights are from ENIVSAT altimetry in the floodplain and gauge measurements in the river. Coefficients of determination between flooding extents and water height variations are greater than 0.91 with 4 to 36 days in phase lag. Floodwater drains back to the river and to the northeast during the recession period in December and January. The study supports understanding of the Logone floodplain dynamics in detail of spatial pattern and size of the flooding extent and assists the flood monitoring and prediction systems in the catchment.

  12. Flood inundation maps for the Wabash and Eel Rivers at Logansport, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2014-01-01

    Digital flood-inundation maps for an 8.3-mile reach of the Wabash River and a 7.6-mile reach of the Eel River at Logansport, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage Wabash River at Logansport, Ind. (sta. no. 03329000) and USGS streamgage Eel River near Logansport, Ind. (sta. no. 03328500). Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system http:/water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgages 03329000, Wabash River at Logansport, Ind., and 03328500, Eel River near Logansport, Ind. The calibrated hydraulic model was then used to determine five water-surface profiles for flood stage at 1-foot intervals referenced to the Wabash River streamgage datum, and four water-surface profiles for flood stages at 1-foot intervals referenced to the Eel River streamgage datum. The stages range from bankfull to approximately the highest

  13. Fifty-Year Flood-Inundation Maps for Santa Rosa de Aguan, Honduras

    USGS Publications Warehouse

    Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the coastal municipality of Santa Rosa de Aguan that are prone to oceanic storm-surge flooding and wave action. The 50-year flood on the Rio Aguan (4,270 cubic meters per second), would inundate most of the area surveyed for this municipality and beyond. Therefore a detailed numerical hydraulic model was not developed for this municipality as it was for the others. The 50-year storm surge would likely produce higher water levels than the 50-year flood on the river during normal astronomical tides. The elevation of the 50-year storm surge was estimated to be 4.35 meters above normal sea level, based on hurricane probabilities and published storm-surge elevations associated with various hurricane categories. Flood-inundation maps, including areas of wave-action hazard and a color-shaded elevation map, were created from the available data and the estimated 50-year storm tide. Geographic Information System (GIS) coverages of the hazard areas are available on a computer in the municipality of Santa Rosa de Aguan as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Data Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the maps in much more detail than is possible using the maps in this report.

  14. Surviving a flood: effects of inundation period, temperature and embryonic development stage in locust eggs.

    PubMed

    Woodman, J D

    2015-08-01

    The Australian plague locust, Chortoicetes terminifera (Walker), is an important agricultural pest and oviposits into compacted soil across vast semi-arid and arid regions prone to irregular heavy summer rainfall. This study aimed to quantify the effects of flooding (control, 7, 14, 21, 28 and 35 days) at different temperatures (15, 20 and 25°C) and embryonic development stages (25 and 75%) on egg viability, hatchling nymph body mass and survival to second-instar. Egg viability after flooding was dependent on temperature and flood duration. Eggs inundated at 15°C showed ≥53.5% survival regardless of flood duration and development stage compared with ≤29.6% for eggs at 25°C for ≥21 days early in development and ≥14 days late in development. Hatchling nymphs did not differ in body mass relative to temperature or flood duration, but weighed more from eggs inundated early in development rather than late. Survival to second-instar was ≤55.1% at 15 and 20°C when eggs were flooded for ≥28 days late in development, ≤35.6% at 25°C when flooded for ≥28 days early in development, and zero when flooded for ≥21 days late in development. These results suggest that prolonged flooding in summer and early autumn may cause very high egg mortality and first-instar nymph mortality of any survivors, but is likely to only ever affect a small proportion of the metapopulation. More common flash flooding for ≤14 days is unlikely to cause high mortality and have any direct effect on distribution and abundance.

  15. Calibration of a flood inundation model using a SAR image: influence of acquisition time

    NASA Astrophysics Data System (ADS)

    Van Wesemael, Alexandra; Gobeyn, Sacha; Neal, Jeffrey; Lievens, Hans; Van Eerdenbrugh, Katrien; De Vleeschouwer, Niels; Schumann, Guy; Vernieuwe, Hilde; Di Baldassarre, Giuliano; De Baets, Bernard; Bates, Paul; Verhoest, Niko

    2016-04-01

    Flood risk management has always been in a search for effective prediction approaches. As such, the calibration of flood inundation models is continuously improved. In practice, this calibration process consists of finding the optimal roughness parameters, both channel and floodplain Manning coefficients, since these values considerably influence the flood extent in a catchment. In addition, Synthetic Aperture Radar (SAR) images have been proven to be a very useful tool in calibrating the flood extent. These images can distinguish between wet (flooded) and dry (non-flooded) pixels through the intensity of backscattered radio waves. To this date, however, satellite overpass often occurs only once during a flood event. Therefore, this study is specifically concerned with the effect of the timing of the SAR data acquisition on calibration results. In order to model the flood extent, the raster-based inundation model, LISFLOOD-FP, is used together with a high resolution synthetic aperture radar image (ERS-2 SAR) of a flood event of the river Dee, Wales, in December 2006. As only one satellite image of the considered case study is available, a synthetic framework is implemented in order to generate a time series of SAR observations. These synthetic observations are then used to calibrate the model at different time instants. In doing so, the sensitivity of the model output to the channel and floodplain Manning coefficients is studied through time. As results are examined, these suggest that there is a clear difference in the spatial variability to which water is held within the floodplain. Furthermore, these differences seem to be variable through time. Calibration by means of satellite flood observations obtained from the rising or receding limb, would generally lead to more reliable results rather than near peak flow observations.

  16. Fifty-year flood-inundation maps for La Lima, Honduras

    USGS Publications Warehouse

    Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of La Lima that would be inundated by Rio Chamelecon with a discharge of 500 cubic meters per second, the approximate capacity of the river channel through the city of La Lima. The 50-year flood (2,400 cubic meters per second), the original design flow to be mapped, would inundate the entire area surveyed for this municipality. Because water-surface elevations of the 50-year flood could not be mapped properly without substantially expanding the area of the survey, the available data were used instead to estimate the channel capacity of Rio Chamelecon in La Lima by trial-and-error runs of different flows in a numerical model and to estimate the increase in height of levees needed to contain flows of 1,000 and 2,400 cubic meters per second. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of La Lima as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for various discharges on Rio Chamelecon at La Lima were determined using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and ground surveys at three bridges. Top-of-levee or top-of-channel-bank elevations and locations at the cross sections were critical to estimating the channel capacity of Rio Chamelecon

  17. Flood Monitoring and Early Warning System: The Integration of Inundated Areas Extraction Tool

    NASA Astrophysics Data System (ADS)

    Limlahapun, Ponthip; Fukui, Hiromichi

    This paper examines a satellite images processing system with a mechanism for detecting the inundated areas and supporting to flood monitoring and warning. The interoperable handling system is established in order to freely access the inundated areas with no defensive barrier by the software operability limitations. The ultimate goal of this effort is to bring awareness of the potentially catastrophic occurrence that can be pre-detected and prevented altogether. The development of the algorithm to extract the inundated areas and convey urgent messages during the time of crisis is performed on a user-friendly web based interface. A careful examination of various locations on LANDSAT images yields promising results. Although the size of images is limited by the available bandwidth of the web based application, processing at 4000*4000*3 bands per image takes approximately 3 minutes. This is a significant improvement over currently available methods for inundated detection systems. Additional benefits include software operation cost saving, and reduction of operational expenses and time. Furthermore, it does not require technical expertise to predict the rise of flood disasters.

  18. LiDAR and IFSAR-Based Flood Inundation Model Estimates for Flood-Prone Areas of Afghanistan

    NASA Astrophysics Data System (ADS)

    Johnson, W. C.; Goldade, M. M.; Kastens, J.; Dobbs, K. E.; Macpherson, G. L.

    2014-12-01

    Extreme flood events are not unusual in semi-arid to hyper-arid regions of the world, and Afghanistan is no exception. Recent flashfloods and flashflood-induced landslides took nearly 100 lives and destroyed or damaged nearly 2000 homes in 12 villages within Guzargah-e-Nur district of Baghlan province in northeastern Afghanistan. With available satellite imagery, flood-water inundation estimation can be accomplished remotely, thereby providing a means to reduce the impact of such flood events by improving shared situational awareness during major flood events. Satellite orbital considerations, weather, cost, data licensing restrictions, and other issues can often complicate the acquisition of appropriately timed imagery. Given the need for tools to supplement imagery where not available, complement imagery when it is available, and bridge the gap between imagery based flood mapping and traditional hydrodynamic modeling approaches, we have developed a topographic floodplain model (FLDPLN), which has been used to identify and map river valley floodplains with elevation data ranging from 90-m SRTM to 1-m LiDAR. Floodplain "depth to flood" (DTF) databases generated by FLDPLN are completely seamless and modular. FLDPLN has been applied in Afghanistan to flood-prone areas along the northern and southern flanks of the Hindu Kush mountain range to generate a continuum of 1-m increment flood-event models up to 10 m in depth. Elevation data used in this application of FLDPLN included high-resolution, drone-acquired LiDAR (~1 m) and IFSAR (5 m; INTERMAP). Validation of the model has been accomplished using the best available satellite-derived flood inundation maps, such as those issued by Unitar's Operational Satellite Applications Programme (UNOSAT). Results provide a quantitative approach to evaluating the potential risk to urban/village infrastructure as well as to irrigation systems, agricultural fields and archaeological sites.

  19. Areas subject to inundation by the 100-year flood in Avra Valley, Pima County, Arizona

    USGS Publications Warehouse

    Roeske, R.H.

    1978-01-01

    Avra Valley in Pima County, Arizona, is sparsely populated and is used mainly for agriculture and cattle grazing; however, its proximity to Tucson makes it desirable for urban development. Administrators and planners concerned with future land development may use the map report to determine the approximate areas that are subject to inundation by the 100-year flood. Avra Valley is drained mainly by Brawley Wash; Blanco Wash drains the west side of the valley. Most of the natural drainage system consists of small braided channels bordered by narrow bands of dense vegetation, which cause floodwater to spread over wide areas of shallow depths. During the 100-year flood, the areas inundated by Brawley and Blanco Washes may join in several places. (Woodard-USGS)

  20. Dam-breach analysis and flood-inundation mapping for selected dams in Oklahoma City, Oklahoma, and near Atoka, Oklahoma

    USGS Publications Warehouse

    Shivers, Molly J.; Smith, S. Jerrod; Grout, Trevor S.; Lewis, Jason M.

    2015-01-01

    Digital-elevation models, field survey measurements, hydraulic data, and hydrologic data (U.S. Geological Survey streamflow-gaging stations North Canadian River below Lake Overholser near Oklahoma City, Okla. [07241000], and North Canadian River at Britton Road at Oklahoma City, Okla. [07241520]), were used as inputs for the one-dimensional dynamic (unsteady-flow) models using Hydrologic Engineering Centers River Analysis System (HEC–RAS) software. The modeled flood elevations were exported to a geographic information system to produce flood-inundation maps. Water-surface profiles were developed for a 75-percent probable maximum flood dam-breach scenario and a sunny-day dam-breach scenario, as well as for maximum flood-inundation elevations and flood-wave arrival times at selected bridge crossings. Points of interest such as community-services offices, recreational areas, water-treatment plants, and wastewater-treatment plants were identified on the flood-inundation maps.

  1. Flood-inundation maps for the Leaf River at Hattiesburg, Mississippi

    USGS Publications Warehouse

    Storm, John B.

    2012-01-01

    Digital flood-inundation maps for a 1.7-mile reach of the Leaf River were developed by the U.S. Geological Survey (USGS) in cooperation with the City of Hattiesburg, City of Petal, Forrest County, Mississippi Emergency Management Agency, Mississippi Department of Homeland Security, and the Emergency Management District. The Leaf River study reach extends from just upstream of the U.S. Highway 11 crossing to just downstream of East Hardy/South Main Street and separates the cities of Hattiesburg and Petal, Mississippi. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water-surface elevations (stages) at the USGS streamgage at Leaf River at Hattiesburg, Mississippi (02473000). Current conditions at the USGS streamgage may be obtained through the National Water Information System Web site at http://waterdata.usgs.gov/ms/nwis/uv/?site_no=02473000&PARAmeter_cd=00065,00060. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. The forecasted peak-stage information, available on the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relations at the Leaf River at Hattiesburg, Mississippi, streamgage and documented high-water marks from recent and historical floods. The hydraulic model was then used to determine 13 water-surface profiles for flood stages at 1.0-foot intervals referenced to the

  2. Flood-inundation maps for the Big Blue River at Shelbyville, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2017-02-13

    Digital flood-inundation maps for a 4.1-mile reach of the Big Blue River at Shelbyville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The floodinundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at https://water. usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Big Blue River at Shelbyville, Ind. (station number 03361500). Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at https://waterdata. usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at https://water.weather.gov/ ahps/, which also forecasts flood hydrographs at this site (SBVI3). Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at the Big Blue River at Shelbyville, Ind., streamgage. The calibrated hydraulic model was then used to compute 12 water-surface profiles for flood stages referenced to the streamgage datum and ranging from 9.0 feet, or near bankfull, to 19.4 feet, the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar] data having a 0.98-foot vertical accuracy and 4.9-foot horizontal resolution) to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage at the Big Blue River at Shelbyville, Ind., and forecasted stream stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response

  3. Characterization of peak streamflows and flood inundation of selected areas in Louisiana from the August 2016 flood

    USGS Publications Warehouse

    Watson, Kara M.; Storm, John B.; Breaker, Brian K.; Rose, Claire E.

    2017-02-06

    Heavy rainfall occurred across Louisiana and southwestern Mississippi in August 2016 as a result of a slow-moving area of low pressure and a high amount of atmospheric moisture. The storm caused major flooding in the southern portions of Louisiana including areas surrounding Baton Rouge and Lafayette. Flooding occurred along the rivers such as the Amite, Comite, Tangipahoa, Tickfaw, Vermilion, and Mermentau Rivers. Over 31 inches of rain was reported in the city of Watson, 20 miles northeast of Baton Rouge, La., over the duration of the event. Streamflow-gaging stations operated by the U.S. Geological Survey (USGS) recorded peak streamflows of record at 10 locations, and 7 other locations experienced peak streamflows ranking in the top five for the duration of the period of record. In August 2016, USGS hydrographers made 50 discharge measurements at 21 locations on streams in Louisiana. Many of those discharge measurements were made for the purpose of verifying the accuracy of stage-streamflow relations at gaging stations operated by the USGS. Following the storm event, USGS hydrographers recovered and documented 590 high-water marks, noting location and height of the water above land surface. Many of these high-water marks were used to create 12 flood-inundation maps for selected communities of Louisiana that experienced flooding in August 2016. Digital datasets of the inundation area, modeling boundary, water depth rasters, and final map products are available online.

  4. Two-Dimensional Flood-Inundation Model of the Flint River at Albany, Georgia

    USGS Publications Warehouse

    Musser, Jonathan W.; Dyar, Thomas R.

    2007-01-01

    Potential flow characteristics of future flooding along a 4.8-mile reach of the Flint River in Albany, Georgia, were simulated using recent digital-elevation-model data and the U.S. Geological Survey finite-element surface-water modeling system for two-dimensional flow in the horizontal plane (FESWMS-2DH). Simulated inundated areas, in 1-foot (ft) increments, were created for water-surface altitudes at the Flint River at Albany streamgage (02352500) from 192.5-ft altitude with a flow of 123,000 cubic feet per second (ft3/s) to 179.5-ft altitude with a flow of 52,500 ft3/s. The model was calibrated to match actual floods during July 1994 and March 2005 and Federal Emergency Management Administration floodplain maps. Continuity checks of selected stream profiles indicate the area near the Oakridge Drive bridge had lower velocities than other areas of the Flint River, which contributed to a rise in the flood-surface profile. The modeled inundated areas were mapped onto monochrome orthophoto imagery for use in planning for future floods. As part of a cooperative effort, the U.S. Geological Survey, the City of Albany, and Dougherty County, Georgia, conducted this study.

  5. Adaptive moving finite volume scheme for flood inundation modeling under dry and complex topography

    NASA Astrophysics Data System (ADS)

    Zhou, F.; Chen, G.

    2012-04-01

    To assess and alleviate the risk of flood inundation on local scale, the use of numerical models with high accuracy, spatial resolution, and efficiency is crucial for the reliability of the solutions to provide the forecasts and early-warnings of flood inundation at large or meso-scales. Different with traditional numerical models on fixed meshes, an adaptive moving finite volume scheme on moving meshes is proposed for flood inundation modeling under dry and complex topography, this scheme aims to improve the predictive accuracy, spatial resolution, and computational efficiency as well as the satisfaction of well-balanced positivity preserving properties. The crucial feature of our scheme is to move fixed number of unstructured triangular meshes adaptively for approximating the time-variant patterns of flow variables and then to update flow variables through PDEs discretization on new meshes. At each time step of simulation, this scheme consists of three parts, giving in time n for instance: (1) adaptive mesh movement equation for adapting vertex from xij(n, v) to xij(n,v+1) where v is the iteration step, this equation can be transferred as Euler-Lagrange ones⛛· (ω⛛x) = 0, in which the monitor functionω is determined by the solution and the gradient of solution; (2) geometrical conservative interpolation for remapping flow variables from Ui(n, v) to Ui(n,v+1), when ||xij(n,v+1)-xij(n, v)||≤10-6 or v=5, then set xij(n, +∞):= xij(n,v+1) and Uj(n, +∞):= Uj(n,v+1), and (3) HLL-based PDEs discretization for updating flow variables from Ui(n,+∞) to Ui(n+1,0), the treatments of bed slope source terms and wet-dry interface are based on second-order reconstruction of Audusse et al., (2004) and Audusse and Bristeau (2005). Two analytical and two experimental test cases were performed to verify the advantages of the proposed scheme over non-adaptive methods. The results revealed two attractive features: (i) this scheme could achieve high-accuracy and high

  6. Evaluation of flood inundation in Crystal Springs Creek, Portland, Oregon

    USGS Publications Warehouse

    Stonewall, Adam; Hess, Glen

    2016-05-25

    Efforts to improve fish passage have resulted in the replacement of six culverts in Crystal Springs Creek in Portland, Oregon. Two more culverts are scheduled to be replaced at Glenwood Street and Bybee Boulevard (Glenwood/Bybee project) in 2016. Recently acquired data have allowed for a more comprehensive understanding of the hydrology of the creek and the topography of the watershed. To evaluate the impact of the culvert replacements and recent hydrologic data, a Hydrologic Engineering Center-River Analysis System hydraulic model was developed to estimate water-surface elevations during high-flow events. Longitudinal surface-water profiles were modeled to evaluate current conditions and future conditions using the design plans for the culverts to be installed in 2016. Additional profiles were created to compare with the results from the most recent flood model approved by the Federal Emergency Management Agency for Crystal Springs Creek and to evaluate model sensitivity.Model simulation results show that water-surface elevations during high-flow events will be lower than estimates from previous models, primarily due to lower estimates of streamflow associated with the 0.01 and 0.002 annual exceedance probability (AEP) events. Additionally, recent culvert replacements have resulted in less ponding behind crossings. Similarly, model simulation results show that the proposed replacement culverts at Glenwood Street and Bybee Boulevard will result in lower water-surface elevations during high-flow events upstream of the proposed project. Wider culverts will allow more water to pass through crossings, resulting in slightly higher water-surface elevations downstream of the project during high-flows than water-surface elevations that would occur under current conditions. For the 0.01 AEP event, the water-surface elevations downstream of the Glenwood/Bybee project will be an average of 0.05 ft and a maximum of 0.07 ft higher than current conditions. Similarly, for the 0

  7. Flood evolution assessment and monitoring using hydrological modelling techniques: analysis of the inundation areas at a regional scale

    NASA Astrophysics Data System (ADS)

    Podhoranyi, M.; Kuchar, S.; Portero, A.

    2016-08-01

    The primary objective of this study is to present techniques that cover usage of a hydrodynamic model as the main tool for monitoring and assessment of flood events while focusing on modelling of inundation areas. We analyzed the 2010 flood event (14th May - 20th May) that occurred in the Moravian-Silesian region (Czech Republic). Under investigation were four main catchments: Opava, Odra, Olše and Ostravice. Four hydrodynamic models were created and implemented into the Floreon+ platform in order to map inundation areas that arose during the flood event. In order to study the dynamics of the water, we applied an unsteady flow simulation for the entire area (HEC-RAS 4.1). The inundation areas were monitored, evaluated and recorded semi-automatically by means of the Floreon+ platform. We focused on information about the extent and presence of the flood areas. The modeled flooded areas were verified by comparing them with real data from different sources (official reports, aerial photos and hydrological networks). The study confirmed that hydrodynamic modeling is a very useful tool for mapping and monitoring of inundation areas. Overall, our models detected 48 inundation areas during the 2010 flood event.

  8. Sub-pixel flood inundation mapping from multispectral remotely sensed images based on discrete particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Li, Linyi; Chen, Yun; Yu, Xin; Liu, Rui; Huang, Chang

    2015-03-01

    The study of flood inundation is significant to human life and social economy. Remote sensing technology has provided an effective way to study the spatial and temporal characteristics of inundation. Remotely sensed images with high temporal resolutions are widely used in mapping inundation. However, mixed pixels do exist due to their relatively low spatial resolutions. One of the most popular approaches to resolve this issue is sub-pixel mapping. In this paper, a novel discrete particle swarm optimization (DPSO) based sub-pixel flood inundation mapping (DPSO-SFIM) method is proposed to achieve an improved accuracy in mapping inundation at a sub-pixel scale. The evaluation criterion for sub-pixel inundation mapping is formulated. The DPSO-SFIM algorithm is developed, including particle discrete encoding, fitness function designing and swarm search strategy. The accuracy of DPSO-SFIM in mapping inundation at a sub-pixel scale was evaluated using Landsat ETM + images from study areas in Australia and China. The results show that DPSO-SFIM consistently outperformed the four traditional SFIM methods in these study areas. A sensitivity analysis of DPSO-SFIM was also carried out to evaluate its performances. It is hoped that the results of this study will enhance the application of medium-low spatial resolution images in inundation detection and mapping, and thereby support the ecological and environmental studies of river basins.

  9. Flood-inundation maps for a 12.5-mile reach of Big Papillion Creek at Omaha, Nebraska

    USGS Publications Warehouse

    Strauch, Kellan R.; Dietsch, Benjamin J.; Anderson, Kayla J.

    2016-03-22

    The availability of these flood-inundation maps, along with Internet information regarding current stage from the USGS streamgage and forecasted high-flow stages from the National Weather Service, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for postflood recovery efforts.

  10. The impact of uncertainty in satellite data on the assessment of flood inundation models

    NASA Astrophysics Data System (ADS)

    Stephens, E. M.; Bates, P. D.; Freer, J. E.; Mason, D. C.

    2012-01-01

    SummaryThe performance of flood inundation models is often assessed using satellite observed data; however, these data have inherent uncertainty. In this study we determine the patterns of uncertainty in an ERS-2 SAR image of flooding on the River Dee, UK and, using LISFLOOD-FP, evaluate how this uncertainty can influence the assessment of flood inundation model performance. The flood outline is intersected with high resolution LiDAR topographic data to extract water levels at the flood margin, and to estimate patterns of uncertainty the gauged water levels are used to create a reference water surface slope for comparison with the satellite-derived water levels. We find the residuals between the satellite data points and the reference line to be spatially clustered. A new method of evaluating model performance is developed to test the impact of this spatial dependency on model calibration. This method uses multiple random subsamples of the water surface elevation points that have no significant spatial dependency; tested for using Moran's I. LISFLOOD-FP is then calibrated using conventional binary pattern matching and water elevation comparison both with and without spatial dependency. It is shown that model calibration carried out using pattern matching is negatively influenced by spatial dependency in the data. By contrast, calibration using water elevations produces realistic calibrated optimum friction parameters even when spatial dependency is present. Accounting for spatial dependency reduces the estimated modelled error and gives an identical result to calibration using spatially dependent data; it also has the advantage of being a statistically robust assessment of model performance in which we can have more confidence. Further, by using the variations found in the subsamples of the observed data it is possible to assess how the noisiness in these data affects our understanding of flood risk. This has highlighted the requirement for a probabilistic

  11. Flood-Inundation Maps of Selected Areas Affected by the Flood of October 2015 in Central and Coastal South Carolina

    USGS Publications Warehouse

    Musser, Jonathan W.; Watson, Kara M.; Painter, Jaime A.; Gotvald, Anthony J.

    2016-02-22

    Heavy rainfall occurred across South Carolina during October 1–5, 2015, as a result of an upper atmospheric low-pressure system that funneled tropical moisture from Hurricane Joaquin into the State. The storm caused major flooding in the central and coastal parts of South Carolina. Almost 27 inches of rain fell near Mount Pleasant in Charleston County during this period. U.S. Geological Survey (USGS) streamgages recorded peaks of record at 17 locations, and 15 other locations had peaks that ranked in the top 5 for the period of record. During the October 2015 flood event, USGS personnel made about 140 streamflow measurements at 86 locations to verify, update, or extend existing rating curves (which are used to compute streamflow from monitored river stage). Immediately after the storm event, USGS personnel documented 602 high-water marks, noting the location and height of the water above land surface. Later in October, 50 additional high-water marks were documented near bridges for South Carolina Department of Transportation. Using a subset of these high-water marks, 20 flood-inundation maps of 12 communities were created. Digital datasets of the inundation area, modeling boundary, and water depth rasters are all available for download.

  12. Flood-inundation maps for an 8.9-mile reach of the South Fork Little River at Hopkinsville, Kentucky

    USGS Publications Warehouse

    Lant, Jeremiah G.

    2013-01-01

    Digital flood-inundation maps for an 8.9-mile reach of South Fork Little River at Hopkinsville, Kentucky, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Hopkinsville Community Development Services. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at South Fork Little River at Highway 68 By-Pass at Hopkinsville, Kentucky (station no. 03437495). Current conditions for the USGS streamgage may be obtained online at the USGS National Water Information System site (http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=03437495). In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. The forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the South Fork Little River reach by using HEC-RAS, a one-dimensional step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the most current (2012) stage-discharge relation at the South Fork Little River at Highway 68 By-Pass at Hopkinsville, Kentucky, streamgage and measurements collected during recent flood events. The calibrated model was then used to calculate 13 water-surface profiles for a sequence of flood stages, most at 1-foot intervals, referenced to the streamgage datum and ranging from a stage near bank full to the estimated elevation of the 1.0-percent annual exceedance

  13. Flood-inundation maps for the West Branch Susquehanna River near the Boroughs of Lewisburg and Milton, Pennsylvania

    USGS Publications Warehouse

    Roland, Mark A.; Hoffman, Scott A.

    2014-01-01

    Digital flood-inundation maps for an approximate 8-mile reach of the West Branch Susquehanna River from approximately 2 miles downstream from the Borough of Lewisburg, extending upstream to approximately 1 mile upstream from the Borough of Milton, Pennsylvania, were created by the U.S. Geological Survey (USGS) in cooperation with the Susquehanna River Basin Commission (SRBC). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict the estimated areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 01553500, West Branch Susquehanna River at Lewisburg, Pa. In addition, the information has been provided to the Susquehanna River Basin Commission (SRBC) for incorporation into their Susquehanna Inundation Map Viewer (SIMV) flood warning system (http://maps.srbc.net/simv/). The National Weather Service (NWS) forecasted peak-stage information (http://water.weather.gov/ahps) for USGS streamgage 01553500, West Branch Susquehanna River at Lewisburg, Pa., may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. Calibration of the model was achieved using the most current stage-discharge relations (rating number 11.1) at USGS streamgage 01553500, West Branch Susquehanna River at Lewisburg, Pa., a documented water-surface profile from the December 2, 2010, flood, and recorded peak stage data. The hydraulic model was then used to determine 26 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum ranging from 14 feet (ft) to 39 ft. Modeled flood stages, as defined by NWS, include Action Stage, 14 ft; Flood Stage, 18 ft; Moderate Flood Stage, 23 ft; and Major Flood Stage, 28 ft. Geographic information system (GIS) technology

  14. A new framework for monitoring flood inundation using readily available satellite data

    NASA Astrophysics Data System (ADS)

    Parinussa, Robert M.; Lakshmi, Venkat; Johnson, Fiona M.; Sharma, Ashish

    2016-03-01

    Floods are deadly natural disasters that have large social and economic impact. Their impact can be reduced through near real-time warning systems utilizing information from satellite remote sensing for flood tracking and forecasting. In this study we formulate that differences in day and night land surface temperature (ΔLST) are a skillful predictor for inundation and can serve parallel to soil moisture in warning systems. Satellite measurements of ΔLST and soil moisture revealed distinct spatial patterns for the extreme hydrological conditions that Australia has encountered since 2002. A significant flood revealed large negative ΔLST anomalies whereas droughts corresponded to positive anomalies. ΔLST and soil moisture showed distinct behavior prior to flooding as anomalies displayed gradual build up, suggesting signals could be valuable in flood warning systems. Strong agreement was found between ΔLST, antecedent precipitation index, and soil moisture anomalies over Australia and the Murray Darling Basin. This indicates their skills to represent wetness state, an important input additional to precipitation in flood warning systems.

  15. Extent and frequency of inundation of Schuylkill River flood plain from Conshohocken to Philadelphia, Pennsylvania

    USGS Publications Warehouse

    Alter, A.T.

    1966-01-01

    Information on flood conditions plays an important part in the development and use of river valleys. This report presents maps, profiles, and flood-frequency relations developed from past flood experience on the Schuylkill River from Conshohocken to Philadelphia, Pa. The maps and profiles are used to define the areal extent and depth of flooding of the August 24, 1933, and August 19, 1955, floods. The flood of October 4, 1869, which is the greatest flood known on the lower Schuylkill River, is presented on the flood profile and on the ten cross sections. The area inundated by the 1869 flood is not defined because insufficient data are available and because hydrologic and hydraulic conditions have undoubtedly changed to such an extent that such a definition would have little present significance. The basic flood data were prepared to aid individuals, organizations, and governmental agencies in making sound decisions for the safe and economical development of the lower Schuylkill River valley. Recommendations for land use, or suggestions for limitations of land use, are not made in this report.The responsibility for planning for the optimum land use in the flood plain and the implementation of flood-plain regulations to achieve such optimum use rests with the State and local interests. The preparation of this report was undertaken after consultation with representatives of the Philadelphia City Planning Commission and the Montgomery County Planning Commission who expressed the need for flood-plain information and their willingness to consider floodplain regulations.The area covered by this report extends downstream along the Schuylkill River from Plymouth Dam in Conshohocken to the mouth of Wissahickon Creek in Philadelphia. Flooding along Wissahickon Creek is not included in the report. The reach studied extends from 13.0 miles to 21.0 miles upstream from the river mouth. All river distances used in the report are river miles upstream from the mouth of the

  16. Flood-inundation map library for the Licking River and South Fork Licking River near Falmouth, Kentucky

    USGS Publications Warehouse

    Lant, Jeremiah G.

    2016-09-19

    Digital flood inundation maps for a 17-mile reach of Licking River and 4-mile reach of South Fork Licking River near Falmouth, Kentucky, were created by the U.S. Geological Survey (USGS) in cooperation with Pendleton County and the U.S. Army Corps of Engineers–Louisville District. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://wim.usgs.gov/FIMI/FloodInundationMapper.html, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Licking River at Catawba, Ky., (station 03253500) and the USGS streamgage on the South Fork Licking River at Hayes, Ky., (station 03253000). Current conditions (2015) for the USGS streamgages may be obtained online at the USGS National Water Information System site (http://waterdata.usgs.gov/nwis). In addition, the streamgage information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http:/water.weather.gov/ahps/). The flood hydrograph forecasts provided by the NWS are usually collocated with USGS streamgages. The forecasted peak-stage information, also available on the NWS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.In this study, flood profiles were computed for the Licking River reach and South Fork Licking River reach by using a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current (2015) stage-discharge relations for the Licking River at Catawba, Ky., and the South Fork Licking River at Hayes, Ky., USGS streamgages. The calibrated model was then used to calculate 60 water-surface profiles for a sequence of flood stages, at 2-foot intervals, referenced to the streamgage datum and ranging from an elevation near bankfull to the elevation associated with a major flood that

  17. Model Integration for Real-Time Flood Forecasting Inundation Mapping for Nashville Tributaries

    NASA Astrophysics Data System (ADS)

    Charley, W.; Moran, B.; LaRosa, J.

    2012-12-01

    In May of 2010, between 14 and 19 inches of rain fell on the Nashville metro area in two days, quickly overwhelming tributaries to the Cumberland River and causing wide-spread, serious flooding. Tractor-trailers and houses were seen floating down Mill Creek, a primary tributary in the south eastern area of Nashville. Twenty-six people died and over 2 billion dollars in damage occurred as a result of the flood. Since that time, several other significant rainfall events have occurred in the area. Emergency responders were unable to deliver aid or preventive measures to areas under threat of flooding (or under water) in time to reduce damages because they could not identify those areas far enough in advance of the floods. Nashville Metro Water, the National Weather Service, the US Geological Survey and the US Army Corps of Engineers established a joint venture to seek ways to better forecast short-term flood events in the region. One component of this effort was a pilot project to compute and display real time inundation maps for Mill Creek, a 108 square-mile basin to the south east of Nashville. HEC-RTS (Real-Time Simulation) was used to assimilate and integrate the hydrologic model HEC-HMS with the hydraulics model HEC-RAS and the inundation mapping program HEC-RAS Mapper. The USGS, along with the other agencies, installed additional precipitation and flow/stage gages in the area. Measurements are recorded every 5-30 minutes and are posted on the USGS NWIS database, which are downloaded by HEC-RTS. Using this data in combination with QPFs (Quantitative Precipitation Forecasts) from the NWS, HEC-RTS applies HEC-HMS and HEC-RAS to estimate current and forecast stage hydrographs. The peak stages are read by HEC-RAS Mapper to compute inundation depths for 6 by 6 foot grid cells. HEC-RTS displays the inundation on a high resolution MrSid aerial photo, along with subbasin boundary, street and various other layers. When a user zooms in and "mouses" over a cell, the

  18. Development of Flood Inundation Libraries using Historical Satellite Data and DEM for Part of Godavari Basin: An Approach Towards Better Flood Management

    NASA Astrophysics Data System (ADS)

    Bhatt, C. M.; Rao, G. S.; Patro, B.

    2014-12-01

    Conventional method of identifying areas to be inundated for issuing flood alert require inputs like discharge data, fine resolution digital elevation model (DEM), software for modelling and technically trained manpower to interpret the results meaningfully. Due to poor availability of these inputs, including good network of historical hydrological observations and limitation of time, quick flood early warning becomes a difficult task. Presently, based on the daily river water level and forecasted water level for major river systems in India, flood alerts are provided which are non-spatial in nature and does not help in understanding the inundation (spatial dimension) which may be caused at various water levels. In the present paper a concept for developing a series of flood-inundation map libraries two approaches are adopted one by correlating inundation extent derived from historical satellite data analysis with the corresponding water level recorded by the gauge station and the other simulation of inundation using digital elevation model (DEM's) is demonstrated for a part of Godavari Basin. The approach explained can be one of quick and cost-effective method for building a library of flood inundation extents, which can be utilized during flood disaster for alerting population and taking the relief and rescue operations. This layer can be visualized from a spatial dimension together with other spatial information like administrative boundaries, transport network, land use and land cover, digital elevation data and satellite images for better understanding and visualization of areas to be inundated spatially on free web based earth visualization portals like ISRO's Bhuvan portal (http://bhuvan.nrsc.gov.in). This can help decision makers in taking quick appropriate measures for warning, planning relief and rescue operations for the population to get affected under that river stage.

  19. Dam-breach analysis and flood-inundation mapping for Lakes Ellsworth and Lawtonka near Lawton, Oklahoma

    USGS Publications Warehouse

    Rendon, Samuel H.; Ashworth, Chad E.; Smith, S. Jerrod

    2012-01-01

    Dams provide beneficial functions such as flood control, recreation, and reliable water supplies, but they also entail risk: dam breaches and resultant floods can cause substantial property damage and loss of life. The State of Oklahoma requires each owner of a high-hazard dam, which the Federal Emergency Management Agency defines as dams for which failure or misoperation probably will cause loss of human life, to develop an emergency action plan specific to that dam. Components of an emergency action plan are to simulate a flood resulting from a possible dam breach and map the resulting downstream flood-inundation areas. The resulting flood-inundation maps can provide valuable information to city officials, emergency managers, and local residents for planning the emergency response if a dam breach occurs. Accurate topographic data are vital for developing flood-inundation maps. This report presents results of a cooperative study by the city of Lawton, Oklahoma, and the U.S. Geological Survey (USGS) to model dam-breach scenarios at Lakes Ellsworth and Lawtonka near Lawton and to map the potential flood-inundation areas of such dam breaches. To assist the city of Lawton with completion of the emergency action plans for Lakes Ellsworth and Lawtonka Dams, the USGS collected light detection and ranging (lidar) data that were used to develop a high-resolution digital elevation model and a 1-foot contour elevation map for the flood plains downstream from Lakes Ellsworth and Lawtonka. This digital elevation model and field measurements, streamflow-gaging station data (USGS streamflow-gaging station 07311000, East Cache Creek near Walters, Okla.), and hydraulic values were used as inputs for the dynamic (unsteady-flow) model, Hydrologic Engineering Center's River Analysis System (HEC-RAS). The modeled flood elevations were exported to a geographic information system to produce flood-inundation maps. Water-surface profiles were developed for a 75-percent probable maximum

  20. Flood-inundation Maps for the Deerfield River, Franklin County, Massachusetts, from the Confluence with the Cold River Tributary to the Connecticut River

    USGS Publications Warehouse

    Lombard, Pamela J.; Bent, Gardner C.

    2015-09-02

    The availability of the flood-inundation maps at http://water.usgs.gov/osw/flood_inundation/, combined with information regarding current (near real-time) stage from the two U.S. Geological Survey streamgages in the study reach, can provide emergency management personnel and residents with information to aid in flood response activities, such as evacuations and road closures, and with postflood recovery efforts. The flood-inundation maps are nonregulatory, but provide Federal, State, and local agencies and the public with estimates of the potential extent of flooding during selected peak-flow events.

  1. Flood-inundation mapping for the Blue River and selected tributaries in Kansas City, Missouri, and vicinity, 2012

    USGS Publications Warehouse

    Heimann, David C.; Weilert, Trina E.; Kelly, Brian P.; Studley, Seth E.

    2015-01-01

    The U.S. Geological Survey (USGS) and City of Kansas City, Missouri, operate multiple streamgages along the Blue River and tributaries in and near the city. Knowledge of water level at a streamgage is difficult to translate into depth and areal extent of flooding at points distant from the streamgage. One way to address these informational gaps is to produce a library of flood-inundation maps that are referenced to the stages recorded at a streamgage. By referring to the appropriate map, emergency responders can discern the severity of flooding (depth of water and areal extent), identify roads that are or may be flooded, and make plans for notification or evacuation of residents in harm’s way for some distance upstream and downstream from the streamgage. The USGS, in cooperation with the city of Kansas City, Missouri, developed a library of flood-inundation maps for the Blue River and selected tributaries.

  2. Impact of the Timing of a SAR Image Acquisition on the Calibration of a Flood Inundation Model

    NASA Technical Reports Server (NTRS)

    Gobeyn, Sacha; Van Wesemael, Alexandra; Neal, Jeffrey; Lievens, Hans; Van Eerdenbrugh, Katrien; De Vleeschouwer, Niels; Vernieuwe, Hilde; Schumann, Guy J.-P.; Di Baldassarre, Giuliano; De Baets, Bernard; Bates, Paul D.; Verhoest, Niko E. C.

    2016-01-01

    Synthetic Aperture Radar (SAR) data have proven to be a very useful source of information for the calibration of flood inundation models. Previous studies have focused on assigning uncertainties to SAR images in order to improve flood forecast systems (e.g. Giustarini et al. (2015) and Stephens et al. (2012)). This paper investigates whether the timing of a SAR acquisition of a flood has an important impact on the calibration of a flood inundation model. As no suitable time series of SAR data exists, we generate a sequence of consistent SAR images through the use of a synthetic framework. This framework uses two available ERS-2 SAR images of the study area, one taken during the flood event of interest, the second taken during a dry reference period. The obtained synthetic observations at different points in time during the flood event are used to calibrate the flood inundation model. The results of this study indicate that the uncertainty of the roughness parameters is lower when the model is calibrated with an image taken before rather than during or after the flood peak. The results also show that the error on the modeled extent is much lower when the model is calibrated with a pre-flood peak image than when calibrated with a near-flood peak or a post-flood peak image. It is concluded that the timing of the SAR image acquisition of the flood has a clear impact on the model calibration and consequently on the precision of the predicted flood extent.

  3. Impact of the timing of a SAR image acquisition on the calibration of a flood inundation model

    NASA Astrophysics Data System (ADS)

    Gobeyn, Sacha; Van Wesemael, Alexandra; Neal, Jeffrey; Lievens, Hans; Eerdenbrugh, Katrien Van; De Vleeschouwer, Niels; Vernieuwe, Hilde; Schumann, Guy J.-P.; Di Baldassarre, Giuliano; Baets, Bernard De; Bates, Paul D.; Verhoest, Niko E. C.

    2017-02-01

    Synthetic Aperture Radar (SAR) data have proven to be a very useful source of information for the calibration of flood inundation models. Previous studies have focused on assigning uncertainties to SAR images in order to improve flood forecast systems (e.g. Giustarini et al. (2015) and Stephens et al. (2012)). This paper investigates whether the timing of a SAR acquisition of a flood has an important impact on the calibration of a flood inundation model. As no suitable time series of SAR data exists, we generate a sequence of consistent SAR images through the use of a synthetic framework. This framework uses two available ERS-2 SAR images of the study area, one taken during the flood event of interest, the second taken during a dry reference period. The obtained synthetic observations at different points in time during the flood event are used to calibrate the flood inundation model. The results of this study indicate that the uncertainty of the roughness parameters is lower when the model is calibrated with an image taken before rather than during or after the flood peak. The results also show that the error on the modelled extent is much lower when the model is calibrated with a pre-flood peak image than when calibrated with a near-flood peak or a post-flood peak image. It is concluded that the timing of the SAR image acquisition of the flood has a clear impact on the model calibration and consequently on the precision of the predicted flood extent.

  4. Flood-inundation maps for a nine-mile reach of the Des Plaines River from Riverwoods to Mettawa, Illinois

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2012-01-01

    Digital flood-inundation maps for a 9-mile reach of the Des Plaines River from Riverwoods to Mettawa, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the Lake County Stormwater Management Commission and the Villages of Lincolnshire and Riverwoods. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Des Plaines River at Lincolnshire, Illinois (station no. 05528100). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05528100. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. The NWS forecasted peak-stage information, also shown on the Des Plaines River at Lincolnshire inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was then used to determine seven water-surface profiles for flood stages at roughly 1-ft intervals referenced to the streamgage datum and ranging from the 50- to 0.2-percent annual exceedance probability flows. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) Digital Elevation Model (DEM) (derived from Light Detection And Ranging (LiDAR) data) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage height from USGS streamgages and forecasted stream stages from

  5. Calibration of a 1D/1D urban flood model using 1D/2D model results in the absence of field data.

    PubMed

    Leandro, J; Djordjević, S; Chen, A S; Savić, D A; Stanić, M

    2011-01-01

    Recently increased flood events have been prompting researchers to improve existing coupled flood-models such as one-dimensional (1D)/1D and 1D/two-dimensional (2D) models. While 1D/1D models simulate sewer and surface networks using a one-dimensional approach, 1D/2D models represent the surface network by a two-dimensional surface grid. However their application raises two issues to urban flood modellers: (1) stormwater systems planning/emergency or risk analysis demands for fast models, and the 1D/2D computational time is prohibitive, (2) and the recognized lack of field data (e.g. Hunter et al. (2008)) causes difficulties for the calibration/validation of 1D/1D models. In this paper we propose to overcome these issues by calibrating a 1D/1D model with the results of a 1D/2D model. The flood-inundation results show that: (1) 1D/2D results can be used to calibrate faster 1D/1D models, (2) the 1D/1D model is able to map the 1D/2D flood maximum extent well, and the flooding limits satisfactorily in each time-step, (3) the 1D/1D model major differences are the instantaneous flow propagation and overestimation of the flood-depths within surface-ponds, (4) the agreement in the volume surcharged by both models is a necessary condition for the 1D surface-network validation and (5) the agreement of the manholes discharge shapes measures the fitness of the calibrated 1D surface-network.

  6. Flood-inundation maps for a 6.5-mile reach of the Kentucky River at Frankfort, Kentucky

    USGS Publications Warehouse

    Lant, Jeremiah G.

    2013-01-01

    Digital flood-inundation maps for a 6.5-mile reach of Kentucky River at Frankfort, Kentucky, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Frankfort Office of Emergency Management. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage Kentucky River at Lock 4 at Frankfort, Kentucky (station no. 03287500). Current conditions for the USGS streamgage may be obtained online at the USGS National Water Information System site (http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=03287500). In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http:/water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated at USGS streamgages. The forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the Kentucky River reach by using HEC–RAS, a one-dimensional step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the most current (2013) stage-discharge relation for the Kentucky River at Lock 4 at Frankfort, Kentucky, in combination with streamgage and high-water-mark measurements collected for a flood event in May 2010. The calibrated model was then used to calculate 26 water-surface profiles for a sequence of flood stages, at 1-foot intervals, referenced to the streamgage datum and ranging from a stage near bankfull to the elevation that breached the levees protecting the City of Frankfort. To delineate the flooded area at

  7. Variation in Assemblages of Small Fishes and Microcrustaceans After Inundation of Rarely Flooded Wetlands of the Lower Okavango Delta, Botswana

    NASA Astrophysics Data System (ADS)

    Siziba, Nqobizitha; Chimbari, Moses J.; Masundire, Hillary; Mosepele, Ketlhatlogile; Ramberg, Lars

    2013-12-01

    Water extraction from floodplain river systems may alter patterns of inundation of adjacent wetlands and lead to loss of aquatic biodiversity. Water reaching the Okavango Delta (Delta), Botswana, may decrease due to excessive water extraction and climate change. However, due to poor understanding of the link between inundation of wetlands and biological responses, it is difficult to assess the impacts of these future water developments on aquatic biota. Large floods from 2009 to 2011 inundated both rarely and frequently flooded wetlands in the Delta, creating an opportunity to examine the ecological significance of flooding of wetlands with widely differing hydrological characteristics. We studied the assemblages of small fishes and microcrustaceans, together with their trophic relationships, in temporary wetlands of the lower Delta. Densities of microcrustaceans in temporary wetlands were generally lower than previously recorded in these habitats. Microcrustacean density varied with wetland types and hydrological phase of inundation. High densities of microcrustaceans were recorded in the 2009 to 2010 flooding season after inundation of rarely flooded sites. Large numbers of small fishes were observed during this study. Community structure of small fishes differed significantly across the studied wetlands, with poeciliids predominant in frequently flooded wetlands and juvenile cichlids most abundant in rarely flooded wetlands (analysis of similarity, P < 0.05). Small fishes of <20 mm fed largely on microcrustaceans and may have led to low microcrustacean densities within the wetlands. This result matched our prediction that rarely flooded wetlands would be more productive; hence, they supported greater populations of microcrustaceans and cichlids, which are aggressive feeders. However, the predominance of microcrustaceans in the guts of small fishes (<20 mm) suggests that predation by fishes may also be an important regulatory mechanism of microcrustacean

  8. Variation in assemblages of small fishes and microcrustaceans after inundation of rarely flooded wetlands of the lower Okavango Delta, Botswana.

    PubMed

    Siziba, Nqobizitha; Chimbari, Moses J; Masundire, Hillary; Mosepele, Ketlhatlogile; Ramberg, Lars

    2013-12-01

    Water extraction from floodplain river systems may alter patterns of inundation of adjacent wetlands and lead to loss of aquatic biodiversity. Water reaching the Okavango Delta (Delta), Botswana, may decrease due to excessive water extraction and climate change. However, due to poor understanding of the link between inundation of wetlands and biological responses, it is difficult to assess the impacts of these future water developments on aquatic biota. Large floods from 2009 to 2011 inundated both rarely and frequently flooded wetlands in the Delta, creating an opportunity to examine the ecological significance of flooding of wetlands with widely differing hydrological characteristics. We studied the assemblages of small fishes and microcrustaceans, together with their trophic relationships, in temporary wetlands of the lower Delta. Densities of microcrustaceans in temporary wetlands were generally lower than previously recorded in these habitats. Microcrustacean density varied with wetland types and hydrological phase of inundation. High densities of microcrustaceans were recorded in the 2009 to 2010 flooding season after inundation of rarely flooded sites. Large numbers of small fishes were observed during this study. Community structure of small fishes differed significantly across the studied wetlands, with poeciliids predominant in frequently flooded wetlands and juvenile cichlids most abundant in rarely flooded wetlands (analysis of similarity, P < 0.05). Small fishes of <20 mm fed largely on microcrustaceans and may have led to low microcrustacean densities within the wetlands. This result matched our prediction that rarely flooded wetlands would be more productive; hence, they supported greater populations of microcrustaceans and cichlids, which are aggressive feeders. However, the predominance of microcrustaceans in the guts of small fishes (<20 mm) suggests that predation by fishes may also be an important regulatory mechanism of microcrustacean

  9. Flood-inundation maps for a 15-mile reach of the Kalamazoo River from Marshall to Battle Creek, Michigan, 2010

    USGS Publications Warehouse

    Hoard, C.J.; Fowler, K.K.; Kim, M.H.; Menke, C.D.; Morlock, S.E.; Peppler, M.C.; Rachol, C.M.; Whitehead, M.T.

    2010-01-01

    Digital flood-inundation maps for a 15-mile reach of the Kalamazoo River from Marshall to Battle Creek, Michigan, were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Environmental Protection Agency to help guide remediation efforts following a crude-oil spill on July 25, 2010. The spill happened on Talmadge Creek, a tributary of the Kalamazoo River near Marshall, during a flood. The floodwaters transported the spilled oil down the Kalamazoo River and deposited oil in impoundments and on the surfaces of islands and flood plains. Six flood-inundation maps were constructed corresponding to the flood stage (884.09 feet) coincident with the oil spill on July 25, 2010, as well as for floods with annual exceedance probabilities of 0.2, 1, 2, 4, and 10 percent. Streamflow at the USGS streamgage at Marshall, Michigan (USGS site ID 04103500), was used to calculate the flood probabilities. From August 13 to 18, 2010, 35 channel cross sections, 17 bridges and 1 dam were surveyed. These data were used to construct a water-surface profile for the July 25, 2010, flood by use of a one-dimensional step-backwater model. The calibrated model was used to estimate water-surface profiles for other flood probabilities. The resulting six flood-inundation maps were created with a geographic information system by combining flood profiles with a 1.2-foot vertical and 10-foot horizontal resolution digital elevation model derived from Light Detection and Ranging data.

  10. Automating Flood Hazard Mapping Methods for Near Real-time Storm Surge Inundation and Vulnerability Assessment

    NASA Astrophysics Data System (ADS)

    Weigel, A. M.; Griffin, R.; Gallagher, D.

    2015-12-01

    Storm surge has enough destructive power to damage buildings and infrastructure, erode beaches, and threaten human life across large geographic areas, hence posing the greatest threat of all the hurricane hazards. The United States Gulf of Mexico has proven vulnerable to hurricanes as it has been hit by some of the most destructive hurricanes on record. With projected rises in sea level and increases in hurricane activity, there is a need to better understand the associated risks for disaster mitigation, preparedness, and response. GIS has become a critical tool in enhancing disaster planning, risk assessment, and emergency response by communicating spatial information through a multi-layer approach. However, there is a need for a near real-time method of identifying areas with a high risk of being impacted by storm surge. Research was conducted alongside Baron, a private industry weather enterprise, to facilitate automated modeling and visualization of storm surge inundation and vulnerability on a near real-time basis. This research successfully automated current flood hazard mapping techniques using a GIS framework written in a Python programming environment, and displayed resulting data through an Application Program Interface (API). Data used for this methodology included high resolution topography, NOAA Probabilistic Surge model outputs parsed from Rich Site Summary (RSS) feeds, and the NOAA Census tract level Social Vulnerability Index (SoVI). The development process required extensive data processing and management to provide high resolution visualizations of potential flooding and population vulnerability in a timely manner. The accuracy of the developed methodology was assessed using Hurricane Isaac as a case study, which through a USGS and NOAA partnership, contained ample data for statistical analysis. This research successfully created a fully automated, near real-time method for mapping high resolution storm surge inundation and vulnerability for the

  11. Flood-inundation maps for the Hoosic River, North Adams and Williamstown, Massachusetts, from the confluence with the North Branch Hoosic River to the Vermont State line

    USGS Publications Warehouse

    Lombard, Pamela J.; Bent, Gardner C.

    2015-01-01

    The availability of the flood-inundation maps, combined with information regarding current (near real-time) stage from USGS streamgage Hoosic River near Williamstown, and forecasted flood stages from the National Weather Service Advanced Hydrologic Prediction Service will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, and post-flood recovery efforts. The flood-inundation maps are nonregulatory, but provide Federal, State, and local agencies and the public with estimates of the potential extent of flooding during selected peak-flow events.

  12. Flood-Inundation Maps for a 1.6-Mile Reach of Salt Creek, Wood Dale, Illinois

    USGS Publications Warehouse

    Soong, David T.; Murphy, Elizabeth A.; Sharpe, Jennifer B.

    2012-01-01

    Digital flood-inundation maps for a 1.6-mile reach of Salt Creek from upstream of the Chicago, Milwaukee, St. Paul & Pacific Railroad to Elizabeth Drive, Wood Dale, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the DuPage County Stormwater Management Division. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage on Salt Creek at Wood Dale, Illinois (station number 05531175). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05531175. In this study, flood profiles were computed for the stream reach by means of a one-dimensional unsteady flow Full EQuations (FEQ) model. The unsteady flow model was verified by comparing the rating curve output for a September 2008 flood event to discharge measurements collected at the Salt Creek at Wood Dale gage. The hydraulic model was then used to determine 14 water-surface profiles for gage heights at 0.5-ft intervals referenced to the streamgage datum and ranging from less than bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) Digital Elevation Model (DEM) (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The areal extent of the inundation was verified with high-water marks from a flood in July 2010 with a peak gage height of 14.08 ft recorded at the Salt Creek at Wood Dale gage. The availability of these maps along with Internet information regarding current gage height from USGS streamgages provide emergency management personnel and residents with information that is critical for flood response activities such as

  13. Large-scale Flood Simulation with Rainfall-Runoff-Inundation Model in the Chao Phraya River Basin

    NASA Astrophysics Data System (ADS)

    Sayama, Takahiro; Tatebe, Yuya; Tanaka, Shigenobu

    2013-04-01

    A large amount of rainfall during the 2011 monsoonal season caused an unprecedented flood disaster in the Chao Phraya River basin in Thailand. When a large-scale flood occurs, it is very important to take appropriate emergency measures by holistically understanding the characteristics of the flooding based on available information and by predicting its possible development. This paper proposes quick response-type flood simulation that can be conducted during a severe flooding event. The hydrologic simulation model used in this study is designed to simulate river discharges and flood inundation simultaneously for an entire river basin with satellite based rainfall and topographic information. The model is based on two-dimensional diffusive wave equations for rainfall-runoff and inundation calculations. The model takes into account the effects of lateral subsurface flow and vertical infiltration flow since these two types of flow are also important processes. This paper presents prediction results obtained in mid-October 2011, when the flooding in Thailand was approaching to its peak. Our scientific question is how well we can predict the possible development of a large-scale flooding event with limited information and how much we can improve the prediction with more local information. In comparison with a satellite based flood inundation map, the study found that the quick response-type simulation (Lv1) was capable of capturing the peak flood inundation extent reasonably as compared to the estimation based on satellite remote sensing. Our interpretation of the prediction was that the flooding might continue even until the end of November, which was also positively confirmed to some extent by the actual flooding status in late November. Nevertheless, the Lv1 simulation generally overestimated the peak water level. To address this overestimation, the input data was updated with additional local information (Lv2). Consequently, the simulation accuracy improved in the

  14. An Experimental System for a Global Flood Prediction: From Satellite Precipitation Data to a Flood Inundation Map

    NASA Technical Reports Server (NTRS)

    Adler, Robert

    2007-01-01

    land surface including digital elevation from NASA SRTM, topography-derived hydrologic parameters such as flood direction. flow accumulation, basin, and river network etc.; 3) spatially distributed hydrological models to infiltrate rainfall and route overland runoff; and 4) an implementation interface to relay thc input data to the models and display the flood inundation results to the users and decision-makers. Early results appear reasonable in terms of location and frequency of events. Case studies of this experimental system are evaluated with surface runoff data and other river monitoring systems. such as Dartmouth Flood Observatory's "Surface Water Watch" array of river reaches that are measured daily via other satellite remote sensing data. A major outcome of this progress will be the availability of a global overview of flood alerts that should consequently improve the performance of Decision Support System. We expect these developments in utilization of satellite remote sensing technology to offer a practical solution to the challenge of building a cost-effective early warning system for data scarce and under-developed areas.

  15. Estimated flood-inundation mapping for the Lower Blue River in Kansas City, Missouri, 2003-2005

    USGS Publications Warehouse

    Kelly, Brian P.; Rydlund, Jr., Paul H.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the city of Kansas City, Missouri, began a study in 2003 of the lower Blue River in Kansas City, Missouri, from Gregory Boulevard to the mouth at the Missouri River to determine the estimated extent of flood inundation in the Blue River valley from flooding on the lower Blue River and from Missouri River backwater. Much of the lower Blue River flood plain is covered by industrial development. Rapid development in the upper end of the watershed has increased the volume of runoff, and thus the discharge of flood events for the Blue River. Modifications to the channel of the Blue River began in late 1983 in response to the need for flood control. By 2004, the channel had been widened and straightened from the mouth to immediately downstream from Blue Parkway to convey a 30-year flood. A two-dimensional depth-averaged flow model was used to simulate flooding within a 2-mile study reach of the Blue River between 63rd Street and Blue Parkway. Hydraulic simulation of the study reach provided information for the design and performance of proposed hydraulic structures and channel improvements and for the production of estimated flood-inundation maps and maps representing an areal distribution of water velocity, both magnitude and direction. Flood profiles of the Blue River were developed between Gregory Boulevard and 63rd Street from stage elevations calculated from high water marks from the flood of May 19, 2004; between 63rd Street and Blue Parkway from two-dimensional hydraulic modeling conducted for this study; and between Blue Parkway and the mouth from an existing one-dimensional hydraulic model by the U.S. Army Corps of Engineers. Twelve inundation maps were produced at 2-foot intervals for Blue Parkway stage elevations from 750 to 772 feet. Each map is associated with National Weather Service flood-peak forecast locations at 63rd Street, Blue Parkway, Stadium Drive, U.S. Highway 40, 12th Street, and the Missouri River

  16. Incorporating channel geometric uncertainty into a regional scale flood inundation model

    NASA Astrophysics Data System (ADS)

    Neal, Jeffrey; Odoni, Nick; Trigg, Mark; Freer, Jim; Bates, Paul

    2013-04-01

    Models that simulate the dynamics of river and floodplain water surface elevations over large regions have a wide range of applications including regional scale flood risk estimation and simulating wetland inundation dynamics, while potential emerging applications include estimating river discharge from level observations as part of a data assimilation system. The river routing schemes used by global land surface models are often relatively simple in that they are based on wave speed, kinematic and diffusive physics. However, as the research on large scale river modelling matures, approaches are being developed that resemble scaled-up versions of the hydrodynamic models traditionally applied to rivers at the reach scale. These developments are not surprising given that such models can be significantly more accurate than traditional routing schemes at simulating water surface elevation. This presentation builds on the work of Neal et al. (2012) who adapted a reach scale dynamic flood inundation model for large scale application with the addition of a sub-grid parameterisation for channel flow. The scheme was shown to be numerically stable and scalable, with the aid of some simple test cases, before it was applied to an 800 km reach of the River Niger that includes the complex waterways and lakes of the Niger Inland Delta in Mali. However, the model was significantly less accurate at low to moderate flows than at high flow due, in part, to assuming that the channel geometry was rectangular. Furthermore, this made it difficult to calibrate channel parameters with water levels during typical flow conditions. This presentation will describe an extension of this sub-grid model that allows the channel shape to be defined as an exponent of width, along with a regression based approach to approximate the wetted perimeter length for the new geometry. By treating the geometry in this way uncertainty in the channel shape can be considered as a model parameter, which for the

  17. Flood-inundation maps for South Fork Peachtree Creek from the Brockett Road bridge to the Willivee Drive bridge, DeKalb County, Georgia

    USGS Publications Warehouse

    Musser, Jonathan W.

    2015-10-14

    The availability of these flood-inundation maps, when combined with real-time stage information from USGS streamgages, provides emergency management personnel and residents with critical information during flood-response activities, such as evacuations and road closures, in addition to post-flood recovery efforts.

  18. Coastal flood inundation monitoring with Satellite C-band and L-band Synthetic Aperture Radar data

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Bannister, Terri

    2013-01-01

    Satellite Synthetic Aperture Radar (SAR) was evaluated as a method to operationally monitor the occurrence and distribution of storm- and tidal-related flooding of spatially extensive coastal marshes within the north-central Gulf of Mexico. Maps representing the occurrence of marsh surface inundation were created from available Advanced Land Observation Satellite (ALOS) Phased Array type L-Band SAR (PALSAR) (L-band) (21 scenes with HH polarizations in Wide Beam [100 m]) data and Environmental Satellite (ENVISAT) Advanced SAR (ASAR) (C-band) data (24 scenes with VV and HH polarizations in Wide Swath [150 m]) during 2006-2009 covering 500 km of the Louisiana coastal zone. Mapping was primarily based on a decrease in backscatter between reference and target scenes, and as an extension of previous studies, the flood inundation mapping performance was assessed by the degree of correspondence between inundation mapping and inland water levels. Both PALSAR- and ASAR-based mapping at times were based on suboptimal reference scenes; however, ASAR performance seemed more sensitive to reference-scene quality and other types of scene variability. Related to water depth, PALSAR and ASAR mapping accuracies tended to be lower when water depths were shallow and increased as water levels decreased below or increased above the ground surface, but this pattern was more pronounced with ASAR. Overall, PALSAR-based inundation accuracies averaged 84% (n = 160), while ASAR-based mapping accuracies averaged 62% (n = 245).

  19. Flood-inundation maps for the Saddle River from Upper Saddle River Borough to Saddle River Borough, New Jersey, 2013

    USGS Publications Warehouse

    Watson, Kara M.; Hoppe, Heidi L.

    2013-01-01

    Digital flood-inundation maps for a 4.1-mile reach of the Saddle River from 0.6 miles downstream from the New Jersey-New York State boundary in Upper Saddle River Borough to 0.2 miles downstream from the East Allendale Road bridge in Saddle River Borough, New Jersey, were created by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to select water levels (stages) at the USGS streamgage 01390450, Saddle River at Upper Saddle River, New Jersey. Current conditions for estimating near real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/nwis/uv?site_no=01390450. The National Weather Service (NWS) forecasts flood hydrographs at many places that are often collocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relations (in effect March 2013) at USGS streamgage 01390450, Saddle River at Upper Saddle River, New Jersey, and documented high-water marks from recent floods. The hydraulic model was then used to determine eight water-surface profiles for flood stages at 0.5-foot (ft) intervals referenced to the streamgage datum, North American Vertical Datum of 1988 (NAVD 88), and ranging from bankfull, 0.5 ft below NWS Action Stage, to the upper extent of the stage-discharge rating which is approximately 1 ft higher than the highest recorded water level at the streamgage. Action Stage is the stage which when reached

  20. Quantifying the importance of spatial resolution and other factors through global sensitivity analysis of a flood inundation model

    NASA Astrophysics Data System (ADS)

    Thomas Steven Savage, James; Pianosi, Francesca; Bates, Paul; Freer, Jim; Wagener, Thorsten

    2016-11-01

    Where high-resolution topographic data are available, modelers are faced with the decision of whether it is better to spend computational resource on resolving topography at finer resolutions or on running more simulations to account for various uncertain input factors (e.g., model parameters). In this paper we apply global sensitivity analysis to explore how influential the choice of spatial resolution is when compared to uncertainties in the Manning's friction coefficient parameters, the inflow hydrograph, and those stemming from the coarsening of topographic data used to produce Digital Elevation Models (DEMs). We apply the hydraulic model LISFLOOD-FP to produce several temporally and spatially variable model outputs that represent different aspects of flood inundation processes, including flood extent, water depth, and time of inundation. We find that the most influential input factor for flood extent predictions changes during the flood event, starting with the inflow hydrograph during the rising limb before switching to the channel friction parameter during peak flood inundation, and finally to the floodplain friction parameter during the drying phase of the flood event. Spatial resolution and uncertainty introduced by resampling topographic data to coarser resolutions are much more important for water depth predictions, which are also sensitive to different input factors spatially and temporally. Our findings indicate that the sensitivity of LISFLOOD-FP predictions is more complex than previously thought. Consequently, the input factors that modelers should prioritize will differ depending on the model output assessed, and the location and time of when and where this output is most relevant.

  1. The value of a UAV-acquired DEM for flood inundation mapping and modeling

    NASA Astrophysics Data System (ADS)

    Schumann, Guy J.-P.; Muhlhausen, Joseph; Andreadis, Konstantinos

    2016-04-01

    Remotely Piloted Systems also known as Unmanned Aerial Vehicle have rapidly developed as tools for remote sensing and mapping and publications referring to RPS remote sensing applications is increasing each year. In particular Structure from Motion (SfM), a relatively new photogrammetry approach has been documented for various applications. Some papers have focused on the accuracy of the output generated by SfM by validating relative and absolute accuracy using ground control points, others have looked at various applications. Yet we argue that a major aspect of SfM has been overlooked, its ability to generate highly accurate point cloud models without the use of ground control points. We demonstrate this by comparing with a LIDAR DEM, a dataset which has been transformative in flood inundation research and applications. Our results demonstrate that a point cloud collected using a RPS and a 16M pixel Bayer sensor camera using a rolling shutter can achieve a RMSE of 39 cm compared to LIDAR. We conclude that a SfM model is not only highly accurate but could complement LIDAR for floodplain mapping and modelling, especially in cases where smaller coverage is sufficient and LiDAR acquisition via airplane may be too costly or impractical.

  2. Flood pulsing in the Sudd wetland: analysis of seasonal variations in 2 inundation and evapotranspiration in Southern Sudan

    USGS Publications Warehouse

    Senay, Gabriel B.; Rebelo, L-M.; McCartney, M.P.

    2012-01-01

    Located on the Bahr el Jebel in South Sudan, the Sudd is one of the largest floodplain wetlands in the world. Seasonal inundation drives the hydrologic, geomorphological, and ecological processes, and the annual flood pulse is essential to the functioning of the Sudd. Despite the importance of the flood pulse, various hydrological interventions are planned upstream of the Sudd to increase economic benefits and food security. These will not be without consequences, in particular for wetlands where the biological productivity, biodiversity, and human livelihoods are dependent on the flood pulse and both the costs and benefits need to be carefully evaluated. Many African countries still lack regional baseline information on the temporal extent, distribution, and characteristics of wetlands, making it hard to assess the consequences of development interventions. Because of political instability in Sudan and the inaccessible nature of the Sudd, recent measurements of flooding and seasonal dynamics are inadequate. Analyses of multitemporal and multisensor remote sensing datasets are presented in this paper, in order to investigate and characterize flood pulsing within the Sudd wetland over a 12-month period. Wetland area has been mapped along with dominant components of open water and flooded vegetation at five time periods over a single year. The total area of flooding (both rain and river fed) over the 12 months was 41 334 km2, with 9176 km2 of this constituting the permanent wetland. Mean annual total evaporation is shown to be higher and with narrower distribution of values from areas of open water (1718 mm) than from flooded vegetation (1641 mm). Although the exact figures require validation against ground-based measurements, the results highlight the relative differences in inundation patterns and evaporation across the Sudd.

  3. Flood-inundation maps and updated components for a flood-warning system or the City of Marietta, Ohio and selected communities along the Lower Muskingum River and Ohio River

    USGS Publications Warehouse

    Whitehead, Matthew T.; Ostheimer, Chad J.

    2014-01-01

    Flood profiles for selected reaches were prepared by calibrating steady-state step-backwater models to selected streamgage rating curves. The step-backwater models were used to determine water-surface-elevation profiles for up to 12 flood stages at a streamgage with corresponding stream-flows ranging from approximately the 10- to 0.2-percent chance annual-exceedance probabilities for each of the 3 streamgages that correspond to the flood-inundation maps. Additional hydraulic modeling was used to account for the effects of backwater from the Ohio River on water levels in the Muskingum River. The computed longitudinal profiles of flood levels were used with a Geographic Information System digital elevation model (derived from light detection and ranging) to delineate flood-inundation areas. Digital maps showing flood-inundation areas overlain on digital orthophotographs were prepared for the selected floods.

  4. Volcanic flood simulation of magma effusion using FLO-2D for drainage of a caldera lake at the Mt. Baekdusan

    NASA Astrophysics Data System (ADS)

    Lee, Khil-Ha; Kim, Sung-Wook; Kim, Sang-Hyun

    2014-05-01

    model, called FLO-2D runs to simulate channel routing downstream to give the maximum water level. Once probable inundation areas are identified by the huge volume of water in the caldera lake, the unique geography, and the limited control capability, a potential hazard assessment can be represented. The study will contribute to build a geohazard map for the decision-makers and practitioners. Keywords: Volcanic flood, Caldera lake, Hazard assessment, Magma effusion Acknowledgement This research was supported by a grant [NEMA-BAEKDUSAN-2012-1-2] from the Volcanic Disaster Preparedness Research Center sponsored by National Emergency Management Agency of Korea.

  5. Flood-inundation maps for a 9.1-mile reach of the Coast Fork Willamette River near Creswell and Goshen, Lane County, Oregon

    USGS Publications Warehouse

    Hess, Glen W.; Haluska, Tana L.

    2016-04-13

    Digital flood-inundation maps for a 9.1-mile reach of the Coast Fork Willamette River near Creswell and Goshen, Oregon, were developed by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers (USACE). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected stages at the USGS streamgage at Coast Fork Willamette River near Goshen, Oregon (14157500), at State Highway 58. Current stage at the streamgage for estimating near-real-time areas of inundation may be obtained at http://waterdata.usgs.gov/or/nwis/uv/?site_no=14157500&PARAmeter_cd=00065,00060. In addition, the National Weather Service (NWS) forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.In this study, areas of inundation were provided by USACE. The inundated areas were developed from flood profiles simulated by a one-dimensional unsteady step‑backwater hydraulic model. The profiles were checked by the USACE using documented high-water marks from a January 2006 flood. The model was compared and quality assured using several other methods. The hydraulic model was then used to determine eight water-surface profiles at various flood stages referenced to the streamgage datum and ranging from 11.8 to 19.8 ft, approximately 2.6 ft above the highest recorded stage at the streamgage (17.17 ft) since 1950. The intervals between stages are variable and based on annual exceedance probability discharges, some of which approximate NWS action stages.The areas of inundation and water depth grids provided to USGS by USACE were used to create interactive flood‑inundation maps. The availability of these maps with current stage from USGS streamgage and forecasted stream stages from the NWS provide emergency management

  6. Large-scale flooding analysis in the suburbs of Tokyo Metropolis caused by levee breach of the Tone River using a 2D hydrodynamic model.

    PubMed

    Hai, Pham T; Magome, J; Yorozuya, A; Inomata, H; Fukami, K; Takeuchi, K

    2010-01-01

    In order to assess the effects of climate change on flood disasters in urban areas, we applied a two dimensional finite element hydrodynamic model (2D-FEM) to simulate flood processes for the case analysis of levee breach caused by Kathleen Typhoon on 16 September 1947 in Kurihashi reach of Tone River, upstream of Tokyo area. The purpose is to use the model to simulate flood inundation processes under the present topography and land-use conditions with impending extreme flood scenarios due to climate change for mega-urban areas like Tokyo. Simulation used 100 m resolution topographic data (in PWRI), which was derived from original LiDAR (Light Detection and Ranging) data, and levee breach hydrographic data in 1947. In this paper, we will describe the application of the model with calibration approach and techniques when applying for such fine spatial resolution in urban environments. The fine unstructured triangular FEM mesh of the model appeared to be the most capable of introducing of constructions like roads/levees in simulations. Model results can be used to generate flood mapping, subsequently uploaded to Google Earth interface, making the modeling and presentation process much comprehensible to the general public.

  7. Observed and forecast flood-inundation mapping application-A pilot study of an eleven-mile reach of the White River, Indianapolis, Indiana

    USGS Publications Warehouse

    Kim, Moon H.; Morlock, Scott E.; Arihood, Leslie D.; Kiesler, James L.

    2011-01-01

    Near-real-time and forecast flood-inundation mapping products resulted from a pilot study for an 11-mile reach of the White River in Indianapolis. The study was done by the U.S. Geological Survey (USGS), Indiana Silver Jackets hazard mitigation taskforce members, the National Weather Service (NWS), the Polis Center, and Indiana University, in cooperation with the City of Indianapolis, the Indianapolis Museum of Art, the Indiana Department of Homeland Security, and the Indiana Department of Natural Resources, Division of Water. The pilot project showed that it is technically feasible to create a flood-inundation map library by means of a two-dimensional hydraulic model, use a map from the library to quickly complete a moderately detailed local flood-loss estimate, and automatically run the hydraulic model during a flood event to provide the maps and flood-damage information through a Web graphical user interface. A library of static digital flood-inundation maps was created by means of a calibrated two-dimensional hydraulic model. Estimated water-surface elevations were developed for a range of river stages referenced to a USGS streamgage and NWS flood forecast point colocated within the study reach. These maps were made available through the Internet in several formats, including geographic information system, Keyhole Markup Language, and Portable Document Format. A flood-loss estimate was completed for part of the study reach by using one of the flood-inundation maps from the static library. The Federal Emergency Management Agency natural disaster-loss estimation program HAZUS-MH, in conjunction with local building information, was used to complete a level 2 analysis of flood-loss estimation. A Service-Oriented Architecture-based dynamic flood-inundation application was developed and was designed to start automatically during a flood, obtain near real-time and forecast data (from the colocated USGS streamgage and NWS flood forecast point within the study reach

  8. LiDAR-Derived Flood-Inundation Maps for Real-Time Flood-Mapping Applications, Tar River Basin, North Carolina

    USGS Publications Warehouse

    Bales, Jerad D.; Wagner, Chad R.; Tighe, Kirsten C.; Terziotti, Silvia

    2007-01-01

    Flood-inundation maps were created for selected streamgage sites in the North Carolina Tar River basin. Light detection and ranging (LiDAR) data with a vertical accuracy of about 20 centimeters, provided by the Floodplain Mapping Information System of the North Carolina Floodplain Mapping Program, were processed to produce topographic data for the inundation maps. Bare-earth mass point LiDAR data were reprocessed into a digital elevation model with regularly spaced 1.5-meter by 1.5-meter cells. A tool was developed as part of this project to connect flow paths, or streams, that were inappropriately disconnected in the digital elevation model by such features as a bridge or road crossing. The Hydraulic Engineering Center-River Analysis System (HEC-RAS) model, developed by the U.S. Army Corps of Engineers, was used for hydraulic modeling at each of the study sites. Eleven individual hydraulic models were developed for the Tar River basin sites. Seven models were developed for reaches with a single gage, and four models were developed for reaches of the Tar River main stem that receive flow from major gaged tributaries, or reaches in which multiple gages were near one another. Combined, the Tar River hydraulic models included 272 kilometers of streams in the basin, including about 162 kilometers on the Tar River main stem. The hydraulic models were calibrated to the most current stage-discharge relations at 11 long-term streamgages where rating curves were available. Medium- to high-flow discharge measurements were made at some of the sites without rating curves, and high-water marks from Hurricanes Fran and Floyd were available for high-stage calibration. Simulated rating curves matched measured curves over the full range of flows. Differences between measured and simulated water levels for a specified flow were no more than 0.44 meter and typically were less. The calibrated models were used to generate a set of water-surface profiles for each of the 11 modeled

  9. Application of STORMTOOLS's simplified flood inundation model with sea level rise to assess impacts to RI coastal areas

    NASA Astrophysics Data System (ADS)

    Spaulding, M. L.

    2015-12-01

    The vision for STORMTOOLS is to provide access to a suite of coastal planning tools (numerical models et al), available as a web service, that allows wide spread accessibly and applicability at high resolution for user selected coastal areas of interest. The first product developed under this framework were flood inundation maps, with and without sea level rise, for varying return periods for RI coastal waters. The flood mapping methodology is based on using the water level vs return periods at a primary NOAA water level gauging station and then spatially scaling the values, based on the predictions of high resolution, storm and wave simulations performed by Army Corp of Engineers, North Atlantic Comprehensive Coastal Study (NACCS) for tropical and extratropical storms on an unstructured grid, to estimate inundation levels for varying return periods. The scaling for the RI application used Newport, RI water levels as the reference point. Predictions are provided for once in 25, 50, and 100 yr return periods (at the upper 95% confidence level), with sea level rises of 1, 2, 3, and 5 ft. Simulations have also been performed for historical hurricane events including 1938, Carol (1954), Bob (1991), and Sandy (2012) and nuisance flooding events with return periods of 1, 3, 5, and 10 yr. Access to the flooding maps is via a web based, map viewer that seamlessly covers all coastal waters of the state at one meter resolution. The GIS structure of the map viewer allows overlays of additional relevant data sets (roads and highways, wastewater treatment facilities, schools, hospitals, emergency evacuation routes, etc.) as desired by the user. The simplified flooding maps are publically available and are now being implemented for state and community resilience planning and vulnerability assessment activities in response to climate change impacts.

  10. Flood-inundation maps for the St. Marys River at Decatur, Indiana

    USGS Publications Warehouse

    Strauch, Kellan R.

    2015-08-24

    The availability of these maps and associated Web mapping tools, along with the current river stage from USGS streamgages and forecasted flood stages from the NWS, provides emergency managers and residents with information that may be critical for flood-emergency planning and flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  11. Assessing inundation hazards to nuclear powerplant sites using geologically extended histories of riverine floods, tsunamis, and storm surges

    USGS Publications Warehouse

    O'Connor, Jim; Atwater, Brian F.; Cohn, Timothy A.; Cronin, Thomas M.; Keith, Mackenzie K.; Smith, Christopher G.; Mason, Jr., Robert R.

    2014-01-01

    A screening of the 104 nuclear powerplants in the United States licensed by the Nuclear Regulatory Commission (at 64 sites) indicates several sites for which paleoflood studies likely would provide additional flood-frequency information. Two sites—Duane Arnold, Iowa, on the Cedar River; and David-Besse, Ohio, on the Toussaint River—have geologic conditions suitable for creating and preserving stratigraphic records of flooding and few upstream dams that may complicate flood-frequency analysis. One site—Crystal River, Florida1, on the Withlacoochee River and only 4 kilometers from the coast—has high potential as a candidate for assessing riverine and marine inundation hazards. Several sites on the Mississippi River have high geologic potential, but upstream dams almost certainly now regulate peak flows. Nevertheless, studies on the Mississippi River to evaluate long-term flood frequency may provide results applicable to a wide spectrum of regional hazard issues. Several sites in the southeastern United States have high geologic potential, and studies at these sites also may be helpful in evaluating hazards from outburst floods from landslide dams (river blockages formed by mass movements), which may be a regional hazard. For all these sites, closer investigation and field reconnaissance would be needed to confirm suitable deposits and settings for a complete paleoflood analysis. Similar screenings may help identify high-potential sites for geologic investigations of tsunami and storm-surge hazards.

  12. Analysis of floods, including the tropical storm Irene inundation, of the Ottauquechee River in Woodstock, Bridgewater, and Killington and of Reservoir Brook in Bridgewater and Plymouth, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.

    2014-01-01

    In addition to the two digital flood inundation maps, flood profiles were created that depict the study reach flood elevation of tropical storm Irene of August 2011 and the 10-, 2-, 1-, and 0.2-percent AEP floods, also known as the 10-, 50-, 100-, and 500-year floods, respectively. The 10-, 2-, 1-, and 0.2-percent AEP flood discharges were determined using annual peak flow data from the USGS Ottauquechee River near West Bridgewater, Vt. streamgage (station 01150900). Flood profiles were computed for the Ottauquechee River and Reservoir Brook by means of a one-dimensional step-backwater model. The model was calibrated using documented high-water marks of the peak of the tropical storm Irene flood of August 2011 as well as stage discharge data as determined for USGS Ottauquechee River near West Bridgewater, Vt. streamgage (station 01150900). The simulated water-surface profiles were combined with a digital elevation model within a geographic information system to delineate the areas flooded during tropical storm Irene and for the 1-percent AEP water-surface profile. The digital elevation model data were derived from light detection and ranging (lidar) data obtained for a 3,281-foot (1,000-meter) corridor along the Ottauquechee River study reach and were augmented with 33-foot (10- meter) contour interval data in the modeled flood-inundation areas outside the lidar corridor. The 33-foot (10-meter) contour interval USGS 15-minute quadrangle topographic digital raster graphics map used to augment lidar data was produced at a scale of 1:24,000. The digital flood inundation maps and flood profiles along with information regarding current stage from USGS streamgages on the Internet provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

  13. Satellite Remote Sensing and Hydrological Modeling for Flood Inundation Mapping in Lake Victoria Basin: Implications for Hydrologic Prediction in Ungauged Basins

    NASA Astrophysics Data System (ADS)

    Khan, S. I.; Hong, Y.; Wang, J.; Yilmaz, K. K.; Gourley, J. J.; Adler, R. F.; Brakenridge, G. R.; Policelli, F.; Habib, S.; Irwin, D.

    2009-12-01

    Floods are among the most catastrophic natural disasters around the globe impacting human lives and infrastructure. Implementation of a flood prediction system can potentially reduce these losses. Typically, the set up and calibration of a hydrologic model requires in situ observations (e.g. rain gauges and stream gauges). Satellite remote sensing data have emerged as viable alternatives or supplements to in situ observations due to their coverage over ungauged regions. The focus of this study is to utilize the best available satellite products and integrate them in a state-of-the-art hydrologic model to characterize the spatial extent of flooding and associated hazards over sparsely-gauged or ungauged basins. This study presents a methodology based entirely on satellite remote sensing data to calibrate a hydrologic model, simulate the spatial extent of flooding, and evaluate the probability of detecting inundated areas. A raster-based distributed hydrologic model, CREST, was implemented for the Nzoia basin, a sub-basin of Lake Victoria (Africa). MODIS- and ASTER-based flood inundation maps were retrieved over the region and used to benchmark the distributed hydrologic model simulations of streamflow and inundation areas. The analysis showed the applicability of integrating satellite data products as input for a distributed hydrological model as well as direct estimation of flood extent maps. The quantification of flooding spatial extent through orbital sensors can help to evaluate hydrologic models and hence potentially improve hydrologic prediction and flood management strategies in ungauged catchments.

  14. Development of flood-inundation maps for the West Branch Susquehanna River near the Borough of Jersey Shore, Lycoming County, Pennsylvania

    USGS Publications Warehouse

    Roland, Mark A.; Hoffman, Scott A.

    2011-01-01

    Streamflow data, water-surface-elevation profiles derived from a Hydrologic Engineering Center River Analysis System hydraulic model, and geographical information system digital elevation models were used to develop a set of 18 flood-inundation maps for an approximately 5-mile reach of the West Branch Susquehanna River near the Borough of Jersey Shore, Pa. The inundation maps were created by the U.S. Geological Survey in cooperation with the Susquehanna River Basin Commission and Lycoming County as part of an ongoing effort by the National Oceanic and Atmospheric Administration's National Weather Service to focus on continued improvements to the flood forecasting and warning abilities in the Susquehanna River Basin and to modernize flood-forecasting methodologies. The maps, ranging from 23.0 to 40.0 feet in 1-foot increments, correspond to river stage at the U.S. Geological Survey streamgage 01549760 at Jersey Shore. The electronic files used to develop the maps were provided to the National Weather Service for incorporation into their Advanced Hydrologic Prediction Service website. The maps are displayed on this website, which serves as a web-based floodwarning system, and can be used to identify areas of predicted flood inundation associated with forecasted flood-peak stages. During times of flooding or predicted flooding, these maps can be used by emergency managers and the public to take proactive steps to protect life and reduce property damage caused by floods.

  15. Maps Showing Depth to Water Table, September 1976, and Area Inundated by the June 1975 Flood, Helena Valley, Lewis and Clark County, Montana

    USGS Publications Warehouse

    Wilke, Kathleen R.; Johnson, M.V.

    1978-01-01

    Depth to water table, September 1976, and area inundated by the June 1975 flood in the Helena valley, Montana, are mapped on two sheets, Helena and East Helena 7.5-minute quadrangles, at scale 1:48,000. Depth to water table was mapped using water-level measurements from existing shallow observation wells and selected domestic wells, and from field reconnaissance of topography. A hydrograph shows water-level fluctuation in two wells located in different parts of the valley. Area inundated by the June 1975 flood was mapped from aerial photos along Prickly Pear and Tenmile Creeks and by field reconnaissance along Silver Creek. (Woodard-USGS)

  16. Flood-inundation maps for Suwanee Creek from the confluence of Ivy Creek to the Noblin Ridge Drive bridge, Gwinnett County, Georgia

    USGS Publications Warehouse

    Musser, Jonathan W.

    2012-01-01

    Digital flood-inundation maps for a 6.9-mile reach of Suwanee Creek, from the confluence of Ivy Creek to the Noblin Ridge Drive bridge, were developed by the U.S. Geological Survey (USGS) in cooperation with Gwinnett County, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Suwanee Creek at Suwanee, Georgia (02334885). Current stage at this USGS streamgage may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that commonly are collocated at USGS streamgages. The forecasted peak-stage information for the USGS streamgage at Suwanee Creek at Suwanee (02334885), available through the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. A one-dimensional step-backwater model was developed using the U.S. Army Corps of Engineers HEC-RAS software for Suwanee Creek and was used to compute flood profiles for a 6.9-mile reach of the creek. The model was calibrated using the most current stage-discharge relations at the Suwanee Creek at Suwanee streamgage (02334885). The hydraulic model was then used to determine 19 water-surface profiles for flood stages at the Suwanee Creek streamgage at 0.5-foot intervals referenced to the streamgage. The profiles ranged from just above bankfull stage (7.0 feet) to approximately 1.7 feet above the highest recorded water level at the streamgage (16.0 feet). The simulated water-surface profiles were then combined

  17. Low-cost, open access flood inundation modelling with sparse data: A case study of the Lower Damodar River Basin, India

    NASA Astrophysics Data System (ADS)

    Sanyal, J.; Carbonneau, P.

    2012-04-01

    In developed nations, flood monitoring and management benefits from a range of high-cost modern data and methods such as high resolution terrain data and digital elevation models, cloud penetrating radar data which defines flood extents and advanced computer modelling software. However, in developing countries, such resources are rarely available. The situation is further compounded by the fact that developing countries often have higher population densities which are even more vulnerable to flood hazards. This paper addresses these issues and presents a methodology for flood modelling which is accessible within the resource constraints which are typical in developing countries. A 20 Km flood prone reach of the lower Damodar River Basin in Northern India has been selected as the study area. This area has been subjected to inundation 4 times during the last 6 years due to water released from a network of upstream reservoirs during intense monsoon rainfall events. Within the study site, topographic data from three sources was available. First, we used SRTM data. Second, 40 cross-sections were surveyed with differential GPS and a handheld depth sounder. These data were corrected and their datum adjusted to that of the SRTM DEM with the precise point positioning (PPP) system freely available from Natural Resources Canada. Third, low-cost Cartosat-1 stereo images were used to produce a DEM with Leica Photogrammetry Suite. The elevation points derived from Cartosat-1 images were then manually edited in a 3D stereo viewing environment to represent the narrow but hydraulically significant features, such as the embankments, roads, smaller depressions and merged with the surveyed points for the channel. The SRTM data over the featureless farmland was also made bare-earth and merged with the rest of the mass points to create a hybrid point cloud. The RMSE of this hybrid terrain data was found to be 1.1 m as compared to 2.4 m for the original SRTM DEM. TELEMAC2D, an open

  18. Peak Discharge, Flood Profile, Flood Inundation, and Debris Movement Accompanying the Failure of the Upper Reservoir at the Taum Sauk Pump Storage Facility near Lesterville, Missouri

    USGS Publications Warehouse

    Rydlund, Jr., Paul H.

    2006-01-01

    The Taum Sauk pump-storage hydroelectric power plant located in Reynolds County, Missouri, uses turbines that operate as pumps and hydraulic head generated by discharging water from an upper to a lower reservoir to produce electricity. A 55-acre upper reservoir with a 1.5- billion gallon capacity was built on top of Proffit Mountain, approximately 760 feet above the floodplain of the East Fork Black River. At approximately 5:16 am on December 14, 2005, a 680-foot wide section of the upper reservoir embankment failed suddenly, sending water rushing down the western side of Proffit Mountain and emptying into the floodplain of East Fork Black River. Flood waters from the upper reservoir flowed downstream through Johnson's Shut-Ins State Park and into the lower reservoir of the East Fork Black River. Floods such as this present unique challenges and opportunities to analyze and document peak-flow characteristics, flood profiles, inundation extents, and debris movement. On December 16, 2005, Light Detection and Ranging (LiDAR) data were collected and used to support hydraulic analyses, forensic failure analyses, damage extent, and mitigation of future disasters. To evaluate the impact of sedimentation in the lower reservoir, a bathymetric survey conducted on December 22 and 23, 2005, was compared to a previous bathymetric survey conducted in April, 2005. Survey results indicated the maximum reservoir capacity difference of 147 acre-feet existed at a pool elevation of 730 feet. Peak discharge estimates of 289,000 cubic feet per second along Proffit Mountain and 95,000 cubic feet per second along the East Fork Black River were determined through indirect measurement techniques. The magnitude of the embankment failure flood along the East Fork Black River was approximately 4 times greater than the 100-year flood frequency estimate of 21,900 cubic feet per second, and approximately 3 times greater than the 500-year flood frequency estimate of 30,500 cubic feet per second

  19. Anthropogenic impact on flood-risk: a large-scale assessment for planning controlled inundation strategies along the River Po

    NASA Astrophysics Data System (ADS)

    Domeneghetti, Alessio; Castellarin, Attilio; Brath, Armando

    2013-04-01

    The European Flood Directive (2007/60/EC) has fostered the development of innovative and sustainable approaches and methodologies for flood-risk mitigation and management. Furthermore, concerning flood-risk mitigation, the increasing awareness of how the anthropogenic pressures (e.g. demographic and land-use dynamics, uncontrolled urban and industrial expansion on flood-prone area) could strongly increase potential flood damages and losses has triggered a paradigm shift from "defending the territory against flooding" (e.g. by means of levee system strengthening and heightening) to "living with floods" (e.g. promoting compatible land-uses or adopting controlled flooding strategies of areas located outside the main embankments). The assessment of how socio-economic dynamics may influence flood-risk represents a fundamental skill that should be considered for planning a sustainable industrial and urban development of flood-prone areas, reducing their vulnerability and therefore minimizing socio-economic and ecological losses due to large flood events. These aspects, which are of fundamental importance for Institutions and public bodies in charge of Flood Directive requirements, need to be considered through a holistic approach at river basin scale. This study focuses on the evaluation of large-scale flood-risk mitigation strategies for the middle-lower reach of River Po (~350km), the longest Italian river and the largest in terms of streamflow. Due to the social and economical importance of the Po River floodplain (almost 40% of the total national gross product results from this area), our study aims at investigating the potential of combining simplified vulnerability indices with a quasi-2D model for the definition of sustainable and robust flood-risk mitigation strategies. Referring to past (1954) and recent (2006) land-use data sets (e.g. CORINE) we propose simplified vulnerability indices for assessing potential flood-risk of industrial and urbanized flood prone

  20. Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping

    NASA Astrophysics Data System (ADS)

    Dimitriadis, Panayiotis; Tegos, Aristoteles; Oikonomou, Athanasios; Pagana, Vassiliki; Koukouvinos, Antonios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2016-03-01

    One-dimensional and quasi-two-dimensional hydraulic freeware models (HEC-RAS, LISFLOOD-FP and FLO-2d) are widely used for flood inundation mapping. These models are tested on a benchmark test with a mixed rectangular-triangular channel cross section. Using a Monte-Carlo approach, we employ extended sensitivity analysis by simultaneously varying the input discharge, longitudinal and lateral gradients and roughness coefficients, as well as the grid cell size. Based on statistical analysis of three output variables of interest, i.e. water depths at the inflow and outflow locations and total flood volume, we investigate the uncertainty enclosed in different model configurations and flow conditions, without the influence of errors and other assumptions on topography, channel geometry and boundary conditions. Moreover, we estimate the uncertainty associated to each input variable and we compare it to the overall one. The outcomes of the benchmark analysis are further highlighted by applying the three models to real-world flood propagation problems, in the context of two challenging case studies in Greece.

  1. Developments of a flood inundation model based on the cellular automata approach: Testing different methods to improve model performance

    NASA Astrophysics Data System (ADS)

    Dottori, F.; Todini, E.

    2011-01-01

    Over the last decade, several flood inundation models based on a reduced complexity approach have been developed and successfully applied in a wide range of practical cases. In the present paper, a model based on the cellular automata approach is analyzed in detail and tested in several numerical cases, comparing the results both with analytical solutions and different hydraulic models. In order to improve the model’s performance, the original code based on the diffusive wave equations and a constant time step scheme is modified through the implementation of two techniques available in literature: an inertial formulation for the computation of discharges, originally developed for the LISFLOOD-FP model by Bates et al. (2010); and the incorporation of a local adaptive time step algorithm, based on a technique originally presented by Zhang et al. (1994). The analysis of the numerical cases showed that the proposed model can be a valuable tool for the simulation of flood inundation events. When applied to one-dimensional numerical cases, the model well reproduced the wave propagation, whereas it showed some limitations in reproducing two-dimensional flow dynamics in respect to a model based on the full shallow water equations. However, differences were found to be comparable with the uncertainty level related to available data for actual flood events. The use of the inertial formulation was very effective in all the cases, and reduced run time up to 97% as compared with the diffusive formulation, although it did not improve the overall accuracy of results. Finally, the incorporation of the local time step algorithm produced a speedup from 1.2 x to 4 x, depending on the simulation and the model version in use, with no loss of accuracy in the results.

  2. Estimated Flood-Inundation Mapping for the Upper Blue River, Indian Creek, and Dyke Branch in Kansas City, Missouri, 2006-08

    USGS Publications Warehouse

    Kelly, Brian P.; Huizinga, Richard J.

    2008-01-01

    In the interest of improved public safety during flooding, the U.S. Geological Survey, in cooperation with the city of Kansas City, Missouri, completed a flood-inundation study of the Blue River in Kansas City, Missouri, from the U.S. Geological Survey streamflow gage at Kenneth Road to 63rd Street, of Indian Creek from the Kansas-Missouri border to its mouth, and of Dyke Branch from the Kansas-Missouri border to its mouth, to determine the estimated extent of flood inundation at selected flood stages on the Blue River, Indian Creek, and Dyke Branch. The results of this study spatially interpolate information provided by U.S. Geological Survey gages, Kansas City Automated Local Evaluation in Real Time gages, and the National Weather Service flood-peak prediction service that comprise the Blue River flood-alert system and are a valuable tool for public officials and residents to minimize flood deaths and damage in Kansas City. To provide public access to the information presented in this report, a World Wide Web site (http://mo.water.usgs.gov/indep/kelly/blueriver) was created that displays the results of two-dimensional modeling between Hickman Mills Drive and 63rd Street, estimated flood-inundation maps for 13 flood stages, the latest gage heights, and National Weather Service stage forecasts for each forecast location within the study area. The results of a previous study of flood inundation on the Blue River from 63rd Street to the mouth also are available. In addition the full text of this report, all tables and maps are available for download (http://pubs.usgs.gov/sir/2008/5068). Thirteen flood-inundation maps were produced at 2-foot intervals for water-surface elevations from 763.8 to 787.8 feet referenced to the Blue River at the 63rd Street Automated Local Evaluation in Real Time stream gage operated by the city of Kansas City, Missouri. Each map is associated with gages at Kenneth Road, Blue Ridge Boulevard, Kansas City (at Bannister Road), U.S. Highway 71

  3. Flood-inundation maps for the Saluda River from Old Easley Bridge Road to Saluda Lake Dam near Greenville, South Carolina

    USGS Publications Warehouse

    Benedict, Stephen T.; Caldwell, Andral W.; Clark, Jimmy M.

    2013-01-01

    Digital flood-inundation maps for a 3.95-mile reach of the Saluda River from approximately 815 feet downstream from Old Easley Bridge Road to approximately 150 feet downstream from Saluda Lake Dam near Greenville, South Carolina, were developed by the U.S. Geological Survey (USGS). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Saluda River near Greenville, South Carolina (station 02162500). Current conditions at the USGS streamgage may be obtained through the National Water Information System Web site at http://waterdata.usgs.gov/sc/nwis/uv/?site_no=02162500&PARAmeter_cd=00065,00060,00062. The National Weather Service (NWS) forecasts flood hydrographs at many places that are often collocated with USGS streamgages. Forecasted peak-stage information is available on the Internet at the NWS Advanced Hydrologic Prediction Service (AHPS) flood-warning system Web site (http://water.weather.gov/ahps/) and may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-streamflow relations at USGS streamgage station 02162500, Saluda River near Greenville, South Carolina. The hydraulic model was then used to determine water-surface profiles for flood stages at 1.0-foot intervals referenced to the streamgage datum and ranging from approximately bankfull to 2 feet higher than the highest recorded water level at the streamgage. The simulated water-surface profiles were then exported to a geographic information system, ArcGIS, and combined with a digital elevation model (derived from Light Detection and Ranging [LiDAR] data with a 0

  4. Characterization of peak streamflows and flood inundation of selected areas in Louisiana, Texas, Arkansas, and Mississippi from flood of March 2016

    USGS Publications Warehouse

    Breaker, Brian K.; Watson, Kara M.; Ensminger, Paul A.; Storm, John B.; Rose, Claire E.

    2016-11-29

    Heavy rainfall occurred across Louisiana, Texas, Arkansas, and Mississippi in March 2016 as a result of a slow-moving southward dip in the jetstream, funneling tropical moisture into parts of the Gulf Coast States and the Mississippi River Valley. The storm caused major flooding in the northwestern and southeastern parts of Louisiana and in eastern Texas. Flooding also occurred in the Mississippi River Valley in Arkansas and Mississippi. Over 26 inches of rain were reported near Monroe, Louisiana, over the duration of the storm. In March 2016, U.S. Geological Survey (USGS) hydrographers made more than 500 streamflow measurements in Louisiana, Texas, Arkansas, and Mississippi. Many of those streamflow measurements were made to verify the accuracy of stage-streamflow relations at gaging stations operated by the USGS. Peak streamflows were the highest on record at 14 locations, and streamflows at 29 locations ranked in the top five for the period of record at USGS streamflow-gaging stations analyzed for this report. Following the storm, USGS hydrographers documented 451 high-water marks in Louisiana and on the western side of the Sabine River in Texas. Many of these high-water marks were used to create 19 flood-inundation maps for selected areas of Louisiana and Texas that experienced flooding in March 2016.

  5. A computationally efficient 2D hydraulic approach for global flood hazard modeling

    NASA Astrophysics Data System (ADS)

    Begnudelli, L.; Kaheil, Y.; Sanders, B. F.

    2014-12-01

    We present a physically-based flood hazard model that incorporates two main components: a hydrologic model and a hydraulic model. For hydrology we use TOPNET, a more comprehensive version of the original TOPMODEL. To simulate flood propagation, we use a 2D Godunov-type finite volume shallow water model. Physically-based global flood hazard simulation poses enormous computational challenges stemming from the increasingly fine resolution of available topographic data which represents the key input. Parallel computing helps to distribute the computational cost, but the computationally-intensive hydraulic model must be made far faster and agile for global-scale feasibility. Here we present a novel technique for hydraulic modeling whereby the computational grid is much coarser (e.g., 5-50 times) than the available topographic data, but the coarse grid retains the storage and conveyance (cross-sectional area) of the fine resolution data. This allows the 2D hydraulic model to be run on extremely large domains (e.g. thousands km2) with a single computational processor, and opens the door to global coverage with parallel computing. The model also downscales the coarse grid results onto the high-resolution topographic data to produce fine-scale predictions of flood depths and velocities. The model achieves computational speeds typical of very coarse grids while achieving an accuracy expected of a much finer resolution. In addition, the model has potential for assimilation of remotely sensed water elevations, to define boundary conditions based on water levels or river discharges and to improve model results. The model is applied to two river basins: the Susquehanna River in Pennsylvania, and the Ogeechee River in Florida. The two rivers represent different scales and span a wide range of topographic characteristics. Comparing spatial resolutions ranging between 30 m to 500 m in both river basins, the new technique was able to reduce simulation runtime by at least 25 fold

  6. Flood-inundation maps for the White River near Edwardsport, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2014-01-01

    The availability of these maps, along with Internet information regarding current stage from the USGS streamgage 03360730 White River near Edwardsport, Ind., and forecasted stream stages from the National Weather Service, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  7. Flood-inundation maps for the Tippecanoe River at Winamac, Indiana

    USGS Publications Warehouse

    Menke, Chad D.; Bunch, Aubrey R.

    2015-09-25

    For this study, flood profiles were computed for the Tippecanoe River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at the Tippecanoe River streamgage, in combination with the current (2014) Federal Emergency Management Agency flood-insurance study for Pulaski County. The calibrated hydraulic model was then used to determine nine water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The 1-percent annual exceedance probability (AEP) flood stage (flood with recurrence intervals within 100 years) has not been determined yet for this streamgage location. The rating has not been developed for the 1-percent AEP because the streamgage dates to only 2001. The simulated water-surface profiles were then used with a geographic information system (GIS) digital elevation model (DEM, derived from Light Detection and Ranging [lidar]) in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage 03331753, Tippecanoe River at Winamac, Ind., and forecast stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  8. Delayed Flood Recession in Central Yangtze Floodplains Can Cause Significant Food Shortages for Wintering Geese: Results of Inundation Experiment

    NASA Astrophysics Data System (ADS)

    Guan, Lei; Wen, Li; Feng, Duoduo; Zhang, Hong; Lei, Guangchun

    2014-12-01

    Carex meadows are critical habitat for wintering geese in the floodplains of the middle and lower reaches of Yangtze River, China. These meadows follow a growth cycle closely tied to the seasonal hydrological fluctuation: as water levels recede in the fall, exposed mudflats provide habitat for Carex spp. growth. The seasonal growth of Carex overlaps the arrival of wintering geese and provides an important food source for the migrants. Recent alterations to the Yangtze's hydrology, however, have disrupted the synchronous relationship between water levels, Carex growth and wintering geese at Dongting Lake. In October 2012, we carried out an outdoor mesocosm experiment to investigate potential impacts of delayed water recession on the germination and growth of Carex heterolepis, the dominant Carex species at Dongting Lake, to understand how changes in hydrology might impact wintering goose habitat. Results showed that the delayed flood recession exerted significant impact on the first growth cycle of Carex growth. Prolonged inundation significantly lowered the intrinsic growth rate ( P = 0.03) and maximum growth rates ( P = 0.02). It also took significantly longer time to reach the peak growth rate ( P = 0.04 and 0.05 for number of shoot and biomass, respectively). As a result, biomass accumulation was reduced by 45, 62 and 90 % for 10-day, 20-day and 30-day inundation treatments, respectively. These results indicate a severe risk of food shortage for wintering geese when water recession delayed. This potential risk should be taken into consideration when operating any hydrological control structures that alter the flood regimes in Dongting Lake.

  9. Delayed flood recession in central Yangtze floodplains can cause significant food shortages for wintering geese: results of inundation experiment.

    PubMed

    Guan, Lei; Wen, Li; Feng, Duoduo; Zhang, Hong; Lei, Guangchun

    2014-12-01

    Carex meadows are critical habitat for wintering geese in the floodplains of the middle and lower reaches of Yangtze River, China. These meadows follow a growth cycle closely tied to the seasonal hydrological fluctuation: as water levels recede in the fall, exposed mudflats provide habitat for Carex spp. growth. The seasonal growth of Carex overlaps the arrival of wintering geese and provides an important food source for the migrants. Recent alterations to the Yangtze's hydrology, however, have disrupted the synchronous relationship between water levels, Carex growth and wintering geese at Dongting Lake. In October 2012, we carried out an outdoor mesocosm experiment to investigate potential impacts of delayed water recession on the germination and growth of Carex heterolepis, the dominant Carex species at Dongting Lake, to understand how changes in hydrology might impact wintering goose habitat. Results showed that the delayed flood recession exerted significant impact on the first growth cycle of Carex growth. Prolonged inundation significantly lowered the intrinsic growth rate (P = 0.03) and maximum growth rates (P = 0.02). It also took significantly longer time to reach the peak growth rate (P = 0.04 and 0.05 for number of shoot and biomass, respectively). As a result, biomass accumulation was reduced by 45, 62 and 90 % for 10-day, 20-day and 30-day inundation treatments, respectively. These results indicate a severe risk of food shortage for wintering geese when water recession delayed. This potential risk should be taken into consideration when operating any hydrological control structures that alter the flood regimes in Dongting Lake.

  10. Inventory and mapping of flood inundation using interactive digital image analysis techniques

    USGS Publications Warehouse

    Rohde, Wayne G.; Nelson, Charles A.; Taranik, J.V.

    1979-01-01

    LANDSAT digital data and color infra-red photographs were used in a multiphase sampling scheme to estimate the area of agricultural land affected by a flood. The LANDSAT data were classified with a maximum likelihood algorithm. Stratification of the LANDSAT data, prior to classification, greatly reduced misclassification errors. The classification results were used to prepare a map overlay showing the areal extent of flooding. These data also provided statistics required to estimate sample size in a two phase sampling scheme, and provided quick, accurate estimates of areas flooded for the first phase. The measurements made in the second phase, based on ground data and photo-interpretation, were used with two phase sampling statistics to estimate the area of agricultural land affected by flooding These results show that LANDSAT digital data can be used to prepare map overlays showing the extent of flooding on agricultural land and, with two phase sampling procedures, can provide acreage estimates with sampling errors of about 5 percent. This procedure provides a technique for rapidly assessing the areal extent of flood conditions on agricultural land and would provide a basis for designing a sampling framework to estimate the impact of flooding on crop production.

  11. Bioavailability of Mercury to Riverine Food Webs as a Function of Flood-Event Inundation of Channel Boundary Sediments

    NASA Astrophysics Data System (ADS)

    Singer, M. B.; Pellachini, C.; Blum, J. D.; Marvin-DiPasquale, M. C.; Donovan, P. M.

    2013-12-01

    Bioavailability of sediment-adsorbed contaminants to food webs in river corridors is typically controlled by biological, chemical, and physical factors, but understanding of their respective influences is limited due to a dearth of landscape-scale investigations of these biogeochemical links. Studies that account for the dynamics and interactions of hydrology and sediment transport in affecting the reactivity of sediment-adsorbed heavy metals such as mercury (Hg) are particularly lacking. Sequences of flood events generate complex inundation histories with banks, terraces, and floodplains that have the potential to alter local redox conditions and thereby affect the oxidation of elemental Hg0 to inorganic Hg(II), and the microbial conversion of Hg(II) to methylmercury (MeHg), potentially increasing the risk of Hg uptake into aquatic food webs. However, the probability distributions of saturation/inundation frequency and duration are typically unknown for channel boundaries along sediment transport pathways, and landscape-scale characterizations of Hg reactivity are rare along contaminated rivers. This research provides the first links between the dynamics of physical processes and biochemical processing and uptake into food webs in fluvial systems beset by large-scale mining contamination. Here we present new research on Hg-contaminated legacy terraces and banks along the Yuba River anthropogenic fan, produced by 19th C. hydraulic gold mining in Northern California. To assess the changes in Hg(II) availability for methylation and MeHg bioavailability into the food web, we combine numerical modeling of streamflow with geochemical assays of total Hg and Hg reactivity to identify hot spots of toxicity within the river corridor as a function of cycles of wetting/drying. We employ a 3D hydraulic model to route historical streamflow hydrographs from major flood events through the Yuba and Feather Rivers into the Central Valley to assess the frequency and duration of

  12. Flood-inundation maps for the Saddle River in Ho-Ho-Kus Borough, the Village of Ridgewood, and Paramus Borough, New Jersey, 2013

    USGS Publications Warehouse

    Watson, Kara M.; Niemoczynski, Michal J.

    2014-01-01

    Digital flood-inundation maps for a 5.4-mile reach of the Saddle River in New Jersey from Hollywood Avenue in Ho-Ho-Kus Borough downstream through the Village of Ridgewood and Paramus Borough to the confluence with Hohokus Brook in the Village of Ridgewood were created by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Saddle River at Ridgewood, New Jersey (station 01390500). Current conditions for estimating near real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/nwis/uv?site_no=01390500 or at the National Weather Services (NWS) Advanced Hydrologic Prediction Service (AHPS) at http://water.weather.gov/ahps2/hydrograph.php?wfo=okx&gage=rwdn4. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation (March 11, 2011) at the USGS streamgage 01390500, Saddle River at Ridgewood, New Jersey. The hydraulic model was then used to compute 10 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum, North American Vertical Datum of 1988 (NAVD 88), and ranging from 5 ft, the NWS “action and minor flood stage”, to 14 ft, which is the maximum extent of the stage-discharge rating and 0.6 ft higher than the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system 3-meter (9.84-ft) digital elevation model derived from Light Detection and Ranging (lidar) data in order to delineate the area flooded

  13. Flood-inundation maps for the Peckman River in the Townships of Verona, Cedar Grove, and Little Falls, and the Borough of Woodland Park, New Jersey, 2014

    USGS Publications Warehouse

    Niemoczynski, Michal J.; Watson, Kara M.

    2016-10-19

    Digital flood-inundation maps for an approximate 7.5-mile reach of the Peckman River in New Jersey, which extends from Verona Lake Dam in the Township of Verona downstream through the Township of Cedar Grove and the Township of Little Falls to the confluence with the Passaic River in the Borough of Woodland Park, were created by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the probable areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Peckman River at Ozone Avenue at Verona, New Jersey (station number 01389534). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/.Flood profiles were simulated for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relations at USGS streamgages on the Peckman River at Ozone Avenue at Verona, New Jersey (station number 01389534) and the Peckman River at Little Falls, New Jersey (station number 01389550). The hydraulic model was then used to compute eight water-surface profiles for flood stages at 0.5-foot (ft) intervals ranging from 3.0 ft or near bankfull to 6.5 ft, which is approximately the highest recorded water level during the period of record (1979–2014) at USGS streamgage 01389534, Peckman River at Ozone Avenue at Verona, New Jersey. The simulated water-surface profiles were then combined with a geographic information system digital elevation model derived from light detection and ranging (lidar) data to delineate the area flooded at each water level.The availability of these maps along with Internet information regarding current stage from the USGS

  14. Analysis and inundation mapping of the April-May 2011 flood at selected locations in northern and eastern Arkansas and southern Missouri

    USGS Publications Warehouse

    Westerman, Drew A.; Merriman, Katherine R.; De Lanois, Jeanne L.; Berenbrock, Charles

    2013-01-01

    Precipitation that fell from April 19 through May 3, 2011, resulted in widespread flooding across northern and eastern Arkansas and southern Missouri. The first storm produced a total of approximately 16 inches of precipitation over an 8-day period, and the following storms produced as much as 12 inches of precipitation over a 2-day period. Moderate to major flooding occurred quickly along many streams within Arkansas and Missouri (including the Black, Cache, Illinois, St. Francis, and White Rivers) at levels that had not been seen since the historic 1927 floods. The 2011 flood claimed an estimated 21 lives in Arkansas and Missouri, and damage caused by the flooding resulted in a Federal Disaster Declaration for 59 Arkansas counties that received Federal or State assistance. To further the goal of documenting and understanding floods, the U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency, the U.S. Army Corps of Engineers–Little Rock and Memphis Districts, and Arkansas Natural Resources Commission, conducted a study to summarize meteorological and hydrological conditions before the flood; computed flood-peak magnitudes for 39 streamgages; estimated annual exceedance probabilities for 37 of those streamgages; determined the joint probabilities for 11 streamgages paired to the Mississippi River at Helena, Arkansas, which refers to the probability that locations on two paired streams simultaneously experience floods of a magnitude greater than or equal to a given annual exceedance probability; collected high-water marks; constructed flood-peak inundation maps showing maximum flood extent and water depths; and summarized flood damages and effects. For the period of record used in this report, peak-of-record stage occurred at 24 of the 39 streamgages, and peak-of-record streamflow occurred at 13 of the 30 streamgages where streamflow was determined. Annual exceedance probabilities were estimated to be less than 0.5 percent at three

  15. Using an extended 2D hydrodynamic model for evaluating damage risk caused by extreme rain events: Flash-Flood-Risk-Map (FFRM) Upper Austria

    NASA Astrophysics Data System (ADS)

    Humer, Günter; Reithofer, Andreas

    2016-04-01

    Using an extended 2D hydrodynamic model for evaluating damage risk caused by extreme rain events: Flash-Flood-Risk-Map (FFRM) Upper Austria Considering the increase in flash flood events causing massive damage during the last years in urban but also rural areas [1-4], the requirement for hydrodynamic calculation of flash flood prone areas and possible countermeasures has arisen to many municipalities and local governments. Besides the German based URBAS project [1], also the EU-funded FP7 research project "SWITCH-ON" [5] addresses the damage risk caused by flash floods in the sub-project "FFRM" (Flash Flood Risk Map Upper Austria) by calculating damage risk for buildings and vulnerable infrastructure like schools and hospitals caused by flash-flood driven inundation. While danger zones in riverine flooding are established as an integral part of spatial planning, flash floods caused by overland runoff from extreme rain events have been for long an underrated safety hazard not only for buildings and infrastructure, but man and animals as well. Based on the widespread 2D-model "hydro_as-2D", an extension was developed, which calculates the runoff formation from a spatially and temporally variable precipitation and determines two dimensionally the land surface area runoff and its concentration. The conception of the model is to preprocess the precipitation data and calculate the effective runoff-volume for a short time step of e.g. five minutes. This volume is applied to the nodes of the 2D-model and the calculation of the hydrodynamic model is started. At the end of each time step, the model run is stopped, the preprocessing step is repeated and the hydraulic model calculation is continued. In view of the later use for the whole of Upper Austria (12.000 km²) a model grid of 25x25 m² was established using digital elevation data. Model parameters could be estimated for the small catchment of river Ach, which was hit by an intense rain event with up to 109 mm per hour

  16. On the integration of HydroProg and FloodMap: towards real-time inundation predictions in the upper Nysa Klodzka basin (SW Poland)

    NASA Astrophysics Data System (ADS)

    Yu, Dapeng; Mizinski, Bartlomiej; Latocha, Agnieszka; Parzoch, Krzysztof; Niedzielski, Tomasz

    2015-04-01

    The paper summarizes attempts to link the HydroProg system for issuing the real-time warnings against hydrologic hazards (research project no. 2011/01/D/ST10/04171 of the National Science Centre of Poland) with the hydrodynamic FloodMap model. HydroProg itself integrates hydrometeorological gauging networks with dissimilar hydrologic models in order to deliver multiple river stage prognoses and their multimodel ensemble prediction. FloodMap uses HydroProg-delivered forecasts and, along with data on topography and bed profiles, produces short-term (3-hour) prognoses of inundation. The research is carried out in five test sites located in the upper Nysa Klodzka basin (SW Poland), where the HydroProg-Klodzko prototype is experimentally implemented, and is steadily providing the users with experimental prognoses of river stages (www.klodzko.hydroprog.uni.wroc.pl). The successful implementation of HydroProg in Klodzko County is due to the partnership with its authorities who developed and maintain the Local System for Flood Monitoring (Lokalny System Oslony Przeciwpowodziowej - LSOP). For the purpose of HydroProg-FloodMap integration we selected: (1) three hydrograph prediction approaches offered by HydroProg-Klodzko, (2) five specific peak flow events, and (3) five test sites along four mountainous rivers of the study area, focusing on 3-hour hydrograph predictions. The calibration of the FloodMap model is based on an overbank flow reconstruction, produced as a result of mapping geomorphological consequences of the flood that occurred in the Zelazno site on 26-28 June 2009. The discussion as to whether the calibrated model can be extrapolated and used in the remaining test sites is also provided. By utilizing FloodMap with observed water depth data we produce simulated inundation, which we verify against the orthophoto images acquired by the Unmanned Aerial Vehicle (UAV). Subsequently, we again run the FloodMap model with the HydroProg-delivered prognoses of

  17. Flood-inundation maps for the White River at Indianapolis, Indiana, 2014

    USGS Publications Warehouse

    Nystrom, Elizabeth A.

    2015-01-01

    The availability of these maps, along with Internet information regarding current stage from the USGS streamgage and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for postflood recovery efforts.

  18. Flood-inundation maps for Grand River, Red Cedar River, and Sycamore Creek near Lansing, Michigan

    USGS Publications Warehouse

    Whitehead, Matthew; Ostheimer, Chad J.

    2015-08-26

    These maps, used in conjunction with real-time USGS streamgage data and NWS forecasting, provide critical information to emergency management personnel and the public. This information is used to plan flood response actions, such as evacuations and road closures, as well as aid in postflood recovery efforts.

  19. Method for estimating potential wetland extent by utilizing streamflow statistics and flood-inundation mapping techniques: Pilot study for land along the Wabash River near Terre Haute, Indiana

    USGS Publications Warehouse

    Kim, Moon H.; Ritz, Christian T.; Arvin, Donald V.

    2012-01-01

    Potential wetland extents were estimated for a 14-mile reach of the Wabash River near Terre Haute, Indiana. This pilot study was completed by the U.S. Geological Survey in cooperation with the U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS). The study showed that potential wetland extents can be estimated by analyzing streamflow statistics with the available streamgage data, calculating the approximate water-surface elevation along the river, and generating maps by use of flood-inundation mapping techniques. Planning successful restorations for Wetland Reserve Program (WRP) easements requires a determination of areas that show evidence of being in a zone prone to sustained or frequent flooding. Zone determinations of this type are used by WRP planners to define the actively inundated area and make decisions on restoration-practice installation. According to WRP planning guidelines, a site needs to show evidence of being in an "inundation zone" that is prone to sustained or frequent flooding for a period of 7 consecutive days at least once every 2 years on average in order to meet the planning criteria for determining a wetland for a restoration in agricultural land. By calculating the annual highest 7-consecutive-day mean discharge with a 2-year recurrence interval (7MQ2) at a streamgage on the basis of available streamflow data, one can determine the water-surface elevation corresponding to the calculated flow that defines the estimated inundation zone along the river. By using the estimated water-surface elevation ("inundation elevation") along the river, an approximate extent of potential wetland for a restoration in agricultural land can be mapped. As part of the pilot study, a set of maps representing the estimated potential wetland extents was generated in a geographic information system (GIS) application by combining (1) a digital water-surface plane representing the surface of inundation elevation that sloped in the downstream

  20. CHEM2D: a two-dimensional, three-phase, nine-component chemical flood simulator. Volume I. CHEM2D technical description and FORTRAN code

    SciTech Connect

    Fanchi, J.R.

    1985-04-01

    Under the sponsorship of the US Department of Energy, a publicly available chemical simulator has been evaluated and substantially enhanced to serve as a useful tool for projecting polymer or chemical flood performance. The program, CHEM2D, is a two-dimensional, three-phase, nine-component finite-difference numerical simulator. It can model primary depletion, waterfloods, polymer floods, and micellar/polymer floods using heterogeneous linear, areal, or cross-sectional reservoir descriptions. The user may specify well performance as either pressure or rate constrained. Both a constant time step size and a variable time step size based on extrapolation of concentration changes are available as options. A solution technique which is implicit in pressure and explicit in saturations and concentrations is used. The major physical mechanisms that are modeled include adsorption, capillary trapping, cation exchange, dilution, dispersion, interfacial tension, binary or ternary phase behavior, non-Newtonian polymer rheology, and two-phase or three-phase relative permeability. Typical components include water, oil, surfactant, polymer, and three ions (chloride, calcium, and sodium). Components may partition amongst the aqueous, oleic, and microemulsion phases. Volume I of this report provides a discussion of the formulation and algorithms used within CHEM2D. Included in Volume I are a number of validation and illustrative examples, as well as the FORTRAN code. The CHEM2D user's manual, Volume II, contains both the input data sets for the examples presented in Volume I and an example output. All appendices and a phase behavior calculation program are collected in Volume III. 20 references.

  1. TWAVE: A Modeling System for Flooding and Inundation of Islands by Tropical Storms

    DTIC Science & Technology

    2009-01-01

    island flood estimates. One of these tools is a simple, first-order integrated wave modeling pack- age , called TWAVE (Sánchez et al. 2007). TWAVE is...200.333 -999 G07 21.833 200.417 -999 G08 21.833 200.500 -999 G09 21.833 200.583 -999 G10 21.833 200.667 -999 ERDC/CHL TR-09-2 38

  2. Flood-inundation maps for Sweetwater Creek from above the confluence of Powder Springs Creek to the Interstate 20 bridge, Cobb and Douglas Counties, Georgia

    USGS Publications Warehouse

    Musser, Jonathan W.

    2012-01-01

    Digital flood-inundation maps for a 10.5-mile reach of Sweetwater Creek, from about 1,800 feet above the confluence of Powder Springs Creek to about 160 feet below the Interstate 20 bridge, were developed by the U.S. Geological Survey (USGS) in cooperation with Cobb County, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Sweetwater Creek near Austell, Georgia (02337000). Current stage at this USGS streamgage may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that commonly are collocated at USGS streamgages. The forecasted peak-stage information for the USGS streamgage at Sweetwater Creek near Austell (02337000), which is available through the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. A one-dimensional step-backwater model was developed using the U.S. Army Corps of Engineers Hydrologic Engineering Centers River Analysis System (HEC–RAS) software for Sweetwater Creek and was used to compute flood profiles for a 10.5-mile reach of the creek. The model was calibrated using the most current stage-discharge relations at the Sweetwater Creek near Austell streamgage (02337000), as well as high-water marks collected during annual peak-flow events in 1982 and 2009. The hydraulic model was then used to determine 21 water-surface profiles for flood stages at the Sweetwater Creek streamgage at 1-foot intervals referenced to the

  3. Flood-inundation maps for Peachtree Creek from the Norfolk Southern Railway bridge to the Moores Mill Road NW bridge, Atlanta, Georgia

    USGS Publications Warehouse

    Musser, Jonathan W.

    2012-01-01

    Digital flood-inundation maps for a 5.5-mile reach of the Peachtree Creek from the Norfolk Southern Railway bridge to the Moores Mill Road NW bridge, were developed by the U.S. Geological Survey (USGS) in cooperation with the City of Atlanta, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Peachtree Creek at Atlanta, Georgia (02336300) and the USGS streamgage at Chattahoochee River at Georgia 280, near Atlanta, Georgia (02336490). Current water level (stage) at these USGS streamgages may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http:/water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that commonly are collocated at USGS streamgages. The forecasted peak-stage information for the USGS streamgage at Peachtree Creek, which is available through the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. A one-dimensional step-backwater model was developed using the U.S. Army Corps of Engineers HEC–RAS software for a 6.5-mile reach of Peachtree Creek and was used to compute flood profiles for a 5.5-mile reach of the creek. The model was calibrated using the most current stage-discharge relations at the Peachtree Creek at Atlanta, Georgia, streamgage (02336300), and the Chattahoochee River at Georgia 280, near Atlanta, Georgia, streamgage (02336490) as well as high water marks collected during the 2010 annual peak flow event. The hydraulic model was then used to determine 50 water

  4. Flood-Inundation Maps for the North River in Colrain, Charlemont, and Shelburne, Massachusetts, From the Confluence of the East and West Branch North Rivers to the Deerfield River

    USGS Publications Warehouse

    Bent, Gardner C.; Lombard, Pamela J.; Dudley, Robert W.

    2015-10-27

    The availability of the flood-inundation maps, combined with information regarding near-real-time stage from the U.S. Geological Survey North River at Shattuckville, MA streamgage can provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, and postflood recovery efforts. The flood-inundation maps are nonregulatory, but provide Federal, State, and local agencies and the public with estimates of the potential extent of flooding during selected peak-flow events. Introduction

  5. Ground based monitoring of channel and floodplain inundation dynamics

    NASA Astrophysics Data System (ADS)

    Nghia Hung, Nguyen; Thoss, Heiko; Güntner, Andreas; Apel, Heiko

    2010-05-01

    Monitoring of floodplain inundation is one of the key issues in respect to hydraulic model calibration, especially for 2-dimensional modeling of floodplains. While in recent years the use of remote sensing products for flood mapping have received a large boost by new techniques and platforms (LiDAR, SAR, optical system, both satellite and airborn) and proved to be a significant step forward in floodplain inundation model calibration, they are not the encompassing answer to the chronic lack of data of floodplain inundation. Due to the singular nature of floods and restrictions in sensor availability, overpass frequencies, unfavorable atmospheric conditions and difficulties in signal interpretation, remote sensing products usually provide only a short but spatially extensive view on the inundation process. In order to get a more encompassing picture of the inundation dynamics, time series of flood parameters have to be collected in the floodplains itself. In order to overcome the intrinsic problem of testing flood monitoring equipment in a short termed research project, an extensive ground-based flood monitoring system was established within the WISDOM (www.wisdom.caf.dlr.de) project in the Mekong Delta. Due to annual flood rhythm flood condition could be guaranteed within the projects duration. The test site Tam Nong in the Plain of Reeds in the Delta was equipped with 21 water level pressure gauges, 7 turbidity sensors and 2 GPS buoys, all designed to run autonomously for a period of 6 month and sampling data in short termed intervals. The collected data show a detailed picture of the inundation and sediment dynamics in the whole area including tidal influence and dike overtopping. This unique data set will be used in combination with spatial explicit water masks derived by remote sensing for 2D hydraulic model calibration.

  6. Maps Showing Inundation Depths, Ice-Rafted Erratics, and Sedimentary Facies of Late Pleistocene Missoula Floods in the Willamette Valley, Oregon

    USGS Publications Warehouse

    Minervini, J.M.; O'Connor, J. E.; Wells, R.E.

    2003-01-01

    Glacial Lake Missoula, impounded by the Purcell Trench lobe of the late Pleistocene Cordilleran Icesheet, repeatedly breached its ice dam, sending floods as large as 2,500 cubic kilometers racing across the Channeled Scabland and down the Columbia River valley to the Pacific Ocean. Peak discharges for some floods exceeded 20 million cubic meters per second. At valley constrictions along the flood route, floodwaters temporarily ponded behind each narrow zone. One such constriction at Kalama Gap-northwest of Portland-backed water 120-150 meters high in the Portland basin, and backflooded 200 km south into Willamette Valley. Dozens of floods backed up into the Willamette Valley, eroding 'scabland' channels, and depositing giant boulder gravel bars in areas of vigorous currents as well as bedded flood sand and silt in backwater areas. Also, large chunks of ice entrained from the breached glacier dam rafted hundreds of 'erratic' rocks, leaving them scattered among the flanking foothills and valley bottom. From several sources and our own mapping, we have compiled information on many of these features and depict them on physiographic maps derived from digital elevation models of the Portland Basin and Willamette Valley. These maps show maximum flood inundation levels, inundation levels associated with stratigraphic evidence of repeated floodings, distribution of flood deposits, and sites of ice-rafted erratics. Accompanying these maps, a database lists locations, elevations, and descriptions of approximately 400 ice-rafted erratics-most compiled from early 20th-century maps and notes of A.M. Piper and I.S. Allison.

  7. Combining multitracing and 2D-modelling to identify the dynamic of heavy metals during flooding.

    NASA Astrophysics Data System (ADS)

    Hissler, C.; Hostache, R.; Matgen, P.; Tosheva, Z.; David, E.; Bates, P.; Stille, P.

    2012-04-01

    to assess the risk of floodplain contamination in heavy metal due to river sediment deposition and to heavy metal partitioning between particulate and dissolved phases. We focus on a multidisciplinary approach combining environmental geochemistry (multitracing) and hydraulic modelling (using TELEMAC-2D). One important single flood event was selected to illustrate this innovative approach. During the entire flood, the river water was sampled every hour in order to collect the particulate and the dissolved fractions. All the tracers were analyzed in both fractions. An important set of hydrological and sedimentological data are used to reach a more efficient calibration of the TELEMAC modelling system. In addition to standard techniques of hydrochemistry, new approaches of in situ suspended sediment transport monitoring will help getting new insights on the hydraulic system behaviour.

  8. Satellite Remote Sensing and Hydrological Modeling for Real-time Flood Inundation Mapping: A Case Study in Nzoia Basin, Lake Victoria, Africa

    NASA Astrophysics Data System (ADS)

    Khan, S.; Li, L.; Adler, R.; Policelli, F.; Habib, S.; Irwin, D.; Hong, Y.; Korme, T.

    2009-05-01

    Floods are among the most recurrent natural disasters around the globe impacting human being. Its trend has increased over the last decades. Getting satisfactory ground data for setting-up a flood prediction system had been a major constraint in the past despite the availability of numerous hydrological models. In the regions where installation of the ground equipments is limited by the available resources and rugged terrain, remotely sensed information with the global coverage have become an alternative and supplement to the ground-based observations in order to implement a cost-effective flood prediction system in many under-gauged regions. First, this presentation will demonstrate the applicability of integrating NASA's standard satellite precipitation products with a flood prediction model for disaster management in Nzoia, sub-basin of Lake Victoria, Africa. A high-resolution distributed hydrologic model has been calibrated for the period of 1985-2006 and benchmark streamflow simulations is produced with the calibrated hydrological model using the rain gauge data and observed discharges. Afterward, continuous discharge predictions forced by real-time satellite precipitation data was made. Acceptable results are obtained in comparison with the benchmark performance. Moreover, it is identified that the flood prediction results are improved with systematically bias-corrected satellite rainfall data. Finally, a space-based flood monitoring technique is also utilized to compare the flood inundation maps with the hydrologically modeled surface flooding map in terms of probability of detection of flooding areas and temporal correlation. The ultimate goal of the project is to build up disaster management capacity in East Africa by providing local governmental officials and international aid organizations a practical decision-support tool in order to better assess emerging flood impacts and to quantify spatial extent of flood risk, as well as to respond to such flood

  9. Including local rainfall dynamics and uncertain boundary conditions into a 2-D regional-local flood modelling cascade

    NASA Astrophysics Data System (ADS)

    Bermúdez, María; Neal, Jeffrey C.; Bates, Paul D.; Coxon, Gemma; Freer, Jim E.; Cea, Luis; Puertas, Jerónimo

    2016-04-01

    Flood inundation models require appropriate boundary conditions to be specified at the limits of the domain, which commonly consist of upstream flow rate and downstream water level. These data are usually acquired from gauging stations on the river network where measured water levels are converted to discharge via a rating curve. Derived streamflow estimates are therefore subject to uncertainties in this rating curve, including extrapolating beyond the maximum observed ratings magnitude. In addition, the limited number of gauges in reach-scale studies often requires flow to be routed from the nearest upstream gauge to the boundary of the model domain. This introduces additional uncertainty, derived not only from the flow routing method used, but also from the additional lateral rainfall-runoff contributions downstream of the gauging point. Although generally assumed to have a minor impact on discharge in fluvial flood modeling, this local hydrological input may become important in a sparse gauge network or in events with significant local rainfall. In this study, a method to incorporate rating curve uncertainty and the local rainfall-runoff dynamics into the predictions of a reach-scale flood inundation model is proposed. Discharge uncertainty bounds are generated by applying a non-parametric local weighted regression approach to stage-discharge measurements for two gauging stations, while measured rainfall downstream from these locations is cascaded into a hydrological model to quantify additional inflows along the main channel. A regional simplified-physics hydraulic model is then applied to combine these inputs and generate an ensemble of discharge and water elevation time series at the boundaries of a local-scale high complexity hydraulic model. Finally, the effect of these rainfall dynamics and uncertain boundary conditions are evaluated on the local-scale model. Improvements in model performance when incorporating these processes are quantified using observed

  10. Estimation of river bathymetry and implications for regional scale flood inundation simulation on the Inner Niger Delta

    NASA Astrophysics Data System (ADS)

    Neal, J. C.; Trigg, M. A.; O'Loughlin, F.; Smith, A.; Sampson, C. C.

    2015-12-01

    Global inundation estimates are needed to answer major questions such as where, when, how often and for how long does freshwater inundate the continental land surface, along with what volume is stored. Over the last three years numerical models have been developed that facilitate global scale simulations of inundation dynamics at <1 km resolution. Fundamental to the accuracy of these models and our understanding of the non-linear transform between runoff and inundation is the bankfull discharge at which the floodplain inundates. However for most of the world's rivers bankfull discharge is unknown because the necessary data on river geometry are extremely poor or absent. Methods that estimate bankfull discharge using model inversion, given remote observations of surface water dynamics, are therefore needed if simulation accuracy is to improve. Here, a number of approaches for bankfull discharge estimation from ICEsat and Envistat altimeter data are evaluated using a hydrodynamic model of the Inner Niger Delta in Mali. Previous models of this site parameterised the river channel using downstream hydraulic geometry theory, which related the reach averaged channel width to depth via two calibrated parameters. This approach achieved at best a 1.2 m RMSE to 126 ICEsat overpasses. Directly estimating reach averaged depth for a number of reaches was shown to reduce these errors by over 50%, however it was not clear how this applied to bifurcating channels on the delta. Therefore, a novel approach where geometry was determined based on estimating bankfull discharge return-period was also evaluated. After calibration to the altimeter data, simulated inundation from 2002-2009 was evaluated against optical imagery from Landsat. After which, historical gauge records were used to simulate the inundation history from the 1960's and 70's when peak discharge on the Niger was over twice that of the past two decades because of different land use practices upstream. The analysis

  11. Quantification of the cumulative effects of river training works on the basin scale with 2D flood modelling

    NASA Astrophysics Data System (ADS)

    Zischg, Andreas Paul; Felder, Guido; WWeingartner, Rolf

    2015-04-01

    The catchment of the river Aare upstream of Bern, Switzerland, with an area of approx. 3000 km2 is a complex network of sub-catchments with different runoff characteristics; it also includes two larger lakes. Most of the rivers were regulated in the 18th century. An important regulation, however, was realised as early as in the 17th century. For this catchment, the worst case flood event was identified and its consequences were analysed. Beside the hydro-meteorological characteristics, an important basis to model the worst case flood is to understand the non-linear effects of flood retention in the valley bottom and in the lakes. The aim of this study was to compare these effects based on both the current river network and the historic one prior to the main river training works. This allows to quantify the human impacts. Methodologically, we set up a coupled 2D flood model representing the floodplains of the river Aare as well as of the tributaries Lombach, Lütschine, Zulg, Rotache, Chise and Guerbe. The flood simulation was made in 2D with the software BASEMENT-ETH (Vetsch et al. 2014). The model was calibrated by means of reproducing the large floods in August 2005 and the bankfull discharge for all river reaches. The model computes the discharge at the outlet of the Aare catchment at Bern by routing all discharges from the sub-catchments through the river reaches and their floodplains. With this, the modulation of the input hydrographs by widespread floodings in the floodplains can be quantified. The same configuration was applied on the basis of reconstructed digital terrain models representing the landscape and the river network before the first significant river training works had been realised. This terrain model was reconstructed by georeferencing and digitalizing historic maps and cross-sections combined with the mapping of the geomorphologic evidences of former river structures in non-modified areas. The latter mapping procedure was facilitated by the

  12. Decision making based on global flood forecasts and satellite-derived inundation maps in data-sparse regions

    NASA Astrophysics Data System (ADS)

    Revilla-Romero, Beatriz; Hirpa, Feyera A.; Thielen-del Pozo, Jutta; Salamon, Peter; Brakenridge, G. Robert; Pappenberger, Florian; De Groeve, Tom

    2016-04-01

    Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response decisions. Global-scale flood forecasting and satellite-based flood detection systems are currently operating, however their reliability for decision making applications needs to be assessed. In this study, we performed comparative evaluations of several operational global flood forecasting and flood detection systems, using major flood events recorded over 2012-2014. Specifically, we evaluated the spatial extent and temporal characteristics of flood detections from the Global Flood Detection System (GFDS) and the Global Flood Awareness System (GloFAS). Furthermore, we compared the GFDS flood maps with those from NASA's two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. Results reveal that: 1) general agreement was found between the GFDS and MODIS flood detection systems, 2) large differences exist in the spatio-temporal characteristics of the GFDS detections and GloFAS forecasts, and 3) the quantitative validation of global flood disasters in data-sparse regions is highly challenging. Overall, the satellite remote sensing provides useful near real-time flood information that can be useful for risk management. We highlight the known limitations of global flood detection and forecasting systems, and propose ways forward to improve the reliability of large scale flood monitoring tools.

  13. Inverse algorithms for 2D shallow water equations in presence of wet dry fronts: Application to flood plain dynamics

    NASA Astrophysics Data System (ADS)

    Monnier, J.; Couderc, F.; Dartus, D.; Larnier, K.; Madec, R.; Vila, J.-P.

    2016-11-01

    The 2D shallow water equations adequately model some geophysical flows with wet-dry fronts (e.g. flood plain or tidal flows); nevertheless deriving accurate, robust and conservative numerical schemes for dynamic wet-dry fronts over complex topographies remains a challenge. Furthermore for these flows, data are generally complex, multi-scale and uncertain. Robust variational inverse algorithms, providing sensitivity maps and data assimilation processes may contribute to breakthrough shallow wet-dry front dynamics modelling. The present study aims at deriving an accurate, positive and stable finite volume scheme in presence of dynamic wet-dry fronts, and some corresponding inverse computational algorithms (variational approach). The schemes and algorithms are assessed on classical and original benchmarks plus a real flood plain test case (Lèze river, France). Original sensitivity maps with respect to the (friction, topography) pair are performed and discussed. The identification of inflow discharges (time series) or friction coefficients (spatially distributed parameters) demonstrate the algorithms efficiency.

  14. Investigating the definition of flood maps using a 2D hydraulic routing model forced by a DEM-based fully continuous rainfall-runoff algorithm

    NASA Astrophysics Data System (ADS)

    Nardi, Fernando; Petroselli, Andrea; Grimaldi, Salvatore

    2013-04-01

    Ongoing efforts of remote sensing technologies to provide more accurate digital elevation models (DEMs) at the global scale are supporting the use of terrain analysis and hydrologic and hydraulic modelling algorithms for flood mapping in ungauged basins. In this work we implement a fully continuous hydrologic-hydraulic model feeded by a rainfall synthetic time series for providing river hydrographs that are routed along the channel using a bidimensional hydraulic model for the detailed physically-based characterization of the inundation process. In this way the whole physical process is represented, from the net rainfall to the flow time series, avoiding any conceptual sub-method (design hyetograph and hydrograph) commonly needed to apply standard flood modelling and mapping procedures. Nevertheless, the floodplain information is no longer deterministic as the result of the evaluation of the impact on the river valley of a single design hydrologic scenario (event-based approach,EBA), but the final result is composed of a combination of data derived by the application of a fully-continuous approach (FCA). Indeed FCA provides a flow depth time series for each single cell of the inundated domain. The final flood map should be, thus, the result of a proper analysis of this dataset in statistical, qualitative and quantitative terms. Otherwise this would lead to an undefined flooding scenario that could be useless for flood risk management and decision making in urban plans.

  15. Near-real-time simulation and internet-based delivery of forecast-flood inundation maps using two-dimensional hydraulic modeling--A pilot study for the Snoqualmie River, Washington

    USGS Publications Warehouse

    Jones, Joseph L.; Fulford, Janice M.; Voss, Frank D.

    2002-01-01

    A system of numerical hydraulic modeling, geographic information system processing, and Internet map serving, supported by new data sources and application automation, was developed that generates inundation maps for forecast floods in near real time and makes them available through the Internet. Forecasts for flooding are generated by the National Weather Service (NWS) River Forecast Center (RFC); these forecasts are retrieved automatically by the system and prepared for input to a hydraulic model. The model, TrimR2D, is a new, robust, two-dimensional model capable of simulating wide varieties of discharge hydrographs and relatively long stream reaches. TrimR2D was calibrated for a 28-kilometer reach of the Snoqualmie River in Washington State, and is used to estimate flood extent, depth, arrival time, and peak time for the RFC forecast. The results of the model are processed automatically by a Geographic Information System (GIS) into maps of flood extent, depth, and arrival and peak times. These maps subsequently are processed into formats acceptable by an Internet map server (IMS). The IMS application is a user-friendly interface to access the maps over the Internet; it allows users to select what information they wish to see presented and allows the authors to define scale-dependent availability of map layers and their symbology (appearance of map features). For example, the IMS presents a background of a digital USGS 1:100,000-scale quadrangle at smaller scales, and automatically switches to an ortho-rectified aerial photograph (a digital photograph that has camera angle and tilt distortions removed) at larger scales so viewers can see ground features that help them identify their area of interest more effectively. For the user, the option exists to select either background at any scale. Similar options are provided for both the map creator and the viewer for the various flood maps. This combination of a robust model, emerging IMS software, and application

  16. Flood inundation maps and water-surface profiles for tropical storm Irene and selected annual exceedance probability floods for Flint Brook and the Third Branch White River in Roxbury, Vermont

    USGS Publications Warehouse

    Ahearn, Elizabeth A.; Lombard, Pamela J.

    2014-01-01

    Flint Brook, a tributary to the Third Branch White River in Roxbury, Vermont, has a history of flooding the Vermont Fish and Wildlife Department’s Roxbury Fish Culture Station (the hatchery) and surrounding infrastructure. Flooding resulting from tropical storm Irene on August 28–29, 2011, caused widespread destruction in the region, including extensive and costly damages to the State-owned hatchery and the transportation infrastructure in the Town of Roxbury, Vermont. Sections of State Route 12A were washed out, and several bridges and culverts on Oxbow Road, Thurston Hill Road, and the New England Central Railroad in Roxbury were heavily damaged. Record high peak-discharge estimates of 2,140 cubic feet per second (ft3/s) and 4,320 ft3/s were calculated for Flint Brook at its confluence with the Third Branch White River and for the Third Branch White River at about 350 feet (ft) downstream from the hatchery, respectively. The annual exceedance probabilities (AEPs) of the peak discharges for Flint Brook and the Third Branch White River were less than 0.2 percent (less than a one in 500 chance of occurring in a given year). Hydrologic and hydraulic analyses of Flint Brook and the Third Branch White River were done to investigate flooding at the hatchery in Roxbury and support efforts by the Federal Emergency Management Agency to assist State and local mitigation and reconstruction efforts. During the August 2011 flood, the majority of flow from Flint Brook (97 percent or 2,070 ft3/s) diverged from its primary watercourse due to a retaining wall failure immediately upstream of Oxbow Road and inundated the hatchery. Although a minor amount of flow from the Third Branch White River could have overtopped State Route 12A and spilled into the hatchery, the Third Branch White River did not cause flood damages or exacerbate flooding at the hatchery during the August 2011 flood. The Third Branch White River which flows adjacent to the hatchery does not flood the hatchery

  17. Study on the flood simulation techniques for estimation of health risk in Dhaka city, Bangladesh

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Suetsugi, T.; Sunada, K.; ICRE

    2011-12-01

    Although some studies have been carried out on the spread of infectious disease with the flooding, the relation between flooding and the infectious expansion has not been clarified yet. The improvement of the calculation precision of inundation and its relation with the infectious disease, surveyed epidemiologically, are therefore investigated in a case study in Dhaka city, Bangladesh. The inundation was computed using a flood simulation model that is numerical 2D-model. The "sensitivity to inundation" of hydraulic factors such as drainage channel, dike, and the building occupied ratio was examined because of the lack of digital data set related to flood simulation. Each element in the flood simulation model was incorporated progressively and results were compared with the calculation result as inspection materials by the inundation classification from the existing study (Mollah et al., 2007). The results show that the influences by ''dyke'' and "drainage channel" factors are remarkable to water level near each facility. The inundation level and duration have influence on wide areas when "building occupied ratio" is also considered. The correlation between maximum inundation depth and health risk (DALY, Mortality, Morbidity) was found, but the validation of the inundation model for this case has not been performed yet. The flood simulation model needs to be validated by observed inundation depth. The drainage facilities such as sewer network or the pumping system will be also considered in the further research to improve the precision of the inundation model.

  18. Quantification of flash flood economic risk using ultra-detailed stage-damage functions and 2-D hydraulic models

    NASA Astrophysics Data System (ADS)

    Garrote, J.; Alvarenga, F. M.; Díez-Herrero, A.

    2016-10-01

    The village of Pajares de Pedraza (Segovia, Spain) is located in the floodplain of the Cega River, a left bank tributary of the Douro River. Repeated flash flood events occur in this small village because of its upstream catchment area, mountainous character and impermeable lithology, which reduce concentration time to just a few hours. River overbank flow has frequently caused flooding and property damage to homes and rural properties, most notably in 1927, 1991, 1996, 2001, 2013 and 2014. Consequently, a detailed analysis was carried out to quantify the economic risk of flash floods in peri-urban and rural areas. Magnitudes and exceedance probabilities were obtained from a flood frequency analysis of maximum discharges. To determine the extent and characteristics of the flooded area, we performed 2D hydraulic modeling (Iber 2.0 software) based on LIDAR (1 m) topography and considering three different scenarios associated with the initial construction (1997) and subsequent extension (2013) of a linear defense structure (rockfill dike or levee) to protect the population. Specific stage-damage functions were expressly developed using in situ data collection for exposed elements, with special emphasis on urban-type categories. The average number of elements and their unit value were established. The relationship between water depth and the height at which electric outlets, furniture, household goods, etc. were located was analyzed; due to its effect on the form of the function. Other nonspecific magnitude-damage functions were used in order to compare both economic estimates. The results indicate that the use of non-specific magnitude-damage functions leads to a significant overestimation of economic losses, partly linked to the use of general economic cost data. Furthermore, a detailed classification and financial assessment of exposed assets is the most important step to ensure a correct estimate of financial losses. In both cases, this should include a

  19. Improving the Resilience of Major Ports and Critical Supply Chains to Extreme Coastal Flooding: a Combined Artificial Neural Network and Hydrodynamic Simulation Approach to Predicting Tidal Surge Inundation of Port Infrastructure and Impact on Operations.

    NASA Astrophysics Data System (ADS)

    French, J.

    2015-12-01

    Ports are vital to the global economy, but assessments of global exposure to flood risk have generally focused on major concentrations of population or asset values. Few studies have examined the impact of extreme inundation events on port operation and critical supply chains. Extreme water levels and recurrence intervals have conventionally been estimated via analysis of historic water level maxima, and these vary widely depending on the statistical assumptions made. This information is supplemented by near-term forecasts from operational surge-tide models, which give continuous water levels but at considerable computational cost. As part of a NERC Infrastructure and Risk project, we have investigated the impact of North Sea tidal surges on the Port of Immingham, eastern, UK. This handles the largest volume of bulk cargo in the UK and flows of coal and biomass that are critically important for national energy security. The port was partly flooded during a major tidal surge in 2013. This event highlighted the need for improved local forecasts of surge timing in relation to high water, with a better indication of flood depth and duration. We address this problem using a combination of data-driven and numerical hydrodynamic models. An Artificial Neural Network (ANN) is first used to predict the surge component of water level from meteorological data. The input vector comprises time-series of local wind (easterly and northerly wind stress) and pressure, as well as regional pressure and pressure gradients from stations between the Shetland Islands and the Humber estuary. The ANN achieves rms errors of around 0.1 m and can generate short-range (~ 3 to 12 hour) forecasts given real-time input data feeds. It can also synthesize water level events for a wider range of tidal and meteorological forcing combinations than contained in the observational records. These are used to force Telemac2D numerical floodplain simulations using a LiDAR digital elevation model of the port

  20. First Airswot Interferometric Radar Water Surface Elevations and Flooded Inundation Extent from the Sacramento River and Edwards AFB Wetland Complex, California

    NASA Astrophysics Data System (ADS)

    Pitcher, L. H.; Smith, L. C.; Gleason, C. J.; Baney, O. N.; Chu, V. W.; Bennett, M. M.; Pavelsky, T.; Sadowy, G. A.

    2014-12-01

    NASA's forthcoming Surface Water Ocean Topography (SWOT) satellite mission aims to quantify global freshwater fluxes from space using Ka-band interferometric radar. AirSWOT is the airborne calibration/validation instrument for SWOT with first-pass data collected over the Sacramento River in May 2013 and a wetland complex on Edwards AFB (Piute Ponds) in May 2014. Here, AirSWOT elevation and coherence data are compared with high resolution airborne imagery and concurrent in-situ field mappings of inundation area and water surface elevation. For the Sacramento River, AirSWOT water surface elevations are compared with field-surveyed elevations collected using a high precision GPS Lagrangian river drifter escorted down 30 km of river length. Additionally, field mapped river shorelines are compared with shorelines extracted from AirSWOT coherence data. For the Piute Ponds, we use an exhaustive field mapping of inundation extent and flooded vegetation to assess the ability of AirSWOT coherence and backscatter to map shorelines in a complex lake and wetland environment containing varying vegetation and soil moisture conditions.

  1. MAST-2D diffusive model for flood prediction on domains with triangular Delaunay unstructured meshes

    NASA Astrophysics Data System (ADS)

    Aricò, C.; Sinagra, M.; Begnudelli, L.; Tucciarelli, T.

    2011-11-01

    A new methodology for the solution of the 2D diffusive shallow water equations over Delaunay unstructured triangular meshes is presented. Before developing the new algorithm, the following question is addressed: it is worth developing and using a simplified shallow water model, when well established algorithms for the solution of the complete one do exist? The governing Partial Differential Equations are discretized using a procedure similar to the linear conforming Finite Element Galerkin scheme, with a different flux formulation and a special flux treatment that requires Delaunay triangulation but entire solution monotonicity. A simple mesh adjustment is suggested, that attains the Delaunay condition for all the triangle sides without changing the original nodes location and also maintains the internal boundaries. The original governing system is solved applying a fractional time step procedure, that solves consecutively a convective prediction system and a diffusive correction system. The non linear components of the problem are concentrated in the prediction step, while the correction step leads to the solution of a linear system of the order of the number of computational cells. A semi-analytical procedure is applied for the solution of the prediction step. The discretized formulation of the governing equations allows to handle also wetting and drying processes without any additional specific treatment. Local energy dissipations, mainly the effect of vertical walls and hydraulic jumps, can be easily included in the model. Several numerical experiments have been carried out in order to test (1) the stability of the proposed model with regard to the size of the Courant number and to the mesh irregularity, (2) its computational performance, (3) the convergence order by means of mesh refinement. The model results are also compared with the results obtained by a fully dynamic model. Finally, the application to a real field case with a Venturi channel is presented.

  2. Ground based monitoring of channel and floodplain inundation dynamics

    NASA Astrophysics Data System (ADS)

    Apel, H.; Hung, N. N.; Güntner, A.; Thoss, H.

    2009-12-01

    Monitoring of floodplain inundation is one of the key issues in respect to hydraulic model calibration, especially for 2-dimensional modeling of floodplains. While in recent years the use of remote sensing products for flood mapping have received a large boost by new techniques and platforms (LiDAR, SAR, optical system, both satellite and airborn) and proved to be a significant step forward in floodplain inundation model calibration, they are not the encompassing answer to the chronic lack of data of floodplain inundation. Due to the singular nature of floods and restrictions in sensor availability, overpass frequencies, unfavorable atmospheric conditions and difficulties in signal interpretation, remote sensing products usually provide only a short but spatially extensive view on the inundation process. In order to get a more encompassing picture of the inundation dynamics, time series of flood parameters have to be collected in the floodplains itself. In order to overcome the intrinsic problem of testing flood monitoring equipment in a short termed research project, an extensive ground-based flood monitoring system was established within the WISDOM (www.wisdom.caf.dlr.de) project in the Mekong Delta. Due to annual flood rhythm flood condition could be guaranteed within the projects duration. The test site Tam Nong in the Plain of Reeds in the Delta was equipped with 21 water level pressure gauges, 7 turbidity sensors and 2 GPS buoys, all designed to run autonomously for a period of 6 month and sampling data in short termed intervals. The equipment used range from cheap pressure sensors to rather expensive developments like the GPS buoys. Nevertheless, overall costs of the systems are comparatively low, especially in cost-benefit considerations. This is because they are developed for continuous monitoring, are modular in their sensor configuration and movable, i.e. reusable. The collected data show a detailed picture of the inundation and sediment dynamics in the

  3. An extensive ground monitoring system for floodplain inundation: the WISDOM test area Tam Nong in the Mekong Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Hung, N. N.; Thoss, H.; Güntner, A.; Apel, H.

    2009-04-01

    Monitoring of floodplain inundation is one of the key issues in respect to hydraulic model calibration, especially for 2-dimensional modeling of floodplains. While in recent years the use of remote sensing products for flood mapping have received a large boost by new techniques and platforms (LiDAR, SAR, optical system, both satellite and airborn) and proved to be a significant step forward in floodplain inundation model calibration, they are not the encompassing answer to the chronic lack of data of floodplain inundation. Due to the singular nature of floods and restrictions in sensor availability, overpass frequencies, unfavorable atmospheric conditions and difficulties in signal interpretation, remote sensing products usually provide only a short but spatially extensive view on the inundation process. In order to get a more encompassing picture of the inundation dynamics, time series of flood parameters have to be collected in the floodplains itself. In order to overcome the intrinsic problem of testing flood monitoring equipment in a short termed research project, an extensive ground-based flood monitoring system was established within the WISDOM (www.wisdom.caf.dlr.de)project in the Mekong Delta. Due to annual flood rhythm flood condition could be guaranteed within the projects duration. For the flood season 2008 the test site Tam Nong in the Plain of Reeds in the Delta was equipped with 21 water level pressure gauges, 7 turbidity sensors and 2 GPS buoys, all designed to run autonomously for a period of 6 month and sampling data in short termed intervals. The collected data show a detailed picture of the inundation and sediment dynamics in the whole area including tidal influence and dike overtopping. This unique data set will be used in combination with spatial explicit water masks derived by remote sensing for 2D hydraulic model calibration in the next step.

  4. Flood-inundation maps for the Green River in Colrain, Leyden, and Greenfield, Massachusetts, from U.S. Geological Survey streamgage 01170100 Green River near Colrain to the confluence with the Deerfield River

    USGS Publications Warehouse

    Flynn, Robert H.; Bent, Gardner C.; Lombard, Pamela J.

    2016-09-02

    The U.S. Geological Survey developed flood elevations in cooperation with the Federal Emergency Management Agency for a 14.3-mile reach of the Green River in Colrain, Leyden, and Greenfield, Massachusetts, to assist landowners and emergency management workers to prepare for and recover from floods. The river reach extends from the U.S. Geological Survey Green River near Colrain, MA (01170100) streamgage downstream to the confluence with the Deerfield River. A series of seven digital flood inundation maps were developed for the upper 4.4 miles of the river reach downstream from the stream. Flood discharges corresponding to the 50-, 10-, 1-, and 0.2-percent annual exceedance probabilities were computed for the reach from updated flood-frequency analyses. These peak flows and the flood flows associated with the stages of 10.2, 12.4, and 14.4 feet (ft) at the Green River streamgage were routed through a one-dimensional step-backwater hydraulic model to obtain the corresponding peak water-surface elevations and to place the Tropical Storm Irene flood of August 28, 2011 (stage 13.97 ft), into historical context. The hydraulic model was calibrated by using the current (2015) stage-discharge relation at the U.S. Geological Survey Green River near Colrain, MA (01170100) streamgage and from documented high-water marks from the Tropical Storm Irene flood, which had a flow higher than a 0.2-percent annual exceedance probability flood discharge.The hydraulic model was used to compute water-surface profiles for flood stages referenced to the streamgage and ranging from the 50-percent annual exceedance probability (bankfull flow) at 7.6 ft (439.8 ft above the North American Vertical Datum of 1988 [NAVD 88]) to 14.4 ft (446.7 ft NAVD 88), which exceeds the maximum recorded water level of 13.97 ft (Tropical Storm Irene) at the streamgage. The mapped stages of 7.6 to 14.4 ft were selected to match the stages for bankfull; the 50-, 10-, 1-, and 0.2-percent annual exceedance

  5. An integrated inundation model for highly developed urban areas.

    PubMed

    Chen, A S; Hsu, M H; Chen, T S; Chang, T J

    2005-01-01

    A numerical model is developed in this study with various components for simulating the complex flow phenomena in urban drainage basins. The model integrates the HEC-1 model, a 1-D dynamic channel-flow model, a 2-D non-inertia overland-flow model and the SWMM model to reflect the hydraulic processes in areas with different characteristics. The inundation of underground infrastructure during flood is also considered in the model. The typhoon Nari event in 2001, which resulted in severe flood in downtown Taipei, is simulated by the model. The result is compared with the survey records of flooded areas, which reveals the storage effect of underground infrastrucures is significant to the simulation results of highly developed urban areas.

  6. Downscaling of inundation extents

    NASA Astrophysics Data System (ADS)

    Aires, Filipe; Prigent, Catherine; Papa, Fabrice

    2014-05-01

    The Global Inundation Extent from Multi-Satellite (GIEMS) provides multi-year monthly variations of the global surface water extent at about 25 kmx25 km resolution, from 1993 to 2007. It is derived from multiple satellite observations. Its spatial resolution is usually compatible with climate model outputs and with global land surface model grids but is clearly not adequate for local applications that require the characterization of small individual water bodies. There is today a strong demand for high-resolution inundation extent datasets, for a large variety of applications such as water management, regional hydrological modeling, or for the analysis of mosquitos-related diseases. This paper present three approaches to do downscale GIEMS: The first one is based on a image-processing technique using neighborhood constraints. The third approach uses a PCA representation to perform an algebraic inversion. The PCA-representation is also very convenient to perform temporal and spatial interpolation of complexe inundation fields. The third downscaling method uses topography information from Hydroshed Digital Elevation Model (DEM). Information such as the elevation, distance to river and flow accumulation are used to define a ``flood ability index'' that is used by the downscaling. Three basins will be considered for illustrative purposes: Amazon, Niger and Mekong. Aires, F., F. Papa, C. Prigent, J.-F. Cretaux and M. Berge-Nguyen, Characterization and downscaling of the inundation extent over the Inner Niger delta using a multi-wavelength retrievals and Modis data, J. of Hydrometeorology, in press, 2014. Aires, F., F. Papa and C. Prigent, A long-term, high-resolution wetland dataset over the Amazon basin, downscaled from a multi-wavelength retrieval using SAR, J. of Hydrometeorology, 14, 594-6007, 2013. Prigent, C., F. Papa, F. Aires, C. Jimenez, W.B. Rossow, and E. Matthews. Changes in land surface water dynamics since the 1990s and relation to population pressure

  7. Evaluation of various modelling approaches in flood routing simulation and flood area mapping

    NASA Astrophysics Data System (ADS)

    Papaioannou, George; Loukas, Athanasios; Vasiliades, Lampros; Aronica, Giuseppe

    2016-04-01

    An essential process of flood hazard analysis and mapping is the floodplain modelling. The selection of the modelling approach, especially, in complex riverine topographies such as urban and suburban areas, and ungauged watersheds may affect the accuracy of the outcomes in terms of flood depths and flood inundation area. In this study, a sensitivity analysis implemented using several hydraulic-hydrodynamic modelling approaches (1D, 2D, 1D/2D) and the effect of modelling approach on flood modelling and flood mapping was investigated. The digital terrain model (DTMs) used in this study was generated from Terrestrial Laser Scanning (TLS) point cloud data. The modelling approaches included 1-dimensional hydraulic-hydrodynamic models (1D), 2-dimensional hydraulic-hydrodynamic models (2D) and the coupled 1D/2D. The 1D hydraulic-hydrodynamic models used were: HECRAS, MIKE11, LISFLOOD, XPSTORM. The 2D hydraulic-hydrodynamic models used were: MIKE21, MIKE21FM, HECRAS (2D), XPSTORM, LISFLOOD and FLO2d. The coupled 1D/2D models employed were: HECRAS(1D/2D), MIKE11/MIKE21(MIKE FLOOD platform), MIKE11/MIKE21 FM(MIKE FLOOD platform), XPSTORM(1D/2D). The validation process of flood extent achieved with the use of 2x2 contingency tables between simulated and observed flooded area for an extreme historical flash flood event. The skill score Critical Success Index was used in the validation process. The modelling approaches have also been evaluated for simulation time and requested computing power. The methodology has been implemented in a suburban ungauged watershed of Xerias river at Volos-Greece. The results of the analysis indicate the necessity of sensitivity analysis application with the use of different hydraulic-hydrodynamic modelling approaches especially for areas with complex terrain.

  8. Hydrodynamic Model of Inundation Event at Confluence of Ohio and Mississippi Rivers

    NASA Astrophysics Data System (ADS)

    Kaplan, B. A.; Luke, A.; Alsdorf, D. E.

    2013-12-01

    The goal of this project is to produce an accurate 2-D hydrodynamic model of an inundation event that occurred at the confluence of the Ohio and Mississippi River. The inundation occurred in the months of April and May 2011, with the city of interest being Cairo, Illinois. In order to relieve flooding within Cairo, a Bird's Point Levee was detonated by the Army Corps of Engineers. Cairo is a small city of 2,800 people, and is prone to flooding due to its proximity to the confluence of the Ohio and Mississippi River. Cairo is also the only city in the U.S. completely surrounded by levees. The advantage of a 2-D modeling approach compared to a 1-D approach is that the floodplain geomorphological processes are more accurately represented. Understanding non-channelized flow that occurs during inundation events is a subject of growing interest, and is being addressed in other projects such as the NASA-SWOT mission scheduled for launch in 2019. The 2-D model utilized in this study is LISFLOOD-FP. LISFLOOD-FP is a 2-D finite-difference flood inundation model that has been proven to accurately simulate flood inundation for urban, coastal, and fluvial environments. LISFLOOD-FP operates using known hydraulic principles along with continuity and momentum equations to describe the flow of water through channels and floodplains. The digital elevation model used to represent the area's topography was obtained from the USGS National Elevation Data set, and our model uses input data from USGS stream gauges located upstream of the confluence of the Ohio and Mississippi River. The gauging station located in Cairo will be used for model validation. Currently, many flood simulations are being modeled with varying conditions and input files. In situ cross sectional data is being used to represent the channel. We have found that using averages of the cross sectional data do not accurately represent the river channels, so future model runs will incorporate interpolation between

  9. Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the city center of Shanghai, China

    NASA Astrophysics Data System (ADS)

    Yin, Jie; Yu, Dapeng; Yin, Zhane; Liu, Min; He, Qing

    2016-06-01

    Urban pluvial flood are attracting growing public concern due to rising intense precipitation and increasing consequences. Accurate risk assessment is critical to an efficient urban pluvial flood management, particularly in transportation sector. This paper describes an integrated methodology, which initially makes use of high resolution 2D inundation modeling and flood depth-dependent measure to evaluate the potential impact and risk of pluvial flash flood on road network in the city center of Shanghai, China. Intensity-Duration-Frequency relationships of Shanghai rainstorm and Chicago Design Storm are combined to generate ensemble rainfall scenarios. A hydrodynamic model (FloodMap-HydroInundation2D) is used to simulate overland flow and flood inundation for each scenario. Furthermore, road impact and risk assessment are respectively conducted by a new proposed algorithm and proxy. Results suggest that the flood response is a function of spatio-temporal distribution of precipitation and local characteristics (i.e. drainage and topography), and pluvial flash flood is found to lead to proportionate but nonlinear impact on intra-urban road inundation risk. The approach tested here would provide more detailed flood information for smart management of urban street network and may be applied to other big cities where road flood risk is evolving in the context of climate change and urbanization.

  10. Flooding

    MedlinePlus

    ... flooding Prepare for flooding For communities, companies, or water and wastewater facilities: Suggested activities to help facilities ... con monóxido de carbono. Limit contact with flood water. Flood water may have high levels of raw ...

  11. Effect of spatial resolution of radar-based inundation maps on the calibration of a spatial inundation model

    NASA Astrophysics Data System (ADS)

    Gobeyn, Sacha; Vernieuwe, Hilde; De Baets, Bernard; Bates, Paul; Verhoest Niko E., C.

    2013-04-01

    With advances in both flood mapping with satellite radar and computational science, the use of real-time spatial flood data holds the potential to support decision making during flood events. With recent improvements in satellite radar technology, current and future radar images are/will be delivered with higher spatial resolution. It is expected that these higher resolutions should improve the accuracy of the calibration and the prediction through data assimilation as more detailed information is available. However, these finer resolution data will result in an increased computational cost. Still, radar data of coarser resolution will remain available, and the question may then arise whether the calibration of a 2D-hydraulic model is significantly influenced by the resolution of the remotely-sensed inundation map. In order to answer this question, the raster-based inundation model, LISFLOOD-FP (Bates et al., 2000) is calibrated using a high resolution synthetic aperture radar image (ERS-2 SAR) of a flood event of the river Dee, Wales, in December 2006. Different radar resolutions are simulated through coarsening this image to different resolutions and retrieving the flood extent maps for the different resolutions. These flood maps are then used for calibrating the hydraulic model using the generalized likelihood uncertainty estimation (GLUE) framework presented by Aronica et al. (2002) as well as alternative calibration methods (e.g. Particle Swarm Optimization, PSO) to assess the possible impact of spatial resolution of the observed flood extent on the floodplain and channel Manning coefficient. Furthermore, the sensitivity of the calibration surface to error sources in radar measurement is evaluated by applying different magnitudes of noise to the radar image. References Aronica, G., Bates, P. D. and Horritt, M. S. (2002). Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE. Hydrological Processes, 16

  12. Iowa Flood Information System

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2011-12-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities

  13. Runoff inundation hazard cartography

    NASA Astrophysics Data System (ADS)

    Pineux, N.; Degré, A.

    2012-04-01

    Between 1998 and 2004, Europe suffered from more than hundred major inundations, responsible for some 700 deaths, for the moving of about half a million of people and the economic losses of at least 25 billions Euros covered by the insurance policies. Within this context, EU launched the 2007/60/CE directive. The inundations are natural phenomenon. They cannot be avoided. Nevertheless this directive permits to better evaluate the risks and to coordinate the management measures taken at member states level. In most countries, inundation maps only include rivers' overflowing. In Wallonia, overland flows and mudflows also cause huge damages, and must be included in the flood hazard map. Indeed, the cleaning operations for a village can lead to an estimated cost of 11 000 €. Average construction cost of retention dams to control off-site damage caused by floods and muddy flows was valued at 380 000€, and yearly dredging costs associated with these retention ponds at 15 000€. For a small city for which a study was done in a more specific way (Gembloux), the mean annual cost for the damages that can generate the runoff is about 20 000€. This cost consists of the physical damages caused to the real estate and movable properties of the residents as well as the emergency operations of the firemen and the city. On top of damages to public infrastructure (clogging of trenches, silting up of retention ponds) and to private property by muddy flows, runoff generates a significant loss of arable land. Yet, the soil resource is not an unlimited commodity. Moreover, sediments' transfer to watercourses alters their physical and chemical quality. And that is not to mention the increased psychological stress for people. But to map overland flood and mud flow hazard is a real challenge. This poster will present the methodology used to in Wallonia. The methodology is based on 3 project rainfalls: 25, 50 and 100 years return period (consistency with the cartography of the

  14. Flood-Inundation maps for the Hohokus Brook in Waldwick Borough, Ho-Ho-Kus Borough, and the Village of Ridgewood, New Jersey, 2014

    USGS Publications Warehouse

    Watson, Kara M.; Niemoczynski, Michal J.

    2015-07-20

    The availability of these maps along with information on the Internet regarding current stage from the USGS streamgage will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  15. Flood-inundation maps for Big Creek from the McGinnis Ferry Road bridge to the confluence of Hog Wallow Creek, Alpharetta and Roswell, Georgia

    USGS Publications Warehouse

    Musser, Jonathan W.

    2015-08-20

    The availability of these maps, when combined with real-time stage information from USGS streamgages and forecasted stream stage from the NWS, provides emergency management personnel and residents with critical information during flood-response activities such as evacuations and road closures, in addition to post-flood recovery efforts.

  16. Elevation uncertainty in coastal inundation hazard assessments

    USGS Publications Warehouse

    Gesch, Dean B.; Cheval, Sorin

    2012-01-01

    Coastal inundation has been identified as an important natural hazard that affects densely populated and built-up areas (Subcommittee on Disaster Reduction, 2008). Inundation, or coastal flooding, can result from various physical processes, including storm surges, tsunamis, intense precipitation events, and extreme high tides. Such events cause quickly rising water levels. When rapidly rising water levels overwhelm flood defenses, especially in heavily populated areas, the potential of the hazard is realized and a natural disaster results. Two noteworthy recent examples of such natural disasters resulting from coastal inundation are the Hurricane Katrina storm surge in 2005 along the Gulf of Mexico coast in the United States, and the tsunami in northern Japan in 2011. Longer term, slowly varying processes such as land subsidence (Committee on Floodplain Mapping Technologies, 2007) and sea-level rise also can result in coastal inundation, although such conditions do not have the rapid water level rise associated with other flooding events. Geospatial data are a critical resource for conducting assessments of the potential impacts of coastal inundation, and geospatial representations of the topography in the form of elevation measurements are a primary source of information for identifying the natural and human components of the landscape that are at risk. Recently, the quantity and quality of elevation data available for the coastal zone have increased markedly, and this availability facilitates more detailed and comprehensive hazard impact assessments.

  17. Inundation risk for embanked rivers

    NASA Astrophysics Data System (ADS)

    Strupczewski, W. G.; Kochanek, K.; Bogdanowicz, E.; Markiewicz, I.

    2013-03-01

    The Flood Frequency Analysis (FFA) concentrates on probability distribution of peak flows of flood hydrographs. However, examination of floods that haunted and devastated the large parts of Poland lead us to revision of the views on the assessment of flood risk of Polish rivers. It turned out that flooding is caused not only by overflow of the levees' crest but mostly due to the prolonged exposure to high water on levees structure causing dangerous leaks and breaches that threaten their total destruction. This is because, the levees are weakened by long-lasting water pressure and as a matter of fact their damage usually occurs after the culmination has passed the affected location. The probability of inundation is the total of probabilities of exceeding embankment crest by flood peak and the probability of washout of levees. Therefore, in addition to the maximum flow one should consider also the duration of high waters in a river channel. In the paper the new two-component model of flood dynamics: "Duration of high waters-Discharge Threshold-Probability of non-exceedance" (DqF), with the methodology of its parameters estimation was proposed as a completion to the classical FFA methods. Such model can estimate the duration of stages (flows) of an assumed magnitude with a given probability of exceedance. The model combined with the technical evaluation of probability of levees breach due to the d-days duration of flow above alarm stage gives the annual probability of inundation caused by the embankment breaking. The results of theoretical investigation were illustrated by a practical example of the model implementation to the series of daily flow of the Vistula River at Szczucin. Regardless promising results, the method of risk assessment due to prolonged exposure of levees to high water is still in its infancy despite its great cognitive potential and practical importance. Therefore, we would like to point out the need for and usefulness of the DqF model as

  18. Inundation risk for embanked rivers

    NASA Astrophysics Data System (ADS)

    Strupczewski, W. G.; Kochanek, K.; Bogdanowicz, E.; Markiewicz, I.

    2013-08-01

    The Flood Frequency Analysis (FFA) concentrates on probability distribution of peak flows of flood hydrographs. However, examination of floods that haunted and devastated the large parts of Poland lead us to revision of the views on the assessment of flood risk of Polish rivers. It turned out that flooding is caused not only by the overflow of the levee crest but also due to the prolonged exposure to high water on levees structure causing dangerous leaks and breaches that threaten their total destruction. This is because the levees are weakened by long-lasting water pressure and as a matter of fact their damage usually occurs after the culmination has passed the affected location. The probability of inundation is the total of probabilities of exceeding embankment crest by flood peak and the probability of washout of levees. Therefore, in addition to the maximum flow one should also consider the duration of high waters in a river channel. In the paper the new two-component model of flood dynamics: "Duration of high waters-Discharge Threshold-Probability of non-exceedance" (DqF), with the methodology of its parameter estimation was proposed as a completion to the classical FFA methods. Such a model can estimate the duration of stages (flows) of an assumed magnitude with a given probability of exceedance. The model combined with the technical evaluation of the probability of levee breaches due to the duration (d) of flow above alarm stage gives the annual probability of inundation caused by the embankment breaking. The results of theoretical investigation were illustrated by a practical example of the model implementation to the series of daily flow of the Vistula River at Szczucin. Regardless of promising results, the method of risk assessment due to prolonged exposure of levees to high water is still in its infancy despite its great cognitive potential and practical importance. Therefore, we would like to point out the need for and usefulness of the DqF model as

  19. A framework for probabilistic pluvial flood nowcasting for urban areas

    NASA Astrophysics Data System (ADS)

    Ntegeka, Victor; Murla, Damian; Wang, Lipen; Foresti, Loris; Reyniers, Maarten; Delobbe, Laurent; Van Herk, Kristine; Van Ootegem, Luc; Willems, Patrick

    2016-04-01

    Pluvial flood nowcasting is gaining ground not least because of the advancements in rainfall forecasting schemes. Short-term forecasts and applications have benefited from the availability of such forecasts with high resolution in space (~1km) and time (~5min). In this regard, it is vital to evaluate the potential of nowcasting products for urban inundation applications. One of the most advanced Quantitative Precipitation Forecasting (QPF) techniques is the Short-Term Ensemble Prediction System, which was originally co-developed by the UK Met Office and Australian Bureau of Meteorology. The scheme was further tuned to better estimate extreme and moderate events for the Belgian area (STEPS-BE). Against this backdrop, a probabilistic framework has been developed that consists of: (1) rainfall nowcasts; (2) sewer hydraulic model; (3) flood damage estimation; and (4) urban inundation risk mapping. STEPS-BE forecasts are provided at high resolution (1km/5min) with 20 ensemble members with a lead time of up to 2 hours using a 4 C-band radar composite as input. Forecasts' verification was performed over the cities of Leuven and Ghent and biases were found to be small. The hydraulic model consists of the 1D sewer network and an innovative 'nested' 2D surface model to model 2D urban surface inundations at high resolution. The surface components are categorized into three groups and each group is modelled using triangular meshes at different resolutions; these include streets (3.75 - 15 m2), high flood hazard areas (12.5 - 50 m2) and low flood hazard areas (75 - 300 m2). Functions describing urban flood damage and social consequences were empirically derived based on questionnaires to people in the region that were recently affected by sewer floods. Probabilistic urban flood risk maps were prepared based on spatial interpolation techniques of flood inundation. The method has been implemented and tested for the villages Oostakker and Sint-Amandsberg, which are part of the

  20. Large Scale Modeling of Floodplain Inundation; Calibration and Forecast Based on Lisflood-FP Model and Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Najafi, M.; Durand, M. T.; Neal, J. C.; Moritz, M.

    2013-12-01

    The Logone floodplain located in the Chad basin in north Cameroon, Africa experiences seasonal flooding as the result of Logone River overbank flow. The seasonal and inter-annual variability of flood depths and extents have significant impacts on the socio-economic as well as eco-hydrology of the basin. Recent human interventions on the hydraulic characteristics of the basin have caused serious concerns for the future behavior of the system. Construction of the Maga dam and hundreds of fish canals along with the impact of climate change are potential factors which alternate the floodplain characteristics. To understand the hydraulics of the basin and predict future changes in flood inundation we calibrate the LISFLOOD-FP numerical model using the historical records of river discharge as well as satellite observations of flood depths and extents. LISFLOOD is a distributed 2D model which efficiently simulates large basins. Because of data limitations the Shuttle Radar Topography Mission (SRTM) is considered to extract the DEM data. LISFLOOD subgrid 2D model is applied which allows for defining river channel widths smaller than the DEM resolution. River widths are extracted from Landsat 4 image obtained on Feb-1999. Model parameters including roughness coefficient and river bathymetry are then calibrated. The results demonstrate the potential application of the proposed model to simulate future changes in the floodplain. The sub-grid model has shown to improve hydraulic connectivity within the inundated area. DEM errors are major sources of uncertainty in model prediction.

  1. Numerical simulation of flood inundation using a well-balanced kinetic scheme for the shallow water equations with bulk recharge and discharge

    NASA Astrophysics Data System (ADS)

    Ersoy, Mehmet; Lakkis, Omar; Townsend, Philip

    2016-04-01

    The flow of water in rivers and oceans can, under general assumptions, be efficiently modelled using Saint-Venant's shallow water system of equations (SWE). SWE is a hyperbolic system of conservation laws (HSCL) which can be derived from a starting point of incompressible Navier-Stokes. A common difficulty in the numerical simulation of HSCLs is the conservation of physical entropy. Work by Audusse, Bristeau, Perthame (2000) and Perthame, Simeoni (2001), proposed numerical SWE solvers known as kinetic schemes (KSs), which can be shown to have desirable entropy-consistent properties, and are thus called well-balanced schemes. A KS is derived from kinetic equations that can be integrated into the SWE. In flood risk assessment models the SWE must be coupled with other equations describing interacting meteorological and hydrogeological phenomena such as rain and groundwater flows. The SWE must therefore be appropriately modified to accommodate source and sink terms, so kinetic schemes are no longer valid. While modifications of SWE in this direction have been recently proposed, e.g., Delestre (2010), we depart from the extant literature by proposing a novel model that is "entropy-consistent" and naturally extends the SWE by respecting its kinetic formulation connections. This allows us to derive a system of partial differential equations modelling flow of a one-dimensional river with both a precipitation term and a groundwater flow model to account for potential infiltration and recharge. We exhibit numerical simulations of the corresponding kinetic schemes. These simulations can be applied to both real world flood prediction and the tackling of wider issues on how climate and societal change are affecting flood risk.

  2. An integrated two-stage support vector machine approach to forecast inundation maps during typhoons

    NASA Astrophysics Data System (ADS)

    Jhong, Bing-Chen; Wang, Jhih-Huang; Lin, Gwo-Fong

    2017-04-01

    During typhoons, accurate forecasts of hourly inundation depths are essential for inundation warning and mitigation. Due to the lack of observed data of inundation maps, sufficient observed data are not available for developing inundation forecasting models. In this paper, the inundation depths, which are simulated and validated by a physically based two-dimensional model (FLO-2D), are used as a database for inundation forecasting. A two-stage inundation forecasting approach based on Support Vector Machine (SVM) is proposed to yield 1- to 6-h lead-time inundation maps during typhoons. In the first stage (point forecasting), the proposed approach not only considers the rainfall intensity and inundation depth as model input but also simultaneously considers cumulative rainfall and forecasted inundation depths. In the second stage (spatial expansion), the geographic information of inundation grids and the inundation forecasts of reference points are used to yield inundation maps. The results clearly indicate that the proposed approach effectively improves the forecasting performance and decreases the negative impact of increasing forecast lead time. Moreover, the proposed approach is capable of providing accurate inundation maps for 1- to 6-h lead times. In conclusion, the proposed two-stage forecasting approach is suitable and useful for improving the inundation forecasting during typhoons, especially for long lead times.

  3. Mapping inundation in the heterogeneous floodplain wetlands of the Macquarie Marshes, using Landsat Thematic Mapper

    NASA Astrophysics Data System (ADS)

    Thomas, Rachael F.; Kingsford, Richard T.; Lu, Yi; Cox, Stephen J.; Sims, Neil C.; Hunter, Simon J.

    2015-05-01

    Flood dependent aquatic ecosystems worldwide are in rapid decline with competing demands for water. In Australia, this is particularly evident in the floodplain wetlands of semi-arid regions (e.g. the Macquarie Marshes), which rely on highly variable flooding from river flows. Environmental flows mitigate the impacts of river regulation, inundating floodplains, thereby rehabilitating degraded habitats. Mapping flooding patterns is critical for environmental flow management but challenging in large heterogeneous floodplains with variable patterns of flooding and complex vegetation mosaics. We mapped inundation in the Macquarie Marshes, using Landsat 5 TM and Landsat 7 ETM+ images (1989-2010). We classified three inundation classes: water, mixed pixels (water, vegetation, soil) and vegetation (emergent macrophytes obscuring inundation), merged to map inundated areas from not-inundated areas (dry land). We used the Normalised Difference Water Index (NDWIB2/B5), masked by the sum of bands 4, 5, and 7 (sum457), to detect water and mixed pixels. Vegetation was classified using an unsupervised classification of a composite image comprising two dates representing vegetation senescence and green growth, transformed into two contrasting vegetation indices, NDVI and NDIB7/B4. We assessed accuracy using geo-referenced oblique aerial photography, coincident with Landsat imagery for a small and large flood, producing respective overall accuracies of inundated area of 93% and 95%. Producer's and user's accuracies were also high (94-99%). Confusion among inundation classes existed but classes were spectrally distinct from one another and from dry land. Inundation class areas varied with flood size, demonstrating the variability. Inundation extent was highly variable (683-206,611 ha). Floods up to 50,000 ha were confined to the north and south wetland regions. Connectivity to the east region only occurred when flooding was greater than 51,000 ha. Understanding the spatiotemporal

  4. Quantifying Floods of a Flood Regime in Space and Time

    NASA Astrophysics Data System (ADS)

    Whipple, A. A.; Fleenor, W. E.; Viers, J. H.

    2015-12-01

    Interaction between a flood hydrograph and floodplain topography results in spatially and temporally variable conditions important for ecosystem process and function. Individual floods whose frequency and dimensionality comprise a river's flood regime contribute to that variability and in aggregate are important drivers of floodplain ecosystems. Across the globe, water management actions, land use changes as well as hydroclimatic change associated with climate change have profoundly affected natural flood regimes and their expression within the floodplain landscape. Homogenization of riverscapes has degraded once highly diverse and productive ecosystems. Improved understanding of the range of flood conditions and spatial variability within floodplains, or hydrospatial conditions, is needed to improve water and land management and restoration activities to support the variable conditions under which species adapted. This research quantifies the flood regime of a floodplain site undergoing restoration through levee breaching along the lower Cosumnes River of California. One of the few lowland alluvial rivers of California with an unregulated hydrograph and regular floodplain connectivity, the Cosumnes River provides a useful test-bed for exploring river-floodplain interaction. Representative floods of the Cosumnes River are selected from previously-established flood types comprising the flood regime and applied within a 2D hydrodynamic model representing the floodplain restoration site. Model output is analyzed and synthesized to quantify and compare conditions in space and time, using metrics such as depth and velocity. This research establishes methods for quantifying a flood regime's floodplain inundation characteristics, illustrates the role of flow variability and landscape complexity in producing heterogeneous floodplain conditions, and suggests important implications for managing more ecologically functional floodplains.

  5. Floods, flood control, and bottomland vegetation

    USGS Publications Warehouse

    Friedman, Jonathan M.; Auble, Gregor T.

    2000-01-01

    Bottomland plant communities are typically dominated by the effects of floods. Floods create the surfaces on which plants become established, transport seeds and nutrients, and remove establish plants. Floods provide a moisture subsidy that allows development of bottomland forests in arid regions and produce anoxic soils, which can control bottomland plant distribution in humid regions. Repeated flooding produces a mosaic of patches of different age, sediment texture, and inundation duration; this mosaic fosters high species richness.

  6. Flood-inundation maps and wetland restoration suitability index for the Blue River and selected tributaries, Kansas City, Missouri, and vicinity, 2012

    USGS Publications Warehouse

    Heimann, David C.; Kelly, Brian P.; Studley, Seth E.

    2015-01-01

    Additional information in this report includes maps of simulated stream velocity for an 8.2-mile, two-dimensional modeled reach of the Blue River and a Wetland Restoration Suitability Index (WRSI) generated for the study area that was based on hydrologic, topographic, and land-use digital feature layers. The calculated WRSI for the selected flood-plain area ranged from 1 (least suitable for possible wetland mitigation efforts) to 10 (most suitable for possible wetland mitigation efforts). A WRSI of 5 to 10 is most closely associated with existing riparian wetlands in the study area. The WRSI allows for the identification of lands along the Blue River and selected tributaries that are most suitable for restoration or creation of wetlands. Alternatively, the index can be used to identify and avoid disturbances to areas with the highest potential to support healthy sustainable riparian wetlands.

  7. An inundation study of the Lower Magdalena-Cauca River Basin

    NASA Technical Reports Server (NTRS)

    Vanes, E.; Gomez, H.; Soeters, R.

    1975-01-01

    Annual floodings affect about 35,000 sq km of the Lower Magdalena-Cauca River Basin in the northern part of Colombia. Efforts made to determine the effects of inundation extension and complex factors involved in the flooding problem are reported. An integrated survey was made of the entire river basin with the object of land reclamation in the lower part and determining the effects of inundation extension and other complex factors on flooding. Modern remote sensing techniques were for the study.

  8. Floods

    MedlinePlus

    ... quickly, often have a dangerous wall of roaring water. The wall carries rocks, mud, and rubble and can sweep away most things in its path. Be aware of flood hazards no matter where you live, but especially if you live in a low-lying area, near water or downstream from a dam. Although there are ...

  9. Flood information for flood-plain planning

    USGS Publications Warehouse

    Bue, Conrad D.

    1967-01-01

    Floods are natural and normal phenomena. They are catastrophic simply because man occupies the flood plain, the highwater channel of a river. Man occupies flood plains because it is convenient and profitable to do so, but he must purchase his occupancy at a price-either sustain flood damage, or provide flood-control facilities. Although large sums of money have been, and are being, spent for flood control, flood damage continues to mount. However, neither complete flood control nor abandonment of the flood plain is practicable. Flood plains are a valuable resource and will continue to be occupied, but the nature and degree of occupancy should be compatible with the risk involved and with the degree of protection that is practicable to provide. It is primarily to meet the needs for defining the risk that the flood-inundation maps of the U.S. Geological Survey are prepared.

  10. Boussinesq Modeling for Inlets, Harbors, and Structures (Bouss-2D)

    DTIC Science & Technology

    2015-10-30

    approach to evaluate the performance of navigation and flooding projects to advance coastal and hydraulic engineering practice and guidance. This...decision support technology maybe used in design/repair of ports/harbors and costal infrastructures, flood levees, flooding and inundation of...Mississippi River Gulf Outlet, New Orleans Flood Control Gates, LA; Buffalo Harbor, NY; Tau Harbor, and Faleasao Harbor, American Samoa. BMT helps

  11. Modeling Coastal Erosion, Passive Inundation, and Dynamic Wave Inundation under Higher Sea Level in Hawaii

    NASA Astrophysics Data System (ADS)

    Anderson, T. R.

    2015-12-01

    Hawaii State legislators recently formed the Interagency Committee on Climate Adaptation to investigate community vulnerability to sea level rise. We developed modeling to provide the committee with assessments of exposure to coastal erosion, wave inundation, and passive flooding based on the IPCC RCP 8.5 model of sea level rise over the 21st Century. We model the exposure to coastal erosion using a hybrid equilibrium profile model (Anderson et al., 2015) that combines historical rates of shoreline change with a Bruun-type model of beach profile translation. Results are mapped in a GIS showing the 80th percentile probability of potential erosion at years 2030, 2050, 2075, and 2100. Wave inundation is modeled using XBeach. We use a 3 m significant wave height to represent a seasonal high swell event. A separate simulation was run for each heightened sea level (corresponding to the years previously mentioned); which accounts for changes in wave dynamics due to the change in water level over the reef platform. We use a bare earth topo/bathy LiDAR DEM derived from data collected during the 2013 JBLTX survey of the Hawaiian Islands. XBeach modeling is done along one-dimensional profiles spaced 20 m apart. From this, we develop a gridded product of water depth and velocity for use in a vulnerability analysis. Passive inundation due to sea level rise, the so-called "bath tub" method, provide estimates of storm drain flooding and groundwater inundation. Our analysis of these three impacts of sea level rise, combined - coastal erosion, wave inundation, and passive flooding - are used with other available data in the FEMA Hazus software to estimate exposure and loss of upland assets.

  12. Can atmospheric reanalysis datasets be used to reproduce flood characteristics?

    NASA Astrophysics Data System (ADS)

    Andreadis, K.; Schumann, G.; Stampoulis, D.

    2014-12-01

    Floods are one of the costliest natural disasters and the ability to understand their characteristics and their interactions with population, land cover and climate changes is of paramount importance. In order to accurately reproduce flood characteristics such as water inundation and heights both in the river channels and floodplains, hydrodynamic models are required. Most of these models operate at very high resolutions and are computationally very expensive, making their application over large areas very difficult. However, a need exists for such models to be applied at regional to global scales so that the effects of climate change with regards to flood risk can be examined. We use the LISFLOOD-FP hydrodynamic model to simulate a 40-year history of flood characteristics at the continental scale, particularly over Australia. LISFLOOD-FP is a 2-D hydrodynamic model that solves the approximate Saint-Venant equations at large scales (on the order of 1 km) using a sub-grid representation of the river channel. This implementation is part of an effort towards a global 1-km flood modeling framework that will allow the reconstruction of a long-term flood climatology. The components of this framework include a hydrologic model (the widely-used Variable Infiltration Capacity model) and a meteorological dataset that forces it. In order to extend the simulated flood climatology to 50-100 years in a consistent manner, reanalysis datasets have to be used. The objective of this study is the evaluation of multiple atmospheric reanalysis datasets (ERA, NCEP, MERRA, JRA) as inputs to the VIC/LISFLOOD-FP model. Comparisons of the simulated flood characteristics are made with both satellite observations of inundation and a benchmark simulation of LISFLOOD-FP being forced by observed flows. Finally, the implications of the availability of a global flood modeling framework for producing flood hazard maps and disseminating disaster information are discussed.

  13. Spatially distributed observations in constraining inundation modelling uncertainties

    NASA Astrophysics Data System (ADS)

    Werner, Micha; Blazkova, Sarka; Petr, Jiri

    2005-10-01

    The performance of two modelling approaches for predicting floodplain inundation is tested using observed flood extent and 26 distributed floodplain level observations for the 1997 flood event in the town of Usti nad Orlici in the Czech Republic. Although the one-dimensional hydrodynamic model and the integrated one- and two-dimensional model are shown to perform comparably against the flood extent data, the latter shows better performance against the distributed level observations. Comparable performance in predicting the extent of inundation is found to be primarily as a result of the urban reach considered, with flood extent constrained by road and railway embankments. Uncertainty in the elevation model used in both approaches is shown to have little effect on the reliability in predicting flood extent, with a greater impact on the ability in predicting the distributed level observations. These results show that reliability of flood inundation modelling in urban reaches, where flood risk assessment is of more interest than in more rural reaches, can be improved greatly if distributed observations of levels in the floodplain are used in constraining model uncertainties.

  14. Sensitivity of Tsunami Waves and Coastal Inundation/Runup to Seabed Displacement Models: Application to the Cascadia Subduction zone

    NASA Astrophysics Data System (ADS)

    Jalali Farahani, R.; Fitzenz, D. D.; Nyst, M.

    2015-12-01

    Major components of tsunami hazard modeling include earthquake source characterization, seabed displacement, wave propagation, and coastal inundation/run-up. Accurate modeling of these components is essential to identify the disaster risk exposures effectively, which would be crucial for insurance industry as well as policy makers to have tsunami resistant design of structures and evacuation planning (FEMA, 2008). In this study, the sensitivity and variability of tsunami coastal inundation due to Cascadia megathrust subduction earthquake are studied by considering the different approaches for seabed displacement model. The first approach is the analytical expressions that were proposed by Okada (1985, 1992) for the surface displacements and strains of rectangular sources. The second approach was introduced by Meade (2006) who introduced analytical solutions for calculating displacements, strains, and stresses on triangular sources. In this study, the seabed displacement using triangular representation of geometrically complex fault surfaces is compared with the Okada rectangular representations for the Cascadia subduction zone. In the triangular dislocation algorithm, the displacement is calculated using superposition of two angular dislocations for each of the three triangle legs. The triangular elements could give a better and gap-free representation of the fault surfaces. In addition, the rectangular representation gives large unphysical vertical displacement along the shallow-depth fault edge that generates unrealistic short-wavelength waves. To study the impact of these two different algorithms on the final tsunami inundation, the initial tsunami wave as well as wave propagation and the coastal inundation are simulated. To model the propagation of tsunami waves and coastal inundation, 2D shallow water equations are modeled using the seabed displacement as the initial condition for the numerical model. Tsunami numerical simulation has been performed on high

  15. The WMO Coastal Inundation Forecasting Demonstration Project (CIFDP)

    NASA Astrophysics Data System (ADS)

    Lee, Boram; Resio, Don; Swail, Val; Fakhruddin, Shm; Horsburgh, Kevin

    2014-05-01

    Coastal inundations are an increasing threat to the lives and livelihoods of people living in low-lying, highly-populated coastal areas. According to the World Bank Report 2005, at least 2.6 million people have drowned in coastal inundation, particularly caused by storm surges, over the last 200 years. The purpose of the WMO Coastal Inundation Forecasting Demonstration Project (CIFDP) is to meet the challenges of coastal communities' safety and to support sustainable development through enhancing coastal inundation forecasting and warning systems at the regional scale. Upon completion of national sub-projects of CIFDP, countries will implement an operational system for integrated coastal inundation forecasting and warning, providing an objective basis for coastal disaster (flooding) management; contributing to saving lives, reducing loss of livelihood and property, and enhancing resilience and sustainability in coastal communities. Operation and maintenance of the CIF system would be the responsibility of national operational agencies with a mandate for coastal inundation warnings. The main focus of the CIFDP will be to facilitate the development of efficient forecasting and warning systems for coastal inundation based on robust science and observations: The presentation will describe the scope and the technical framework for CIFDP and describe its implementation in the various sub-projects presently underway.

  16. Flood Inundation Modelling Using MILHY. Volume 2

    DTIC Science & Technology

    1989-06-01

    definitions as the AX2(20) X(20), X2(20), and X3(20) above, but variable types are mean values AX3(20) in DOUBLE PRECISION rather than REAL SCURVI Standard...preceeded by an ’S’,then the variable represents the C standard deviation of that particular soil hydrological characteristic. C SCURVI Standard...ASATCONASATCON2 ,ASATCON3,BSATCON, BSATCON2,BSATCON3. . SDETCAP,SSR1 ,SSR2.SSR3 ,STNETASSATCON,SSATCON2.SSATCON3, . SCURVi SCURVZ, SCURV3 C C C C READ IN DATA C

  17. Deriving robust return periods for tropical cyclone inundations from sediments

    NASA Astrophysics Data System (ADS)

    Nott, Jonathan F.; Jagger, Thomas H.

    2013-01-01

    Return periods for tropical cyclone (TC) marine inundations are usually derived from synthetic data sets generated from deterministic models or by extrapolating short historical records. Such approaches contain considerable uncertainties because it is difficult to test their veracity until a sufficiently long period has elapsed. These approaches also often only consider storm surges or storm tides and not the total inundation, which includes waves, set-up and run-up, likely to flood a coastal property. An alternative approach is to examine sedimentary records of actual events that occurred throughout the late Holocene. Sedimentary beach ridges are unique amongst the different types of storm inundation sedimentary records because they record variations in the height of total marine inundations rather than a censoring level as occurs with overwash deposits. The limitation in using beach ridges to derive return periods for inundations has been the lack of a robust statistical model that accurately describes the distribution of these events over the past several millennia. Such a model is presented here using a Generalized Extreme Value distribution and Bayesian analysis of a sand beach ridge plain record of extreme TC-generated marine inundations from northeast Australia. Using this approach, the return period of the marine inundation generated by severe TC Yasi is determined. This return period differs considerably from estimates determined using a probability-based approach, which extrapolates from a short historical record. With global climate changing and the magnitude of marine inundations expected to increase, there is mounting pressure to develop national standards for marine flood loadings on coastal buildings. Deriving accurate return periods of these events will be critical to this endeavor, and this approach will be applicable at numerous localities globally where storm deposited beach ridges occur.

  18. Flood Risk Management in Iowa through an Integrated Flood Information System

    NASA Astrophysics Data System (ADS)

    Demir, Ibrahim; Krajewski, Witold

    2013-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 1100 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert

  19. Approach for evaluating inundation risks in urban drainage systems.

    PubMed

    Zhu, Zhihua; Chen, Zhihe; Chen, Xiaohong; He, Peiying

    2016-05-15

    Urban inundation is a serious challenge that increasingly confronts the residents of many cities, as well as policymakers. Hence, inundation evaluation is becoming increasingly important around the world. This comprehensive assessment involves numerous indices in urban catchments, but the high-dimensional and non-linear relationship between the indices and the risk presents an enormous challenge for accurate evaluation. Therefore, an approach is hereby proposed to qualitatively and quantitatively evaluate inundation risks in urban drainage systems based on a storm water management model, the projection pursuit method, the ordinary kriging method and the K-means clustering method. This approach is tested using a residential district in Guangzhou, China. Seven evaluation indices were selected and twenty rainfall-runoff events were used to calibrate and validate the parameters of the rainfall-runoff model. The inundation risks in the study area drainage system were evaluated under different rainfall scenarios. The following conclusions are reached. (1) The proposed approach, without subjective factors, can identify the main driving factors, i.e., inundation duration, largest water flow and total flood amount in this study area. (2) The inundation risk of each manhole can be qualitatively analyzed and quantitatively calculated. There are 1, 8, 11, 14, 21, and 21 manholes at risk under the return periods of 1-year, 5-years, 10-years, 20-years, 50-years and 100-years, respectively. (3) The areas of levels III, IV and V increase with increasing rainfall return period based on analyzing the inundation risks for a variety of characteristics. (4) The relationships between rainfall intensity and inundation-affected areas are revealed by a logarithmic model. This study proposes a novel and successful approach to assessing risk in urban drainage systems and provides guidance for improving urban drainage systems and inundation preparedness.

  20. Evacuation of aged persons from inundated underground space.

    PubMed

    Ishigaki, T; Asai, Y; Nakahata, Y; Shimada, H; Baba, Y; Toda, K

    2010-01-01

    Underground is an important space that supports function of cities, such as subways, shopping malls and basement parking. However in consequence a new type of disaster, the "urban flood" menaces these spaces. In the last decade, urban floods struck Tokyo, Nagoya and Fukuoka. When underground inundation occurs, people must evacuate to the ground as soon as possible. But, when such an inundation situation happens, aged persons may not be able to evacuate quickly to ground level. In this paper, the method of safety assessment for aged persons is discussed on the experimental results and flood simulation data in an underground space. As a criterion of the safety evacuation, the specific force per unit width is used in this study. From the result of experiments, it is difficult to implement safety evacuation when the specific force per unit width is over 0.100 m(2) for the aged male.

  1. Validating city-scale surface water flood modelling using crowd-sourced data

    NASA Astrophysics Data System (ADS)

    Yu, Dapeng; Yin, Jie; Liu, Min

    2016-12-01

    Surface water and surface water related flood modelling at the city-scale is challenging due to a range of factors including the availability of subsurface data and difficulty in deriving runoff inputs and surcharge for individual storm sewer inlets. Most of the research undertaken so far has been focusing on local-scale predictions of sewer surcharge induced surface flooding, using a 1D/1D or 1D/2D coupled storm sewer and surface flow model. In this study, we describe the application of an urban hydro-inundation model (FloodMap-HydroInundation2D) to simulate surface water related flooding arising from extreme precipitation at the city-scale. This approach was applied to model an extreme storm event that occurred on 12 August 2011 in the city of Shanghai, China, and the model predictions were compared with a ‘crowd-sourced’ dataset of flood incidents. The results suggest that the model is able to capture the broad patterns of inundated areas at the city-scale. Temporal evaluation also demonstrates a good level of agreement between the reported and predicted flood timing. Due to the mild terrain of the city, the worst-hit areas are predicted to be topographic lows. The spatio-temporal accuracy of the precipitation and micro-topography are the two critical factors that affect the prediction accuracies. Future studies could be directed towards making more accurate and robust predictions of water depth and velocity using higher quality topographic, precipitation and drainage capacity information.

  2. Flood control and loss estimation for paddy field at midstream of Chao Phraya River Basin, Thailand

    NASA Astrophysics Data System (ADS)

    Cham, T. C.; Mitani, Y.

    2015-09-01

    2011 Thailand flood has brought serious impact to downstream of Chao Phraya River Basin. The flood peak period started from August, 2011 to the end of October, 2011. This research focuses on midstream of Chao Phraya River Basin, which is Nakhon Sawan area includes confluence of Nan River and Yom River, also confluence of Ping River and Nan River. The main purpose of this research is to understand the flood generation, estimate the flood volume and loss of paddy field, also recommends applicable flood counter measurement to ease the flood condition at downstream of Chao Phraya River Basin. In order to understand the flood condition, post-analysis is conducted at Nakhon Sawan. The post-analysis consists of field survey to measure the flood marks remained and interview with residents to understand living condition during flood. The 2011 Thailand flood generation at midstream is simulated using coupling of 1D and 2D hydrodynamic model to understand the flood generation during flood peak period. It is calibrated and validated using flood marks measured and streamflow data received from Royal Irrigation Department (RID). Validation of results shows good agreement between simulated result and actual condition. Subsequently, 3 scenarios of flood control are simulated and Geographic Information System (GIS) is used to assess the spatial distribution of flood extent and reduction of loss estimation at paddy field. In addition, loss estimation for paddy field at midstream is evaluated using GIS with the calculated inundation depth. Results show the proposed flood control at midstream able to minimize 5% of the loss of paddy field in 26 provinces.

  3. Modelling the impact of land subsidence on urban pluvial flooding: A case study of downtown Shanghai, China.

    PubMed

    Yin, Jie; Yu, Dapeng; Wilby, Rob

    2016-02-15

    This paper presents a numerical analysis of pluvial flooding to evaluate the impact of land subsidence on flood risks in urban contexts using a hydraulic model (FloodMap-HydroInundation2D). The pluvial flood event of August 2011 in Shanghai, China is used for model calibration and simulation. Evolving patterns of inundation (area and depth) are assessed over four time periods (1991, 1996, 2001 and 2011) for the downtown area, given local changes in topography and rates of land subsidence of up to 27 mm/yr. The results show that land subsidence can lead to non-linear response of flood characteristics. However, the impact on flood depths is generally minor (<5 cm) and limited to areas with lowest-lying topographies because of relatively uniform patterns of subsidence and micro-topographic variations at the local scale. Nonetheless, the modelling approach tested here may be applied to other cities where there are more marked rates of subsidence and/or greater heterogeneity in the depressed urban surface. In these cases, any identified hot-spots of subsidence and focusing of pluvial flooding may be targeted for adaptation interventions.

  4. An Operational Tool for Global Monitoring of Inundation Using NPP ATMS Data

    NASA Astrophysics Data System (ADS)

    Tesfagiorgis, K. B.

    2015-12-01

    The goal of this study is to introduce an operational microwave-based tool for the detection and monitoring of inundation across the globe using passive microwave observations from the Advanced Technology Microwave Sounder (ATMS) sensor onboard SUOMI NPP. ATMS surface sensitive channels, namely, the 23 GHz and the 89 GHz are used in this study. The inundation detection approach is based on the analysis of the standardized anomalies of a soil wetness index that is determined from the gradient between 89 and 23 GHz brightness temperatures. The dimensionless index is sensitive to extreme wetness conditions. Appropriate threshold-based techniques were implemented in the developed tool to detect and eliminate rainy pixels as well as snow and ice covered pixels. An automated tool was developed to process, analyze the data, develop the inundation product, and disseminate the detected inundated area through a web-based interface. The outputs of the developed algorithm were verified against records from the Darthmouth Flood Observatory data archive. The agreement was acceptable with POD reaching 80 % globally for flood with durations longer than 5 days. The analysis of the flood records showed that the most frequent flood events have a duration of 3 days. The flood detection and mapping system was able to reports more short duration events that lasted 1 day or less than what is in the flood observatory records. The inundation global mapping tool was deployed operationally using real time readouts from NOAA-CREST satellite receiving station in New York, USA.

  5. Methodology for Establishment of Integrated Flood Analysis System

    NASA Astrophysics Data System (ADS)

    Kim, B.; Sanders, B. F.; Kim, K.; Han, K.; Famiglietti, J. S.

    2012-12-01

    Flood risk management efforts face considerable uncertainty in flood hazard delineation as a consequence of changing climatic conditions including shifts in precipitation, soil moisture, and land uses. These changes can confound efforts to characterize flood impacts over decadal time scales and thus raise questions about the true benefits and drawbacks of alternative flood management projects including those of a structural and non-structural nature. Here we report an integrated flood analysis system that is designed to bring climate change information into flood risk context and characterize flood hazards in both rural and urban areas. Distributed rainfall-runoff model, one-dimensional (1D) NWS-FLDWAV model, 1D Storm Water Management Model (SWMM) and two-dimensional (2D) BreZo model are coupled. Distributed model using the multi-directional flow allocation and real time updating is used for rainfall-runoff analysis in ungauged watershed and its outputs are taken as boundary conditions to the FLDWAV model which was employed for 1D river hydraulic routing and predicting the overflow discharge at levees which were overtopped. In addition, SWMM is chosen to analyze storm sewer flow in urban areas and BreZo is used to estimate the inundation zones, depths and velocities due to the surcharge flow at sewer system or overflow at levees on the land surface. The overflow at FLDWAV or surcharged flow at SWMM becomes point sources in BreZo. Applications in Korea and California are presented.

  6. A methodology for linking 2D overland flow models with the sewer network model SWMM 5.1 based on dynamic link libraries.

    PubMed

    Leandro, Jorge; Martins, Ricardo

    2016-01-01

    Pluvial flooding in urban areas is characterized by a gradually varying inundation process caused by surcharge of the sewer manholes. Therefore urban flood models need to simulate the interaction between the sewer network and the overland flow in order to accurately predict the flood inundation extents. In this work we present a methodology for linking 2D overland flow models with the storm sewer model SWMM 5. SWMM 5 is a well-known free open-source code originally developed in 1971. The latest major release saw its structure re-written in C ++ allowing it to be compiled as a command line executable or through a series of calls made to function inside a dynamic link library (DLL). The methodology developed herein is written inside the same DLL in C + +, and is able to simulate the bi-directional interaction between both models during simulation. Validation is done in a real case study with an existing urban flood coupled model. The novelty herein is that the new methodology can be added to SWMM without the need for editing SWMM's original code. Furthermore, it is directly applicable to other coupled overland flow models aiming to use SWMM 5 as the sewer network model.

  7. Strategies for detection of floodplain inundation with multi-frequency polarimetric SAR

    NASA Technical Reports Server (NTRS)

    Hess, Laura L.; Melack, John M.

    1992-01-01

    Mapping of floodplain inundation patterns is a key element in developing hydrological and biogeochemical models for large tropical river basins such as the Amazon. Knowledge of the time sequence of inundation is necessary to determine both water routing and biogenic gas fluxes. Synthetic Aperture Radar (SAR) is uniquely suited for this application because of its ability to penetrate cloud cover and, in many cases, to detect flooding beneath a forest or herbaceous canopy. A procedure for discriminating flooded forest, flooded herbaceous vegetation, and open water from other cover types for a coastal wetland site on the lower Altamaha floodplain, Georgia, emphasizing robust classifiers that are not site-specific is currently being developed.

  8. Representing channel uncertainty in regional scale inundation models

    NASA Astrophysics Data System (ADS)

    Neal, J. C.; Odoni, N. A.; Freer, J. E.; Bates, P. D.; Trigg, M.

    2013-12-01

    Flood hazard is typically simulated using hydraulic models that are parameterised with observed river and floodplain bathymetry. However, this approach is fundamentally limited by the lack of observed river bathymetry for most of the world's rivers along with model structures that are inflexible and not designed for large scale application. Therefore, simulating inundation across large areas requires a different approach where bathymetry and friction are estimated as reach averaged components of the hydraulic model from observable variables such as water level and channel width. Where reach averaging means that local variability in width and depth, such as that due to meandering, is ignored or parameterised as a sub-grid process by the model. Here, we present a hydraulic model where the river channel is described by four physically meaningful parameters, which for the first time allows sensitivity to model structure, in terms of geometry, to be assessed. The first two parameters and an explanatory variable (e.g. catchment area) control the channel bank full depth, and a third describes the channel friction. The final parameter describes the channel shape using a power term s, which is used to calculate the flow width for any flow depth given the bank full width and depth. This approach allows the flow width to vary with depth in a flexible manner, but required a novel and computationally efficient regression method for estimating the wetted perimeter to be developed. s can take any value above 0 and produce a real geometry. However, in physical terms, values below 1 result in convex shaped banks, while values above 1 result in concave channels that tend towards rectangular. The river channel model was coupled with a 2D inundation model using a simple to set-up sub-grid scale channel approach. The research questions we then investigated were: 1) How accurately can wetted perimeter be estimated? 2) Can the geometry parameters be clearly identified from water level

  9. Flash flood characterisation of the Haor area of Bangladesh

    NASA Astrophysics Data System (ADS)

    Bhattacharya, B.; Suman, A.

    2012-04-01

    Haors are large bowl-shaped flood plain depressions located mostly in north-eastern part of Bangladesh covering about 25% of the entire region. During dry season haors are used for agriculture and during rainy season it is used as fisheries. Haors have profound ecological importance. About 8000 migratory wild birds visit the area annually. Some of the haors are declared at Ramsar sites. Haors are frequently affected by the flash floods due to hilly topography and steep slope of the rivers draining the area. These flash floods spill onto low-lying flood plain lands in the region, inundating crops, damaging infrastructure by erosion and often causing loss of lives and properties. Climate change is exacerbating the situation. For appropriate risk mitigation mechanism it is necessary to explore flood characteristics of that region. The area is not at all studied well. Under a current project a numerical 1D2D model based on MIKE Flood is developed to study the flooding characteristics and estimate the climate change impacts on the haor region. Under this study the progression of flood levels at some key haors in relation to the water level data at specified gauges in the region is analysed. As the region is at the border with India so comparing with the gauges at the border with India is carried out. The flooding in the Haor area is associated with the rainfall in the upstream catchment in India (Meghalaya, Barak and Tripura basins in India). The flood propagation in some of the identified haors in relation to meteorological forcing in the three basins in India is analysed as well. Subsequently, a ranking of haors is done based on individual risks. Based on the IPCC recommendation the precipitation scenario in the upstream catchments under climate change is considered. The study provides the fundamental inputs for preparing a flood risk management plan of the region.

  10. Urban sprawl and flooding in southern California

    USGS Publications Warehouse

    Rantz, S.E.

    1970-01-01

    The floods of January 1969 in south-coastal California provide a timely example of the effect of urban sprawl on flood damage. Despite recordbreaking, or near recordbreaking, stream discharges, damage was minimal in the older developed areas that are protected against inundation and debris damage by carefully planned flood-control facilities, including debris basins and flood-conveyance channels. By contrast, heavy damage occurred in areas of more recent urban sprawl, where the hazards of inundation and debris or landslide damage have not been taken into consideration, and where the improvement and development of drainage or flood-control facilities have not kept pace with expanding urbanization.

  11. Modelling the socio-economic impact of river floods in Europe

    NASA Astrophysics Data System (ADS)

    Alfieri, Lorenzo; Feyen, Luc; Salamon, Peter; Thielen, Jutta; Bianchi, Alessandra; Dottori, Francesco; Burek, Peter

    2016-06-01

    River floods generate a large share of the socio-economic impact of weather-driven hazards worldwide. Accurate assessment of their impact is a key priority for governments, international organization, reinsurance companies and emergency responders. Yet, available databases of flood losses over large domains are often affected by gaps and inconsistencies in reported figures. In this work, a framework to reconstruct the economic damage and population affected by river floods at continental scale is applied. Pan-European river flow simulations are coupled with a high-resolution impact assessment framework based on 2-D inundation modelling. Two complementary methods are compared in their ability to estimate the climatological average flood impact and the impact of each flood event in Europe between 1990 and 2013. The event-based method reveals key features, such as the ability to include changes in time of all three components of risk, namely hazard, exposure and vulnerability. Furthermore, it skilfully reproduces the socio-economic impact of major flood events in the past two decades, including the severe flooding hitting central Europe in June 2013. On the other hand, the integral method is capable of reproducing the average flood losses which occurred in Europe between 1998 and 2009. Strengths and limitations of the proposed model are discussed to stress the large potential for filling in the gaps of current datasets of flood impact.

  12. a 24/7 High Resolution Storm Surge, Inundation and Circulation Forecasting System for Florida Coast

    NASA Astrophysics Data System (ADS)

    Paramygin, V.; Davis, J. R.; Sheng, Y.

    2012-12-01

    East, which continues north to the Florida/Georgia border. The system has a data acquisition and processing module that is used to collect data for model runs (e.g. wind, river flow, precipitation). Depending on the domain, forecasts runs can take ~1-18 hours to complete on a single CPU (8-core) system (1-2 hrs for 2D setup and up to 18 hrs for a 3D setup) with 4 forecasts generated per day. All data is archived / catalogued and model forecast skill is continuously being evaluated. In addition to the baseline forecasts, additional forecasts are being perform using various options for wind forcing (GFS, GFDL, WRF, and parametric hurricane models), model configurations (2D/ 3D), and open boundary conditions by coupling with large scale models (ROMS, NCOM, HYCOM), as well as incorporating real-time and forecast river flow and precipitation data to better understand how to improve model skill. In addition, new forecast products (e.g. more informative inundation maps) are being developed to targeted stakeholders. To support modern data standards, CH3D-SSMS results are available online via a THREDDS server in CF-Compliant NetCDF format as well as other stakeholder-friendly (e.g. GIS) formats. The SECOORA website provides visualization of the model via GODIVA-THREDDS interface.

  13. The impact of flood variables on riparian vegetation

    NASA Astrophysics Data System (ADS)

    Dzubakova, Katarina; Molnar, Peter

    2016-04-01

    The riparian vegetation of Alpine rivers often grows in temporally dynamic riverine environments which are characterized by pronounced meteorological and hydrological fluctuations and high resource competition. Within these relatively rough conditions, riparian vegetation fulfils essential ecosystem functions such as water retention, biomass production and habitat to endangered species. The identification of relevant flood attributes impacting riparian vegetation is crucial for a better understanding of the vegetation dynamics in the riverine ecosystem. Hence, in this contribution we aim to quantify the ecological effects of flood attributes on riparian vegetation and to analyze the spatial coherence of flood-vegetation interaction patterns. We analyzed a 500 m long and 300-400 m wide study reach located on the Maggia River in southern Switzerland. Altogether five floods between 2008 and 2011 with return periods ranging from 1.4 to 20.1 years were studied. To assess the significance of the flood attributes, we compared post-flood to pre-flood vegetation vigour to flood intensity. Pre- and post-flood vegetation vigour was represented by the Normalized Difference Vegetation Index (NDVI) which was computed from images recorded by high resolution ground-based cameras. Flood intensity was expressed in space in the study reach by six flood attributes (inundation duration, maximum depth, maximum and total velocity, maximum and total shear stress) which were simulated by the 2D hydrodynamic model BASEMENT (VAW, ETH Zurich). We considered three floodplain units separately (main bar, secondary bar, transitional zone). Based on our results, pre-flood vegetation vigour largely determined vegetation reaction to the less intense floods (R = 0.59-0.96). However for larger floods with a strong erosive effect, its contribution was significantly lower (R = 0.59-0.68). Using multivariate regression analysis we show that pre-flood vegetation vigour and maximum velocity proved to be

  14. Assessment of groundwater inundation as a consequence of sea-level rise

    NASA Astrophysics Data System (ADS)

    Rotzoll, Kolja; Fletcher, Charles H.

    2013-05-01

    Strong evidence on climate change underscores the need for actions to reduce the impacts of sea-level rise. Global mean sea level may rise 0.18-0.48m by mid-century and 0.5-1.4m by the end of the century. Besides marine inundation, it is largely unrecognized that low-lying coastal areas may also be vulnerable to groundwater inundation, which is localized coastal-plain flooding due to a rise of the groundwater table with sea level. Measurements of the coastal groundwater elevation and tidal influence in urban Honolulu, Hawaii, allow estimates of the mean water table, which was used to assess vulnerability to groundwater inundation from sea-level rise. We find that 0.6m of potential sea-level rise causes substantial flooding, and 1m sea-level rise inundates 10% of a 1-km wide heavily urbanized coastal zone. The flooded area including groundwater inundation is more than twice the area of marine inundation alone. This has consequences for decision-makers, resource managers and urban planners, and may be applicable to many low-lying coastal areas, especially where groundwater withdrawal is not substantial.

  15. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands along waterways has not discouraged development of flood hazards areas. Major floods cause loss of...

  16. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands along waterways has not discouraged development of flood hazards areas. Major floods cause loss of...

  17. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands along waterways has not discouraged development of flood hazards areas. Major floods cause loss of...

  18. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands along waterways has not discouraged development of flood hazards areas. Major floods cause loss of...

  19. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands along waterways has not discouraged development of flood hazards areas. Major floods cause loss of...

  20. Hydraulic Reconstructions of Outburst Floods on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Lapotre, M. G. A.; Lamb, M. P.

    2014-12-01

    Large outburst floods on Earth and Mars have carved bedrock canyons in basalt that often have steep sidewalls and amphitheater heads, suggesting erosion by waterfall retreat and block toppling. Two paleohydraulic methods are typically used to reconstruct flood discharges. The first is based on the discharge required to move sediment, which requires rare grain-size data and is necessarily a lower bound. The second assumes bedrock canyons are entirely inundated, which likely greatly overestimates the discharge of canyon carving floods. Here we explore a third hypothesis that canyon width is an indicator of flood discharge. For example, we expect that for large floods relative to the canyon width, the canyon will tend to widen as water spills over and erodes the canyon sidewalls. In contrast, small floods, relative to the canyon size will tend to focus flow into the canyon head, resulting in a narrowing canyon. To test this hypothesis, we need data on how outburst floods focus water into canyons across a wide range of canyon and flood sizes. To fill this data gap, we performed a series of numerical simulations solving the 2D depth-averaged shallow water equations for turbulent flow. We analyzed the effect of five non-dimensional parameters on the shear stress and discharge distributions around head and sidewalls of canyons of different sizes. The Froude number of the flood has the greatest effect on the distribution of shear stresses and discharges around the canyon rim; higher Froude numbers lead to less convergence of the flow towards the canyon, and thus to lower shear stresses (and discharges) on the sides of the canyon. Simulation results show that canyons of constant width were likely carved by floods within a relatively narrow range of discharges. The range of discharges is sensitive to the Froude number and size of blocks that are toppled at the canyon head, both of which can be estimated from field and remotely sensed data. Example applications on Earth and

  1. Mutual coupling of hydrologic and hydrodynamic models - a viable approach for improved large-scale inundation estimates?

    NASA Astrophysics Data System (ADS)

    Hoch, Jannis; Winsemius, Hessel; van Beek, Ludovicus; Haag, Arjen; Bierkens, Marc

    2016-04-01

    Due to their increasing occurrence rate and associated economic costs, fluvial floods are large-scale and cross-border phenomena that need to be well understood. Sound information about temporal and spatial variations of flood hazard is essential for adequate flood risk management and climate change adaption measures. While progress has been made in assessments of flood hazard and risk on the global scale, studies to date have made compromises between spatial resolution on the one hand and local detail that influences their temporal characteristics (rate of rise, duration) on the other. Moreover, global models cannot realistically model flood wave propagation due to a lack of detail in channel and floodplain geometry, and the representation of hydrologic processes influencing the surface water balance such as open water evaporation from inundated water and re-infiltration of water in river banks. To overcome these restrictions and to obtain a better understanding of flood propagation including its spatio-temporal variations at the large scale, yet at a sufficiently high resolution, the present study aims to develop a large-scale modeling tool by coupling the global hydrologic model PCR-GLOBWB and the recently developed hydrodynamic model DELFT3D-FM. The first computes surface water volumes which are routed by the latter, solving the full Saint-Venant equations. With DELFT3D FM being capable of representing the model domain as a flexible mesh, model accuracy is only improved at relevant locations (river and adjacent floodplain) and the computation time is not unnecessarily increased. This efficiency is very advantageous for large-scale modelling approaches. The model domain is thereby schematized by 2D floodplains, being derived from global data sets (HydroSHEDS and G3WBM, respectively). Since a previous study with 1way-coupling showed good model performance (J.M. Hoch et al., in prep.), this approach was extended to 2way-coupling to fully represent evaporation

  2. The hydrogeology of the military inundation at the 1914-1918 Yser front (Belgium)

    NASA Astrophysics Data System (ADS)

    Vandenbohede, Alexander

    2016-03-01

    Protection against flooding by the sea, drainage of rainwater and integrated management of groundwater and surface-water resources are key issues in low-lying coastal areas. However, under exceptional circumstances, knowledge to keep coastal areas dry and habitable can be used otherwise. Inundation for military purposes is such an example. The hydrogeology of the inundation at the Yser River, Belgium, during the Great War is studied. The inundation started in October 1914 to stop the German advance and lasted until 1918. A water balance and groundwater model are combined to derive the water balance before and during the inundation and to study the impact on the groundwater system. It is concluded that a number of hydrogeological factors contributed to the effectiveness of the inundation. Most importantly, the low-permeability subsoil facilitated loss of inundation water mainly by evaporation. Further, the normal water management strategy of the area (aimed at evacuating excess water towards the sea) was reversed to keep water between the opposing armies. However, the duration of the inundation meant a reorganization of the drainage of areas not inundated; truly an exercise in integrated water management.

  3. Effect of Coupling Wave and Flow Dynamics on Hurricane Surge and Inundation

    DTIC Science & Technology

    2012-01-01

    module can be run in 3D mode, for modeling the storm surge in this study we choose to run the model in horizontal 2D mode. Wave effects are included in...we validate the DELFT3D modeling suite comprised of FLOW and WAVE modules to model inundation caused by Hurricane Ike (2008) using reanalyzed data... Model results are compared to the data collected by the SURA coastal inundation testbed. Comparing the effects of coupling waves show that there

  4. Causes and systematics of inundations of the Krasnodar territory on the Russian Black Sea coast

    NASA Astrophysics Data System (ADS)

    Alexeevsky, Nikolay; Magritsky, Dmitry V.; Koltermann, Klaus Peter; Krylenko, Inna; Toropov, Pavel

    2016-06-01

    The inundation situations on the Black Sea coast of the Krasnodar territory for the period from 1945 until 2013 were analysed and the main types of inundations at the coast are described. Synoptic factors of the formation of extreme precipitation and rainfall floods, features and regularities of the downstream flood wave transformation in the rivers are also studied. Therefore, assessments of seasonal and maximum flow of the Black Sea coast rivers for the period of hydrometric measurements were done. Regularities of change of the occurrence of inundations and their characteristics on the coastal terrain were analysed, for a year and on a perennial timescale. Most catastrophic and exceptional inundations arise in the summer and in early autumn. Small inundations during the remaining year reflect the seasonal distribution of river flow and floods in the Black Sea rivers. Extensive and sometimes extreme precipitation dominates the river flow regimes. The seasonal distribution of small and moderately dangerous inundations reflects, on average, a water regime of two groups of rivers of the coast - to the north and to the south of the Tuapse River. To the north of the Tuapse River, floods prevail from November until March (up to 70 % of observed floods took place in this period) as a result of precipitation and winter snowmelt during frequent thaw periods. In winter, high waters often overlap to form a multi-peak high water of 2-3 weeks' duration. In the summer and in early autumn we observe a steady low flow. The total amount of runoff increases both in a southeast direction, and with the altitude of the river basins. Interannual variability of mean annual runoff, as well as maximum runoff, on the contrary decreases in the southern direction and with an increasing area of the river basins. The coastal high waters of the rivers of the Sochi part of the coast are typical at any time of the year, but more often floods in the cold season result from incessant rain, and

  5. Floods at Mount Clemens, Michigan

    USGS Publications Warehouse

    Wiitala, S.W.; Ash, Arlington D.

    1962-01-01

    The approximate areas inundated during the flood of April 5-6, 1947, by Clinton River, North Branch and Middle Branch of Clinton River, and Harrington Drain, in Clinton Township, Macomb County, Mich., are shown on a topographic map base to record the flood hazard in graphical form. The flood of April 1947 is the highest known since 1934 and probably since 1902. Greater floods are possible, but no attempt was made to define their probable overflow limits.The Clinton River Cut-Off Canal, a flood-relief channel which diverts flow directly into Lake St. Clair from a point about 1500 feet downstream from Gratiot Avenue (about 9 miles upstream from the mouth) has been in operation since October 1951. The approximate limits of overflow that would results from a flood equivalent in discharge to that of April 1947, and occurring with the Cut-Off Canal in operation, are also shown. Although the Cut-Off Canal may reduce the frequency and depth of flooding it will not necessarily eliminate future flooding in the area. Improvements and additions to the drainage systems in the basin, expanding urbanization, new highways, and other cultural changes may influence the inundation pattern of future floods.The preparation of this flood inundation map was financed through a cooperative agreement between Clinton Township, Macomb County, Mich., and the U.S. Geological Survey.Backwater curves used to define the profile for a hypothetical flood on the Clinton River downstream from Moravian Drive, equivalent in discharge to the 1947 flood, but occurring with the present Cut-Off Canal in operation; flood stage established at the gaging station on Clinton River at Mount Clemens; and supplementary floodmark elevations were furnished by the Corps of Engineers.Bench-mark elevations and field survey data, used in the analysis of floods on Harrington Drain, were furnished by the Macomb County Drain Commission.

  6. Evaluating the Impact of Sea Level Rise and Coastal Flooding on NASA Centers and Facilities by Implementing Terrestrial Laser Scanning Surveys to Improve Coastal Digital Elevation and Inundation Models

    NASA Astrophysics Data System (ADS)

    Bell, L. J.; Nerem, R. S.; Williams, K.; Meertens, C.; Lestak, L.; Masters, D.

    2014-12-01

    Sea level is rising in response to climate change. Currently the global mean rate is a little over 3 mm/year, but it is expected to accelerate significantly over this century. This will have a profound impact on coastal populations and infrastructure, including NASA centers and facilities. A detailed study proposed by the University of Colorado's Center for Astrodynamics Research on the impact of sea level rise on several of NASA's most vulnerable facilities was recently funded by NASA. Individual surveys at several high-risk NASA centers were conducted and used as case studies for a broader investigation that needs to be done for coastal infrastructure around the country. The first two years of this study included implementing and conducting a terrestrial laser scanning (TLS) and GPS survey at Kennedy Space Center, Cape Canaveral, Florida, Wallops Flight Facility, Wallops Island, Virginia, Langley Research Center, Hampton, Virginia, and Ames Research Center, Moffett Field, California. We are currently using airborne LiDAR (Light Detection and Ranging) data and TLS (Terrestrial Laser Scanning) data to construct detailed digital elevation models (DEMs) of the facilities that we have assessed. The TLS data acquired at each center provides a very dense point cloud that is being used to improve the detail and accuracy of the digital elevation models currently available. We are also using GPS data we acquired at each center to assess the rate of vertical land movement at the facilities and to tie the DEM to tide gauges and other reference points. With completed, detailed DEMs of the topography and facilities at each center, a series of simple inundation models will then be applied to each area. We will use satellite altimeter data from TOPEX, Jason-1, and Jason-2 to assess the sea level changes observed near these NASA facilities over the last 20 years along with sea level projections from global climate models (GCMs) and semi-empirical projections to make detailed maps

  7. Contribution of future urbanisation expansion to flood risk changes

    NASA Astrophysics Data System (ADS)

    Bruwier, Martin; Mustafa, Ahmed; Archambeau, Pierre; Erpicum, Sébastien; Pirotton, Michel; Teller, Jacques; Dewals, Benjamin

    2016-04-01

    The flood risk is expected to increase in the future due to climate change and urban development. Climate change modifies flood hazard and urban development influences exposure and vulnerability to floods. While the influence of climate change on flood risk has been studied widely, the impact of urban development also needs to be considered in a sustainable flood risk management approach. The main goal of this study is the determination of the sensitivity of future flood risk to different urban development scenarios at a relatively short-time horizon in the River Meuse basin in Wallonia (Belgium). From the different scenarios, the expected impact of urban development on flood risk is assessed. Three urban expansion scenarios are developed up to 2030 based on a coupled cellular automata (CA) and agent-based (AB) urban expansion model: (i) business-as-usual, (ii) restrictive and (iii) extreme expansion scenarios. The main factor controlling these scenarios is the future urban land demand. Each urban expansion scenario is developed by considering or not high and/or medium flood hazard zones as a constraint for urban development. To assess the model's performance, it is calibrated for the Meuse River valley (Belgium) to simulate urban expansion between 1990 and 2000. Calibration results are then assessed by comparing the 2000 simulated land-use map and the actual 2000 land-use map. The flood damage estimation for each urban expansion scenario is determined for five flood discharges by overlaying the inundation map resulting from a hydraulic computation and the urban expansion map and by using damage curves and specific prices. The hydraulic model Wolf2D has been extensively validated by comparisons between observations and computational results during flood event .This study focuses only on mobile and immobile prices for urban lands, which are associated to the most severe damages caused by floods along the River Meuse. These findings of this study offers tools to

  8. Potential inundation of Lisbon downtown by a 1755-like tsunami

    NASA Astrophysics Data System (ADS)

    Baptista, M. A.; Miranda, J. M.; Omira, R.; Antunes, C.

    2011-12-01

    In this study, we present 10 m resolution tsunami flooding maps for Lisbon downtown and the Tagus estuary. To compute these maps we use the present bathymetry and topographic maps and a reasonable estimate for the maximum credible tsunami scenario. Tsunami modeling was made with a non-linear shallow water model using four levels of nested grids. The tsunami flood is discussed in terms of flow depth, run-up height and maximum inundation area. The results show that, even today, in spite of the significant morphologic changes in the city river front after the 1755 earthquake, a similar event would cause tsunami flow depths larger than one meter in a large area along the Tagus estuary and Lisbon downtown. Other areas along the estuary with a high population density would also be strongly affected. The impact of the tide on the extent of tsunami inundation is discussed, due to the large amplitude range of the tide in Lisbon, and compared with the historical descriptions of the 1755 event. The results presented here can be used to identify the potential tsunami inundation areas in Lisbon; this identification comprises a key element of the Portuguese tsunami emergency management system.

  9. Assessing the impact of hydrodynamics on large-scale flood wave propagation - a case study for the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Hoch, Jannis M.; Haag, Arjen V.; van Dam, Arthur; Winsemius, Hessel C.; van Beek, Ludovicus P. H.; Bierkens, Marc F. P.

    2017-01-01

    Large-scale flood events often show spatial correlation in neighbouring basins, and thus can affect adjacent basins simultaneously, as well as result in superposition of different flood peaks. Such flood events therefore need to be addressed with large-scale modelling approaches to capture these processes. Many approaches currently in place are based on either a hydrologic or a hydrodynamic model. However, the resulting lack of interaction between hydrology and hydrodynamics, for instance, by implementing groundwater infiltration on inundated floodplains, can hamper modelled inundation and discharge results where such interactions are important. In this study, the global hydrologic model PCR-GLOBWB at 30 arcmin spatial resolution was one-directionally and spatially coupled with the hydrodynamic model Delft 3D Flexible Mesh (FM) for the Amazon River basin at a grid-by-grid basis and at a daily time step. The use of a flexible unstructured mesh allows for fine-scale representation of channels and floodplains, while preserving a coarser spatial resolution for less flood-prone areas, thus not unnecessarily increasing computational costs. In addition, we assessed the difference between a 1-D channel/2-D floodplain and a 2-D schematization in Delft 3D FM. Validating modelled discharge results shows that coupling PCR-GLOBWB to a hydrodynamic routing scheme generally increases model performance compared to using a hydrodynamic or hydrologic model only for all validation parameters applied. Closer examination shows that the 1-D/2-D schematization outperforms 2-D for r2 and root mean square error (RMSE) whilst having a lower Kling-Gupta efficiency (KGE). We also found that spatial coupling has the significant advantage of a better representation of inundation at smaller streams throughout the model domain. A validation of simulated inundation extent revealed that only those set-ups incorporating 1-D channels are capable of representing inundations for reaches below the

  10. A web GIS based integrated flood assessment modeling tool for coastal urban watersheds

    NASA Astrophysics Data System (ADS)

    Kulkarni, A. T.; Mohanty, J.; Eldho, T. I.; Rao, E. P.; Mohan, B. K.

    2014-03-01

    Urban flooding has become an increasingly important issue in many parts of the world. In this study, an integrated flood assessment model (IFAM) is presented for the coastal urban flood simulation. A web based GIS framework has been adopted to organize the spatial datasets for the study area considered and to run the model within this framework. The integrated flood model consists of a mass balance based 1-D overland flow model, 1-D finite element based channel flow model based on diffusion wave approximation and a quasi 2-D raster flood inundation model based on the continuity equation. The model code is written in MATLAB and the application is integrated within a web GIS server product viz: Web Gram Server™ (WGS), developed at IIT Bombay, using Java, JSP and JQuery technologies. Its user interface is developed using open layers and the attribute data are stored in MySQL open source DBMS. The model is integrated within WGS and is called via Java script. The application has been demonstrated for two coastal urban watersheds of Navi Mumbai, India. Simulated flood extents for extreme rainfall event of 26 July, 2005 in the two urban watersheds of Navi Mumbai city are presented and discussed. The study demonstrates the effectiveness of the flood simulation tool in a web GIS environment to facilitate data access and visualization of GIS datasets and simulation results.

  11. Effects of fringing reefs on tsunami inundation: American Samoa

    NASA Astrophysics Data System (ADS)

    Gelfenbaum, Guy; Apotsos, Alex; Stevens, Andrew W.; Jaffe, Bruce

    2011-07-01

    A numerical model of tsunami inundation, Delft3D, which has been validated for the 29 September 2009 tsunami in Tutuila, American Samoa, is used to better understand the impact of fringing coral reefs and embayments on tsunami wave heights, inundation distances, and velocities. The inundation model is used to explore the general conditions under which fringing reefs act as coastal buffers against incoming tsunamis. Of particular interest is the response of tsunamis to reefs of varying widths, depths, and roughness, as well as the effects of channels incised in the reef and the focusing effect of embayments. Model simulations for conditions similar to Tutuila, yet simplified to be uniform in the alongshore, suggest that for narrow reefs, less than about 200 m wide, the shoaling owing to shallow water depths over the fringing reef dominates, inducing greater wave heights onshore under some conditions and farther inundation inland. As the reef width increases, wave dissipation through bottom friction begins to dominate and the reef causes the tsunami wave heights to decrease and the tsunami to inundate less far inland. A sensitivity analysis suggests that coral reef roughness is important in determining the manner in which a fringing reef affects tsunami inundation. Smooth reefs are more likely to increase the onshore velocity within the tsunami compared to rough reefs. A larger velocity will likely result in an increased impact of the tsunami on structures and buildings. Simulations developed to explore 2D coastal morphology show that incised channels similar to those found around Tutuila, as well as coastal embayments, also affect tsunami inundation, allowing larger waves to penetrate farther inland. The largest effect is found for channels located within embayments, and for embayments that narrow landward. These simulations suggest that embayments that narrow landward, such as Fagafue Bay on the north side of Tutuila, and that have an incised deep channel, can

  12. Effects of fringing reefs on tsunami inundation: American Samoa

    USGS Publications Warehouse

    Gelfenbaum, G.; Apotsos, A.; Stevens, A.W.; Jaffe, B.

    2011-01-01

    A numerical model of tsunami inundation, Delft3D, which has been validated for the 29 September 2009 tsunami in Tutuila, American Samoa, is used to better understand the impact of fringing coral reefs and embayments on tsunami wave heights, inundation distances, and velocities. The inundation model is used to explore the general conditions under which fringing reefs act as coastal buffers against incoming tsunamis. Of particular interest is the response of tsunamis to reefs of varying widths, depths, and roughness, as well as the effects of channels incised in the reef and the focusing effect of embayments. Model simulations for conditions similar to Tutuila, yet simplified to be uniform in the alongshore, suggest that for narrow reefs, less than about 200 m wide, the shoaling owing to shallow water depths over the fringing reef dominates, inducing greater wave heights onshore under some conditions and farther inundation inland. As the reef width increases, wave dissipation through bottom friction begins to dominate and the reef causes the tsunami wave heights to decrease and the tsunami to inundate less far inland. A sensitivity analysis suggests that coral reef roughness is important in determining the manner in which a fringing reef affects tsunami inundation. Smooth reefs are more likely to increase the onshore velocity within the tsunami compared to rough reefs. A larger velocity will likely result in an increased impact of the tsunami on structures and buildings. Simulations developed to explore 2D coastal morphology show that incised channels similar to those found around Tutuila, as well as coastal embayments, also affect tsunami inundation, allowing larger waves to penetrate farther inland. The largest effect is found for channels located within embayments, and for embayments that narrow landward. These simulations suggest that embayments that narrow landward, such as Fagafue Bay on the north side of Tutuila, and that have an incised deep channel, can

  13. High-resolution property-based flood damage estimation: how should urban topography be represented?

    NASA Astrophysics Data System (ADS)

    O'Neill, J.; Yu, D.; Wilby, R. L.; Bosher, L.

    2012-12-01

    High-resolution property-based flood damage estimation: how should urban topography be represented? The cost of damage caused by flooding to property in the UK has increased by 200% decade on decade, from £1.5 billion (1990 - 2000) to £4.5 billion (2000 - 2010) (ABI 2010). This is widely predicted to increase further in the coming decades (Huntington 2006). Flood damage estimation to residential buildings is typically undertaken by coupling vulnerability curves with flow variables obtained from hydraulic modelling. Recent advances in urban flood inundation modelling provide good estimations of flood depth for damage estimation. However, the approaches to the representation of buildings in urban flood inundation modelling require further investigation as this affects the depth prediction which in turn will determine the accuracy of damage estimation. This study evaluates the effects of different approaches to the representation of buildings in urban topography on damage estimation. A case study was undertaken in Cockermouth of the English Lake District, with primary data collected during the November 2009 event to validate both the hydraulic modelling and damage estimation. A 2D inertia-based hydraulic model was used and the prediction was coupled with the standard vulnerability curves for the UK. Three approaches to the representation of buildings in urban topography were investigated: (i) a bare ground Digital Terrain Model with no explicit representation of buildings (DTM); (ii) explicit representation of buildings with impermeable blocks (BLOCKAGE); and (iii) representation of buildings with threshold levels (THRESHOLD). Results were compared with the observed inundation extent and discrete point depths. In terms of inundation extent, the DTM and THRESHOLD approach produced the best estimate. With the BLOCKAGE approach, the extent of water is less well predicted due to the blockage effect of the buildings which effectively act as flow barriers. Depth was best

  14. Numerical Experiments for Storm Surge Inundation in Korean Coastal Area

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Shim, J.; Jun, K.

    2012-12-01

    predicted inundation regimes and depths were compared with measurements from a tidal gage each area and inundation map by field measurements after the event. Comparisons of the numerical results and measured data show a good correlation. The numerical model adopted in this study is expected to be a useful tool for analysis of storm surges, and for predicting inundation regimes due to coastal flooding. Many coastal cities including low-lying areas were flooded during strong typhoon. So it is necessary to consider detailed evacuation planning, including hazard map, preparation of evacuation site, and sustainable city planning against storm surge inundation problems. For this study, we used 201 typhoons passing through Korea during the past 55 years since 1950. Typhoon wind model was used to estimate wind forcing and air pressure data for each typhoon. We estimated the spatial statistical analysis for inundation level as each return period. And finally we suggested the example of coastal hazard map in the Korean coast(Masan, yeosu and Busan city).

  15. Flood hazard mapping using open source hydrological tools

    NASA Astrophysics Data System (ADS)

    Tollenaar, Daniel; Wensveen, Lex; Winsemius, Hessel; Schellekens, Jaap

    2014-05-01

    Commonly, flood hazard maps are produced by building detailed hydrological and hydraulic models. These models are forced and parameterized by locally available, high resolution and preferably high quality data. The models use a high spatio-temporal resolution, resulting in large computational effort. Also, many hydraulic packages that solve 1D (canal) and 2D (overland) shallow water equations, are not freeware nor open source. In this contribution, we evaluate whether simplified open source data and models can be used for a rapid flood hazard assessment and to highlight areas where more detail may be required. The validity of this approach is tested by using four combinations of open-source tools: (1) a global hydrological model (PCR-GLOBWB, Van Beek and Bierkens, 2009) with a static inundation routine (GLOFRIS, Winsemius et al. 2013); (2) a global hydrological model with a dynamic inundation model (Subgrid, Stelling, 2012); (3) a local hydrological model (WFLOW) with a static inundation routine; (4) and a local hydrological model with a dynamic inundation model. The applicability of tools is assessed on (1) accuracy to reproduce the phenomenon, (2) time for model setup and (3) computational time. The performance is tested in a case study in the Rio Mamoré, one of the tributaries of the Amazone River (230,000 km2). References: Stelling, G.S.: Quadtree flood simulations with sub-grid digital elevation models, Proceedings of the ICE - Water Management, Volume 165, Issue 10, 01 November 2012 , pages 567 -580 Winsemius, H. C., Van Beek, L. P. H., Jongman, B., Ward, P. J., and Bouwman, A.: A framework for global river flood risk assessments, Hydrol. Earth Syst. Sci. Discuss., 9, 9611-9659, doi:10.5194/hessd-9-9611-2012, 2012 Van Beek, L. P. H. and Bierkens, M. F. P.: The global hydrological model PCR-GLOBWB: conceptualization, parameterization and verification, Dept. of Physical Geography, Utrecht University, Utrecht, available at: http

  16. Iowa Flood Information System: Towards Integrated Data Management, Analysis and Visualization

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2012-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities

  17. A hydro-sedimentary modelling system for flash flood propagation and hazard estimation under different agricultural practices

    NASA Astrophysics Data System (ADS)

    Kourgialas, N. N.; Karatzas, G. P.

    2013-10-01

    A modelling system for the estimation of flash flood flow characteristics and sediment transport is developed in this study. The system comprises of three components: (a) a modelling framework based on the hydrological model HSPF, (b) the hydrodynamic module of the hydraulic model MIKE 11 (quasi-2-D), and (c) the advection-dispersion module of MIKE 11 as a sediment transport model. An important parameter in hydraulic modelling is the Manning's coefficient, an indicator of the channel resistance which is directly depended on riparian vegetation changes. Riparian vegetation effect on flood propagation parameters such as water depth (inundation), discharge, flow velocity, and sediment transport load is investigated in this study. Based on the obtained results, when the weed cutting percentage is increased, the flood wave depth decreases while flow discharge, velocity and sediment transport load increase. The proposed modelling system is used to evaluate and illustrate the flood hazard for different cutting riparian vegetation scenarios. For the estimation of flood hazard, a combination of the flood propagation characteristics of water depth, flow velocity and sediment load was used. Next, an optimal selection of the most appropriate agricultural cutting practices of riparian vegetation was performed. Ultimately, the model results obtained for different agricultural cutting practice scenarios can be employed to create flood protection measures for flood prone areas. The proposed methodology was applied to the downstream part of a small mediterranean river basin in Crete, Greece.

  18. A hydro-sedimentary modeling system for flash flood propagation and hazard estimation under different agricultural practices

    NASA Astrophysics Data System (ADS)

    Kourgialas, N. N.; Karatzas, G. P.

    2014-03-01

    A modeling system for the estimation of flash flood flow velocity and sediment transport is developed in this study. The system comprises three components: (a) a modeling framework based on the hydrological model HSPF, (b) the hydrodynamic module of the hydraulic model MIKE 11 (quasi-2-D), and (c) the advection-dispersion module of MIKE 11 as a sediment transport model. An important parameter in hydraulic modeling is the Manning's coefficient, an indicator of the channel resistance which is directly dependent on riparian vegetation changes. Riparian vegetation's effect on flood propagation parameters such as water depth (inundation), discharge, flow velocity, and sediment transport load is investigated in this study. Based on the obtained results, when the weed-cutting percentage is increased, the flood wave depth decreases while flow discharge, velocity and sediment transport load increase. The proposed modeling system is used to evaluate and illustrate the flood hazard for different riparian vegetation cutting scenarios. For the estimation of flood hazard, a combination of the flood propagation characteristics of water depth, flow velocity and sediment load was used. Next, a well-balanced selection of the most appropriate agricultural cutting practices of riparian vegetation was performed. Ultimately, the model results obtained for different agricultural cutting practice scenarios can be employed to create flood protection measures for flood-prone areas. The proposed methodology was applied to the downstream part of a small Mediterranean river basin in Crete, Greece.

  19. Assessment of groundwater inundation as consequence of sea-level rise

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Fletcher, C. H.

    2012-12-01

    Strong evidence on climate change underscores the need for actions to reduce the impacts of sea-level rise. It has been largely unrecognized that low-lying coastal areas are more vulnerable to inundation from groundwater than marine flooding because the groundwater elevation is typically higher than mean sea level. Field measurements of the coastal groundwater elevation and tidal influence in urban Honolulu, Hawaii, allow estimates of the generalized distribution of the mean water table, which was used in conjunction with digital elevation maps to assess vulnerability to groundwater inundation from sea-level rise. We find that 0.6 m of potential sea-level rise causes substantial flooding, and 1 m sea-level rise inundates 10% of a 1-km wide coastal zone. This has wide-reaching consequences for decision-makers, resource managers, and urban planners and is applicable to many low-lying coastal areas.

  20. Coupled modeling of storm surge and coastal inundation: A case study in New York City during Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Yin, Jie; Lin, Ning; Yu, Dapeng

    2016-11-01

    In this paper, we describe a new method of modeling coastal inundation arising from storm surge by coupling a widely used storm surge model (ADCIRC) and an urban flood inundation model (FloodMap). This is the first time the coupling of such models is implemented and tested using real events. The method offers a flexible and efficient procedure for applying detailed ADCIRC storm surge modeling results along the coastal boundary (with typical resolution of ˜100 m) to FloodMap for fine resolution inundation modeling (<5 m). The coastal inundation during Hurricane Sandy was simulated at both the city (New York City) and subregional (lower Manhattan) scales with various resolutions. Results obtained from the ADCIRC and coupled ADCIRC-FloodMap simulations were compared with the recorded (high water marks) and derived (inundation extent based on the planar method) data from FEMA. At the city scale, coupled ADCIRC-FloodMap modeling demonstrates improved prediction over ADCIRC modeling alone for both the extent and depth of inundation. The advantage of the coupled model is further illustrated in the subregional modeling, using a mesh resolution of 3 m which is substantially finer than the inland mesh resolution used by ADCIRC (>70 m). In further testing, we explored the effects of mesh resolution and roughness specification. Results agree with previous studies that fine resolution is essential for capturing intricate flow paths and connectivity in urban topography. While the specification of roughness is more challenging for urban environments, it may be empirically optimized. The successful coupling of ADCIRC and FloodMap models for fine resolution coastal inundation modeling unlocks the potential for undertaking large numbers of probabilistically based synthetic surge events for street-level risk analysis.

  1. UK coastal flood risk; understanding the uncertainty

    NASA Astrophysics Data System (ADS)

    Lewis, Matt; Bates, Paul; Horsburgh, Kevin; Smith, Ros

    2010-05-01

    The sensitivity of flood risk mapping to the major sources of future climate uncertainty were investigated by propagating these uncertainties through a LISFLOOD inundation model of a significant flood event of the North Somerset coast, to the west of the UK. The largest source of uncertainty was found to be the effect of the global Mean Sea Level rise range of 18-59cm (as reported by the Intergovernmental Panel on Climate Change), with an approximate upper limit of 1m, by 2100. Therefore, MSL rise uncertainty needs to be quantified in future flood risk predictions. However, the uncertainty of the storm tide height along the coastline (i.e. the maximum water-level at the coast excluding wave effects) was found to significantly affect our results. Our evidence suggests that the current flood mapping approach of forcing the inundation model with an extreme water-level of constant return period is incorrect. We present a new technique which is based on the spatial characteristics of real events. This provides a more reliable spatial treatment of the storm tide uncertainty. The uncertainty of land roughness coefficients (0.018-0.09 for the study area, depending upon land use), used within the inundation model to control flood wave propagation, was found to affect inundation extents especially for larger inundation events. However, the sensitivity to roughness uncertainty was found to be much smaller than other factors, such as Mean Sea Level rise uncertainty. We present the results of propagating these uncertainties through an inundation model and develop probabilistic techniques to quantify these sources of future flood risk uncertainty. Keywords: future flood risk, uncertainty, inundation, LISFLOOD, sea-level rise, climate change

  2. Computational technique and performance of Transient Inundation Model for Rivers--2 Dimensional (TRIM2RD) : a depth-averaged two-dimensional flow model

    USGS Publications Warehouse

    Fulford, Janice M.

    2003-01-01

    A numerical computer model, Transient Inundation Model for Rivers -- 2 Dimensional (TrimR2D), that solves the two-dimensional depth-averaged flow equations is documented and discussed. The model uses a semi-implicit, semi-Lagrangian finite-difference method. It is a variant of the Trim model and has been used successfully in estuarine environments such as San Francisco Bay. The abilities of the model are documented for three scenarios: uniform depth flows, laboratory dam-break flows, and large-scale riverine flows. The model can start computations from a ?dry? bed and converge to accurate solutions. Inflows are expressed as source terms, which limits the use of the model to sufficiently long reaches where the flow reaches equilibrium with the channel. The data sets used by the investigation demonstrate that the model accurately propagates flood waves through long river reaches and simulates dam breaks with abrupt water-surface changes.

  3. Floods and Flash Flooding

    MedlinePlus

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  4. High resolution mapping of flood hazard for South Korea

    NASA Astrophysics Data System (ADS)

    Ghosh, Sourima; Nzerem, Kechi; Zovi, Francesco; Li, Shuangcai; Mei, Yi; Assteerawatt, Anongnart; Hilberts, Arno; Tillmanns, Stephan; Mitas, Christos

    2015-04-01

    Floods are one of primary natural hazards that affect South Korea. During the past 15 years, catastrophic flood events which mainly have occurred during the rainy and typhoon seasons - especially under condition where soils are already saturated, have triggered substantial property damage with an average annual loss of around US1.2 billion (determined from WAter Management Information System's flood damage database for years 2002-2011) in South Korea. According to Seoul Metropolitan Government, over 16,000 households in the capital city Seoul were inundated during 2010 flood events. More than 10,000 households in Seoul were apparently flooded during one major flood event due to torrential rain in July 2011. Recently in August 2014, a serious flood event due to heavy rainfall hit the Busan region in the south east of South Korea. Addressing the growing needs, RMS has recently released country-wide high resolution combined flood return period maps for post-drainage local "pluvial" inundation and undefended large-scale "fluvial" inundation to aid the government and the insurance industry in the evaluation of comprehensive flood risk. RMS has developed a flood hazard model for South Korea to generate inundation depths and extents for a range of flood return periods. The model is initiated with 30 years of historical meteorological forcing data and calibrated to daily observations at over 100 river gauges across the country. Simulations of hydrologic processes are subsequently performed based on a 2000 year set of stochastic forcing. Floodplain inundation processes are modelled by numerically solving the shallow water equations using finite volume method on GPUs. Taking into account the existing stormwater drainage standards, economic exposure densities, etc., reasonable flood maps are created from inundation model output. Final hazard maps at one arcsec grid resolution can be the basis for both evaluating and managing flood risk, its economic impacts, and insured flood

  5. Evaluation of airborne lidar elevation surfaces for propagation of coastal inundation: the importance of hydrologic connectivity

    USGS Publications Warehouse

    Poppenga, Sandra; Worstell, Bruce B.

    2015-01-01

    Detailed information about coastal inundation is vital to understanding dynamic and populated areas that are impacted by storm surge and flooding. To understand these natural hazard risks, lidar elevation surfaces are frequently used to model inundation in coastal areas. A single-value surface method is sometimes used to inundate areas in lidar elevation surfaces that are below a specified elevation value. However, such an approach does not take into consideration hydrologic connectivity between elevation grids cells resulting in inland areas that should be hydrologically connected to the ocean, but are not. Because inland areas that should drain to the ocean are hydrologically disconnected by raised features in a lidar elevation surface, simply raising the water level to propagate coastal inundation will lead to inundation uncertainties. We took advantage of this problem to identify hydrologically disconnected inland areas to point out that they should be considered for coastal inundation, and that a lidar-based hydrologic surface should be developed with hydrologic connectivity prior to inundation analysis. The process of achieving hydrologic connectivity with hydrologic-enforcement is not new, however, the application of hydrologically-enforced lidar elevation surfaces for improved coastal inundation mapping as approached in this research is innovative. In this article, we propagated a high-resolution lidar elevation surface in coastal Staten Island, New York to demonstrate that inland areas lacking hydrologic connectivity to the ocean could potentially be included in inundation delineations. For inland areas that were hydrologically disconnected, we evaluated if drainage to the ocean was evident, and calculated an area exceeding 11 ha (~0.11 km2) that could be considered in inundation delineations. We also assessed land cover for each inland area to determine the type of physical surfaces that would be potentially impacted if the inland areas were considered as

  6. Inundation and Fire Shape the Structure of Riparian Forests in the Pantanal, Brazil.

    PubMed

    Arruda, Wellinton de Sá; Oldeland, Jens; Paranhos Filho, Antonio Conceição; Pott, Arnildo; Cunha, Nicolay L; Ishii, Iria Hiromi; Damasceno-Junior, Geraldo Alves

    2016-01-01

    Inundation and fire can affect the structure of riparian vegetation in wetlands. Our aim was to verify if there are differences in richness, abundance, basal area, composition and topographic preference of woody species in riparian forests related to the fire history, flooding duration, or the interaction between both. The study was conducted in the riparian forests of the Paraguay River some of which were burned three times between 2001 and 2011. We sampled trees with a girth of at least 5 cm at breast height in 150 5 × 10 m plots (79 burned and 71 unburned). We also measured height of the flood mark and estimated the flooding duration of each plot. We performed Generalized Linear Mixed Models to verify differences in richness, basal area, and abundance of individuals associated to interaction of fire and inundation. We used an analysis of similarity (ANOSIM) and indicator species analysis to identify differences in composition of species and the association with burned and unburned area according to different levels of inundation. Finally, we used a hierarchical set of Generalized Linear Models (GLM), the so-called HOF models, to analyse each species' specific response to inundation based on topography and to determine their preferred optimal topographic position for both burned as well as unburned areas. Richness was positively associated with elevation only in burned areas while abundance was negatively influenced by inundation only in burned areas. Basal area was negatively associated with time of inundation independent of fire history. There were 15 species which were significant indicators for at least one combination of the studied factors. We found nine species in burned areas and 15 in unburned areas, with response curves in HOF models along the inundation gradient. From these, five species shifted their optimal position along the inundation gradient in burned areas. The interaction of fire and inundation did not appear to affect the basal area, but it

  7. Inundation and Fire Shape the Structure of Riparian Forests in the Pantanal, Brazil

    PubMed Central

    Arruda, Wellinton de Sá; Oldeland, Jens; Paranhos Filho, Antonio Conceição; Pott, Arnildo; Cunha, Nicolay L.; Ishii, Iria Hiromi; Damasceno-Junior, Geraldo Alves

    2016-01-01

    Inundation and fire can affect the structure of riparian vegetation in wetlands. Our aim was to verify if there are differences in richness, abundance, basal area, composition and topographic preference of woody species in riparian forests related to the fire history, flooding duration, or the interaction between both. The study was conducted in the riparian forests of the Paraguay River some of which were burned three times between 2001 and 2011. We sampled trees with a girth of at least 5 cm at breast height in 150 5 × 10 m plots (79 burned and 71 unburned). We also measured height of the flood mark and estimated the flooding duration of each plot. We performed Generalized Linear Mixed Models to verify differences in richness, basal area, and abundance of individuals associated to interaction of fire and inundation. We used an analysis of similarity (ANOSIM) and indicator species analysis to identify differences in composition of species and the association with burned and unburned area according to different levels of inundation. Finally, we used a hierarchical set of Generalized Linear Models (GLM), the so-called HOF models, to analyse each species’ specific response to inundation based on topography and to determine their preferred optimal topographic position for both burned as well as unburned areas. Richness was positively associated with elevation only in burned areas while abundance was negatively influenced by inundation only in burned areas. Basal area was negatively associated with time of inundation independent of fire history. There were 15 species which were significant indicators for at least one combination of the studied factors. We found nine species in burned areas and 15 in unburned areas, with response curves in HOF models along the inundation gradient. From these, five species shifted their optimal position along the inundation gradient in burned areas. The interaction of fire and inundation did not appear to affect the basal area, but it

  8. Effectiveness of water infrastructure for river flood management - Part 1: Flood hazard assessment using hydrological models in Bangladesh

    NASA Astrophysics Data System (ADS)

    Gusyev, M. A.; Kwak, Y.; Khairul, M. I.; Arifuzzaman, M. B.; Magome, J.; Sawano, H.; Takeuchi, K.

    2015-06-01

    This study introduces a flood hazard assessment part of the global flood risk assessment (Part 2) conducted with a distributed hydrological Block-wise TOP (BTOP) model and a GIS-based Flood Inundation Depth (FID) model. In this study, the 20 km grid BTOP model was developed with globally available data on and applied for the Ganges, Brahmaputra and Meghna (GBM) river basin. The BTOP model was calibrated with observed river discharges in Bangladesh and was applied for climate change impact assessment to produce flood discharges at each BTOP cell under present and future climates. For Bangladesh, the cumulative flood inundation maps were produced using the FID model with the BTOP simulated flood discharges and allowed us to consider levee effectiveness for reduction of flood inundation. For the climate change impacts, the flood hazard increased both in flood discharge and inundation area for the 50- and 100-year floods. From these preliminary results, the proposed methodology can partly overcome the limitation of the data unavailability and produces flood~maps that can be used for the nationwide flood risk assessment, which is presented in Part 2 of this study.

  9. Scenario-based projections of future urban inundation within a coupled hydrodynamic model framework: A case study in Dongguan City, China

    NASA Astrophysics Data System (ADS)

    Wu, Xushu; Wang, Zhaoli; Guo, Shenglian; Liao, Weilin; Zeng, Zhaoyang; Chen, Xiaohong

    2017-04-01

    One major threat to cities at present is the increased inundation hazards owing to changes in climate and accelerated human activity. Future evolution of urban inundation is still an unsolved issue, given large uncertainties in future environmental conditions within urbanized areas. Developing model techniques and urban inundation projections are essential for inundation management. In this paper, we proposed a 2D hydrodynamic inundation model by coupling SWMM and LISFLOOD-FP models, and revealed how future urban inundation would evolve for different storms, sea level rise and subsidence scenarios based on the developed model. The Shiqiao Creek District (SCD) in Dongguan City was used as the case study. The model ability was validated against the June 13th, 2008 inundation event, which occurred in SCD, and proved capable of simulating dynamic urban inundation. Scenario analyses revealed a high degree of consistency in the inundation patterns among different storms, with larger magnitudes corresponding to greater return periods. Inundations across SCD generally vary as a function of storm intensity, but for lowlands or regions without drainage facilities inundations tend to aggravate over time. In riverfronts, inundations would exacerbate with sea level rise or subsidence; however, the inland inundations are seemingly insensitive to both factors. For the combined scenario of 100-yr storm, 0.5 m subsidence and 0.7 m sea level rise, the riverside inundations would occur much in advance, whilst catastrophic inundations sweep across SCD. Furthermore, the optimal low-impact development found for this case study includes 0.2 km2 of permeable pavements, 0.1 km2 of rain barrels and 0.7 km2 of green roofs.

  10. A fluvial and pluvial probabilistic flood hazard analysis for Can Tho city, Vietnam

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Martinez, Oriol; Thi Chinh, Do; Viet Dung, Nguyen

    2014-05-01

    Can Tho city is the largest city and the economic heart of the Mekong Delta, Vietnam. Due to its economic importance and envisaged development goals the city grew rapidly in population size and extend over the last two decades. Large parts of the city are located in flood prone areas, and also the central parts of the city recently experienced an increasing number of flood events, both of fluvial and pluvial nature. As the economic power and asset values are constantly increasing, this poses a considerable risk for the city. The the aim of this study is to perform a flood hazard analysis considering both fluvial and pluvial floods and to derive probabilistic flood hazard maps. This requires in a first step an understanding of the typical flood mechanisms. Fluvial floods are triggered by a coincidence of high water levels during the annual flood period in the Mekong Delta with high tidal levels, which cause in combination short term inundations in Can Tho. Pluvial floods are triggered by typical tropical convective rain storms during the monsoon season. These two flood pathways are essentially independent in its sources and can thus be treated in the hazard analysis accordingly. For the fluvial hazard analysis we propose a bivariate frequency analysis of the Mekong flood characteristics, the annual maximum flood discharge Q and the annual flood volume V at the upper boundary of the Mekong Delta, the gauging station Kratie. This defines probabilities of exceedance of different Q-V pairs, which are transferred into synthetic flood hydrographs. The synthetic hydrographs are routed through a quasi-2D hydrodynamic model of the entire Mekong Delta in order to provide boundary conditions for a detailed hazard mapping of Can Tho. This downscaling step is necessary, because the huge complexity of the river and channel network does not allow for a proper definition of boundary conditions for Can Tho city by gauge data alone. In addition the available gauge data around Can Tho

  11. Changes in community-level riparian plant traits over inundation gradients, Colorado River, Grand Canyon

    USGS Publications Warehouse

    McCoy-Sulentic, Miles; Kolb, Thomas; Merritt, David; Palmquist, Emily C.; Ralston, Barbara; Sarr, Daniel; Shafroth, Patrick B.

    2017-01-01

    Comparisons of community-level functional traits across environmental gradients have potential for identifying links among plant characteristics, adaptations to stress and disturbance, and community assembly. We investigated community-level variation in specific leaf area (SLA), plant mature height, seed mass, stem specific gravity (SSG), relative cover of C4 species, and total plant cover over hydrologic zones and gradients in years 2013 and 2014 in the riparian plant community along the Colorado River in the Grand Canyon. Vegetation cover was lowest in the frequently inundated active channel zone, indicating constraints on plant establishment and production by flood disturbance and anaerobic stress. Changes in trait values over hydrologic zones and inundation gradients indicate that frequently inundated plots exhibit a community-level ruderal strategy with adaptation to submergence (high SLA and low SSG, height, seed mass, C4 relative cover), whereas less frequently inundated plots exhibit adaptation to drought and infrequent flood disturbance (low SLA and high SSG, height, seed mass, C4 relative cover). Variation in traits not associated with inundation suggests niche differentiation and multiple modes of community assembly. The results enhance understanding of future responses of riparian communities of the Grand Canyon to anticipated drying and changes in hydrologic regime.

  12. Residual flood-risk: assessing the effectiveness of alternative large-scale mitigation strategies

    NASA Astrophysics Data System (ADS)

    Carisi, Francesca; Domeneghetti, Alessio; Castellarin, Attilio

    2016-04-01

    The EU Flood Directive (2007/60/CE) requires institutions and public bodies, in order to formulate robust flood-risk management strategies for large European rivers, to address several fundamental tasks. For instance, they have to address the problem of flood-risk mitigation from a global perspective (i.e., entire middle-lower river reaches) by identifying critical reaches, inundation areas and corresponding overflow volumes. To this aim, we focus on the identification of large-scale flood risk mitigation strategies for the middle-lower reach of the Po river, the longest Italian river and the largest in terms of streamflow. We refer to the so-called residual flood-risk and in particular to its portion referring to the possibility to experience events associated with larger return periods than the reference one (e.g. ~200 years in our case). In particular, being a further levee heightening not technically viable nor economically conceivable for the case study, the study develops and tests the applicability of a quasi-2D hydraulic model for the identification of large-scale flood-risk mitigation strategies relative to a 500-year flood event. In particular, we consider and model in the study different geometrical configurations of the main embankment system for a ~400km reach stretching from Isola S.Antonio to the Po river delta in the Adriatic Sea: overtopping without levee breaching, overtopping and natural levee breaching, overtopping and forced levee breaching. The simulations enable the assessment of the overflowed volumes and water depths on flooded areas. Expected damages are estimated using simplified graphical tools, which we termed "Vulnerability Hypsometric Curves" (HVCs) and report the extent of the area for a given land use category that is located below a certain elevation. The analysis aims at finding the optimal configuration that minimizes the expected damages in the areas prone to flood. The outcomes of our study indicate that coupling a large

  13. The prediction and validation of spatial variation of storm tide height along the coastline of North Somerset, U.K. during extreme events typical of coastal flooding using Synthetic Aperture Radar.

    NASA Astrophysics Data System (ADS)

    Lewis, Matt; Schumann, Guy; Horsburgh, Kevin; Bates, Paul

    2010-05-01

    Inundation modellers are faced with the problem of determining coastal flood risk in a future climate in order to aid planners, policy makers and engineers. Current research suggests a major source of uncertainty is the water-level height along the coastline which is used to force 2D inundation models of the region studied. Recent research has indicated that the spatial variation of the water-level during a storm (storm tide) has a predictable spatial relationship based upon historical storm events, however, this new proposed method needs to be validated. Detailed observations of a storm tide along a coastline are very rare, but it is believed that Synthetic Aperture Radar (SAR) can be employed with the "water-line method" to provide this detailed dataset of observed water heights. This project is accessing the degree to which current space-borne SAR imagery can be used to determine detailed water-level heights along a coastline during an extreme water-level event typical of a coastal flood, and then employing this dataset to validate a new spatial storm tide variation prediction method. Future inundation risk models may benefit from this research with an improved and more accurate forcing condition, but also oceanographers and coastal scientists can employ the SAR imagery-derived water level approach developed within this work to aid storm surge and coastal inundation research.

  14. Assessing the impacts of reservoir operation to floodplain inundation by combining hydrological, reservoir management, and hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Mateo, Cherry May; Hanasaki, Naota; Komori, Daisuke; Tanaka, Kenji; Kiguchi, Masashi; Champathong, Adisorn; Sukhapunnaphan, Thada; Yamazaki, Dai; Oki, Taikan

    2014-09-01

    A catastrophic flood event which caused massive economic losses occurred in Thailand, in 2011. Several studies have already been conducted to analyze the Thai floods, but none of them have assessed the impacts of reservoir operation on flood inundation. This study addresses this gap by combining physically based hydrological models to explicitly simulate the impacts of reservoir operation on flooding in the Chao Phraya River Basin, Thailand. H08, an integrated water resources model with a reservoir operation module, was combined with CaMa-Flood, a river routing model with representation of flood dynamics. The combined H08-CaMa model was applied to simulate and assess the historical and alternative reservoir operation rules in the two largest reservoirs in the basin. The combined H08-CaMa model effectively simulated the 2011 flood: regulated flows at a major gauging station have high daily NSE-coefficient of 92% as compared with observed discharge; spatiotemporal extent of simulated flood inundation match well with those of satellite observations. Simulation results show that through the operation of reservoirs in 2011, flood volume was reduced by 8.6 billion m3 and both depth and area of flooding were reduced by 40% on the average. Nonetheless, simple modifications in reservoir operation proved to further reduce the flood volume by 2.4 million m3 and the depth and area of flooding by 20% on the average. By modeling reservoir operation with a hydrodynamic model, a more realistic simulation of the 2011 Thai flood was made possible, and the potential of reducing flood inundation through improved reservoir management was quantified.

  15. Using ERS-2 and ALOS PALSAR images for soil moisture and inundation mapping in Cyprus

    NASA Astrophysics Data System (ADS)

    Alexakis, Dimitrios D.; Agapiou, Athos; Themistocleous, Kyriacos; Retalis, Adrianos; Hadjimitsis, Diofantos G.

    2013-08-01

    Floods are among the most frequent and costly natural disasters in terms of human and economic loss and are considered to be a weather-related natural disaster. This study strives to highlight the potential of active remote sensing imagery in flood inundation monitoring and mapping in a catchment area in Cyprus (Yialias river). GeoEye-1 and ASTER images were employed to create updated Land use /Land cover maps of the study area. Following, the application of fully polarimetric (ALOS PALSAR) and dual polarimetric (ERS - 2) Synthetic Aperture Radar (SAR) data for soil moisture and inundation mapping is presented. For this purpose 2 ALOS PALSAR images and 3 ERS-2 images were acquired. This study offers an integrated methodology by the use of multi-angle radar images to estimate roughness and soil moisture without the use of ancillary field data such as field measurements. The relationship between soil moisture and backscattering coefficient was thoroughly studied and linear regression models were developed to predict future flood inundation events. Multi-temporal FCC images, classification, image fusion, moisture indices, texture and PCA analysis were employed to assist soil moisture mapping. Certain land cover classes were characterized as flood prone areas according to statistics of their signal response. The results will be incorporated in an integrated flood risk assessment model of Yialias catchment area.

  16. Flooding and Flood Management

    USGS Publications Warehouse

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim

    2011-01-01

    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  17. Distribution of uncertainties at the municipality level for flood risk modelling along the river Meuse: implications for policy-making

    NASA Astrophysics Data System (ADS)

    Pirotton, Michel; Stilmant, Frédéric; Erpicum, Sébastien; Dewals, Benjamin; Archambeau, Pierre

    2016-04-01

    Flood risk modelling has been conducted for the whole course of the river Meuse in Belgium. Major cities, such as Liege (200,000 inh.) and Namur (110,000 inh.), are located in the floodplains of river Meuse. Particular attention has been paid to uncertainty analysis and its implications for decision-making. The modelling chain contains flood frequency analysis, detailed 2D hydraulic computations, damage modelling and risk calculation. The relative importance of each source of uncertainty to the overall results uncertainty has been estimated by considering several alternate options for each step of the analysis: different distributions were considered in the flood frequency analysis; the influence of modelling assumptions and boundary conditions (e.g., steady vs. unsteady) were taken into account for the hydraulic computation; two different landuse classifications and two sets of damage functions were used; the number of exceedance probabilities involved in the risk calculation (by integration of the risk-curves) was varied. In addition, the sensitivity of the results with respect to increases in flood discharges was assessed. The considered increases are consistent with a "wet" climate change scenario for the time horizons 2021-2050 and 2071-2100 (Detrembleur et al., 2015). The results of hazard computation differ significantly between the upper and lower parts of the course of river Meuse in Belgium. In the former, inundation extents grow gradually as the considered flood discharge is increased (i.e. the exceedance probability is reduced), while in the downstream part, protection structures (mainly concrete walls) prevent inundation for flood discharges corresponding to exceedance probabilities of 0.01 and above (in the present climate). For higher discharges, large inundation extents are obtained in the floodplains. The highest values of risk (mean annual damage) are obtained in the municipalities which undergo relatively frequent flooding (upper part of the

  18. Effects of anthropogenic land-subsidence on river flood hazard: a case study in Ravenna, Italy

    NASA Astrophysics Data System (ADS)

    Carisi, Francesca; Domeneghetti, Alessio; Castellarin, Attilio

    2015-04-01

    Can differential land-subsidence significantly alter the river flooding dynamics, and thus flood risk in flood prone areas? Many studies show how the lowering of the coastal areas is closely related to an increase in the flood-hazard due to more important tidal flooding and see level rise. On the contrary, the literature on the relationship between differential land-subsidence and possible alterations to riverine flood-hazard of inland areas is still sparse, while several areas characterized by significant land-subsidence rates during the second half of the 20th century experienced an intensification in both inundation magnitude and frequency. This study investigates the possible impact of a significant differential ground lowering on flood hazard in proximity of Ravenna, which is one of the oldest Italian cities, former capital of the Western Roman Empire, located a few kilometers from the Adriatic coast and about 60 km south of the Po River delta. The rate of land-subsidence in the area, naturally in the order of a few mm/year, dramatically increased up to 110 mm/year after World War II, primarily due to groundwater pumping and a number of deep onshore and offshore gas production platforms. The subsidence caused in the last century a cumulative drop larger than 1.5 m in the historical center of the city. Starting from these evidences and taking advantage of a recent digital elevation model of 10m resolution, we reconstructed the ground elevation in 1897 for an area of about 65 km2 around the city of Ravenna. We referred to these two digital elevation models (i.e. current topography and topographic reconstruction) and a 2D finite-element numerical model for the simulation of the inundation dynamics associated with several levee failure scenarios along embankment system of the river Montone. For each scenario and digital elevation model, the flood hazard is quantified in terms of water depth, speed and dynamics of the flooding front. The comparison enabled us to

  19. Prediction of Tsunami Inundation in the City of Lisbon (portugal)

    NASA Astrophysics Data System (ADS)

    Baptista, M.; Miranda, J.; Omira, R.; Catalao Fernandes, J.

    2010-12-01

    Lisbon city is located inside the estuary of Tagus river, 20 km away from the Atlantic ocean. The city suffered great damage from tsunamis and its downtown was flooded at least twice in 1531 and 1755. Since the installation of the tide-gage network, in the area, three tsunamis caused by submarine earthquakes, were recorded in November 1941, February 1969 and May 1975. The most destructive tsunamis listed along Tagus Estuary are the 26th January 1531, a local tsunami event restricted to the Tagus Estuary, and the well known 1st November 1755 transoceanic event, both following highly destructive earthquakes, which deeply affected Lisbon. The economic losses due to the impact of the 1755 tsunami in one of Europe’s 18t century main harbor and commercial fleets were enormous. Since then the Tagus estuary suffered strong morphologic changes manly due to dredging works, construction of commercial and industrial facilities and recreational docks, some of them already projected to preserve Lisbon. In this study we present preliminary inundation maps for the Tagus estuary area in the Lisbon County, for conditions similar to the 1755 tsunami event, but using present day bathymetric and topographic maps. Inundation modelling is made using non linear shallow water theory and the numerical code is based upon COMCOT code. Nested grids resolutions used in this study are 800 m, 200 m and 50 m, respectively. The inundation is discussed in terms of flow depth, run up height, maximum inundation area and current flow velocity. The effects of estuary modifications on tsunami propagation are also investigated.

  20. Satellite Altimetry and SAR Remote Sensing for Monitoring Inundation in the Pantanal Wetland

    NASA Astrophysics Data System (ADS)

    Dettmering, Denise; Strehl, Franziska; Schwatke, Christian; Seitz, Florian

    2016-08-01

    Large wetlands are an important component of the global water cycle and the knowledge of water flow and storage dynamics within these regions is valuable for many applications such as flood risk assessment and water availability studies. Most of the inundation areas are remote regions without significant infrastructure, especially without in-situ gauging observations. Remote sensing techniques can help to provide highly valuable information for hydrological questions.Combining water level and water extent from different remote sensing sensors allows for the quantification of water volume changes in remote inundation areas.

  1. Assessing Flood Impacts in Rural Coastal Communities Using LIDAR

    NASA Astrophysics Data System (ADS)

    Johnson, E. S.

    2016-06-01

    Coastal communities are vulnerable to floods from storm events which are further exacerbated by storm surges. Additionally, coastal towns provide specific challenges during flood events as many coastal communities are peninsular and vulnerable to inundation of road access points. Publicly available lidar data has been used to model areas of inundation and resulting flood impacts on road networks. However, these models may overestimate areas that are inaccessible as they rely on publicly available Digital Terrain Models. Through incorporation of Digital Surface Models to estimate bridge height, a more accurate model of flood impacts on rural coastal residents can be estimated.

  2. How are flood risk estimates affected by the choice of return-periods?

    NASA Astrophysics Data System (ADS)

    Ward, P. J.; Aerts, J. C. J. H.; De Moel, H.; Poussin, J. K.

    2012-04-01

    Flood management is more and more adopting a risk based approach, whereby flood risk is the product of the probability and consequences of flooding. One of the most common approaches in flood risk assessment is to estimate the damage that would occur for floods of several exceedance probabilities (or return periods), to plot these on an exceedance probability-loss curve (risk curve) and to estimate risk as the area under the curve. However, there is little insight into how the selection of the return-periods (which ones and how many) used to calculate risk actually affects the final risk calculation. To gain such insights, we developed and validated an inundation model capable of rapidly simulating inundation extent and depth, and dynamically coupled this to an existing damage model. The method was applied to a section of the River Meuse in the southeast of the Netherlands. Firstly, we estimated risk based on a risk curve using yearly return periods from 2 to 10 000 yr (€ 34 million p.a.). We found that the overall risk is greatly affected by the number of return periods used to construct the risk curve, with over-estimations of annual risk between 33% and 100% when only three return periods are used. Also, the final risk estimate is greatly dependent on the minimum and maximum return periods (and their associated damages) used in the construction of the risk curve. In addition, binary assumptions on dike failure can have a large effect (a factor two difference) on risk estimates. The results suggest that more research is needed to develop relatively simple inundation models that can be used to produce large numbers of inundation maps, complementary to more complex 2D-3D hydrodynamic models. We then used the insights and models described above to assess the relative change in risk between current conditions and several scenarios of land use and climate change. For the case study region, we found that future land use change has a larger impact than future climate

  3. Mapping Seasonal Inundation of Amazonian Wetlands with Active Microwave Sensors: Current Status and Future Prospects

    NASA Astrophysics Data System (ADS)

    Hess, L. L.; Melack, J. M.; Novo, E. M.; Mertes, L. A.; Barbosa, C. C.; Costa, M. P.; Gastil, M. M.

    2001-12-01

    Japanese Earth Resources Satellite 1 (JERS-1) imagery acquired over the Amazon basin during low- and high-water periods makes it possible to map seasonal inundation and vegetation of wetlands for most of the basin. Dual-season mapping has now been completed for a central Amazon quadrat extending from 72\\deg W,0\\deg S to 54\\deg W,8\\deg S. Imagery was acquired by the JERS-1 L-band, HH-polarized SAR during Sept.-Oct. 1995 and May-June 1996, and mosaicked at the Jet Propulsion Laboratory into low- and high-water mosaics with pixel dimensions of approx. 100 m. Image segmentation software developed at INPE was used to carry out a polygon-based classification of the co-registered mosaics into wetland and non-wetland classes. Wetland areas were classified by inundation state (flooded vs. non-flooded) and vegetation type (non-vegetated, woody, or herbaceous), and classification accuracy was assessed using geo-coded digital videography acquired during aerial surveys of the Brazilian Amazon. Seventeen percent of the study quadrat is occupied by wetlands, which are 96% inundated at high water and 26% inundated at low water (including river and stream channels). Flooded forest constitutes nearly 70% of the wetland area at high water. This mapping methodology is being applied to the entire lowland portion of the basin. In order to map inundation extent at intermediate water stages, and to increase classification accuracy in savanna regions, we are using time series of high-resolution JERS-1 and Radarsat data, and will make extensive use of planned acquisitions from the ENVISAT ASAR and ALOS PALSAR sensors.

  4. Multivariate pluvial flood damage models

    SciTech Connect

    Van Ootegem, Luc; Verhofstadt, Elsy; Van Herck, Kristine; Creten, Tom

    2015-09-15

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks.

  5. Evaluation of dynamic coastal response to sea-level rise modifies inundation likelihood

    USGS Publications Warehouse

    Lentz, Erika E.; Thieler, E. Robert; Plant, Nathaniel G.; Stippa, Sawyer R.; Horton, Radley M.; Gesch, Dean B.

    2016-01-01

    Sea-level rise (SLR) poses a range of threats to natural and built environments1, 2, making assessments of SLR-induced hazards essential for informed decision making3. We develop a probabilistic model that evaluates the likelihood that an area will inundate (flood) or dynamically respond (adapt) to SLR. The broad-area applicability of the approach is demonstrated by producing 30 × 30 m resolution predictions for more than 38,000 km2 of diverse coastal landscape in the northeastern United States. Probabilistic SLR projections, coastal elevation and vertical land movement are used to estimate likely future inundation levels. Then, conditioned on future inundation levels and the current land-cover type, we evaluate the likelihood of dynamic response versus inundation. We find that nearly 70% of this coastal landscape has some capacity to respond dynamically to SLR, and we show that inundation models over-predict land likely to submerge. This approach is well suited to guiding coastal resource management decisions that weigh future SLR impacts and uncertainty against ecological targets and economic constraints.

  6. Evaluation of Dynamic Coastal Response to Sea-level Rise Modifies Inundation Likelihood

    NASA Technical Reports Server (NTRS)

    Lentz, Erika E.; Thieler, E. Robert; Plant, Nathaniel G.; Stippa, Sawyer R.; Horton, Radley M.; Gesch, Dean B.

    2016-01-01

    Sea-level rise (SLR) poses a range of threats to natural and built environments, making assessments of SLR-induced hazards essential for informed decision making. We develop a probabilistic model that evaluates the likelihood that an area will inundate (flood) or dynamically respond (adapt) to SLR. The broad-area applicability of the approach is demonstrated by producing 30x30m resolution predictions for more than 38,000 sq km of diverse coastal landscape in the northeastern United States. Probabilistic SLR projections, coastal elevation and vertical land movement are used to estimate likely future inundation levels. Then, conditioned on future inundation levels and the current land-cover type, we evaluate the likelihood of dynamic response versus inundation. We find that nearly 70% of this coastal landscape has some capacity to respond dynamically to SLR, and we show that inundation models over-predict land likely to submerge. This approach is well suited to guiding coastal resource management decisions that weigh future SLR impacts and uncertainty against ecological targets and economic constraints.

  7. Urbanization and climate change impacts on future urban flood risk in Can Tho city, Vietnam

    NASA Astrophysics Data System (ADS)

    Huong, H. T. L.; Pathirana, A.

    2011-12-01

    Urban development increases flood risk in cities due to local changes in hydrological and hydrometeorological conditions that increase flood hazard, and also to urban concentrations that increase the vulnerability. The relationship between the increasing urban runoff and flooding due to increased imperviousness better perceived than that between the cyclic impact of urban growth and the urban rainfall via microclimatic changes. The large-scale, global impacts due to climate variability and change could compound these risks. We present the case of a typical third world city - Can Tho (the biggest city in Mekong River Delta, Vietnam) - faced with multiple future challenges, namely: (i) climate change-driven sea-level rise and tidal effect, (ii) increase river runoff due to climate change, (iii) increased urban runoff driven by imperviousness, and (iv) enhancement of extreme rainfall due to urban growth-driven micro-climatic change (urban heat islands). A set of model simulations were used to assess the future impact of the combination of these influences. Urban growth of the city was projected up to year 2100 based on historical growth patterns, using a land-use simulation model (Dinamica-EGO). A dynamic limited-area atmospheric model (WRF), coupled with a detailed land-surface model with vegetation parameterization (Noah LSM), was employed in controlled numerical experiments to estimate the anticipated changes in extreme rainfall patterns due to urban heat island effect. Finally, a 1-D/2-D coupled urban-drainage/flooding model (SWMM-Brezo) was used to simulate storm-sewer surcharge and surface inundation to establish the increase in the flood risk resulting from the changes. The results show that, if the city develops as predicted, the maximum of inundation depth and area in Can Tho will increase by about 20%. The impact of climate change on inundation is more serious than that of urbanization. The worse case may occur if the sea level rises 100 cm and the flow from

  8. Flood Inundation Modelling Using Milhy. Volume 1. User Manual

    DTIC Science & Technology

    1990-09-01

    by paper mills at Hele and Silverton . Figure 9.3 shows the main channel constricted through the mill at Hele. Both Figures 9.2 and 9.3 were taken...also incorporated, identified on Figure 9.5. These are: 1 Hele mill 2 Railway embankment 3 Silverton mill 4 Channel bifurcation 294 Chapter 9 The two...paper mills at Hele and Silverton are accurately represented as channelized channels, with low boundary friction and high velocities. Silverton mid

  9. Flood Inundation Modelling Using Milhy. Volume 2. User Manual

    DTIC Science & Technology

    1990-09-01

    j - -: m 0 0 : W ! W ! C 0- 0 1 0 0 .0 10 l 10 LA -n k n i n L n L NU n W %L lV Si n L Nk A W N m%’ I I 0: C, I (D C.C ) D 0Q C 0 4 DC .a 0 C 2 O...3 K -1,NSEG 2018 W ( K )-0 2039 3 MMM( K )-0 2020 IF(MR.GT.0.0)THEN 2021 DO 4 1-1,20 2022 A(I.ID)-0 2023 4 Q(I,ID)-0 2024 ELSE 2025 DO 5 J -10*ID+1,10*ID...4 e / vicr1 F ~ s/-Fore ca it,, rOdfe’L$f7O/f hrzr, t-4 /t, r, i L,"v ea l r) r o re ;. t /c ra l r rove tC4( M22 LU Z o w

  10. Hydrodynamics of long-duration urban floods: experiments and numerical modelling

    NASA Astrophysics Data System (ADS)

    Arrault, Anaïs; Finaud-Guyot, Pascal; Archambeau, Pierre; Bruwier, Martin; Erpicum, Sébastien; Pirotton, Michel; Dewals, Benjamin

    2016-06-01

    Flood risk in urbanized areas raises increasing concerns as a result of demographic and climate changes. Hydraulic modelling is a key component of urban flood risk analysis; yet, detailed validation data are still lacking for comprehensively validating hydraulic modelling of inundation flow in urbanized floodplains. In this study, we present an experimental model of inundation flow in a typical European urban district and we compare the experimental observations with predictions by a 2-D shallow-water numerical model. The experimental set-up is 5 m × 5 m and involves seven streets in each direction, leading to 49 intersections. For a wide range of inflow discharges, the partition of the measured outflow discharges at the different street outlets was found to remain virtually constant. The observations also suggest that the street widths have a significant influence on the discharge partition between the different streets' outlets. The profiles of water depths along the streets are mainly influenced by the complex flow processes at the intersections, while bottom roughness plays a small part. The numerical model reproduces most of the observed flow features satisfactorily. Using a turbulence model was shown to modify the length of the recirculations in the streets, but not to alter significantly the discharge partition. The main limitation of the numerical model results from the Cartesian grid used, which can be overcome by using a porosity-based formulation of the shallow-water equations. The upscaling of the experimental observations to the field is also discussed.

  11. Potential effects of climate change on inundation patterns in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Langerwisch, F.; Rost, S.; Gerten, D.; Poulter, B.; Rammig, A.; Cramer, W.

    2012-01-01

    A key factor for the functioning and diversity of Amazonian rain forests is annual flooding. However, increasing air temperature and higher precipitation variability, caused by climate change, are expected to shift the flooding regime, and thereby negatively impact floodplain ecosystems, their biodiversity and riverine ecosystem services during this century. To assess the effects of climate changes on the flooding regime, we use the Dynamic Global Vegetation and Hydrology Model LPJmL, enhanced by a scheme that realistically simulates floodable area and inundation. Regarding hydrograph and inundation area, simulation results under contemporary conditions compare well against observations. The changes of calculated river discharge and inundation, under climate change projections from 24 IPCC AR4 climate models, differ regionally towards the end of the 21st century. Flooded area increases in about one third of the basin, with a probability larger than 70%. Inundation duration increases dramatically by on average three months in Western and around one month in Eastern Amazonia. The time of high- and low-water-peak shifts by up to three months. We find a slight decrease in the number of extremely dry years as well as a decrease of the probability of the occurrence of three consecutive extremely dry years. The total number of extremely wet years does not change drastically but the probability of three consecutive extremely wet years decreases by up to 30% in the East and increases by up to 25% in the West. These changes implicate significant shifts in regional vegetation and climate, and will dramatically alter carbon and water cycles.

  12. Effects of anthropogenic land-subsidence on inundation dynamics: the case study of Ravenna, Italy

    NASA Astrophysics Data System (ADS)

    Carisi, Francesca; Domeneghetti, Alessio; Castellarin, Attilio

    2016-05-01

    Can differential land-subsidence significantly alter river flooding dynamics, and thus flood risk in flood prone areas? Many studies show how the lowering of the coastal areas is closely related to an increase in the flood-hazard due to more important tidal flooding and see level rise. The literature on the relationship between differential land-subsidence and possible alterations to riverine flood-hazard of inland areas is still sparse, although several geographical areas characterized by significant land-subsidence rates during the last 50 years experienced intensification in both inundation magnitude and frequency. We investigate the possible impact of a significant differential ground lowering on flood hazard over a 77 km2 area around the city of Ravenna, in Italy. The rate of land-subsidence in the study area, naturally in the order of a few mm year-1, dramatically increased up to 110 mm year-1 after World War II, primarily due to groundwater pumping and gas production platforms. The result was a cumulative drop that locally exceeds 1.5 m. Using a recent digital elevation model (res. 5 m) and literature data on land-subsidence, we constructed a ground elevation model over the study area in 1897 and we characterized either the current and the historical DEM with or without road embankments and land-reclamation channels in their current configuration. We then considered these four different topographic models and a two-dimensional hydrodynamic model to simulate and compare the inundation dynamics associated with a levee failure scenario along embankment system of the river Montone, which flows eastward in the southern portion of the study area. For each topographic model, we quantified the flood hazard in terms of maximum water depth (h) and we compared the actual effects on flood-hazard dynamics of differential land-subsidence relative to those associated with other man-made topographic alterations, which resulted to be much more significant.

  13. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  14. EXPERIMENTAL STUDIES ON DIFFICULTY OF EVACUATION FROM UNDERGROUND SPACES UNDER INUNDATED SITUATIONS USING REAL SCALE MODELS

    NASA Astrophysics Data System (ADS)

    Baba, Yasuyuki; Ishigaki, Taisuke; Toda, Keiichi; Nakagawa, Hajime

    Many urbanized cities in Japan are located in alluvial plains, and the vulnerability of urbanized areas to flood disaster is highlighted by flood attacks due to heavy rain fall or typhoons. Underground spaces located in the urbanized area are flood-prone areas, and the intrusion of flood watar into underground space inflicted severe damages on urban functions and infrastructures. In a similar way, low-lying areas like "bowl-shaped" depression and underpasses under highway and railroad bridges are also prone to floods. The underpasses are common sites of accidents of submerged vehicles, and severe damage including human damage occasionally occurs under flooding conditions. To reduce the damage due to inundation in underground space, needless to say, early evacuation is one of the most important countermeasures. This paper shows some experimental results of evacuation tests from underground spaces under inundated situations. The difficulities of the evacuation from underground space has been investigated by using real scale models (door, staircase and vehicle), and the limit for safety evacuation is discussed. From the results, it is found that water depth of 0.3 - 0.4m would be a critical situation for the evacuation from underground space through staircases and door and that 0.7 - 0.8m deep on the ground would be also a critical situation for safety evacuation though the doors of the vehicle. These criteria have some possibility to vary according to different inundated situations, and they are also influenced by the individual variation like the difference of physical strength. This means that these criteria requires cautious stance to use although they show a sort of an index of the limitation for saftty evacuation from underground space.

  15. Evaluation of coastal inundation hazard for present and future climates

    NASA Astrophysics Data System (ADS)

    Condon, A. J.; Sheng, Y.

    2012-12-01

    Coastal storm surge and inundation from hurricanes is an ever-present threat along the eastern seaboard and Gulf of Mexico. Coupled with an increase in population and growth along the coast is the change in hurricane characteristics and sea level rise associated with climate change. Global estimates suggest that a warming planet will lead to more intense storms, although the frequency of landfalling hurricanes is expected to decrease. Estimates of sea level rise (SLR) vary widely between little to no acceleration in local rates to acceleration resulting in nearly 2 m of sea level rise by the end of the century. In order to assess the hazard in both future and present climates, a robust storm surge and inundation prediction system must be used to simulate the coastal response. Typically the hazard is reported in the form of a Base Flood Elevation (BFE) map or Maximum of Maximums (MOM) map, which are both computationally expensive to create as they require tens of thousands of numerical simulations. This study examines the coastal inundation hazard in Southwest Florida for present and future climates, using a high resolution storm surge modeling system CH3D-SSMS, and an optimal storm ensemble with multivariate interpolation, while accounting for projected climate change. The coastal inundation hazard is presented in the form of the BFE map and MOM map. The BFE is a probabilistic hazard map, in which the historic climatology of a region in terms of storm parameters (central pressure deficit, radius to maximum winds, forward speed, direction of motion, and landfall location), is described probabilistically and is combined with the simulated surge response to determine the inundation for a set annual probability of occurrence or return period. The MOM is a worst case scenario for a given category of hurricane. In order to accurately simulate the storm surge and inundation CH3D-SSMS which has been validated for the region for hurricanes Charley and Wilma is used. To

  16. Validation of Numerical Codes to Compute Tsunami Runup And Inundation

    NASA Astrophysics Data System (ADS)

    Velioğlu, Deniz; Cevdet Yalçıner, Ahmet; Kian, Rozita; Zaytsev, Andrey

    2015-04-01

    FLOW 3D and NAMI DANCE are two numerical codes which can be applied to analysis of flow and motion of long waves. Flow 3D simulates linear and nonlinear propagating surface waves as well as irregular waves including long waves. NAMI DANCE uses finite difference computational method to solve nonlinear shallow water equations (NSWE) in long wave problems, specifically tsunamis. Both codes can be applied to tsunami simulations and visualization of long waves. Both codes are capable of solving flooding problems. However, FLOW 3D is designed mainly to solve flooding problem from land and NAMI DANCE is designed to solve flooding problem from the sea. These numerical codes are applied to some benchmark problems for validation and verification. One useful benchmark problem is the runup of solitary waves which is investigated analytically and experimentally by Synolakis (1987). Since 1970s, solitary waves have commonly been used to model tsunamis especially in experimental and numerical studies. In this respect, a benchmark problem on runup of solitary waves is a relevant choice to assess the capability and validity of the numerical codes on amplification of tsunamis. In this study both codes have been tested, compared and validated by applying to the analytical benchmark problem of solitary wave runup on a sloping beach. Comparison of the results showed that both codes are in good agreement with the analytical and experimental results and thus can be proposed to be used in inundation of long waves and tsunami hazard analysis.

  17. Comparison of Probabilistic Coastal Inundation Maps Based on Historical Storms and Statistically Modeled Storm Ensemble

    NASA Astrophysics Data System (ADS)

    Feng, X.; Sheng, Y.; Condon, A. J.; Paramygin, V. A.; Hall, T.

    2012-12-01

    A cost effective method, JPM-OS (Joint Probability Method with Optimal Sampling), for determining storm response and inundation return frequencies was developed and applied to quantify the hazard of hurricane storm surges and inundation along the Southwest FL,US coast (Condon and Sheng 2012). The JPM-OS uses piecewise multivariate regression splines coupled with dimension adaptive sparse grids to enable the generation of a base flood elevation (BFE) map. Storms are characterized by their landfall characteristics (pressure deficit, radius to maximum winds, forward speed, heading, and landfall location) and a sparse grid algorithm determines the optimal set of storm parameter combinations so that the inundation from any other storm parameter combination can be determined. The end result is a sample of a few hundred (197 for SW FL) optimal storms which are simulated using a dynamically coupled storm surge / wave modeling system CH3D-SSMS (Sheng et al. 2010). The limited historical climatology (1940 - 2009) is explored to develop probabilistic characterizations of the five storm parameters. The probability distributions are discretized and the inundation response of all parameter combinations is determined by the interpolation in five-dimensional space of the optimal storms. The surge response and the associated joint probability of the parameter combination is used to determine the flood elevation with a 1% annual probability of occurrence. The limited historical data constrains the accuracy of the PDFs of the hurricane characteristics, which in turn affect the accuracy of the BFE maps calculated. To offset the deficiency of limited historical dataset, this study presents a different method for producing coastal inundation maps. Instead of using the historical storm data, here we adopt 33,731 tracks that can represent the storm climatology in North Atlantic basin and SW Florida coasts. This large quantity of hurricane tracks is generated from a new statistical model

  18. Tropical cyclone inundation potential on the Hawaiian Islands of Oahu and Kauai

    NASA Astrophysics Data System (ADS)

    Kennedy, Andrew B.; Westerink, Joannes J.; Smith, Jane M.; Hope, Mark E.; Hartman, Michael; Taflanidis, Alexandros A.; Tanaka, Seizo; Westerink, Hans; Cheung, Kwok Fai; Smith, Tom; Hamann, Madeleine; Minamide, Masashi; Ota, Aina; Dawson, Clint

    2012-08-01

    The lack of a continental shelf in steep volcanic islands leads to significant changes in tropical cyclone inundation potential, with wave setup and runup increasing in importance and wind driven surge decreasing when compared to more gently-sloped mainland regions. This is illustrated through high resolution modeling of waves, surge, and runup on the Hawaiian Islands of Oahu and Kauai. A series of hurricane waves and water levels were computed using the SWAN + ADCIRC models for a suite of 643 synthetic storm scenarios, while local wave runup was evaluated along a series of 1D transects using the phase-resolving model Bouss1D. Waves are found to be an extremely important component of the inundation, both from breaking wave forced increases in storm surge and also from wave runup over the relatively steep topography. This is clear in comparisons with debris lines left by Hurricane Iniki on the Island of Kauai, where runup penetration is much greater than still water inundation in most instances. The difference between steeply-sloping and gently-sloping topographies was demonstrated by recomputing Iniki with the same landfall location as Hurricane Katrina in Louisiana. Surge was greatly increased for the mild-slope Iniki-in-Louisiana case, while pure wind surge for Iniki-in-Kauai was very small. For the entire suite of storms, maxima on Kauai show predicted inundation largely confined to a narrow coastal strip, with few locations showing more than a few hundred meters of flooding from the shoreline. As expected, maximum flooded areas for the 643 storms were somewhat greater than the Iniki inundation. Oahu has significantly more low-lying land compared to Kauai, and consequently hypothetical tropical cyclone landfalls show much more widespread inundation. Under direct impact scenarios, there is the potential for much of Honolulu and most of Waikiki to be inundated, with both still water surge and wave runup contributing. Other regions of Oahu show inundation confined

  19. Archeological inundation studies: Manual for reservoir managers. Contract report

    SciTech Connect

    Ware, J.A.

    1989-09-01

    Twentieth century demands for water, electricity, and flood control in the United States have resulted in the damming and impoundment of most of America's large rivers and streams. The impact of such activities on North American archeological and historical resources is difficult to measure. Concern for mitigating the impact of dam construction and reservoir impoundment resulted in the Reservoir Salvage Act of 1960, as amended in 1974, which requires that any US agency undertaking dam construction must provide written notice to the Secretary of the Interior, who shall then cause a survey to be conducted for archeological sites, either by the Department of the Interior or by the Federal agency undertaking the construction project. Development and operation of freshwater reservoirs create a variety of potential impacts on archeological resources. These impacts accrue from several sources, including mechanical, biochemical, and human and other processes associated with the reservoir environment. This report summarizes the findings of the National Reservoir Inundation Study, a multi-agency project designed to assess the range of effects of inundation on archeological resources. Potential effects are discussed within three discrete zones of differential impact: (a) the conservation pool, (b) the fluctuation zone, and (c) the backshore zone.

  20. Towards global scale coastal flood hazard in Delta Cities with 30-meter SRTM and 3D_i

    NASA Astrophysics Data System (ADS)

    Winsemius, Hessel; Verhoeven, Govert; Van Leeuwen, Elgard; Van der Klis, Hanneke; Van Wesenbeeck, Bregje; Cumiskey, Lydia; Verlaan, Martin; Muis, Sanne; Ward, Philip; Kwadijk, Jaap

    2015-04-01

    Most attempts to globally simulate inundation at the land-coast interface rely on maximum flood level GIS-based flood spreading models. These are generally not mass conservative, do not account for the genesis of tidal and surges in time, and do not include channel geometry and surface roughness. Furthermore, these methods cannot be used to study the impact of hazard reducing intervention measures that increase roughness at the land-coast interface. These measures include breakwaters and coastal ecosystems, such as mangrove forests and shell fish and coral reefs. Recently, new datasets and models are becoming available that allow us to greatly improve simulation of inundation in global deltas in a rapid and computationally feasible way. In this poster we demonstrate the feasibility of modelling all global deltas with strongly urbanised areas explicitly using these datasets and models. This will allow initiatives such as the 100 resilient cities (Rockefeller foundation) and the 'making cities resilient' campaign (UNISDR) to tackle the issue of coastal flood risk efficiently. We propose to use the following materials: A subgrid enabling 1D-2D model code Outputs from a global tidal and storm surge model Open topographical data We demonstrate the feasibility of this approach by modelling the Mississippi delta with: a) a lidar derived topography dataset (www.gis.ms.gov/); and b) the recently released 30 meter elevation dataset from the Shuttle Radar Topography Mission. We use the new 3Di subgrid code to rapidly schematise the vast delta area with a quadtree mesh. We force the model at the boundaries with water level estimates during the Katrina cyclone. We invite scientists working on global scale inundation modelling to visit our poster in order to discuss possibilities and limitations of the proposed methods related to model codes, data quality and calibration.

  1. Incorporating DEM uncertainty in coastal inundation mapping.

    PubMed

    Leon, Javier X; Heuvelink, Gerard B M; Phinn, Stuart R

    2014-01-01

    Coastal managers require reliable spatial data on the extent and timing of potential coastal inundation, particularly in a changing climate. Most sea level rise (SLR) vulnerability assessments are undertaken using the easily implemented bathtub approach, where areas adjacent to the sea and below a given elevation are mapped using a deterministic line dividing potentially inundated from dry areas. This method only requires elevation data usually in the form of a digital elevation model (DEM). However, inherent errors in the DEM and spatial analysis of the bathtub model propagate into the inundation mapping. The aim of this study was to assess the impacts of spatially variable and spatially correlated elevation errors in high-spatial resolution DEMs for mapping coastal inundation. Elevation errors were best modelled using regression-kriging. This geostatistical model takes the spatial correlation in elevation errors into account, which has a significant impact on analyses that include spatial interactions, such as inundation modelling. The spatial variability of elevation errors was partially explained by land cover and terrain variables. Elevation errors were simulated using sequential Gaussian simulation, a Monte Carlo probabilistic approach. 1,000 error simulations were added to the original DEM and reclassified using a hydrologically correct bathtub method. The probability of inundation to a scenario combining a 1 in 100 year storm event over a 1 m SLR was calculated by counting the proportion of times from the 1,000 simulations that a location was inundated. This probabilistic approach can be used in a risk-aversive decision making process by planning for scenarios with different probabilities of occurrence. For example, results showed that when considering a 1% probability exceedance, the inundated area was approximately 11% larger than mapped using the deterministic bathtub approach. The probabilistic approach provides visually intuitive maps that convey

  2. Incorporating DEM Uncertainty in Coastal Inundation Mapping

    PubMed Central

    Leon, Javier X.; Heuvelink, Gerard B. M.; Phinn, Stuart R.

    2014-01-01

    Coastal managers require reliable spatial data on the extent and timing of potential coastal inundation, particularly in a changing climate. Most sea level rise (SLR) vulnerability assessments are undertaken using the easily implemented bathtub approach, where areas adjacent to the sea and below a given elevation are mapped using a deterministic line dividing potentially inundated from dry areas. This method only requires elevation data usually in the form of a digital elevation model (DEM). However, inherent errors in the DEM and spatial analysis of the bathtub model propagate into the inundation mapping. The aim of this study was to assess the impacts of spatially variable and spatially correlated elevation errors in high-spatial resolution DEMs for mapping coastal inundation. Elevation errors were best modelled using regression-kriging. This geostatistical model takes the spatial correlation in elevation errors into account, which has a significant impact on analyses that include spatial interactions, such as inundation modelling. The spatial variability of elevation errors was partially explained by land cover and terrain variables. Elevation errors were simulated using sequential Gaussian simulation, a Monte Carlo probabilistic approach. 1,000 error simulations were added to the original DEM and reclassified using a hydrologically correct bathtub method. The probability of inundation to a scenario combining a 1 in 100 year storm event over a 1 m SLR was calculated by counting the proportion of times from the 1,000 simulations that a location was inundated. This probabilistic approach can be used in a risk-aversive decision making process by planning for scenarios with different probabilities of occurrence. For example, results showed that when considering a 1% probability exceedance, the inundated area was approximately 11% larger than mapped using the deterministic bathtub approach. The probabilistic approach provides visually intuitive maps that convey

  3. 2D semiconductor optoelectronics

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  4. Short-Term Summer Inundation as a Measure to Counteract Acidification in Rich Fens

    PubMed Central

    Mettrop, Ivan S.; Cusell, Casper; Kooijman, Annemieke M.; Lamers, Leon P. M.

    2015-01-01

    In regions with intensive agriculture, water level fluctuation in wetlands has generally become constricted within narrow limits. Water authorities are, however, considering the re-establishment of fluctuating water levels as a management tool in biodiverse, base-rich fens (‘rich fens’). This includes temporary inundation with surface water from ditches, which may play an important role in counteracting acidification in order to conserve and restore biodiversity. Inundation may result in an increased acid neutralizing capacity (ANC) for two reasons: infiltration of base-rich inundation water into peat soils, and microbial alkalinity generation under anaerobic conditions. The main objectives of this study were to test whether short-term (2 weeks) summer inundation is more effective than short-term winter inundation to restore the ANC in the upper 10 cm of non-floating peat soils, and to explain potential differences. Large-scale field experiments were conducted for five years in base-rich fens and Sphagnum-dominated poor fens. Winter inundation did not result in increased porewater ANC, because infiltration was inhibited in the waterlogged peat and evapotranspiration rates were relatively low. Also, low temperatures limit microbial alkalinity generation. In summer, however, when temperature and evapotranspiration rates are higher, inundation resulted in increased porewater Ca and HCO3- concentrations, but only in areas with characteristic rich fen bryophytes. This increase was not only due to stronger infiltration into the soil, but also to higher microbial alkalinity generation under anaerobic conditions. In contrast, porewater ANC did not increase in Sphagnum-plots as a result of the ability of Sphagnum spp. to acidify their environment. In both rich and poor fens, flooding-induced P-mobilization remained sufficiently low to safeguard P-limited vegetation. NO3- and NH4+ dynamics showed no considerable changes either. In conclusion, short-term summer inundation

  5. Short-Term Summer Inundation as a Measure to Counteract Acidification in Rich Fens.

    PubMed

    Mettrop, Ivan S; Cusell, Casper; Kooijman, Annemieke M; Lamers, Leon P M

    2015-01-01

    In regions with intensive agriculture, water level fluctuation in wetlands has generally become constricted within narrow limits. Water authorities are, however, considering the re-establishment of fluctuating water levels as a management tool in biodiverse, base-rich fens ('rich fens'). This includes temporary inundation with surface water from ditches, which may play an important role in counteracting acidification in order to conserve and restore biodiversity. Inundation may result in an increased acid neutralizing capacity (ANC) for two reasons: infiltration of base-rich inundation water into peat soils, and microbial alkalinity generation under anaerobic conditions. The main objectives of this study were to test whether short-term (2 weeks) summer inundation is more effective than short-term winter inundation to restore the ANC in the upper 10 cm of non-floating peat soils, and to explain potential differences. Large-scale field experiments were conducted for five years in base-rich fens and Sphagnum-dominated poor fens. Winter inundation did not result in increased porewater ANC, because infiltration was inhibited in the waterlogged peat and evapotranspiration rates were relatively low. Also, low temperatures limit microbial alkalinity generation. In summer, however, when temperature and evapotranspiration rates are higher, inundation resulted in increased porewater Ca and HCO3- concentrations, but only in areas with characteristic rich fen bryophytes. This increase was not only due to stronger infiltration into the soil, but also to higher microbial alkalinity generation under anaerobic conditions. In contrast, porewater ANC did not increase in Sphagnum-plots as a result of the ability of Sphagnum spp. to acidify their environment. In both rich and poor fens, flooding-induced P-mobilization remained sufficiently low to safeguard P-limited vegetation. NO3(-) and NH4(+) dynamics showed no considerable changes either. In conclusion, short-term summer inundation

  6. Flood Risk and Climate Change: The Contributions of Remote Sensing

    NASA Astrophysics Data System (ADS)

    Brakenridge, R.; Slayback, D. A.; Kettner, A. J.; Cohen, S.; Syvitski, J. A.; Overeem, I.; de Groeve, T.

    2015-12-01

    Since the mid-1970s, satellite observation has gathered an exceptionally valuable but largely un-harvested record of flood inundation world-wide. Commencing in late 1999, the two MODIS sensors also obtained daily surveillance of all of the Earth's surface waters. These data are analogous to the record of earthquake seismicity provided by seismographic stations; they provide the only objective characterization of many extreme, damaging flood events. This information should be deployed to its maximum utility in defining areas of flood risk. In the developing nations, the remote sensing archive provides the immediate opportunity, without hydrological data infrastructure, to directly identify hazardous land areas. As well, satellite passive microwave radiometry, commencing with near-daily global coverage in 1998, has the ability to characterize at-a-site flood hydrographs. When combined with the satellite record of mapped inundation, this allows exceedance probabilities to be placed on observed inundation limits. The coupled data set can then be used to validate predictive flood modeling. As climate changes, flood statistics change. Yet hazard evaluation has for many decades proceeded using assumed stationarity of flood frequency distributions. New floods-of-record at any location thereby present a dilemma to policy makers and to hydrologists: immediately include the new extreme flood in the flow series, and thus increase the size of the regulatory floodplain, or use the pre-flood flow records to label the exceptional new event as, for example, "the 1000 yr flood". The remote sensing record also includes defended floodplains where levees have failed, sometimes even during relatively common floods. We can use the powerful observations provided by remote sensing to confront the old probability estimates directly: by arguing that the recent observed record of inundation from actual floods must take priority in guiding public policy.

  7. Using 1D2D Hydrodynamic Modeling to Inform Restoration Planning in the Atchafalaya River Basin, Louisiana

    NASA Astrophysics Data System (ADS)

    Hayden-Lesmeister, A.; Remo, J. W.; Piazza, B.

    2015-12-01

    The Atchafalaya River (AR) in Louisiana is the principal distributary of the Mississippi River (MR), and its basin contains the largest contiguous area of baldcypress-water tupelo swamp forests in North America. After designation of the Atchafalaya River Basin (ARB) as a federal floodway following the destructive 1927 MR flood, it was extensively modified to accommodate a substantial portion of the MR flow (~25%) to mitigate flooding in southern Louisiana. These modifications and increased flows resulted in substantial incision along large portions of the AR, altering connectivity between the river and its associated waterbodies. As a result of incision, the hydroperiod has been substantially altered, which has contributed to a decline in ecological health of the ARB's baldcypress-water tupelo forests. While it is recognized that the altered hydroperiod has negatively affected natural baldcypress regeneration, it is unclear whether proposed projects designed to enhance flow connectivity will increase long-term survival of these forests. In this study, we have constructed a 1D2D hydrodynamic model using SOBEK 2.12 to realistically model key physical parameters such as residence times, inundation extent, water-surface elevations (WSELs), and flow velocities to increase our understanding of the ARB's altered hydroperiod and the consequences for baldcypress-water tupelo forests. While the model encompasses a majority of the ARB, our modeling effort is focused on the Flat Lake Water Management Unit located in the southern portion of the ARB, where it will also be used to evaluate flow connectivity enhancement projects within the management unit. We believe our 1D2D hybrid hydraulic modeling approach will provide the flexibility and accuracy needed to guide connectivity enhancement efforts in the ARB and may provide a model framework for guiding similar efforts along other highly-altered river systems.

  8. An automated approach to flood mapping

    NASA Astrophysics Data System (ADS)

    Sun, Weihua; Mckeown, Donald M.; Messinger, David W.

    2012-10-01

    Heavy rain from Tropical Storm Lee resulted in a major flood event for the southern tier of New York State in early September 2011 causing evacuation of approximately 20,000 people in and around the city of Binghamton. In support of the New York State Office of Emergency Management, a high resolution multispectral airborne sensor (WASP) developed by RIT was deployed over the flooded area to collect aerial images. One of the key benefits of these images is their provision for flood inundation area mapping. However, these images require a significant amount of storage space and the inundation mapping process is conventionally carried out using manual digitization. In this paper, we design an automated approach for flood inundation mapping from the WASP airborne images. This method employs Spectral Angle Mapper (SAM) for color RGB or multispectral aerial images to extract the flood binary map; then it uses a set of morphological processing and a boundary vectorization technique to convert the binary map into a shapefile. This technique is relatively fast and only requires the operator to select one pixel on the image. The generated shapefile is much smaller than the original image and can be imported to most GIS software packages. This enables critical flood information to be shared with and by disaster response managers very rapidly, even over cellular phone networks.

  9. Integration of SRTM DEM and Hydraulic Analysis for Flood Response Planning.

    NASA Astrophysics Data System (ADS)

    Pervez, M.; Asante, K. O.; Smith, J. L.; Verdin, J. P.; Rowland, J.

    2006-12-01

    The ability to delineate potential flood inundation areas is one of the most important requirements for flood response planning. Historical hydrologic records and high-resolution topographic data are essential to model flood inundation and to map areas at risk of inundation. For Afghanistan, historical hydrologic data enable the analysis of flood frequency, but the accurate delineation of flood inundation zones is limited by the lack of high- resolution elevation data. This study has developed a method for coupling hydraulic analysis and Geographic Information System (GIS) technology to delineate flood risk maps of the Helmand and Kabul drainage basins in Afghanistan. Land surface elevation data from the Shuttle Radar Topography Mission (SRTM) were used to create an area-elevation profile with respect to the rivers that flow into these two basins. Using the profile, we computed cross-sectional area and wetted perimeter for each 1-m increment in elevation. Manning's equation was applied to compute river discharge for each 1-m increment in water level using cross-sectional area, wetted perimeter and slope of the respective river reach. Results for the gauged river reaches were compared with 25, 50, and 100-year return period floods based on a flood frequency from the historical stream flow data, and associated depths of water were estimated for each return period flood. Peak flows at gauge stations were extrapolated to ungauged river reaches based on upstream drainage area. The estimated depths of water for each river reach were used as thresholds to identify areas subject to flood inundation, using the SRTM Digital Elevation Model (DEM) with respect to the rivers. The resulting flood inundation polygons were combined in a GIS with roads, infrastructure, settlements, and higher resolution satellite imagery to identify potential hazards due to flooding, and provide detailed information for flood response planning.

  10. Evacuation planning for plausible worst case inundation scenarios in Honolulu, Hawaii.

    PubMed

    Kim, Karl; Pant, Pradip; Yamashita, Eric

    2015-01-01

    Honolulu is susceptible to coastal flooding hazards. Like other coastal cities, Honolulu&s long-term economic viability and sustainability depends on how well it can adapt to changes in the natural and built environment. While there is a disagreement over the magnitude and extent of localized impacts associated with climate change, it is widely accepted that by 2100 there will be at least a meter in sea level rise (SLR) and an increase in extreme weather events. Increased exposure and vulnerabilities associated with urbanization and location of human activities in coastal areas warrants serious consideration by planners and policy makers. This article has three objectives. First, flooding due to the combined effects of SLR and episodic hydro-meteorological and geophysical events in Honolulu are investigated and the risks to the community are quantified. Second, the risks and vulnerabilities of critical infrastructure and the surface transportation system are described. Third, using the travel demand software, travel distances and travel times for evacuation from inundated areas are modeled. Data from three inundation models were used. The first model simulated storm surge from a category 4 hurricane similar to Hurricane Iniki which devastated the island of Kauai in 1992. The second model estimates inundation based on five tsunamis that struck Hawaii. A 1-m increase in sea level was included in both the hurricane storm surge and tsunami flooding models. The third model used in this article generated a 500-year flood event due to riverine flooding. Using a uniform grid cell structure, the three inundation maps were used to assess the worst case flooding scenario. Based on the flood depths, the ruling hazard (hurricane, tsunami, or riverine flooding) for each grid cell was determined. The hazard layer was analyzed with socioeconomic data layers to determine the impact on vulnerable populations, economic activity, and critical infrastructure. The analysis focused both

  11. Stochastic description of salt-marsh inundation from mixed astronomical-wind driven tides, with implications for macrophyte growth

    NASA Astrophysics Data System (ADS)

    Howell, S. M.; Furbish, D. J.; Morris, J. T.

    2009-12-01

    Sea-level rise and sedimentation interact to control productivity on coastal salt marshes since the mean sea level influences flood frequency. Irregularly flooded marshes are inundated during spring and storm tides and during extended periods of north-easterly winds. The weak and irregular inundation in marshes may effect rates of decomposition, organic matter accumulation, and the vertical distribution of marsh vegetation. Whereas astronomical tides are predictable, wind driven tides depend on the strength and direction of the wind. Because these systems are stochastic, a non-hydrodynamic approach is used to describe the tides and determine the distribution of water depths. Here we present a description of salt-marsh inundation from mixed astronomical-wind driven tides that removes the astronomical forcing from water level records to determine the role of wind, storms, and forecasting of stochastic platform wetting. Using a 3 year record of water level and wind from sites in Carteret County, North Carolina, we calculate the mean high water (MHW) level and the ratio of inundation for a given elevation and corresponding macrophyte. The frequency of inundation or marsh platform wetting will vary from the frequency of MHW level, yet it is this stochastic wetting process that determines productivity and plant distribution since infrequent flooding may cause stress or hypersaline conditions. An ARIMA model is used to describe this higher order structure of the inundation signal. Wind can be described as an AR1 and a transfer function model is used to determine the dynamic response of the effect of noise and sustained winds on water levels. Harmonic analysis is also performed for comparison of predicted water levels using various tidal constituents to determine the phases and amplitudes and to explore model simplification.

  12. Potential effects of climate change on inundation patterns in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Langerwisch, F.; Rost, S.; Gerten, D.; Poulter, B.; Rammig, A.; Cramer, W.

    2013-06-01

    Floodplain forests, namely the Várzea and Igapó, cover an area of more than 97 000 km2. A key factor for their function and diversity is annual flooding. Increasing air temperature and higher precipitation variability caused by climate change are expected to shift the flooding regime during this century, and thereby impact floodplain ecosystems, their biodiversity and riverine ecosystem services. To assess the effects of climate change on the flooding regime, we use the Dynamic Global Vegetation and Hydrology Model LPJmL, enhanced by a scheme that realistically simulates monthly flooded area. Simulation results of discharge and inundation under contemporary conditions compare well against site-level measurements and observations. The changes of calculated inundation duration and area under climate change projections from 24 IPCC AR4 climate models differ regionally towards the end of the 21st century. In all, 70% of the 24 climate projections agree on an increase of flooded area in about one third of the basin. Inundation duration increases dramatically by on average three months in western and around one month in eastern Amazonia. The time of high- and low-water peak shifts by up to three months. Additionally, we find a decrease in the number of extremely dry years and in the probability of the occurrence of three consecutive extremely dry years. The total number of extremely wet years does not change drastically but the probability of three consecutive extremely wet years decreases by up to 30% in the east and increases by up to 25% in the west. These changes implicate significant shifts in regional vegetation and climate, and will dramatically alter carbon and water cycles.

  13. Responses to River Inundation Pressures Control Prey Selection of Riparian Beetles

    PubMed Central

    O'Callaghan, Matt J.; Hannah, David M.; Boomer, Ian; Williams, Mike; Sadler, Jon P.

    2013-01-01

    Background Riparian habitats are subjected to frequent inundation (flooding) and are characterised by food webs that exhibit variability in aquatic/terrestrial subsidies across the ecotone. The strength of this subsidy in active riparian floodplains is thought to underpin local biodiversity. Terrestrial invertebrates dominate the fauna, exhibiting traits that allow exploitation of variable aquatic subsidies while reducing inundation pressures, leading to inter-species micro-spatial positioning. The effect these strategies have on prey selection is not known. This study hypothesised that plasticity in prey choice from either aquatic or terrestrial sources is an important trait linked to inundation tolerance and avoidance. Method/Principal Findings We used hydrological, isotopic and habitat analyses to investigate the diet of riparian Coleoptera in relation to inundation risk and relative spatial positioning in the floodplain. The study examined patch scale and longitudinal changes in utilisation of the aquatic subsidy according to species traits. Prey sourced from terrestrial or emerging/stranded aquatic invertebrates varied in relation to traits for inundation avoidance or tolerance strategies. Traits that favoured rapid dispersal corresponded with highest proportions of aquatic prey, with behavioural traits further predicting uptake. Less able dispersers showed minimal use of aquatic subsidy and switched to a terrestrial diet under moderate inundation pressures. All trait groups showed a seasonal shift in diet towards terrestrial prey in the early spring. Prey selection became exaggerated towards aquatic prey in downstream samples. Conclusions/Significance Our results suggest that partitioning of resources and habitat creates overlapping niches that increase the processing of external subsidies in riparian habitats. By demonstrating functional complexity, this work advances understanding of floodplain ecosystem processes and highlights the importance of

  14. A Tank Bromeliad Favors Spider Presence in a Neotropical Inundated Forest

    PubMed Central

    Hénaut, Yann; Corbara, Bruno; Pélozuelo, Laurent; Azémar, Frédéric; Céréghino, Régis; Herault, Bruno; Dejean, Alain

    2014-01-01

    Tank bromeliads are good models for understanding how climate change may affect biotic associations. We studied the relationships between spiders, the epiphytic tank bromeliad, Aechmea bracteata, and its associated ants in an inundated forest in Quintana Roo, Mexico, during a drought period while, exceptionally, this forest was dry and then during the flooding that followed. We compared spider abundance and diversity between ‘Aechmea-areas’ and ‘control-areas’ of the same surface area. We recorded six spider families: the Dipluridae, Ctenidae, Salticidae, Araneidae, Tetragnathidae and Linyphiidae among which the funnel-web tarantula, Ischnothele caudata, the only Dipluridae noted, was the most abundant. During the drought period, the spiders were more numerous in the Aechmea-areas than in the control-areas, but they were not obligatorily associated with the Aechmea. During the subsequent flooding, the spiders were concentrated in the A. bracteata patches, particularly those sheltering an ant colony. Also, a kind of specificity existed between certain spider taxa and ant species, but varied between the drought period and subsequent flooding. We conclude that climatic events modulate the relationship between A. bracteata patches and their associated fauna. Tank bromeliads, previously considered only for their ecological importance in supplying food and water during drought, may also be considered refuges for spiders during flooding. More generally, tank bromeliads have an important role in preserving non-specialized fauna in inundated forests. PMID:25494055

  15. Global river flood hazard maps: hydraulic modelling methods and appropriate uses

    NASA Astrophysics Data System (ADS)

    Townend, Samuel; Smith, Helen; Molloy, James

    2014-05-01

    Flood hazard is not well understood or documented in many parts of the world. Consequently, the (re-)insurance sector now needs to better understand where the potential for considerable river flooding aligns with significant exposure. For example, international manufacturing companies are often attracted to countries with emerging economies, meaning that events such as the 2011 Thailand floods have resulted in many multinational businesses with assets in these regions incurring large, unexpected losses. This contribution addresses and critically evaluates the hydraulic methods employed to develop a consistent global scale set of river flood hazard maps, used to fill the knowledge gap outlined above. The basis of the modelling approach is an innovative, bespoke 1D/2D hydraulic model (RFlow) which has been used to model a global river network of over 5.3 million kilometres. Estimated flood peaks at each of these model nodes are determined using an empirically based rainfall-runoff approach linking design rainfall to design river flood magnitudes. The hydraulic model is used to determine extents and depths of floodplain inundation following river bank overflow. From this, deterministic flood hazard maps are calculated for several design return periods between 20-years and 1,500-years. Firstly, we will discuss the rationale behind the appropriate hydraulic modelling methods and inputs chosen to produce a consistent global scaled river flood hazard map. This will highlight how a model designed to work with global datasets can be more favourable for hydraulic modelling at the global scale and why using innovative techniques customised for broad scale use are preferable to modifying existing hydraulic models. Similarly, the advantages and disadvantages of both 1D and 2D modelling will be explored and balanced against the time, computer and human resources available, particularly when using a Digital Surface Model at 30m resolution. Finally, we will suggest some

  16. Tsunami inundation modeling for western Sumatra.

    PubMed

    Borrero, José C; Sieh, Kerry; Chlieh, Mohamed; Synolakis, Costas E

    2006-12-26

    A long section of the Sunda megathrust south of the great tsunamigenic earthquakes of 2004 and 2005 is well advanced in its seismic cycle and a plausible candidate for rupture in the next few decades. Our computations of tsunami propagation and inundation yield model flow depths and inundations consistent with sparse historical accounts for the last great earthquakes there, in 1797 and 1833. Numerical model results from plausible future ruptures produce flow depths of several meters and inundation up to several kilometers inland near the most populous coastal cities. Our models of historical and future tsunamis confirm a substantial exposure of coastal Sumatran communities to tsunami surges. Potential losses could be as great as those that occurred in Aceh in 2004.

  17. Mitigating flood exposure

    PubMed Central

    Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs Jr, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval

    2013-01-01

    Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city’s worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods. We applied the “trauma signature analysis” (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results. Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion. In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation. PMID:28228985

  18. Probabilistic Flood Mapping and Visualization Issues: Application to the River Ubaye, Barcelonnette (France)

    NASA Astrophysics Data System (ADS)

    Mukolwe, M. M.; Di Baldassarre, G.; Bogaard, T. A.; Malet, J.-P.; Solomatine, D. P.

    2012-04-01

    ) using a historical disastrous flood event (experienced in 1957; Weber, 1994) as a reference. The input hydrograph uncertainty and the parametric uncertainty were taken into account. Probabilistic maps were produced using a Monte-Carlo based approach taking into account (i) rating curve uncertainty (Di Baldassarre and Montanari, 2009) and (ii) roughness coefficient uncertainty (Pappenberger et al, 2005). The 2D raster based model, LISFLOOD-FP (Bates et al, 2010) was used to carry out the simulations. The derived uncertainty maps show the variation of the simulated flood extent contrary to the common binary wet-dry maps. Consequently, this in turn forms a basis for further qualitative analysis to foster adoption criteria.

  19. Overcoming complexities for consistent, continental-scale flood mapping

    NASA Astrophysics Data System (ADS)

    Smith, Helen; Zaidman, Maxine; Davison, Charlotte

    2013-04-01

    The EU Floods Directive requires all member states to produce flood hazard maps by 2013. Although flood mapping practices are well developed in Europe, there are huge variations in the scale and resolution of the maps between individual countries. Since extreme flood events are rarely confined to a single country, this is problematic, particularly for the re/insurance industry whose exposures often extend beyond country boundaries. Here, we discuss the challenges of large-scale hydrological and hydraulic modelling, using our experience of developing a 12-country model and set of maps, to illustrate how consistent, high-resolution river flood maps across Europe can be produced. The main challenges addressed include: data acquisition; manipulating the vast quantities of high-resolution data; and computational resources. Our starting point was to develop robust flood-frequency models that are suitable for estimating peak flows for a range of design flood return periods. We used the index flood approach, based on a statistical analysis of historic river flow data pooled on the basis of catchment characteristics. Historical flow data were therefore sourced for each country and collated into a large pan-European database. After a lengthy validation these data were collated into 21 separate analysis zones or regions, grouping smaller river basins according to their physical and climatic characteristics. The very large continental scale basins were each modelled separately on account of their size (e.g. Danube, Elbe, Drava and Rhine). Our methodology allows the design flood hydrograph to be predicted at any point on the river network for a range of return periods. Using JFlow+, JBA's proprietary 2D hydraulic hydrodynamic model, the calculated out-of-bank flows for all watercourses with an upstream drainage area exceeding 50km2 were routed across two different Digital Terrain Models in order to map the extent and depth of floodplain inundation. This generated modelling for

  20. Tsunami Inundation modeling for Tolaga Bay, Tokomaru Bay, Hicks Bay and Te Araroa communities

    NASA Astrophysics Data System (ADS)

    Barberopoulou, A.; Wang, X.; Power, W. L.

    2012-12-01

    We assess the tsunami hazard to four communities in Raukumara Peninsula (Northeastern region of North Island of New Zealand): Tokomaru Bay, Tolaga Bay, Hicks Bay and Te Araroa. Representative severe but realistic scenarios that could affect the Raukumara peninsula are earthquakes that rupture the interface between the Australian and Pacific plates, earthquakes that rupture faults within the overlying Australian plate or the subducting Pacific plate (location is not always well constrained). Earthquakes that rupture both the plate interface and simultaneously faults within the crust of the Australian plate are also a possibility. Tsunamis may also be caused by submarine landslides that occur near the edge of the continental shelf, but these are not considered here. For this study four scenario events were constructed, including a distant event from South America (offshore Peru), outer rise events and a thrust event in the Hikurangi region off the east coast of New Zealand. The sources are not exhaustive but representative of the types of significant events that could occur in the region and were either improved from earlier sources or derived from recent studies. Available high resolution LiDAR and RTK data were combined with topographic and LINZ data for the development of bathymetric/topographic grids. Our modelling results show that Tolaga Bay appears most vulnerable to tsunami inundation although Hicks Bay and Te Araroa are also significantly inundated in several of the scenarios. Tokomaru Bay is naturally well protected because the rapid change in elevation limits the range of inundation. The worst scenario for Tokomaru Bay was an earthquake in the Hikurangi subduction zone resulting in large flow depths, whereas for Tolaga Bay inundation is severe from most scenarios. Hicks Bay and Te Araroa get the most severe flooding from earthquakes in South America and on the Hikurangi subduction zone. Inundation extent is similar for Tolaga Bay during the Outer Rise and

  1. Adaptation to floods in future climate: a practical approach

    NASA Astrophysics Data System (ADS)

    Doroszkiewicz, Joanna; Romanowicz, Renata; Radon, Radoslaw; Hisdal, Hege

    2016-04-01

    In this study some aspects of the application of the 1D hydraulic model are discussed with a focus on its suitability for flood adaptation under future climate conditions. The Biała Tarnowska catchment is used as a case study. A 1D hydraulic model is developed for the evaluation of inundation extent and risk maps in future climatic conditions. We analyse the following flood indices: (i) extent of inundation area; (ii) depth of water on flooded land; (iii) the flood wave duration; (iv) the volume of a flood wave over the threshold value. In this study we derive a model cross-section geometry following the results of primary research based on a 500-year flood inundation extent. We compare two methods of localisation of cross-sections from the point of view of their suitability to the derivation of the most precise inundation outlines. The aim is to specify embankment heights along the river channel that would protect the river valley in the most vulnerable locations under future climatic conditions. We present an experimental design for scenario analysis studies and uncertainty reduction options for future climate projections obtained from the EUROCORDEX project. Acknowledgements: This work was supported by the project CHIHE (Climate Change Impact on Hydrological Extremes), carried out in the Institute of Geophysics Polish Academy of Sciences, funded by Norway Grants (contract No. Pol-Nor/196243/80/2013). The hydro-meteorological observations were provided by the Institute of Meteorology and Water Management (IMGW), Poland.

  2. Relative impacts of climate and land use changes on future flood damage along River Meuse in Wallonia

    NASA Astrophysics Data System (ADS)

    Beckers, A.; Detrembleur, S.; Dewals, B. J.; Gouverneur, L.; Dujardin, S.; Archambeau, P.; Erpicum, S.; Pirotton, M.

    2012-04-01

    Climate change is expected to increase flood hazard across most of Europe, both in terms of peak discharge intensity and frequency. Consequently, managing flood risk will remain an issue of primary importance for decades to come. Flood risk depends on territories' flood hazard and vulnerability. Beside climate change, land use evolution is thus a key influencing factor on flood risk. The aim of this research is to quantify the relative influence of climate and land use changes on flood damage evolution during the 21st century. The study focuses on River Meuse in Wallonia for a 100-year flood. A scenario-based approach was used to model land use evolution. Nine urbanization scenarios for 2100 were developed: three of them assume a "current tend" land use evolution, characterized by urban sprawl, while six others assume a sustainable spatial planning, leading to an increase in density of residential areas as well as an increase in urban functions diversity. A study commissioned by the EU has estimated a 30 % increase in the 100-year discharge for River Meuse by the year 2100. Inundation modeling was conducted for the present day 100-year flood (HQ100) and for a discharge HQ100 + 30%, using the model Wolf 2D and a 5m grid resolution Digital Elevation Model (Ernst et al. 2009). Based on five different damage curves related to land use categories, the relative damage was deduced from the computed inundation maps. Finally, specific prices were associated to each land use category and allowed assessing absolute damages, which were subsequently aggregated to obtain a damage value for each of the 19 municipalities crossed by River Meuse. Results show that flood damage is estimated to increase by 540 to 630 % between 2009 and 2100, reaching 2.1 to 2.4 billion Euros in 2100. These increases mainly involve municipalities downstream of a point where the floodplain width becomes significantly larger. The city of Liège, which is protected against a 100-year flood in the present

  3. Flooding on Elbe River

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Heavy rains in Central Europe over the past few weeks have led to some of the worst flooding the region has witnessed in more than a century. The floods have killed more than 100 people in Germany, Russia, Austria, Hungary, and the Czech Republic and have led to as much as $20 billion in damage. This false-color image of the Elbe River and its tributaries was taken on August 20, 2002, by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. The floodwaters that inundated Dresden, Germany, earlier this week have moved north. As can be seen, the river resembles a fairly large lake in the center of the image just south of the town of Wittenberg. Flooding was also bad further downriver in the towns of Maqgdeburge and Hitzacker. Roughly 20,000 people were evacuated from their homes in northern Germany. Fifty thousand troops, border police, and technical assistance workers were called in to combat the floods along with 100,000 volunteers. The floodwaters are not expected to badly affect Hamburg, which sits on the mouth of the river on the North Sea. Credit:Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  4. Groundwater flood hazards in lowland karst terrains

    NASA Astrophysics Data System (ADS)

    Naughton, Owen; McCormack, Ted

    2016-04-01

    The spatial and temporal complexity of flooding in karst terrains pose unique flood risk management challenges. Lowland karst landscapes can be particularly susceptible to groundwater flooding due to a combination of limited drainage capacity, shallow depth to groundwater and a high level of groundwater-surface water interactions. Historically the worst groundwater flooding to have occurred in the Rep. of Ireland has been centred on the Gort Lowlands, a karst catchment on the western coast of Ireland. Numerous notable flood events have been recorded throughout the 20th century, but flooding during the winters of 2009 and 2015 were the most severe on record, inundating an area in excess of 20km2 and causing widespread and prolonged disruption and damage to property and infrastructure. Effective flood risk management requires an understanding of the recharge, storage and transport mechanisms during flood conditions, but is often hampered by a lack of adequate data. Using information gathered from the 2009 and 2015 events, the main hydrological and geomorphological factors which influence flooding in this complex lowland karst groundwater system under are elucidated. Observed flood mechanisms included backwater flooding of sinks, overland flow caused by the overtopping of sink depressions, high water levels in turlough basins, and surface ponding in local epikarst watersheds. While targeted small-scale flood measures can locally reduce the flood risk associated with some mechanisms, they also have the potential to exacerbate flooding down-catchment and must be assessed in the context of overall catchment hydrology. This study addresses the need to improve our understanding of groundwater flooding in karst terrains, in order to ensure efficient flood prevention and mitigation in future and thus help achieve the aims of the EU Floods Directive.

  5. Validation and Performance Comparison of Numerical Codes for Tsunami Inundation

    NASA Astrophysics Data System (ADS)

    Velioglu, D.; Kian, R.; Yalciner, A. C.; Zaytsev, A.

    2015-12-01

    In inundation zones, tsunami motion turns from wave motion to flow of water. Modelling of this phenomenon is a complex problem since there are many parameters affecting the tsunami flow. In this respect, the performance of numerical codes that analyze tsunami inundation patterns becomes important. The computation of water surface elevation is not sufficient for proper analysis of tsunami behaviour in shallow water zones and on land and hence for the development of mitigation strategies. Velocity and velocity patterns are also crucial parameters and have to be computed at the highest accuracy. There are numerous numerical codes to be used for simulating tsunami inundation. In this study, FLOW 3D and NAMI DANCE codes are selected for validation and performance comparison. Flow 3D simulates linear and nonlinear propagating surface waves as well as long waves by solving three-dimensional Navier-Stokes (3D-NS) equations. FLOW 3D is used specificaly for flood problems. NAMI DANCE uses finite difference computational method to solve linear and nonlinear forms of shallow water equations (NSWE) in long wave problems, specifically tsunamis. In this study, these codes are validated and their performances are compared using two benchmark problems which are discussed in 2015 National Tsunami Hazard Mitigation Program (NTHMP) Annual meeting in Portland, USA. One of the problems is an experiment of a single long-period wave propagating up a piecewise linear slope and onto a small-scale model of the town of Seaside, Oregon. Other benchmark problem is an experiment of a single solitary wave propagating up a triangular shaped shelf with an island feature located at the offshore point of the shelf. The computed water surface elevation and velocity data are compared with the measured data. The comparisons showed that both codes are in fairly good agreement with each other and benchmark data. All results are presented with discussions and comparisons. The research leading to these

  6. Chesapeake Inundation Prediction System (CIPS): A regional prototype for a national problem

    USGS Publications Warehouse

    Stamey, B.; Smith, W.; Carey, K.; Garbin, D.; Klein, F.; Wang, Hongfang; Shen, J.; Gong, W.; Cho, J.; Forrest, D.; Friedrichs, C.; Boicourt, W.; Li, M.; Koterba, M.; King, D.; Titlow, J.; Smith, E.; Siebers, A.; Billet, J.; Lee, J.; Manning, Douglas R.; Szatkowski, G.; Wilson, D.; Ahnert, P.; Ostrowski, J.

    2007-01-01

    Recent Hurricanes Katrina and Isabel, among others, not only demonstrated their immense destructive power, but also revealed the obvious, crucial need for improved storm surge forecasting and information delivery to save lives and property in future storms. Current operational methods and the storm surge and inundation products do not adequately meet requirements needed by Emergency Managers (EMs) at local, state, and federal levels to protect and inform our citizens. The Chesapeake Bay Inundation Prediction System (CIPS) is being developed to improve the accuracy, reliability, and capability of flooding forecasts for tropical cyclones and non-tropical wind systems such as nor'easters by modeling and visualizing expected on-land storm-surge inundation along the Chesapeake Bay and its tributaries. An initial prototype has been developed by a team of government, academic and industry partners through the Chesapeake Bay Observing System (CBOS) of the Mid-Atlantic Coastal Ocean Observing Regional Association (MACOORA) within the Integrated Ocean Observing System (IOOS). For demonstration purposes, this initial prototype was developed for the tidal Potomac River in the Washington, DC metropolitan area. The preliminary information from this prototype shows great potential as a mechanism by which NOAA National Weather Service (NWS) Forecast Offices (WFOs) can provide more specific and timely forecasts of likely inundation in individual localities from significant storm surge events. This prototype system has shown the potential to indicate flooding at the street level, at time intervals of an hour or less, and with vertical resolution of one foot or less. This information will significantly improve the ability of EMs and first responders to mitigate life and property loss and improve evacuation capabilities in individual communities. This paper provides an update and expansion of the initial prototype that was presented at the Oceans 2006 MTS/IEEE Conference in Boston, MA

  7. A case study in coastal flooding analysis

    NASA Astrophysics Data System (ADS)

    Esposito, E.; Porfido, S.; Santoro, G.; Violante, C.; Foscari, G.; Sciarrotta, S.; Alaia, F.

    2009-04-01

    Floods are among the most frequent and costly natural disasters in terms of human hardship and economic loss. Depending on topography, soil condition, ground cover, human settlements and other factors, flood can produce catastrophic impacts both in terms of damages and modification of the landscape. The Salerno province experienced numerous flooding events after heavy thunderstorm, that triggered intense landslides (debris-mudflow), inundations, denudation, shore line progradation, etc. Recent study (Porfido et al. 2009) show that in this area more than 100 flooding events occurred since 1500. Among these four events have been estimate in the maximum severity class. Research into the historical flooding highlights the case of the event of 11 November 1773 as one of the major flooding occurred in Cava de' Tirreni, Campanian region, Southern Italy. About 400 - 450 people died; severe damage to the buildings were registered in a wide area of the Salerno province; several mud flows invested large areas of coastal territory which caused progradation phenomena of the shoreline of several hundreds of meters. The main objectives of this paper are: the historical reconstruction of the event considering contemporary documents found at Archives and National Libreries; characterization of the rainfall timing using historical descriptions; delimitation of inundated area; distribution of damage levels and identification and classification of flood-induced geological phenomena.

  8. A Novel Tsunami Inundation Mapping Technique

    NASA Astrophysics Data System (ADS)

    Watts, P.; Walder, J. S.; Waythomas, C. F.

    2003-12-01

    Traditional tsunami inundation maps have focused on maximum on-land inundation. Occasionally, the inundation maps are supplemented with information about maximum water velocity or timing. We demonstrate using several case studies the utility of producing maps showing 1) on-land inundation area, 2) maximum water velocity, 3) maximum water flux, 4) time of wave arrival, 5) time of wave maximum, and 6) time of wave departure. Map attributes 1-3 are related to water motion and are of particular value to scientists involved in tsunami hazard assessment. Attributes 4-6 are related to the timing of wave events and are of particular value to emergency managers. However, this raw form of inundation mapping is not easily interpreted within the usual GIS context because water velocities and fluxes are not readily understood by lay people. To improve on the GIS approach to portraying tsunami information, we employ simple engineering models illustrating the consequences of tsunami attack in a way that lay audiences can readily understand. In particular, we present maps that depict regions where a human would be knocked down, where cars would be moved, where various sizes of sediment would be moved, where anchors would break, and where ships would be moved laterally by a significant amount. Each map is separated into three distinct layers, each layer representing a different level of hazard. For example, the car movement map shows results for three sizes of automobile. Each region is depicted as a separate GIS layer. Given the uncertainty involved in numerical simulations, as well as the many local variables that can alter the outcome during a real event, these maps are meant to provide general guidelines as to the outcome of tsunami attack.

  9. Micro-scale flood risk estimation in historic centres: a case study in Florence, Italy

    NASA Astrophysics Data System (ADS)

    Castelli, Fabio; Arrighi, Chiara; Brugioni, Marcello; Franceschini, Serena; Mazzanti, Bernardo

    2013-04-01

    The route to flood risk assessment is much more than hydraulic modelling of inundation, that is hazard mapping. Flood risk is the product of flood hazard, vulnerability and exposure, all the three to be estimated with comparable level of accuracy. While hazard maps have already been implemented in many countries, quantitative damage and risk maps are still at a preliminary level. Currently one of the main challenges in flood damage estimation resides in the scarce availability of socio-economic data characterizing the monetary value of the exposed assets. When these public-open data are available, the variability of their level of detail drives the need of merging different sources and of selecting an appropriate scale of analysis. In this work a parsimonious quasi-2D hydraulic model is adopted, having many advantages in terms of easy set-up. In order to represent the geometry of the study domain an high-resolution and up-to-date Digital Surface Model (DSM) is used. The accuracy in flood depth estimation is evaluated by comparison with marble-plate records of a historic flood in the city of Florence (Italy). The accuracy is characterized in the downtown most flooded area by a bias of a very few centimetres and a determination coefficient of 0.73. The average risk is found to be about 14 €/m2•year, corresponding to about 8.3% of residents income. The spatial distribution of estimated risk highlights a complex interaction between the flood pattern and the buildings characteristics. Proceeding through the risk estimation steps, a new micro-scale potential damage assessment method is proposed. This method is based on the georeferenced census system considered as optimal compromise between spatial detail and open availability of socio-economic data. The census sections system consist of geographically contiguous polygons that usually coincide with building blocks in dense urban areas. The results of flood risk assessment at the census section scale resolve most of

  10. Composite Flood Risk for Virgin Island

    EPA Pesticide Factsheets

    The Composite Flood Risk layer combines flood hazard datasets from Federal Emergency Management Agency (FEMA) flood zones, NOAA's Shallow Coastal Flooding, and the National Hurricane Center SLOSH model for Storm Surge inundation for category 1, 2, and 3 hurricanes.Geographic areas are represented by a grid of 10 by 10 meter cells and each cell has a ranking based on variation in exposure to flooding hazards: Moderate, High and Extreme exposure. Geographic areas in each input layers are ranked based on their probability of flood risk exposure. The logic was such that areas exposed to flooding on a more frequent basis were given a higher ranking. Thus the ranking incorporates the probability of the area being flooded. For example, even though a Category 3 storm surge has higher flooding elevations, the likelihood of the occurrence is lower than a Category 1 storm surge and therefore the Category 3 flood area is given a lower exposure ranking. Extreme exposure areas are those areas that are exposed to relatively frequent flooding.The ranked input layers are then converted to a raster for the creation of the composite risk layer by using cell statistics in spatial analysis. The highest exposure ranking for a given cell in any of the three input layers is assigned to the corresponding cell in the composite layer.For example, if an area (a cell) is rank as medium in the FEMA layer, moderate in the SLOSH layer, but extreme in the SCF layer, the cell will be considere

  11. Composite Flood Risk for Pueto Rico

    EPA Pesticide Factsheets

    The Composite Flood Risk layer combines flood hazard datasets from Federal Emergency Management Agency (FEMA) flood zones, NOAA's Shallow Coastal Flooding, and the National Hurricane Center SLOSH model for Storm Surge inundation for category 1, 2, and 3 hurricanes.Geographic areas are represented by a grid of 10 by 10 meter cells and each cell has a ranking based on variation in exposure to flooding hazards: Moderate, High and Extreme exposure. Geographic areas in each input layers are ranked based on their probability of flood risk exposure. The logic was such that areas exposed to flooding on a more frequent basis were given a higher ranking. Thus the ranking incorporates the probability of the area being flooded. For example, even though a Category 3 storm surge has higher flooding elevations, the likelihood of the occurrence is lower than a Category 1 storm surge and therefore the Category 3 flood area is given a lower exposure ranking. Extreme exposure areas are those areas that are exposed to relatively frequent flooding.The ranked input layers are then converted to a raster for the creation of the composite risk layer by using cell statistics in spatial analysis. The highest exposure ranking for a given cell in any of the three input layers is assigned to the corresponding cell in the composite layer.For example, if an area (a cell) is rank as medium in the FEMA layer, moderate in the SLOSH layer, but extreme in the SCF layer, the cell will be considere

  12. Composite Flood Risk for New Jersery

    EPA Pesticide Factsheets

    The Composite Flood Risk layer combines flood hazard datasets from Federal Emergency Management Agency (FEMA) flood zones, NOAA's Shallow Coastal Flooding, and the National Hurricane Center SLOSH model for Storm Surge inundation for category 1, 2, and 3 hurricanes. Geographic areas are represented by a grid of 10 by 10 meter cells and each cell has a ranking based on variation in exposure to flooding hazards: Moderate, High and Extreme exposure. Geographic areas in each input layers are ranked based on their probability of flood risk exposure. The logic was such that areas exposed to flooding on a more frequent basis were given a higher ranking. Thus the ranking incorporates the probability of the area being flooded. For example, even though a Category 3 storm surge has higher flooding elevations, the likelihood of the occurrence is lower than a Category 1 storm surge and therefore the Category 3 flood area is given a lower exposure ranking. Extreme exposure areas are those areas that are exposed to relatively frequent flooding. The ranked input layers are then converted to a raster for the creation of the composite risk layer by using cell statistics in spatial analysis. The highest exposure ranking for a given cell in any of the three input layers is assigned to the corresponding cell in the composite layer. For example, if an area (a cell) is rank as medium in the FEMA layer, moderate in the SLOSH layer, but extreme in the SCF layer, the cell will be consider

  13. Composite Flood Risk for New York

    EPA Pesticide Factsheets

    The Composite Flood Risk layer combines flood hazard datasets from Federal Emergency Management Agency (FEMA) flood zones, NOAA's Shallow Coastal Flooding, and the National Hurricane Center SLOSH model for Storm Surge inundation for category 1, 2, and 3 hurricanes.Geographic areas are represented by a grid of 10 by 10 meter cells and each cell has a ranking based on variation in exposure to flooding hazards: Moderate, High and Extreme exposure. Geographic areas in each input layers are ranked based on their probability of flood risk exposure. The logic was such that areas exposed to flooding on a more frequent basis were given a higher ranking. Thus the ranking incorporates the probability of the area being flooded. For example, even though a Category 3 storm surge has higher flooding elevations, the likelihood of the occurrence is lower than a Category 1 storm surge and therefore the Category 3 flood area is given a lower exposure ranking. Extreme exposure areas are those areas that are exposed to relatively frequent flooding.The ranked input layers are then converted to a raster for the creation of the composite risk layer by using cell statistics in spatial analysis. The highest exposure ranking for a given cell in any of the three input layers is assigned to the corresponding cell in the composite layer.For example, if an area (a cell) is rank as medium in the FEMA layer, moderate in the SLOSH layer, but extreme in the SCF layer, the cell will be considere

  14. Flood- and Drought-Related Natural Hazards Activities of the U.S. Geological Survey in New England

    USGS Publications Warehouse

    Lombard, Pamela J.

    2016-03-23

    Tools for natural hazard assessment and mitigation • Light detection and ranging (lidar) remote sensing technology • StreamStats Web-based tool for streamflow statistics • Flood inundation mapper

  15. Effects of breach formation parameter uncertainty on inundation risk area and consequence analysis

    SciTech Connect

    Skousen, Benjamin Don; David, Judi; Mc Pherson, Timothy; Burian, Steve

    2010-01-01

    determine the sensitivity of flood inundation area, flood arrival time, peak flood depths, and socio-economic impacts (e.g. population at risk, direct and indirect economic loss) to changes in individual parameters and parameter interactions. Results and discussion from this sensitivity analysis will be presented in detail in the paper.

  16. A Study on Active Disaster Management System for Standardized Emergency Action Plan using BIM and Flood Damage Estimation Techniques

    NASA Astrophysics Data System (ADS)

    Jeong, C.; Om, J.; Hwang, J.; Joo, K.; Heo, J.

    2013-12-01

    In recent, the frequency of extreme flood has been increasing due to climate change and global warming. Highly flood damages are mainly caused by the collapse of flood control structures such as dam and dike. In order to reduce these disasters, the disaster management system (DMS) through flood forecasting, inundation mapping, EAP (Emergency Action Plan) has been studied. The estimation of inundation damage and practical EAP are especially crucial to the DMS. However, it is difficult to predict inundation and take a proper action through DMS in real emergency situation because several techniques for inundation damage estimation are not integrated and EAP is supplied in the form of a document in Korea. In this study, the integrated simulation system including rainfall frequency analysis, rainfall-runoff modeling, inundation prediction, surface runoff analysis, and inland flood analysis was developed. Using this system coupled with standard GIS data, inundation damage can be estimated comprehensively and automatically. The standard EAP based on BIM (Building Information Modeling) was also established in this system. It is, therefore, expected that the inundation damages through this study over the entire area including buildings can be predicted and managed.

  17. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined

  18. High Resolution Hurricane Storm Surge and Inundation Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Luettich, R.; Westerink, J. J.

    2010-12-01

    Coastal counties are home to nearly 60% of the U.S. population and industry that accounts for over 16 million jobs and 10% of the U.S. annual gross domestic product. However, these areas are susceptible to some of the most destructive forces in nature, including tsunamis, floods, and severe storm-related hazards. Since 1900, tropical cyclones making landfall on the US Gulf of Mexico Coast have caused more than 9,000 deaths; nearly 2,000 deaths have occurred during the past half century. Tropical cyclone-related adjusted, annualized losses in the US have risen from 1.3 billion from 1949-1989, to 10.1 billion from 1990-1995, and $35.8 billion per year for the period 2001-2005. The risk associated with living and doing business in the coastal areas that are most susceptible to tropical cyclones is exacerbated by rising sea level and changes in the characteristics of severe storms associated with global climate change. In the five years since hurricane Katrina devastated the northern Gulf of Mexico Coast, considerable progress has been made in the development and utilization of high resolution coupled storm surge and wave models. Recent progress will be presented with the ADCIRC + SWAN storm surge and wave models. These tightly coupled models use a common unstructured grid in the horizontal that is capable of covering large areas while also providing high resolution (i.e., base resolution down to 20m plus smaller subgrid scale features such as sea walls and levees) in areas that are subject to surge and inundation. Hydrodynamic friction and overland winds are adjusted to account for local land cover. The models scale extremely well on modern high performance computers allowing rapid turnaround on large numbers of compute cores. The models have been adopted for FEMA National Flood Insurance Program studies, hurricane protection system design and risk analysis, and quasi-operational forecast systems for several regions of the country. They are also being evaluated as

  19. Building a flood climatology and rethinking flood risk at continental scales

    NASA Astrophysics Data System (ADS)

    Andreadis, Konstantinos; Schumann, Guy; Stampoulis, Dimitrios; Smith, Andrew; Neal, Jeffrey; Bates, Paul; Sampson, Christopher; Brakenridge, Robert; Kettner, Albert

    2016-04-01

    Floods are one of the costliest natural disasters and the ability to understand their characteristics and their interactions with population, land cover and climate changes is of paramount importance. In order to accurately reproduce flood characteristics such as water inundation and heights both in the river channels and floodplains, hydrodynamic models are required. Most of these models operate at very high resolutions and are computationally very expensive, making their application over large areas very difficult. However, a need exists for such models to be applied at regional to global scales so that the effects of climate change with regards to flood risk can be examined. We use the a modeling framework that includes the VIC hydrologic and the LISFLOOD-FP hydrodynamic model to simulate a 40-year history of flood characteristics at the continental scale, particularly Australia. In order to extend the simulated flood climatology to 50-100 years in a consistent manner, reanalysis datasets have to be used as meteorological forcings to the models. The objective of this study is the evaluation of multiple atmospheric reanalysis datasets (ERA, NCEP, MERRA, JRA) as inputs to the VIC/LISFLOOD-FP model. Comparisons of the simulated flood characteristics are made with both satellite observations of inundation and a benchmark simulation of LISFLOOD-FP being forced by observed flows. The implications of having a climatology of flood characteristics are discussed, and in particular We found the magnitude and timing of floodplain water storage to significantly differ from streamflow in terms of their distribution. Furthermore, floodplain volume gave a much sharper discrimination of high hazard and low hazard periods than discharge, and using the latter can lead to significant overestimation. These results demonstrate that global streamflow statistics or precipitation should not be used to infer flood hazard and risk, but instead a flood inundation climatology is necessary.

  20. Predicting the next storm surge flood

    USGS Publications Warehouse

    Stamey, B.; Wang, Hongfang; Koterba, M.

    2007-01-01

    The Virginia Institute of Marine Science (VIMS), National Weather Services (NWS) Sterling and Wakefield, Weather Forecast Offices (WFO), and the Chesapeake Bay Observing System (CBOS) jointly developed a prototype system of a regional capability to address national problem. The system was developed to integrate high-resolution atmospheric and hydrodynamic and storm surge models, evaluate the ability of the prototype to predict land inundation in the Washington, D.C., and provide flooding results to Emergency Managers (EM) using portive. The system is a potential tool for NWS WFOs to provide support to the EMs, first in the Chesapeake Bay region and then in other coastal regions by applying similar approaches in other coastal and Great Lakes regions. The Chesapeake Inundation Prediction System (CIPS) also is building on the initial prototype to predict the combined effects of storm surge and tidal and river flow inundation in the Chesapeake Bay and its tributaries.

  1. New Tsunami Inundation Maps for California

    NASA Astrophysics Data System (ADS)

    Barberopoulou, Aggeliki; Borrero, Jose; Uslu, Burak; Kanoglu, Utku; Synolakis, Costas

    2010-05-01

    California is the first US State to complete its tsunami inundation mapping. A new generation of tsunami inundation maps is now available for 17 coastal counties.. The new maps offer improved coverage for many areas, they are based on the most recent descriptions of potential tsunami farfield and nearfield sources and use the best available bathymetric and topographic data for modelling. The need for new tsunami maps for California became clear since Synolakis et al (1998) described how inundation projections derived with inundation models that fully calculate the wave evolution over dry land can be as high as twice the values predicted with earlier threshold models, for tsunamis originating from tectonic source. Since the 1998 Papua New Guinea tsunami when the hazard from offshore submarine landslides was better understood (Bardet et al, 2003), the State of California funded the development of the first generation of maps, based on local tectonic and landslide sources. Most of the hazard was dominated by offshore landslides, whose return period remains unknown but is believed to be higher than 1000 years for any given locale, at least in Southern California. The new generation of maps incorporates local and distant scenarios. The partnership between the Tsunami Research Center at USC, the California Emergency Management Agency and the California Seismic Safety Commission let the State to be the first among all US States to complete the maps. (Exceptions include the offshore islands and Newport Beach, where higher resolution maps are under way). The maps were produced with the lowest cost per mile of coastline, per resident or per map than all other States, because of the seamless integration of the USC and NOAA databases and the use of the MOST model. They are a significant improvement over earlier map generations. As part of a continuous improvement in response, mitigation and planning and community education, the California inundation maps can contribute in

  2. Developments in large-scale coastal flood hazard mapping

    NASA Astrophysics Data System (ADS)

    Vousdoukas, Michalis I.; Voukouvalas, Evangelos; Mentaschi, Lorenzo; Dottori, Francesco; Giardino, Alessio; Bouziotas, Dimitrios; Bianchi, Alessandra; Salamon, Peter; Feyen, Luc

    2016-08-01

    Coastal flooding related to marine extreme events has severe socioeconomic impacts, and even though the latter are projected to increase under the changing climate, there is a clear deficit of information and predictive capacity related to coastal flood mapping. The present contribution reports on efforts towards a new methodology for mapping coastal flood hazard at European scale, combining (i) the contribution of waves to the total water level; (ii) improved inundation modeling; and (iii) an open, physics-based framework which can be constantly upgraded, whenever new and more accurate data become available. Four inundation approaches of gradually increasing complexity and computational costs were evaluated in terms of their applicability to large-scale coastal flooding mapping: static inundation (SM); a semi-dynamic method, considering the water volume discharge over the dykes (VD); the flood intensity index approach (Iw); and the model LISFLOOD-FP (LFP). A validation test performed against observed flood extents during the Xynthia storm event showed that SM and VD can lead to an overestimation of flood extents by 232 and 209 %, while Iw and LFP showed satisfactory predictive skill. Application at pan-European scale for the present-day 100-year event confirmed that static approaches can overestimate flood extents by 56 % compared to LFP; however, Iw can deliver results of reasonable accuracy in cases when reduced computational costs are a priority. Moreover, omitting the wave contribution in the extreme total water level (TWL) can result in a ˜ 60 % underestimation of the flooded area. The present findings have implications for impact assessment studies, since combination of the estimated inundation maps with population exposure maps revealed differences in the estimated number of people affected within the 20-70 % range.

  3. Fugacity based modeling for pollutant fate and transport during floods. Preliminary results

    NASA Astrophysics Data System (ADS)

    Deda, M.; Fiorini, M.; Massabo, M.; Rudari, R.

    2010-09-01

    the domain during and after the flood. The chemical emissions rate are estimated based on land use and population for three different classes of contaminants; the classes are representative of contaminants released from agricultural sources, sewage disposal and industrial/commercial emissions. The module for source estimation provides the spatial distribution of the potential emissions rates in the area. Emission rates are forcing input for the third simulation module whenever the pertinent area is inundated. The second module simulates the flood dynamics by using a parabolic approximation of the two dimensional shallow water equation. The model is properly developed in order to utilize simplified initial and boundary conditions, such as flooding points and flooding voulmes or satellite derived DTMs and land use . Thanks to its computational efficiency it is possible to run several simulations in order to adjust initial and boundary conditions, which are partly unknown, to satellite delineation of the flooded areas which are used as constrain for the 2D dynamic simulation. In this way the result is a dynamically consistent flooded map enriched with important information about hydraulic forcing parameters (i.e. hydraulic depths, flow velocities at every temporal step). The third module simulates the two-dimensional spatial distribution of pollutants concentration in all the environmental media. The mass balance equation for the chemicals is here derived in term of chemical fugacity instead the classical molar concentration. The advatage of the fugacity instead of concentration is that, since fugacity is continuous among phase interfaces and concentration is not, it renders the analysis of contaminat transfer between the phases easier. The two dimensional - depth averaged- mass balance equation is solved numerically by a finite volume tecnique over a rectangular regular grid. The model has been applied to the inundation of SHKODRA region in Albania during the January

  4. Cyber surveillance for flood disasters.

    PubMed

    Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han

    2015-01-22

    Regional heavy rainfall is usually caused by the influence of extreme weather conditions. Instant heavy rainfall often results in the flooding of rivers and the neighboring low-lying areas, which is responsible for a large number of casualties and considerable property loss. The existing precipitation forecast systems mostly focus on the analysis and forecast of large-scale areas but do not provide precise instant automatic monitoring and alert feedback for individual river areas and sections. Therefore, in this paper, we propose an easy method to automatically monitor the flood object of a specific area, based on the currently widely used remote cyber surveillance systems and image processing methods, in order to obtain instant flooding and waterlogging event feedback. The intrusion detection mode of these surveillance systems is used in this study, wherein a flood is considered a possible invasion object. Through the detection and verification of flood objects, automatic flood risk-level monitoring of specific individual river segments, as well as the automatic urban inundation detection, has become possible. The proposed method can better meet the practical needs of disaster prevention than the method of large-area forecasting. It also has several other advantages, such as flexibility in location selection, no requirement of a standard water-level ruler, and a relatively large field of view, when compared with the traditional water-level measurements using video screens. The results can offer prompt reference for appropriate disaster warning actions in small areas, making them more accurate and effective.

  5. Cyber Surveillance for Flood Disasters

    PubMed Central

    Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han

    2015-01-01

    Regional heavy rainfall is usually caused by the influence of extreme weather conditions. Instant heavy rainfall often results in the flooding of rivers and the neighboring low-lying areas, which is responsible for a large number of casualties and considerable property loss. The existing precipitation forecast systems mostly focus on the analysis and forecast of large-scale areas but do not provide precise instant automatic monitoring and alert feedback for individual river areas and sections. Therefore, in this paper, we propose an easy method to automatically monitor the flood object of a specific area, based on the currently widely used remote cyber surveillance systems and image processing methods, in order to obtain instant flooding and waterlogging event feedback. The intrusion detection mode of these surveillance systems is used in this study, wherein a flood is considered a possible invasion object. Through the detection and verification of flood objects, automatic flood risk-level monitoring of specific individual river segments, as well as the automatic urban inundation detection, has become possible. The proposed method can better meet the practical needs of disaster prevention than the method of large-area forecasting. It also has several other advantages, such as flexibility in location selection, no requirement of a standard water-level ruler, and a relatively large field of view, when compared with the traditional water-level measurements using video screens. The results can offer prompt reference for appropriate disaster warning actions in small areas, making them more accurate and effective. PMID:25621609

  6. Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar

    SciTech Connect

    Hess, L.L.; Melack, J.M.; Filoso, S.; Wang, Y. |

    1995-07-01

    Floodplain inundation and vegetation along the Negro and Amazon rivers near Manaus, Brazil were accurately delineated using multi-frequency, polarimetric synthetic aperture radar (SAR) data from the April and October 1994 SIR-C missions. A decision-tree model was used to formulate rules for a supervised classification into five categories: water, clearing (pasture), aquatic macrophyte (floating meadow), nonflooded forest, and flooded forest. Classified images were produced and tested within three days of SIR-C data acquisition. Both C-band (5.7 cm) and L-band (24 cm) wavelengths were necessary to distinguish the cover types. HH polarization was most useful for distinguishing flooded from nonflooded vegetation (C-HH for macrophyte versus pasture, and L-HH for flooded versus nonflooded forest), and cross-polarized L-band data provided the best separation between woody and nonwoody vegetation. Between the April and October missions, the Amazon River level fell about 3.6 m and the portion of the study area covered by flooded forest decreased from 23% to 12%. This study demonstrates the ability of multifrequency SAR to quantify in near realtime the extent of inundation on forested floodplains, and its potential application for timely monitoring of flood events.

  7. Varying Inundation Regimes Differentially Affect Natural and ...

    EPA Pesticide Factsheets

    Climate change is altering sea-level rise rates and precipitation patterns worldwide. Coastal wetlands are vulnerable to these changes. System responses to stressors are important for resource managers and environmental stewards to understand in order to best manage them. Thin layer sand or sediment application to drowning and eroding marshes is one approach to build elevation and resilience. The above- and below-ground structure, soil carbon dioxide emissions, and pore water constituents in vegetated natural marsh sediments and sand-amended sediments were examined at varying inundation regimes between mean sea level and mean high water (0.82 m NAVD88 to 1.49 m NAVD88) in a field experiment at Laws Point, part of the Plum Island Sound Estuary (MA). Significantly lower salinities, pH, sulfides, phosphates, and ammonium were measured in the sand-amended sediments than in the natural sediments. In natural sediments there was a pattern of increasing salinity with increasing elevation while in the sand-amended sediments the trend was reversed, showing decreasing salinity with increasing elevation. Sulfide concentrations generally increased from low to high inundation with highest concentrations at the highest inundation (i.e., at the lowest elevations). High pore water phosphate concentrations were measured at low elevations in the natural sediments, but the sand-amended treatments had mostly low concentrations of phosphate and no consistent pattern with elevation. A

  8. Flood Classification Using Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke A.; Torfs, Paul J. J.; Brauer, Claudia C.

    2013-04-01

    Lowland floods are in general considered to be less extreme than mountainous floods. In order to investigate this, seven lowland floods in the Netherlands were selected and compared to mountainous floods from the study of Marchi et al. (2010). Both a 2D and 3D approach of the statistical two-group classification method support vector machines (Cortes and Vapnik, 1995) were used to find a statistical difference between the two flood types. Support vector machines were able to draw a decision plane between the two flood types, misclassifying one out of seven lowland floods, and one out of 67 mountainous floods. The main difference between the two flood types can be found in the runoff coefficient (with lowland floods having a lower runoff coefficient than mountainous floods), the cumulative precipitation causing the flood (which was lower for lowland floods), and, obviously, the relief ratio. Support vector machines have proved to be useful for flood classification and might be applicable in future classification studies. References Cortes, C., and V. Vapnik. "Support-Vector Networks." Machine Learning 20: (1995) 273-297. Marchi, L., M. Borga, E. Preciso, and E. Gaume. "Characterisation of selected extreme flash floods in Europe and implications for flood risk management." Journal of Hydrology 394: (2010) 118-133.

  9. Applications of remote sensing techniques to county land use and flood hazard mapping

    NASA Technical Reports Server (NTRS)

    Clark, R. B.; Conn, J. S.; Miller, D. A.; Mouat, D. A.

    1975-01-01

    The application of remote sensing in Arizona is discussed. Land use and flood hazard mapping completed by the Applied Remote Sensing Program is described. Areas subject to periodic flood inundation are delineated and land use maps monitoring the growth within specific counties are provided.

  10. Integration of coastal inundation modeling from storm tides to individual waves

    NASA Astrophysics Data System (ADS)

    Li, Ning; Roeber, Volker; Yamazaki, Yoshiki; Heitmann, Troy W.; Bai, Yefei; Cheung, Kwok Fai

    2014-11-01

    Modeling of storm-induced coastal inundation has primarily focused on the surge generated by atmospheric pressure and surface winds with phase-averaged effects of the waves as setup. Through an interoperable model package, we investigate the role of phase-resolving wave processes in simulation of coastal flood hazards. A spectral ocean wave model describes generation and propagation of storm waves from deep to intermediate water, while a non-hydrostatic storm-tide model has the option to couple with a spectral coastal wave model for computation of phase-averaged processes in a near-shore region. The ocean wave and storm-tide models can alternatively provide the wave spectrum and the surface elevation as the boundary and initial conditions for a nested Boussinesq model. Additional surface-gradient terms in the Boussinesq equations maintain the quasi-steady, non-uniform storm tide for modeling of phase-resolving surf and swash-zone processes as well as combined tide, surge, and wave inundation. The two nesting schemes are demonstrated through a case study of Hurricane Iniki, which made landfall on the Hawaiian Island of Kauai in 1992. With input from a parametric hurricane model and global reanalysis and tidal datasets, the two approaches produce comparable significant wave heights and phase-averaged surface elevations in the surf zone. The nesting of the Boussinesq model provides a seamless approach to augment the inundation due to the individual waves in matching the recorded debris line along the coast.

  11. Use of crowd source, Open Data and EO-based information in flood damage assessment: the 2014 urban flood in Genoa.

    NASA Astrophysics Data System (ADS)

    Trasforini, Eva; De Angeli, Silvia; Fiorini, Mattia; Rossi, Lauro; Rudari, Roberto

    2015-04-01

    The need for rapid scenario-based flood damage assessment is urgent. The simulated assessment depends on three factors (flood scenarios, vulnerability and exposure), which cannot be always estimated with the same level of reliability. While flood hazard scenario maps based on hydraulic modeling of inundation is now a common practice, computation of damage assessment is often limited by the lack of exposure data and specific vulnerability curves. In this context, crowd sourced and Open Data in combination with EO-based information can play an important role in the characterization of the flood prone assets and more in general for Multi-Risk assessments. A simplified methodology for damage assessment based on these data sources was applied to the recent urban flash flood, which took place in October 9th, 2014 in Genoa. Hazard, exposure and damage were computed separately and validated against observations or official data. The total simulated damage was then compared with the official damage assessment obtained through citizen claims and municipal authorities surveys. Hazard mapping obtained by 2D dynamic models (complete shallow water equations) or more simplified 2D models (diffusive approximation of shallow water equations) showed negligible differences in terms of maximum water depth for the purpose of damage assessment and both well represent the real flood extent, as confirmed by the comparison with water marks registered during a field survey. Damage simulation seems much more sensitive to the assets characterization. Starting from existing vulnerability curve libraries, new curves were adapted to fit construction typologies of Genoa city center. Different categories were created taking into account most influencing construction typology and occupancy parameters. Two assets characterizations were created: the first one based on official governmental data used as benchmark; the other obtained through the combination of Open Data (such as Open Street Map, Street

  12. The effect of inundation frequency on ground beetle communities in a channelized mountain stream

    NASA Astrophysics Data System (ADS)

    Skalski, T.; Kedzior, R.; Radecki-Pawlik, A.

    2012-04-01

    Under natural conditions, river channels and floodplains are shaped by flow and sediment regime and are one of the most dynamic ecosystems. At present, European river floodplains are among the most endangered landscapes due to human modifications to river systems, including channel regulation and floodplain urbanization, and land use changes in the catchments. Situated in a transition zone between terrestrial and aquatic environments, exposed riverine sediments (ERS) play a key role in the functioning of riverine ecosystems. This study aimed to verify whether the bare granular substrate is the only factor responsible for sustaining the biota associated with ERS or the inundation frequency also plays a role, modifying the potential of particular species to colonize these habitats. Ground beetles (Col. Carabidae) were selected as the investigated group of organisms and the study was carried out in Porębianka, a Polish Carpathian stream flowing through both unconstrained channel sections and sections with varied channelization schemes (rapid hydraulic structures, concrete revetments or rip-rap of various age). In each of the distinguished channel types, four replicates of 10 pitfall traps were established in three rows varying in distance to the mean water level (at three different benches). Almost 7000 individuals belonging to 102 species were collected on 60 plots. Forward selection of redundancy analysis revealed four factors significantly describing the variation in ground beetle species data: bank modification, potential bankfull discharge, frequency of inundation and plant height. Most of the biggest species were ordered at the positive site of first axis having the highest values of periods between floods. Total biomass of ground beetles and mean biomass of individuals differed significantly between sites of various frequency of inundation, whereas the variation in abundance and species richness of ground beetles was independent of the river dynamics. The body

  13. Modelling the flood-risk extent using LISFLOOD-FP in a complex watershed: case study of Mundeni Aru River Basin, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Amarnath, G.; Umer, Y. M.; Alahacoon, N.; Inada, Y.

    2015-06-01

    Flood management is adopting a more risk-based approach, whereby flood risk is the product of the probability and consequences of flooding. Two-dimensional flood inundation modeling is a widely used tool to aid flood-risk management. The aim of this study is to develop a flood inundation model that uses historical flow data to produce flood-risk maps, which will help to identify flood protection measures in the rural areas of Sri Lanka. The LISFLOOD-FP model was developed at the basin scale using available historical data, and also through coupling with a hydrological modelling system, to map the inundation extent and depth. Results from the flood inundation model were evaluated using Synthetic Aperture Radar (SAR) images to assess product accuracy. The impacts of flooding on agriculture and livelihoods were analyzed to assess the flood risks. It was identified that most of the areas under paddy cultivation that were located near the middle and downstream part of the river basin are more susceptible to flood risks. This paper also proposes potential countermeasures for future natural disasters to prevent and mitigate possible damages.

  14. Flood Damage Estimation of Coastal Area Considering Climate Change

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, K.; Choi, C.; Han, D.; Kim, H. S.

    2015-12-01

    There are various researches to respond to the natural disasters efficiently such as floods caused by climate change. Most of the studies have assessed the impact of climate change on floods by the increase of future rainfall and the sea level rise separately. However, we have to consider the effects of the combined floods by future heavy rainfall and sea level rise. This means the urban floods in coastal area can be occurred due to the combined inundation by overflow of urban drainage system and by sea level rise. Then we can estimate the flood damage from the combined floods due to the climate change. Hence, this study selected Taehwa River basin, Korea which flows from the west to the east and extends to Ulsan bay. This study analysed on the influence of hydrologic alteration in the coastal area by considering the sea level rise as well as the future precipitation according to climate change. It is prepared the flood inundation map which is related to the increase of precipitation and sea level for assuring how the sea level rise effects on the coastal area caused by the climate change, and the flood damage assessment is estimated to compare the hydrologic alteration quantitatively. The study result showed that flood level in the channel flows to the mouth rose as the water surface elevation rose due to the rise in sea level. In addition, the extent of increase in flood level caused by sea level rise was greater at a location nearer the outlet and it was smaller at a place farther from the outlet. It could be verified that the change of the inundation depth and damage area caused by the rise in sea level can have an effect on the flood damage assessment. It is important factor to analyse not only the increase of precipitation cuased of climate change in coastal rivers but also the change of rise in sea level, the flood water level, the flood inundation and the flood damage assessment. The result of this study could be used as basic data for creating technology

  15. Floods of February-March 1961 in the southeastern States

    USGS Publications Warehouse

    Barnes, Harry Hawthorne; Somers, William Philip

    1961-01-01

    Widespread, prolonged, disastrous floods struck parts of Louisiana, Mississippi, Alabama, Georgia, and Florida following heavy rains Feb. 17-26, 1961. Three distinct low-pressure systems recurred in essentially the same area. Precipitation totaled more than 18 inches in some areas. Multiple floods of small streams became superimposed in the large rivers to produce rare, record-breaking peaks and prolonged inundation. Four lives were lost; one in Louisiana and three in Mississippi. Highways, railroads, urban areas, and farms were heavily damaged.

  16. Modelling tsunami inundation for risk analysis at the Andaman Sea Coast of Thailand

    NASA Astrophysics Data System (ADS)

    Kaiser, G.; Kortenhaus, A.

    2009-04-01

    The mega-tsunami of Dec. 26, 2004 strongly impacted the Andaman Sea coast of Thailand and devastated coastal ecosystems as well as towns, settlements and tourism resorts. In addition to the tragic loss of many lives, the destruction or damage of life-supporting infrastructure, such as buildings, roads, water & power supply etc. caused high economic losses in the region. To mitigate future tsunami impacts there is a need to assess the tsunami hazard and vulnerability in flood prone areas at the Andaman Sea coast in order to determine the spatial distribution of risk and to develop risk management strategies. In the bilateral German-Thai project TRAIT research is performed on integrated risk assessment for the Provinces Phang Nga and Phuket in southern Thailand, including a hazard analysis, i.e. modelling tsunami propagation to the coast, tsunami wave breaking and inundation characteristics, as well as vulnerability analysis of the socio-economic and the ecological system in order to determine the scenario-based, specific risk for the region. In this presentation results of the hazard analysis and the inundation simulation are presented and discussed. Numerical modelling of tsunami propagation and inundation simulation is an inevi